当前位置: 仪器信息网 > 行业主题 > >

探伤探头

仪器信息网探伤探头专题为您提供2024年最新探伤探头价格报价、厂家品牌的相关信息, 包括探伤探头参数、型号等,不管是国产,还是进口品牌的探伤探头您都可以在这里找到。 除此之外,仪器信息网还免费为您整合探伤探头相关的耗材配件、试剂标物,还有探伤探头相关的最新资讯、资料,以及探伤探头相关的解决方案。

探伤探头相关的资讯

  • 动车组空心轴超声探伤仪器研制
    成果名称动车组空心轴超声探伤仪器单位名称北京新联铁科技股份有限公司联系人王迎宽联系邮箱wangyingkuan@shenzhou-gaotie.com成果成熟度□正在研发 □已有样机 □通过小试 □通过中试 √ 可以量产合作方式□技术转让 □技术入股 □合作开发 √ 其他 自主研发成果简介: 1.关键技术 动车组空心车轴超声探伤仪器,主要由超声检测系统、数据处理和显示子系统、定位子系统、电气控制系统及机械整体构架等组成,其关键技术主要有以下几点。 (1)高速多通道嵌入式超声控制器及超声换能器 图1前置电子处理单元 前置电子处理单元是动车组空心车轴超声波探伤设备的核心部件,该单元由硬件检测电路、嵌入式CPU、A/D转换器、具备半导体散热的防护壳体及检测软件组成。其主要功能是发射脉冲激励晶片产生超声波、接收超声波信号同时对信号进行处理和数字转换,识别探头移动的三维距离,并把超声波数字信号、探头位置等检测与控制信息通过网络上传给控制计算机。采用多处理器技术、大容量缓存技术,可实时进行数据的压缩,数据传输速度快。该单元性能先进、结构紧凑、搞干扰能力强,达到国际先进水平。 图2不同型号的超声波换能器 完成了超声换能器的自主研制,其性能达到国外进口水平,部分参数优于国外探头,目前国内超声换能器完全能够取代进口产品。同时,为了解决检测空心车轴内表面缺陷的要求及30孔车轴须检测的纵向缺陷及内表面缺陷的要求,研制了专用的爬波探头和组合探头。 (2)超声耦合技术 本项目对超声耦合剂使用时的环境温度与耦合性能的关系作了大量研究,成功解决了因我国地域辽阔南北温差大带来的超声耦合问题。创新的耦合剂回收,既使得探头与空心车轴内表面的耦合压力稳定,又回收盈余的耦合剂,节省了检测成本。 新型动车组空心车轴超声波探伤设备采用动态耦合技术,在保证耦合效果的同时,极大的减小了耦合液的使用量,降低作业成本。动态耦合技术包含耦合液供给部分、耦合液回收部分、耦合液存放装置、密闭耦合部分。经过实际验证动态耦合技术耦合效果良好,满足动车组空心车轴超声波探伤需要,周向耦合能够控制在3dB以内。 (3)探伤软件 我公司经过两年时间的自主研发,完成了用于控制和监控动车组空心车轴超声波检测的软件系统,该软件基于.net开发,具有直观的图形控制界面,操作符合MW习惯,由多种不同的程序和动态链接库组成,可以在任何一台PC进行全功能操作。 探伤人员可以根据探伤过程中的A型显示方式的波形特征,对车轴上存在的缺陷的类型进行定性分析。A型显示是一种实时的显示方式,设备在扫查过程中无法满足探伤人员分析的需要,为此我们专门设计了探伤扫描图像的离线A显示,将探伤扫查过程的数据存储到上位机中,在探伤扫查完成之后,可以通过调用存储的数据实现A型显示的再现,满足探伤人员分析的需要,同时数据可以永久的存储在数据存储介质中,随时供探伤人员调取、分析。 图3 探伤软件的开发 (4)高速旋转探杆系统 图4 60mm—65mm探杆系统 第一、独创的密封式旋转油腔技术,使耦合油存储在密闭的空间内,保证了极佳的耦合效果,并且能够很好的保护探头,有效解决了原有探杆系统耦合不良的问题。 第二、在探杆旋转油腔内创新设计了耦合油回收系统,使该探杆具备供油和吸油双油路系统,耦合压力稳定,确保耦合油液一直停留在旋转密封油腔内,探杆的其他部分与油液分离。解决了原来整体探杆浸泡在油液中,导致部分电子部件因漏油失灵的故障。 第三、创新设计了探杆进给运动导向滑轮,保证探杆和空心轴内孔的同心度,使探伤过程运行平稳,确保探头在周向运动过程中耦合的稳定性。 第四、更加高效的完成空心车轴缺陷的扫查工作。探杆前端旋转部分采用全新的探头布局技术,具有平衡性好、回转定心准确等优点。独创的密封式旋转油腔技术,使耦合油存储在密闭的空间内,保证了极佳的耦合效果,并且能够很好的保护探头,解决了国外其它厂家探杆系统普遍存在的耦合问题。探杆采用耦合油回收技术,设置有供油和吸油双系统,耦合压力恒定,密封性好,可保证探杆不进油。 (5)集成化的控制系统 控制系统是集数字I/O、模拟I/O、电机及其位置控制于一体的控制单元,具有体积小、高抗震性、安装方便等优点,可满足移动设备的特殊要求。 新型动车组空心车轴超声波探伤设备的设计、研发是一个系统的工程,其包括机械、电气、软件、超声波各方面知识。针对设备的研制,项目组设计了专用的实验平台并根据各测试项目的不同,制定了全面、有效的评价方案。实验平台涵盖机械、电气、软件、超声波等各方面的实验内容,评价技术科学有效能够客观的反映出各子系统的真实状态。 目前投入使用的平台有行走机构跑合实验平台、连续检测实验平台、探杆综合性能测试平台、油路系统实验平台等 (6)连挂传动系统 新型设计的助力平衡机构,结构科学、操作简单、大大的降低了操作人员的劳动强度,一个操作人员即可完成探伤扫查作业。快速锁紧装置可以迅速的将进给连挂系统连接到被检测的空心车轴上。与车体采用一体化设计,重量轻、效率高,方便使用人员操作。能兼容不同规格的探杆系统,满足不同车型探伤作业需求。 该机构由探杆的推进及旋转系统、链条传动系统、机械平衡臂和连挂装置组成。该设计能够保证耦合油液回到车体油箱,一体化结构使探杆系统由车体机械平衡臂支撑,悬挂后车轴轴端所受的悬挂重力非常小,能有效避免轴端压盖及轴端螺纹的损坏。采用快速锁紧装置,能将设备连接盘与适配器快速连挂、锁紧,人工连挂非常轻便,有效减轻了劳动强度,提高作业效率。 该机构可兼容30~110毫米直径探杆系统,可分别检测不同内孔直径的动车组空心车轴。通过更换不同的探杆系统放置筒并借助定位机构方便的进行切换,很好的解决了设备的兼容性问题。 图5快速锁紧装置 图6进给装置及助力平衡机构 2.技术先进性 该成果为为国内首创,与国外同类设备相比,在兼容性、探伤扫查时间、探伤精度、适用范围等方面均有显著优势,为国际领先水平,关键参数对比情况见下表。本项目是唯一通过铁路总公司(原铁道部)技术评审的成果。我公司通过本成果的实施,获得了中国铁路总公司2项技术标准立项,为《动车组空心车轴超声波探伤设备 第1部分:自动式》、《动车组空心车轴超声波探伤设备 第2部分:便携式》,目前报批稿已完成,预计2016年发布。 3.技术创新点 (1)兼容性创新 本成果针对CRH系列各型动车组从Ф30mm到Ф110mm的空心车轴探伤需求,研发了多种探头阵列系统和多种车轴适配器,可以兼容不同孔径,满足不同型号的动车组的使用需求,填补了国内空白。 (2)高分辨力探头 采用压电复合材料晶片,具有高灵敏度、高分辨力、高机电耦合系数和高介电常数的特点,有效提高了外围电路阻抗匹配率,具有较高的能量转换效率,主要技术指标达到国际先进水平。 (3)高精度探头组合 采用多个不同声束方向、位置排布的探头,可对动车组的整根车轴进行无盲区扫查并发现车轴外表面的横向、纵向及材质缺陷,检测缺陷类型和精度达到国际先进水平。 (4)高集成度精密探杆 自主设计制造了全世界第一根Ф30mm八通道探杆,满足国产新造CRH380系列空心车轴检测要求,在长客和青岛庞巴迪使用良好,填补了国际空白。 (5)数据管理与远程诊断 开发了动车组空心车轴探伤管理信息数据平台,可从探伤设备收发数据并存储到数据中心,实现探伤数据统一管理与远程诊断,提高了动车组空心车轴探伤的智能化水平。 4.性能指标 (1)适应环境温度:0℃~+45℃; (2)系统检测灵敏度:1mm深度周向缺陷可检出,体积缺陷Ф2mm平底孔当量可检出; (3)单轴扫查时间:4分钟; (4)超声波通道数量:8通道; (5)探头频率:4MHz; (6)可测轴孔径:可检测Ф30mm、Ф39mm、Ф40mm、Ф60mm、Ф65mm、Ф80mm、Ф110mm空心车轴; (7)最大检测长度:2705mm; (8)探伤扫查探头转动速率:20~150rpm可调; (9)检测螺距:1~10mm可调; (10)最大功率:1.49kw。 5.应用研发 本成果已经形成了批量生产工艺,具备了产业化条件,目前销量已达150余台/套,在全国北京、上海、广州、济南等18个铁路局进行推广应用,占据了动车组空心车轴检修领域90%的市场份额,客户反映良好。 随着项目产业化的实施,我公司开发了动车组空心车轴探伤管理信息数据平台,可以适用于全国各铁路局、动车检修基地、动车所对动车组空心车轴探伤数据进行统一管理,为铁路局各级人员提供决策数据支持、检修预警、台帐管理、作业监控、作业质量评价等功能。 我公司还在本成果的技术基础上,研发适用于机车、地铁等其他轨道交通车辆的车轴超声探伤设备,拟将产品推广到轨道交通的更多领域。应用前景: 1.成果主要用途 本成果针对我国动车组运行密度大、里程长、环境复杂多样,车轴型式多样、速度等级不一、运用质量及检测要求高等特点,研发了兼容各型动车组空心车轴超声波探伤关键技术,能够满足目前所有车型空心车轴的裂纹和材质缺陷检测的需求,兼顾CRH系列各型动车组空心车轴的检测应用,形成了我国轨道列车空心车轴无损探伤体系,解决了我国动车组空心车轴无在役运行缺陷检测的重大问题。 2.适用领域 本成果属于轨道交通领域,适用于动车组空心车轴的出厂检验及在役检修,主要应用在动车检修基地、动车运用所、主机厂等单位。 3.市场预测 本成果是轨道交通行业的配套产业,近几年,我国轨道交通行业投资规模巨大,一大批动车检修基地、动车运用所的建设及改造工程正在进行。未来我国铁路行业仍将保持高速发展态势,预计在“十三五”期间,我国还将新建27个动车运用所,2个动车检修基地,2个和谐型大功率检修基地。伴随城际铁路的发展也将有一批检修所建设。 铁路行业的快速发展,路网规模的进一步扩大,将推动18个路局对车辆段、机务段的更新改造,检修设备的投入是车辆段、机务段的更新改造的重点,这就推动了本行业的快速发展,预计2016—2020年,铁路机车车辆检修设备市场规模约177亿元。 按照铁道部运输局制定的运装管验[2011]175号文件中关于公布《动车运用所关键设备技术条件》的《空心车轴超声波探伤设备技术条件》的要求,以及TG/CL 127-2013《铁路动车组运用维修规程》,动车运用检修必须进行空心轴超声探伤。截止2014年底,中国CRH系列动车组拥有量1411组、13696辆,未来3-5年CRH系列动车组将很快达到2000组、约20000辆,对项目产品的需求量会更多。我国有52个动车运用所,对空心轴探伤机的需求量很高,按照每个运用所配套10台项目产品,项目产品需求量约为520台/套。知识产权及项目获奖情况: 1.知识产权 本成果申请国内发明专利4项,授权2项;获得实用新型专利授权22项,外观设计专利授权1项,取得软件著作权2项。已取得知识产权情况如下: 1 一种空心车轴探伤机的远程监控系统 发明专利 201110243207.8 授权 2 采用活动轨段的轨道车辆车轮探伤系统和方法 发明专利 201310030813.0 授权 3 空心轴探伤探杆 实用新型 201020167088.3 授权 4 超声波探伤用适配器 实用新型 201020296334.5 授权 5 便携式空心车轴超声波探伤仪 实用新型 201120317637.5 授权 6 空心轴超声波探伤用对比试样轴 实用新型 201120317632.2 授权 7 空心轴探伤探杆耦合剂工作状态观察装置 实用新型 201120300835.0 授权 8 空心车轴超声波探伤机探杆防撞保护装置 实用新型 201120300843.5 授权 9 一种防止空心车轴探伤探杆进油的密封结构 实用新型 201120270160.X 授权 10 一种空心车轴超声波探伤校验体 实用新型 201120269956.3 授权 11 确保探伤机进给机构与空心车轴同心连接的连接装置 实用新型 201120269978.X 授权 12 空心轴内部缺陷距离深度补偿定量检测试块 实用新型 201220118848.0 授权 13 一种用于动车空心轴超声波探伤机适配连接装置 实用新型 201320705173.4 授权 14 一种探伤机进给链条 实用新型 201320705314.2 授权 15 一种能够改善探头耦合性能的探头支架装置 实用新型 201520173657.8 授权 16 旋转油腔式探杆 实用新型 201520173382.8 授权 17 格莱圈安装工具 实用新型 201520173696.8 授权 18 一种探伤机行走传动装置和探伤机行走装置 实用新型 201520367334.2 授权 19 用于空心车轴超声波探伤的适配器 实用新型 201520431630.4 授权 20 空心车轴探伤装置 实用新型 201520602798.7 授权 21 探杆的密封联接装置 实用新型 201520586904.7 授权 22 空心轴探伤机线缆收集装置 实用新型 201520532309.5 授权 23 动车组空心车轴超声波探伤探头 实用新型 201520589322.4 授权 24 移动式动车组空心车轴超声波探伤车 外观设计 201130285883.2 授权 25 XHAT-M系列空心轴探伤信息化接口软件 软著 2010SR054488 授权 26 SUN-1型动车组空心车轴超声波探伤机检测软件[简称:SUN]V1.1.3 软著 2014SR088883 授权 2.所获奖励及科技计划 本成果所获荣誉奖励情况详见下表。 1 首都科技条件平台仪器开发培育项目 新型动车组空心轴超声探伤仪器的产业化培育 2 北京市科学技术二等奖 兼容各型动车组空心车轴超声波探伤关键技术研究及应用 3 上海铁路局科学技术进步一等奖 动车组空心车轴超声波探伤专用探头国产化 4 国家火炬计划产业化示范项目 兼容各型动车组车轴超声波探伤机产业化项目 5 国家重点新产品 空心车轴超声波探伤机
  • 奥林巴斯A36探头新品发布,助力洞悉更深层缺陷
    在检测过程中,针对于大壁厚(如200mm)的焊缝检测,往往对于检测设备有着更高层次的要求。为了更好的面对在检测时遇到的各种复杂情况及调整,基于A26 DLA 探头成功的应用实践基础上,Evident在近期发布了全新A36双晶64晶片线性探头。全新A36双晶64晶片线性探头的推出,将在大壁厚情形下,协助塑造更为优质的焊缝检测解决方案。更强穿透力A36双晶64晶片线性探头通过将通道数量加倍,进而将其提升了一个档次,从而产生双 64 通道的线性配置。双晶64晶片线阵一发一收探头具有高阵元数的配置,搭配使用 OmniScan&trade X3 64相控阵探伤仪,非常适合检测大壁厚的高衰减材料焊缝检测。OmniScan&trade MXU 软件现在提供不同类型的聚焦选项,即通过电子方式实现工件中不同深度区域聚焦。在相控阵模式下,有助于将焦点位置设定在焊缝内最相关的区域。与OmniScan&trade 搭配使用,如虎添翼在使用A36双晶64晶片线性探头时,搭配OmniScan&trade X3相控阵探伤仪,在根据检测工艺要求的前提下,除了可以创建相控阵(PA)聚焦法则外,也可以设置全聚焦(TFM)模式和相位相干成像(PCI)组。在扫查计划菜单中,亦可以设置平板、管棒材等各种几何形状的工件。A36双晶64晶片线性探头提供 2.25MHz、4MHz 和 5 MHz 三种频率,SA36 楔块提供聚焦深度40 毫米和 200 毫米两种规格,且支持外径8.625英寸至平面的工件类型检测。
  • 可用于游艇维修和调查的超声波探伤设备,为您的旅途保驾护航
    在船舶行业中,超声检测(UT)可以无损方式探测到船只、游艇和其他海洋船舶的缺陷。常规UT检测有助于确保海运船舶符合监管要求和法律,以保障船员、乘客和货物的安全。marineSOLUTIONS是一家主要以超声检测方式对游艇进行检测的国际游艇验船公司。对新、旧海洋船舶进行检测marineSOLUTIONS在东地中海地区提供游艇的验船、咨询和管理服务。该公司位于土耳其Turgutreis的Bodrum半岛,其主要工作是对新、旧海船进行检测,以验证海船的状况和价值,并确定和评估海船的损坏情况。验船工作可以为保险商提供详细的检测信息,以确定事故是否在承保范围之内,也可以为法律办公室提供详实的证据,以做好对船舶提出索赔的充分准备。他们的验船工作包括使用EPOCH 650探伤仪对船舶进行超声检测。使用超声技术检测的船舶材料包括:由复合材料制成的船体和桅杆船板和船舶的其他部件焊缝我们采访了材料科学工程师兼MarineSOLUTIONS的验船师Cem Baykent,了解了有关船舶行业超声检测的更多信息。船舶检测和维护的挑战国际船级社协会(IACS)提供了促进船舶和海上装置的安全、监管、合规和维护的系统。每个船级社都制定了技术标准规则。尽管有这些标准,无损检测(NDT)在船舶行业中并不像在航空航天行业中那样要强制执行。此外,如果某个国际船级社(IACS)成员未对游艇或游船进行分类,则无需包括检测文件。由于游艇制造商大多具有工匠背景,许多建造技能并没有得到标准化。大多数游艇在建造时也没有想到需进行检测。游艇的内部通常布满了衬里、设备、箱罐、线路和机械装置。这种设计可防止从游艇内部接触到船体外壳及其加固部位。因此,通常只有在强烈怀疑存在缺陷或损坏的情况下,才会对游艇进行拆卸。船舶材料也为检测增加了挑战性。为了减轻重量,许多现代船只都由将纤维和树脂基质结合在一起的复合材料制成。纤维可以随机排列,然后压平成薄片(称为短切原丝毡)或编织成织物。纤维材料通常是玻璃、芳纶或碳;基体材料通常是聚合物,例如聚酯、乙烯基酯或环氧树脂。由于纤维增强复合材料普遍用于船舶制造,而且船舶设计和材料的安全裕度不断降低(例如现代游艇的船体更薄),因此对材料进行表征和发现缺陷的需求也与日俱增。复合纤维层中的分层、瑕疵和缺陷复合材料结构中隐藏的内部瑕疵和缺陷可能有多种来源:制造异常、施加的应力、弱点、事故或维修不当。瑕疵和缺陷会严重影响船舶结构的完整性。MarineSOLUTIONS的检测人员通过无损超声检测来准确地定位和定量船只、游艇和其他海洋船舶中的缺陷、裂缝、孔隙、分层及其他缺陷。了解超声检测在船舶工业中发挥的作用简而言之,超声检测使用高频声能进行检查和测量。超声检测可用于探测和评估缺陷、进行尺寸测量和材料表征等工作。超声探伤仪使用可以产生声波的探头,并对声波离开探头,穿过被测材料,从反射体返回,并回到探头所用的时间进行测量。探头产生的声波脉冲在被测样件中传播,并从材料内侧或底面反射回来。超声探伤仪可用于定位和定量各种材料和焊缝中的不连续性,例如:裂纹、孔隙、多孔性和脱粘等。几乎可以对任何工程材料进行缺陷检测。大多数检测涉及到钢和其他结构金属,不过,探伤仪也可以对塑料、复合材料、玻璃纤维及陶瓷成功进行检测。探伤仪还可以相对准确地测量材料的厚度,不过,其设计目的并不是精密厚度测量。要了解更多信息,请参阅我们的超声缺陷探测辅导。无损检测技术(如探伤仪)是一种可在不造成任何损坏的情况下确定船舶部件或结构的完整性,并发现缺陷的有效方法。由于无损检测不会对材料造成损伤、施加应力或毁坏材料,因此在检测船舶的结构和部件时,可以节省时间和成本。无损检测可在船舶建造过程中、交付前、采购前、例行验船、损伤检测或作为维修后检测的一部分进行。在商用船舶行业中,会定期对钢制和铝制船舶进行超声无损检测,以探测并量化腐蚀情况。同样,超声无损检测也可用于测量复合材料结构的厚度和完整性。检测金属材料中的结构焊缝是船舶工业中常见的超声无损检测应用。焊缝中的缺陷类型包括裂纹、未融合、未焊透、多孔性和夹渣。所有这些缺陷都可以通过超声检测方式探测。将UT(超声检测)与NDT(无损检测)技术结合起来进行船舶检测如果在船舶制造阶段没有NDT检测计划,通常就没有非商业船舶和游艇制造的参考标准。这就使得超声检测工作更具挑战性。要迎接这些挑战,marineSOLUTIONS的检测人员必须运用他们的知识和经验。考虑到这一点,marineSOLUTIONS建立了一个小型实验室,以检测从多种复合材料类型到不同金属的不同船舶材料。Cem Baykent正在使用EPOCH 650探伤仪和M2008探头 对船舶的复合材料进行检测。"在无损检测领域对复合材料进行超声检测仍然是一种鲜为人知、尚未开发的小众应用,因为没有任何法规或标准来指导人们如何和何时进行这种应用。因此,marineSOLUTIONS在很大程度上建立了自己的程序,并通过工程人员传授无损检测专业知识,”Cem说。除了复合材料外,海洋船舶通常由铝或钢制成。几乎任何由金属制成的东西都会受到腐蚀,特别是在海洋环境中。Cem指出,尽管船体完整性受损是一种主要的安全风险,但忽视金属船体检测的情况却出奇的普遍。简单地说,船体是部分浸在海里的船舶的外部结构外壳。它保护船上的货物、机械设备和住宿区免受天气、洪水和结构损坏的影响。Cem Baykent正在使用EPOCH 650超声探伤仪对一艘海船的船体进行检测船舶定期会被吊上岸,从外部接受船板检测,即使只是进行目视检测和敲击检测。然而,游艇船体外部的填料、涂层和油漆层可能会使目视检测变得颇具挑战性。除此之外,目视检测的洞察能力有限。腐蚀往往从内部开始,并逐步蔓延。只有在大部分材料因腐蚀而废掉后,才能通过常规方法从外部发现内部的损坏。内部腐蚀主要发生在舱底检测时几乎无法观察到的区域。下到舱底进行目视检测常常会因箱罐、机械设备,及其他部件和结构的阻挡而受到限制。腐蚀情况如果未被发现或不加处理,会削弱船板,导致危险的泄漏,并最终导致结构故障。为了提高安全性并降低成本,必须要对船板进行定期检测。在游艇验船中值得信赖的超声探伤仪MarineSolutions不仅拥有一支经验丰富的团队,还拥有各种设备和标准样件,可以满足用户的各种要求。EPOCH 650探伤仪因为性能出色、使用方便,而脱颖成为设备中的中坚力量,深受团队信赖。奥林巴斯EPOCH 650超声探伤仪对复合材料制成的船体和桅杆进行超声检测在检测复合材料船舶结构和材料时,marineSOLUTIONS将EPOCH 650探伤仪与奥林巴斯M2008延迟块探头 (0.5 MHz,直径1英寸)配套使用。这款探头非常适合检测高衰减性复合材料结构。“游艇的复合材料具有各向异性,从而使得检测更具挑战性。您可以使用M2008探头了解到各向异性材料的更多信息,”Cem解释道。“M2008非常强大,可使声波穿过厚厚的纤维增强聚合物(FRP)复合材料。这款探头不仅效力神奇,所提供结果也简单易懂。”在检测复合材料时,超声检测可用于检测:层压板厚度的均匀性是否存在分层缺陷,并确定分层缺陷的类型是否存在孔隙和/或多孔性层压板的质量和粘接情况,以及修补部位的完整性层压板中的夹杂物和异物对复合材料船舶和桅杆进行超声检测有许多优势,包括:从单侧接触被测部位,即可完成检测使用便携式设备,可在边远地区和高空中进行检测几乎无需或只进行少量的表面处理可非常准确地定位隐藏异常情况的准确位置,并确定其主要特征,如深度、大小和形状提供即时结果和数据Cem Baykent使用EPOCH 650探伤仪对复合材料船舶和桅杆进行超声检测利用超声检测技术对船板进行腐蚀测量marineSOLUTIONS公司使用EPOCH 650探伤仪的另一种方法是测量船板的腐蚀情况。Cem解释说:“船体和桅杆损坏相当普遍,超声检测使我们有办法确定损坏的空间范围。检测结果会使所有相关人员紧张的心情放松下来,并为我们估算维修成本提供了宝贵信息。两者都是宝贵的优势。”金属板的厚度可以使用超声测厚仪在无需去除填料、油漆层或其他涂层的情况下进行无损评估。值得注意的是,在测量带有点蚀的板材时,测厚仪要通过预设的算法减去最小板材厚度,因而有时会产生误导。在这种情况下,marineSOLUTIONS会转而使用EPOCH 650探伤仪和DL4R-6X20(4MHz)双晶探头对金属材料进行腐蚀检测。这种仪器可以在屏幕上显示超声回波频谱。根据波形、衰减和相位偏移情况,经验丰富的NDT验船师可以推断出有关板材或结构的大量信息。验船师还必须区分真正的回波、虚假反射和衍射等信号。EPOCH 650超声探伤仪在检测一块逐渐出现点蚀的铝制船板时,其屏幕上显示出声谱图。声谱图中明显的双峰(峰在左侧)表明存在严重的点蚀。右图中显示的是相关的船板部位,通过目视检测,没有发现任何点蚀迹象。损伤被带有涂层的流线型外表面,以及阻隔了内部的箱罐和其他内部结构隐藏起来。对焊缝进行超声检测marineSOLUTIONS也使用EPOCH 650探伤仪和奥林巴斯AM4R-8X9-70角度声束探头对焊缝进行检测。垂直声束技术可以高效探测到分层缺陷,但是在检测很多普通类型的焊缝时却效果不佳,因为在这些焊缝中,不连续性的方向一般不会与工件表面平行。焊缝几何形状、缺陷方向,以及焊冠或焊道的存在这些因素综合在一起,要求使用以一定角度生成的声束,从焊缝的一侧,对焊缝进行检测。横波检测,也被称为角度声束检测,是一种主要用于焊缝检测的UT技术。在检测焊缝时,要以选定角度将横波发送到板材中,然后再操控探头对整个焊缝进行扫查。在一般的检测中,声束会以生成的角度向下传播到被测样件的底面,然后再以相同的角度向上反射。前后移动探头会使声束扫查到焊缝的整个高度。这种扫查运动可以对整个焊缝体积进行检测,而且可以探测到焊缝的融合线处以及焊缝体积内的不连续性缺陷。角度声束探头是一种单晶探头,与楔块一起使用时,可以将折射横波或折射纵波传输到被测工件中。图中显示使用的是45°楔块超声检测可以探测到以下焊缝中的缺陷:焊缝区域中的裂纹焊缝接合处的不连续性和未焊透焊缝接合处的未熔合焊缝接合处的多孔性焊缝接合处的夹渣变形的区域焊缝金属的分层协同合作的力量Cem提到了过去的一次验船经历:他使用EPOCH 650探伤仪发现了碳复合材料桅杆中的分层缺陷。Cem将缺陷情况汇报给客户,船主基于marineSOLUTIONS和奥林巴斯的声望,决定对游艇部件进行破坏性检测。对碳桅杆进行破坏性检测会使桅杆无法修复,也无法再使用。Cem说:“虽然是船主做出的决定,但是目睹一个高价值的碳桅杆因为我们的发现而经受破坏性检测,还是压力很大。尽管如此,我们仍然对自己的专业知识和奥林巴斯设备的可靠性充满信心。”。检测结果是在我们报告的确切位置发现了缺陷,经过进一步检测后,还发现了一个制造缺陷。此次验船导致制造商为游艇更换了价值约为25万美元的整个桅杆。桅杆被截断并用砂纸打磨后,露出一个缺陷。这个缺陷首先由EPOCH 650探伤仪发现。marineSOLUTIONS将会继续投资购买奥林巴斯的产品。“我们从未对产品的现场支持和可靠性感到过失望,”Cem说。Cem补充道:“在超声无损检测领域,奥林巴斯是一个口碑良好、久负盛名的品牌。在世界各地多个国家,我们的客户曾将我们提供的超声检测结果提交给法院,并取得了可复制的成功。”更多细节您可以访问以下网页,联系我们了解:
  • 知识课堂| OmniScan X3探伤仪性能的3个首要FMC/TFM功能!
    OmniScan X3相控阵超声(PAUT)探伤仪的标准配置包含被称为全矩阵捕获/全聚焦方式(FMC/TFM)的高级数据采集和处理功能。这项技术可以优化探头的信号,有助于在某些应用中提高图像的质量,提供更可靠的结果。我们不仅仅将全矩阵捕获/全聚焦方式(FMC/TFM)添加到了OmniScan探伤仪中,我们还使其发挥出更高的性能。在这里,我们将要对加强了全矩阵捕获/全聚焦方式(FMC/TFM)性能的3个首要功能进行讨论。不过,首先我们要说明一下全矩阵捕获/全聚焦方式(FMC/TFM)的基本知识。什么是全矩阵捕获(FMC)? 全矩阵捕获(FMC)是一种可以获得探头的每种可能的传输和接收组合信息的数据采集策略,换言之,全矩阵捕获(FMC)功能可以获得由相控阵探头的所有晶片提供的完整的声学信息。每个晶片被单独触发,同时阵列中所有其他晶片会接收或“侦听”到返回的信号。这样就会生成一个初级A扫描矩阵,其中被关注区域中的每个像素都是一个焦点。与相控阵采集不同的是,全矩阵捕获不会通过使用编制的聚焦法则来实现时间延迟或声束偏转。什么是全聚焦方式(TFM)?全聚焦方式(TFM)是一种使通过全矩阵捕获(FMC)方式获得的数据变得可以解读的处理过程。全聚焦方式算法使用特定的变量将信息丰富的A扫描数据分类为不同的声波组。这些声波组(或传播模式)代表超声波传播的路径:从发射器到一个图像像素,再返回到接收器(包含多次反射),每段直线声程由其声波类型定义:横波(T)或纵波(L)。当探头沿着工件进行扫查时,全矩阵捕获(FMC)数据被记录在OmniScan X3探伤仪中,并被编码,与此同时,全聚焦方式(TFM)功能会对全矩阵捕获(FMC)数据进行处理,并将每个声波组的结果实时显示在屏幕上(一次最多显示四个声波组)。同一组全矩阵捕获(FMC)数据可以被多次重复处理,以生成不同的重建参数。即使未经培训的人员,也可以更容易地辨别缺陷的方向 在某些条件下,全聚焦方式(TFM)视图可以呈现出缺陷处于工件中真实几何位置的高度聚焦的图像。而缺陷几何位置的真实程度取决于多个因素,其中包括探头和楔块、扫查方式和所使用的传播模式(或声波组)。如果您需要向不太熟悉这项技术的同事报告有关检测的情况,借助这种视图帮助他们分辨缺陷几何方向的工作就会变得更加容易。全聚焦方式(TFM)是否优于相控阵技术? 全聚焦方式与相控阵技术孰优孰劣还尚未有定论。在某些应用中,FMC/TFM技术具有很多优势,而在另一些应用中,相控阵技术则可能更具优势。拥有一台可以使用这两种技术进行检测并可提供高质量图像的高性能仪器,是您的理想选择。由于全聚焦方式(TFM)可以毫无差别地聚焦所有的位置,因此可以大大提高探测到那些标准相控阵技术几乎不可能发现的微小缺陷的能力。尽管如此,FMC/TFM检测的扫查速度要比相控阵检测慢,而且只可在近场聚焦。相控阵也可以生成出色的图像,且图像质量通常与全聚焦方式(TFM)提供的图像不相上下。我们在有关全聚焦方式(TFM)的常见问题解答中逐点详细地介绍了其优点和缺点。OmniScan X3探伤仪的FMC/TFM采集和处理功能具有多种可以进一步提高图像质量的创新特性。以下是其3个可以提高成像质量的最显著的特性:1. 实时TFM(全聚焦方式)包络OmniScan X3探伤仪的高级全聚焦方式(TFM)处理功能所包含的实时TFM(全聚焦方式)包络特性,是通过将与TFM重建相关的单个波纹合并在一起的方法,提高所生成图像的清晰度。实时TFM包络还可以降低重建伪影的影响。使细小的缺陷“跃然”屏幕之上启用包络功能后,甚至非常细小的缺陷,如:高温氢致(HTHA)缺陷,也会变得更加显著。以下图像为启用(左图)和未启用(右图)包络功能时所显示的高温氢致缺陷。图像清晰地表明探测高温氢致缺陷所使用的是一个固定或静止的探头和一个L-L声波组,这就是使用TFM功能生成真实反映缺陷在工件中几何位置图像的理想条件。2. AIM(声学影响图)模拟器在使用典型的TFM系统时,我们可以假定关注区域(ROI)会被探头所发出的声波完全覆盖。但是,有一些变量,如:工件厚度、声速和探头频率等,会影响关注区域内的声学探测水平。为了确保使用优质信噪比(SNR)探测到目标缺陷,我们为OmniScan X3探伤仪配备了一种被称为声学影响图(AIM)的功能。当我们在探伤仪中创建全聚焦方式(TFM)扫查计划时,声学影响图(AIM)建模工具会为我们显示每个传播模式(或声波组)在关注区域(ROI)中的有效声学影响。在下面的屏幕截图中,我们可以看到 TT-L(上图)和TT-TT(下图)两个TFM声波组可以覆盖的范围。显示波幅覆盖范围的清晰彩色图像声学影响波幅图的颜色清楚地表明了TFM声波组在关注区域(ROI)中所覆盖的范围。红色区域表示超声响应非常好,超声响应与最大波幅的距离在0 dB到?3 dB之间。橙色区域的超声响应与最大波幅的距离在3 dB到?6dB之间。黄色区域的超声响应与最大波幅的距离在?6dB到?9 dB之间。以此类推。这个工具有助于用户选择适当的TFM声波组进行检测。3. 在屏幕上对最多4个声波组进行比较在检测过程中,我们可以在分析仪的屏幕上对多达4个声波组进行比较。对声波组进行比较可以获得一些补充信息,从而可以简化某些探测任务,如:对缺陷的定量。光标放置的位置越精确,缺陷定量的结果就会越准确通过一个声波组,我们可能会更清楚地观察到端部衍射的情况,而通过另一个声波组,我们可能会更好地观察到圆角凹陷的区域,而第三个声波组(通常是焊缝检测中的TT-T声波组)可能会使我们在近乎真实的准确几何位置上看到缺陷的轮廓。借助这些声波组视图所提供的综合信息,我们可以更加充满信心地将定量光标放置在适当的位置。OmniScan X3探伤仪对这些TFM功能的综合使用,特别是在将TFM功能与其高级相控阵功能一起使用时,会即刻变身为一款性能强大的检测工具。这款分析仪的主要优势在于可为用户提供更加多样化、更为翔实的数据,从而有助于用户确认自己的分析过程,并更加充满信心地呈交检测结果。
  • 奥林巴斯新款EPOCH 6LT探伤仪闪亮登场
    奥林巴斯的新款EPOCH 6LT探伤仪具有超级便携性能,可以为借助绳索攀爬完成的检测以及对便携性能有极高要求的应用提供全面的缺陷探测性能马萨诸塞州,沃尔瑟姆,2017年6月27日 — EPOCH 6LT探伤仪不仅为用户提供了强大的超声探测性能,其前沿性机身设计还符合人体工程学的要求。这款经过优化的仪器可以单手操作,因此特别适用于借助绳索攀爬完成的检测以及对便携性能有极高要求的应用。 EPOCH 6LT探伤仪的机身形状和用户界面采用了优化的设计方案,用户可以舒适地持握仪器,而且使用单手就可以方便地操作仪器,因此在借助绳索攀爬完成的检测以及对便携性能有极高要求的应用中,操作人员可以得心应手地使用这款仪器,高效地完成检测工作。 可单手牢固地持握仪器,手腕几乎不会感到疲劳:仅重890克,仪器重量的分配根据抓握方向决定可绑在检测人员的腿上或系在绳索上:需要攀爬才能完成检测的技术人员可以将仪器固定在一个地方,实现无需用手持握仪器的操作用户只需使用拇指就可以在菜单中浏览:飞梭旋钮和简单的按钮设计,可使操作人员方便地在用户界面上浏览,即使带着手套 坚固耐用、性能可靠:设计符合IP65/IP67防尘、防水的要求,通过了坠落测试,可以经受住具有挑战性的检测环境中所出现的危险 EPOCH 6LT探伤仪的工作流程简单明了,因此操作人员可以将更多的时间用于检测,使用更少的时间调整仪器。尽管EPOCH 6LT探伤仪的体积不大,但是其所提供的功能却可以满足几乎任何常规超声检测应用的要求,其中包括广受欢迎的EPOCH 650探伤仪的所有核心功能以及符合EN12668-1:2010要求的功能。 直观的软件:基于图标的双屏界面可使用户快速方便地浏览高效的检测:仪器的硬件和软件最大程度地提高了单手操作的效率,因为这样操作人员可以将另一只手解放出来操控探头可选购的腐蚀软件:不仅具有测厚仪使用方便的性能,还体现了探伤仪灵活多用的特点,此外,其借助中央引脚识别探头的功能还有助于为具体的应用更快地完成设置可选购的Wi-Fi连通性能:可以在奥林巴斯的科学云(Olympus Scientific Cloud)系统中,随时完成数据备份、设置下载,并使用强大的云应用 EPOCH 6LT探伤仪,在具有挑战性的检测应用中,为借助绳索进行攀爬的技术人员,提供了一些可确保人身安全的功能。为了提高检测效率,用户还可以使用单手控制检测参数,同时无需中断对缺陷的扫查。购买了用于攀爬检测的绳索配件套装,技术人员就可以将仪器绑在自己的腿上,或将仪器拴系到绳索上,从而可腾出双手,保持身体的平衡或对探头进行调整。操作人员可以根据拴系仪器的方式,旋转屏幕上的显示视图,以在正确的方向上查看A扫描和读数。 关于奥林巴斯奥林巴斯公司的产品销售于工业、医疗和消费产品市场,其专业涉及光学、电子学和精密工程学。奥林巴斯是开发创新型无损检测和测量解决方案的制造企业。其制造的检测仪器和解决方案应用于包括航空航天、电力、石油化工、民用基础设施、汽车以及消费产品在内的各种工业和研究领域。要了解有关EPOCH 6LT探伤仪和奥林巴斯的任何无损检测系列产品的更详细情况,请联系我们的销售代理,或访问我们的网站。EPOCH是奥林巴斯公司的注册商标。
  • 创新!利用涡流探伤仪进行高速自动化电导率测量
    HPI (High Performance Industrietechnik GmbH)总部位于奥地利兰斯霍芬,为轻金属行业开发、设计、制造和交付交钥匙设备。冶金制造商通常使用轻金属(如铝和镁)来生产轻型合金类产品。HPI为它的其中一个冶金客户创新并开发了一种用于无损材料检测的自动化电导率测量系统。HPI制造的电导率测量系统集成了我们的NORTEC™ 600涡流探伤仪,将我们的涡流探伤仪用于测量和测试以满足质量需求。制造一款以生产线速度验证电导率的系统HPI制造了一款系统来进行电导率测试,用于评估铝板的热处理状态。这些铝板最宽4,200 mm,最长33,000 mm,厚度范围为1 mm到210 mm 。这些铝板会被加工成铝镁合金半成品,供应给航空工业。这家冶金公司需要为其新的轧钢机组配备该系统,其中包括冷轧机、热轧机和板材热处理。其制造工艺要求采用内置的可靠NDT检验解决方案,在提高生产率的同时确保其材料符合国际公认的标准。HPI面临的挑战是开发这样一款系统:在保持一致的测试性能的同时,还需要实现高速测量铝板电导率。正在生产线辊道上运输的大型铝板为什么制造商需要测量金属电导率通过测量电导率能够确定材料允许电流通过的程度,即能够确定材料的电流传导性能。此测试使制造商能够收集有关物质成分的信息。通过这些测试数据,用户可以确定材料是否适合其预期用途。许多行业都在其质量控制和制造工艺中引入电导率测试。其目的是为了验证金属结构是否完整性,以便能够实现最终产品所需的耐用性和性能。必须测量飞机建造中使用的铝材电导率以了解其放电能力,从而确保铝材承受雷击等事件时的材料应力承受能力。电导率测试通过检测合金硬度的变化可以确认材料是否因热处理而受损,令其脆性增加。铝材的优点、缺点和典型缺陷铝材的密度低于其他常见金属。例如,钢材的密度大约比铝材高三分之一。由于重量轻、强度高,铝材是飞机制造的理想材料,一些统计数据估计,现代飞机制造中铝材占比为75–80%。因为主要由铝材制成,飞机可以承载更大的重量,并且更省燃油。铝合金的另一大优点是耐腐蚀性,这增加了飞机的耐用性。飞机经常受到恶劣天气和极端气候的影响,需要耐受从高空的冰冻温度到包括雪和暴雨在内的降水等因素。尽管铝材具有高度耐腐蚀性,但它也是一种化学活性金属,因此某些情况下也会发生腐蚀。铝制组件容易受到各种类型腐蚀,其中包括:表面点蚀晶间腐蚀剥离腐蚀应力腐蚀开裂(SCC)疲劳开裂微振磨损制造工艺(如机加工、成型、焊接或热处理)可能会在铝板(并因此在飞机零件上)留下应力。超过应力腐蚀阈值时,这种残余应力可能会在腐蚀性环境中导致开裂。涡流NDT技术在航空航天应用中的优势涡流无损检测(NDT)技术是一种非接触式金属零件检验方法。此技术广泛应用于航空和航天工业以及其他制造和维修环境中用于检验薄金属材料是否存在潜在的安全相关或质量相关问题。由于涡流检测(ECT)使用电磁耦合,不需要与零件直接接触,因此不需要耦合剂。EDT可用于执行以下检验:表面检验次表层检验(通常3-4 mm)涡流技术的优点:保留漆层和涂层进行检验(无需除漆)较少的表面处理(可以保留污垢进行检验)易于使用,只需较少的培训提供快速结果,适合高速检验和大型零件检验适用于任何导电材料,包括飞机上常用的金属,如铝、不锈钢和钢涡流检测设备的工作原理(A) 流入线圈的交流电产生磁场(蓝色)。(b) 当线圈置于导电材料附近时,会引发材料中产生涡流(红色)。(c) 零件中的缺陷会干扰涡流的路径。这种干扰可以用仪器测量。当交流电通过ECT探头总成中的一个或多个线圈,且探头靠近由导电材料制成的零件时,会产生交变磁场,将涡流引入零件。这个磁场会产生耦合效应。测试部件中的间断点或特性变化会改变涡流的流动,这会影响探头的工作感抗。探头可检测到材料厚度的变化或缺陷,如受检零件中的裂纹和腐蚀。这些变化以信号的相位和振幅反映在仪器屏幕上,然后由操作员进行解读。HPI的铝板电导率测量解决方案,时长04:48本视频展示了HPI解决方案的演示,该解决方案是用于铝板高速电导率测量的自动化系统。如您所见,NORTEC 600装置集成在扫描仪上的HPI系统中,该扫描仪在检测完轧辊将信息输入测量站之后将ECT探头在校准站和铝板上快速移动。(可参考国际公认标准ASTME 1004-02、MIL STD1537C、EN2004-1和AMS 2772F,以及航空航天行业的客户定制测试规范,为每个金属板预定义测量程序。”—《铝业时报》)集成NORTEC 600 ECT装置的铝板电导率测量系统HPI过去曾使用手动设备进行此类生产线测试;但随着速度和质量要求的提高,尤其是对于航空和航天行业,手动测试变得过时。 奥林巴斯的NORTEC 600涡流探伤仪通过与HPI的全自动检验系统相结合,以此提供了一个较为可靠并具有时间和成本效率的解决方案。HPI为此解决方案配置了自己的应用软件,基本上就是将NORTEC 600装置作为传感器集成到系统中。HPI之所以特别选择了NORTEC 600设备而不是其他涡流探伤仪,是因为该仪器提供了与可编程逻辑控制器(PLC)通信的接口。在电导率测量前后,系统会自动对每个金属板进行校准检查。由于其检测速度很快,手动测量需要花费数小时的数百个检测点仅需几分钟即可完成测量。HPI的客户使用其中两个系统,每个系统上配备两个NORTEC 600探伤仪。作为质量控制流程,电导率质量检查有助于改进HPI的热处理工艺和提高客户满意度。关于NORTEC 600涡流探伤仪NORTEC 600涡流探伤仪是一种便携式设备,采用了先进的数字电路。NORTEC 600装置可轻松无缝地集成到检验系统中。此装置的宗旨是让工业环境中的性能保持一致性。NORTEC 600规格和功能在设计时考虑到了HPI等集成商。设计满足IP66要求−10°C至50°C工作温度范围持续平衡滤波器带有扫频报警的带状图视图6 kHz测量速率通过NORTEC PC软件进行远程控制报警输出模拟输出数字输入质量控制用NDT设备HPI选择将奥林巴斯NORTEC 600涡流探伤仪集成到其自动化NDT解决方案中,是因为该探伤仪可以在不接触材料表面的情况下实现快速可靠的电导率测量。
  • 风电齿轮机的无损检测,FLIR VS80有7种探头可选!
    随着风力发电的蓬勃发展,我们可以发现风电设备的停机检修的成本非常高,因此如何提高检修效率,缩短停机周期,减少或避免非计划停机,都是风电企业和运维公司面临的困难与挑战。风电齿轮箱在风电机组中占比较高也是比较容易出现故障的部分风电机组运行的时间越长齿轮箱的故障也会越来越频繁因此需要定期检查和维护今天就来给大家介绍一款风电检修师傅常备的检修工具FLIR VS80工业内窥镜套件!无损探伤,多种镜头可选风电机组的工作原理是,通过涡轮叶片转动来带动齿轮进行机械性转动,从而产生电力。但是齿轮在彼此咬合的过程中,由于工作环境的恶劣性与工况的复杂多变性,在运行过程中也会出现不同程度的损伤。当损伤达到一定程度时,可能会造成停机或者严重事故,因此预防性维护和定期检查非常重要。FLIR VS80的配备7种专业探头,探头小巧灵活,无需拆解损伤设备,可轻松进入齿轮箱、轴承、叶片等位置,还可360°旋转,观看任意位置和角度,VS80主机仅1.3kg,轻巧便携,可以让您根据实际情况灵活应对,帮您检查其他内窥镜无法检查的地方。高效耐用,画面清晰风电齿轮箱在非运转过程中,由于润滑不到位及齿轮箱内环境温度的变化会在齿轮箱内部产生冷凝水,这些水分积聚在齿轮齿面上,最终造成齿面上出现不同程度褐红色铁的氧化物,即齿面锈蚀,严重了会造成润滑剂污染及颗粒物增多,进而加剧对其他齿面的损坏。因此,要选择一款防水耐腐、能看清各个齿面锈蚀的工业内窥镜。FLIR VS80不仅探头尖端是IP67级防水,其显示屏也非常坚固耐用,可承受2米跌落、防溅(IP54级)。其可见光探头的视野深度从10mm到无限,能够轻松拍摄出高清图像。VS80配备可拆卸/可伸缩遮阳板,这样用户可以免受太阳炫光的干扰。当然无论选择哪种探头,都可以在7英寸超大显示屏上同时查看并排显示的实时探头图像和保存图像,轻松与上次检查对比,及时发现齿轮箱中的问题。记录分析结果,方便分享对于风电齿轮箱的检修,需要检测人员爬到七八十米的风轮机上,并且停机检修一次成本高昂,因此检修一次要拍摄大量图片和视频,因为齿轮箱内的齿轮和轴承形状都很相似,就算是拍照的检查人员光看图像也很难回忆出来具体的检测位置。因此最好要边检查边注释。检查结束后与同事及时分享检查结果,分析风电齿轮机的情况,及时定位故障点,避免突然停机事件的发生。工业内窥镜的整体效果,不仅要看硬件参数,更要看软件的处理效果,比如使用FLIR VS80,可采集最高可达1280×720分辨率的静态图像和视频(带音频),还能为视频录制语音注解,为保存图像添加文本记录。并且VS80还配备WiFi功能,搭配手机上的FLIR Tools Mobile应用程序,可实时查看VS80的检查结果,并轻松与客户或同事共享,尽快确定优先维修事项。FLIR VS80高性能视频内窥镜凭借配备的7款探头和良好性能不仅可以帮您检查风电设备故障在工业设备维护、暖通空调制冷设备检测建筑和汽车应用等领域应用也很广泛。
  • 标卓发布CTJ-5A超声波探伤仪检定装置新品
    一、产品介绍:超声探伤仪检定装置系统采用脉冲调制法对超声探伤仪的主要性能进行检定/校准,避免了探头对检定/校准的数据影响。该装置系统完全满足JJG 746-2004《超声探伤仪检定规程》的要求,可以作为计量标准装置对超声探伤仪的主要性能进行检定/校准,如:水平线性、垂直线性、动态范围、衰减器误差、zui大使用灵敏度等。二、技术参数频率范围:0.01 MHz~20 MHz频率稳定度:5×10-6频率准确度:5×10-6信号幅值范围:10mV~9V衰减范围:(0~101)dB衰减器分档形式:20 dB×2 10 dB×5 1 dB×10 0.1 dB×10衰减器误差:(0.5%*A±0.02dB),式中A为衰减量猝发音包含的正弦波个数:1~100个可调,正弦波失真度不大于0.5%声程范围:(50~6000)mm声速范围:(1000~9999)m/s信号输出模式:连续波、猝发音三、装置系统的基本操作超声波探伤仪检定装置系统属于精密仪器,要求稳压电源有地线。开启电源后,装置系统需要加载参数设置,如果加载成功进入选择界面,如图1所示;如果加载失败,进入故障警报界面。如果加载失败,可以通过点击“重新加载”进行重新加载系统参数;如果还是失败,请联系厂家进行维修或调校。选择界面中可以通过触摸屏进行操作,或者通过按键前4个按键(图3)进行操作,选择界面按键功能信息为上面标识部分,被选择的项目会变成绿色,反之是灰色;通过按键“确认”进入相应的功能界面。创新点:频率范围:0.01 MHz~20 MHz频率稳定度:5× 10-6频率准确度:5× 10-6信号幅值范围:(-55 ~ +23)dB衰减范围:(0~101)dB衰减器分档形式:20 dB× 2 10 dB× 5 1 dB× 10 0.1 dB× 10CTJ-5A超声波探伤仪检定装置
  • 好不好探头说了算--记锻件近表面缺陷的超声检测技术研究
    p style="line-height: 1.75em "span style="line-height: 1.75em " 1 锻件的检测技术要求/spanspan style="line-height: 1.75em " /spanbr//pp style="line-height: 1.75em " 随着现代科学技术的发展,对产品质量的要求越来越高,特别是航空、航天、核电等重要场合的产品。超声检测作为工件内部缺陷检测的有效手段,以其可靠、灵敏度高等优点,在现代无损检测领域占有重要地位。 br/ 锻件超声检测时,近表面缺陷容易漏检,原因主要是探头盲区,探头盲区与近表面检测有关。此次研究的目标就是寻求解决减小盲区提高近表面缺陷检测灵敏度的技术方法。br//pp style="line-height: 1.75em text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/3a7dc7d4-132d-4167-832c-0c12ec4466e9.jpg" title="PT160309000023OlRo.jpg" width="450" height="287" border="0" hspace="0" vspace="0" style="width: 450px height: 287px "//pp style="line-height: 1.75em " 2 检测近表面缺陷的实验器材 br/ 由超声检测知识可知,检测近表面缺陷的常用方法有:双晶探头法、延迟块探头法和水浸法。根据检测方法准备了以下实验器材: br/ strong(1) 超声波探伤仪1台; br/ (2) 探头:/strong/pp style="line-height: 1.75em " 双晶直探头,规格为10P10FG5;/pp style="line-height: 1.75em " 延迟块探头,规格为10P10;/pp style="line-height: 1.75em " 水浸聚焦探头,规格为10P10SJ5DJ。/pp style="line-height: 1.75em " 选用以上探头检测近表面小缺陷,是因为: br/ 探头频率高,分辨力好,波长短及脉冲窄,有利于发现小缺陷; br/ 探头尺寸小,入射能量低,阻尼较大,脉冲窄,有利于发现小缺陷。 br/ strong(3) 试块: /strongbr/ 在航空、航天、核电等领域中,重要锻件一般是高强钢,如A-100钢和300M钢,钢的组织都较为均匀。 br/ 如果声速相同、组织相近,超声检测用对比试块可以使用其他的钢种进行代替。 br/ 资料显示,A-100钢的声速约为5750mm/s,300M钢的声速约为5800mm/s。我们现有的超声波试块,实测声速约为5850mm/s,声阻抗与A-100钢和300M钢的声阻抗较为接近。因此,可使用现有的试块进行实验和研究。 br/ 试块编号为:1#,2#,3#;各试块的俯视图均如图1所示,图中的孔均为平底孔,1#,2#,3#试块上的孔到上表面的距离分别为1,2,3mm。试块尺寸见图1。 br//pp style="line-height: 1.75em text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/470f585e-beef-4c52-8ac2-b3f3a68fadef.jpg" title="图1.jpg"//pp style="line-height: 1.75em text-align: center "图1 试块的俯视图示意 /pp style="line-height: 1.75em " 3 实验方法 br/ 3.1 实验1 br/ 使用10P10FG5双晶探头分别对1#、2#、3#试块进行测试。 br/ 实验结果可见,使用双晶探头能成功检测出2#试块上Φ1.6mm,Φ2mm的平底孔与3#试块上所有的平底孔;但2#试块上Φ0.8mm的平底孔,以及1#试块上所有的平底孔都未能有效地检出。 br/ 从图2分析可知,双晶探头聚焦区限制了2#试块上Φ0.8mm及1#试块上所有平底孔的检出。 br/可以发现: br/ 1、只有当缺陷位于聚焦区内,才能得到较高的反射回波,容易被检出。 br/ 2、当缺陷位于聚焦区外,无法被声束扫查到,所以得不到缺陷的回波,因此就很难发现此类缺陷。br//pp style="line-height: 1.75em text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/aa5f1d2e-551e-4702-8026-323dbda22753.jpg" title="图2.jpg"//pp style="line-height: 1.75em text-align: center "图2 双晶探头聚焦区示意图 /pp style="line-height: 1.75em " 3.2 实验2 br/ 为解决实验1中,由于双晶探头聚焦区限制造成的,对2#试块上Φ0.8mm及1#试块上所有平底孔无法检出的问题,改用无聚焦的10P10延迟块探头,对2#试块上Φ0.8mm及1#试块上所有平底孔进行测试。 br/ 实验结果显示,使用延迟块探头能成功检测出2#试块上Φ0.8mm及1#试块上所有的平底孔。 br/ 3.3 实验3 br/ 实验1和实验2都是利用直接接触法进行检测,实验3使用10P10SJ5DJ水浸聚焦探头,利用水浸法分别对1#、2#、3#试块进行测试,结果未能检测出1#、2#、3#试块上所有的平底孔。 br/ 究其原因是因为:水/钢之间介质的声阻抗不同,造成水/钢产生界面波;并且超声波从水中经过,水对超声的衰减,造成了超声能量的降低;这样,需要提高脉冲发射强度来解决。但脉冲发射强度提高的同时,脉冲自身又变宽了,造成近场干扰加大;因此,在声束由水进入钢时声束又会形成发散,无法分辨接近表面的小缺陷,也就未能检测出试块中的平底孔。 br/ 4 总结 br/ 总结一下,我们发现:对于近表面小缺陷的检测,为了兼顾检测灵敏度和检测盲区,采用高频窄脉冲延迟块探头的检测效果最佳。高频窄脉冲延迟块探头才是近表面小缺陷检测的紧箍咒,使它无所遁形。br//pp style="line-height: 1.75em text-align: right "节选自《无损检测》2015年第37卷第5期br//ppbr//p
  • 奥林巴斯实力派探伤仪震撼首发!X3来啦!
    2019年10月30日,奥林巴斯震撼发布了超越用户期待的OmniScan探伤仪系列最新产品——OmniScan X3。新款OmniScan X3探伤仪通过大量创新型功能改进了检测的整个工作流程,进而提升了相控阵检测的标准,为广大用户在做出决策时提供了更精准的依据,为各工业设备的生产安全提供了可靠保障。01融合高清画质,促进检测结果更精准 OmniScan X3探伤仪除了继承以往系列仪器可靠、便利、防水、防尘等优点外,在图像质量方面取得了长足的进步。针对形状复杂工件的检测难点,OmniScan X3通过使用64晶片孔径支持的全聚焦方式(TFM),让用户可以获得工件各部分更清晰的图像,并可以将这些进行图像融合,生成正确反映工件的几何形状,使得用户可以对使用常规相控阵技术获得的缺陷特性进行验证,有效改进了以前对于缺陷图像“解读难”的问题。TFM重建模式最大像素为1024×1024,可以同时动态呈现4个TFM视图。新加入的16比特A扫描、插值和平滑等功能以及10.6英寸的WXGA显示屏,都使图像更加清晰可见,使得检测人员的工作更加直观、准确。 为进一步推动检测结果更精准,OmniScan X3探伤仪配备综合性机载扫查计划工具,可以在一个简单的工作流程中创建包括全聚焦方式(TFM)区域在内的整个扫查计划。仪器同时配备探头和声束组,能够创建双晶线阵和双矩阵模式,借助自动楔块验证等功能,设置的创建速度再上新阶,让工作人员对问题的发现和分析得到更高的效率。 02完善数据分析,助推工作流程更顺畅 在数据分析检测方面,无论使用OmniScan X3探伤仪本身还是使用PC机,用户都可以快速进行分析,并完成报告的制作。仪器还配备了多种数据解读工具,比如圆周外径(COD)TFM图像重建,便于对长焊缝的缺陷指示进行解读和定量。融合B扫描,便于对相控阵焊缝的缺陷指示进行筛查,可使工作流程保持简单流畅。此外,OmniScanX3探伤仪配置有高达25G的存储空间,可以存放大量图像而无需频繁进行导出,并且增加了和奥林巴斯科学云(OSC)系统的无限联通性能,从而确保了内部软件保持实时更新,让使用者更加省心。 此次发布的OmniScan X3探伤仪为相控阵检测领域带来了不小的突破,无论是管道、焊缝、压力容器,还是复合材料,OmniScan X3探伤仪都可以使用户有效地完成检测工作,并且对缺陷进行有效解读,进而排除隐患,确保设备的使用安全。作为已经步入百年历程的光学企业,奥林巴斯始终致力于将先进的光学技术应用到工业领域产品的研发和改进中,未来,奥林巴斯将继续秉承“实现世界人民的健康、安心和幸福生活”的企业使命,为现代工业生产、运行筑起安全堡垒,为中国工业科技领域的发展和进步贡献企业力量。
  • NC-GUT368旋转式钢管超声探伤设备整体通过项目验收
    2023年8月,钢研纳克无损检测事业部为国内某大型无缝钢管企业制造的NC-GUT368钢管超声探伤设备整体通过项目验收。该设备使用一台NCSRo-370型超声旋转水腔检测装置,通俗称为超声旋转头,是国内自主设计制造的最大规格同类型检测主机。钢研纳克无损检测事业部在过去研发中大规格无线传输超声旋转头的经验基础上,采取了二十余项新设计,新工艺,新改进,克服了大线速度旋转无线信号传输,大型回转体加工与装配,耦合水路传输及新型密封结构设计等难题。该型设备获得国家发明专利授权一项(专利号:ZL202110047938.9),一种耦合水传输装置以及探头旋转式超声波检测系统。系统整体达到以下指标:l 32通道检测,8通道测厚分层,16通道横伤,8通道纵伤。全缺陷检测速度大于24m/min,无线传输结构使之具有方便地扩展斜向缺陷检测的能力;l 探伤规格:直径:φ168-368mm,壁厚:5-45mm,长度:5.6-13m;l 样管人工缺陷按ISO10893 PART 10的U2制作,信噪比不低于10dB,周向灵敏度差不大于3dB,时间稳定性按8小时测试,其余测试要求及指标符合YB/T 4082的要求。测厚的验收测试方法按ISO10893 PART 12,测厚精度±0.05mm。分层探伤测试方法按ISO10893 PART 8执行,样管内壁平底孔(人工分层缺陷)按Φ6mm制作。本设备研制过程中所积累的经验和技术,接下来将会对450等更大规格超声旋转水腔检测系统的开发起到促进作用。设备照片设备集控操作室
  • 强势进化!OmniScan X3相控阵探伤仪将通过软件升级实现远程控制
    备受用户青睐的omniscan x3相控阵探伤仪,因其性能强大、结果可靠、使用便利等诸多特性,被广泛认为是便携式相控阵超声检测(paut)的标杆性设备,为各类生产安全、设备检测等领域提供了坚实保障。而对于使用focus px数据采集单元对焊缝进行相控阵和衍射时差(tofd)检测的工作人员来说,weldsight软件不仅有助于优化缺陷探测,而且还可以减少检测所需的时间,从而可降检测的总体成本。 此次,通过weldsight的软件更新搭配omniscan x3上安装weldsight remote connect app,omniscan x3将实现重大使用体验的飞跃。本次升级在已经具备符合iso、api、asme和类似制造规范和工作程序的工具和特性之外,还会带来如下出众特性:远程控制通过软件升级,pc端安装的weldsight软件,并将weldsight remote connect app下载到omniscan x3相控阵探伤仪中,用户借助电脑中的weldsight软件控制仪器,执行检测中的每个步骤。由于omniscan x3探伤仪的数据可被立即传输到weldsight计算机,因此节省了从采集到分析的各个环节的时间。 远程控制功能使探伤仪与软件的结合相得益彰,打造出一种高效率、高性能、高性价比的便携式检测解决方案。这种解决方案不仅为制造商提供了创建定制设备布局的灵活性,优化了超大工件中新造焊缝的检测,还可以进行非常复杂的配置,使用多个组和探头、扫查器及显示器,大幅提高探伤仪的覆盖范围和可视化程度。 更灵活 为了进一步提高扫查计划的灵活性,weldsight软件还提供一个集成的es beamtool选项,将有关制造代码和各种焊缝和工件特性的参数纳入其中,更快完成设置流程 weldsight tcg带来了出色的校准速度和可重复性,包括同时或连续点创建、12位振幅分辨率和400%饱和极限。 支持焊缝检测数据的3d显示对于腐蚀检测,可自动分析缺陷的位置和大小,并生成列表 而针对上述的功能升级,可以使一些对于采集数据集数据监控有便携性要求的行业,拥有更为高效的工作流程。weldsight远程控制为制造商享用高生产效率、即需即用的焊缝检测解决方案铺平了道路:他们既可以利用omniscan x3探伤仪强大的pa、ut和tofd数据采集功能,又可以使用weldsight软件的先进功能和可定制的用户界面。 相关应用 客户可使用omniscan x3进行便携式操作,当需要在系统集成的作业时,可将omniscan x3作为采集核心,如压力容器和风力涡轮机叶片等超大金属部件的检测,必须根据严格的国际标准对新制造的焊缝进行检验。检测“瓶颈”会使生产放缓,延误时间可长达数月。该解决方案有助于制造商遵守管制新制造焊缝的国际标准,同时还可使检测与生产保持同步。 压力容器及管线 高级相控阵(pa)检测技术在代替射线成像技术,根据asme、iso及类似的制造规范,对管道和容器的焊缝进行检测时,具有很多优势。配备有weldsight软件的奥林巴斯远程控制omniscanx3解决方案,可以使用1维相控阵探头、tofd 探头和dla\dma相控阵探头,对包括带有堆焊层的管道和异种金属焊缝在内的各种奥氏体材料进行检测。 风塔的建造对风塔焊缝进行的符合iso、aws和类似的制造规范的高速自动pa和tofd检测可以取代手持探头对风塔焊缝进行的手动ut检测。奥林巴斯的自动pa和tofd解决方案可以对风塔焊缝各种类型的坡口进行可靠的检测,其中包括需要使用独特的探头和特殊的扫查计划对过渡焊缝和垂直焊缝坡口的厚度进行的测量。 左右滑动查看应用液化天然气箱罐的制造 在制造液化天然气(lng)箱罐时,使用奥林巴斯相控阵解决方案对箱罐焊缝进行符合api及类似的制造规范的检测,是一种可以替代射线成像和常规ut检测的更具优势的检测方式。这种基于weldsight软件的解决方案不仅提高了检测效率,还可进行实时分析,而且奥林巴斯的dla相控阵(pa)探头可以对低温储罐上常见的(奥氏体9%镍壳焊接i625合金)异种金属焊缝进行有效的检测。软件下载:weldsight下载:weldsight remote connect:
  • 成功完成编码PA扫查的基本工具包有多实用?奥林巴斯无损检测探伤仪带您解密!
    使用奥林巴斯OmniScan X3系列高级探伤仪采集编码相控阵(PA)超声数据有多个优势。可使您借助准确表示缺陷大小的数据视图定量缺陷。这些缺陷定量数据可用于判断产品是否符合在役服务要求的计算,使资产所有者充满信心地做出有关运营安全以及是否进行必要干预的关键性决策。获取编码PA数据所需的设备越来越便携且价格合理。将适当的探伤仪、扫查器、探头和编码器组合在一起,有助于您完成不同应用并采集到更有价值的数据。然而,尽管扫查技术取得了诸多进步,但许多扫查器在便携性方面依然存在着缺陷。自动和半自动扫查器的挑战尽管自动和半自动扫查器通常可以完成更高的扫查量,并能够处理更复杂的应用,但是对于需要随时动手进行扫查的工作,它们可能不太适合。以下是更简单的设备设置可能更可取的3个原因:大小:如果目标区域或被检焊缝周围的空间有限,那么较大的扫查器可能不太适合。配置:扫查器的设计或形状可能会妨碍将其安装到组件上。复杂笨重:当扫查器笨重、庞大或难以安装时,可能会使人们望而却步。如果没有扫查器,检测人员可能会选择手动扫查并放弃对数据进行编码。拥有合适的设备有助于避免扫查完成后只获得未编码的数据。每次都获取编码数据到达工作现场后,您和您的工作团队别无选择,只能将就使用手头的设备。真正做好准备意味着拥有用途广泛的扫查工具,这些工具应适用于各种组件尺寸、类型和材料,并适应不同的环境。要达到充分准备和随机应变的水平,请考虑将这3种扫查和编码工具添加到您的PA检测工具包中:1. 钢线编码器当检测空间非常狭小时,采用流线型单线设计的钢线编码器可以帮助您摆脱困境。只需稍微用力,就可以完成简单的牵拉动作,使您轻松完成单轴编码相控阵扫查。其用途广泛且易于操作得益于以下功能:2种安装底座(磁性和吸盘)可轻松安装在所有表面上,包括铁磁性和非铁磁性表面。由于占地面积小,适用于空间有限的区域。打包运输时,非常便于携带且占用空间很小,因此您可以随时将其作为备份随身携带。其定位系统可大幅减少错误,消除了发生滑动错误的风险,并且可以轻松拉动,使操作人员能够集中精力正确操控探头。2.通用托架我们的通用托架不需要任何工具,就可在三个不同方向上安装钢线编码器或者 Mini-Wheel编码器,而且几乎可装入任何相控阵(PA)楔块和探头组合。这是一种简单而经济的方式,可以提高您在接到通知后立即调整设置的能力。将通用托架添加到您的检测设备中,可使您为更多的部件形状和尺寸创建配置。您还可以增加用于编码检测的探头和楔块的类型,使其用途更为广泛。在无法使用楔块的情况下,可以将楔块直接连接到相控阵探头上,进行接触式检测。3. Mini-Wheel编码器Mini-Wheel编码器是一种久经考验的扫查工具,因其用途广泛而倍受赞誉。除了坚固耐用和小巧紧凑的特性之外,这款编码器还可装配一个橡胶轮,用于检测温度高达150°C的非铁磁表面,或装配一个磁轮,紧紧粘附在铁磁性部件上进行检测。Mini-Wheel编码器可用于多种不同的配置,以满足特定检测应用的要求,例如:为了对焊缝进行衍射时差(TOFD)检测,可以将Mini-Wheel编码器安装在带有两个PA探头和楔块的HST-X04扫查器上。当光栅扫查不切实际或不可能进行时,可以将其安装在通用托架上,或直接安装在楔块上,以便使用相控阵超声检测(PAUT)技术对整个体积进行手动单线扫查。Mini-Wheel编码器可与带有创新型Rexolite延迟块的RexoFORM楔块一起使用,对周围区域狭小的各种直径的管道进行腐蚀成像。为克服采集编码数据的障碍做好准备总而言之,以下是这三种工具共有的主要优势:小巧紧凑用途广泛简单易用这些工具易于运输和操作,您可以在不增加工作人员压力和负担的情况下将它们添加到标准检测设备中。
  • 奥林巴斯发布奥林巴斯无损探伤仪OmniScan X3新品
    01融合高清画质,促进检测结果更精准 ? OmniScan X3探伤仪除了继承以往系列仪器可靠、便利、防水、防尘等优点外,在图像质量方面取得了长足的进步。针对形状复杂工件的检测难点,OmniScan X3通过使用64晶片孔径支持的全聚焦方式(TFM),让用户可以获得工件各部分更清晰的图像,并可以将这些进行图像融合,生成正确反映工件的几何形状,使得用户可以对使用常规相控阵技术获得的缺陷特性进行验证,有效改进了以前对于缺陷图像“解读难”的问题。TFM重建模式最大像素为1024×1024,可以同时动态呈现4个TFM视图。新加入的16比特A扫描、插值和平滑等功能以及10.6英寸的WXGA显示屏,都使图像更加清晰可见,使得检测人员的工作更加直观、准确。为进一步推动检测结果更精准,OmniScan X3探伤仪配备综合性机载扫查计划工具,可以在一个简单的工作流程中创建包括全聚焦方式(TFM)区域在内的整个扫查计划。仪器同时配备探头和声束组,能够创建双晶线阵和双矩阵模式,借助自动楔块验证等功能,设置的创建速度再上新阶,让工作人员对问题的发现和分析得到更高的效率。 02完善数据分析,助推工作流程更顺畅 在数据分析检测方面,无论使用OmniScan X3探伤仪本身还是使用PC机,用户都可以快速进行分析,并完成报告的制作。仪器还配备了多种数据解读工具,比如圆周外径(COD)TFM图像重建,便于对长焊缝的缺陷指示进行解读和定量。融合B扫描,便于对相控阵焊缝的缺陷指示进行筛查,可使工作流程保持简单流畅。此外,OmniScanX3探伤仪配置有高达25G的存储空间,可以存放大量图像而无需频繁进行导出,并且增加了和奥林巴斯科学云(OSC)系统的无限联通性能,从而确保了内部软件保持实时更新,让使用者更加省心。 此次发布的OmniScan X3探伤仪为相控阵检测领域带来了不小的突破,无论是管道、焊缝、压力容器,还是复合材料,OmniScan X3探伤仪都可以使用户有效地完成检测工作,并且对缺陷进行有效解读,进而排除隐患,确保设备的使用安全。创新点:奥林巴斯震撼发布了超越用户期待的OmniScan探伤仪系列最新产品——OmniScan X3。新款OmniScan X3探伤仪通过大量创新型功能改进了检测的整个工作流程,进而提升了相控阵检测的标准,为广大用户在做出决策时提供了更精准的依据,为各工业设备的生产安全提供了可靠保障。奥林巴斯无损探伤仪OmniScan X3
  • 重钢牵头制订《厚钢板超声波自动探伤方法》国家标准
    近日,由重钢负责制订的《厚钢板超声波自动探伤方法》国家标准讨论会在重庆召开。会议由全国钢标准化技术委员会主持,来自冶金行业和无损检测行业的20位专家及代表参加会议。  会上,与会专家对重钢的标准起草工作给予了肯定,对标准提出了修改意见。目前,国内无自动探伤检测方法标准,重钢中板线自动探伤线投产后,检测缺乏相应标准和依据。鉴于此,重钢申请制订《厚钢板超声波自动探伤方法》国家标准。该标准的制订将填补目前国内无自动探伤检测方法标准的空白。
  • 必达泰克公司推出新型光纤拉曼探头
    由于目前市面上现有的光纤拉曼探头只能简单的控制激光光路的开关,而无法控制采样检测,因此在实际的野外和现场检测采用手持采样时,往往需要一边将探头对准样品,一边在电脑上操作软件进行检测。为了克服这个缺点,必达泰克公司推出了一种新的拉曼光纤探头,在该探头上增加了一个电子触发开关,可以与本公司的全系列便携式拉曼光谱仪共同使用,直接利用该电子触发开关控制采样检测,从而使得手持采样更为方便稳定,大大提高了光纤拉曼探头在野外和现场检测的便利性和实用性,非常适用于考古,地质勘探,危险物检测或其他的野外和现场检测应用。  该探头需要在拉曼光谱仪上有一个控制接口,因此无法应用于本公司早前销售出的便携式拉曼光谱仪上,如要使用该探头需要对早期的拉曼光谱仪进行升级。如客户需要进行升级,请与必达泰克光电科技(上海)有限公司联系,电话: 021-64515208,Email: info@bwtek.cn
  • 您知道吗?我们可以为您的具体应用定制探头!
    随着相控阵超声技术在工业检测应用中的日益普及,奥林巴斯为了满足客户的需求,与时俱进,对自己的产品进行了改造和更新。我们继续拓展现有的制造和工程资源,以开发出有助于完成挑战性应用的定制相控阵(PA)探头和定制常规超声(UT)探头。定制超声探头,提供个性化服务为了帮助客户找到解决检测问题的方案并满足客户的要求,我们的专家直接与客户和工程团队合作,在美国设计和制造出每个定制探头。迄今为止,我们已经为航空航天、电力生产和石化行业设计和生产了用于制造、可再生能源和研究等应用的定制超声探头和相控阵探头。我们的定制探头多种多样,其中包括水浸式、矩阵式、接触式,以及与楔块整合在一起的探头。如果您的待测工件或部件具有复杂的几何形状,我们还可以为您设计特殊的探头和楔块,以克服在检测区域和尺寸方面的多种限制。电力生产行业的一个具有挑战性的检测案例沸水反应器(BWR)的喷嘴和部件可能会随着时间的推移而性能下降,一般的腐蚀到疲劳循环操作都会使其停止工作。在沸水反应器(BWR)中,有多个喷嘴需要检测。喷嘴的类型包括给水型、芯喷型、再循环型、主蒸汽型和排水型。喷嘴部分的裂纹可能会破坏完整性,并导致出现放射性污染,致使发电机意外停机,甚至发生灾难性事故。对喷嘴进行检测相当复杂,因为喷嘴上的焊缝由奥氏体钢和异种材料焊接,而且喷嘴不容易接触到,温度又很高,还有放射性物质泄漏的问题。独特的探头解决方案可以满足不同用户特定的检测要求我们的客户定制的探头符合多项规格,不仅包括声学要求,还具体到探头连接托架的方式。我们在设计探头时,力求满足客户所提出的所有规格要求,并研制出了一种装有弹簧的相控阵探头和固定装置。这种探头可以对沸水反应器(BWR)喷嘴的内壁同时在周向和径向上进行一发一收检测。我们还设计了一种采用常规超声(而非相控阵)技术的类似的探头,用于衍射时差(TOFD)检测应用。为客户定制探头产品,是一种可以满足客户较高期望的便捷方式。符合规格要求并超出客户期望的探头解决方案我们的核心使命是为客户提供满意的服务:无论为客户提供的是专业的仪器和探头,还是定制的解决方案。您是否要完成一项具有挑战性的检测应用?
  • 易轻忽之肯綮:扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9)
    p style="text-align: justify text-indent: 2em "strong【作者按】/strong工作距离和探头的选择,主要影响着扫描电镜的信息接收。选择的是否合适,对形成怎样的样品表面形貌像起着举足轻重的作用。实际测试工作中,我们往往只关注信息的产生,也就是加速电压与束流的选择,而对工作距离和探头的选择往往存在轻忽甚至误解的现象。/pp style="text-align: justify text-indent: 2em "关于形貌像分辨率的主流观点:工作距离越小,形貌像分辨率越好。其依据是:1.束斑说:工作距离越小,束斑越小,束斑越小分辨率越好。2.球差说:工作距离越小,物镜球差对结果的影响越小,故分辨率也越佳。球差及束斑说都有一定道理,但都不是影响表面形貌像分辨力的最根本因素。/pp style="text-align: justify text-indent: 2em "形成上述观点,与电镜厂家力推小工作距离的理念有关。特别是有些厂家几乎放弃对使用样品仓探头获取样品信息的研究,仅将其作为一个低倍寻找样品测试位置的工具。这将限制我们的视野,获取的表面形貌信息也极其贫乏。/pp style="text-align: justify text-indent: 2em "本人所用品牌的时候冷场电镜由于对早期样品仓探头结构设计的继承,使得本人充分体会到:各种不同的工作距离和探头组合,将带来怎样不同的样品表面形貌信息,而这些不同的信息又恰恰是我们能够正确且充分观察和分析样品的基石。/pp style="text-align: justify text-indent: 2em "下面将从形貌衬度,这一形成表面形貌像的主导因素为切入点,以实例来展示并详细探讨:不同工作距离和探头的组合与形貌衬度的形成有何关联?对表面形貌像的获取及图像的分辨能力有何影响?各种组合都具有怎样的优缺点?/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "strongspan style="color: rgb(0, 176, 80) font-size: 18px font-family: 宋体, SimSun "一 、工作距离和探头的选择与形貌衬度的形成 /span/strong/h1p style="text-align: justify text-indent: 2em "扫描电镜形貌像的形成如同用眼睛去观察一个物体。物体图像的形态并不取决于眼睛从物体上获取了怎样的光线,而是基于从那个角度去观察这个物体。对图像细节的影响来自四个方面,光线的能量和强度、眼睛的视力及观察角度,其中观察角度是根基。物体细节越粗,观察角度的影响越大。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/7446c1ff-2094-4dea-9c24-fd02dc025494.jpg" title="1.png" alt="1.png"//pp style="text-align: justify text-indent: 2em "二次电子和背散射电子是形成样品表面形貌像的信息源,如同形成图像的光。探头如同人的眼睛,它获取样品表面形貌像的形貌衬度信息,如同从不同角度去观察这个样品。信息到达探头的角度是形成表面形貌像的基础。/pp style="text-align: justify text-indent: 2em "正如本人在经验谈(4、5、6)中给大家所描述,形貌衬度是由样品表面形貌高低差异所形成的信息衬度。形成该衬度的主导因素随以下两个不同层级的信息需求而不同:/pp style="text-align: justify text-indent: 2em "A. 低倍率,观察的样品表面形貌起伏较大(二十纳米以上)。探头、样品及电子束三者之间的夹角所形成的形貌衬度才能满足形貌像的形成需求,此时这个夹角就是主导因素。/pp style="text-align: justify text-indent: 2em "B. 高倍下,观察的空间差异小于十几纳米,形貌衬度小,电子信息溢出角度所形成的形貌衬度就完全满足需求。由于信息扩散对这类细节影响极大,靠近镜筒,从样品顶部获取更多二次电子是最佳方案,此时低角度信息就变为主导因素。/pp style="text-align: justify text-indent: 2em "选择不同的工作距离和探头,就是为了调控探头所接收的样品信息类型及信息的接收角度,以形成充分的图像衬度。/pp style="text-align: justify text-indent: 2em "工作距离与探头的选择是如何调控探头获取样品表面形貌像的形貌衬度信息,进而影响表面形貌像的细节形成及分辨?下面将结合实例来给大家做详细的展示及描述。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "strongspan style="color: rgb(0, 176, 80) font-size: 18px font-family: 宋体, SimSun "二、表面形貌像与工作距离和探头的选择/span/strong/h1p style="text-align: justify text-indent: 2em "选择不同的工作距离和探头,能对图像形貌衬度的获取形成调控。那是如何调控?又是如何影响样品表面形貌像?/pp style="text-align: justify text-indent: 2em "strong2.1不同工作距离下各探头对表面信息的接收示意图/strong/pp style="text-align: justify text-indent: 2em "以某公司冷场电镜为例(样品:介孔硅,孔径 10nm):/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/b8cc6b0c-010b-4077-97bc-4e1558635e77.jpg" title="2.png" alt="2.png"//pp style="text-align: justify text-indent: 2em " a.样品台不加减速场:到达顶探头的主要是间接的、能量较高的高角度背散射电子(HA BSE)。图像特性表现为:信息量不足、细节分辨差、但受荷电影响小。(SBA-15颗粒)/pp style="text-align: justify text-indent: 2em " /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f6e11aa0-c8f0-462d-99c9-6787b93e2ac6.jpg" title="3.png" alt="3.png"//pp style="text-align: justify text-indent: 2em "工作距离越大顶探头接收的信息越少,基本不存在测试意义。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/db70895c-9571-49ac-af9a-286cbaa168d2.jpg" title="4.png" alt="4.png"//pp style="text-align: justify text-indent: 2em " br//pp style="text-align: justify text-indent: 2em "b.采用减速模式:二次电子能量得到加强,使顶探头接收的样品信息改以高角度二次电子为主。图像特性:二次电子衬度及边缘效应增加、形貌立体感较差、荷电及电位衬度较大。/pp style="text-align: justify text-indent: 0em "span style="text-indent: 2em "/span/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/4333ec84-2237-4e5f-9c47-c7424021ada4.jpg" title="5.png" alt="5.png"/span style="text-indent: 2em text-align: justify " /span/pp style="text-align: justify text-indent: 2em "顶探头图像的Z衬度会更强烈一些,但要求样品有较强的信息量,故应用领域不广,实例较少。具体可参看经验谈(6)。/pp style="text-align: justify text-indent: 2em "总之,该公司扫描电镜设置的探头中:顶探头要求样品本身有较高的信息产额,仅利于在小工作距离条件下获取某些特殊的图像衬度信息,如:Z衬度及电位衬度,故使用频率少。/pp style="text-align: justify text-indent: 2em "对于大部分样品信息的获取,起主力军作用的是上、下探头,因此下面讨论的重点将针对这两个探头展开。实例的展示及探讨将以介孔硅KIT-6为样本,按高、低倍分组来进行。/pp style="text-align: justify text-indent: 2em "WD 3mm、低倍:10万倍以下,观察的细节大于20纳米。 /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/ee3af742-eeab-4911-acf1-ccd39b700db4.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em "高倍(20万倍):观察10纳米以下细节。这类细节的起伏小,形貌衬度要求低,不同角度的二次电子就足以形成表面形貌像所需的形貌衬度。此时信息扩散对细节影响将变成主导因素,更多的接收二次电子就成为获取高分辨细节的关键。/pp style="text-align: justify text-indent: 2em "如上示意图,EXB系统对进入上探头的信号进行分离,使其接收的基本是二次电子,对细节影响小;通过信息转换板,探头又接收到更多的低角度信息,因此利于形成细节为10纳米以下的形貌像。各探头形成图像的具体结果如下:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/cbe76ddb-a22b-4bd5-ad70-c9057c2641ae.jpg" title="7.png" alt="7.png"//pp style="text-align: justify text-indent: 2em "该工作距离,下探头无信号,信息混合后结果倒向上探头。采用减速模式将帮助上探头获取更充分的样品信息。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/b3ba0c5c-c2a3-49cb-a4fa-8653853454d2.jpg" title="8.png" alt="8.png"/span style="text-indent: 2em text-align: justify " /span/pp style="text-align: justify text-indent: 2em "B)工作距离适中(WD=8.1mm):/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/7a1ebaf2-fb73-4803-a009-cd97a2aa8a65.jpg" title="9.png" alt="9.png"//pp style="text-align: justify text-indent: 2em "低倍:10万倍以下,观察的样品细节主要在20纳米以上。在这个工作距离下:上探头形貌衬度较差,下探头信号量不佳,故单独观察都有较大问题。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/c8c01847-39c9-4150-a862-5ed7dc40b2bf.jpg" title="10.png" alt="10.png"//pp style="text-align: justify text-indent: 2em "高倍:20万倍,观察的样品表面细节在10纳米以下 /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/367f675f-d917-4132-b5b5-dc72868ef096.jpg" title="11.png" alt="11.png"//pp style="text-align: justify text-indent: 2em "上、下探头的混合结果:上探头获取的信息较多,是主要信息源。故整体偏向上探头获取的图像特性。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/202006/uepic/aa45b67b-1415-461d-9ee6-5594b663afdf.jpg" title="12.png"//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/202006/uepic/10a2946a-c21a-4b3b-9c3a-46579b607c42.jpg" title="13.png"//pp style="text-align: justify text-indent: 2em "C)大工作距离(WD=15.1 mm)/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/841a1b4a-39c8-4cea-9114-5c93b196ba13.jpg" title="14.png" alt="14.png"//pp style="text-align: justify text-indent: 2em "低倍:10万倍以下,观察20纳米以上的细节。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/5adb4e8e-4576-4e0e-aa67-2b72bfdf8f99.jpg" title="15.png" alt="15.png"//pp style="text-align: justify text-indent: 2em "高倍:20万倍,观察细节10纳米以下。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/e2dd614b-b1c3-439f-8eca-4a481eae9dcb.jpg" title="15.png" alt="15.png"//pp style="text-align: justify text-indent: 2em "上、下探头混合后,结果倒向下探头。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/aa741213-5299-4f63-9dc8-2f210ade6e28.jpg" title="16.png" alt="16.png"//pp style="text-align: justify text-indent: 2em "细节较粗样品(磁粉),7万倍、大WD,三种探头组合对比:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/84e4cc1f-b36b-4df0-a035-30045f6a1fc2.jpg" title="18.png" alt="18.png"//pp style="text-align: justify text-indent: 2em "strong2.2不同探头组合在不同工作距离(WD)上的图像比对/strong/pp style="text-align: justify text-indent: 2em "上节实例展示了在不同工作距离上,各种探头组合所获取的图像特性。本节以介孔硅SBA-15的测试结果为例,采用高、低倍分组,直球对决的形式,对比三种探头组合分别在三个不同工作距离上所获取的测试结果。评判出各种工作距离与探头组合的优缺点,以充分认识它们的适用范围。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/83a00b53-10d8-4142-bd5e-b16c67491618.jpg" title="19.png" alt="19.png"//pp style="text-align: justify text-indent: 2em "低倍的综合结果:选择15mm工作距离、下探头组合测试效果最佳。空间伸展最好、信号量足、细节丰富、无荷电影响。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/73bb557c-f665-4f26-bfaa-d80bb19cb871.jpg" title="20.png" alt="20.png"//pp style="text-align: justify text-indent: 2em "高倍(20万倍)的结果: 2mm工作距离,混合探头组合二次电子含量足,低角度二次电子信息含量的占比较多,故图像荷电现象较弱,空间信息好,细节充分,结果最佳。/pp style="text-align: justify text-indent: 2em "15mm工作距离、下探头组合,细节几乎看不见,结果最差。/pp style="text-align: justify text-indent: 2em "综合以上所有实例可以得出这样的结论:/pp style="text-align: justify text-indent: 2em "10万倍以下观察20纳米以上细节,大工作距离拥有优势,且倍率越低用下探头观察的优势越明显。10万倍以上观察10纳米以下的细节,小工作距离、上探头获得效果更好。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "strongspan style="color: rgb(0, 176, 80) font-size: 16px "三、工作距离和探头的选择与图像的分辨力/span/strong/h1p style="text-align: justify text-indent: 2em "前面实例充分表明:小工作距离、镜筒探头(上探头)最适用于将图像放大到10万倍以上,去观察小于10纳米的样品细节,而对于观察20纳米以上的细节却未必有利。/pp style="text-align: justify text-indent: 2em "下面将以充分的事例展示:采用大工作距离、样品仓探头(下探头)组合,即便在10万倍以上的高倍率,图像清晰度受大量背散射电子的影响而略显不足,但对20纳米以上样品细节的分辨力却占据优势。/pp style="text-align: justify text-indent: 2em "泡沫镍上生长的氢氧化钴,储电材料。该材料的片状氢氧化钴表面有许多大于10纳米的沟纹状细节,故比表面积较大。存在这种结构也正是其拥有极佳储电能力的基础。/pp style="text-align: justify text-indent: 2em "接下来通过对这些沟纹信息的观察,来对比大工作距离、下探头组合与较小工作距离、上探头组合在的辨析度上优劣。/pp style="text-align: justify text-indent: 2em "为了说明结果的普适性,对比将从一组zeiss SEM的照片开始。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/63ec7b13-bd9e-4d65-9328-1ef32e4aa0b1.jpg" title="21.png" alt="21.png"//pp style="text-align: justify text-indent: 2em "结果:采用WD=8mm、混合探头(M)组合 PK WD=15mm、下探头组合的结果。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/829f8ebf-1b67-40ff-ae48-b248d4a661d7.jpg" title="22.png" alt="22.png"//pp style="text-align: justify text-indent: 2em "以上实例充分展示:工作距离与探头的选择对分辨能力的影响也遵循着辨证的关系。样品的特性以及观察信息的不同是我们选择合适工作距离与探头的依据。/pp style="text-align: justify text-indent: 2em "将小工作距离、镜筒探头做为获取高分辨像的唯一正确选择,进而扩展为扫描电镜主要测试条件的观念存在极大偏颇,不利于充分获取样品信息。大部分样品信息适合在大工作距离,采用多种探头组合来获取,这将在下篇有更充分的展示。/pp style="text-align: justify text-indent: 2em "电镜的性能是否优异,考察其在大工作距离下是否也能获取优异的高倍率形貌像应当是重点。以下是几个实例:/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "S-4800大工作距离高倍率图片/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/395c6a02-3f78-47bb-9a45-4aa553a3ebb7.jpg" title="23.png" alt="23.png"//pp style="text-align: justify text-indent: 2em "Regulus 8230的大工作距离高倍率图片/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/3eb0b9d9-d016-4e1b-aa6a-16c5555ca0a2.jpg" title="24.png" alt="24.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/69da8d82-e400-4dc0-9331-cf795b27a49a.jpg" title="25.png" alt="25.png"//ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "strongspan style="font-size: 18px color: rgb(0, 176, 80) "四、不同工作距离和探头组合的优缺点/span/strong/h1p style="text-align: justify text-indent: 2em "前面分析了,改变工作距离主要影响的是镜筒内探头和样品仓探头对样品表面形貌信息的接收效果。/pp style="text-align: justify text-indent: 2em "工作距离越小,带来的结果是:镜筒内探头(U)接收到的样品信息越多,样品仓探头(L)接收的样品信息越少。当样品紧靠物镜时,样品仓探头基本获取不到样品的信息。/pp style="text-align: justify text-indent: 2em "随着工作距离加大,样品仓探头接收到的样品信息会加强。要形成样品仓探头对样品表面信息接收的最佳固体角,必然存在一个最佳工作距离。这个值各电镜厂家并不一样,我所用的场发射扫描电镜的这个值与附件能谱仪的最佳工作距离相重合(WD=15mm)。/pp style="text-align: justify text-indent: 2em "不同位置的探头形成样品表面形貌像的主导因素不同。/pp style="text-align: justify text-indent: 2em "样品仓探头:探头、样品及电子束三者之间的夹角是主导。获取的形貌衬度信息有利于呈现起伏较大的表面形貌像。/pp style="text-align: justify text-indent: 2em "镜筒内探头:从顶部接收样品信息,电子信息的溢出角是形成表面形貌像的主导因素。获取的形貌衬度小,只适合表现起伏较小(几十纳米)的表面形貌像。工作距离越大,镜筒内探头接收到的高角度二次电子占比越多,图像空间感越差,荷电现象也越明显。具体实例可参看前文经验谈(5)。/pp style="text-align: justify text-indent: 2em "样品表面形貌像的细节会受到样品电子信息扩散的影响,这个影响受到样品特性及信息需求的限制。当样品比较松散,而所要展示的样品信息又极小(10纳米以下细节)时,信号扩散会成为影响测试结果的主体,选用小工作距离、镜筒探头最为有利。除此以外,在大工作距离下选择不同探头组合将更有利于获取充分的样品表面信息。/pp style="text-align: justify text-indent: 2em "大、小工作距离对样品进行测试的优缺点对比列表如下/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/ae51a279-a821-44a9-8ff7-f3f675295dcb.jpg" title="26.png" alt="26.png"//pp style="text-align: justify text-indent: 2em "从以上列表可以看到,选择大工作距离给测试结果带来的优点比选择小工作距离要多得多,小工作距离仅在极少数情况下具有较好的测试结果。因此个人认为将常规的测试条件放在大工作距离上,是一个明智的选择。/pp style="text-align: justify text-indent: 2em "以个人使用扫描电镜十来年的测试经历来看,绝大部分样品信息都可在大工作距离下获取更好的效果,必需采用小工作距离的情况相对来说比较少。/pp style="text-align: justify text-indent: 2em "下一篇将用更多实例来给大家充分的展示并分析,选用合适的工作距离和探头组合将会带来怎样有利的测试结果?span style="text-indent: 2em " /span/pp style="text-align: justify text-indent: 2em "参考书籍:/pp style="text-align: justify text-indent: 2em "《扫描电镜与能谱仪分析技术》张大同2009年2月1日 span style="text-indent: 2em "华南理工出版社/span/pp style="text-align: justify text-indent: 2em "《微分析物理及其应用》 丁泽军等 2009年1月 span style="text-indent: 2em "中科大出版社/span/pp style="text-align: justify text-indent: 2em "《自然辩证法》 恩格斯 于光远等译 1984年10月 span style="text-indent: 2em "人民出版社 /span/pp style="text-align: justify text-indent: 2em "《显微传》 章效峰 2015年10月 span style="text-indent: 2em "清华大学出版社/span/pp style="text-align: justify text-indent: 2em "日立S-4800冷场发射扫描电镜操作基础和应用介绍 span style="text-indent: 2em "北京天美高新科学仪器有限公司 高敞 2013年6月/span/pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em "作者简介:/span/strongspan style="text-indent: 2em "img style="max-width: 100% max-height: 100% width: 75px height: 116px float: left " src="https://img1.17img.cn/17img/images/202006/uepic/c94c8e90-8a70-4116-8cfa-768d11d59f9e.jpg" title="123.jpg" alt="123.jpg" width="75" height="116" border="0" vspace="0"/林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /span/pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em color: rgb(0, 176, 240) " 延伸阅读:/span/strong/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20200515/538555.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8)/span/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20200414/536016.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7) /span/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20200318/534104.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "扫描电镜的探头新解——安徽大学林中清32载经验谈(6)/span/aspan style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " /span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20200218/522167.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)/span/aspan style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " /span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20200114/520618.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)/span/aspan style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline " /span/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20191224/519513.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3) /span/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20191126/517778.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2) /span/a/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/news/20191029/515692.shtml" target="_self" style="text-indent: 2em color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈/span/a/p
  • “武汉造”高精度探伤仪器打破进口暴利
    在铁轨上,一条细如发丝的裂纹都会引发车毁人亡的悲剧。因此,轮轴探伤的高精度仪器均由美、德、法等国外公司垄断,且每部售价高达百万元。一位武汉小伙却打破了外国人几十年的垄断格局,并让&ldquo 武汉造&rdquo 的这一高精度仪器出口。9月27日和28日在武汉国际会展中心举行的创业赶集会上,武汉小伙王伟贤将带着他的十几款专利产品,亮相展会。  王贤伟原是武汉铁路局下属公司的一名外聘员工,他仅用一根线加一台计算机,就能实现铁轨探伤。  2008年的一天,铁道部组织了一场&ldquo 探伤比武&rdquo ,看哪家公司能最精准地找到铁轨上的缺陷。当时的王贤伟在公司做软件,被通知加入项目小组。  王贤伟还清晰地记得,在探伤比赛中,自己的团队能凭波纹而不是设备输出数据就能看出设备缺陷,但外国公司虽有先进仪器却探不出问题。与此同时,王贤伟发现进口公司的误报率也比较高,可能一个轮子只有一个缺陷,而对方报十几个,甄别错误的能力很差。  从此,他便开始研究探伤仪器市场。他发现,面对国外发达国家对国内高技术出口的限制,铁路探伤领域已经被美国、德国、法国等国外公司瓜分垄断,价格也被哄抬得离谱。王贤伟说:&ldquo 老外的仪器给我们报价120万,其实成本只需5000元。&rdquo   面对如此暴利的市场,王贤伟看到了商机,于是他和另一个同学自筹资金,联合成立了武汉翰铁科技公司。在当时,国内同行业的公司仅有两家。  成立公司后,他将第一个产品定位在自己觉得容易的&ldquo 工艺转向架&rdquo 上,但依旧困难重重。最先遇到的问题是国外相关产品的驱动动力技术甚至装置都不出口到中国,对中国进行技术限制,怎么办?王贤伟知道,虽然可以绕道到国外购买,但成本之高肯定会让刚起步的小微公司难以承受。于是,他只能埋头搞技术攻关。  两年后,公司第一个核心产品终于从实验室里走出来,引起多家公司重点关注,一段时间内,该产品竟然脱销。当时同类外国技术可以把一列动车直线牵走,而他的产品可以让动车转弯!&ldquo 要知道,铁路领域内直线和拐弯起到的作用简直天差地别。此外,进口产品不能定制,我们的则可以定制,性价比高得多,为此吸引了大量客户。&rdquo 王贤伟说道。  凭借着80后组成的核心科研团队,王贤伟的公司已形成了铁路非标检修设备、超声波探伤设备的技术开发及轻钢结构工程三大系列产品,2011年通过了ISO9001认证。王贤伟说: &ldquo 国外设备能检测2毫米,我们的设备检测平均达到0.5毫米,精度提高4倍,相当于保险系数提高一大截&rdquo 。
  • 中国人民解放军某单位175.00万元采购磁粉探伤仪,X射线探伤仪,超声波探伤仪
    详细信息 磁粉探伤仪、超声波探伤仪等设备 北京市-海淀区 状态:公告 更新时间: 2023-10-24 磁粉探伤仪、超声波探伤仪等设备 统一信息编码:HLJDGG20231024141 项目编号: JD-HT2023-0330 专业领域:其他 主要内容 磁粉探伤仪、超声波探伤仪等设备招标公告 北京东方华太工程咨询有限公司(招标代理机构)受中国人民解放军某部队的委托,对磁粉探伤仪、超声波探伤仪等设备进行公开招标。 一、招标内容 1.项目名称:磁粉探伤仪、超声波探伤仪等设备 2.项目编号:JD-HT2023-0330 3.采购数量: 序号 设备名称 单位 数量 1. 磁粉探伤仪 套 1 2. 超声波探伤仪 套 1 3. 工业X射线探伤仪 套 1 4. 内窥镜 套 1 5. 便携式泵浦流量检测仪 套 1 4.采购方式:公开招标 5.项目概况:磁粉探伤仪、超声波探伤仪等设备共5套。 6.最高限价(单价/总价/分项价格):175万元 注:1、交付地点:海南省三亚市采购人指定点。 2、采购预算:本项目设有最高投标限价,超过预算的报价将作为无效投标处理(本项目报价包括所有设备从出厂到交付使用过程中产生的一切费用,包含货款、包装、运输、装卸、调试、检测、培训、保险、售后、税金等一切费用)。 二、投标人资格能力条件 (一)符合《中华人民共和国政府采购法》第二十二条资格条件: 1.具有独立承担民事责任的能力; 2.具有良好的商业信誉和健全的财务会计制度; 3.具有履行合同所必需的设备和专业技术能力; 4.有依法缴纳税收和社会保障资金的良好记录; 5.参加政府采购活动前3年内,在经营活动中没有重大违法记录; 6.法律、行政法规规定的其他条件。 (二)供应商成立时间不少于3年,且为非外资独资或外资控股企业。 (三)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加同一包的采购活动。单位办公地点为同一地址的,供应商之间股东有关联的,一律视为有直接控股、管理关系。供应商之间有上述关系的,应主动声明,否则将给予列入不良记录名单、3年内不得参加军队采购活动等处罚。 (四)投标人应具备本项目服务能力。 (五)本项目不接受联合体投标。 (六)未列入军队采购网(www.plap.cn)及中国政府采购网(www.ccgp.gov.cn)军队采购失信名单、政府采购失信名单和供应商暂停名单的企业。 三、招标文件售价 人民币500元/份(售后不退)。 四、购买文件时间和地点 1.所有符合以上条件并愿意参加本项目投标的投标人请于2023年10月25日起到2023年11月01日止,每日上午09时00分至11时30分,下午14时00分至16时30分(北京时间,公休日及节假日除外)与招标代理机构联系购买招标文件对接事宜(联系人:李经理,联系电话:18538148631),携带“六、申购招标文件需要提供的证明材料”在北京市海淀区中关村南大街天作国际中心B座2010室或网上报名购买招标文件。申购招标文件的单位或通过资格条件初审的单位少于2家时,招标人有权重新发布招标公告或延长公告时间。 2. 如投标人选择网上报名,投标人需将下列材料的扫描件(均需加盖投标人公章)在规定的发售时间内发送至dfht2021@126.com,主题为项目编号+投标人名称(备注联系方式),待招标代理工作人员进行查收,审核无误后方可缴费,并登记报名,逾期不再受理,招标文件及相关配套资料届时以快递形式发送至投标人,邮寄费由投标人承担。同时投标人将所有报名资料(加盖投标人公章)邮寄至北京东方华太工程咨询有限公司(李经理收,18538148631)。 五、投标截止时间和开标时间、地点 投标截止时间和开标时间同为2023年11月21日09时30分(北京时间,如有变更,另行通知),其后送达的投标文件恕不接收。 投标文件提交及开标地点为:海南省三亚市大东海壹号度假村酒店(如有变更,另行通知)。 六、申购招标文件需提供的证明材料 1.营业执照复印件或事业法人开办证明复印件或军队单位法人证书复印件(复印件加盖公章); 2.授权书原件(附购买人身份证复印件加盖公章); 3.被授权代表近三个月内的社保缴纳证明(加盖单位公章) 八、联系方式 招 标 人:中国人民解放军某单位 联 系 人:吴先生 联系电话:13337596336 招标代理机构:北京东方华太工程咨询有限公司 单位地址:北京市海淀区天作国际中心B座2010室 联 系 人:李先生 联系电话:18538148631 传 真:010-82168368-0 电子信箱:dfht2021@126.com 账户名称:北京东方华太工程咨询有限公司 开户银行:北京银行股份有限公司西客站支行 账号:01090336200120105159899 质疑受理部门:北京东方华太工程咨询有限公司监督部 联 系 人:袁先生 联系电话:010-82168368-0 对不起,您不是网站企事业单位认证用户,不具备浏览相关信息的权限! 请使用证书登录进行对接! × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:磁粉探伤仪,X射线探伤仪,超声波探伤仪 开标时间:2023-11-21 09:30 预算金额:175.00万元 采购单位:中国人民解放军某单位 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:北京东方华太工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 磁粉探伤仪、超声波探伤仪等设备 北京市-海淀区 状态:公告 更新时间: 2023-10-24 磁粉探伤仪、超声波探伤仪等设备 统一信息编码:HLJDGG20231024141 项目编号: JD-HT2023-0330 专业领域:其他 主要内容 磁粉探伤仪、超声波探伤仪等设备招标公告 北京东方华太工程咨询有限公司(招标代理机构)受中国人民解放军某部队的委托,对磁粉探伤仪、超声波探伤仪等设备进行公开招标。 一、招标内容 1.项目名称:磁粉探伤仪、超声波探伤仪等设备 2.项目编号:JD-HT2023-0330 3.采购数量: 序号 设备名称 单位 数量 1. 磁粉探伤仪 套 1 2. 超声波探伤仪 套 1 3. 工业X射线探伤仪 套 1 4. 内窥镜 套 1 5. 便携式泵浦流量检测仪 套 1 4.采购方式:公开招标 5.项目概况:磁粉探伤仪、超声波探伤仪等设备共5套。 6.最高限价(单价/总价/分项价格):175万元 注:1、交付地点:海南省三亚市采购人指定点。 2、采购预算:本项目设有最高投标限价,超过预算的报价将作为无效投标处理(本项目报价包括所有设备从出厂到交付使用过程中产生的一切费用,包含货款、包装、运输、装卸、调试、检测、培训、保险、售后、税金等一切费用)。 二、投标人资格能力条件 (一)符合《中华人民共和国政府采购法》第二十二条资格条件: 1.具有独立承担民事责任的能力; 2.具有良好的商业信誉和健全的财务会计制度; 3.具有履行合同所必需的设备和专业技术能力; 4.有依法缴纳税收和社会保障资金的良好记录; 5.参加政府采购活动前3年内,在经营活动中没有重大违法记录; 6.法律、行政法规规定的其他条件。 (二)供应商成立时间不少于3年,且为非外资独资或外资控股企业。 (三)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加同一包的采购活动。单位办公地点为同一地址的,供应商之间股东有关联的,一律视为有直接控股、管理关系。供应商之间有上述关系的,应主动声明,否则将给予列入不良记录名单、3年内不得参加军队采购活动等处罚。 (四)投标人应具备本项目服务能力。 (五)本项目不接受联合体投标。 (六)未列入军队采购网(www.plap.cn)及中国政府采购网(www.ccgp.gov.cn)军队采购失信名单、政府采购失信名单和供应商暂停名单的企业。 三、招标文件售价 人民币500元/份(售后不退)。 四、购买文件时间和地点 1.所有符合以上条件并愿意参加本项目投标的投标人请于2023年10月25日起到2023年11月01日止,每日上午09时00分至11时30分,下午14时00分至16时30分(北京时间,公休日及节假日除外)与招标代理机构联系购买招标文件对接事宜(联系人:李经理,联系电话:18538148631),携带“六、申购招标文件需要提供的证明材料”在北京市海淀区中关村南大街天作国际中心B座2010室或网上报名购买招标文件。申购招标文件的单位或通过资格条件初审的单位少于2家时,招标人有权重新发布招标公告或延长公告时间。 2. 如投标人选择网上报名,投标人需将下列材料的扫描件(均需加盖投标人公章)在规定的发售时间内发送至dfht2021@126.com,主题为项目编号+投标人名称(备注联系方式),待招标代理工作人员进行查收,审核无误后方可缴费,并登记报名,逾期不再受理,招标文件及相关配套资料届时以快递形式发送至投标人,邮寄费由投标人承担。同时投标人将所有报名资料(加盖投标人公章)邮寄至北京东方华太工程咨询有限公司(李经理收,18538148631)。 五、投标截止时间和开标时间、地点 投标截止时间和开标时间同为2023年11月21日09时30分(北京时间,如有变更,另行通知),其后送达的投标文件恕不接收。 投标文件提交及开标地点为:海南省三亚市大东海壹号度假村酒店(如有变更,另行通知)。 六、申购招标文件需提供的证明材料 1.营业执照复印件或事业法人开办证明复印件或军队单位法人证书复印件(复印件加盖公章); 2.授权书原件(附购买人身份证复印件加盖公章); 3.被授权代表近三个月内的社保缴纳证明(加盖单位公章) 八、联系方式 招 标 人:中国人民解放军某单位 联 系 人:吴先生 联系电话:13337596336 招标代理机构:北京东方华太工程咨询有限公司 单位地址:北京市海淀区天作国际中心B座2010室 联 系 人:李先生 联系电话:18538148631 传 真:010-82168368-0 电子信箱:dfht2021@126.com 账户名称:北京东方华太工程咨询有限公司 开户银行:北京银行股份有限公司西客站支行 账号:01090336200120105159899 质疑受理部门:北京东方华太工程咨询有限公司监督部 联 系 人:袁先生 联系电话:010-82168368-0 对不起,您不是网站企事业单位认证用户,不具备浏览相关信息的权限! 请使用证书登录进行对接!
  • X 射线探伤技术在文物保及考古绘图中的应用
    一、X 射线探伤技术在文物考古中应用的原理X 射线探伤技术,是利用射线透过物体时,发生吸收和散射这一特性,通过测量材料中因缺陷存在影响射线的吸收来探测缺陷的一种技术。根据底片上有缺陷部位与无缺陷部位的黑度图像不一样,就可判断出缺陷的种类、数量、大小等,这就是射线照相探伤的原理,也称 X 射线照相技术。在考古学中运用 X 射线照相技术,就是利用 X 射线照相方法所具有不损坏器物的特性,而且,具有高穿透能力的电磁辐射 X 射线。在文物保护工作中单一的利用数码照片,只能对器物表面及形的一些信息进行了解,锈层底部及器物的内部的信息无法知晓,X 射线照相技术就能很好地解决这一问题。从另一个角度上讲,X 射线照相技术实际是一种“转换”技术,是把用肉眼直接观察不到的信息,变成“可识信息”,以反应物体内部的形貌特征,或者是物体内部结构特征。通过记录在 X 射线照片物体透视影像的丰富信息及其特征,来判断文物内部结构特征,或者相关的其他特征,如文物保存状况、前修复痕迹、相关其历史艺术信息,相关器物制作工艺特点等。现在,X 射线探伤技术已经成熟地应用于文物保护修复及古代技术研究中。运用此种设备进行文物相关研究比较广泛。X 射线是借助荧光屏显像的一种成像技术,具有穿透和荧光两个作用。X 射线照相是借助各种摄影装置,利用 X 射线的吸收、穿透和感光等作用。将被检客体的影像记录在与 X 射线仪连接的电脑相应的程序中。传统光学成像方式与 X 射线平面成像有些差异,传统的光学成像,不管模拟成像或数字成像,均使用光学透镜,波长范围为紫外线、可见光和近红外线。X 射线平面成像不用光学透镜成像。而是利用射线的直线传播,穿透物体,在物体背后放置 X 射线感光片将影像记录下来。X 射线平面成像与光学成像相比,除了不用镜头外,最主要的是记录的信息并不相同。二、X 射线照相技术在文物考古和绘图方面的应用实例文物具有不可再生性,在修复文物前,用 X 光照相方法能反应文物保存现状,通过这种无损分析结合文物的保存状况更利于文物保护与研究1. 在文物考古方面的应用X 射线照片作为光源的一种照相方法,利用具有高穿透能力的电磁辐射 X 光,在不破坏“研究对象”的情况下,对其内部形态进行探测来反应物体内部结构特征的一种无损检测方法。不同材质的文物,由于非均质特征,各个部位对 X 射线能量的吸收明显不同。能够显示铁器表层的锈蚀深度,能够了解器物的内部形貌特征。 现代文物保护修复,不仅是把破碎的文物复原,把受自然力侵蚀的文物寿命延长,而是对其历史价值、艺术价值的一个重新“发掘”、认识和评价的过程。文物在锈蚀或损坏得比较严重的情况下,对其修复保护操作前,没有详细的了解器物的现状,直接进行操作很可能对文物造成损伤甚至破坏,相关的历史和艺术信息将永远的消失,并且对文物研究也会有极大的影响,造成无法弥补的遗憾。下面结合铁牌饰、铁饰件、铁称砣数码相片与X 射线照片的对比图片,可以细致地了解器物纹样与图案。 图2 为铁牌饰的 X 射线照片,从片中看到的是一件非常生动的艺术品,没有任何损伤拼接痕迹,轮廓立体感强,人、马的轮廓线及人体五官和头部也非常清楚,马的线条也很清晰,马身上的饰物、缰绳、马鞍、弓弦、缨、鞦带等细微之处都清晰地呈现出来。马的五官、尾部、四蹄的外轮廓与真实马的形态相像,从马的尾巴及身体上的饰物上看去,动感很强。整体上看去好似一人悠闲地在马背上吹着音乐,而马听着美妙的乐声慢步行走,很陶醉的样子。铁饰件的数码片中,只能看到表面厚厚的锈层,锈层下的任何信息都显示不出来。这次在文物保护的过程中,我们利用 X 射线照技术,详细的对器物进行了解,发现锈层下的有粗细不均线条组合成生动的图案,而且固定在铁饰件边缘的两个片状铁片及与铆钉相接的结构也能清晰地看到。这个信息的解读对于保护研究方面与保护工作的操作方面以及考古研究工作的开展有着非常重要的价值,也同时要求文物保护人员在进行保护工作时要特别小心,如果不小心就会伤及器物的花纹。所以在保护操作工作中,一边对照 X 射线图片,一边小心谨慎进行保护操作,结果器物花纹没有受到一丝的伤害,同时也说明器物得到了成功的保护。秤砣虽锈迹斑斑,却保存尚好。器表 1 面刻有凹槽(图 5),另一面无任何纹饰。经 X 射线照相,想进一步对其进行了解。结果很遗憾,在 X 射线片上除有一些白点外(图 6),只能看到一块加工规整的铁块,没有显现出任何套接及修复痕迹,说明这件器物是一次成形的实心器物。在器物中心部位有若干大小不等的小圆点,我们认为此物应是在制作器物时产生的气泡而形成。器物表面刻的凹槽在 X 射线片中没有任何体现,我们也无法辨别记录的是什么文字,这种结果的出现主要是由于器物太厚,器物上所刻文字的凹槽太浅所致。反而在数码片中,这种实心器物用数码片的效果反而要比 X 射线片好一些,表面信息虽然不是很清晰,还可以看到大致的轮廓。2. 在考古绘图中的应用出土文物是研究者对遗址的文化进行判定的重要依据。器物图是对器物进行平面展示的平台,绘图是编写考古报告中的一项不可缺少的基本工作,也是进一步研究器物相关工艺的基础。目前的考古绘图,是完全使用手工测量,可直接测量的部分,在图中可以准确绘出其结构与大小,而一些无法测量的部位,尤其在绘器物的剖面图、内部结构及加工工艺和器物厚度是无法准确测量的,也只能估测,这样会影响考古报告的读者对器物内部结构的认知程度。X 射线平面成像是 X 射线穿透物体的影像信息的记录。由于 X 射线穿透能力强,光学成像射线无法穿透的物体,X 射线却可能穿透,获得其内部信息。通过 X 射线照片专业绘图员可以对文物的内部形貌及器物的原貌有更加细致的了解。在绘图时,用绘图工具测量、数码片、X 射线片三者相结合,能够完整地把器物的内、外部信息更全面地表现出来。如铁锁为圆柱形,锈蚀严重,有些锈层已经剥落(图 7),内部结构不详。从(图 8)X 射线照片中,能够清晰地了解铁锁的内部形貌。除铁锁两端外侧可看到的铁条贯通铁锁内部外,再无任何部件。铁条一侧弯曲,呈“U”形,且残断。则另一侧端部似花瓣形扁片。数码片对器物表面信息是一个很好的展示,在铁锁两侧各有一孔,一侧为圆形,另一侧则为月牙形,且二孔在一条直线上。通过铁锁使用两种照相技术相结合的方法。能够清晰地了解铁锁内、外部结构与构成,有助于绘图者对器物有更深一层、更细致的了解,提高了绘制器物线图的准确性,尤其是对器物的内部结构能够绘得更准确。再如,帽顶,表面可以看到它的内部构成。先制成直径不等的空心半圆形范,并在范上刻好花纹,三个直径基本相同,另一个较前者稍大,其中两个小的半圆对扣成球体,而另一个小半圆与大者叠扣在一起,再用一根方形铁条通过顶点将其串在一起(图 9、图 10)。三、利用 X 射线照相技术进行文物保护应注意的问题利用 X 射线技术对文物进行保护,能收到较好的效果,但不能取代所有的方法,还要注意与其他方法的结合。1. 要对 X 光片进行整体判读从利于文物保护与研究的角度,在提取器物时,最好用整取的方法将器物内部任何遗物信息留存。在对器物进行清洗保护时,根据 X 射线片对器物的锈蚀物进行清理,这样就不会将器物本身破坏,也不会丢失任何信息,可以更准确地识别器物的内部构成与结构形貌。2. 要与传统的数码技术相结合如前所述,进行文物保护,利用 X 射线技术并不能解决所有的问题。从(图 5、图 6)的秤砣来看,器物大致为柱状,受 X 射线穿透力的影响,在识别时纹样图案的效果极差。(图 8)的铁锁 X 射线照片也如此,除铁锁的内部存有一根铁条以外,无其他任何信息,也无法得知铁锁内部的具体结构。而数码相机照的照片,可以把器物表面的一些特征及信息反应出来。而两者相结合,第一有利于文物保护与制造工艺的研究;第二有利于文物保护操作工作的进行。所以个人认为,用 X 射线技术对文物进行研究时,应运用多种科学技术方法相结合进行测试,具有互补的作用。获取更多、更大量的信息,减少丢失任何有价值信息的可能性,对文物考古的相关研究可提供更全面的内在信息。通过对以上三件器物 X 射线相片,可以看出,它们的效果完全不同。由于骑士牌饰为薄片状,相关的历史和艺术信息一览无余。而多年保护工作的实践,本人总结出一些经验。对器物进行保护工作前,一定要进行一些科学技术的测试,能够尽量多的留下一些信息。文物具有不可再生性,所以对文物进行的保护都应在详细了解文物之后再进行操作。X射线探伤技术,具有无损的特征,这种特性非常适合在文物研究和文物保护中应用,可以更全面地揭示与文物有关的历史信息,更生动地提供文物的制作工艺及技术,更详细地绘制器物的原图。
  • 光谱仪小百科 | 光纤与探头日常维护的5个技巧
    海洋光学的光纤附件、探头和配件可让用户在我们的光谱仪上传输和收集光。从现成的光纤跳线和定制光纤到专门设计的 OEM 附件,您的光纤选项和应用一样多种多样。以下是确保光纤和探头性能可靠、持久的一些技巧。 技巧1:做出明智的选择模块化光谱系统的优异性能取决于各个部分的总和。在选择光谱仪时要注意的方面应与选择光源、取样光学元件、光纤或探头相同。您是否在测量吸光度或反射率?您是否在测量低于 270 nm 的波长,在该波长下紫外线照射会使某些光纤受到曝晒?光纤将放置在您实验的什么位置?样品环境是否具有化学刺激性?确定这些标准将有助于我们指导您找到满足需求并适应样品条件的最佳组件(包括光纤)。技巧2:小心处理光纤连接器和末端如果保养不当,SMA 905 和其他光纤连接器可能会被划伤或损坏,从而影响测量。有时,客户甚至会因端部拉力过猛将连接器或套圈从光纤或探头上意外拉出。由于光纤端部磨损最大,设计了具有额外应力消除和护套保护的末端。但是,在取下端罩时要小心,用一只手握住连接器的光纤,用另一只手拉开端罩。海洋光学XSR 抗紫外老化光纤更进一步,它有一个端罩,用螺丝固定在光纤的末端 -- 无需拉动。技巧3:注意弯曲半径尽管光纤和探头在光谱仪周围移动光,但是这些组件可以承受的弯曲程度是有限的。光纤的弯曲半径表示在光纤发生损坏之前可以承受的弯曲程度。这种损坏程度可能会使光纤衰减和断裂,从而导致更严重的光损耗。这就是为什么定期检测光纤确保光传输的很好方法。光纤断裂,会使光停止传输。海洋光学报告了长时间弯曲半径(LTBR)和短时间弯曲半径(STBR)。LTBR 是存放条件下建议的最小弯曲半径。STBR 是光纤使用期间建议的最小弯曲半径。可见-近红外光、紫外-可见光、SR 和 XSR 光纤的弯曲半径技巧4:避免过热避免超过光纤材料的温度阈值:对于标准光纤,硅纤维的温度阈值为 300 °C,而环氧树脂和 PVDF 管的温度为 100 °C。对于高级光纤,整个组件的额定温度为 220 °C。包括不锈钢 BX 在内的护套可提供更好的保护,但最好咨询您的海洋光学代表,寻求在恶劣环境下的应用帮助。正如一位大学教授最近与我们分享的那样,他大一时化学实验室中的一些海洋光学光纤在初学化学家手中“存活”了 20 年。这些光纤可持续更长时间,但一些学生将这些光纤太靠近他们在测量的本生燃烧火焰,导致光纤护套和 PVDF 管熔化。耐化学性是您应用很重要的另一项标准。避免将光纤浸入可损坏石英、镍、钢、铝或环氧树脂的材料中。在恶劣的样品环境中,选择耐用的护套材料(包括硅胶单线圈或不锈钢 BX)是您不错的选择。定制套筒和套圈是另一种选择。技巧5:记住小东西虽然这并不总是可行,但在不用光纤连接器时,更换光纤连接器的端罩很有用。这有助于防止划伤,避免灰尘和指纹污染。此外,我们建议定期用透镜纸和蒸馏水、酒精或丙酮清洁光纤端部,避免划伤表面。本
  • 质构仪在乳制品质地分析中的应用及探头选择
    呈固体块状的均质样品乳制品中的塑性粘性固体有人造黄油、黄油、奶油干酪、乳清干酪、乳化干酪等产品,此类产品关键物性特点是硬度即延展性、融化性与温度相关性、加工过程中的硬度变化、内聚性等。而蜡质和绵软弹性固体样品则主要是意大利干酪、荷兰干酪、羊乳酪、白乳酪、软质乳酪等,通过质构仪可分析其硬度、表面粘附性、成熟度、货架期、水分丧失引起的表面结构变化等。典型实例 1:奶油的铺展性分析(挤压/挤出实验) 该探头专业用于检测黄油、人造黄油的铺展性、蜡质性的特殊探头,通过实验可得到样品的硬度、粘附性、柔软度等指标。实验结果解读:如图所示为不同状态下黄油的测试曲线。曲线的正向峰值反映了黄油样品的硬度,可见 Dry 的黄油由于含水量少,故而在质地上较为坚硬,而 Wet 的黄油则硬度最小,Good 的黄油硬度处于二者之间,硬度的大小也反映了反映了产品的柔软度,硬度小则柔软度高,反之则柔软度差。从图中可见,太干或太湿的黄油在硬度上都会与“Good”产品存在明显的差异。典型案例 2:传统与素食奶酪产品的质地分析(穿刺实验)实验结果解读:用小直径的柱形探头做奶酪的穿刺实验,穿刺实验主要比较的是破裂力(正向峰值前面出现的小的峰)、硬度(正向峰值)、穿刺做功(正峰面积)、粘附力和粘附性。通过质构仪分析可见,素食产品在硬度和表面粘性上均小于传统奶酪,素食产品的内部均一性要优于传统产品(穿刺过程中力量基本不发生变化),而传统产的内部随着挤压的进行力量在缓慢的增大,可见其均一性不如素食产品,即脂肪含量的不同使得素食产品含水量较少且更脆,可见素食产品还需要在硬度、表面粘性、含水量等方便进行优化与改良。典型实例 3:黄油的硬度检测分析实验结果解读:人造黄油改善了黄油脂肪含量高的问题,为了使人造黄油在口感和质地上与黄油更加的接近,生产商需要了解二者在质地和口感上存在的差异具体表现在哪里。切线切割探头可以反应切割黄油时的平均力量(最大峰值),以及挤压做功(正峰面积),通过力量与做功的比较发现,人造黄油切割力与做功都远小于天然黄油,由此可见在质地上人造黄油更为柔软。
  • 扫描电镜的探头新解——安徽大学林中清32载经验谈(6)
    p style="text-align: justify text-indent: 2em "span style="text-indent: 2em "【作者按】形貌衬度、Z衬度、晶粒取向衬度、二次电子衬度、边缘效应、电位衬度等是形成扫描电镜表面形貌像的几个重要衬度信息。对这些衬度信息的接收离不开探头。本文将就扫描电镜两种主要探头的构造、工作原理及其接收的样品信息进行详细探讨。/span/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 18px color: rgb(0, 176, 240) "一、二次电子探头/span/h1p style="text-align: justify text-indent: 2em "目前教科书的观点认为:二次电子探头接收的样品表面信息主要是二次电子。真实情况是否如此呢?/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong1.1二次电子图像所拥有的特性/strong/span/pp style="text-align: justify text-indent: 2em "A) 二次电子能量很低(低于50ev),从样品表面溢出的深度浅,在样品中的扩散范围小。适合用于表现样品表面形貌像的极细小细节(小于10nm)。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/3edeb286-6abb-4bf7-8b3a-008c9ab1551f.jpg" title="1.png" alt="1.png"//pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "B)二次电子能量低,在样品表面的溢出量容易受到静电场(荷电)的影响,出现图像局部或全部异常变亮、磨平、变暗并伴随图像畸变的现象,即样品图像的荷电现象。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/fb564107-ab21-4b67-9812-18699dec50be.jpg" title="2.png" alt="2.png"//pp style="text-align: justify text-indent: 2em "C)二次电子的产额受平面斜率影响较大,边缘处产额最高,形成所谓的二次电子衬度及边缘效应。这些衬度信息会形成信息的假象,也有助于分辨某些特殊的样品信息。/pp style="text-align: justify text-indent: 0em "span style="text-indent: 2em "/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/51c0d3a0-49ba-412e-96ee-f789a068425d.jpg" title="3.png" alt="3.png"//pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "D) 二次电子图像的Z衬度一般表现较差。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/9d2c7e97-f6a9-4de1-b054-9b8e5101f0f5.jpg" title="4.png" alt="4.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong1.2二次电子探头的组成及工作原理/strong/span/pp style="text-align: justify text-indent: 2em "二次电子能量弱(低于50ev),要想获取二次电子信息就必须采用高灵敏探头。利用敏感度极强的荧光材料接收弱信号,再以光电倍增管对弱信号做百万倍的放大,将能量极弱的二次电子信息转化为能被电子线路处理的电子信息。/pp style="text-align: justify text-indent: 2em "这种设计是目前解决这一难题的最佳方案。二次电子探头的基本构造正是以这个思路为基础来设计。/pp style="text-align: justify text-indent: 2em "strong1.2.1 Everhart-Thornley探测器的结构组成/strong/pp style="text-align: justify text-indent: 2em "由金属网收集极、闪烁体、光导管、光电倍增管和前置放大电路组成的探测器被称为Everhart-Thornley探测器。一直以来都是各厂家用于接收二次电子的主流探测器。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/2f6dd144-afab-427d-99c2-96f6565bc641.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "strong1.2.2 Everhart-Thornley探测器的工作原理/strong/pp style="text-align: justify text-indent: 2em "位于探头最前端的收集极是由金属网构成,其上加有200V的正偏压以捕获更多的二次电子。进入收集极的二次电子由加载在闪烁体金属铝膜上的10KV电压加速在闪烁体上产生一定数量的光子。由闪烁体产生的光子经过光导管的全反射进入光电倍增管阴极,在阴极上转换成电子。这些电子由打拿极的不断倍增,经阳极输出高增益低噪音的电信号。该信号由紧贴阳极的前置放大器放大后,从探测器输出。/pp style="text-align: justify text-indent: 2em "探测器本身无法将到达探测器的高能量背散射电子从低能量的二次电子中分离,但通过改变收集极偏压可以将低能量的二次电子给阻绝在探头外面。其接收的信息特性完全取决于到达探头的信息组成,如果信息中二次电子含量大则图像偏向于二次电子的图像特性,如果背散射电子含量大则结果偏向于背散射电子的图像特性。/pp style="text-align: justify text-indent: 2em "将探头的收集极变成负偏压,则我们可以获得偏向于背散射电子的图像。但是图像信号衰减较多,图像质量较差。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "1.3二次电子探头的位置与成像特性/span/strong/pp style="text-align: justify text-indent: 2em "高分辨场发射扫描电镜中,二次电子探头(ET探头)往往被置于仪器的两个位置:镜筒及样品仓。虽然各电镜厂家探头的具体位置有差异,但其结构是基本一致。探头位置不同,获取的图像性质差异也非常大。下面就以日立冷场电镜S-4800二次电子探头的位置设计为例来加以说明。/pp style="text-align: justify text-indent: 2em "strong1.3.1 S-4800二次电子探头的位置设计/strong/pp style="text-align: justify text-indent: 2em "在冷场扫描电镜S-4800中标配了两个二次电子探头。这两个探头的结构和性能完全一致,仅仅在电镜中安装的位置有所差异。一个位于样品仓,另一个位于物镜的上方。/pp style="text-align: justify text-indent: 2em "如下图所示:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/6b4fc92d-a161-48eb-938a-cdc27b8be3a5.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em "strong1.3.2 上、下探头的工作过程及获取图像的特性/strong/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "1.3.2.1上探头接收的样品信息/span/pp style="text-align: justify text-indent: 2em "扫描电镜EXB系统的结构是在物镜磁场(B)上方正对着上探头设计一个电场(E)。该电场的作用是将物镜磁场吸上来的背散射电子、二次电子混合信息中能量较弱的二次电子分离出来,推向上探头。这个过程如同碾米机进行米、糠分离时吹风机的作用一样。故上探头获取信息是较为纯正的二次电子。背散射电子也可以通过位于物镜内的电极板转换成二次电子被上探头接收,通过调节电极板上加载的电压来选择到达上探头的信息特性。这种间接接收的背散射电子有其一定的特点,但损耗大,大部分情况下信号量不足。/pp style="text-align: justify text-indent: 2em "下面组图为上探头接收的四种信息特性。/pp style="text-align: justify text-indent: 2em " /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/312e9fc9-364e-47b7-aa0f-f4a6759f8a69.jpg" title="7.png" alt="7.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/6ccf7e3c-4ea6-4df7-a35f-702c3461675e.jpg" title="8.png" alt="8.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "1.3.2.2上探头的工作过程/span/pp style="text-align: justify text-indent: 2em "高能电子束轰击样品产生各种电子信息被物镜磁场吸收送往物镜上方。工作距离越小被物镜俘获的样品电子信息越多,其中二次电子和背散射电子是呈现扫描电镜表面形貌信息的主要信号源,将被拿出来单独讨论。/pp style="text-align: justify text-indent: 2em "二次电子和背散射电子混合信息被物镜磁场送到位于物镜上方的电场,能量弱的二次电子受电场影响从混合信息中被分离出来并推送到位于物镜上方的上探头,背散射电子由于能量较强,电场对其影响较小,将穿过电场轰击位于电场上方的电极板,产生间接二次电子也会被上探头接收到,但其含量较小不是主要信息。/pp style="text-align: justify text-indent: 2em "位于物镜中的电极板通过调整加载电压来选择进入物镜的信息类型。低角度(LA)背散射电子可由电极板转换成二次电子被上探头接收,形成所谓间接的LA背散射电子像。/pp style="text-align: justify text-indent: 2em "电极板加载+50V电压,将吸收低角度的二次电子和背散射电子,抑制低角度电子信息进入镜筒(U)。/pp style="text-align: justify text-indent: 2em "电极板加载0V,将由其转化成二次电子的低角度背散射电子和低角度二次电子信息都送入镜筒。上探头接收的是各种角度二次电子和低角度背散射电子的混合信息。其混合比例将随着电极板电压的降低,背散射信息逐渐增多(U,LA0)。/pp style="text-align: justify text-indent: 2em "-150V时,二次电子被全部压制,此时上探头接收到的是纯的低角度背散射电子所激发的二次电子信息(U,LA100)。/pp style="text-align: justify text-indent: 2em "位于镜筒内的能量过滤器,会将二次电子以及低角度背散射电子所形成的二次电子给抑制,此时上探头或顶探头接收的是高角度背散射电子信息(U,HA)。/pp style="text-align: justify text-indent: 2em "图像特性:Z衬度充分,其他都不足。由于高角度背散射电子产额少,对样品及束流的要求都较高。目前在束流较低的冷场扫描电镜中取消这个功能,只在束流较高的regulus8200系列冷场电镜中保留顶探头设计。但适用的样品并不多。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/54aea59e-1225-4703-a62d-324fa54bf35c.jpg" title="9.png" alt="9.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "1.3.2.3下探头的位置及其图像特性/span/pp style="text-align: justify text-indent: 2em " 下探头位于场发射扫描电镜样品仓位置。示意图如下:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/17380253-5429-4944-af61-5caa22457c69.jpg" title="11.png" alt="11.png"//pp style="text-align: justify text-indent: 2em "下探头位于样品仓中,因此也称样品仓探头。它与样品之间没有任何阻碍物,激发出来的样品信息可以不受影响的到达该探头。下探头本身不能对到达探头的背散射电子信号加以甄别,其图像特性取决于到达探头的信息特征。二次电子居多,就偏向二次电子的图像特性;背散射电子居多,则偏向于背散射电子的图像特性。/pp style="text-align: justify text-indent: 2em " 样品仓探头接收的样品信息以低角度信息为主,背散射电子含量占主导。对样品信息的接收效果取决于探头与样品之间形成的固体角,样品的位置十分关键,存在一个最佳工作距离。各厂家的最佳工作距离各不相同,日立电镜是15mm。下探头位于样品的侧向,图像特性:形貌衬度好,立体感强;荷电影响小;Z衬度好;细节易受信号扩散影响,高倍清晰度不足,10纳米以下细节很难分辨。 /pp style="text-align: justify text-indent: 2em "不同厂家的样品仓探头位置不同,因此最佳工作距离以及探头、电子束、样品之间的夹角都会略有不同。形成的图像在空间感及高分辨能力上存在差异。样品仓真空度也是样品仓探头分辨力的主要影响因素之一。/pp style="text-align: justify text-indent: 2em "日立冷场扫描电镜下探头的成像实例:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/b5917c9d-9e59-41fb-82c6-4c3fd3475cab.jpg" title="12.png" alt="12.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/decfd495-8ec1-490e-b6e8-c6735f4f5ad9.jpg" title="13.png" alt="13.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "1.3.2.4上、下探头的图像特性对比实例/span/pp style="text-align: justify text-indent: 2em "上、下探头结构一致,仅仅由于安装位置不同导致其成像特性也不一样,充分掌握这些差异将有利于你选择正确的测试条件。下面将通过几组对照图来加以阐述:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/c911ae27-5aac-4936-a791-5f3f37126870.jpg" title="14.png" alt="14.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/7388deb2-be2f-472d-9c96-52b873fb089c.jpg" title="15.png" alt="15.png"//pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/169e28be-1208-4ae4-ace5-96820e80cb8b.jpg" title="16.png" alt="16.png"//pp style="text-align: justify text-indent: 2em "从以上各组对照图可以清晰看到,上探头二次电子信息特征极为强烈,而下探头偏重背散射信息。这些特点使得该两种探头获得的样品信息差异较大,各自都有适合的样品及所表现的样品信息。在各自适用的范围内对方都无可替代。/pp style="text-align: justify text-indent: 2em "根据个人多年的测试经验,下探头获取的样品信息虽然在10纳米细节观察上有所欠缺,但获取的信息更为充分。本着初始图像以信息量是否充分为主的原则,15mm工作距离选用下探头测试,常常被用做扫描电镜测试时的初始条件。以该条件下获取的形貌像为参考,依据样品的信息需求以及对上、下探头成像特性的正确认识,再做进一步调整。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="font-size: 18px color: rgb(0, 176, 240) "二、背散射电子探头/span/h1p style="text-align: justify text-indent: 2em "strong2.1背散射电子的图像特性/strong/pp style="text-align: justify text-indent: 2em "高能电子束受样品原子核及核外电子云的库仑势影响,发生弹性和非弹性散射后溢出样品表面,形成样品背散射电子。其特点是:能量大(与入射电子相当),产额受样品原子序数、密度以及晶体材料的晶体结构及晶粒取向影响较大,是形成样品Z衬度和晶粒取向衬度信息的主要信号源。/pp style="text-align: justify text-indent: 2em "背散射电子按信号溢出角分为高角度和低角度两种类型。/pp style="text-align: justify text-indent: 2em "高角度背散射电子的Z衬度更为明显,但整体产额很低,仅在束流较大的场发射扫描电镜上配置了接收该信息的探头。探头位于镜筒中物镜的正上方(或称T),适用样品并不多。扫描电镜日常采集的主要是低角度背散射电子。/pp style="text-align: justify text-indent: 2em "高角度背散射电子相较于低角度背散射电子,Z衬度更为明显,但其产额较低。由于该信息最佳接收位置在样品正上方,探头、样品以及入射电子束在一条线上,故空间形貌较差。低角度背散射电子Z衬度略弱,但产额大,形貌像更好。/pp style="text-align: justify text-indent: 2em "要充分接收低角度背散射电子信息,探头需要与样品形成一定角度。相对于高角度背散射电子,低角度背散射电子形成的图像空间感好,表面形态及细节信息较充分,但Z衬度略差,不如高角度背散射电子明显。以下是分别以二次电子和高、低角度背散射电子为主所形成的形貌像比较。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/cf857ded-2b46-4cfa-b30e-df25d2f6cbcb.jpg" title="17.png" alt="17.png"//pp style="text-align: center text-indent: 0em "strong style="text-align: center text-indent: 0em "碳复合金颗粒的二次电子、高角度背散射电子、低角度背散射电子对照 /strongspan style="text-align: center text-indent: 0em " /span/pp style="text-align: justify text-indent: 2em "strong2.2背散射电子探头的构造及工作原理/strong/pp style="text-align: justify text-indent: 2em "环形半导体背散射电子探头是最经典的背散射电子探头。该探头采用环状硅基材料做成,构造形式是半导体面垒肖特基结二极管或p-n结二极管,如下图:/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/c6983a61-7f15-42c3-849e-c0b3f78c0f4f.jpg" title="18.png" alt="18.png"//pp style="text-align: center text-indent: 0em "strong图片节选自《微分析物理及其应用》 丁泽军/strong/pp style="text-align: justify text-indent: 2em " 背散射电子在硅基探测器中激发大量的电子-空穴对。同样加速电压下,电子-空穴对的产量和背散射电子强度形成一定的对应关系。并由此形成对应的电信号,经处理后在显示器形成样品的背散射电子图像(Z衬度像或晶粒取向衬度像)。/pp style="text-align: justify text-indent: 2em " 硅基材料形成电子-空穴对,需要信号激发源有一定的能量(肖特基结对5KV以下电子有大增益,P-N结对10KV电子才有大增益),能量较小的二次电子很难在该探头上产生信息,故探头形成的图像带有强烈的背散射电子图像特性。/pp style="text-align: justify text-indent: 2em "为了获取低能量的背散射电子信息,背散射电子探头改用YAG晶体或在探头上做一层薄膜如FEI的CBS,这些改变都对探头获取低能量背散射电子有利,形成的图像细节更丰富。但探头灵敏了,干扰也会增多,Z衬度也会减弱。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/a6b2de85-8984-486a-8940-122ff5311cf1.jpg" title="19.png" alt="19.png"//pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em "2.3各种探头接收背散射电子信息的结果对比/span/strong/pp style="text-align: justify text-indent: 2em "传统硅基P- N结背散射电子探头对加速电压的要求高(10KV以上),它获取的背散射电子信息不易受低能量信息的干扰。Z衬度分明,荷电影响极小,但图像的细节呆板,表面细节信息缺失严重,较高倍时图像的清晰度差。/pp style="text-align: justify text-indent: 2em "钨灯丝扫描电镜,电子枪本征亮度差,要获得高质量形貌像所需的电子束发射亮度,加速电压必须在10KV以上。P-N结背散射电子探头正好与其互相匹配,故被广泛使用。/pp style="text-align: justify text-indent: 2em "场发射扫描电镜本征亮度大,低加速电压下进行高分辨形貌像测试是常态,P-N结背散射电子探头与其匹配度差。而CBS和YAG探头的功能和样品仓探头比起来Z衬度优势并不明显,二次电子的接收效果又不如,个人认为完全可以用样品仓探头来完美的替代背散射电子探头。/pp style="text-align: justify text-indent: 2em "如前所述,二次电子探头也能接收大量背散射电子。它所获取的图像性质取决于到达探头的信息组成,如果背散射电子信息居多,它就偏向背散射电子的图像特征,二次电子居多就偏向二次电子图像特征。二次电子探头适合在不同加速电压(几百伏到30KV)下获取背散射电子图像。/pp style="text-align: justify text-indent: 2em "低加速电压有利于取得是浅表层信息;高加速电压有利于取得较深层信息。探头的适用范围越广,测试条件的选择越充分,获取的样品信息越完整。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/de1afe4f-f593-4e4e-88d0-92b7ec8a573e.jpg" title="20.png" alt="20.png"//pp style="text-align: justify text-indent: 2em "背散射探头通过电子-空穴对的转移来传递信息,运行速度较二次电子探头(光电转换)慢很多。在进行聚焦、像散、对中操作时,图像对操作的反应滞后严重,须在慢速下调整。整个操作麻烦,精确的高倍调整更为困难。/pp style="text-align: justify text-indent: 2em "背散射电子探头往往置于样品与物镜之间,推进推出操作麻烦且易引发探头和样品间碰撞,对探头造成损伤。对该位置的占有,也会给后期分析设备安装带来麻烦。随着能谱仪、EBSD性能的突飞猛进,背散射电子探头对成分及结构组成分析的作用大大衰减,且成本不低,信息量少,使用率低。/pp style="text-align: justify text-indent: 2em "个人观点:背散射探头连鸡肋都算不上,基本可以抛弃。/ph1 label="标题居中" style="font-size: 32px font-weight: bold border-bottom: 2px solid rgb(204, 204, 204) padding: 0px 4px 0px 0px text-align: center margin: 0px 0px 20px "span style="color: rgb(0, 176, 240) font-size: 18px "strong结束语/strong/span/h1p style="text-align: justify text-indent: 2em "探头是扫描电镜获取样品表面形貌信息的关键部件。其性能高低对形成样品高质量、高分辨的表面形貌像至关重要。/pp style="text-align: justify text-indent: 2em "探头主要有两大类:二次电子探头、背散射电子探头。传统的观点认为:二次电子探头主要用来接收样品的二次电子信息,背散射电子探头接收的是背散射电子信息。/pp style="text-align: justify text-indent: 2em "实践经验告诉我们这个观点并不正确。二次电子探头的图像性质取决于到达探头的信息组成。到达探头的信息以背散射电子信息为主则图像倾向背散射电子图像特性,二次电子信息为主则是二次电子的图像特性。/pp style="text-align: justify text-indent: 2em "高分辨场发射扫描电镜常规设计有两个二次电子探头,分别位于样品仓和镜筒内部。不同位置的探头获取样品表面形貌信息的组成差异很大。镜筒内探头获取的基本都是二次电子信息,样品仓探头则是以背散射电子为主的混合信息。/pp style="text-align: justify text-indent: 2em "改变工作距离对探头获取样品信息的影响极大,工作距离越小越有利于上探头获取样品的二次电子信息,大工作距离有利于样品仓探头获取样品的混合信息。/pp style="text-align: justify text-indent: 2em "工作距离对样品仓探头接收样品信息的影响并不是越大越好,而是有一个最佳工作位置。最佳工作位置设计的越合理,你获取的样品信息也就会越丰富。/pp style="text-align: justify text-indent: 2em "传统的半导体背散射电子探头由于需要较大的激发能,故能量较弱的二次电子很难在探头上产生信号,该探头获取的背散射电子图像较为纯净。早期的硅基P-N结半导体背散射探头激发能要求较高(10KV)所以它形成的图像呆板,细节分辨差,表面信息少,但Z衬度强烈,不易受荷电影响。/pp style="text-align: justify text-indent: 2em "高加速电压对充分获取样品表面信息不利,为了提高探头获取表面信息的能力,出现许多低电压背散射探头(CBS\YAG)。但个人认为:低电压背散射电子探头的成像效果不如样品仓探头来的细腻,设计合理的样品仓探头完全可以替代背散射探头的功能。/pp style="text-align: justify text-indent: 2em "要掌握好仪器设备,对各功能部件的充分认识是基础。希望通过本文,能和大家一起对扫描电镜的信息接收系统有个重新认识。对探头以及工作距离的正确选择必定会为你带来更为丰富的样品信息。span style="text-indent: 2em " /span/pp style="text-align: justify text-indent: 2em "strong参考书籍:/strong/pp style="text-align: justify text-indent: 2em "《扫描电镜与能谱仪分析技术》张大同2009年2月1日 span style="text-indent: 2em "华南理工出版社/span/pp style="text-align: justify text-indent: 2em "《微分析物理及其应用》 丁泽军等 2009年1月 span style="text-indent: 2em "中科大出版社/span/pp style="text-align: justify text-indent: 2em "《自然辩证法》 恩格斯 于光远等译 1984年10月 span style="text-indent: 2em "人民出版社 /span/pp style="text-align: justify text-indent: 2em "《显微传》 章效峰 2015年10月 span style="text-indent: 2em "清华大学出版社/span/pp style="text-align: justify text-indent: 2em "日立S-4800冷场发射扫描电镜操作基础和应用介绍span style="text-indent: 2em " 高敞 2013年6月/span/pp style="text-align: justify text-indent: 2em "strong作者简介:/strong/pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% float: left width: 75px height: 115px " src="https://img1.17img.cn/17img/images/202003/uepic/741ca864-f2b8-4fc3-b062-2b0d766c5a7b.jpg" title="扫描电镜的探头新解-林中清.jpg" alt="扫描电镜的探头新解-林中清.jpg" width="75" height="115" border="0" vspace="0"/林中清,87年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。 /pp style="text-align: justify text-indent: 2em "strong延伸阅读:/strong/pp style="text-align: justify text-indent: 2em "strong/strong/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200218/522167.shtml" target="_self" style="color: rgb(0, 176, 240) border: none text-decoration: underline "span style="color: rgb(0, 176, 240) "二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5)/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20200114/520618.shtml" target="_self" style="color: rgb(0, 176, 240) border: none text-decoration: underline "span style="color: rgb(0, 176, 240) "二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4)/span/a/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) text-decoration: underline "strong/strong/span/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191224/519513.shtml" target="_self" style="color: rgb(0, 176, 240) border: none text-decoration: underline "span style="color: rgb(0, 176, 240) "电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191126/517778.shtml" target="_self" style="text-decoration: underline "span style="color: rgb(0, 176, 240) "扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)/span/a/pp style="text-indent: 2em "a href="https://www.instrument.com.cn/news/20191029/515692.shtml" target="_self" style="color: rgb(0, 176, 240) border: none text-decoration: underline "span style="color: rgb(0, 176, 240) "扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈/span/a/p
  • 哈希发布荧光法测溶解氧探头LDO II
    美国哈希公司近日发布最新一代荧光法测溶解氧探头LDO II. 该产品在拥有精准读数和可靠质量的同时无需校准,无需换膜,维护量极低。这些特性大大提升了测量效率因此也在迅速改变行业的传统测量方式。 来自南得克萨斯州的化工厂操作员Kevin G.说道:&ldquo 使用新LDO探头后我们取得了很大的进步。数据更加可靠和准确。我们用这些数据来控制过程中的溶氧量。&rdquo 溶解氧的测量在污水行业非常重要。因为污水厂的曝气,硝化反硝化,以及达标排放等过程都和溶解氧数值息息相关。通过准确的溶解氧读数来精确控制曝气量可大幅降低污水厂的运维成本。在2003年之前,人们还只能使用膜法技术测量溶解氧。但是膜法电极维护量大,维护成本高,读数不稳定,因此业内很多公司都在寻求新的解决方案。2003年,哈希发明荧光法测溶解氧,引领了行业解决方案。这项领先技术最近也被美国EPA作为NPDES (National Pollutant Discharge Elimination System)报告溶解氧的标准方法之一。 &ldquo 哈系的荧光法技术对行业来说是一项革命性的技术,&rdquo Toon Streppel,哈希全球过程仪器产品总监介绍说,&ldquo 现在我们拥有新一代的LDO产品,它比上一代更加准确可靠并且几乎不需要维护。&rdquo 哈希的荧光法技术是在LDO探头最前端的传感器罩上覆盖一层荧光物质,LED光源发出的蓝光照射到荧光物质上,荧光物质被激发并发出红光;一个光电池检测荧光物质从发射红光到回到基态所需要的时间。这个时间只和蓝光的发射时间以及氧气的多少有关。探头另有一个LED 光源,在蓝光发射的同时发射红光,做为蓝光发射时间的参考。传感器周围的氧气越多,荧光物质发射红光的时间就越短。据此计算出溶解氧的浓度 目前该系列产品已在发售,详细信息请登陆www.hach.com.cn获取。更多详情请点击
  • 中石化经纬有限公司地质测控技术研究院160.00万元采购磁粉探伤仪,超声波测厚仪,超声波探伤仪
    详细信息 随钻测控仪器探伤检测服务项目二次招标公告 山东省-东营市-东营区 状态:公告 更新时间: 2023-03-15 尊敬的投标人: 您好,随钻测控仪器探伤检测服务项目已经按要求履行了相关报批及备案等手续,资金已经落实,具备招标条件,山东省建设工程招标中心有限公司受中石化经纬有限公司地质测控技术研究院委托现对其进行公开招标。欢迎有技术实力、服务能力的承包商参加投标。 1.项目概况与招标范围 1.1、项目名称:随钻测控仪器探伤检测服务项目 1.2、项目编号:JWGSDZCKY-20230203 1.3.项目概况:随钻测控仪器及工具现场使用后,仪器钻铤短节和内部机械零部件有可能出现冲蚀、磨损、裂纹、变形等问题,如果在钻井过程中继续使用有缺陷的部件会发生工具失效、钻具折断等安全事故。为保证仪器下井安全,预防发生井下事故,须对下井仪器的钻铤和零部件进行探伤检测,工作量大且专业性强,需要专业检测公司进行驻厂检测服务。2023年测控院投入生产运行的旋导仪器61串,其他MWD\LWD仪器30余串。为了保证2023年测控院随钻测控仪器安全运行,需将仪器配件的探伤检测,配套清洗服务进行外委。服务范围包括磁粉探伤、渗透探伤、超声测厚、吊索具安全检测、吊点检测及压力检测等工作。 1.4、招标范围:为了保证2023年测控院随钻测控仪器安全运行,需将仪器配件的探伤检测,配套清洗服务进行外委。服务范围包括磁粉探伤、渗透探伤、超声测厚、吊索具安全检测、吊点检测及压力检测等工作。该项目支出预计金额160万元(不含税) 1.5、标段划分:一个标段 1.6、服务有效期:自合同签订之日起至2024年3月1日。 1.7、要求及图纸:详见随钻测控仪器探伤检测服务技术规格书 1.8、规范:详见随钻测控仪器探伤检测服务技术规格书 1.9、服务地点:山东省东营市和四川省成都市,招标人车间内。 2.投标人资格要求 2.1投标人应具备以下基本资格条件: (1)在中华人民共和国境内注册的独立法人,营业执照真实有效可合法合规经营。 (2)投标人应具有独立承担民事责任的能力,投标人应具有独立承担民事责任的能力,具备检测技术服务能力,具备相应的技术服务人员、设备并能开具增值税专用发票。 (3)业绩要求:2020年1月1日至投标截止日,具有油田钻具无损检测服务业绩。 提供资料形式:(1)提供业绩清单;(2)提供合同关键页(包括但不限于首页、检测内容、合同期限及签字盖章页)扫描件;(3)提供结算发票。 (4)技术装备要求:提供至少包含磁化线圈、荧光灯、超声波探伤仪、超声波测厚仪等。提供资料形式:(1)提供设备清单;(2)提供设备信息(包括但不限于外形照片、铭牌等)。 (5)人员要求:检验员具有无损检测Ⅱ级(至少覆盖超声、磁粉、渗透这三种方法)。 提供资料形式:(1)人员清单;(2)投标人为执行检测人员缴纳社保,提供近半年缴费证明。(3)提供无损检测人员资质证书扫描件及注册在本单位的证明。 (6)信誉要求:近三年来合同履约及质量情况、具有良好的信誉和商业道德,没有行贿受贿,偷税漏税及欺诈行为,没有发生重大经济纠纷,投标商具有良好的商业信誉,投标商2020年至投标文件递交截止日生产经营活动中无违法、违规等不良记录(此不良记录是指在生产经营活动中有商业欺诈、质量伪劣等实质性侵害招标人权益的情形,具体表现形式包括但不限于因上述行为受到行政处罚、被办案机关立案追查、审查起诉、被法院判决有罪等);未被国家、招标人及上级部门明文规定暂停、中止或取消交易资格。出具企业投标诚信承诺书。 (7)投标人未处于被中国石化给予风险停用、违约停用处理期内。 (8)投标人没有处于被责令停业、财产被接管、冻结、破产状态。(提供国家企业信用信息公示系统截图(http://gsxt.saic.gov.cn/。登记信息、行政处罚信息、经营异常信息、严重违法信息网上截图)。 2.2本次招标资格审查方式:资格后审。 2.3本次招标不接受联合体投标。 3.招标文件及相关资料获取 3.1凡有意参加本次项目的投标人,请按照以下时间、地点领取招标文件: (1)领取时间:2023年 3月 15 日至 3 月 19日(北京时间,上午08时00分至11时00分,下午14时00分至17时00分); (2)领取地点:山东省东营市东营区西二路华安街169号山东省建设工程招标中心3楼评标中心 (3)联系电话:13345059440 任女士 (4)领取方式:现金或微信转账。未按照规定在招标代理公司领取的招标文件无效。 (5)代理机构名称:山东省建设工程招标中心有限公司 3.2招标文件售价:每套人民币1000 元;招标文件售后不退。 3.3领取招标文件时需提交的证件、资料: 1、有关确立投标人法律地位的原始文件的副本,包括企业三证合一的营业执照副本复印件,开户许可证复印件,安全生产许可证复印件、提供质量管理体系认证(ISO9001或GB/T19001或ISO29001)证书或API体系认证相关资质证书复印件,并加盖公章; 2.招标投标确认函; 3.投标人法定代表人授权委托书原件,被委托人身份证原件及身份证复印件; 4.投标人基本情况表; 5.企业投标诚信承诺书; 6.投标企业近两年财务状况表(2021、2022年度);有法定资格的中介机构出具的财务报表,包括资产负债表、损益表、现金流量表;审计报告的封面、利润表、资产负债表等关键内容要求带中介机构公章;(如果投标企业2022年度财务报表不能提供应出具企业承诺书,法人签字、公司盖章承诺并提供2020年财务报表) 7.登陆《国家企业信用信息公示系统》提供企业基础信息、未列入行政处罚信息、未列入经营异常名录信息、未列入严重违法失信企业名单(黑名单)信息的网上截图。 8.企业近三年在招标活动中是否存在恶意投诉事项说明; 9.招标服务费承诺书; 10.投标人未处于被中国石化给予风险停用、违约停用处理期内。 11.投标人近三年内未发生一般及以上生产安全事故、一般及以上突发环境事件。 注:所有资料、复印件需加盖投标人单位公章。投标须法人代表(或授权委托人)亲笔签名或盖单位行政章(不接受合同专用章、投标专用章、有序号章等印章);以上资料装订成册,一式两份,与项目报名表(手工填写,不需要装订入册)一并递交。 若领取电子版招标文件,须将上述文件扫描版(PDF)发至以下邮箱:jzdybsc@163.com。 4.投标保证金 4.1投标人按照指定的账户提交投标保证金。 5、发布公告的媒介 本次招标公告同时在: 山东省建设工程招标中心有限公司网站http://www.sd-bid.com/、 山东省采购与招标网 http://www.sdbidding.org.cn/等媒介上发布。 6.投标文件的递交 6.1截止时间:详见招标文件 6.2递交地点:山东省东营市东营区西二路华安街169号山东省建设工程招标中心3楼评标中心 6.3出现以下情形时,不予接受投标文件: 6.3.1逾期送达的或者未送达指定地点的投标文件,招标人不予受理。 6.3.2未按照招标文件要求密封的。 6.3.3投标文件未由投标人法定代表人或委托代理人送达。(递交人需持法定代表人身份证明书或法定代表人授权委托书及相应人员身份证原件,否则投标文件可不予受理)。 6.4 投标人递交的投标文件(包含电子版)一律不予退还。 7.开标 7.1开标时间:详见招标文件 7.2开标地点:山东省东营市东营区西二路华安街169号山东省建设工程招标中心3楼评标中心 7.3本次招标接受邮寄投标文件资料,本次招标接受邮寄投标文件资料,投标人可以不参加开标会议。山东省建设工程招标中心有限公司严格按照国家招投标有关法律法规、程序组织招标评标。评标全过程接受中石化经纬有限公司地质测控技术研究院纪律监察部门监督。 8、框架协议类型 :价格型框架,签订合同税率6%。 9、重要商务条款:付款条款为:挂账之日起6个月内予以支付,支付方式以承兑汇票为主。 10、报价要求:投标人应根据招标文件所规定的服务范围、工期、质量要求、付款方式及招标文件要求,结合各自的劳动生产率和技术水平进行报价。 11、执行价格确定方式: 框架协议有效期内执行中标价格。 12、补充说明:因项目的特殊性,报名参加招标的单位须在确认参加招标的同时签署保密协议,并严格遵守保密协议相关条款,如有违反,参加招标单位将须承担相应的法律责任。开标会议时需要提供保密协议签字盖章的原件一式两份。 招标人:中石化经纬有限公司地质测控技术研究院 地址:山东省青岛市市南区台湾路4号 联系人 郎先生 电话:18554621600 招标代理机构:山东省建设工程招标中心有限公司 地址:山东省东营市东营区西二路华安街169号山东建招3楼评标中心 联系人:任女士 电话:13345059440 邮箱:jzdybsc@163.com × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:磁粉探伤仪,超声波测厚仪,超声波探伤仪 开标时间:null 预算金额:160.00万元 采购单位:中石化经纬有限公司地质测控技术研究院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:山东省建设工程招标中心有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 随钻测控仪器探伤检测服务项目二次招标公告 山东省-东营市-东营区 状态:公告 更新时间: 2023-03-15 尊敬的投标人: 您好,随钻测控仪器探伤检测服务项目已经按要求履行了相关报批及备案等手续,资金已经落实,具备招标条件,山东省建设工程招标中心有限公司受中石化经纬有限公司地质测控技术研究院委托现对其进行公开招标。欢迎有技术实力、服务能力的承包商参加投标。 1.项目概况与招标范围 1.1、项目名称:随钻测控仪器探伤检测服务项目 1.2、项目编号:JWGSDZCKY-20230203 1.3.项目概况:随钻测控仪器及工具现场使用后,仪器钻铤短节和内部机械零部件有可能出现冲蚀、磨损、裂纹、变形等问题,如果在钻井过程中继续使用有缺陷的部件会发生工具失效、钻具折断等安全事故。为保证仪器下井安全,预防发生井下事故,须对下井仪器的钻铤和零部件进行探伤检测,工作量大且专业性强,需要专业检测公司进行驻厂检测服务。2023年测控院投入生产运行的旋导仪器61串,其他MWD\LWD仪器30余串。为了保证2023年测控院随钻测控仪器安全运行,需将仪器配件的探伤检测,配套清洗服务进行外委。服务范围包括磁粉探伤、渗透探伤、超声测厚、吊索具安全检测、吊点检测及压力检测等工作。 1.4、招标范围:为了保证2023年测控院随钻测控仪器安全运行,需将仪器配件的探伤检测,配套清洗服务进行外委。服务范围包括磁粉探伤、渗透探伤、超声测厚、吊索具安全检测、吊点检测及压力检测等工作。该项目支出预计金额160万元(不含税) 1.5、标段划分:一个标段 1.6、服务有效期:自合同签订之日起至2024年3月1日。 1.7、要求及图纸:详见随钻测控仪器探伤检测服务技术规格书 1.8、规范:详见随钻测控仪器探伤检测服务技术规格书 1.9、服务地点:山东省东营市和四川省成都市,招标人车间内。 2.投标人资格要求 2.1投标人应具备以下基本资格条件: (1)在中华人民共和国境内注册的独立法人,营业执照真实有效可合法合规经营。 (2)投标人应具有独立承担民事责任的能力,投标人应具有独立承担民事责任的能力,具备检测技术服务能力,具备相应的技术服务人员、设备并能开具增值税专用发票。 (3)业绩要求:2020年1月1日至投标截止日,具有油田钻具无损检测服务业绩。 提供资料形式:(1)提供业绩清单;(2)提供合同关键页(包括但不限于首页、检测内容、合同期限及签字盖章页)扫描件;(3)提供结算发票。 (4)技术装备要求:提供至少包含磁化线圈、荧光灯、超声波探伤仪、超声波测厚仪等。提供资料形式:(1)提供设备清单;(2)提供设备信息(包括但不限于外形照片、铭牌等)。 (5)人员要求:检验员具有无损检测Ⅱ级(至少覆盖超声、磁粉、渗透这三种方法)。 提供资料形式:(1)人员清单;(2)投标人为执行检测人员缴纳社保,提供近半年缴费证明。(3)提供无损检测人员资质证书扫描件及注册在本单位的证明。 (6)信誉要求:近三年来合同履约及质量情况、具有良好的信誉和商业道德,没有行贿受贿,偷税漏税及欺诈行为,没有发生重大经济纠纷,投标商具有良好的商业信誉,投标商2020年至投标文件递交截止日生产经营活动中无违法、违规等不良记录(此不良记录是指在生产经营活动中有商业欺诈、质量伪劣等实质性侵害招标人权益的情形,具体表现形式包括但不限于因上述行为受到行政处罚、被办案机关立案追查、审查起诉、被法院判决有罪等);未被国家、招标人及上级部门明文规定暂停、中止或取消交易资格。出具企业投标诚信承诺书。 (7)投标人未处于被中国石化给予风险停用、违约停用处理期内。 (8)投标人没有处于被责令停业、财产被接管、冻结、破产状态。(提供国家企业信用信息公示系统截图(http://gsxt.saic.gov.cn/。登记信息、行政处罚信息、经营异常信息、严重违法信息网上截图)。 2.2本次招标资格审查方式:资格后审。 2.3本次招标不接受联合体投标。 3.招标文件及相关资料获取 3.1凡有意参加本次项目的投标人,请按照以下时间、地点领取招标文件: (1)领取时间:2023年 3月 15 日至 3 月 19日(北京时间,上午08时00分至11时00分,下午14时00分至17时00分); (2)领取地点:山东省东营市东营区西二路华安街169号山东省建设工程招标中心3楼评标中心 (3)联系电话:13345059440 任女士 (4)领取方式:现金或微信转账。未按照规定在招标代理公司领取的招标文件无效。 (5)代理机构名称:山东省建设工程招标中心有限公司 3.2招标文件售价:每套人民币1000 元;招标文件售后不退。 3.3领取招标文件时需提交的证件、资料: 1、有关确立投标人法律地位的原始文件的副本,包括企业三证合一的营业执照副本复印件,开户许可证复印件,安全生产许可证复印件、提供质量管理体系认证(ISO9001或GB/T19001或ISO29001)证书或API体系认证相关资质证书复印件,并加盖公章; 2.招标投标确认函; 3.投标人法定代表人授权委托书原件,被委托人身份证原件及身份证复印件; 4.投标人基本情况表; 5.企业投标诚信承诺书; 6.投标企业近两年财务状况表(2021、2022年度);有法定资格的中介机构出具的财务报表,包括资产负债表、损益表、现金流量表;审计报告的封面、利润表、资产负债表等关键内容要求带中介机构公章;(如果投标企业2022年度财务报表不能提供应出具企业承诺书,法人签字、公司盖章承诺并提供2020年财务报表) 7.登陆《国家企业信用信息公示系统》提供企业基础信息、未列入行政处罚信息、未列入经营异常名录信息、未列入严重违法失信企业名单(黑名单)信息的网上截图。 8.企业近三年在招标活动中是否存在恶意投诉事项说明; 9.招标服务费承诺书; 10.投标人未处于被中国石化给予风险停用、违约停用处理期内。 11.投标人近三年内未发生一般及以上生产安全事故、一般及以上突发环境事件。 注:所有资料、复印件需加盖投标人单位公章。投标须法人代表(或授权委托人)亲笔签名或盖单位行政章(不接受合同专用章、投标专用章、有序号章等印章);以上资料装订成册,一式两份,与项目报名表(手工填写,不需要装订入册)一并递交。 若领取电子版招标文件,须将上述文件扫描版(PDF)发至以下邮箱:jzdybsc@163.com。 4.投标保证金 4.1投标人按照指定的账户提交投标保证金。 5、发布公告的媒介 本次招标公告同时在: 山东省建设工程招标中心有限公司网站http://www.sd-bid.com/、 山东省采购与招标网 http://www.sdbidding.org.cn/等媒介上发布。 6.投标文件的递交 6.1截止时间:详见招标文件 6.2递交地点:山东省东营市东营区西二路华安街169号山东省建设工程招标中心3楼评标中心 6.3出现以下情形时,不予接受投标文件: 6.3.1逾期送达的或者未送达指定地点的投标文件,招标人不予受理。 6.3.2未按照招标文件要求密封的。 6.3.3投标文件未由投标人法定代表人或委托代理人送达。(递交人需持法定代表人身份证明书或法定代表人授权委托书及相应人员身份证原件,否则投标文件可不予受理)。 6.4 投标人递交的投标文件(包含电子版)一律不予退还。 7.开标 7.1开标时间:详见招标文件 7.2开标地点:山东省东营市东营区西二路华安街169号山东省建设工程招标中心3楼评标中心 7.3本次招标接受邮寄投标文件资料,本次招标接受邮寄投标文件资料,投标人可以不参加开标会议。山东省建设工程招标中心有限公司严格按照国家招投标有关法律法规、程序组织招标评标。评标全过程接受中石化经纬有限公司地质测控技术研究院纪律监察部门监督。 8、框架协议类型 :价格型框架,签订合同税率6%。 9、重要商务条款:付款条款为:挂账之日起6个月内予以支付,支付方式以承兑汇票为主。 10、报价要求:投标人应根据招标文件所规定的服务范围、工期、质量要求、付款方式及招标文件要求,结合各自的劳动生产率和技术水平进行报价。 11、执行价格确定方式: 框架协议有效期内执行中标价格。 12、补充说明:因项目的特殊性,报名参加招标的单位须在确认参加招标的同时签署保密协议,并严格遵守保密协议相关条款,如有违反,参加招标单位将须承担相应的法律责任。开标会议时需要提供保密协议签字盖章的原件一式两份。 招标人:中石化经纬有限公司地质测控技术研究院 地址:山东省青岛市市南区台湾路4号 联系人 郎先生 电话:18554621600 招标代理机构:山东省建设工程招标中心有限公司 地址:山东省东营市东营区西二路华安街169号山东建招3楼评标中心 联系人:任女士 电话:13345059440 邮箱:jzdybsc@163.com
  • 中石化经纬有限公司地质测控技术研究院160.00万元采购磁粉探伤仪,超声波测厚仪,超声波探伤仪
    详细信息 随钻测控仪器探伤检测服务项目招标公告 山东省-东营市-东营区 状态:公告 更新时间: 2023-02-27 尊敬的投标人: 您好,随钻测控仪器探伤检测服务项目已经按要求履行了相关报批及备案等手续,资金已经落实,具备招标条件,山东省建设工程招标中心有限公司受中石化经纬有限公司地质测控技术研究院委托现对其进行公开招标。欢迎有技术实力、服务能力的承包商参加投标。 1.项目概况与招标范围 1.1、项目名称:随钻测控仪器探伤检测服务项目 1.2、项目编号:JWGSDZCKY-20230203 1.3.项目概况:随钻测控仪器及工具现场使用后,仪器钻铤短节和内部机械零部件有可能出现冲蚀、磨损、裂纹、变形等问题,如果在钻井过程中继续使用有缺陷的部件会发生工具失效、钻具折断等安全事故。为保证仪器下井安全,预防发生井下事故,须对下井仪器的钻铤和零部件进行探伤检测,工作量大且专业性强,需要专业检测公司进行驻厂检测服务。2023年测控院投入生产运行的旋导仪器61串,其他MWD\LWD仪器30余串。为了保证2023年测控院随钻测控仪器安全运行,需将仪器配件的探伤检测,配套清洗服务进行外委。服务范围包括磁粉探伤、渗透探伤、超声测厚、吊索具安全检测、吊点检测及压力检测等工作。 1.4、招标范围:为了保证2023年测控院随钻测控仪器安全运行,需将仪器配件的探伤检测,配套清洗服务进行外委。服务范围包括磁粉探伤、渗透探伤、超声测厚、吊索具安全检测、吊点检测及压力检测等工作。该项目支出预计金额160万元(不含税) 1.5、标段划分:一个标段 1.6、服务有效期:自合同签订之日起至2024年3月1日。 1.7、要求及图纸:详见随钻测控仪器探伤检测服务技术规格书 1.8、规范:详见随钻测控仪器探伤检测服务技术规格书 1.9、服务地点:山东省东营市和四川省成都市,招标人车间内。 2.投标人资格要求 2.1投标人应具备以下基本资格条件: (1)在中华人民共和国境内注册的独立法人,营业执照真实有效可合法合规经营。 (2)投标人应具有独立承担民事责任的能力,投标人应具有独立承担民事责任的能力,具备检测技术服务能力,具备相应的技术服务人员、设备并能开具增值税专用发票。 (3)投标人应具备检验检测机构资质认定证书(CMA);中国合格评定国家认可委员会实验室认可证书(CNAS);中国特种设备检验协会无损检测机构评定证书(B级或以上)。 提供资料形式:1、提供在有效期内的资格证书扫描件;2、提供该证书的附件;3、提供该证书的官网查询截图。 (4)业绩要求:2020年1月1日至投标截止日,具有油田钻具无损检测服务业绩。 提供资料形式:(1)提供业绩清单;(2)提供合同关键页(包括但不限于首页、检测内容、合同期限及签字盖章页)扫描件;(3)提供结算发票。 (5)技术装备要求:提供至少包含磁化线圈、荧光灯、超声波探伤仪、超声波测厚仪等。提供资料形式:(1)提供设备清单;(2)提供设备信息(包括但不限于外形照片、铭牌等);(3)提供采购发票。 (6)人员要求:检验员具有无损检测Ⅱ级(至少覆盖超声、磁粉、渗透这三种方法)。 提供资料形式:(1)人员清单;(2)投标人为执行检测人员缴纳社保,提供近半年缴费证明。(3)提供无损检测人员资质证书扫描件及注册在本单位的证明。 (7)信誉要求:近三年来合同履约及质量情况、具有良好的信誉和商业道德,没有行贿受贿,偷税漏税及欺诈行为,没有发生重大经济纠纷,投标商具有良好的商业信誉,投标商2020年至投标文件递交截止日生产经营活动中无违法、违规等不良记录(此不良记录是指在生产经营活动中有商业欺诈、质量伪劣等实质性侵害招标人权益的情形,具体表现形式包括但不限于因上述行为受到行政处罚、被办案机关立案追查、审查起诉、被法院判决有罪等);未被国家、招标人及上级部门明文规定暂停、中止或取消交易资格。出具企业投标诚信承诺书。 (8)投标人未处于被中国石化给予风险停用、违约停用处理期内。 (9)投标人没有处于被责令停业、财产被接管、冻结、破产状态。(提供国家企业信用信息公示系统截图(http://gsxt.saic.gov.cn/。登记信息、行政处罚信息、经营异常信息、严重违法信息网上截图)。 2.2本次招标资格审查方式:资格后审。 2.3本次招标不接受联合体投标。 3.招标文件及相关资料获取 3.1凡有意参加本次项目的投标人,请按照以下时间、地点领取招标文件: (1)领取时间:2023年 2月 28 日至 3 月 4日(北京时间,上午08时00分至11时00分,下午14时00分至17时00分); (2)领取地点:山东省东营市东营区西二路华安街169号山东省建设工程招标中心3楼评标中心 (3)联系电话:13345059440 任女士 (4)领取方式:现金或微信转账。未按照规定在招标代理公司领取的招标文件无效。 (5)代理机构名称:山东省建设工程招标中心有限公司 3.2招标文件售价:每套人民币1000 元;招标文件售后不退。 3.3领取招标文件时需提交的证件、资料: 1、有关确立投标人法律地位的原始文件的副本,包括企业三证合一的营业执照副本复印件,开户许可证复印件,安全生产许可证复印件、提供质量管理体系认证(ISO9001或GB/T19001或ISO29001)证书或API体系认证、检验检测机构资质认定证书(CMA);中国合格评定国家认可委员会实验室认可证书(CNAS);中国特种设备检验协会无损检测机构评定证书(B级或以上)及相关资质证书复印件,并加盖公章; 2.招标投标确认函; 3.投标人法定代表人授权委托书原件,被委托人身份证原件及身份证复印件; 4.投标人基本情况表; 5.企业投标诚信承诺书; 6.投标企业近两年财务状况表(2021、2022年度);有法定资格的中介机构出具的财务报表,包括资产负债表、损益表、现金流量表;审计报告的封面、利润表、资产负债表等关键内容要求带中介机构公章;(如果投标企业2022年度财务报表不能提供应出具企业承诺书,法人签字、公司盖章承诺并提供2020年财务报表) 7.登陆《国家企业信用信息公示系统》提供企业基础信息、未列入行政处罚信息、未列入经营异常名录信息、未列入严重违法失信企业名单(黑名单)信息的网上截图。 8.企业近三年在招标活动中是否存在恶意投诉事项说明; 9.招标服务费承诺书; 10.投标人未处于被中国石化给予风险停用、违约停用处理期内。 11.投标人近三年内未发生一般及以上生产安全事故、一般及以上突发环境事件。 注:所有资料、复印件需加盖投标人单位公章。投标须法人代表(或授权委托人)亲笔签名或盖单位行政章(不接受合同专用章、投标专用章、有序号章等印章);以上资料装订成册,一式两份,与项目报名表(手工填写,不需要装订入册)一并递交。 若领取电子版招标文件,须将上述文件扫描版(PDF)发至以下邮箱:jzdybsc@163.com。 4.投标保证金 4.1投标人按照指定的账户提交投标保证金。 5、发布公告的媒介 本次招标公告同时在: 山东省建设工程招标中心有限公司网站http://www.sd-bid.com/、 山东省采购与招标网 http://www.sdbidding.org.cn/等媒介上发布。 6.投标文件的递交 6.1截止时间:详见招标文件 6.2递交地点:山东省东营市东营区西二路华安街169号山东省建设工程招标中心3楼评标中心 6.3出现以下情形时,不予接受投标文件: 6.3.1逾期送达的或者未送达指定地点的投标文件,招标人不予受理。 6.3.2未按照招标文件要求密封的。 6.3.3投标文件未由投标人法定代表人或委托代理人送达。(递交人需持法定代表人身份证明书或法定代表人授权委托书及相应人员身份证原件,否则投标文件可不予受理)。 6.4 投标人递交的投标文件(包含电子版)一律不予退还。 7.开标 7.1开标时间:详见招标文件 7.2开标地点:山东省东营市东营区西二路华安街169号山东省建设工程招标中心3楼评标中心 7.3本次招标接受邮寄投标文件资料,本次招标接受邮寄投标文件资料,投标人可以不参加开标会议。山东省建设工程招标中心有限公司严格按照国家招投标有关法律法规、程序组织招标评标。评标全过程接受中石化经纬有限公司地质测控技术研究院纪律监察部门监督。 8、框架协议类型 :价格型框架,签订合同税率6%。 9、重要商务条款:付款条款为:挂账之日起6个月内予以支付,支付方式以承兑汇票为主。 10、报价要求:投标人应根据招标文件所规定的服务范围、工期、质量要求、付款方式及招标文件要求,结合各自的劳动生产率和技术水平进行报价。 11、执行价格确定方式: 框架协议有效期内执行中标价格。 12、补充说明:因项目的特殊性,报名参加招标的单位须在确认参加招标的同时签署保密协议,并严格遵守保密协议相关条款,如有违反,参加招标单位将须承担相应的法律责任。开标会议时需要提供保密协议签字盖章的原件一式两份。 招标人:中石化经纬有限公司地质测控技术研究院 地址:山东省青岛市市南区台湾路4号 联系人 郎先生 电话:18554621600 招标代理机构:山东省建设工程招标中心有限公司 地址:山东省东营市东营区西二路华安街169号山东建招3楼评标中心 联系人:王女士 电话:13345030557 邮箱:jzdybsc@163.com × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:磁粉探伤仪,超声波测厚仪,超声波探伤仪 开标时间:null 预算金额:160.00万元 采购单位:中石化经纬有限公司地质测控技术研究院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:山东省建设工程招标中心有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 随钻测控仪器探伤检测服务项目招标公告 山东省-东营市-东营区 状态:公告 更新时间: 2023-02-27 尊敬的投标人: 您好,随钻测控仪器探伤检测服务项目已经按要求履行了相关报批及备案等手续,资金已经落实,具备招标条件,山东省建设工程招标中心有限公司受中石化经纬有限公司地质测控技术研究院委托现对其进行公开招标。欢迎有技术实力、服务能力的承包商参加投标。 1.项目概况与招标范围 1.1、项目名称:随钻测控仪器探伤检测服务项目 1.2、项目编号:JWGSDZCKY-20230203 1.3.项目概况:随钻测控仪器及工具现场使用后,仪器钻铤短节和内部机械零部件有可能出现冲蚀、磨损、裂纹、变形等问题,如果在钻井过程中继续使用有缺陷的部件会发生工具失效、钻具折断等安全事故。为保证仪器下井安全,预防发生井下事故,须对下井仪器的钻铤和零部件进行探伤检测,工作量大且专业性强,需要专业检测公司进行驻厂检测服务。2023年测控院投入生产运行的旋导仪器61串,其他MWD\LWD仪器30余串。为了保证2023年测控院随钻测控仪器安全运行,需将仪器配件的探伤检测,配套清洗服务进行外委。服务范围包括磁粉探伤、渗透探伤、超声测厚、吊索具安全检测、吊点检测及压力检测等工作。 1.4、招标范围:为了保证2023年测控院随钻测控仪器安全运行,需将仪器配件的探伤检测,配套清洗服务进行外委。服务范围包括磁粉探伤、渗透探伤、超声测厚、吊索具安全检测、吊点检测及压力检测等工作。该项目支出预计金额160万元(不含税) 1.5、标段划分:一个标段 1.6、服务有效期:自合同签订之日起至2024年3月1日。 1.7、要求及图纸:详见随钻测控仪器探伤检测服务技术规格书 1.8、规范:详见随钻测控仪器探伤检测服务技术规格书 1.9、服务地点:山东省东营市和四川省成都市,招标人车间内。 2.投标人资格要求 2.1投标人应具备以下基本资格条件: (1)在中华人民共和国境内注册的独立法人,营业执照真实有效可合法合规经营。 (2)投标人应具有独立承担民事责任的能力,投标人应具有独立承担民事责任的能力,具备检测技术服务能力,具备相应的技术服务人员、设备并能开具增值税专用发票。 (3)投标人应具备检验检测机构资质认定证书(CMA);中国合格评定国家认可委员会实验室认可证书(CNAS);中国特种设备检验协会无损检测机构评定证书(B级或以上)。 提供资料形式:1、提供在有效期内的资格证书扫描件;2、提供该证书的附件;3、提供该证书的官网查询截图。 (4)业绩要求:2020年1月1日至投标截止日,具有油田钻具无损检测服务业绩。 提供资料形式:(1)提供业绩清单;(2)提供合同关键页(包括但不限于首页、检测内容、合同期限及签字盖章页)扫描件;(3)提供结算发票。 (5)技术装备要求:提供至少包含磁化线圈、荧光灯、超声波探伤仪、超声波测厚仪等。提供资料形式:(1)提供设备清单;(2)提供设备信息(包括但不限于外形照片、铭牌等);(3)提供采购发票。 (6)人员要求:检验员具有无损检测Ⅱ级(至少覆盖超声、磁粉、渗透这三种方法)。 提供资料形式:(1)人员清单;(2)投标人为执行检测人员缴纳社保,提供近半年缴费证明。(3)提供无损检测人员资质证书扫描件及注册在本单位的证明。 (7)信誉要求:近三年来合同履约及质量情况、具有良好的信誉和商业道德,没有行贿受贿,偷税漏税及欺诈行为,没有发生重大经济纠纷,投标商具有良好的商业信誉,投标商2020年至投标文件递交截止日生产经营活动中无违法、违规等不良记录(此不良记录是指在生产经营活动中有商业欺诈、质量伪劣等实质性侵害招标人权益的情形,具体表现形式包括但不限于因上述行为受到行政处罚、被办案机关立案追查、审查起诉、被法院判决有罪等);未被国家、招标人及上级部门明文规定暂停、中止或取消交易资格。出具企业投标诚信承诺书。 (8)投标人未处于被中国石化给予风险停用、违约停用处理期内。 (9)投标人没有处于被责令停业、财产被接管、冻结、破产状态。(提供国家企业信用信息公示系统截图(http://gsxt.saic.gov.cn/。登记信息、行政处罚信息、经营异常信息、严重违法信息网上截图)。 2.2本次招标资格审查方式:资格后审。 2.3本次招标不接受联合体投标。 3.招标文件及相关资料获取 3.1凡有意参加本次项目的投标人,请按照以下时间、地点领取招标文件: (1)领取时间:2023年 2月 28 日至 3 月 4日(北京时间,上午08时00分至11时00分,下午14时00分至17时00分); (2)领取地点:山东省东营市东营区西二路华安街169号山东省建设工程招标中心3楼评标中心 (3)联系电话:13345059440 任女士 (4)领取方式:现金或微信转账。未按照规定在招标代理公司领取的招标文件无效。 (5)代理机构名称:山东省建设工程招标中心有限公司 3.2招标文件售价:每套人民币1000 元;招标文件售后不退。 3.3领取招标文件时需提交的证件、资料: 1、有关确立投标人法律地位的原始文件的副本,包括企业三证合一的营业执照副本复印件,开户许可证复印件,安全生产许可证复印件、提供质量管理体系认证(ISO9001或GB/T19001或ISO29001)证书或API体系认证、检验检测机构资质认定证书(CMA);中国合格评定国家认可委员会实验室认可证书(CNAS);中国特种设备检验协会无损检测机构评定证书(B级或以上)及相关资质证书复印件,并加盖公章; 2.招标投标确认函; 3.投标人法定代表人授权委托书原件,被委托人身份证原件及身份证复印件; 4.投标人基本情况表; 5.企业投标诚信承诺书; 6.投标企业近两年财务状况表(2021、2022年度);有法定资格的中介机构出具的财务报表,包括资产负债表、损益表、现金流量表;审计报告的封面、利润表、资产负债表等关键内容要求带中介机构公章;(如果投标企业2022年度财务报表不能提供应出具企业承诺书,法人签字、公司盖章承诺并提供2020年财务报表) 7.登陆《国家企业信用信息公示系统》提供企业基础信息、未列入行政处罚信息、未列入经营异常名录信息、未列入严重违法失信企业名单(黑名单)信息的网上截图。 8.企业近三年在招标活动中是否存在恶意投诉事项说明; 9.招标服务费承诺书; 10.投标人未处于被中国石化给予风险停用、违约停用处理期内。 11.投标人近三年内未发生一般及以上生产安全事故、一般及以上突发环境事件。 注:所有资料、复印件需加盖投标人单位公章。投标须法人代表(或授权委托人)亲笔签名或盖单位行政章(不接受合同专用章、投标专用章、有序号章等印章);以上资料装订成册,一式两份,与项目报名表(手工填写,不需要装订入册)一并递交。 若领取电子版招标文件,须将上述文件扫描版(PDF)发至以下邮箱:jzdybsc@163.com。 4.投标保证金 4.1投标人按照指定的账户提交投标保证金。 5、发布公告的媒介 本次招标公告同时在: 山东省建设工程招标中心有限公司网站http://www.sd-bid.com/、 山东省采购与招标网 http://www.sdbidding.org.cn/等媒介上发布。 6.投标文件的递交 6.1截止时间:详见招标文件 6.2递交地点:山东省东营市东营区西二路华安街169号山东省建设工程招标中心3楼评标中心 6.3出现以下情形时,不予接受投标文件: 6.3.1逾期送达的或者未送达指定地点的投标文件,招标人不予受理。 6.3.2未按照招标文件要求密封的。 6.3.3投标文件未由投标人法定代表人或委托代理人送达。(递交人需持法定代表人身份证明书或法定代表人授权委托书及相应人员身份证原件,否则投标文件可不予受理)。 6.4 投标人递交的投标文件(包含电子版)一律不予退还。 7.开标 7.1开标时间:详见招标文件 7.2开标地点:山东省东营市东营区西二路华安街169号山东省建设工程招标中心3楼评标中心 7.3本次招标接受邮寄投标文件资料,本次招标接受邮寄投标文件资料,投标人可以不参加开标会议。山东省建设工程招标中心有限公司严格按照国家招投标有关法律法规、程序组织招标评标。评标全过程接受中石化经纬有限公司地质测控技术研究院纪律监察部门监督。 8、框架协议类型 :价格型框架,签订合同税率6%。 9、重要商务条款:付款条款为:挂账之日起6个月内予以支付,支付方式以承兑汇票为主。 10、报价要求:投标人应根据招标文件所规定的服务范围、工期、质量要求、付款方式及招标文件要求,结合各自的劳动生产率和技术水平进行报价。 11、执行价格确定方式: 框架协议有效期内执行中标价格。 12、补充说明:因项目的特殊性,报名参加招标的单位须在确认参加招标的同时签署保密协议,并严格遵守保密协议相关条款,如有违反,参加招标单位将须承担相应的法律责任。开标会议时需要提供保密协议签字盖章的原件一式两份。 招标人:中石化经纬有限公司地质测控技术研究院 地址:山东省青岛市市南区台湾路4号 联系人 郎先生 电话:18554621600 招标代理机构:山东省建设工程招标中心有限公司 地址:山东省东营市东营区西二路华安街169号山东建招3楼评标中心 联系人:王女士 电话:13345030557 邮箱:jzdybsc@163.com
  • 长庆油田分公司第五采油厂206.96万元采购磁粉探伤仪,切割机,超声波测厚仪,X射线探伤仪,超声波探...
    详细信息 长庆油田分公司第五采油厂2023年废旧加热炉再制造项目 陕西省-西安市 状态:公告 更新时间: 2023-05-30 招标编号:ZY23-XA404-FW462(重要提示:投标人务必认真填写招标文件附件《投标信息表》中的“工程/服务/物资”、“业绩发票”等表格,并在递交投标文件时,将已填写的《投标信息表》(EXCEL版)上传至中国石油电子招标投标交易平台“递交投标文件”的“价格文件”处。《投标信息表》(EXCEL版)填写的信息须与投标文件内容保持一致,若因填写信息错误或与投标文件内容不一致而导致对评审结果和合同签订的不利后果,由投标人自行承担。)1. 招标条件 本招标项目长庆油田分公司第五采油厂2023年废旧加热炉再制造项目已由长庆油田分公司批准,资金来自企业自筹,出资比例为100%,招标人为长庆油田分公司第五采油厂。项目已具备招标条件,现对该项目的服务进行公开招标。 2. 项目概况与招标范围 2.1项目概况:本项目为长庆油田公司第五采油厂所属区域废旧加热炉再制造项目,需对各生产单位61台废旧水套炉热炉、常压热水锅炉、真空加热炉进行再制造,再制造后的产品要求达到加热炉新品的各项技术要求。2.2招标范围:对各生产单位61台废旧水套炉热炉、常压热水锅炉、真空加热炉进行再制造,再制造后的产品要求达到加热炉新品的各项技术要求,项目预计金额206.9595万元(含税13%、含运输费、含安装费、含材料费、含HSE费等费用),共需2名服务商,工作量分配第一名约60%,第二名约40%。2.3服务期限:自合同签订之日起至2023年12月31日。2.4服务地点:采油五厂所辖区域。3. 投标人资格要求 3.1投标人须是依照中华人民共和国法律在国内注册的独立法人或其他组织,具备有效的营业执照。3.2资质要求:具有省级及以上市场监督管理局颁发的《中华人民共和国特种设备生产许可证》,许可范围:锅炉制造;具有省级及以上市场监督管理局颁发的《中华人民共和国特种设备生产许可证》,许可范围:承压类特种设备安装、修理、改造。3.3业绩要求:近三年(2020年1月1日至投标截止日)投标人应具有至少1项加热炉(锅炉)的生产或再制造项目业绩。3.4人员要求:具有承担加热炉(锅炉)生产或再制造人员不少于5人,其中项目负责人1人、技术负责人1人(具有机械相关专业大专及以上学历)、安全管理人员1人(具备行政主管部门颁发的安全资格证书),焊工2人(具有行政主管部门颁发的有效焊工证)。3.5设备要求:主要设备及仪器仪表主要设备 序号 设备名称 用途 单位 数量 备注 1 数控火焰等离子切割机 机加工 台 1 ★ 2 数显上辊万能式卷板机 机加工 台 1 ★ 3 氩弧电焊机 焊接 台 1 ★ 4 车床 机加工 台 1 ★ 5 剪板机 机加工 台 1 主要仪器仪表基本配备 序号 仪器仪表名称 用途 单位 数量 备注 1 X射线探伤机 探伤用 台 1 ▲ 2 超声波探伤仪 探伤用 台 1 ▲ 3 磁粉探伤仪 探伤用 台 1 ▲ 4 超声波测厚仪 检测厚度 台 1 ▲ 3.6财务要求:2020 年至 2023 年未被责令停产停业、暂扣或者吊销许可证、暂扣或者吊销执 照的;未进入清算程序,或未被宣告破产,或其他未丧失履约能力的情形;投标人应提供近1年(2022年度)经会计师事务所或审计机构审计的财务状况表。成立日期晚于 2023 年1月1日的,从成立年开始提供。3.7信誉要求:①未被工商行政管理机关在全国企业信用信息公示系统中列入严重违法失信企业名单;②未被最高人民法院在“信用中国”网站或各级信用信息共享平台中列入失信被执行人名单;③投标人或其法定代表人、拟委任的项目负责人无行贿犯罪;④开标当日未被中国石油招标投标网暂停或取消投标资格的。 3.8本次招标不接受联合体投标。3.9被中国石油天然气集团有限公司或长庆油田分公司纳入“黑名单”或限制投标的潜在投标人,其投标将会被否决。4.招标文件获取4.1凡有意参加投标的潜在投标人,请于北京时间2023年5月30日至2023年6月5日内完成以下两个步骤:①登录中国石油电子招标投标交易平台(网址:http://ebidmanage.cnpcbidding.com/bidder/ebid/base/login.html在线报名,(如未在中国石油电子招标投标交易平台上注册过的潜在投标人需要先注册并通过平台审核,审核通过后登录平台在可报名项目中可找到该项目并完成在线报名,具体操作请参考中国石油招标投标网操作指南中“投标人用户手册”相关章节,有关注册、报名等有关交易平台的操作问题请咨询技术支持团队相关人员,咨询电话:4008800114 语音导航转 电子招标平台);②投标人购买招标文件地址:http://www2.cnpcbidding.com(谷歌登录),投标人信息和账号与中国石油电子招标投交易平台一致,密码需要重新设置。首次登录需通过手机验证码登录,登录后设置密码,如有问题,致电400-8800-114转电子招标平台。4.2招标文件每标段售价为200元人民币,请有意参加投标的潜在投标人确认自身资格条件是否满足要求,售后不退,应自负其责。4.3本次招标文件采取线上发售的方式。潜在投标人在4.1规定的时间内完成4.1规定的2项工作(在线报名和自助购买文件)后,潜在投标人可在中国石油电子招标投标交易平台下载招标文件。4.4投标人支付标书费后,在商城个人中心进入订单列表,点击已缴纳的标书费订单,点击订单详情,可以自行下载电子版普通发票。4.5此次采购招标项目为全流程网上操作,需要使用U-key完成投标工作,所有首次参与中国石油招标项目投标人必须办理U-key。具体办理通知公告及操作手册下载方法如下:登录中国石油招标投标网首页:https://www.cnpcbidding.com“通知公告栏目”的“操作指南”中“电子招投标平台Ukey办理通知公告及操作手册”,即可下载“Ukey办理通知公告及操作手册.zip”。5. 投标文件的递交5.1 投标文件递交的截止时间(投标截止时间及开标时间,下同)为2023年6月20日 9时00分,投标人应在截止时间前通过中国石油电子招标投标交易平台递交电子投标文件。 (为避免受网速及网站技术支持时间的影响,建议于投标截止时间24小时之前完成网上电子投标文件的递交。)5.2投标截止时间未成功传送的电子投标文件将不被系统接受,视为主动撤回投标文件。5.3投标保证金每标段壹万元人民币,投标保证金有效期与投标有效期一致,投标保证金可以采用保证保险或电汇或银行保函形式递交,具体递交方式详见招标文件。5.4开标地点(网上开标):中国石油电子招标投标平台(所有投标人可登录中国石油电子招标投标平台在线参加开标仪式)。潜在投标人对招标文件有疑问请咨询招标机构联系人;对系统操作有疑问请咨询技术支持团队:中油物采信息技术有限公司,咨询电话:4008800114 ,请在工作时间咨询。招标公告中未尽事宜或与招标文件不符之处,以招标文件为准。6.发布公告的媒介本次招标公告同时在中国招标投标公共服务平台(www.cebpubservice.com),中国石油招标投标网(www.cnpcbidding.com)上发布。7.联系方式招 标 人:长庆油田分公司第五采油厂联 系 人:左廷亮 联系电话:029-86503039 招标代理机构:中国石油物资有限公司西安分公司单位地址:陕西省西安市凤城五路与明光路十字路口天朗经开中心二层联 系 人:游涛 程晓艳 联系电话:029-68934555电子邮箱:512881333@qq.com × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:磁粉探伤仪,切割机,超声波测厚仪,X射线探伤仪,超声波探伤仪 开标时间:2023-06-20 09:00 预算金额:206.96万元 采购单位:长庆油田分公司第五采油厂 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中国石油物资有限公司西安分公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 长庆油田分公司第五采油厂2023年废旧加热炉再制造项目 陕西省-西安市 状态:公告 更新时间: 2023-05-30 招标编号:ZY23-XA404-FW462(重要提示:投标人务必认真填写招标文件附件《投标信息表》中的“工程/服务/物资”、“业绩发票”等表格,并在递交投标文件时,将已填写的《投标信息表》(EXCEL版)上传至中国石油电子招标投标交易平台“递交投标文件”的“价格文件”处。《投标信息表》(EXCEL版)填写的信息须与投标文件内容保持一致,若因填写信息错误或与投标文件内容不一致而导致对评审结果和合同签订的不利后果,由投标人自行承担。)1. 招标条件 本招标项目长庆油田分公司第五采油厂2023年废旧加热炉再制造项目已由长庆油田分公司批准,资金来自企业自筹,出资比例为100%,招标人为长庆油田分公司第五采油厂。项目已具备招标条件,现对该项目的服务进行公开招标。 2. 项目概况与招标范围 2.1项目概况:本项目为长庆油田公司第五采油厂所属区域废旧加热炉再制造项目,需对各生产单位61台废旧水套炉热炉、常压热水锅炉、真空加热炉进行再制造,再制造后的产品要求达到加热炉新品的各项技术要求。2.2招标范围:对各生产单位61台废旧水套炉热炉、常压热水锅炉、真空加热炉进行再制造,再制造后的产品要求达到加热炉新品的各项技术要求,项目预计金额206.9595万元(含税13%、含运输费、含安装费、含材料费、含HSE费等费用),共需2名服务商,工作量分配第一名约60%,第二名约40%。2.3服务期限:自合同签订之日起至2023年12月31日。2.4服务地点:采油五厂所辖区域。3. 投标人资格要求 3.1投标人须是依照中华人民共和国法律在国内注册的独立法人或其他组织,具备有效的营业执照。3.2资质要求:具有省级及以上市场监督管理局颁发的《中华人民共和国特种设备生产许可证》,许可范围:锅炉制造;具有省级及以上市场监督管理局颁发的《中华人民共和国特种设备生产许可证》,许可范围:承压类特种设备安装、修理、改造。3.3业绩要求:近三年(2020年1月1日至投标截止日)投标人应具有至少1项加热炉(锅炉)的生产或再制造项目业绩。3.4人员要求:具有承担加热炉(锅炉)生产或再制造人员不少于5人,其中项目负责人1人、技术负责人1人(具有机械相关专业大专及以上学历)、安全管理人员1人(具备行政主管部门颁发的安全资格证书),焊工2人(具有行政主管部门颁发的有效焊工证)。3.5设备要求:主要设备及仪器仪表主要设备 序号 设备名称 用途 单位 数量 备注 1 数控火焰等离子切割机 机加工 台 1 ★ 2 数显上辊万能式卷板机 机加工 台 1 ★ 3 氩弧电焊机 焊接 台 1 ★ 4 车床 机加工 台 1 ★ 5 剪板机 机加工 台 1 主要仪器仪表基本配备 序号 仪器仪表名称 用途 单位 数量 备注 1 X射线探伤机 探伤用 台 1 ▲ 2 超声波探伤仪 探伤用 台 1 ▲ 3 磁粉探伤仪 探伤用 台 1 ▲ 4 超声波测厚仪 检测厚度 台 1 ▲ 3.6财务要求:2020 年至 2023 年未被责令停产停业、暂扣或者吊销许可证、暂扣或者吊销执 照的;未进入清算程序,或未被宣告破产,或其他未丧失履约能力的情形;投标人应提供近1年(2022年度)经会计师事务所或审计机构审计的财务状况表。成立日期晚于 2023 年1月1日的,从成立年开始提供。3.7信誉要求:①未被工商行政管理机关在全国企业信用信息公示系统中列入严重违法失信企业名单;②未被最高人民法院在“信用中国”网站或各级信用信息共享平台中列入失信被执行人名单;③投标人或其法定代表人、拟委任的项目负责人无行贿犯罪;④开标当日未被中国石油招标投标网暂停或取消投标资格的。 3.8本次招标不接受联合体投标。3.9被中国石油天然气集团有限公司或长庆油田分公司纳入“黑名单”或限制投标的潜在投标人,其投标将会被否决。4.招标文件获取4.1凡有意参加投标的潜在投标人,请于北京时间2023年5月30日至2023年6月5日内完成以下两个步骤:①登录中国石油电子招标投标交易平台(网址:http://ebidmanage.cnpcbidding.com/bidder/ebid/base/login.html在线报名,(如未在中国石油电子招标投标交易平台上注册过的潜在投标人需要先注册并通过平台审核,审核通过后登录平台在可报名项目中可找到该项目并完成在线报名,具体操作请参考中国石油招标投标网操作指南中“投标人用户手册”相关章节,有关注册、报名等有关交易平台的操作问题请咨询技术支持团队相关人员,咨询电话:4008800114 语音导航转 电子招标平台);②投标人购买招标文件地址:http://www2.cnpcbidding.com(谷歌登录),投标人信息和账号与中国石油电子招标投交易平台一致,密码需要重新设置。首次登录需通过手机验证码登录,登录后设置密码,如有问题,致电400-8800-114转电子招标平台。4.2招标文件每标段售价为200元人民币,请有意参加投标的潜在投标人确认自身资格条件是否满足要求,售后不退,应自负其责。4.3本次招标文件采取线上发售的方式。潜在投标人在4.1规定的时间内完成4.1规定的2项工作(在线报名和自助购买文件)后,潜在投标人可在中国石油电子招标投标交易平台下载招标文件。4.4投标人支付标书费后,在商城个人中心进入订单列表,点击已缴纳的标书费订单,点击订单详情,可以自行下载电子版普通发票。4.5此次采购招标项目为全流程网上操作,需要使用U-key完成投标工作,所有首次参与中国石油招标项目投标人必须办理U-key。具体办理通知公告及操作手册下载方法如下:登录中国石油招标投标网首页:https://www.cnpcbidding.com“通知公告栏目”的“操作指南”中“电子招投标平台Ukey办理通知公告及操作手册”,即可下载“Ukey办理通知公告及操作手册.zip”。5. 投标文件的递交5.1 投标文件递交的截止时间(投标截止时间及开标时间,下同)为2023年6月20日 9时00分,投标人应在截止时间前通过中国石油电子招标投标交易平台递交电子投标文件。 (为避免受网速及网站技术支持时间的影响,建议于投标截止时间24小时之前完成网上电子投标文件的递交。)5.2投标截止时间未成功传送的电子投标文件将不被系统接受,视为主动撤回投标文件。5.3投标保证金每标段壹万元人民币,投标保证金有效期与投标有效期一致,投标保证金可以采用保证保险或电汇或银行保函形式递交,具体递交方式详见招标文件。5.4开标地点(网上开标):中国石油电子招标投标平台(所有投标人可登录中国石油电子招标投标平台在线参加开标仪式)。潜在投标人对招标文件有疑问请咨询招标机构联系人;对系统操作有疑问请咨询技术支持团队:中油物采信息技术有限公司,咨询电话:4008800114 ,请在工作时间咨询。招标公告中未尽事宜或与招标文件不符之处,以招标文件为准。6.发布公告的媒介本次招标公告同时在中国招标投标公共服务平台(www.cebpubservice.com),中国石油招标投标网(www.cnpcbidding.com)上发布。7.联系方式招 标 人:长庆油田分公司第五采油厂联 系 人:左廷亮 联系电话:029-86503039 招标代理机构:中国石油物资有限公司西安分公司单位地址:陕西省西安市凤城五路与明光路十字路口天朗经开中心二层联 系 人:游涛 程晓艳 联系电话:029-68934555电子邮箱:512881333@qq.com
  • 输电线路用上X射线探伤仪
    p style="TEXT-ALIGN: center" img title="输电线.jpg" src="http://img1.17img.cn/17img/images/201704/noimg/60332b7b-cc86-4387-906a-a1466c66780f.jpg"//pp 3月24日,在220千伏莱孟I线停电检修工作现场,国网莱芜供电公司输电运检人员正在使用X射线探伤仪,对输电线路进行无损检测。/pp  对输电线路进行X射线无损检测是莱芜供电公司输电运检人员在线路检修中的一项创新工作。X射线探伤仪分探测器和操控箱两部分,作业人员将探伤仪架设到杆塔引流板、耐张线夹等部位,在杆下操控操控箱,对线路相应部件进行X光照射,并拍摄影像,通过影像分析来检测引流线内部是否存在隐性缺陷。/pp  在本次检修中,作业人员探伤检测耐张管156组,并对探伤检测发现的三处耐张管隐患进行了及时处理,为输电线路安全可靠供电又提供了一道保障。/p
  • 钢轨探伤工推着上百斤仪器 每天至少行走8公里
    p style="text-align:center"img src="http://img1.17img.cn/17img/images/201705/insimg/952d9a81-28ea-4d91-8630-3204581cfd6a.jpg" title="1.jpg" style="width: 403px height: 271px " width="403" vspace="0" hspace="0" border="0" height="271"//pp style="text-align: center "strong工作中的钢轨探伤工/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/7efed9e6-4fc2-4aea-8b8f-c3132350c23f.jpg" title="2.jpg"//pp style="text-align: center "strong每一条铁轨都不能遗漏/strong/pp  随着科技迅猛发展,其实生活中,除了公务员、医生、司机这些被大众所熟知的职业外,我们身边还/pp  有许多小众的职业。这些行业可能并不起眼,却和我们的生活息息相关,从今日起,大河报记者带你了解那些“不起眼”的行业......br//pp  span style="color: rgb(0, 176, 240) "strong□记者 吕高见 文 赵龙翱 摄影/strong/span/pp  核心提示|炎炎烈日下,纵横交错轨道上,有这样一群忙碌的人,他们推着仪器在钢轨上作业,仿佛在书写着“传奇”。/pp  行走、检查、标记、修复,日复一日,年复一年,重复着做同一件事,不论是刮风下雨,还是白雪皑皑,都在默默坚守,他们是在用生命“歌唱”。探伤工,人称钢轨“B超医生”,也是经常活跃在铁路一线的基层工种。为钢轨探伤,探伤工时刻都要思想高度集中,坚持一线作业,不能出现丝毫的差错。昨天,大河报记者走近钢轨“B超医生”,在36℃高温下,探访和聆听他们背后的感人故事。/pp  【现场】/pp  密集的钢轨,晃得人睁不开眼睛/pp  昨天上午8点,40余名探伤工穿上橘黄色工作服,他们点完名后,分别乘坐两辆大巴车,车厢里放着探伤仪器还有用的工具就出发了。由于工作地点不同,大巴车要陆续地放下探伤人员作业。/pp  大河报记者跟随其中一组探伤工作业,约半小时到达目的地,郑州北站下行到达场。烈日直射下的郑州北站,无风闷热,现场作业一共有14条到达轨道,编组场38股,由于钢轨密集,轨道上的温度比正常温度多出很多,热浪袭来,晃得人眼睛都睁不开。/pp  探伤工们把探伤仪器从车上抬下后,徐鹏和他的工友们戴上草帽,开始了一天的探伤作业。/pp  徐鹏今年41岁,是一名高级探伤技师。他推着探伤仪器,脚下踩着枕木和碎石,缓慢前行。另一名工友站在一侧辅助他作业,遇有钢轨岔道时就会上前帮忙,两人抬起探伤仪,挪到其他钢轨上面继续作业。碰到钢轨有问题时,徐鹏就会侧耳倾听,拿出随身携带的锤子,对准钢轨面再猛烈地敲打几下,及时作出判断,让工友用白色油漆在钢轨侧面画上标记,待其他作业的同事过来修复。/pp  工作间隙,探伤工们也会吸上几口烟。大河报记者注意到,旁边站有防护工作的工人,左手攥着红黄旗,右手拿着对讲机,遇有来往的火车经过时,就会用喇叭或对讲机提前通知,这时,探伤工们会迅速搬起仪器向安全地带转移。等车辆通过后,他们再返回作业。一趟下来,他们身上的工作服时常会湿透。/pp  探伤作业一般每个班组两台仪器,每台仪器2个人作业,加上防护人员等有四五个人。在作业时,徐鹏随身携带的对讲机里经常会传出,邀请他到现场判断钢轨损伤的情况。/pp  “探伤工作不能出丝毫的差错。”探伤工们坦言,那样的话会造成钢轨折断,后果将不堪设想。要求探伤工必须认真作业,时刻保持警惕,达到100%钢轨完好。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/ac482a3c-fe4f-4eae-9a98-f36294b7426f.jpg" title="3.jpg"//pp style="text-align: center "strong探测出的裂纹位置,在铁轨上作出标记。/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/1d3566e5-8075-4418-8343-82bf884da38e.jpg" title="4.jpg"//pp style="text-align: center "strong反复捶打确认铁轨的损伤/strong/pp  紧盯屏幕“找感觉”看仪器听声音练“顺风耳”/pp  大河报记者见到徐鹏时,他刚从新乡铁路局出差回来,就投入到紧张的工作之中。他很腼腆,不爱说话,1米75的个头儿,长着络腮胡。“还是采访别人吧。”言语间透露着谦虚。徐鹏所在的检查监控车间,承担了全段529公里高铁线路,12141处焊缝的全部探测任务。“焊接质量、列车长期碾压及天气等原因,都会对轨道安全产生影响。高铁速度快,发生事故,堪比空难。”/pp  “砸洋镐、换轨、涂油??”在基层一线一干就是7年。刚开始时,每当徐鹏看到有探伤工从身边经过时,总会多看上几眼,投去羡慕的目光。梦想终究变成现实。2001年,段里公开招聘,徐鹏从众多考生中脱颖而出,真正成为了一名探伤工。/pp  “一有时间就练。”大多数探伤工都是这样,在保证安全的情况下,还经常加班到很晚。大家就像着了魔一样,每天抽出大量时间,紧盯屏幕“找感觉”,看仪器听声音练“顺风耳”,辨别钢轨有无损伤,除了跟着师傅到现场作业外,还虚心向身边的每个人学习。/pp  “苦累并存,有任务就要向前冲。”正在现场作业的探伤工坦言,春天和秋天还好说,如果是碰到夏天和冬天就会很苦。夏天,经常是浑身湿透。冬天,几个小时作业下来,衣服会贴到身上,有时冻得不行。/pp  逢到较远的地方探伤作业,就会带干粮出去,中午凑合着吃点,能够填饱肚子就行。有时饭不按时吃,大家的胃基本上都不好。此外,尤其是焊接探伤,经常是蹲在地上,一蹲就是20分钟,完毕后再走向下一个探伤地,为此大家都落下了探伤职业病,每个人脸都通红通红的。/pp  据桥工段多名探伤工人介绍,每个探伤仪器自重30公斤,加上水之后重达百余斤,每天至少要行走8公里。没有固定的任务量,啥时候干完啥时候回家。/pp  探伤工不仅是体力活也是一个脑力活儿/pp  郑州北站是亚洲最大的火车编组站,具有“十里站场”之美誉。经过近百年的风雨洗礼,聚集了各类钢轨病害的“疑难杂症”,如果不仔细检查,就不会发现问题。/pp  今年59岁的邢跃进,脸庞黝黑,是一名老探伤工,已在探伤岗位干了42年,当天他负责防护警戒工作,左手里攥着卷在一起的两面红黄旗帜,右手拿着小喇叭,遇有货车快要通过时,他就会“滴滴”吹起喇叭,提醒探伤作业的工人,车辆来了赶紧躲开。他说,是出于热爱这个岗位,才不愿离开,一直坚守到现在,探伤工作已经深深地融入到他的血液中。/pp  和邢跃进一样,现场指导作业的4班班长侯海峰,也在探伤岗位默默付出着。他站在钢轨旁望着工作的3名员工,时而还会走到跟前,查看并指导两句。他告诉大河报记者,他们班里初级工只有工作能力,没有钢轨判伤的资格。侯海峰坦言,探伤作业有很多诀窍,比如钢轨正常情况下,用锤子敲击出的声音比较清脆,反之比较闷。只要经过刻苦的训练,有时用耳朵一听就能听出来了。“探伤工不仅是体力活,也是一个用脑的活儿,要脑勤腿快,两者缺一不可。”/pp  如今,随着时速350公里标准动车组成功下线运用考核,“四纵四横”高铁主骨架基本建成,“中国速度”越来越多地受到世界瞩目。高速运转的火车背后,铁路承担的安全压力陡增。郑州局扼陇海,跨京广,地处中原要道,作为这里的“钢轨检验师”,探伤工更是站在了抵御风险的最前线。/pp  “我们就是要当好轨道的‘排雷兵’,为祖国的铁路运输安全保驾护航。”多名探伤工坦言。坚决执行标准化,对安全怀有绝对敬畏心,是他们心中精准的一把尺。/pp  路漫漫其修远兮,吾将上下而求索。随着郑徐高铁联调联试,这群可爱的探伤工即将随班组职工又奔赴了砀山南站。252公里线路的3430个焊缝,等着他们去逐一排查。如今,他们正以饱满热情坚守在探伤一线,默默地奉献着自己的青春,为建设美丽中国而奋斗。(线索提供:李中华、王玮)/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制