当前位置: 仪器信息网 > 行业主题 > >

反射开关

仪器信息网反射开关专题为您提供2024年最新反射开关价格报价、厂家品牌的相关信息, 包括反射开关参数、型号等,不管是国产,还是进口品牌的反射开关您都可以在这里找到。 除此之外,仪器信息网还免费为您整合反射开关相关的耗材配件、试剂标物,还有反射开关相关的最新资讯、资料,以及反射开关相关的解决方案。

反射开关相关的资讯

  • 如何测量绝对反射与相对反射?
    1. 前言光照射到物体上,由于物体的表面不同,通常会发生两种反射,镜面反射和漫反射,如图所示。图1 光在物体表面的反射示意图对于玻璃、镀膜基板、滤光片等表面光滑的零部件,镜面反射率是评价其光学特性的重要参数,测定反射率最常用的仪器是紫外可见近红外分光光度计。日立紫外产品线丰富,波长测试范围涵盖紫外可见区域到近红外区域,可以满足样品不同波长下的测量需求。2. 应用数据镜面反射根据测量方式的不同,分为相对反射率和绝对反射率。客户需要根据样品特征,选择不同的测量方式。日立具有5°到75°固定入射光角度的镜面反射附件,适用于多种样品的镜面反射测量。图2 绝对反射测量图3 相对反射测量绝对反射率通常使用V-N法进行测量,直接获得样品的反射特性,应用广泛。但是对于低反射率的样品,使用相对反射测量,可以有效扩大动态范围。 2.1 石英基板的相对反射率测量 • 测量附件图4 5o 相对反射附件• 测量结果 使用紫外可见分光光度计U-3900 的5o相对反射附件,以BK7玻璃为参考标准品测定石英基板的相对反射光谱。结果表明石英基板的相对反射率约为80%。 图5 石英基板的相对反射率通过日立U-3900的选配程序包,使用相对反射率得到转换后的绝对反射率,如下图所示。如果直接测定石英基板的绝对反射率,光谱易受噪声影响。图6 石英基板转换后的绝对反射率2.2 铝平面镜和金平面镜的绝对反射率金平面镜表面涂有金膜,该金膜在红外区域具有高反射率。铝平面镜是表面涂有铝膜,在可见光区到近红外区有较高的反射率和较小的角度依赖性。两者常作为相对反射测量时的标准面。• 测量附件图7 5 o绝对反射附件• 测量结果 使用紫外可见近红外分光光度计UH4150的5°绝对反射附件分析了金平面镜和铝平面镜的绝对反射率。 图8 金平面镜和铝平面镜的绝对反射率 结果表明,在可见光区域,铝平面镜的反射率超过80%。金平面镜的反射率在可见光区域较低,但其在近红外区域的反射率较高。因此在测量样品的相对反射率时,如果需要关注近红外区域,可以使用在近红外区具有高反射率的金平面镜作为标准面。 3. 结论样品的镜面反射率有两种测量方式,相对反射率和绝对反射率。对于低反射性样品,使用相对反射附件测量其相对反射率,可以获得信噪比良好的光谱,如玻璃基板上薄膜的反射率。对于通常的样品,可以直接使用绝对反射附件测量其绝对反射率。日立提供多种镜面反射测量附件,还可根据客户需求量身定制,满足各种样品的镜面反射率测量。
  • 如何精确测定LED灯反射板的反射率?
    前言LED灯具有长寿命、安全可靠、节能环保等优点,在家用照明设备、显示屏、公共设施场所以及景观装饰等方面应用广泛,如汽车上的照明设备、景区内各种图案的装饰灯。LED灯通常由光源、外壳组成,光源装有反射板可以有效利用光源的能量,因此反射板的反射率会直接决定LED灯的光利用效率。而评价反射板的反射率,常用的检测仪器是紫外分光光度计。检测实例我们选取了生活中常见的一种LED灯,拆开发现反射板的四周是弧形表面,为获得准确的反射率,要对中间的平整表面进行测定,如图中红色圆圈标注的位置。但这个位置的直经只有5mm,如此小的测量位点,要使仪器光源的光斑中心完全照射到测定位置非常困难。图1 LED灯的反射板为了解决这类微小样品的测定难题,日立特别研发了微小样品全反射/漫反射测量系统定制附件,确保光源的光斑中心完全照射到测定位置。而且日立UH4150紫外-可见-近红外分光光度计的样品仓空间足够大,可以轻松安装这个附件。 测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝 对值,得到的反射板的全反射光谱如图所示。图2 LED灯反射板的反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。 想获取更多信息,请拨打电话:400-630-5821。
  • SpectraBlack 超低反射率漫反射目标板
    更易表征激光雷达和飞行时间 (ToF) 传感系统由于缺乏光谱平坦的光学反射材料,因此很难了解激光雷达和 ToF 系统在低反射率 (5%) 下的灵敏度。Labsphere (蓝菲光学)的 Spectrablack 漫反射目标板和材料有效解决了这个问题。Spectrablack 是一种低反射率、耐磨损的吸光材料,非常适合用于室内近标准传感器测试应用,以及OEM光学系统中的遮光/预防散射光。应用:ToF 和 LIDAR 低反射率范围测试遮光/吸光:利用微孔表面的吸光效果预防光学系统、光学测量仪器、相机等中的散射光降低光谱仪和分光光度计杂散光非反光片和一般遮光材料典型反射率*250 – 380 nm:1.5%380 – 780 nm:1.0 %780 – 2500 nm:1.1 %*反射值可能会有所不同。
  • 反射高能电子衍射仪
    反射高能电子衍射仪(Reflection High-Energy Electron Diffraction)是观察晶体生长最重要的实时监测工具。它可以通过非常小的掠射角将能量为10~30KeV的单能电子掠射到晶体表面,通过衍射斑点获得薄膜厚度,组分以及晶体生长机制等重要信息。因此反射高能电子衍射仪已成为MBE系统中监测薄膜表面形貌的一种标准化技术。  R-DEC公司生产的反射式高能电子衍射仪,以便于操作者使用的人性化设计,稳定性和耐久性以及拥有高亮度的衍射斑点等特长得到日本国内及海外各研究机构的一致好评和认可。特长 ◆可远程控制调节电压,束流强度,聚焦位置以及光束偏转◆带有安全闭锁装置◆镍铁高导磁合金磁屏蔽罩◆拥有高亮度衍射斑点◆电子枪内表面经特殊处理,能实现极低放气率◆经久耐用,稳定可靠◆符合欧盟RoHS指令   低电流反射高能电子衍射仪(Low Emission Reflection High-Energy Electron Diffraction)是利用微通道板技术,大幅减少对样品损伤的同时,并且保证明亮反射电子衍射图像的新一代低电流反射高能电子衍射仪。可以用于有机薄膜材料等结晶结构的分析研究。特长◆大幅度减少电子束对样品的损伤(相当于普通RHEED的1/500-1/2800)◆带有安全闭锁装置◆搭载高亮度微通道板荧光屏◆可搭载差动抽气系统◆kSA400 RHEED分析系统兼容◆符合欧盟RoHS指令
  • 镀膜片基底背面反射的影响——低反射率样品表征
    当光线照射到两种介质的分界面上时,一部分光线改变了传播方向返回原来的媒介中继续传播,这种现象称为光的反射。在自然界中,光的反射存在着镜面反射、漫反射和逆反射三种现象。光的反射示意图镜面反射是在光线入射到一个非常光滑或有光泽的表面上时发生的。光线在物体表面反射的角度和入射的角度,度数相同但方向相反。如果物体的表面和光源成精确的直角,那么反射光线会完整地反射回光源方向。光的漫反射是一种最常见的反射形式。漫反射发生在光线入射到任何粗糙表面上, 由于各点的法线方向不一致,造成反射光线无规则地向不同的方向反射。只有很少一部分光线可以被反射回光源方向,所以漫反射材料只能给人眼提供很少的可视性。逆反射(背面反射)是指反射光线从靠近入射光线的反方向,向光源返回的反射。当入射光线在较大范围内变化时,仍能保持这一特性。当石英片上镀膜后,石英片的逆反射会对镜面反射的结果有明显的影响。本文采用日立的UH4150紫外可见近红外分光光度计、5°绝对反射附件和60mm积分球测试分析逆反射的影响。 下面是2种不同工艺需求的测试数据图:左图为同一批次的2个镀膜样品,变量为基底是否进行了涂黑处理。通过数据可以明显的发现:涂黑处理后的反射率明显降低,在1370nm附近的反射率约为0.3%,这是因为涂黑处理使得基底的背面反射(逆反射)尽可能地消除。 右图为另一种工艺的产品,直接对样品进行测试,不需要额外的处理,可以得到1300 ~ 1600 nm范围内反射率低于0.2%的效果,符合产品的预期。一般遇到测试反射率低于0.5%的指标需求时,建议使用标准片测试。×总结根据测试的目的需求,基底是否处理对实际的测试结果有很大影响。样品的反射率测试,需要考虑背面反射的影响。日立的紫外可见近红外分光光度计UH4150结合镜面反射附件,可以准确的表征低反射率的样品性能。——the end——公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 光学薄膜透射反射性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用PerkinElmer紫外可见近红外光谱仪配置可变角度测试附件,直接测试样品不同角度下绝对反射率、透射率曲线,无需参比镜校准,操作简单方便,测试结果更加准确。附件为变角度绝对反射、变角度透射率测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。PerkinElmer Lambda1050+ 光谱仪自动可变角附件光路图图1 仪器外观图固定布局 工具条上设置固定宽高背景可以设置被包含可以完美对齐背景图和文字以及制作自己的模板下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。样品变角度透射测试采用自动可变角附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,无需多次操作,测试曲线如下图所示。图2 样品不同角度和偏振态下透射率测试数据样品变角度透射/反射曲线测试同一个样品,可以通过软件设置一次性测试得到样品透射和反射率曲线,如下图所示,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。图3 样品45度透射和反射曲线测试NIST标准铝镜10度反射率曲线测试采用自动可变角附件测试NIST标准铝镜10度下反射率曲线,如下图所示,黑色曲线为自动可变角附件测试曲线,红色为NIST标准值曲线,发现两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。图4 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。图5 样品全波段(200-2500nm)变角度反射率测试不同膜系设计的镀膜样品性能验证测试样品600-1400nm下45度反射率曲线,该样品在1200nm以上属于高反射率,反射率大于99.5%,同时需要关注600-1200nm范围各个吸收峰情况,该波段下吸收峰非常尖锐,同时吸收峰较多,需要仪器具备高分辨率,从而准确测试出每一个尖锐吸收峰信号。图6 膜系设计验证样品45度反射率测试双向散射分布函数(BSDF)测试除了测试常规变角度透射和反射曲线外,自动可变角附件可以自动测试样品不同角度下透射和反射率信号,可以得出样品不同角度下的透射分布函数(BTDF)和反射分布函数(BRDF)信号,最终得到双向散射分布函数(BSDF)。采用该附件可方便测试样品双向散射分布函数(BSDF)、双向反射分布函数(BRDF)、双向透射分布函数(BTDF)等光学参数测试,测试结果如下图所示:图7 BRDF和BTDF测试如下图所示,测试样品不同波长下BSDF分布函数曲线(BRDF + BTDF),从而可以得出样品随不同角度下透射和反射信号变化情况。图8 样品不同波长下BSDF(BRDF+BTDF)测试窄带滤光片测试Lambda系列光谱仪为双样品仓设计,自动可变角测试附件可与标准检测器、积分球检测器自由更换。对于窄带滤光片样品,即需要准确测设带通区域的透过率、半峰宽,也需要准确测试截止区吸光度值(OD值),可直接切换标准检测器进行检测。图9 用于生物识别的滤光片透射和OD值测试数据图10 用于激光雷达的镀膜镜片透射和OD值测试数据综上,采用Lambda系列紫外/可见/近红外分光谱仪,搭配自动可变角测试附件、标准检测器、积分球等多种采样附件,可以组合出完备的材料光学性能测试平台,满足光学镀膜测试的多样化需求,更加准确便捷地得到样品的光学检测数据。
  • 玻璃行业中的透射与反射色彩质量测量—色差仪
    玻璃作为一种常见的材料,广泛应用于建筑、汽车、家具等领域。在玻璃行业中,透射和反射是两个重要的性质。透射涉及玻璃对可见光的透明程度和色彩表现,而反射关乎玻璃表面镀膜的效果。本文将介绍如何使用在线ERX55分光光度仪和ColorXRAG3色度分析仪来监控色彩质量和测量玻璃镀膜的反射率。透射是玻璃行业中最重要的光学性质之一,它决定了玻璃对可见光的透明程度和色彩表现。当光穿过玻璃时,会受到折射现象的影响。折射是光在从一种介质传播到另一种介质时改变方向的现象。这种折射现象使得玻璃能够将光有效地传播到玻璃的另一侧,使我们能够透过玻璃看到外面的世界。在玻璃行业中,透射率是一个重要的参数。透射率定义为通过玻璃的光强与入射光强的比值。透射率越高,玻璃对光的透明度就越好。而对于特定波长的光,其透过玻璃的能量与光谱分布有关,因此,不同类型的玻璃可能对不同波长的光具有不同的透射率。透射率的测量通常使用分光光度计来完成。在线ERX55分光光度仪是高精度的测量仪器,可以用于测量透明薄膜的色彩、可见光透射和雾度,持续监控色彩质量。通过持续监控透明薄膜的色彩质量,生产厂家可以确保产品的一致性和稳定性。反射是另一个在玻璃行业中需要关注的光学现象。反射率是一个指标,用于衡量光线在物体表面反射的程度。在玻璃制造过程中,常常会在玻璃表面进行涂层处理,这些涂层能够改变玻璃的反射性能。通过合理设计涂层,可以实现特定的反射率,使玻璃在特定波长范围内表现出所需的特殊光学效果,如防紫外线、隐私保护等。玻璃作为非散射性物体,在传统的直接照明测量设备中无法准确提供色彩数据。为解决这一问题,ColorXRAG3色度分析仪成为了一种重要工具。该设备具备宽波长范围(330nm到1,000nm)和高光学分辨率(1nm),可在实验室中安装在支架上,对放置在样品支架上的玻璃板进行测量。同时,它也可用于在线测量,安装在玻璃板上方的横梁用于测量低辐射玻璃,或安装在玻璃板下方用于测量遮阳镀膜。ColorXRAG3色度分析仪具有紧凑型设计,可从距离玻璃板10mm处捕获非散射性样品的光谱数据和色彩反射值,甚至能鉴定多银层镀膜。该仪器采用氙气闪光灯,同时采用+15°:-15°、+45°:-45°和+60°:-60°三种光学结构,每秒进行一次测量,以实现全方位的色彩数据获取。其中,±15°的测量值与传统实验室测量的积分球光学结构结果相同,而±45°和±60°的测量值则可以显示不同观察角度下的色彩变化。ColorXRAG3色度分析仪的应用为玻璃行业提供了一种高效、准确的色彩测量解决方案,使生产厂家能够更好地控制透射与反射性能,提高产品质量,并满足不同市场需求,推动玻璃行业的持续发展。透射和反射是玻璃行业中非常重要的光学现象。透射性能决定了玻璃的透明度和色彩表现,而反射率则与玻璃表面的涂层处理密切相关。使用在线ERX55分光光度仪和ColorXRAG3色度分析仪,可以对玻璃产品的透射性能和反射性能进行精确测量和监控,从而保证玻璃产品的质量和性能达到预期要求。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 透射与反射测量技术关键工具及颜色测量方法
    在现代科学研究和工业应用中,精确的物质性质测量是至关重要的。特别是在材料科学、光学工程以及生物医学领域,透射测量与反射测量技术的应用日益增多,它们在各自的领域内发挥着不可替代的作用。透射测量是指测量光线通过物质后的强度变化,以此来分析物质的特性;而反射测量则是基于光线打到物质表面后反射回来的光强变化进行分析。这两种测量技术虽然操作原理不同,但都旨在通过光与物质的相互作用来揭示物质的内在属性。一、透射测量与反射测量的比较分析透射式和反射式分光光度计均能利用光源的闪烁特性,覆盖360至750纳米范围内的全部波长光线进行照射。通过对透射光或反射光的测量,这些设备能够创建出色彩的量化图谱(即色彩“指纹”)。在反射光谱中,主要波长决定了颜色的属性。紫色、靛蓝及蓝色属于短波段,波长介于400至550纳米之间;绿色处于中波段,波长在550至600纳米;而黄色、橙色及红色表示长波段光。对于光亮增白剂(OBA)和荧光剂这类特殊物质,它们的反射率甚至可以超过100%。反射式分光光度仪通过照射光源至样本表面并记录以10纳米步长测得的反射光比例,以此来分析颜色。这种方法适用于完全不透明的物质,通过反射光的量化,可以准确测量其色彩。而配备透射功能的分光光度仪则是通过让光穿透样本,使用对面的探测器来捕获透过的光。这一过程中,探测器会测量透射光的波长及其强度,并把它们转换成平均透射率的百分比,以量化样本的特性。尽管反射模式能够用于分析半透明表面,但准确了解样本的透明度是必须的,因为这直接关系到最终数据的准确性。二、样品确实不允许光线穿透吗?测量透射率与评估不透明度并不总是等同的,因为不透明度涉及两个方面:是否能遮挡视线穿过的表面或基质,以及材料允许光线通过的程度。通常,您可能会认为您的手是不透光的,从某种角度来看,这是正确的。然而,当您把手电筒紧贴手掌并开启时,会发现光线能够从手的另一侧透射出来。半透明与透明材质的本质区别半透明材料允许光线穿透,却不允许清晰的视线通过。举个例子,经过蚀刻处理的浴室塑料门便是半透明的。相比之下,透明材料,如普通的玻璃板,可以让人从一侧清楚地观察到另一侧的物体。三、实际应用及解决方案考虑到涂料,当其涂布于墙面时,其不透明性足以覆盖下层材料,阻止透视效果。但要准确评估涂料的不透明度,我们需采用对比度分析法。一旦应用于基底,涂料通常表现出高不透明度,使得Ci7500台式色差仪成为其测量的理想工具。至于塑料,虽然肉眼看来我们可能无法通过塑料样本看穿,但它们可能具备一定的光透过性。比如,外观不透明的塑料瓶,在未经测试前其真实透光性难以判断。以过氧化氢瓶为例,其内容物若暴露于阳光下会迅速分解,因此这类瓶子通常呈棕色,以屏蔽阳光。然而,置于强烈光源下,这些瓶子是能透光的。鉴于成本考虑,过氧化氢瓶的制造尽量保持不透明。在纺织品的应用上,选择分光光度仪时需考虑具体的使用场景。美国纺织化学师与印染师协会(AATCC)推荐将样品折叠至四层以确保不透明度的测量。这一方法对于测量厚实的织物如灯芯绒裤或棉质卷料足够有效,但对于透明或薄的半透明尼龙材料,采用其他量化技术可能更为合适。请记住,在测量特定允许一定光线透过的纺织品时,按照ASTM的203%遮光测试标准,必须使用具备透射功能的分光光度仪进行测量。Ci7600台式分光光度仪、Ci7800台式分光色差仪和Ci7860台式色差仪均支持透射和反射模式测量,它们为需要同时评估不透明与半透明样本的应用场景提供了理想解决方案。这些设备能够执行三种主要测量方式:①直接透射测量:针对完全透明的样本设计,如塑料拉链袋和清晰的玻璃板。②全透射测量:适合那些允许光线穿透但视线模糊的半透明样本,比如橙汁、洗涤液以及2升容量的塑料瓶。③雾度测量:针对那些能够散射光线的半透明样本,如汽车尾灯的塑料覆盖件,这类样本散射红色光线,而不直接显露灯泡和灯丝。若您的需求仅限于测量完全不透明的表面,Ci7500台式色差仪或许更符合您的需求。然而,如果您的主要测量对象为不透明表面,偶尔也需测量一些允许光线透过的物体,那么具备透射测量功能的设备,如Ci7600台式测色仪或更高端的型号,将是更合适的选择。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 光伏材料的角度分辨反射/透射分析
    光学镀膜材料在太阳能行业应用广泛:由化学气相沉降法生成的氧化锌涂层,自然形成金字塔形表面质地,在薄膜太阳能电池领域被用于散射太阳光。将不同折射系数的高分子材料排列组成的全息滤光镜,将太阳光在空间上分成不同颜色的色带(棱镜一样),将不同响应波长的光伏电池调到每个波长的焦距处,从而形成一种新型的多结太阳能电池。位于硅太阳能电池前部的纳米圆柱形硅涂层起米氏散射的作用,因此增加了在更宽入射角范围和偏振情况下的光被太阳能电池的吸收。曲面型光电模块的渲染和原理图。3M可见镜膜能够使模块在可见光区表现为镜像,而在近红外光区变为黑色。对于所有的光学涂层——特别是那些非垂直角度接收阳光或者阳光入射的涂层,表征波长、角度和偏振测定的反射和入射就尤为关键。PerkinElmer公司的自动化反射/透射附件ARTA,可以测定任何入射角度、检测角度、S和P偏振光在250-2500nm的范围内的谱图,从而告诉我们:所有的入射光都去哪儿啦?装备了ARTA的LAMBDA紫外/可见/近红外分光光度计样品3M可见光镜膜:吸收紫外光,反射可见光,透过红外光。仪器PerkinElmer公司的LAMBDA 1050+紫外/可见/近红外分光光度计。150mm积分球,Spectralon涂层积分球包含硅和InGaAs检测器,检测样品200-2500nm的范围内的总透射谱和总反射谱。装备了150mm积分球的LAMBDA紫外/可见/近红外分光光度计ARTA,配备PMT和InGaAs检测器的积分球(60mm),能在水平面上围绕样品旋转340°,进行角度分辨测量。3M薄膜固定在ARTA样品支架上的照片实验结果用150mm积分球附件测量的3M薄膜的总反射和总透射谱图。薄膜在750nm附近具有预期的突变,在此处有将近100%的可见光反射率和约90%的红外光透射率。3M薄膜对于s(左图)和p(右图)偏振光的角度分辨反射谱图。对于所有的偏振情况,直至50˚的范围内反射到透射的转变都很急剧,但是有轻微的蓝移。对于入射角在约50˚以上的情况,s偏振光的转换终止,并且薄膜开始失去对光谱的分光功能。这种情况的一个明显后果就是在冬天或者纬度高于30˚的区域的夏季月份,曲面型光电镜片的工作效率都很低。更多详情,请扫描二维码下载完整应用报告。
  • 定制镜面反射测量附件
    1. 镜面反射附件可以用来干什么呢? 镜面反射与我们的日常生活密切相关,如利用镜面反射进行照明和聚集能量的日光灯灯罩、高原上的太阳灶,另外,一些显示器面板,如电脑、手机的显示屏,需要使用增透膜(AR涂层),减少镜面反射,从而让屏幕的画面更清晰,减少鬼影和光斑。 在研发生产或质量检测中,需要对这些元件进行镜面反射测定,据此评价它们的性能。由于这些元件的种类多样,需要测定不同固定角度下的镜面反射,因此定制不同入射角的镜面反射附件可以直接测定不同元件的镜面反射率,提高评价效率。可用于测定光学玻璃,塑料,滤光片,镜子等样品。能够为从事玻璃,滤光片及化学领域的客户带来解决方案。2.镜面反射附件是什么样子的呢? 日立紫外-可见-近红外分光光度计UH4150在镜面反射测量中,可以提供4种固定入射角的标准选配附件,分别是5°,12°,30°和45°。凭借丰富的研发经验,日立可以定制不同固定入射光角度的镜面反射附件。附件的详细信息,请点击以下链接。https://www.instrument.com.cn/netshow/sh102446/s926340.htm有任何关于日立定制附件的问题,请拨打: 400-630-5821
  • 定制高反射样品测定附件
    1. 为什么需要定制高反射样品测定附件?一些光学镜,DVD或蓝光光碟,相机等的光学组件,反射率接近100 %,测定这类样品时,使用VN法得到的测量结果会超过100 %,不能得到样品的实际反射率。定制高反射率测定附件则可以解决这个问题,测定结果不会超过100 %,而且重现性高,这是光学薄膜领域进行研究的有利工具。使用VN法45度镜面反射附件和定制高反射样品测定附件对同一高反射样品重复测量五次,结果如图所示。可以看到定制高反射样品测定附件得到了高重现性和高精度的数据。 数据对比2. 定制的高反射样品测定附件是什么样的呢?这款附件是日立工程师和客户一起研发的,是只有日立才有的测量技术。入射光的角度为固定45度角,使用两个样品进行测量,光在两个样品之间进行多次反射。 附件详细信息猛戳以下链接: https://www.instrument.com.cn/netshow/sh102446/s926991.htm 有任何关于定制附件的问题,请拨打电话:400-630-5821
  • 光的反射和折射定律改变将衍生新型光学元件
    中国学生在哈佛大学做博士后研究发现  人工界面改写光的反射和折射定律  光的折射和反射定律是几何光学的基础。但是美国哈佛大学物理学家用一系列实验演示了光线的传播可以不遵从这些经典定律。这意味着,或许有一天当你用一块平面镜端详自己容貌时,看到的却是哈哈镜的变形效果。  光在不同介质中的传播速度不一样。当一束光从空气中斜射向水中,光束的传播方向会发生改变,这就是所谓的折射现象。它的准确表述即折射定律是很多年前由物理学家斯涅尔、数学家笛卡尔以及费马确立的。这一定律表明,光线在界面的折射角仅由光在两种物质中的传播速度决定。而早在古希腊时期由欧几里德发现的反射定律更简单:光的反射角等于入射角。  经典的反射和折射定律都很自然地认为一个界面仅仅是区分两种物质的理想边界,换句话说,是两种介质而不是它们的截面影响了光的传播。哈佛大学研究人员的创新在于意识到界面可以成为决定光的传播的因素。他们的实验表明,精巧设计的界面能够干预光的传播。  研究人员利用硅片和空气界面处一层薄薄的金属阵列来演示一系列违背经典反射和折射定律的现象。这个阵列中的每个组成单元都类似微小的英文字母“V”,其大小和间距都远小于光的波长以及入射光束横截面的尺寸。这些“V”字形的单元的大小、夹角和朝向都不同,这样设计是为了控制光波和不同单元的相互作用时间:每个金属“V”都类似一个光的陷阱,能够将光波“囚禁”一段时间再释放出来。  阵列的设计使得这个“囚禁”时间沿界面从右向左线性增加,这样即使垂直入射,光束不同部分经历不同的时间延迟,透射以及反射光束就不再沿着垂直于界面的方向传播了。而当光以倾斜的角度入射,按不同的“界面”设计,反射和折射光可以被操纵朝向任何方向。反射角不一定等于入射角,反射光甚至可以被“反弹”回光源方向,而不是像一般情况那样折向远离光源方向。这就是平面镜可以有哈哈镜的效果的原因。  这项成果2日发表在美国新一期《科学》杂志上,第一作者虞南方目前在哈佛大学工程和应用科学学院做博士后研究,虞南方2004年本科毕业于北京大学电子学系,2009年在哈佛大学获博士学位。  利用界面来控制光束不同部分的时延是一个具有革新意义的概念。虞南方告诉新华社记者,他们已用这种人工界面产生了“光涡旋”,这种奇异的光束在空间里螺旋前进,因而可以用来操纵旋转微小的悬浮颗粒。他预计,这一概念将衍生出一系列有用的光学元件,比如可以纠正相差的超薄平面聚焦镜片、可以采集大范围入射阳光的太阳能汇聚装置。哈佛大学目前已就这一成果提出专利申请。
  • 太阳能材料反射率测定方法
    材料的表面反射率是目前太阳能行业中最常关注的测试项目之一。这类测试所涉及到的样品种类繁多,包括金属反射涂层、半导体材料与涂层以及防护玻璃上面的防反膜等。很多材料的反射同时包含了镜面反射和漫反射两种类型,这对测试方法是否能将光谱干扰降到最低、获得准确的反射率数据提出了挑战。材料表面的反射类型:A.镜面反射;B.漫反射镜面反射镜面反射率可以用不同类型的镜面反射附件(例如VW型反射附件、VN型反射附件和通用反射附件URA)进行测量。VN型反射附件(单次样品反射)和VW型反射附件(两次样品反射)是根据背景(V)和样品(N和W)测量模式的几何光路而命名。背景和样品测量模式切换过程中镜子的移动是手动操作的。URA是一种可变角度、单次样品反射的VN型附件,其中镜子的移动和入射角度的选择完全由软件控制电子步进马达自动调节。PerkinElmer的通用反射附件URA漫反射漫反射率可以用积分球进行测量。测试光线分别经过参比光路和样品光路中的光学元件,通过Spectralon积分球表面开口,进入球体内部的参比窗口和样品反射窗口。积分球体积越大,开口率越小,测试准确率越高。PerkinElmer 150mm积分球内部检测器前面安装了具有Spectralon涂层的挡板,避免了样品初次反射光线进入检测器。PerkinElmer的150mm积分球及光路示意图■ 测试样品 样品描述1镜面反射成分很少的漫反射材料2反射强度较低的镜面涂层3中等反射强度的镜面涂层4反射强度较高的镜面半导体材料■ 光谱结果 样品1(左上)、2(右上)、3(左下)、4(右下)的光谱。黑色曲线为150mm积分球测量结果,红色曲线为60mm积分球测量结果,绿色光谱曲线为URA测量结果。样品1:150mm积分球测量的光谱强度更高,因为该积分球的窗口面积比例低于60mm积分球。因此更多的样品漫反射光线可以被收集起来,更接近准确值。样品2:150mm积分球测量结果与URA附件测量结果非常接近。60mm积分球测量结果的反射率偏高,这是因为热点区域主导并且富集了检测器所测量的光线。此外,积分球内部的漫反射光线很少,因此基本没有光线通过开放窗口逃离。样品3:60mm积分球测量的光谱存在波长漂移和强度平移的问题。150mm积分球与URA附件测量的光谱之间存在一些不规则的差异。样品4:60mm积分球和URA附件的测试结果差异明显(5%R),150mm积分球与URA附件所测量的样品光谱也不再重叠。结论镜面反射非常强或者完全是镜面反射的样品需要使用URA、VN或者VW等绝对镜面反射率附件进行测量。太阳能行业的一些材料具有很强的镜面反射,但是也含有少量的漫反射成分。对于这种类型的样品,可以使用150mm积分球来测量。通过测量铝镜消除热点产生的光谱干扰,获得可以接受的绝对反射率数据。如果样品与参比铝镜的反射率比较接近,可以获得最佳的测试结果。更多详情,请扫描二维码下载完整应用报告。
  • 微型光谱仪之反射检测
    1、技术简介  光在两种物质分界面上改变传播方向又返回原来物质中的现象,叫做光的反射。正是因为光在物体表面发生的反射,我们的眼睛才能感知到周围的世界的颜色与景象。反射是通过光入射到物体表面后在不同波长段的反射率差异引起。光谱仪获得的反射光谱信息就像人眼所见到的视觉内容一样,但是光谱信息更为数据化、更客观。反射测量可以测试物体的颜色,或者通过判定物体的反射光谱差异进行多样品的筛选和品控。 镜面 粗糙表面图5.1 反射原理图  2、 应用说明  由于某些检测样本的特殊性,不能完全依赖于化学方法进行检测,反射光谱模型作为一种迅速、高性价比的检测方法,可以作为化学分析方法在其他应用领域的替代方案,甚至可以直接用来测试粉末状样品。反射光谱检测方法不能判定是否适用于被测目标样本的原有模样,所以还是需要尝试多次对照测试它们的反射光谱,提高光谱数据的准确性。  化学分析的方法可以用来提高最低检出限,并确定掺杂成分,但是光学的方法可以进行预先的快速查看与筛选。将反射光谱检测与化学计量学相结合,利用可见光和近红外漫反射光谱提供快速、无损的检测。在实际检测中,可以分析不同的样本之间的差异。数学上来说,主成分包含在了定义的所有波长多维空间的范围内。主成分使我们能够获得多维数据集和重要维度,然后从无意义的噪音中分离出有意义的信息。  食品安全:香料检测,香蕉成熟度分析,芒果与鳄梨区分检测等   自然环境:水体汞污染监测,农作物分析等  3 、典型产品和配置  颜色检测配置:  1. 光谱仪  2. 光源  3. 积分球:积分球可以180° 收集样品表面的反射光,所以它能尽可能多地收集样品表面的反射光。反射式积分球还能使用在弯曲表面,或者颜色测量。它能将样品表面发射的光很好地在积分球内部进行匀化,然后再耦合到光谱仪。反射光通过圆形的入射光孔径进入积分球,然后经过分球内壁涂抹的特殊涂层材料的均匀反射。图2 积分球示意图  4. 反射探头:当需要快速测量样品或者应用在样品表面非常小的采样点时,反射探头既可以测量镜面反射,也可以测量漫反射,而且可以基于光源和光谱仪的配置不同,选择不同类型的扩大波长范围的反射探头。探头的发射光和反射光是同一方向的,接收到的光是反射光的一部分,所以使用反射探头测量反射光谱是一种相对测量。图3 反射探头  5. 采样附件(光纤、滤光片、透反射支架、动态样品台等):透反射支架用来固定反射探头的标准配件,同时也可以用于透射测量。使用透反射支架,可以有效地减少光源对样品的过度加热,对于生物样品或者有机样品,还有那些低熔点的样品非常重要 动态样品台,基于样品台旋转或者直线移动来对样品进行测量,并获得测量的平均信号。这种测量方式避免了结果的多样性,提高了样品测量的均一性结果,特别是对于谷物、种子和土壤类等不均一的样品,是比较理想的选择。 图4 反射支架和样品台  6. 准直透镜:在做反射测量时,准直透镜可以使用在光纤的末端来准确地固定入射光和反射光的角度。镜面发射或者漫反射都可以使用这样的测量方式,但是我们需要固定夹具来对测量系统进行固定。准直透镜必须预先调焦来避免光束的发散,来保证获得更好的光谱。  7. 光谱仪控制软件图5 反射检测典型配置  典型配置  典型产品:高灵敏度光谱仪,光源,滤光片,积分球,透反射支架,动态样品台,准直透镜  4 、应用文章  4.1 香料掺假检测图6 不同香料检测光谱  4.2 香蕉成熟度检测图7 不同成熟度香蕉光谱图  4.3 芒果与鳄梨区分检测图8 芒果与鳄梨检测光谱  4.4 基于SPR快速检测花生过敏源图9 过敏源光谱  4.5 无人机智能农业检测 图10 无人机农业检测光谱图  4.6 农作物成分检测图11 农作物成分光谱图  4.7 水体汞污染监测图12 水体检测光谱图(来源:海洋光学)
  • 教你如何测定微小样品的透过率、反射率
    随着机器的小型化趋势,光学部件也在不断微小化,如摄像镜头中的透镜、传感器部件、光盘中的拾音器组件等。因此微小样品的准确测量十分必要。要准确获得这些微小样品的测定,需要缩小入射光束,以使光斑照射到样品上。日立开发了各种微小样品测量附件,为光电领域提高解决方案。1. 微小样品的透过率测量使用日立UH4150选配微小样品透过率测定附件和全积分球,利用φ1 mm 掩光膜即可测定透镜的透射率。图1 小尺寸透镜的外观 图2 两种透镜的透过光谱 微小样品透过率测定附件由聚光透镜、参比光束光阑以及微小样品支架构成,可准确测定微小样品和任意微小零配件的透射率。微小样品支架可搭载最大直径为φ20mm的样品,标配φ3mm的掩光膜,用户也可选配φ1mm的掩光膜等。图3 微小样品透过率测定附件 2. 微小样品镜面反射率的测定手机镜头和车载摄像头中图像传感器的红外截止滤光片尺寸微小,使用UH4150选配微小样品5度绝对反射附件即可测定滤光片的反射率。图4 红外滤光片的镜面反射光谱 可以看到滤光片在可见区的反射率低,在近红外区的反射率较高。微小5 °镜面绝对反射附件由反射附件、聚光透镜、参比光束光阑以及微小样品支架构成。与5 °镜面反射附件(标准)相比,样品位置的光束较小,支持微小样品反射光谱的测定。图5 微小样品反射率测定附件3. 微小样品的全反射率测定使用日立UH4150 搭配微小样品全反射/漫反射测量附件,测量了LED灯反射板的全反射率。图6 LED灯的反射板测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝对值,得到全反射光谱如图所示。图7 LED 灯反射板的全反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。综上案例,使用具有大型样品室的日立紫外可见近红外分光光度计UH4150,容易构建不同样品的光学测量系统,可搭配多种附件,实现低噪音测定微小样品。拨打 4006305821,获取更多信息
  • 首个中红外波长超级反射镜制成
    来自奥地利、美国和瑞士的科学家组成的国际科研团队,研制出了首个中红外波长范围超级反射镜,有望用于测量微量温室气体或用于切割和焊接的工业激光器等领域。研究论文发表于最新一期《自然通讯》杂志。在可见光波长范围内,现有金属反射镜的反射率为99%。在近红外范围,专用反射镜涂层的反射率高达99.9997%;但迄今最好的中红外反射镜的反射率为99.99%,光子丢失率是近红外超反射镜的33倍。人们一直希望将超反射镜技术扩展到中红外领域,以促进很多领域取得重大进展,如测量与气候变化有关的微量气体、分析生物燃料,以及提升广泛应用于工业和医疗领域的切割激光器和激光手术刀的性能等。此次,研究团队研制出的中红外超反射镜的反射率高达99.99923%。为制造出中红外超级反射镜,研究团队结合传统薄膜涂层技术与新型半导体材料和方法,开发出一种新涂层工艺。为此,他们先研制出直径为25毫米的硅基板,然后让高反射半导体晶体结构在10厘米的砷化镓晶片上生长,接着将其分成更小的圆形反射镜,再将这些反射镜安装到硅基板上,得到了超级反射镜并证明了其性能。研究人员指出,这款新型超反射镜的一个直接应用是显著提高中红外气体分析光学设备的灵敏度,可准确计量微量环境标志物,如一氧化碳等。
  • 日立应用|平板液晶电视中反射膜的光学评估
    液晶电视给我们的生活增添了更多光彩,几乎每家每户都在使用液晶电视获取信息或娱乐消遣。其中增亮膜、反射膜、扩散膜、导光板等是液晶模组的重要组成部分。分光光度计是检查光学组件特性的有利工具,今天我们重点介绍平板液晶电视中反射膜的评估。液晶模组内部结构液晶模组中的反射膜通过将光从导光板反射到正面来提高亮度。因此要求反射膜具有极好的反射特性,从而对光进行有效的利用。反射膜使用日立紫外-可见-近红外分光光度计UH4150搭配5°绝对反射附件、积分球检测器评估液晶显示屏中的反射膜。实验测量了三种反射膜的反射率,结果如图4所示。5°绝对反射附件 三种反射膜的反射光谱各反射膜的光反射率光源:D65视角:2°结果表明,样品C有最高的反射率,可以更好的利用光,增加显示的亮度和效果。日立紫外-可见-近红外分光光度计UH4150具有优异的平行光束特征,确保反射率和透过率的准确测定,大型样品仓和多种多样的附件,满足液晶模组中不同组件的评估。 UH4150公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • Spectralon®对比和多级漫反射目标板
    Spectralon对比目标板完全适合下列应用:摄像机、光密度计的校准,传输介质的对比度传递,以及在野外条件下的成像系统测试。这类具有化学惰性的目标板耐用、耐洗,它们由并排装在同一个阳极处理铝框上的白色漫反射面板(反射比为99%)和深灰色漫反射面板(反射比为10%)组成。Spectralon多级目标板由并排安装的四块板组成,这四块板的反射比值分别为99%、50%、25%和12%,且每块面板与相邻面板之间的光密度差值和对比度相同。
  • Zenith Polymer® 白色漫反射片
    用于背光系统的耐用、超实惠漫反射片独特的属性Labsphere的Zenith漫反射片由聚四氟乙烯聚合物制成,具有独特的光学性能。薄片为各种光散射应用提供漫透射,并为各种背光应用提供漫反射和耐用性。该材料非常适合用作辐射测量和光度扩散以及一般背光、平板和显示器的应用。各种尺寸和厚度Zenith漫反射片的厚度为100 μm、250 μm、500 μm、1 mm和2 mm,在250 ~ 2500nm波长范围内的透射值约为4% ~ 50%。可根据客户要求定制尺寸和厚度。 特点: 朗伯特性耐久性、易清洗高透射率,低反向散射特性应用:辐射测量和光度扩散普通背光照明平板显示器订购信息
  • 英国Pickering公司推出新款基于MEMS的射频开关模块
    Pickering Interfaces与Menlo Microsystems的合作将新的开关技术引入PXI射频多路复用开关,以显著地提高性能。2023年6月26日,于英国Clacton-on-sea。Pickering Interfaces公司作为生产用于电子测试及验证领域的信号开关与仿真解决方案的主要厂商,于今日发布了一款采用新的开关技术的PXI/PXIe射频多路复用开关模块新产品。新款基于MEMS的射频多路复用开关是无线通讯和半导体测试的理想选择,与传统 EMR(电磁继电器)开关相比,操作寿命大大延长(高达300倍)、切换速度更快(高达60倍)、带宽更高,射频功率处理能力更强。插入损耗也与EMR相当,并且远低于固态开关。   新产品家族基于Menlo Microsystems的Ideal Switch®构建。这是首款性能特性能够支持要求严苛的射频测试环境,比如半导体、消费者无线设备和各种S波段的应用(包括移动服务、卫星通讯和雷达)的商用MEMS组件。“Pickering多年来一直在密切关注MEMS(微机电系统)技术,”Pickering Interfaces的开关产品经理Steve Edwards说。“Menlo Micro凭借Ideal Switch成为第一家提供满足射频测试所需规格的量产MEMS开关的公司。”   Menlo Microsystems的创始人兼全球营销高级副总裁Chris Giovanniello指出:“我们与Pickering Interfaces的合作伙伴关系建立在专注于下一代射频产品和应用的五年合作之上。“现在,我们的 Ideal Switch 已被Pickering用来构建首批射频多路复用开关,我们期待进一步推进我们的创新技术的发展。”   40-878 (PXI)和42-878 (PXIe)是50Ω 4:1 射频多路复用开关。为了适应不同规模的测试应用,40/42-878系列提供单组、双组或四组多种规格选择,都仅占用一个PXI或 PXIe机箱插槽。用户可以灵活地选择机箱,最大程度地减少所需插槽的数量。40-878也可以在Pickering的所有LXI/USB模块化开关机箱中安装使用。因此,受PXI、LAN或USB控制的不同的开关解决方案具有相同水平的高性能。该模块提供SMB或MCX连接器,用户可以选择最适合其应用的接口。另外,Pickering还提供类型齐全的线缆解决方案。   Pickering的开关产品经理Steve Edwards对新产品作了说明:“40/42-878系列提供大于30亿次的操作寿命,远超基于EMR的解决方案(通常为1千万次操作),最大程度地减少由于继电器损坏或需要维护造成的系统停机。仅50us的切换速度使得这些开关可以在EMR的一次切换时间内进行多次切换,因此最大程度地减短了测试周期时间,以及提高了系统吞吐量。快速切换的优点使得这款产品适用于类型广泛的各类应用。”   “另外,40/42-878提供4GHz的带宽(现有的EMR产品带宽为3GHz),可以支持新的更高频率的测试要求,因此有助于延长测试系统的使用寿命。提高了带宽的同时也提高了射频承载功率,超过了EMR解决方案的10W功率。”Edwards说:“最后,与固态解决方案不同,40/42-878中使用的MEMS开关具有低插入损耗,在4GHz时通常小于1.4db —— 与EMR解决方案相当,但具有基于MEMS设计的所有优势。”   40/42-878系列随附驱动程序,可在所有主流的软件编程环境中使用。在操作系统方面,支持所有微软当前的Windows版本和主流的Linux版本,以及其他实时硬件在环(HiL)工具。另外,Pickering为所有模块提高三年质保。
  • 如何测定潜望式镜头中棱镜的反射率?
    1. 前言智能设备的功能日益多元化,如人脸识别、测距、AR功能等。其中,相机在追求高分辨的同时,还要求外形小巧、高倍率变焦。传统相机镜头通过与智能设备垂直放置,实现高倍变焦,但变焦倍率越高,所需焦距越长,需要占用一定的纵深空间安装镜头,造成镜头部分较厚。图1 传统镜头示意图现在大多数手机制造商通过搭载潜望镜式镜头,实现了相机的小巧与高倍率变焦。潜望镜式镜头平行于智能设备安装,并通过棱镜改变光路方向,将焦距所需要的厚度转化为与智能设备平行的长度,同时实现了超薄化与高倍率变焦。图2 潜望式镜头的示例因此,测定潜望式镜头中棱镜的反射率至关重要,但棱镜元件尺寸很小,准确测定其反射率需要专业的附件。日立紫外可见近红外分光光度计UH4150可以选配微小棱镜测定附件,并通过专业定制支架测定潜望镜式镜头中的棱镜。2. 应用数据附件:微小棱镜附件,标配两种样品支架,适用于5~6mm立方体和7~20mm立方体;偏振附件图3 微小棱镜附件本次实验使用定制支架测定两种尺寸为5mm的直角棱镜。直角棱镜巧用临界角,可以使光路偏转90度。测定时,采用偏振附件求出S偏振和P偏振的反射率,分别计算出S、P偏振光的平均值。图4 两种棱镜的反射光谱测定结果表明即使是微小棱镜,也可得到低噪音的光谱,从而有效评价样品的光学特性。3. 总结棱镜是常用的光学元件,日立UH4150凭借优异的平行光束性能,通过安装精密的微小棱镜附件,可为小尺寸棱镜的光学评价提供准确的解决方案。
  • 蓝菲光学推出业界最高反射率的标准板和目标板
    Spectralon® 漫反射标准板和目标板  蓝菲光学(Labsphere)近日推出了Spectralon® 漫反射标准板和目标板,该产品已经达到NVLAPISO17025技术指标和管理体系要求,这表明其有能力提供有效的常规技术测试结果和校准。蓝菲光学的标准板能提供业界最高的漫反射率,同时具有很好的化学稳定性。  对于任何的已知物质,Spectralon® 漫反射标准板和目标板都能给出最高的漫反射率,并有灰色、白色等多种颜色可选。耐用且化学稳定性好的Spectralon® 材料在紫外-可见-近红外(UV-VIS-NIR)光谱区域内光谱分布非常平坦。此材料在250–2500nm的波长范围内的反射率波动不超过+/-4%,在可见波段内其反射率波动不超过±1%。Spectralon® 漫反射标准板和目标板在250-2500nm的波长范围内其朗伯特性最好。  蓝菲光学具有NVLAPISO17025的校准实验室资质,其也已经获得了NVLAPISO17025认证。之前,蓝菲光学还通过了NVLAPLab200951-0认证,成为可以校准全光谱通量标准灯和前通量标准灯的实验室。蓝菲光学在有关部门对其工程、制造和校准部门进行严格的现场评估和技术鉴定后,最终获得了这两项认证。美国国家实验室自愿认可组织(NVLAP)受美国国家标准技术研究院(NIST)管理。  NVLAP认证表明,蓝菲光学在其质量体系、工程专业知识、技术人员、测试和校准方法、实验室设备和环境、测量的可追溯性、测试和校准用具的处理、以及测试和校准报告的准确性方面,都严格遵照指导进行操作。
  • 基于地物光谱应用,干旱胁迫下的水稻反射率表现
    水资源短缺是目前制约农业生产的一个全球性问题,近年来,全球水资源供需矛盾更加突出。对于中国而言,有43%的面积为干旱和半干旱地区,并且中国的水量分布在时间和空间上也存在非常巨大的不均衡性,这使得中国的水资源供需矛盾更加尖锐,是中国农业生产面临的最?大危机之一。自21世纪以来,中国每年都会发生大强度的干旱,受灾面积往往波及数个省,如2010年西南地区发生的大旱灾,有将近5000000hm2的农作物受害,造成190多亿元的经济损失。水稻作为中国第?一大粮食作物,研究不同干旱胁迫对水稻的影响以及研发出抗干旱品种对农业发展尤为重要。在遥感领域中,为了研究各种不同地物或环境在野外自然条件下的可见和近红外波段反射光谱,需要适用于野外测量的光谱仪器。地物光谱仪在户外主要利用太阳辐射作为照明光源,利用响应度定标数据,可测量并获得地物目标的光谱辐亮度 利用漫反射参考板对比测量,可获得目标的反射率光谱信息。实验过程及结果本实验旨在理解不同干旱胁迫下水稻基本型的表现,测量了10种在不同干旱威胁水平下导致相对含水量(RWC)不同的水稻的光谱数据,如图1所示。图1该实验显示了不同干旱胁迫下水稻的反射率模式。1) 在水稻含水量(RWC)降低时,由于1400nm和1900nm这两处水吸收特征峰减弱,导致近红外区域反射率增加。2) 对于350-700nm波长区域也有着类似的变化,在叶绿素a和叶绿素b的吸收范围中,反射率随着RWC降低而升高。3) 其次,随着RWC的降低,1400-1925nm波长向较短波长移动,且反射率增加。4) 在810-1350nm的海绵状叶肉中的散射也反映出反射率随RWC降低而增加的相同趋势。5) 最?后,在1100-2500nm波段位置的吸收也是一个强烈的吸收区域,随着RWC降低,叶片枯萎主要通过新鲜叶片中的水,其次是通过如蛋白质、木质素和纤维素的干物质而变得更加明显。结论这项实验的结果表明不同干旱威胁下的水稻的光谱反射率具有明显且规律的特征。因而可根据特征位置的差异建立预测模型,在精?准的模型分析下定量的分析出水稻含水量乃至干旱威胁程度,最终用于开发抗旱水稻品种的研究,为我国的农业生产作出巨大的贡献。
  • 高端仪器国产化:中国研成首台国产光频域反射仪
    近日,上海交大和江苏骏龙电力科技公司合作研制的国内首台光频域反射仪工程化样机在江苏靖江装备调试完成。该设备不仅能侦测和定位故障点,在2000米长的光纤网络内,定位精度更可达毫米级别。参与现场验收的北京理工大学光电学院教授孙雨南认为,该成果已达世界先进水平。  在接受《中国科学报》采访时,孙雨南表示,目前光纤检测手段很多,包括光纤本身特性检测以及光纤通信链路(信号)检测仪器等,但绝大多数,特别是高端仪器基本依靠国外进口,不仅价格高,有些还潜伏保密问题。  光频域反射仪(OFDR)仍是国外少数几家公司拥有的高端仪器。与其类似的仪器是光时域反射仪(OTDR),已经广泛使用在工程和实验室,但被国外产品占据国内市场。而且OFDR的性能与OTDR有很多不同,其测量故障点的分辨率(最小距离)可以到毫米量级甚至更小,这在许多特种设备和大型工程分布式传感网络,特别是军事装备上的应用显得尤其重要。  高端仪器国产化的问题,国内已经呼吁多年。2010年,国家自然科学基金委设立科学仪器专项(&ldquo 863&rdquo 计划项目),开展光频域反射仪设备的自主研制,上海交通大学主持了该项目的研究。同年,江苏骏龙电力科技股份有限公司正式与上海交通大学合作,依托区域光纤通信网与新型光通信系统国家重点实验室,共同开展光频域反射仪的产品化开发。  此次通过验收的产品,正是上海交大和骏龙电力4年合作的结晶。验收组专家一致认为,该产品核心技术具有原创性和自主知识产权,打破了国外垄断。继美国LUNA后,骏龙电力成为全球第二家能自主研发光频域反射仪的厂家。  在谈到此类产品的应用前景时,北京凌云光子技术有限公司总经理李丽告诉《中国科学报》,该产品可广泛应用于航空航天、国防建设、智能电网、大型工程建设及装备、安全生产监测等方面。这些专用光纤网络的特点是,总长度在10千米以下,但是在有限的空间内密度很高,一旦发生光纤中断等故障,缺乏有效的诊断定位手段。过去大多依靠经验判断故障可能发生的部位,然后通过更换办法确认,效率不高、成本大。李丽预测,随着人力成本的上升,用精密仪器代替人工来检测光纤问题一定是一个可预期的、快速的过程。
  • 中国计量院成功研制材料逆反射系数测量仪器
    4月9日15时左右,青海省西宁市纺织品大楼发生火灾。大火又一次为我们敲响了预防火灾的警钟。在火灾现场,除了消防队员的及时救助,建筑物内的逃生指示标志格外重要。尤其是在现场断电、一片黑暗的情况下,具有高强度反光性能的指示标志能够指引人们按照安全路线迅速逃离危险。可以说,用于制造逃生指示标志的逆反射材料,其质量好坏直接关系到人们生命的安危。  逆反射材料是一种用玻璃微珠或微棱镜采用光学折射与反射原理制成的薄膜材料,是一种新型的被动照明的无源光学器件。这种材料具有将照射到其上的入射光按原入射方向大部分返回,提高自身能见度的功能,具有反光强度高、节能和防爆等明显优点,因而被广泛应用于道路交通、航空管理和矿山坑道,在避免爆炸和应急逃生方面都发挥着重要作用。  据中国计量科学研究院光学所郑春第介绍,根据国外一项统计,鲜明的道路标志和行人着装给司机良好的条件反射,使用反光材料设置醒目的交通标志,车辆牌照,穿戴装饰有反光材料的服装,可使交通事故率下降30%~40%。“可以说逆反射材料性能的优劣与生产、交通安全息息相关。”  据介绍,我国是逆反射材料生产大国和出口大国,年产值近6亿元人民币。随着政府对安全工作力度的加大和人们安全意识的提高,逆反射材料的应用已不仅限于道路交通,在矿山、消防、抢险、救援、环卫、市政、建筑等行业也开始广泛使用。据郑春第介绍,我国对不同级别公路的道路指示标志采用逆反射材料的反射强度有不同的标准要求。“例如,当车速为每小时100公里时,驾驶者通常需要至少380米的距离来准确识别交通标志,并迅速做出相应反应。如果制作交通标志的逆反射材料的反射强度不够,质量不达标,驾驶者可能在100米距离时才能看清交通标志,就有可能导致交通事故的发生。” 因此,人们在对道路警示标志材料的高反射能力提出更高要求的同时,也格外关注如何实现材料逆反射系数的准确测量,使之能够在相关领域发挥出显著的安全警示作用。  据介绍,国内相关行业通过各自不同的方式建立了测量逆反射材料性能参数的装置,但仪器的稳定性和测量准确度水平参差不齐,甚至出现不同实验室对同一样本的测试结果不一致的情况。由于缺乏全国统一的逆反射系数测量标准和测量装置,导致生产企业对产品的性能评价和测量准确度无法确定,容易引起国际贸易争端,为企业带来不必要的损失。  郑春第带领的中国计量院研究团队历经4年,终于完成了“逆反射系数测量装置的建立与研究”。该项目研制的逆反射系数测量装置,成功实现了我国材料逆反射系数的高准确度测量和校准,测量结果不确定度达3.6%(k=2) 该装置采用光强标准灯组对测量系统进行量值溯源,研究并实现了逆反射系数的照度测量方法 项目组同时还研制出了100mm×100mm和200mm×200mm两种规格逆反射标准样品,样品的均匀性达到了1%。生产企业或用户可以利用逆反射标准样品直接快速、便捷地进行量值传递和仪器校准,极大地提高了企业的生产效率。  有关人士评价说,该装置的建立为我国检验逆反射器件的产品质量控制和合格评定提供了准确可靠的量值溯源保证,解决了长期以来我国对逆反射材料测量和性能评价不统一的问题 同时,该院将通过开展国际比对,使得我国的检测结果、检验报告和证书得到国际同行的一致认可,为我国逆反射材料进出口贸易提供有效的技术保障,进一步提高我国逆反射产品的国际竞争力。
  • 基于177.3nm激光的真空紫外光调制反射光谱仪
    CPB仪器与测量栏目最新发文:基于177.3nm激光的真空紫外光调制反射光谱仪,此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。光调制反射光谱是通过斩波器周期性地改变泵浦光源对样品的照射来测量半导体材料反射率相对变化的一种光谱分析技术。由于所测差分反射率作为能量的函数在材料电子能带结构的联合态密度奇点附近表现出明显的特征,光调制反射光谱已成为研究具有显著电子能带结构的半导体、金属、半金属及其微纳结构和异质结等材料联合态密度临界点的重要实验技术之一。光调制反射光谱中所使用的泵浦激光的光子能量一般要高于被研究材料的带隙,随着第三代宽禁带与超宽禁带半导体材料相关研究和应用的不断深入,需要更高能量的紫外激光作为光调制反射光谱的泵浦光源。目前国际上已报道的光调制反射光谱系统中,配备的泵浦光最大光子能量约5 eV,尚未到达真空紫外波段。因此,迫切需要发展新一代配备高光子能量和高光通量的泵浦光源的光调制反射光谱仪,使其具备探测超宽带隙材料的带隙和一般材料的超高能量临界点的能力。中科院理化所研制的深紫外固态激光源使我国成为世界上唯一一个能够制造实用化深紫外全固态激光器的国家,已成功与多种尖端科研设备相结合并取得重要成果。此文详细介绍了由中科院半导体所谭平恒研究员课题组利用该深紫外固态激光源搭建的国际上首台真空紫外光调制反射光谱仪(图1)的系统设计和构造,将光谱仪器技术、真空技术、低温技术与中科院理化所研制的177.3 nm深紫外激光源相结合,同时采用双单色仪扫描技术和双调制探测技术,有效避免了光调制反射光谱采集中的荧光信号的干扰,提高了采集灵敏度。该系统将光调制反射技术的能量探测范围从常规的近红外至可见光波段扩展至深紫外波段,光谱分辨率优于0.06 nm,控温范围8 K~300 K,真空度低至10-6 hPa, 光调制反射信号强度可达10-4。通过对典型半导体材料GaAs和GaN在近红外波段至深紫外波段的光调制反射信号的测量对其探测能力进行了性能验证(图2)。此装置将有望成为高效无损地探测宽禁带半导体材料电子能带结构高阶临界点的有效光学表征手段,并广泛用于超宽禁带半导体材料及其异质结的电子能带结构研究。该系统基于中科院半导体所承担的国家重大科研装备研制项目“深紫外固态激光源前沿装备研制(二期)”子项目“深紫外激光调制反射光谱仪”,目前已经初步应用于多种半导体材料在深紫外能量范围内的能带结构和物性研究,并入选《中国科学院自主研制科学仪器》产品名录,将有望在推动超宽禁带半导体材料的电子能带结构研究、优化超宽禁带光电子器件的性能方面发挥重要作用。图1. 深紫外激光调制反射光谱仪图2. 177.3 nm(7.0 eV)激光泵浦下的GaAs在1.2 eV至6 eV内的双调制反射光谱及对应能级跃迁
  • 基于16 × 4阵元的CMUT面阵,实现高效率、高质量三维超声反射成像
    与传统工艺制作的压电块体型超声换能器相比,电容式微机械超声换能器(CMUT)具有阻抗匹配特性良好、带宽大、体积小等优势,在医学超声成像和无损检测方面得到了广泛应用。三维超声反射成像通常需要利用CMUT线阵的机械移动实现对被测物的多维度扫描,但这一方法往往难以实现较小距离的移动,并且存在一定的误差。利用CMUT面阵对被测物进行扫描可以同时获取多维度的超声反射信号,从而减少测试工作量,并且能够准确获取被测物的三维信息。然而,目前国内关于利用CMUT面阵进行非接触式三维超声反射成像的研究鲜有报道。据麦姆斯咨询报道,为了解决上述挑战,来自中北大学的研究人员提出了利用基于16 × 4阵元的CMUT面阵进行B模式及二次谐波三维成像测试的方法,以得到伪影水平更低、重建偏差更小的超声反射图像。相关研究成果以“基于16 × 4阵元CMUT面阵的三维超声反射成像”为题发表在《微纳电子技术》期刊上。CMUT面阵的制备及工作原理研究人员分别利用绝缘体上硅(SOI)和二氧化硅(SiO₂)晶圆制备了CMUT振动薄膜和真空腔,并且在真空环境中通过晶圆键合形成CMUT面阵。图1 CMUT剖面图及阵元图图2 基于16 × 4阵元的CMUT面阵实物图CMUT的工作原理是通过在上、下电极之间施加直流偏压,从而产生感应静电力将顶部薄膜拉向底部电极。当CMUT处于发射模式时,将交流电压信号叠加在直流偏压上会激励薄膜振动,实现电能和机械能的转换,产生超声信号;当CMUT处于接收模式时,在上、下电极之间施加直流偏压,在超声波的作用下,薄膜会产生振动,从而使得电容值发生改变,通过检测这一变化即可实现超声信号的接收。图3 CMUT工作原理仿真及实验平台搭建该研究利用基于Matlab的k-Wave光声仿真工具箱对基于16 × 4阵元的CMUT面阵进行超声反射成像仿真。整个仿真区域介质为硅油,被测物为一块长和宽均为3 cm、厚1 cm的铝块,铝块与CMUT的距离为3 cm,CMUT阵元间的距离为1 mm。此外,采用单个阵元发射、所有阵元接收,即一发多收的扫描方式对铝块进行扫描。图4 基于16 × 4阵元的CMUT面阵及被测铝块仿真模型随后,研究人员在仿真的基础上搭建了基于16 × 4阵元的CMUT面阵的超声反射成像测试系统。采用面阵上第二条线阵的单个阵元发射、所有阵元接收的方式进行实验测试。实验使用信号发生器和功率放大器驱动CMUT面阵发射超声波,并且利用示波器观察超声反射信号波形。图5 基于16 × 4阵元的CMUT面阵超声反射成像测试系统示意图及超声反射成像实测图仿真及实验结果研究人员采用B模式及二次谐波两种成像算法分别对被测铝块的超声反射信号进行处理,以获取其三维图像及对应的二维切面。结果显示,基于16 × 4阵元的CMUT面阵的反射成像系统能够确定铝块的位置。此外,基于B模式成像算法和二次谐波成像算法所获取的成像结果中,铝块与CMUT面阵的距离重建偏差分别为3.63%及1.47%。图6 被测铝块二维反射成像结果图7 被测铝块三维反射成像结果综上所述,该研究搭建了基于16 × 4阵元的CMUT面阵的三维超声反射成像系统,以获得误差小、信噪比高的超声反射图像。采用单个阵元发射、所有阵元接收的收发方式对铝块进行了相关测试与仿真,利用B模式及二次谐波成像算法对超声回波信号进行处理,获取了被测物的二维切面及三维图像。仿真和实验结果均可以较清晰地确定铝块的位置,与实际情况相符。为了对比两种算法的成像效果,研究人员计算了铝块与CMUT面阵的距离重建偏差。计算结果显示,B模式及二次谐波成像算法的仿真距离重建偏差分别为0.63%和0.4%,实验重建偏差分别为3.63%和1.47%,二次谐波图像的距离重建偏差均小于B模式图像的距离重建偏差。总之,该研究证明了所提出的基于16 × 4阵元的CMUT面阵的三维超声反射系统可实现对被测物的三维成像。论文信息:DOI:10.13250/j.cnki.wndz.2023.03.010
  • 最新综述:热反射表征技术在宽禁带半导体领域应用进展
    近日,武汉大学工业科学研究院袁超课题组在国际权威期刊《Journal of Applied Physics》上,以“A review of thermoreflectance techniques for characterizing wide bandgap semiconductors‘ thermal properties and devices’ temperatures”为题总结讨论了热反射表征技术(Thermoreflectance techniques)在宽禁带半导体材料和器件领域的应用进展。随着宽禁带和超宽禁带半导体器件的功率日益增大,器件散热问题逐渐成为工业界的巨大挑战。半导体材料热物性是反映器件散热能力最直接的参数,而器件结温是评估热可靠性和寿命的关键参数,因此,热物性和结温检测成为宽禁带半导体器件研发和生产中不可缺少的环节。宽禁带半导体器件普遍由薄膜异质结构组成,薄膜尺寸几十纳米到几微米 ( 如图1),因此,要求热物性检测技术具有纳微米级分辨率。传统的检测方法如稳态热板法、瞬态热线法、激光闪射法等,都不能满足分辨率的要求。3-omega方法虽然达到了分辨率的要求,但是需要在材料表面进行复杂的微加工,使得测试流程复杂且对材料表面质量要求过高。另一方面,宽禁带半导体器件沟道尺寸小(亚微米级)且常常在高频工况下(GHz级)运行,要求结温测试方法需满足高空间分辨率和高时间分辨率。图1:几种典型的宽禁带器件结构:(a) 氮化镓高电子迁移率晶体管(GaN HEMT) (b) 氧化镓场效应管(β-Ga2O3 FET) 以上典型结构说明器件内存在大量微纳结构和异质界面近几十年,以热反射(Thermoreflectance)为测试原理,国际上开发并发展了多种泵浦-探测热反射技术(Pump-probe thermorefletance), 实现了纳微米级分辨率测试能力,广泛应用于宽禁带半导体材料的热物性检测。基于相同原理,国际上同期开发了一种热反射成像技术(Transient thermoreflectance imaging),实现了纳秒级时间分辨率和纳米级空间分辨率的测温能力,同样广泛应用于宽禁带半导体器件的稳态和瞬态结温检测。本文重点介绍了热反射现象和原理,在此基础之上,总结和讨论了多种泵浦-探测热反射技术,包括时域热反射法(Time-domain thermoreflectance), 频域热反射法(Frequency-domain thermoreflectance), 瞬态热反射法(Transient thermoreflectance)和稳态热反射法(Steady-state thermoreflectance)。总结了这些方法针对常见宽禁带半导体材料的检测应用,包括氮化镓薄膜异质结构(GaN-based structure)、氧化镓薄膜异质结构(β-Ga2O3-based structure)、金刚石薄膜、合金材料(如钪掺氮化铝ScAlN, 铝掺氮化镓AlGaN)以及宽禁带二维材料(如六方氮化硼h-BN)等,并全面总结了所有材料的热物性报道值(部分结果见本报道图2,详细结果见全文)。本文还重点比较了不同泵浦-探测热反射技术的特点。在所有方法中,时域热反射法发展最早且较为成熟,当前应用较为广泛;而频域热反射法和瞬态热反射法因具有和时域热反射法相似的分辨率和测试精度,也逐渐被认可,且已实现了广泛应用。值得注意的是,瞬态热反射法(如图3),相比时域热反射法,搭建成本大幅度减低,测试分析速度更快,操作更为简便,因而具有在半导体产线上的应用潜力。另外,本文也总结讨论了热反射成像技术以及它在宽禁带器件测温方面的应用。图2:氮化镓薄膜的热导率报道值;全文中还详细总结了氮化镓异质结构、氧化镓异质结构、金刚石薄膜和宽禁带合金材料的热物性报道值(热导率、界面热阻)图3:传统的瞬态热反射法(TTR)系统示意图常规的泵浦-探测热反射技术和热反射成像技术需要借助金属薄膜进行测试。对于泵浦-探测热反射技术,在检测之前需在材料表面镀一层薄膜金属(如金、铝),使得材料破坏,属于破坏性检测;对于热反射成像技术,温度检测区域集中在器件金属电极,而不是器件沟道处,导致温度测试结果往往低估真实器件结温。本文介绍了近几年一些学者(包括袁超研究员)对传统泵浦-探测热反射技术的改进,发展了免金属镀膜的泵浦-探测热反射技术(Transducer-less thermoreflectance),以实现在氮化镓外延、硅等材料的无损测试,为材料研发提供快速反馈,提升研发和生产效率、降低成本,并有望为半导体产线提供实时监测,使“边生长,边观测,边调控”成为可能。此外,介绍了热反射沟道结温直接测试技术以及它在氮化镓HEMTs器件上的应用。图4:免金属镀膜的瞬态热反射法(TTR)系统示意图论文详情:Chao Yuan*, Riley Hanus, Samuel Graham, A review of thermoreflectance techniques for characterizing wide bandgap semiconductors thermal properties and devices temperatures, Journal of Applied Physics, 132(22):220701, 2022. 论文第一作者和通讯作者为袁超研究员,合作作者来自美国佐治亚理工学院的Riley Hanus博士和 美国马里兰大学的Samuel Graham教授。通讯作者简介袁超研究员长期从事宽禁带半导体热表征和热管理研究工作。曾先后加入英、美知名大学宽禁带研究团队从事科学研究。在薄膜尺度热反射表征方法、声子热输运理论、以及(超)宽禁带半导体器件设计等领域具有一定的技术优势和科研特色,并致力于开发半导体无损热检测装备。现承担多个国家/省部/国际合作级重大战略需求的纵向科研项目,在高影响力期刊上(包含 Materials Today Physics, Communications Physics,Appl. Phys. Lett.等)发表多篇论文。此外,长期和国内外知名半导体集成电路企业和机构合作。课题组主页:http://jszy.whu.edu.cn/yuanchao
  • 医疗诊断用一次性校准Spectralon漫反射标准板
    光纤耦合光谱仪一家初创公司找到Labsphere(蓝菲光学),该公司使用基于光纤耦合光谱仪设备,通过内窥镜仪器通道进行反射率测量。为了获得准确的诊断结果,该仪器需要在每次使用前,使用反射率大于90%的标准品进行校准。但是,这种新的医学诊断应用需要在每次使用后丢弃标准板。该公司与Labsphere(蓝菲光学)联系,寻求一种重复性好,低成本的解决方案,使他们的设备能够实现市场渗透。 厂商最关注的是仪器校准的一致性,因此Labsphere(蓝菲光学)生产的每个漫反射标准板在安装到光纤的机械结构上以及在可见光(450-700 nm)上的漫反射比必须具有极高的重复性。Labsphere(蓝菲光学)需要迅速提供原型样片,但更重要的是要保证以市场价格每年提供10K-25K的产能。Spectralon漫反射材料Labsphere(蓝菲光学)制作了一个简单的设计,既能实现原型的快速周转,又能在高产量下实现成本目标同时优化技术性能。Spectralon漫反射标准板通过将Labsphere(蓝菲光学)的Spectralon模切成3毫米厚的板材,可以产生97%的漫反射朗伯性目标材料,从而达到了光学反射率的目标。 对Spectralon生产进行统计过程控制抽样检查确保了一致的反射性能。机械目标板设计实现了可重复性。该设计包括一个由Delrin拼合而成的外壳,包裹着由泡沫粘合剂支撑的Spectralon目标板。光纤端口的设计是通过底部凸起的唇缘紧密地贴合到客户的光纤上,以将光纤尖端定位到客户指定的、距漫反射目标板参考表面的精确距离。当单元的两半卡在一起时,靶材后面的泡沫粘合剂被设计为部分压缩,以确保将靶材固定在参考表面上,从而消除了从光纤尖端到靶材的临界距离的变化。外壳选择一种可兼容医疗器械的材料(Delrin)来满足成本和交付目标,该材料可以由Labsphere在内部进行机加工以进行快速原型制作,也可以进行大量注塑成型,以满足目标板生产单位定价。这项创新激发了Spectralon组件在医疗和生物医学行业中的许多其他用途。请与我们联系,获取更多Spectralon应用信息。
  • 手持式X射线荧光光谱仪在高压隔离开关触头镀银层腐蚀故障分析中的应用
    摘要:针对一起110kV隔离开关触头的腐蚀故障,采用手持式X射线荧光光谱仪分析故障隔离开关触头镀层的化学成分,发现厂家使用银氧化锡(Ag-SnO2)镀层代替镀银层。分析认为在工业含硫大气环境中,Ag-SnO2镀层中的银被SO2、H2S等硫化物腐蚀,铜基体在潮湿环境下腐蚀生成Cu2(OH)2CO3,从而导致隔离开关触头导电回路的接触电阻升高,引发过热故障。针对此次故障,提出了解决措施和建议。关键词:手持式X射线荧光光谱仪;隔离开关触头;电刷镀银;银氧化锡;腐蚀中图分类号:TQ153.16 文献标志码:A 文章编号:1004 – 227X (2019) 23 – 1 – 04高压隔离开关是电力系统中使用最多、应用最广的一次设备。由于高压隔离开关多在户外运行,长期受风吹、雨淋、雷电、潮气、盐雾、凝露、冰雪、沙尘、污秽,以及SO2、H2S、NO2、氯化物等大气污染物的影响,因此各部件会发生不同程度的腐蚀[1-2]。高压隔离开关触头是关键部件,承担着转接、隔离、接通、分断等任务,其工作状态的好坏直接影响整个电力系统的运行[3]。高压隔离开关触头的基体为纯铜,但纯铜易被腐蚀,会造成表面接触电阻升高,引发过热故障,影响开关设备和电网的安全稳定运行[4-6]。为了减小接触电阻,DL/T 486–2010《高压交流隔离开关和接地开关》、DL/T 1424–2015《电网金属技术监督规程》和《国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明》[7]中明确规定:隔离开关触头表面必须镀银,且镀银层厚度不小于20 μm,以获得较低的接触电阻,从而保证良好的导电性。然而,在实际运行中,很多厂家生产的高压隔离开关产品会出现触头腐蚀、变色发黑、发热等故障,一般是由触头镀锡代替银或镀银层厚度不足造成,这些缺陷都可以通过国家电网公司开展的金属专项技术监督检测隔离开关触头镀银层厚度而发现[8]。近期,四川电网在金属技术监督中发现一起高压隔离开关触头腐蚀案例,镀银层厚度检测结果合格,但在采用手持式X射线荧光光谱仪分析镀层化学成分时发现,厂家竟然使用银氧化锡(Ag-SnO2)镀层代替镀银层,该造假手段通过颜色判断和镀层测厚无法发现,非常隐蔽,很容易因未进行镀层成分分析而误判合格,严重威胁电网的安全运行,希望引起各运维单位注意。 1 高压隔离开关触头的腐蚀故障某110 kV变电站于1991年投运,当地大气污秽等级为E级,大气类型为工业污染。周边潮湿多雨,化工、煤炭、玻璃等重工业污染企业密集,空气中SO2、H2S等硫化物浓度较高,大气的腐蚀性较强。2013年更换隔离开关触头,防腐措施为铜镀银。2017年站内巡检发现某110 kV隔离开关触头腐蚀严重,动、静触头接触面大部分呈绿色,少部分呈黑色(见图1)。红外测温发现该隔离开关触头存在过热故障,若继续运行,可能会造成隔离开关烧毁,甚至大面积停电等恶性事故,运维单位国网泸州供电公司紧急安排停运该隔离开关,并与国网四川电科院联合开展故障分析。图1 某110 kV隔离开关触头的腐蚀情况2 手持式X射线荧光光谱仪的检测原理X射线荧光光谱分析是用于高压隔离开关触头表面金属成分检测的一种非常有效的分析方法,具有快速、分析元素多、分析浓度范围宽、精度高、可同时进行多元素分析、无损检测等优点,被广泛应用于元素分析和化学分析领域[9]。其原理[9-12]为:由激发源产生高能量X射线照射被测样品,样品表面元素内层电子被击出后,轨道形成空穴,外层高能电子自发向内层空穴跃迁,同时辐射出特征二次X射线。每种元素都有各自固定的能量或波长特征谱线,具体与元素的原子序数有关。检测器测量这些二次X射线的能量及数量或波长,仪器软件将收集到的信号转换成样品中各种元素的种类和含量。X射线荧光光谱仪通常可分为波长色散型和能量色散型两大类,各自原理如图2 [11]所示。波长色散型光谱仪一般采用X射线管作为激发源,由检测器转动的2θ角可以求出X射线的波长λ,从而确定元素成分,属于台式仪器。能量色散型光谱仪是利用荧光X射线具有不同能量的特点,将其分开并进行检测,从而确定元素成分和含量,可以同时测定样品中几乎所有的元素,激发源使用的X射线管功率较低,且使用半导体探测器,避开了复杂的分光晶体结构,因此仪器工作稳定,体积小,便携性高,价格也较低,能够在数秒内准确、无损地获得检测结果,被广泛应用于金属材料中元素的精确定量分析[12-13]。 图2 波长色散型(a)和能量色散型(b)X射线荧光光谱仪的检测原理目前市售手持式X射线荧光光谱分析仪基本都是能量色散型X射线光谱仪。图3是目前四川电网基层供电公司使用的美国Thermo Fisher Scientific Niton XL2 800手持式X射线荧光光谱仪,它不受分析样品的大小、形状、位置限制,无需拆卸隔离开关,可以携带至变电站现场,能够分析Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, W, Re, Au, Pb, Bi等25种元素。图3 手持式X射线荧光光谱仪3 现场检测结果3. 1 镀层化学成分分析使用XL2 800手持式X射线荧光光谱仪对110 kV隔离开关触头不同颜色区域的镀层和铜基体进行分析,结果见表1。银白色区域中Ag、Cu和Sn的质量分数分别为91.48%、1.83%和5.71%。Cu是隔离开关触头的基体成分,查阅文献[14]可知,该银锡比例是第二相SnO2颗粒弥散分布于银基质层中的Ag–SnO2金属基复合材料,不符合DL/T 486-2010、DL/T 1424–2015和《国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明》中隔离开关触头应镀银的要求。黑色区域的Ag含量低至75.33%,Cu含量和Sn含量则较高,这是因为Ag-SnO2镀层中的Ag与空气中的SO2、H2S等含硫化合物反应生成黑色的腐蚀产物β-Ag2S和Ag2SO3。随着腐蚀反应的进行,Ag-SnO2镀层表面逐渐由银白色转变为深灰色及黑色。绿色区域的Cu质量分数已升至82.31%,Sn的质量分数则与灰色区域相近,而Ag已检测不到,表明Ag-SnO2镀层中银的腐蚀产物发黑并脱落后,镀层中分散的SnO2无法保护铜基体,使得铜在潮湿环境下与空气中的O2、CO2和H2O反应生成绿色的碱式碳酸铜Cu2(OH)2CO3(俗称铜绿)。将绿色区域打磨后分析铜基体发现其中含99.72% Cu和0.15% Sn,说明该隔离开关触头的基体材质为纯铜,检出的少量锡来源于残余的镀层。表1 110 kV隔离开关触头镀层上不同颜色区域及铜基体的元素成分分析结果3. 2 镀层厚度检测使用XL2 800手持式X射线荧光光谱仪检测110 kV隔离开关触头的镀银层厚度,结果显示银白色、黑色和绿色区域的镀银层厚度分别为23.953、16.885和0.000 μm。这说明随腐蚀反应的进行,镀层逐渐被消耗,直至完全损失。DL/T 486–2010、DL/T 1424–2015和《国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明》中明确规定隔离开关触头的镀银层厚度不应小于20 μm。为节约成本,厂家最常用的造假手段就是用镀锡代替或减少镀银量,这两种手段都可直接通过镀层测厚发现。但本次的造假是采用Ag-SnO2层代替Ag层,也是呈银白色,并且镀层厚度大于20 μm,仅通过颜色判断和测厚均无法发现,隐蔽性较强。Ag-SnO2镀层触头因为电导率较纯银低,主要用于继电器、低压开关等低压电器。若用于高压隔离开关,在大电流下很容易发热,存在严重安全隐患。4 结语和建议针对一起110 kV隔离开关触头腐蚀故障,使用手持式X射线荧光光谱仪分析触头的镀层成分,发现厂家使用Ag-SnO2镀层代替Ag镀层,Ag-SnO2镀层中的银被空气中的硫化物腐蚀后,铜基体被腐蚀,导致导电回路接触电阻升高,引发过热故障,是造成该故障的主要原因。为保证此类故障不再发生,应采取以下措施:(1)高度重视在役高压隔离开关触头表面镀银层的腐蚀发黑、发绿现象,发黑说明镀银层已被腐蚀,发绿说明镀银层已被腐蚀完,腐蚀延伸到铜基体,会导致隔离开关触头的接触电阻升高,易引发隔离开关过热、烧毁、全站失压等安全事故,应尽快安排停电,及时更换失效的高压隔离开关触头。(2)联系生产厂家,将同批次产品全部更换为合格产品,以消除安全隐患。(3)加强对新建输变电工程高压隔离开关触头镀银层的检测,镀层成分和厚度均合格后方可入网。参考文献:[1] 曹胜利, 苑金海, 赵昌. 户外高压隔离开关腐蚀与防护分析[J]. 电气制造, 2007 (6): 46-48.[2] 钟振蛟. 户外隔离开关导电回路过热的原因及对策[J]. 高压电器, 2005, 41 (4): 307-312.[3] 闫斌, 邓大勇, 何喜梅, 等. 高压导电触头电镀工艺与失效分析[J]. 青海电力, 2008, 27 (3): 6-9.[4] 梁方建, 张道乾. GW5-110型隔离开关触头发热缺陷分析及检修处理[J]. 高压电器, 2008, 44 (1): 88-90.[5] 刘海龙, 龚杰, 万亦农, 等. 某110 kV变电站隔离开关普遍发热原因分析及防范措施[J]. 电工技术, 2016 (8): 99-101.[6] 赵庆, 茅大钧. 户外高压隔离开关触头发热机理分析及预防过热故障措施探讨[J]. 电气应用, 2016, 35 (3): 72-76.[7] 国家电网有限公司. 国家电网有限公司十八项电网重大反事故措施(2018年修订版)及编制说明[M]. 北京: 中国电力出版社, 2018.[8] 刘纯, 谢亿, 胡加瑞, 等. 电网金属技术监督现状与发展趋势[J]. 湖南电力, 2016, 36 (3): 39-42.[9] 徐雪霞, 冯砚厅, 柯浩, 等. 高压隔离开关触头镀银层质量检测分析[J]. 河北电力技术, 2013, 32 (3): 3-5, 11.[10] 胡波, 武晓梅, 余韬, 等. X射线荧光光谱仪的发展及应用[J]. 核电子学与探测技术, 2015, 35 (7): 695-702, 706.[11] 赵晨. X射线荧光光谱仪原理与应用探讨[J]. 电子质量, 2007 (2): 4-7.[12] 金鑫, 金涌川, 李学斌, 等. 电气设备金属元素检测分析[J]. 电气应用, 2018, 37 (18): 80-85.[13] 何翠强. 手持式X射线荧光光谱仪在金属材料分析中的应用研究[J]. 冶金与材料, 2018, 38 (4): 134-135.[13] 谢明, 王松, 付作鑫, 等. AgSnO2电接触材料研究概述[J]. 电工材料, 2013 (2): 36-39.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制