当前位置: 仪器信息网 > 行业主题 > >

力学天平

仪器信息网力学天平专题为您提供2024年最新力学天平价格报价、厂家品牌的相关信息, 包括力学天平参数、型号等,不管是国产,还是进口品牌的力学天平您都可以在这里找到。 除此之外,仪器信息网还免费为您整合力学天平相关的耗材配件、试剂标物,还有力学天平相关的最新资讯、资料,以及力学天平相关的解决方案。

力学天平相关的资讯

  • 《石英晶体微天平-原理与应用》 一书出版
    由华南理工大学 张广照教授和中国科学技术大学刘光明教授合著的“石英晶体微天平-原理与应用”一书,近日由科学出版社出版。该书从石英晶体微天平的原理入手,深入浅出,详细介绍了使用石英晶体微天平在界面接枝高分子构象行为、高分子表面接枝动力学、聚电解质多层膜、磷脂膜、抗蛋白吸附以及纳米气泡表面清洁技术中的应用。本书在介绍石英晶体微天平基本原理的基础上,重点向读者展示了如何利用石英晶体微天平作为一项表征技术去研究界面上的一些重要科学成果。为了便于回答有关疑问,本书的应用例子均选自作者实验室的研究成果。
  • “瑞士精度,上海品质”,打造中国天平品牌
    第六届中国(上海)国际技术进出口交易会(简称“上交会”)于2018年4月19日至22日上海世博展览馆隆重举行。“上交会”开幕式当天,还举行了两个高规格高峰论坛,即2018“一带一路”创新与标准合作发展峰会暨海上沙龙、2018“一带一路”品牌与质量合作发展峰会。 2018“一带一路”创新与标准合作发展峰会暨海上沙龙峰会,由中国计量协会及上海市质量检测行业协会主办、上海云检大数据科技有限公司承办。上海市计量测试技术研究院副院长韩瑜主持峰会开幕式,中国计量科学研究院副院长吴方迪作“量值定义世界 计量引领科创”的主旨演讲,中国标准化研究院资源与环境分院院长林翎作“绿色标准助推高质量发展”的主旨演讲,众安科技-复旦大学区块链联合实验室副主任吴小川作“区块链技术在检验检测认证领域的运用”的主旨演讲。在交流互动环节,江苏省检验检测认证联盟副秘书长陈妍、湾谷AI+学院院长/蚂蚁雄兵创始合伙人张相廷、上海天美天平仪器有限公司总经理练达及杭州华测瑞欧科技有限公司总经理陈建等四位嘉宾,分享了企业在科创与标准方面的成功经验。另外,来自全国各地的官员、学者、企业家、检验检测认证机构、金融机构、媒体等各界人士200余人参加本次峰会。 科技创新与标准建立,是这个时代赋予我们的使命。国家要发展,社会要进步,经济要腾飞,产业要振兴,必须依靠创新精神。科技创新离不开标准引领,上海的科创中心建设,需要领先的标准化意识,较强的标准化专业能力和完善的市场环境。本次峰会的举行,把科技创新与标准建立联系起来,以标准促进质量提升、以标准助推创新发展,积极探索、创建标准,这不仅是一次有益的探索和实践,也为标准化助力科创中心建设提供了有益的经验和成果。2018“一带一路”品牌与质量合作发展峰会由上海市质量技术监督局为指导单位、上海市静安区人民政府主办、上海市静安区市场监督管理局及上海云检大数据科技有限公司承办。中国品牌建设促进会理事长、原国家质量监督检验检疫总局副局长刘平均作“建设质量强国,迈向品牌经济时代”的主旨演讲,上海市质量技术监督局副局长沈伟民作“打造质量高地,建设品质上海”的主旨演讲。本次峰会突出全面开展质量提升行动的重要意义,紧紧围绕推动高质量发展根本任务,以上海质量提升行动实施方案为抓手,进一步提升区域经济内在品质。本次峰会的举行,必将推动上海的“品质”建设与发展,以党中央国务院、市委市政府质量工作部署要求为目标,以“上海服务”、“上海制造”、“上海购物”、“上海文化”四大品牌为抓手,围绕推动高质量发展根本任务,为上海建设卓越的全球城市做出贡献。参加2018“上交会”及“创新与标准”、“品牌与质量”两个高峰会,给我的感触非常深。特别是在当下、中美贸易摩擦逐步升级的大背景下,提高国产仪器制造水平、提升国产仪器质量、打造国产仪器品牌,非常重要而迫切。上海天美天平仪器有限公司(简称“天美天平”),在实验室天平制造上有非常好的基础。天美天平隶属1988年成立、总部位于香港、享誉全球的科学仪器公司——天美(控股)集团。2010年,天美(控股)在推行全球化布局时,同时选择收购上海天平仪器厂及瑞士普利赛斯公司,并依托他们在上海成立天美天平,主要是看中这两家公司在实验室称重领域的非凡实力和品牌影响力。上海天平仪器厂(简称“上平”),中国天平的创始者,国产天平的领导者,正式成立于1958年,中国的第1台机械天平TG328A、第1台微量机械天平TG335、第1台电子天平MD2K-1、第1台分析电子天平MD110-2,均在这儿诞生,先后为中国的大专院校、科学院所及企事业实验室提供各类天平等近百万台,为中国的天平工业及科学研究事业打下了坚实基础。普利赛斯,1935年创建于瑞士苏黎世,欧洲知名品牌,全球三大知名天平品牌之一。普利赛斯拥有瑞士得天独厚的“精密制造”天赋及资源,电子天平设计采用独特的MFR磁力补偿传感器结构及软件补偿技术,生产中采用温度补偿、Robot测试等关键工艺,确保“瑞士精度”、“瑞士品质”。天美天平源于“上平”及普利赛斯,一方面传承“上平”的产品、技术、工艺及文化底蕴,另一方面肩负消化吸收瑞士普利赛斯电子天平产品、技术、工艺及品质要求。“准确定位,合理分工,全面融合”成就今天的天美天平。接下来,天美天平将不忘初心,立足上海,坚持“瑞士精度,上海品质”,旨在打造世界一流天平制造商,服务中国及一带一路!准确定位。坚持“中国天平瑞士芯”。普利赛斯出自瑞士,专业天平制造,国际品牌;利用普利赛斯核心技术及工艺,全力提升国产天平品质,降低制造成本;利用普利赛斯“中国拥有”特点,开发更多适合中国客户需求的中高端电子天平,包括半微量电子天平、微量电子天平。坚持“瑞士品牌中国根”。天美天平源于“上平”,在中国有着非常广泛的客户群;利用“上平”及天美的销售渠道,全面整合并创建天美-普利赛斯新渠道,推广天美-普利赛斯天平,提高市场覆盖率及品牌影响力。合理分工。天美天平源于“上平”,拥有“精密制造”的文化底蕴及上海工匠精神,同时在中国拥有广泛的客户群,负责分析天平、精密天平及部分中低价位天平的制造,让瑞士天平价格更亲民。普利赛斯拥有瑞士得天独厚的“精密制造”天赋及资源,负责微量天平、半微量天平及部分高端天平的研发及的制造,服务中高端实验室客户。当然,根据国家需要,这些微量天平、半微量天平,完全可以转移到中国生产,以中国品牌销售到全中国及一带一路国家。全面融合。天美天平与普利赛斯同属天美集团,为更好地服务中国及一带一路国家,在电子天平技术、产品、营销及品牌建设等方面全面整合,统一生产工艺及品质要求,共同遵循“瑞士精度,上海品质”,全面提升电子天平制造水平。不忘初心。目前,天美-普利赛斯品牌宣传及推广初具成效,销售持续大幅增长。未来5年,天美-普利赛斯继续坚持“瑞士芯,中国根”的市场定位,坚持“瑞士精度”、坚持“上海品质”、坚持“渠道为王”、坚持“销售增长”,旨在打造世界一流天平制造商,振兴国产天平。中国的天平工业从这儿诞生,中国的天平制造水平必将从这儿腾飞!2018年3月13日,由天美天平及上海市计量测试学会力学专业委员共同组办的“上海天平厂成立60周年庆典暨上海市计量测试学会力学专业委员会技术研讨会”在上海松江隆重召开。来自上海天平厂的前后四任厂长/部分功勋员工、上海市计量/质检系统专家代表、天美天平员工及合作伙伴代表等近50人,济济一堂,共叙“上平”60载之辉煌,共商国产天平发展之路。栉风沐雨六十载,砥砺前行谱“芯”篇。60年算一个甲子,一个企业能够存活60年,非常不易。“上平”能存活并持续辉煌60载,创造了中国天平诸多“第一”,实属奇迹!今天,天美天平接过“上平”的接力棒,坚持“瑞士芯,中国根”,弘扬“上平”工匠精神,秉承“瑞士精度,上海品质”,全面提升国产天平仪器制造水平,让上海制造走遍全国,走向全球!“上平”有信心、有能力再辉煌一个甲子! 上海天美天平仪器有限公司总经理练达2018-04-24
  • “量子力学与计量关系研究”研讨会召开
    2018年第26届国际计量大会上,七个计量基本单位已全部实现用自然物理常数定义。质量单位千克通过“质能公式”和电磁力与量子力学范畴下的普朗克常量联系在一起,说明量子力学已开始逐步渗入力学计量领域。   近日,浙江省计量科学研究院量子重力加速度及微小力值研究课题组一行赴京参加由中关村检验检测认证产业技术联盟国际合作专委会举办的“量子力学与计量关系研究”研讨会,积极参与国内量子计量、量子测量相关技术交流。研讨会云集国家、省级计量机构及其它单位计量相关人士共计80余位,其中不乏新加坡工程院洪明辉院士等著名专家学者。   会上,多位资深专家学者就量子力学的背景及其与计量发展的关系进行了介绍和探讨。会议同时公布了《量子力学与计量关系研究国际合作报告项目》项目组织及其实施方案,并征求编写意见。此次研讨会描绘了量子计量的发展远景,指明量子计量的先进性及其在未来计量发展中的核心地位,其发布的国际合作项目将借助CIPM平台,联合国际计量专家对量子力学和计量关系提出共识,具有深远的意义。 用于测量普朗克常数的能量天平装置   会后,省计量院一行前往中国计量科学研究院昌平园区参观学习用于测量普朗克常数的能量天平装置。该装置由真空隔离系统、主动气浮隔振系统、质量比较器、感应及主激励线圈、主激励线圈驱动系统、激光干涉测量系统等部分组成,对普朗克常数的测量不确定度可达10-8级别,处国际先进水平。期间,省计量院就量子力学在力学计量领域的应用研究与国家院能量天平研究团队、力声所力值计量团队展开合作意向交流,为后续标准装置研制、科研项目申报等方面深入合作奠定基础。
  • 一个冬天过去,你的肺里到底吸进去多少雾霾? | 奥豪斯EX天平应用案例
    冬天的雾霾真的是躲也躲不过。以前的冬天是白茫茫的,现在的冬天是灰蒙蒙的。更有些城市雾霾锁城,导致城市交通限行、道路瘫痪原因是̷̷车出门看不清路!!雾霾对我们的生活造成了如此大的影响,那我国采取了什么措施防治雾霾呢?说到防治雾霾,不得不说到判定雾霾的标准:2012年我国发布了gb 3095-2012《环境空气质量标准》。此标准中,设定了环境空气的定义,并把pm2.5作为环境空气的检测质量之一!其雾霾浓度值依照who建议的过渡期最大值标准制定,即年平均浓度限值大于等于35μg/ m3;24小时平均浓度限值大于等于75μg/m3;2016年1月1日起该标准已在全国实施。该标准规定了pm2.5的手工分析方法,需符合《hj618-2011环境空气中pm10和pm2.5的测定重量法》里的重量法。重量法是最直接、最可靠的方法,是验证其它方法是否准确的标杆。那么到底怎么来测定呢?简单来说,用0.01mg精度的天平在采样前后对样品进行称重,得出差值,进行计算,即可得出雾霾浓度。注意:采样前后,滤膜的称量应使用同一台分析天平!part one接下来,小奥带大家看看具体实验步骤吧! 1.处理滤膜根据样品采集目的选择合适的滤膜,要求其对0.3 μm标准粒子截留效率不低于99%。先将其放在恒温恒湿箱中平衡24h。保存在干燥箱内的原纤维滤纸 ,温度取15℃~30℃中任何一点,相对湿度控制在45%~55范围内,记录平衡温度与适度。在上述平衡条件下,用0.01mg的分析天平称量滤膜并记录滤膜重量。同一滤膜在恒温恒湿箱中相同条件下,再平衡1h后称重。对于pm2.5颗粒样品滤膜,两次的重量之差需小于0.04mg,则认定满足恒重要求。这对天平的精度要求很高呢!选奥豪斯ex天平检测雾霾,品质有保障! 2.采集样品采样环境和采样频率需符合hj/t194。采样时,将已称重的滤膜用镊子放入洁净采样夹内的滤网上,(滤膜毛面应朝进气方向),将滤膜牢固压紧至不漏气。采样结束后,将有尘面两次对折;放入样品盒或纸袋,并做好采样记录。根据处理滤膜的方法,用0.01mg的分析天平对滤膜样品进行称重。(如滤膜采集后不立即称重,滤膜应在4℃条件下冷藏保存) 3.结果计算计算结果保留3位有效数字,小数点后数字可保留到第3位。 4.注意事项实验所用天平需具备以下功能 可读性需为0.01mg 可消除纤维滤纸的静电 当pm2.5含量很低时,采样时间不能过短。使用分析天平,需保证滤膜上颗粒物负载量大于0.1mg,以减少称量误差。part two由此可见,在重量法测雾霾浓度的实验中,选一台测量准确、使用便捷、维护省心、功能强大的天平非常重要。 奥豪斯explorer准微量天平就在江苏省疾病防控中心pm2.5专项研究项目中负责滤膜采样前后的称重ex准微量天平内置静电消除器可以消除滤纸上的静电可读性为0.01mg线性误差±0.1mg具有全自动校准功能每1.5℃温差或3小时间隔天平会自动进行校准分体模块化设计在有限的工作空间也可正常操作part three分享完科学测雾霾法和ex天平的环保行业应用案例,小奥带大家做一个小小的计算题,推算一下:在霾都一个冬天,你的肺里积了多少雾霾?正常成年人平静状态下,每分钟呼吸频率约为16~20次,每次呼吸量位400~600ml。假设其每天在环境空气下工作一小时,(环境空气 ambient air:指人群、动物和建筑物所暴露的室外空气)故一天需吸入0.54m3的雾霾空气。在标准状态下(标准气压,0 ℃),1m3空气重约1.29kg。那生活在每天爆表的城市,一个人一天得吸多少雾霾呢?按pm2.5爆表值500来算,500 μg/m3 x 0.54m3=270 μg假设雾霾重灾区,一个冬天有50个爆表雾霾天。那么一个成年人过一个冬天,肺里会吸入至少13500μg雾霾。人体内单个细胞重约2~3ng,假设一颗雾霾与单个细胞同重,你的呼吸道里会积多少雾霾呢?根据计算所以一个冬天下来,一个成年人的呼吸道里可能积压540万个雾霾颗粒。假设这些颗粒可以入肺,正常人的肺约有3~4亿的肺泡,这就意味着每500个肺泡里就有一颗雾霾。难怪从来不生病的人,在雾霾天里也招架不住,咳嗽不止。奥豪斯会继续助力我国环保行业的发展,为营造良好的生态环境贡献出自己的力量!小科普pm2.5 particulate matter指环境空气中空气动力学当量直径小于等于2.5微米的颗粒物,也称细颗粒物。pm10 particulate matter指环境空气中空气动力学当量直径小于等于10微米的颗粒物,也称细颗粒物。pm0.3 particulate matter指环境空气中空气动力学当量直径小于等于0.3微米的固体颗粒或滴液的总称,也称可入肺粒物。但还未纳入我国空气环境检测体系。标准状态 standard state指温度为273k,压力位101.325kpa时的状态。我国所测的污染物浓度均为标准状态下的浓度。 参考文献:1. 环境空气 pm10和pm2.5的测定 重量法 hj 618-20112. 《环境空气质量标准》 gb 3095-2012往期文章2018年无数波爱的礼物,你接到了吗?奥豪斯助力汽车业给你不一样的颜色!奥豪斯助力保护美国新泽西湖泊生态环境生命安防,尽在奇妙万千的免疫实验室低调高手从不显山露水 | 奥豪斯产品party想了解奥豪斯的高品质产品吗?请拨打奥豪斯销售服务专线或者进入「阅读全文」,留下您的信息,我们的专业工程师将竭诚为您服务!如果喜欢这篇文章,请 分享 哟!
  • 静态力学分析
    p style="text-align: center "strong原创: 徐颖【苏大】 江苏热分析/strong/pp  研究物质形变或力学性质与温度关系的方法,常称之为热机械分析法,该法包括热膨胀法(DIL)、静态热机械分析(TMA)和动态热机械分析(DMA)三种技术,它们之间的差别最主要的来自于它们测量时负载力的不同。热膨胀法是测量试样负载力为零,即仅有自身重力而无外力作用时,在程序温度控制下,膨胀或收缩引起的体积或长度的变化 静态热机械分析是测量材料在静态负载力(非交变负荷)作用下,形变与温度间关系的技术 动态热机械分析是在程序控制温度下,测量材料在动态负载力(交变负荷)下动态模量和力学阻尼(或称力学内耗)与温度关系的一种技术。/ppstrong一、TMA基本原理和结构/strong/pp  静态热机械分析仪是在热膨胀仪的基础上发展起来的,它的基本原理和热膨胀仪相同,不仅可以替代热膨胀仪,而且在结构和功能上有进一步的扩充和提升。/pp  (1) 可以设定试样所受负荷的大小,改变负荷会得到不同的热形变曲线,因此负荷大小成为一个重要的实验参数。而且将负荷大小设置为与材料实际使用中所受的力相近,热形变曲线更有实用价值。此外选用合适的负荷大小,可以得到更理想的曲线。/pp  (2) 可选用更多不同的探头,大多配备拉伸、压缩、穿透(或称针入)和弯曲等探头,除了能测定热膨胀系数和各种相变点之外,还可以研究定应变的应力松弛和定应力的蠕变等力学性能。图1是DIL和TMA可选用探头和基本原理示意图。/pp style="text-align: center "img title="图1 热膨胀和热机械分析原理示意图.jpg" alt="图1 热膨胀和热机械分析原理示意图.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/ef21716a-4636-4630-8ec4-1facf9de83a5.jpg"//pp style="text-align: center "strong图1 热膨胀和热机械分析原理示意图/strong/pp style="text-align: center "strong(a)热膨胀和TMA装置原理 1—仪器的基本形式 2—水平热膨胀 /strong/pp style="text-align: center "strong3—垂直热膨胀或TMA 4—TMA的垂直膨胀(天平型) (b)TMA的应力类型/strong/pp  TMA按机械结构形式不同,可以分为天平式和直筒式两大类。天平式TMA的施力方向(拉伸还是压缩)和大小是通过刀口式天平来控制的,再根据试样与天平的相对位置又可分为上皿式和下皿式。直筒式TMA根据施力控制原理、方式不同可分为三种:弹簧型,通过顶部加压砝码和弹簧相互协调控制负载的方向和大小 磁力型,通过磁钢和控制磁拉力线圈中直流电的方向来决定负载的方向和大小 浮子型,通过浮子、浮液和顶部加压砝码来控制负载,浮子材料使用低密度的聚合物,而浮液采用高密度氟氯硅油。/pp  以上这些分类实际上是依据TMA施力方式不同来分的,仪器其他部分:炉体、温度控制、气氛控制等雷同于差热仪、热重仪。而位移检测系统则都是由差动变压器将位移转变为电压信号,经相敏放大器、有源滤波器、电压放大器、A/D转换器后再进行数据处理。/ppstrong二、操作模式/strong/pp  TMA的操作模式可分为五种:/pp  (1) 标准模式,可进行3个实验程序。一个是线性升温时负载力保持恒定,监测位移的变化,则得到最经典的热膨胀曲线 如果线性升温保持恒定的应变,检测力的变化,可用于评价薄膜或纤维的收缩力。恒温条件下,往往设置力呈线性变化,监测其所产生的应变,可获得力位移曲线和模量信息。/pp  (2) 应力/应变模式,有2个实验程序。在恒温条件下,施加线性变化的应力或应变,测量对应的应变或应力,从而得到应力/应变图谱及相关的模量信息。所计算出的模量可以分别作为应力、应变、温度或时间的函数来表示。图2就是保持恒温,应力线性增加,所获得的应力/应变曲线。该曲线的形状受所设温度及样品加工工艺的影响。/pp style="text-align: center "img title="图2 温度恒定,线性应力作用下所得应力_应变曲线.png" alt="图2 温度恒定,线性应力作用下所得应力_应变曲线.png" src="https://img1.17img.cn/17img/images/201812/uepic/63918f4f-cced-471e-9587-5358e2d3a7ea.jpg"//pp style="text-align: center "strong图2 温度恒定,线性应力作用下所得应力/应变曲线/strong/pp  (3) 蠕变/应力松弛模式,可进行2个实验程序。一个是蠕变实验,即应力保持恒定,监测应变随时间的变化,获得柔量数据 另一个是应力松弛实验,应变保持恒定,监测应力的衰减,获得松弛模量数据。二者均为瞬态测试,可评估材料形变及回复性质。/pp  (4) 动态TMA模式,在线性升温条件下,对样品施以正弦变化的力。测量由此产生的正弦变化的应变。通过应力、应变数据计算储能模量E' 、损耗模量E〞和损耗因子Tanδ对时间、温度或应力的关系,一般适用于薄膜的研究。/pp  (5) 调制TMA模式,类似于调制DSC,是温度控制方式在传统的线性升温的基础上叠加一个设定振幅和周期的正弦波温度变化程序,将原始信号(总位移和热膨胀系数)解析成可逆和不可逆部分,可逆部分可获得相变信息(如Tg),不可逆部分得到具有时间依赖性的动力学过程(如应力松弛)。/ppstrong三、TMA典型谱图及解析/strong/pp  图3是比较典型的热膨胀曲线图,TMA(或DIL)确定线膨胀系数的公式为:/pp style="text-align: center "img title="式1-1.jpg" alt="式1-1.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/66c902b0-66e8-461f-9910-a288f34faefc.jpg"//pp  式中l0为样品原始长度,Δl/ΔT为热膨胀曲线的斜率。相应的体膨胀系数γ的计算公式如下:/pp style="text-align: center "img title="式1-2.jpg" alt="式1-2.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/0a79f259-09f2-436d-82c0-69a18aeaef5b.jpg"//pp其中V0为样品原始体积,ΔV/ΔT为热膨胀曲线的斜率。/pp style="text-align: center "img title="图3 热膨胀曲线以及线膨胀系数α的确定.png" alt="图3 热膨胀曲线以及线膨胀系数α的确定.png" src="https://img1.17img.cn/17img/images/201812/uepic/480a5479-2a22-47f0-9e37-465d8ca4609b.jpg"//pp style="text-align: center "strong图3 热膨胀曲线以及线膨胀系数α的确定/strong/pp  热膨胀曲线也可以确定材料的玻璃化转变温度Tg,图4是比较常见的高分子材料和金属的热膨胀曲线,从(a)中可以看到聚苯乙烯PS的膨胀曲线突变处所做的外推温度就是Tg。如果将热膨胀曲线对温度一阶求导,如图5-7下方,将得到一个类似于DSC在Tg处台阶的曲线,更容易确定Tg值。/pp style="text-align: center "img title="图4常见的热膨胀曲线(a)聚苯乙烯PS;(b)高(低)密度聚乙烯PE;(c)金属Al、Pt和玻璃.jpg" alt="图4常见的热膨胀曲线(a)聚苯乙烯PS;(b)高(低)密度聚乙烯PE;(c)金属Al、Pt和玻璃.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/ab420d73-d6f7-40f3-8a62-8586c92c66fa.jpg"//pp style="text-align: center "strong图4常见的热膨胀曲线(a)聚苯乙烯PS (b)高(低)密度聚乙烯PE (c)金属Al、Pt和玻璃/strong/pp style="text-align: center "img title="图5 TMA热膨胀曲线及其一阶导数曲线确定Tg.jpg" alt="图5 TMA热膨胀曲线及其一阶导数曲线确定Tg.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/79777183-9912-4ea3-a0ef-34a0ee703a9b.jpg"//pp style="text-align: center "strong图5 TMA热膨胀曲线及其一阶导数曲线确定Tg/strong/pp style="text-align: center "img title="图6 几种不同类型的热机械曲线示意图.jpg" alt="图6 几种不同类型的热机械曲线示意图.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/7ec3e314-83b7-4eac-b62f-5d60ce321bb8.jpg"//pp style="text-align: center "strong图6 几种不同类型的热机械曲线示意图/strong/pp style="text-align: center "strong(a) 非晶态无定形线形聚合物的温度—形变曲线 /strong/pp style="text-align: center "strong(b) 非晶态无定形线型和交联型聚合物的蠕变曲线,1-线型 2-交联型/strong/pp style="text-align: center "strong(c) 不同力学状态高聚物的应力松弛曲线,1-玻璃态 2-高弹态 3-粘流态/strong/pp  上文曾经提到TMA除了热膨胀法曲线之外,还可以研究保持应变恒定时的应力松弛和恒定应力下的蠕变行为,如图6。TMA所测的形变,除了一部分是样品自身膨胀或收缩引起的形变之外,还有一部分是应力引起的,这部分形变是分子相对移动时释放能量(粘性响应)或储藏能量(弹性响应)的结果,因此TMA所测形变实际上是膨胀行为和粘弹效应的加合。/ppstrong四、TMA实验方法/strong/pp  TMA是研究形变的技术,因此样品尺寸是否准确计量、是否稳定很重要,选用样品要求形状规整、无缺陷(气泡或裂纹),块状样品上下两面要求平行且光滑,复合材料尤其是高聚物中添加了无机填料要考虑两相间是否相溶,必要时类似于DSC测试要考虑去除热历史的影响。由于TMA的样品用量相对比TG和DSC要大,扫描速率相对的设定慢一些为好,一般5℃/min 保护气常用氮气或空气,流量10-50ml/min。/pp  此外由于TMA配备有各种探头,了解这些探头的功能以及何种形态的样品适用于何种探头 了解测试的目的,在多种实验模式中选择合适的实验程序 负载力是TMA测试的一个重要参数,其大小的设定等等,这些往往依赖于实验人员的经验。/pp  块状样品,一般适用的探头有:压缩探头、三点弯曲探头、针入(或称穿透)探头 所应用的测试有:线性膨胀系数、玻璃化转变温度、软化点、熔点、蠕变和松弛等等。/pp  膜和纤维样品,一般适用的探头有:拉伸探头、针入探头 所测的参数:杨氏模量、玻璃化转变温度、软化点、蠕变、固化、交联密度和硬度等等。/pp  粘性流体和胶,一般适用的探头有:剪切探头和针入式探头 适用的测试:粘性、凝胶化、胶体-熔体转变温度、固化和剪切模量。/pp /ppa href="https://www.instrument.com.cn/zt/TAT" target="_blank"更多热分析相关知识请见专题:《热分析方法与仪器原理剖析》/a/p
  • 依拉勃天平安全称量罩 亮相CPhI制药展,备受瞩目
    依拉勃天平安全称量罩 亮相CPhI制药展,备受瞩目 众所周知,制药企业经常需要精确的称量 高毒性或毒性未知的物质(如API),目前实验员在选择安全防护设备时会遇到两大阻碍。(1) 安全与操作方便不可兼顾,如全密闭手套箱;(2) 安全与读数不稳定不可兼顾,如传统外排通风橱。 依拉勃基于50余年对过滤技术与流体力学的研究,本次推出的全新设计的净气型安全称量罩 集安全称量、操作方便、数据稳定于一体。净气型天平安全称量罩 该产品经权威检测机构检测,其接触浓度能够控制在0.1 ug/m3以下,远低于OEB 5相应的1 ug/m3 控制目标。一般可适用于OEB3、OEB4、OEB5的药品,能确保用户的安全并通过平稳性测试保障读数的稳定性,适用于百万分之一天平。 这款能帮助制药和生物制药领域用户 解决在药品称量过程中的安全防护问题的净气型安全称量罩吸引了众多访客的参观。 依拉勃特设安全讲座区域为用户带去专业的解析与深入技术的分享,获得了听众们的一致好评。 如果您的实验室也有同样的困扰,欢迎致电法国依拉勃!
  • 科学家研制出最微小天平:可称出分子质量
    最微小天平由4部分组成金属层(1)位于一个金刚砂层(2)之上,附着于一个硅衬底(3)以及微型支架(4)  新浪科技讯 北京时间2月15日消息,据国外媒体报道,科学家研制出世界上最微小的天平,可以实时称量单个分子的质量。借助这种最小的天平,研究人员称出了某种蛋白质分子和金纳米微粒的质量。  据了解,世界上最微小的天平是由美国加州理工学院物理学家迈克尔-卢克斯和他的同事研制的。研究人员可以利用这种微型仪器实时称量单个分子的质量。最小天平可谓用途广泛。化学家可以用这种高灵敏衡器来确定未知物质的化学特性。而加州理工学院研究小组表示,科学家利用这种微型仪器可以在几毫秒内分析上千种蛋白质,而且所需样本更少。  科学家研制出的世界最微小天平其实是一种微型谐振器,只有2微米长,120纳米宽。它由4部分组成,金属层(1)位于一个金刚砂层(2)之上,附着于一个硅衬底(3)以及微型支架(4)。它的工作原理是:当称量一个分子的质量时,含有这种分子的溶液喷洒到这一微型谐振器上。当分子“降落”到谐振器上,会使谐振器的震动方式发生改变。微型谐振器和一个电路相连,电路记录下震动改变,并传输至计算机,随后计算出分子的质量。每一次分子降落到谐振器上,都会计算出一个分子的质量;最终上百个分子堆积在谐振器上,科学家可以多次测量,得到非常精确的分子质量数据。  截至目前,卢克斯利用这种最微小天平测量出金纳米微粒的质量以及三种奶牛血清蛋白的质量。目前,他正领导研究小组研制新型谐振器。他们希望新型谐振器的震动方式更为复杂,能够做出更为精确的测量。
  • 讲座预告 | 石英晶体微天平(QCM-D)技术在分离分析化学中的应用
    报告亮点阐述: 高纯度生物样品的获取是生物学功能研究的前提和基础,同时生物分离过程是生物技术产业化的必经之路。特别是“精准医疗”计划的提出为靶向富集和分离材料的开发,提出了更高的要求,迫切需要开发新一代对开发目标生物分子具有高亲和力,特异性识别的富集和分离材料。然而这类材料的开发非常具有挑战性,这是因为生物样品种类繁多,结构各异,高度复杂,同时有价值的生物样品在血液或组织液中的含量极低。蛋白等物质在细胞中分布还具有动态不均一性,在不同人种,年龄,性别,病理阶段具有非常显著的差异性。通过学习和模仿生物分子间特异性相互作用,结合智能聚合物构象转变,开发出的生物分子响应性聚合物很好地切合了这一需求,能够实现对目标生物分子的精准捕获,将在生物分离和分析领域,获得广泛的应用。这一方向融合了智能聚合物、主客体化学、微纳米器件构筑、精准测量和生物医学,是目前新兴涌现的一个学科方向,具有鲜明的开创性和广阔的应用前景。研究生物分子在材料表面的吸附动力学行为,对于揭示材料对目标分子的选择性吸附能力,以及材料吸附生物分子后,表面所发生的显著变化,是一项非常有趣的工作。报告将讲解石英晶体微天平(QCM-D)技术在分离分析化学中的应用,帮助研究人员更好地去理解生物界面行为,揭示吸附背后的精彩故事。 报告人简介:卿光焱,博士,中国科学院大连化学物理研究所研究员、博士生导师。长期从事生物分离材料与器件方面的基础研究,已在包括Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., Chem. Sci.等化学和材料领域权威刊发表SCI论文100余篇,相关技术获得中国发明专利授权20项。主持国家自然科学基金优秀青年科学基金,面上项目4项等。目前担任《色谱》青年编委,Chin. Chem. Lett.编委,Chemical Synthesis青年编委等。 报告时间:2022年7月7日(周四) 上午10点报告地点:腾讯会议(会议号报名后另行通知)报名方式:复制下方报名链接至微信搜索框,点击“访问网页”在线填写https://doc.weixin.qq.com/forms/AHUAGgcQAAkACwA1AbmAHUKesSVrfzTHfQSense技术简介: 具有耗散因子检测功能的石英晶体微天平(QSense)是瑞典百欧林科技有限公司的专利技术,可提供多个频率和耗散因子数据,用于测定非常薄层的吸附层的质量,并同步提供粘弹性等结构信息。 该技术可对多种不同类型表面的分子相互作用和分子、纳米颗粒及细胞吸附进行研究,同时可以检测分子的结构变化以及吸附与解析的动态过程。 该仪器应用范围包括生物技术和医疗器械、蛋白质、核酸、多糖等生物分子和细胞/细菌、生物传感器、食品、高分子聚合物、环境膜处理、纳米颗粒、石墨烯、自组装材料、锂电池/超级电容器等,从纳米到微米尺度的物质与界面之间的相互作用及物质的环境响应。 既往相关讲座:Ÿ 马春风教授 华南理工大学报告题目:石英晶体微天平(QCM-D)技术如何解决海洋防污中面临的难题Ÿ 宋君龙教授 南京林业大学报告题目:石英晶体微天平(QCM-D)技术及其在木质纤维素利用中的应用Ÿ 郑靖研究员 西南交通大学报告题目:石英晶体微天平(QCM-D)技术在唾液润滑研究中的应用Ÿ 王敏博士 瑞典百欧林报告题目:QSense 耗散型石英晶体微天平技术(QCM-D)原理及应用Ÿ 申涛工程师 瑞典百欧林报告题目:QSense耗散型石英晶体微天平(QCM-D)在生物和食品领域的应用Ÿ 张洪斌教授 上海交通大学报告题目:石英晶体微天平(QCM-D)技术在乳状液界面膜粘弹性与物理稳定性研究中的应用Ÿ 王敏博士 瑞典百欧林报告题目:耗散型石英晶体微天平(QCM-D)在锂离子电池研究领域的新应用Ÿ 姜威教授 山东大学报告题目:石英晶体微天平技术探究颗粒污染物的环境界面过程Ÿ 杨晓泉教授 华南理工大学报告题目:Langmuir膜分析仪及石英晶体微天平(QCM-D)在食品科学研究的应用Ÿ 杨哲博士 香港大学报告题目:石英晶体微天平(QCM-D)技术及其在环境膜材料领域中的应用Ÿ 苗瑞副教授 西安建筑科技大学报告题目:QSense耗散型石英晶体微天平技术在超滤膜污染机理领域的应用研究Ÿ Netanel Shpigel博士 以色列巴伊兰大学/美国德雷塞尔大学报告题目:QSense耗散型电化学石英晶体微天平在电池及超级电容实时研究中的应用Ÿ 罗日方副研究员 四川大学报告题目:石英晶体微天平(QCM-D)技术在血液接触材料表面改性领域的应用 如需相关讲座视频请联系百欧林索要,联系电话: 400 860 5169 分机号1902
  • 天平划算节 | 买天平,送称量数据采集软件!
    梅特勒托利多# 天平划算节来袭 # 第一期 实验猿们添置设备的最佳时机来啦!第一期活动已经开启买到就是赚到购买任意 MS-TS 天平均可免费获赠 EasyDirect Balance 软件及打印机半价优惠!活动截止时间:2020年11月30日划算节第一期今天小梅为您推荐 MS-TS天平 + EasyDirect Balance软件,是您实验室称量数据管理的优选伙伴!Q为什么称量数据的管理如此重要?对电子记录和数据管理解决方案的需求是当今实验室市场的重要趋势企业对实验室基础设施进行现代化改造,以满足对数字化和无纸化实验室要求设备在现有 IT 环境中的连接性和集成的要求越来越多EasyDirect Balance软件特性:01自动采集称量数据通过以太网或串口从最多10台天平收集称重数据。02高效处理结果生成图表以评估目标值与允差范围,以及通过统计确保高效趋势与生产分析。03轻松报告与导出生成简单和清晰的称量结果报告,以多种格式(XML、CSV、XLSX 或 PDF)将数据导出至电脑。04仪器状态概览EasyDirect Balance 软件提供校正、测试等状态信息,让您对所有连接设备的状态一目了然。MS-TS天平特性:01瑞士进口单模块传感器带有自动内部校正功能的MonoBloc单模块称重传感器可提供始终如一的可靠结果。02内置用户管理功能内置4个用户组和20个用户,可自定义用户组权限及用户密码,确保规范操作。03自定义报告格式用户可自定义页眉,页脚信息,可设置4个样品ID信息,完全实现个性化打印。04全金属机架完整的压铸铝外壳不仅保护称重传感器避免环境影响,还可抵御丙酮等化学品腐蚀。此外,MS-TS系列天平还内置 ISO日志记录,全自动内部校正,防风罩快速拆卸(方便清洗消毒)等便捷功能。现在订购,马上获取优惠!
  • 推动天平进步的划时代产品—Quintix & Practun天平隆重上市
    赛多利斯Quintix & Practun天平在千呼万唤之下终于在2013年春天上市了,它将带来天平业界革命性进步。  第一场中国区新品发布将在4月9日在广州举办,紧接着是北京,上海。  和过往的赛多利斯新天平上市一样,P&Q天平的上市必将带来业内的震动。新天平的许多新配置,新理念,新标准完全可以用革命性来描述。  通常情况下新的天平往往是之前天平的升级换代产品,由于传感器这种天平的核心技术升级较慢,近几年各厂家新上市的天平除Cubis系列天平外没有给业界带来太大的冲击。大部分厂家由于缺乏投入,所以没有新的技术支撑产品的升级,在用户看来新产品没有什么实质性的改变。  自从全球性的金融危机爆发以来,赛多利斯逆市加大了新产品研发的投入。大量新的技术产生,四角误差补偿 全自动水平调整 基于全新称重传感器技术的5位数上皿式称重结构 更高精度的称重模块。结合目前最新的电子技术发展,赛多利斯把全新的个性化操作系统 可以直接联入系统的网络服务功能 Q-APP网上应用程序商店 触摸屏扫屏操作模式等等都搬到了由CUBIS系列和Secura,Quintix & Practun天平构成的全新的产品组合之中。正是基于这种强大的技术优势,我们结合用户的需求重新定义了产品的分类,把不同的技术按级别分别分配给对应的天平。因此赛多利斯新天平带来了两个飞跃。第一是很多高档次的天平的技术被挤到低档次天平的功能中。比如时间温度触发的校准技术,本来这就是一个全自动内校天平都具备,只是没有启动的功能。你没有更多的技术支撑你的天平技术分类,只能关闭这一功能来解决这个分类问题。而在赛多利斯的新的天平系列里,只要是内校天平都有这一功能&mdash &mdash isoCAL。这样你会发现按价格分类的同档次天平,赛多利斯的技术是绝对领先的。第二,触摸扫屏操控系统,这种在手机上普遍应用的操作模式被新上市天平全系列采用。也就是说赛多利斯最低档次的天平也将采用这种操作系统。这样做不是在说赛多利斯的技术储备有多丰厚,把看似本该放到高端天平上的功能的商业价值浪费掉,其实更深层次的原因在于我们意识到一个天平从简单称量到使用应用功能转变的时代已经到来,简单方便的操作系统不再是高端用户的专属工具,即使是一个面包房,一个饲料车间都给天平厂家提出更高的应用要求。我们应该顺应这种转变,积极的去推动它。这也许就是所谓的企业责任吧。  上述简短的评述无法完整的让你了解全新的赛多利斯天平。也无法让你完全体会到它那颠覆性的变化所能带给你的震撼。欢迎来访我们的网站,或者垂询你身边的赛多利斯工作人员,让他们给你更详细的介绍。
  • 高分子表征技术专题——石英晶体微天平在高分子研究中的应用
    2021年,《高分子学报》邀请到国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20248《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304 石英晶体微天平在高分子研究中的应用袁海洋 1 ,马春风 2 ,刘光明 1 , 张广照 2 , , 1.中国科学技术大学化学物理系 合肥微尺度物质科学国家研究中心 安徽省教育厅表界面化学与能源催化重点实验室 合肥 2300262.华南理工大学材料科学与工程学院 广州 510640作者简介: 刘光明,男,1979年生. 2002年于安徽师范大学获得学士学位,2007年于中国科学技术大学获得博士学位. 2005~2006年,香港科技大学,研究助理;2008~2010年,澳大利亚国立大学,博士后;2010~2011年,中国科学技术大学,特任副教授;2011~2016年,中国科学技术大学,副教授;2016年至今,中国科学技术大学,教授. 获得2011年度中国分析测试协会科学技术奖(CAIA奖)(二等奖),2013年入选中国科学院青年创新促进会,并于2017年入选为中国科学院青年创新促进会优秀会员. 近年来的研究兴趣主要集中于高分子的离子效应方面 张广照,男,1966年生. 华南理工大学高分子科学与工程系教授. 1987年本科毕业于四川大学高分子材料系,1998年在复旦大学获博士学位. 先后在香港中文大学(1999~2001年)和美国麻省大学(2001~2002年)从事博士后研究. 2002~2010年任中国科学技术大学教授,2010至今在华南理工大学工作. 曾获国家杰出青年基金获得者(2007年),先后担任科技部重大研究计划项目首席科学家(2012年),国际海洋材料保护研究常设委员会(COIPM)委员(2017年),中国材料研究学会高分子材料与工程分会副主任,广东省化学会高分子化学专业委员会主任,《Macromolecules》(2012~2014年)、《ACS Macro Letters》(2012~2014年)、《Macromolecular Chemistry and Physics》、《Chinese Joural of Polymer Science》、《高分子材料科学与工程》编委或顾问编委. 研究方向为高分子溶液与界面物理化学,在大分子构象与相互作用、高分子表征方法学、杂化共聚反应、海洋防污材料方面做出了原创性工作 通讯作者: 刘光明, E-mail: gml@ustc.edu.cn 张广照, E-mail: msgzzhang@scut.edu.cn 摘要: 石英晶体微天平(QCM)作为一种强有力的表征工具已被广泛应用于高分子研究之中. 本文中,作者介绍了QCM的发展简史、基本原理以及实验样品制备方法. 在此基础上,介绍了如何基于带有耗散测量功能的石英晶体微天平(QCM-D)及相关联用技术研究界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料,展示了QCM-D技术在高分子研究中的广阔应用前景. QCM-D可同时检测界面高分子薄膜的质量变化和刚性变化,从而反映其结构变化. 与光谱型椭偏仪联用后,还可同步获取界面高分子薄膜的厚度变化等信息,可以有效解决相关高分子研究中的问题. 希望本文能够对如何利用QCM-D技术开展高分子研究起到一定的启示作用,使这一表征技术能够为高分子研究解决更多问题.关键词: 石英晶体微天平 / 高分子刷 / 聚电解质 / 离子效应 / 海洋防污材料 目录1. 发展简史2. 石英晶体微天平基本原理3. 石英晶体微天平实验样品制备3.1 在振子表面制备化学接枝高分子刷3.2 在振子表面制备物理涂覆高分子膜4. 石英晶体微天平在高分子研究中的应用4.1 界面接枝高分子构象行为4.2 高分子的离子效应4.2.1 高分子的离子特异性效应4.2.2 高分子的离子氢键效应4.2.3 高分子的离子亲/疏水效应4.3 高分子海洋防污材料5. 结语参考文献1. 发展简史1880年,Jacques Curie和Pierre Curie发现Rochelle盐晶体具有压电效应[1 ]. 1921年,Cady利用X切型石英晶体制造出世界上第一个石英晶体振荡器[2 ]. 但是,由于X切型石英晶体受温度影响太大,该切型石英晶体并未被广泛应用. 直到1934年,第一个AT切型石英晶体振荡器被制造出来[3 ],由于其在室温附近几乎不受温度影响,因而得到广泛应用. 1959年,Sauerbrey建立了有关石英晶体表面质量变化和频率变化的定量关系,即著名的Sauerbrey方程[4 ],该方程的建立为石英晶体微天平(QCM)技术的推广与应用奠定了坚实基础. 20世纪六七十年代QCM技术主要被应用于检测空气或真空中薄膜的厚度[5 ]. 1982年,Nomura和Okuhara实现了在液相中石英晶体振子的稳定振动,从而开辟了QCM技术在液相环境中的应用[6 ]. 1995年,Kasemo等开发了具有耗散因子测量功能的石英晶体微天平技术(QCM-D)[7 ],实现了对石英晶体振子表面薄膜的质量变化和结构变化进行同时监测. 近年来,随着科学技术的发展,出现了QCM-D与其他表征技术的联用. 如QCM-D与光谱型椭偏仪联用技术(QCM-D/SE)[8 ]、QCM-D与电化学联用技术[9 ]等,这些联用技术无疑极大地拓展了QCM-D的应用范围,丰富了表征过程中的信息获取量,加深了对相关科学问题的理解. 毋庸置疑,在过去的60年中,QCM技术已取得了长足进步,广泛应用于包括高分子表征在内的不同领域之中[10 ~14 ],为相关领域的发展作出了重要贡献.2. 石英晶体微天平基本原理对于石英晶体而言,其切形决定了石英晶体振子的振动模式. QCM所使用的AT切石英振子的法线方向与石英晶体z轴的夹角大约为55°[15 ],其振动是由绕z轴的切应力所产生的绕z轴的切应变激励而成的,为厚度剪切模式,即质点在x方向振动,波沿着y方向传播,该剪切波为横波(图1 )[15 ~17 ].图 1Figure 1. Schematic illustration of a quartz resonator working at the thickness-shear-mode, where the shear wave (red curve) oscillates in the horizontal (x) direction as indicated by the two blue double-sided arrows but propagates in the vertical (y) direction as indicated by the light blue double-sided arrows. The two gold lines represent the two electrodes covered on the two sides of the quartz crystal plate, and the dashed line represents the center line of the quartz crystal plate at the y direction. (Adapted with permission from Ref.[16 ] Copyright (2000) John Wiley & Sons, Inc).当石英振子表面薄膜厚度远小于石英振子厚度时,Sauerbrey建立了AT切石英压电振子在厚度方向上传播的剪切波频率变化(Δf)与石英压电振子表面均匀刚性薄膜单位面积质量变化(Δmf)间的关系,称为Sauerbrey方程[4 ]:其中,ρq为石英晶体的密度,hq为石英振子的厚度,f0为基频,n为泛频数,C = ρqhq/(nf0). Sauerbrey方程为QCM技术的应用奠定了基础. 值得指出的是,此方程一般情况下仅适用于真空或空气中的相关测量.当黏弹性薄膜吸附于石英振子表面时,振子的振动受到其表面吸附层的阻尼作用,因此需要定义一个参数耗散因子(D)来表征石英振子表面薄膜的刚性:其中,Q为品质因数,Es表示储存的能量,Ed表示每周期中消耗的能量. 较小的D值反映振子表面薄膜刚性较大,反之,较大的D值表明振子表面薄膜刚性较小.当QCM用于液相中的相关测量时,Kanazawa和Gordon于1985年建立了石英压电振子频率变化和牛顿流体性质间的关系,即Kanazawa-Gordon方程[18 ]:其中ηl代表液相黏度,ρl为液相密度. 1996年,Rodahl等建立了有关耗散因子变化与牛顿流体性质间关系的方程[19 ]:在液相中,石英振子表面黏弹性薄膜的复数剪切模量(G)可表示为[20 ]:G′代表薄膜的储存模量,G″代表薄膜的耗散模量,μf代表薄膜的弹性模量,ηf代表薄膜的剪切黏度,τf代表薄膜的特征驰豫时间. 因此,石英压电振子的频率变化和耗散因子变化可表示为[20 ]:其中ρf代表薄膜密度,hf代表薄膜厚度.石英压电振子的频率与耗散因子可以通过阻抗谱方法加以测量[16 ],也可以通过拟合振幅衰减曲线获得[7 ]. 以后者为例,当继电器断开后,由交变电压产生的驱动力会突然消失,石英压电振子的振幅在阻尼作用下会按照下面的方式逐渐衰减[21 ].其中t为时间,A(t)为t时刻的振幅,A0为t=0时的振幅,τ为衰减时间常数,φ为相位,C为常数. 注意此时输出频率(f)并非为石英振子的谐振频率,而是f0和参照频率(fr)之差[21 ]. 通过对石英压电振子振幅衰减曲线的拟合,可以得到f 和τ.耗散因子可以通过如下公式求得[7 ]:3. 石英晶体微天平实验样品制备在QCM-D表征高分子的研究过程中,需要在石英振子表面制备高分子膜,所制备高分子膜的质量对相关实验测量有重要影响. 下面以在石英振子表面制备化学接枝高分子刷和物理涂覆高分子膜为例,介绍相关高分子膜的制备:3.1 在振子表面制备化学接枝高分子刷高分子刷可以通过“grafting to”或“grafting from”方法接枝于石英振子表面. 一般情况下,前者的接枝密度较低,而后者的接枝密度相对较高. 对于金涂层的石英振子而言,巯基和金表面可以生成硫金键,在基于“grafting to”技术制备高分子刷时,可以将含有巯基末端的高分子溶液添加至自制的QCM反应器中. 在该自制的反应器中,石英振子正面接触溶液,利用橡胶圈对石英振子的背面加以密封. 在接枝反应充分完成后,取出振子,利用大量溶剂冲洗振子表面,随后使用氮气吹干振子,即可完成相关高分子刷的制备. 此外,也可以在QCM检测模块中完成利用“grafting to”策略制备高分子刷,此时可实时监测高分子接枝过程中的频率以及耗散因子变化[22 ,23 ].在利用“grafting from”策略在振子表面制备高分子刷时,可采用活性自由基聚合等方法加以实现. 以表面引发原子转移自由基聚合(SI-ATRP)制备高分子刷为例,首先利用自制的反应器将引发剂接枝于振子表面,然后将振子放置于相应的包括单体的溶液中,并通过SI-ATRP方法在振子表面引发单体聚合,制备高分子刷. 在采用SI-ATRP方法在振子表面制备高分子刷的过程中,除去溶液中溶解的氧气这一步骤非常关键,需要加以特别注意,否则可能会导致制备高分子刷失败. 在反应结束后,需要采取相应的程序进一步纯化振子表面制备的高分子刷. 类似于“grafting to”策略,利用“grafting from”策略在振子表面制备高分子刷也可以在QCM检测模块中完成[24 ~26 ].3.2 在振子表面制备物理涂覆高分子膜以旋涂法在振子表面制备高分子膜过程中,首先将振子放置于旋涂仪上,抽真空使振子固定,将高分子溶液滴在振子表面后,启动旋涂仪,高分子溶液将沿着振子的径向铺展开来. 伴随溶剂的挥发,可在振子表面制备一层物理涂覆的高分子薄膜[27 ,28 ]. 在利用旋涂法制备高分子膜时,溶剂的选择、高分子溶液的浓度以及环境的湿度等都会对振子表面的成膜情况产生影响,需要加以注意.4. 石英晶体微天平在高分子研究中的应用QCM在高分子薄膜研究中得到了广泛应用,已有一些国内外学者对相关方面的研究进展进行了总结. 例如,Du等总结了QCM在聚合物水凝胶薄膜等研究中的应用[29 ];He等总结了QCM在表面引发聚合反应动力学等研究方面的进展[30 ];Sun等总结了QCM在生物医用高分子材料中的应用[31 ];Marx总结了QCM在生物高分子薄膜等研究方面的进展[32 ]. 另一方面,在高分子研究中,QCM-D的测量结果不但与其振子表面的高分子薄膜密切相关,也与QCM-D检测模块中高分子溶液的非牛顿流体行为有关,例如,Munro和Frank研究了聚丙烯酰胺分子量及溶液浓度对其在QCM-D振子表面吸附的影响[33 ];为了阐明大分子溶液非牛顿流体行为对QCM-D振子表面与大分子间相互作用的影响,Choi等研究了QCM-D特征参数S2对聚乙二醇溶液浓度的依赖性[34 ];更多相关方面的研究可参阅有关文献,在此不作详细讨论. 本文将以作者的相关高分子研究工作为例,介绍QCM-D在界面接枝高分子构象行为、高分子的离子效应以及高分子海洋防污材料研究中的应用,进一步展示QCM-D在高分子研究中的广阔应用前景.4.1 界面接枝高分子构象行为众所周知,界面接枝高分子的构象行为对界面性质至关重要[35 ]. 然而,对界面接枝高分子的构象行为进行实时原位表征一直面临许多挑战. 研究界面接枝高分子的构象行为,首先需要理解高分子在界面接枝过程中的构象变化. 在低接枝密度下,由于链间距离大于链本身的尺寸,链间不发生交叠,此时,根据高分子链节与界面间相互作用的强弱,高分子会形成“煎饼”状构象(pancake)或“蘑菇”状构象(mushroom)[36 ]. 具体而言,如果高分子链节与固体表面间相互作用强时,接枝高分子会形成“煎饼”状构象;若高分子链节与固体表面间无明显相互作用时,接枝高分子则形成“蘑菇”状构象[36 ]. 随着接枝密度增加,当接枝高分子链间距离小于其本身尺寸时,由于链间排斥作用,接枝高分子链会形成“刷”(brush)状构象[36 ]. 因此,随着接枝密度增加,接枝高分子将展现出pancake-to-brush或mushroom-to-brush转变. 利用QCM-D研究相关高分子接枝过程中的构象变化,对于理解高分子刷的形成机理十分重要.图2(a) 为巯基末端聚(N-异丙基丙烯酰胺) (HS-PNIPAM)在金涂层石英振子表面接枝所引起的频率变化情况[23 ]. 很明显,接枝过程经历了3个不同的动力学阶段. 在区域Ι阶段,Δf 快速下降,表明HS-PNIPAM链快速接枝到振子表面. 在区域ΙΙ阶段,Δf 缓慢下降,说明已接枝高分子链阻碍HS-PNIPAM链的进一步接枝,因而接枝速率变慢. 在区域ΙΙΙ阶段,Δf 再次出现相对快速的下降,表明已接枝的HS-PNIPAM链进行构象调整,从而使得后续的HS-PNIPAM链能够继续进行接枝反应. 对于HS-PNIPAM接枝过程中的耗散因子变化情况而言(图2(b) )[23 ],在区域Ι阶段,ΔD快速上升;在区域ΙΙ阶段,ΔD缓慢增加;在区域ΙΙΙ阶段,ΔD相对快速增加. 显然,ΔD与Δf 变化的快慢趋势相一致,反映类似的HS-PNIPAM链在振子表面的接枝过程.图 2Figure 2. (a) Frequency shift (Δf) and (b) dissipation shift (ΔD) of the gold-coated quartz resonator immersed in a HS-PNIPAM solution as a function of time (c) ΔD versus −Δf relation for the grafting of HS-PNIPAM to the surface of the gold-coated quartz resonator (Adapted with permission from Ref.[23 ] Copyright (2005) American Chemical Society) (d) Schematic illustration of the pancake-to-brush transition for the grafting of HS-PNIPAM to the surface of the gold-coated quartz resonator (Adapted with permission from Ref.[37 ] Copyright (2015) Science Press).然而,HS-PNIPAM链在振子表面接枝过程中Δf 与ΔD间的关系只包含2个不同的过程(图2(c) )[23 ]. 在区域Ι和ΙΙ阶段,随着−Δf 的增加,ΔD缓慢增加,−Δf与ΔD间关系相似,表明在这两个阶段中接枝HS-PNIPAM链的构象接近,即,由于HS-PNIPAM链节与金表面间有较强的吸引作用,HS-PNIPAM链在区域I阶段形成“煎饼”状构象;随着接枝密度增加,其在区域II阶段转变成“蘑菇”状构象. 在区域ΙΙΙ阶段,ΔD随着−Δf 的增加快速增加,说明接枝HS-PNIPAM链变得越来越伸展,即形成了高分子刷构象. 图2(d) 展示了从区域I到区域III阶段,接枝HS-PNIPAM链的构象转变过程[37 ]. 同样,如果高分子链节与固体表面间无明显吸引作用时,随着接枝密度的增加,接枝高分子链将展现从无规“蘑菇”状构象到有序“蘑菇”状构象,再到“刷”状构象的转变[22 ].另一方面,PNIPAM为典型的热敏型高分子,其在水中具有最低临界溶解温度(LCST,约为32 °C). 在温度低于LCST时,溶液中自由的PNIPAM链呈无规线团状(coil),但当温度高于LCST时,PNIPAM链塌缩成小球状(globule),且coil到globule转变是不连续的. 与溶液中自由的PNIPAM链相比,由于空间受限效应,界面接枝PNIPAM链将展现出不同的热敏性构象行为. Zhang和Liu利用QCM-D研究了界面接枝PNIPAM随温度的变化情况[38 ,39 ]. 如上所述,PNIPAM链可以通过“grafting to”或“grafting from”策略接枝到振子表面,前者可以形成接枝密度较低的“蘑菇”状构象,而后者则可以形成接枝密度较高的“刷”状构象.图3(a) 为利用“grafting to”策略将PNIPAM链接枝到振子表面形成“蘑菇”状构象后,频率随温度的变化情况[38 ]. 在加热过程中,−Δf 随着温度增加逐渐降低,表明接枝PNIPAM链发生了去水化. 在降温过程中,−Δf 随着温度降低逐渐增加,表明接枝PNIPAM链的水化程度再次增加. 最终,−Δf 能够回到原点,说明降低温度可以使得接枝PNIPAM链从高温时的弱水化状态回到低温时的强水化状态. 图3(b) 为振子表面接枝PNIPAM链形成“蘑菇”状构象后,耗散因子随温度的变化情况[38 ]. 在升温过程中,ΔD随着温度增加而减小,表明升温导致接枝PNIPAM塌缩成更加致密刚性的薄膜. 在降温过程中,ΔD随着温度降低而增大,表明降温使得塌缩的PNIPAM逐渐溶胀成更加蓬松柔性的薄膜. 另一方面,在图3(c) 中,Δf与ΔD成线性关系,表明随着温度变化,接枝PNIPAM链的伸展/塌缩与其水化/去水化间的协同性强[40 ].图 3Figure 3. Temperature dependence of the shifts in frequency (Δf) (a) and dissipation (ΔD) (b) of the PNIPAM mushroom. (Reprinted with permission from Ref.[38 ] Copyright (2004) American Chemical Society) (c) ΔD versus −Δf relation of the PNIPAM mushroom (Reprinted with permission from Ref.[40 ] Copyright (2009) John Wiley & Sons, Inc.) Temperature dependence of the shifts in frequency (Δf) (d) and dissipation (ΔD) (e) of the PNIPAM brush (f) ΔD versus −Δf relation of the PNIPAM brush (Reprinted with permission from Ref.[39 ] Copyright (2005) American Chemical Society).利用“grafting from”策略将PNIPAM链接枝到振子表面形成“刷”状构象后,其频率和耗散因子随温度的变化情况示于图3(d) ~ 3(f) 中[39 ]. 在图3(d) 中,−Δf 随着温度增加而降低,表明PNIPAM刷在升温过程中发生了去水化;−Δf 随着温度降低而增加,表明PNIPAM刷的水化程度在降温过程中再次增加. 在图3(e) 中,ΔD随着升温而减小,表明加热使得PNIPAM刷塌缩成更加致密刚性的结构;在降温过程中,ΔD逐渐增加,表明降温使得塌缩的PNIPAM刷溶胀为更加蓬松柔性的结构. 与图3(b) 不同的是,在图3(e) 中,降温过程中的ΔD比升温过程中同一温度下的值要大,这是降温过程中在PNIPAM刷外围形成“尾”(tail)状结构造成的[39 ]. 另外,在图3(f) 中,Δf与ΔD的关系也与图3(c) 中的不同,PNIPAM刷在升温过程中展现出3个过程,从A到B,ΔD随着−Δf 的减小而降低,表明在此过程中PNIPAM刷的塌缩和去水化协同性较强;从B到C,ΔD随着−Δf 的减小而轻微地降低,表明在此过程中立体位阻效应使得PNIPAM刷在去水化的同时只有轻微塌缩发生,即PNIPAM刷的塌缩和去水化协同性较差;从C到D,ΔD随着−Δf 的减小而再次降低,表明在此过程中PNIPAM刷克服立体位阻,在去水化的同时伴随进一步塌缩. 在降温过程中,可以观察到2个过程,从D到E,ΔD随着−Δf的增加而显著增大,表明PNIPAM刷开始溶胀时在其外围形成了蓬松的“尾”状构象;从E到F,ΔD随着−Δf的增加而逐渐增大,表明降温导致PNIPAM刷的进一步水化和溶胀. 此外,QCM-D还可应用于表征界面接枝带电高分子的响应性构象行为,如pH响应性[41 ]、盐浓度响应性[42 ]等.4.2 高分子的离子效应高分子的离子效应是理解高分子物理化学基本原理的重要基础,并在生物、环境以及能源等领域中扮演着重要角色. 然而,经典德拜-休克尔理论中所运用的一些假设,例如,仅考虑离子的静电相互作用,忽略离子-溶剂间相互作用,以及认为正负离子间的静电吸引能小于其热运动能量等,使得该理论难以全面正确理解高分子体系中除离子强度效应以外的其他离子效应. 相比于一些传统的研究高分子溶液的表征技术(如激光光散射等),利用QCM-D研究界面高分子体系中的离子效应,可以有效避免如带电高分子相分离等不利因素,从而可以更加全面清晰地解析高分子的离子效应. 此外,将QCM-D与其他界面表征技术联用,可以从不同角度表征高分子的离子效应,加深对相关离子效应作用机理的理解. 在本节中,我们将以离子特异性效应、离子氢键效应以及离子亲/疏水效应为例,介绍如何基于QCM-D/SE联用技术研究高分子的离子效应.4.2.1 高分子的离子特异性效应由于离子普遍存在于不同体系之中,自1888年捷克科学家Hofmeister首次发现离子特异性效应以来[43 ],其已引起了包括高分子在内的不同领域科学家的广泛兴趣[44 ~50 ]. 为了阐明离子特异性效应的相关机理,Collins基于离子水化程度不同,提出了经验性的离子水化匹配模型,即阴阳离子水化程度相近时可以形成紧密离子对,反之,则难以形成紧密离子对[51 ]. 相对于离子水化匹配模型主要用于理解水溶液中带电体系的离子特异性效应,Ninham等提出的离子色散力理论则可以用于理解几乎所有体系的离子特异性效应,即离子尺寸不同,极化能力各异,导致特异性的离子色散相互作用[52 ].对于高分子体系而言,阐明离子特异性作用机理,是理解高分子体系离子特异性效应的关键所在. Kou等以阳离子型聚(甲基丙烯酰氧乙基三甲基氯化铵)(PMETAC)刷为模型体系,利用QCM-D/SE联用技术研究了强聚电解质刷的离子特异性效应(图4 )[53 ]. 在图4(a) 中,对于同一盐浓度而言,Δf 的变化呈现“V”型的阴离子序列SO42−HPO42−CH3COO−Cl−Br−NO3−I−SCN−,这与经典的Hofmeister离子序列不一致. 在“V”型序列的右边主要为“结构破坏型”阴离子,从CH3COO−变化至SCN−,Δf 依次增加,说明PMETAC刷的水化程度依次降低. 一方面,阳离子型季铵基团为弱水化基团[54 ~56 ];另一方面,从CH3COO−变化至SCN−,阴离子的水化程度依次降低[54 ~56 ]. 依据水化匹配模型[51 ],季铵基团与阴离子间的“离子对”相互作用强度从CH3COO−到SCN−依次增强,导致PMETAC刷的水化程度依次降低. 同样,基于离子色散力理论[52 ],也可以得到类似的结论. 因此,上述研究结果表明,对于“结构破坏型”阴离子而言,PMETAC刷的离子特异性效应由直接的“离子对”相互作用主导. 在“V”型序列的左边为“结构构造型”阴离子,从CH3COO−变化至SO42−,Δf 依次增加,同样说明PMETAC刷的水化程度依次降低. 然而,阴离子的水化程度从CH3COO−到SO42−依次增强. 显然,对于“结构构造型”阴离子而言,PMETAC刷的离子特异性效应无法基于水化匹配模型加以理解. 实际上,Δf 随离子种类的变化情况表明,对于“结构构造型”阴离子而言,PMETAC刷的离子特异性效应由阴离子对强聚电解质刷水化层中水分子的争夺作用主导. 类似地,ΔD (图4(b) )和湿态厚度(图4(c) )随离子种类的变化情况再次从不同角度说明了“结构破坏型”和“结构构造型”阴离子分别以不同方式与PMETAC刷进行特异性相互作用. PMETAC刷的离子特异性效应作用机理展示在图4(d) 中. 基于同样原理,QCM-D/SE联用技术还可应用于研究弱聚电解质刷[57 ]以及聚两性离子刷体系的离子特异性效应[58 ].图 4Figure 4. (a) Salt concentration dependence of (a) the frequency shift (Δf), (b) the dissipation shift (ΔD), (c) the wet thickness of the PMETAC brush in the presence of different types of anions with Na+ as the common cation. In parts (a), (b), and (c), salt concentration: 0.001 mol/L (open symbol), 0.01 mol/L (half up-filled symbol), 0.1 mol/L (half right-filled symbol), and 0.5 mol/L (filled symbol) (d) Schematic illustration of the specific interactions between the PMETAC brush and the different types of anions (Reprinted with permission from Ref.[53 ] Copyright (2015) American Chemical Society).4.2.2 高分子的离子氢键效应在带电高分子体系,当抗衡离子具有氢键供体或受体时,其既可以与高分子链上的电荷基团产生静电吸引作用,也可以与高分子链上的氢键受体或供体发生氢键相互作用,从而对带电高分子的性质产生重要影响,此种由带电高分子体系抗衡离子产生的氢键效应被定义为高分子的离子氢键效应[59 ]. 以强聚电解质刷为例,由于强聚电解质的电离度与pH无关,因此,传统观念上认为强聚电解刷无pH响应性. 但如果从离子氢键效应的角度出发,氢氧根离子(OH−)和水合氢离子(H3O+)不但可以通过“抗衡离子凝聚”吸附到接枝强聚电解质链上[60 ],同时也可以和接枝强聚电解质链发生氢键作用. 当溶液pH发生改变时,在保持溶液离子总浓度不变的情况下,OH−和H3O+的浓度会发生变化,导致抗衡离子与强聚电解质刷的氢键相互作用发生改变,从而使得强聚电解质刷产生pH响应性[61 ,62 ].如图5(a) 所示,PMETAC刷的Δf 随着pH的增大而增加,反之亦然. 同时,PMETAC刷的ΔD随着pH的增大而减小,反之亦然. 因此,PMETAC刷的水化程度和刚性对pH有明显的依赖性. 但是,图5(b) 表明PMETAC刷的表面电荷密度(σ)以及湿态厚度(dwet)与pH无关,因此,pH引起的PMETAC刷的水化程度和刚性变化并非由强聚电解质刷的电离度变化或塌缩/溶胀引起的. 事实上,PMETAC刷的pH响应性是由OH−产生的抗衡离子氢键效应导致的(图5(c) ). 具体而言,随着pH增大,更多的OH−离子通过“抗衡离子凝聚”方式吸附在接枝PMETAC链上,并与接枝链上的羰基产生氢键作用,从而削弱了PMETAC刷与其周围水分子间的作用,降低其水化程度,导致Δf 增加. 同时,随着pH增大,接枝链间的氢键作用使得PMETAC刷产生物理交联,即其结构变得更加刚性,导致ΔD减小. 与阳离子型PMETAC刷类似,H3O+产生的抗衡离子氢键效应使得阴离子型聚(3-(甲基丙烯酰氧基)丙磺酸钾)刷具有pH响应性[61 ].图 5Figure 5. (a) Shifts in frequency (Δf) and dissipation (ΔD) of the PMETAC brush as a function of pH (b) Changes in surface charge density (σ) and wet thickness (dwet) of the PMETAC brush as a function of pH (c) Schematic illustration of the pH response of the PMETAC brush induced by the hydrogen bond effect generated by the hydroxide counterions (Reprinted with permission from Ref.[61 ] Copyright (2016) American Association for the Advancement of Science).为了验证带电高分子体系中抗衡离子氢键效应具有普适性,Zhang等将研究体系拓展至弱聚电解质刷以及OH−和H3O+以外的其他种类离子[63 ]. 从图6(a) 可知,CH3SO3−无法和PMETAC发生氢键作用,但是HOCH2SO3−上的羟基却可以和PMETAC链上的羰基形成氢键. 类似地,在图6(b) 中,Na+无法与聚甲基丙烯酸钠(PMANa)发生氢键作用,但是胍离子(Gdm+)上的胺基却可以和PMANa链上的羰基形成氢键. 在图6(c) 中,随着CH3SO3−-HOCH2SO3−混合抗衡离子中HOCH2SO3−摩尔分数(x)的增加,Δf 逐渐增大而ΔD逐渐减小,表明HOCH2SO3−产生的离子氢键效应导致PMETAC刷发生去水化,且PMETAC刷的结构变得更加刚性. 在图6(d) 中,随着x的增加,PMETAC刷的dwet逐渐减小,表明HOCH2SO3−产生的离子氢键效应导致PMETAC刷逐渐塌缩.图 6Figure 6. (a) The HOCH2SO3− counter anions with the hydroxide group can form hydrogen bonds with PMETAC, whereas no hydrogen bonds can be formed between the CH3SO3− counter anions and PMETAC (b) The guanidinium+ counter cations with the amino groups can form hydrogen bonds with PMANa, whereas no hydrogen bonds can be formed between the Na+ counter cations and PMANa (c) Shifts in Δf (filled symbol) and ΔD (open symbol), and (d) shift in dwet of the PMETAC brush as a function of x of the counterion mixtures of CH3SO3− and HOCH2SO3− at a concentration of 0.05 mol/L with Na+ as the common cation (e) Shifts in Δf (filled symbol) and ΔD (open symbol), and (f) shift in dwet of the PMANa brush as a function of pH in the presence of 0.05 mol/L Na+ or guanidinium+ with Cl− as the common anion (Adapted with permission from Ref.[63 ] Copyright (2020) The Royal Society of Chemistry).与强聚电解质刷类似,抗衡离子氢键效应同样存在于弱聚电解质刷体系中. 图6(e) 和6(f) 中,在0.05 mol/L NaCl存在下,PMANa刷的Δf、ΔD以及dwet随pH的变化情况与传统弱聚电解质刷的pH响应性完全一致,即此时PMANa刷的pH响应性由接枝链的电离度随pH变化决定的. 然而,在0.05 mol/L GdmCl存在下,PMANa刷所表现出的pH响应性与0.05 mol/L NaCl存在下的情况截然不同. 当pH从2.0增加到4.5,PMANa刷的Δf 和ΔD分别增加和减小,同时,PMANa刷的dwet逐渐减小,表明PMANa刷的水化程度逐渐降低,其结构变得更加刚性,并伴随着塌缩发生. 显然,这与0.05 mol/L NaCl存在下在该pH区间中PMANa刷的变化情况完全相反. 然而,这可以基于离子氢键效应加以理解. 当pH从2.0增加至4.5时,接枝PMANa链的电离度增加,导致更多的Gdm+离子通过“抗衡离子凝聚”吸附于带负电荷的羧酸根基团上,从而在PMANa刷中形成更多的抗衡离子氢键,削弱了PMANa刷与周围水分子间的相互作用,使PMANa刷变得更加刚性,并导致其塌缩. 在pH 4.5至10.0区间中,0.05 mol/L GdmCl存在下PMANa刷的pH响应性与0.05 mol/L NaCl存在下的情况类似.4.2.3 高分子的离子亲/疏水效应当电荷基团与具有不同亲/疏水性质的有机基团相连接时,形成的有机离子具有不同的亲/疏水性质. 将这些离子引入聚电解质体系作为抗衡离子,可实现利用抗衡离子控制聚电解质的亲/疏水性质,从而调控其温敏性[64 ]. 然而,与聚电解质稀溶液相比,聚电解质刷内部环境较为拥挤. 因此,聚电解质刷的温敏性不但依赖于其抗衡离子的亲/疏水性,而且与抗衡离子的尺寸大小有关. 为了澄清抗衡离子的亲/疏水性质和尺寸大小与聚电解质刷温敏性间的关系,Cai等以聚苯乙烯磺酸钠(PSSNa)为基础,基于离子交换策略制备了具有不同抗衡离子的聚电解质刷(图7(a) ),并利用QCM-D/SE联用技术研究了不同聚电解质刷的温度响应性(图7(b) ~7(g) )[65 ].图 7Figure 7. (a) Schematic illustration of the preparation of PSSP444m brushes from the PSSNa brush through a counterion exchange strategy, where P444m+ represents the hydrophobic tetraalkylphosphonium counterion (b) Shift in frequency (Δf ), (c) shift in dissipation (ΔD) and (d) change in wet thickness (Δdwet) for both the PSSNa and the PSSP444m brushes as a function of temperature (e) Temperature dependence of ∆f of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (f) Temperature dependence of ∆D of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (g) Change in wet thickness (∆dwet) of the PSSNa/P4448 brushes as a function of the molar fraction of the P4448+ counterion (x). (Adapted with permission from Ref.[65 ] Copyright (2019) American Chemical Society).在图7(b) 和7(c) 中,随着温度增加,PSSNa刷的Δf和ΔD基本保持不变,表明PSSNa刷无明显温度响应性,这是PSSNa的强亲水性导致的. 当Na+被P4442+取代后,P4442+的疏水性仍不足以使PSSP4442刷表现出明显的温敏性. 当使用更加疏水的P4444+取代Na+时,PSSP4444刷仅表现出较弱的温敏性. 进一步增加抗衡离子的疏水性制备得到的PSSP4446刷表现出明显的温敏性,即随着温度增加,Δf 和ΔD分别明显地增加和减小,说明升温可以导致PSSP4446刷去水化以及变得更加刚性. 此外,PSSP4446刷的温敏性具有较好的可逆性. 然而,继续增加抗衡离子的疏水性,制备得到的PSSP4448刷再次失去温敏性,这是P4448+过度疏水造成的. 另一方面,在图7(d) 中,包括PSSP4446刷在内的所有聚电解质刷的Δdwet都没有明显的温度依赖性. 对于PSSP4446刷而言,其水化和刚性表现出明显的温度依赖性,但由于其抗衡离子尺寸较大,在聚电解质刷内部产生的位阻效应较大,阻碍了PSSP4446刷随温度升高而塌缩. 这不利于温敏型聚电解质刷的应用,如“纳米阀门”[66 ]. 考虑到大尺寸的P4448+抗衡离子可以将强疏水性引入强聚电解质刷,而小尺寸的Na+抗衡离子可以使强聚电解质刷内部产生一定的自由空间,Cai等利用Na+和P4448+混合抗衡离子制备PSSNa/P4448刷,并在P4448+摩尔分数(x)为 ~72%时,实现了强聚电解质刷水化、刚性以及湿态厚度明显的温度响应性(图7(e) ~7(g) )[65 ].4.3 高分子海洋防污材料海洋微生物、动植物在海洋设施表面的黏附、生长形成海洋生物污损,给海洋工业和海洋开发带来严重影响. 由于海洋环境的复杂性和污损生物的多样性,海洋防污是一个全球性的难题. 如何快速、高通量筛选防污材料对解决这一问题十分关键. QCM-D技术可被用于快速筛选和评价防污材料的降解、抗蛋白吸附、自更新性能以及服役与失效行为. Ma等制备了具有优异力学性能的含聚乙二醇(PEG)和两性离子聚合物侧链的聚氨酯材料,利用QCM-D检测其抗蛋白吸附能力,从而在较短的时间尺度内(数小时)快速评价污损生物在涂层表面的吸附和相互作用[67 ]. QCM-D检测表明,该材料虽然具有优异的室内抗污性能,但在实海中浸泡12周后失去防污能力. 原因是涂层表面吸附海泥等物质导致其表面性能发生根本性变化,从原来的抗污变为亲污.基于上述认识,Ma等提出了“动态表面防污”的概念,设计了在海洋环境下能够降解的聚甲基丙烯酸甲酯-聚碳酸乙烯酯(PMMA-PEOC)材料(图8(a) )[68 ]. QCM-D测试表明,随着时间增加,Δf 增大而ΔD不断减小,说明涂层的质量或厚度减小,即涂层在海水作用下不断降解(图8(b) ). 对于4种涂层,其降解均为线性,即涂层厚度随时间均匀下降. 另外,随着PEOC含量增加,Δf 和ΔD变化加快,即降解速率变大. 实海挂板实验表明(图8(c) ),该材料(未加任何防污剂)涂覆的挂板3个月内未有任何海洋生物黏附,即材料具有优异的防污性能. 显然,随着降解速率增加,防污性能提高. 这证明了动态表面防污概念的可行性,即涂料通过表面的不断更新,使海洋微生物无法着陆、黏附,从而达到防污的目的. 因此,QCM技术和海洋实验的评估周期虽然不同,但结论基本一致.图 8Figure 8. Structural formula of PMMA-co-PEOCA (a), time dependence of the shifts in frequency (Δf) and dissipation (ΔD) for the hydrolytic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with P(MMA-co-PEOCA63) in marine field test (c) (Reprinted with permission from Ref.[68 ] Copyright (2012) Springer Nature).Ma等制备了软段为乙交酯(GA)和己内酯(CL)共聚物的聚氨酯(图9(a) )[69 ],其力学性能优异. 利用QCM-D对其短时间降解行为的研究表明,随着时间增加,涂层的Δf 变大,说明涂层在酶的作用下发生降解(图9(b) ). 该材料的短期(几个小时内)降解是非线性的,且随着可降解链段的含量增大,降解速率变大,即涂层的表面更新速率变大. 另一方面,质量损失法也表明,该材料的降解在初期呈非线性,在更大时间尺度上(10天以上)降解是线性的. 2种方法都表明,适度引入GA可提高降解速率. 实际上2种评价方法所得的结果是一致的,只是观察其服役与失效的时间尺度不同. 实海挂板实验表明(图9(c) ),随着降解速率的提高,海洋微生物的黏附越来越少. 即随着降解速率的增加,防污性能提高. 当材料中加入适量有机防污剂(PCL-PU/DCOIT)后,效果达到最佳. 总之,实海实验结果与QCM-D的结果吻合.图 9Figure 9. Structural formula of P(CL-GA) polyurethane (a), time dependence of the frequency shift (Δf) for the enzymatic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with the polyurethane in marine field test (c) (Reprinted with permission from Ref.[69 ] Copyright (2013) The Royal Society of Chemistry).Xu等研制了主链降解-侧基水解型聚氨酯,即其主链含聚己内酯(PCL)而侧基中含有可水解的丙烯酸三异丙基硅烷酯(TIPSA)(图10(a) )[27 ]. QCM-D的研究结果表明,在短时间内(依照样品不同,从1 h到2天不等),涂层在海水中的降解近似线性,且随TIPSA含量增加降解速率增加(图10(b) ). 实海挂板实验表明(图10(c) ),以该材料涂覆的挂板,随着降解速率增加(由PU-S0至PU-S40),海洋生物黏附越来越少,即防污性能越来越好. 可见,QCM-D结果与实海实验结果一致. 以上几个研究表明,对于多数材料而言,通过QCM-D对防污材料在实验室进行初步筛选的结果,与较长时间(3个月)的质量损失测试和更长时间(1年以上)的海洋挂板实验结果基本一致,这为利用QCM-D快速筛选高分子海洋防污材料提供了依据.图 10Figure 10. Structural formula of polyurethane with degradable main chain and hydrolyzable side chains (a), time dependence of the frequency shift (Δf) for the enzymatic degradation of the coatings in artificial sea water at 25 °C (b), and images of panels coated with the polyurethane after 3 months of immersion in seawater (c) (Reprinted with permission from Ref.[27 ] Copyright (2014) American Chemical Society).5. 结语本文介绍了QCM的发展简史、基本原理、实验样品制备以及其在高分子研究中的应用. QCM技术经历了六十余年的发展,从最初仅应用于真空或空气中薄膜微观质量的测量,逐步发展到应用于溶液中的测量. 上世纪末,QCM-D被成功研制,进一步促进了QCM技术在相关领域中的应用. 进入新世纪后,QCM-D技术与其他表征技术的联用得到了较快的发展,这些联用表征技术极大地拓展了QCM-D的研究领域,丰富了表征信息,加深了对相关科学问题的认知. 对于高分子研究而言,毋庸置疑,QCM-D是一个非常有力的表征工具. 当然,QCM-D在高分子研究中的应用不仅仅局限于本文讨论的几个方面,作者希望本文能起到抛砖引玉的作用,使得这一表征技术能够为解决高分子领域中的问题发挥更大作用.参考文献[1]Curie J, Curie P. Bull Soc Min Fr, 1880, 3(4): 90−93[2]Cady W G. Proc IRE, 1922, 10(2): 83−114 doi: 10.1109/JRPROC.1922.219800 [3]Lack F R, Willard G W, Fair I E. Bell Syst Technol J, 1934, 13(3): 453−463 doi: 10.1002/j.1538-7305.1934.tb00674.x [4]Sauerbrey G Z. Z Phys, 1959, 155: 206−222 doi: 10.1007/BF01337937 [5]Lu C, Czanderna A W. Applications of Piezoelectric Quartz Crystal Microbalances. New York: Elsevier. 2012[6]Nomura T, Okuhara M. Anal Chim Acta, 1982, 142: 281−284 doi: 10.1016/S0003-2670(01)95290-0 [7]Rodahl M, Höök F, Krozer A, Brzezinski P, Kasemo B. Rev Sci Instrum, 1995, 66(7): 3924−3930 doi: 10.1063/1.1145396 [8]Ramos J J I, Moya S E. Macromol Rapid Commun, 2011, 32(24): 1972−1978 doi: 10.1002/marc.201100455 [9]Wang S Y, Li F, Easley A D, Lutkenhaus J L. Nat Mater, 2019, 18(1): 69−75 doi: 10.1038/s41563-018-0215-1 [10]Jiang C, Cao T Y, Wu W J, Song J L, Jin Y C. ACS Sustain Chem Eng, 2017, 5(5): 3837−3844 doi: 10.1021/acssuschemeng.6b02884 [11]Akanbi M O, Hernandez L M, Mobarok M H, Veinot J G C, Tufenkji N. Environ Sci: Nano, 2018, 5(9): 2172−2183 doi: 10.1039/C8EN00508G [12]Tarnapolsky A, Freger V. Anal Chem, 2018, 90(23): 13960−13968 doi: 10.1021/acs.analchem.8b03411 [13]Dai G X, Xie Q Y, Ai X Q, Ma C F, Zhang G Z. ACS Appl Mater Interfaces, 2019, 11(44): 41750−41757 doi: 10.1021/acsami.9b16775 [14]Swiatek S, Komorek P, Jachimska B. Food Hydrocolloids, 2019, 91: 48−56 doi: 10.1016/j.foodhyd.2019.01.007 [15]Bottom V E. Introduction to Quartz Crystal Unit Design. New York: Van Nostrand Reinhold. 1982[16]Janshoff A, Galla H J, Steinem C. Angew Chem Int Ed, 2000, 39(22): 4004−4032 doi: 10.1002/1521-3773(20001117)39:224004::aid-anie40043.0.CO 2-2 [17]Liu G M, Zhang G Z. QCM-D Studies on Polymer Behavior at Interfaces. New York: Springer, 2013. 1−8[18]Kanazawa K K, Gordon J G. Anal Chem, 1985, 57(8): 1770−1771 doi: 10.1021/ac00285a062 [19]Rodahl M, Kasemo B. Sens Actuators A, 1996, 54(1-3): 448−456[20]Voinova M V, Rodahl M, Jonson M, Kasemo B. Phys Scr, 1999, 59(5): 391−396 doi: 10.1238/Physica.Regular.059a00391 [21]Steinem C, Janshoff A. Piezoelectric Sensors. Berlin: Springer, 2007. 425−447[22]Liu G M, Yan L F, Chen X, Zhang G Z. Polymer, 2006, 47(9): 3157−3163 doi: 10.1016/j.polymer.2006.02.091 [23]Liu G M, Cheng H, Yan L F, Zhang G Z. J Phys Chem B, 2005, 109(47): 22603−22607 doi: 10.1021/jp0538417 [24]He J N, Wu Y Z, Wu J, Mao X, Fu L, Qian T C, Fang J, Xiong C Y, Xie J L, Ma H W. Macromolecules, 2007, 40(9): 3090−3096 doi: 10.1021/ma062613n [25]Fu L, Chen X A, He J N, Xiong C Y, Ma H W. Langmuir, 2008, 24(12): 6100−6106 doi: 10.1021/la703661z [26]Mandal J, Simic R, Spencer N D. Polym Chem, 2019, 10(29): 3933−3942 doi: 10.1039/C9PY00587K [27]Xu W T, Ma C F, Ma J L, Gan T S, Zhang G Z. ACS Appl Mater Interfaces, 2014, 6(6): 4017−4024 doi: 10.1021/am4054578 [28]Zhu J, Pan J S, Ma C F, Zhang G Z, Liu G M. Langmuir, 2019, 35(34): 11157−11166 doi: 10.1021/acs.langmuir.9b01740 [29]Du Binyang(杜滨阳), Fan Xiao(范潇), Cao Zheng(曹峥), Guo Xiaolei(郭小磊). Chinese Journal of Analytical Chemistry(分析化学), 2010, 38(5): 752−759[30]He J A, Fu L, Huang M, Lu Y D, Lv B E, Zhu Z Q, Fang J J, Ma H W. Sci Sin Chim, 2011, 41(11): 1679−1698 doi: 10.1360/032011-381 [31]Sun Bin(孙彬), Lv Jianhua(吕建华), Jin Jing(金晶), Zhao Guiyan(赵桂艳). Chinese Journal of Applied Chemistry(应用化学), 2020, 37(10): 1127−1136 doi: 10.11944/j.issn.1000-0518.2020.10.200078 [32]Marx K A. Biomacromolecules, 2003, 4(5): 1099−1120 doi: 10.1021/bm020116i [33]Munro J C, Frank C W. Macromolecules, 2004, 37(3): 925−938 doi: 10.1021/ma030297w [34]Choi J H, Kanazawa K K, Cho N J. J Sens, 2014, 2014: 373528[35]Bhat R R, Tomlinson M R, Wu T, Genzer J. Adv Polym Sci, 2006, 198: 51−124[36]Fleer G J, Stuart M A C, Scheutjens J M H M, Cosgrove T, Vincent B. Polymers at Interfaces. London: Chapman & Hall 1993. 372−395[37]Zhang Guangzhao(张广照), Liu Guangming(刘光明). Quartz Crystal Microbalance: Principles and Applications(石英晶体微天平: 原理与应用). Beijing(北京): Science Press(科学出版社), 2015. 63−77[38]Zhang G Z. Macromolecules, 2004, 37(17): 6553−6557 doi: 10.1021/ma035937+ [39]Liu G M, Zhang G Z. J Phys Chem B, 2005, 109(2): 743−747 doi: 10.1021/jp046903m [40]Zhang G Z, Wu C. Macromol Rapid Commun, 2009, 30(4−5): 328−335[41]Liu G M, Zhang G Z. J Phys Chem B, 2008, 112(33): 10137−10141 doi: 10.1021/jp801533r [42]Hou Y, Liu G M, Wu Y, Zhang G Z. Phys Chem Chem Phys, 2011, 13(7): 2880−2886 doi: 10.1039/C0CP01994A [43]Hofmeister F. Arch Exp Pathol Pharmakol, 1888, 24(4): 247−260[44]Tobias D J, Hemminger J C. Science, 2008, 319(5867): 1197−1198 doi: 10.1126/science.1152799 [45]Tielrooij K J, Garcia-Araez N, Bonn M, Bakker H J. Science, 2010, 328(5981): 1006−1009 doi: 10.1126/science.1183512 [46]Pegram L M, Wendorff T, Erdmann R, Shkel I, Bellissimo D, Felitsky D J, Record M T. Proc Natl Acad Sci, 2010, 107(17): 7716−7721 doi: 10.1073/pnas.0913376107 [47]Paschek D, Ludwig R. Angew Chem Int Ed, 2011, 50(2): 352−353 doi: 10.1002/anie.201004501 [48]Rembert K B, Paterová J, Heyda J, Hilty C, Jungwirth P, Cremer P S. J Am Chem Soc, 2012, 134(24): 10039−10046 doi: 10.1021/ja301297g [49]Dickson V K, Pedi L, Long S B. Nature, 2014, 516(7530): 213−218 doi: 10.1038/nature13913 [50]Nihonyanagi S, Yamaguchi S, Tahara T. J Am Chem Soc, 2014, 136(17): 6155−6158 doi: 10.1021/ja412952y [51]Collins K D. Methods, 2004, 34(3): 300−311 doi: 10.1016/j.ymeth.2004.03.021 [52]Salis A, Ninham B W. Chem Soc Rev, 2014, 43(21): 7358−7377 doi: 10.1039/C4CS00144C [53]Kou R, Zhang J, Wang T, Liu G M. Langmuir, 2015, 31(38): 10461−10468 doi: 10.1021/acs.langmuir.5b02698 [54]Kunz W. Curr Opin Colloid Interface Sci, 2010, 15(1-2): 34−39 doi: 10.1016/j.cocis.2009.11.008 [55]Parsons D F, Boström M, Nostro P L, Ninham B W. Phys Chem Chem Phys, 2011, 13(27): 12352−12367 doi: 10.1039/c1cp20538b [56]Liu L D, Kou R, Liu G M. Soft Matter, 2017, 13(1): 68−80 doi: 10.1039/C6SM01773H [57]Zhang J, Cai H T, Tang L, Liu G M. Langmuir, 2018, 34(41): 12419−12427 doi: 10.1021/acs.langmuir.8b02776 [58]Wang T, Wang X W, Long Y C, Liu G M, Zhang G Z. Langmuir, 2013, 29(22): 6588−6596 doi: 10.1021/la401069y [59]Yuan H Y, Liu G M. Soft Matter, 2020, 16(17): 4087−4104 doi: 10.1039/D0SM00199F [60]Manning G S. Acc Chem Res, 1979, 12(12): 443−449 doi: 10.1021/ar50144a004 [61]Wu B, Wang X W, Yang J, Hua Z, Tian K Z, Kou R, Zhang J, Ye S J, Luo Y, Craig V S J, Liu G M. Sci Adv, 2016, 2(8): e1600579 doi: 10.1126/sciadv.1600579 [62]Zhang J, Kou R, Liu G M. Langmuir, 2017, 33(27): 6838−6845 doi: 10.1021/acs.langmuir.7b01395 [63]Zhang J, Xu S Y, Jin H G, Liu G M. Chem Commun, 2020, 56(74): 10930−10933 doi: 10.1039/D0CC03763J [64]Kohno Y, Saita S, Men Y J, Yuan J Y, Ohno H. Polym Chem, 2015, 6(12): 2163−2178 doi: 10.1039/C4PY01665C [65]Cai H, Kou R, Liu G. Langmuir, 2019, 35(51): 16862−16868 doi: 10.1021/acs.langmuir.9b02982 [66]Adiga S P, Brenner D W. J Funct Biomater, 2012, 3(2): 239−256 doi: 10.3390/jfb3020239 [67]Ma C F, Hou Y, Liu S, Zhang G Z. Langmuir, 2009, 25(16): 9467−9472 doi: 10.1021/la900669p [68]Ma C F, Yang H J, Zhang G Z. Chinese J Polym Sci, 2012, 30(3): 337−342 doi: 10.1007/s10118-012-1158-7 [69]Ma C F, Xu L G, Xu W T, Zhang G Z. J Mater Chem B, 2013, 1(24): 3099−3106 doi: 10.1039/c3tb20454e
  • 电子天平如何使用
    电子天平如何使用?电子天平的选择:选购及使用电子天平时必须考虑精度等级和对称量范围的要求:选择电子天平除了看其精度,还应看最大称量是否满足量程的需要。通常选取最大载荷加少许保险系数即可,也就是常用量程再放宽一些即可,不是越大越好。电子天平的绝对精度(分度值e)上去考虑是否符合称量的精度要求。如选0.1mg精度的天平或0.01mg精度的天平,切忌不可笼统地说要万分之一或十万分之一精度的天平。真实重量和称量显示重量的关系:使用电子天平时一定要明白的三个概念:最小刻度,检定标尺分度值,检定分度数。天平的最小刻度(d):也称为分度值和叫作最小读数精度,即电子天平能显示的最小读数。天平检定标尺分度值(e):表示电子天平的精确度,往往在天平的铭牌上有标识,一般来说d≤e≤10d。检定分度数(n):n=Max/e, Max为天平的最大量程。DJ-500J型电子天平 以DJ-500J电子天平为例,天平的最大量程Max为500g,显示分度值d为0.01g,电子天平准确级别为III,检验分度值为0.1 g, 就可以计算出检定分度数n=Max/e=500/0.1=5000通过查表一可以得知电子天平的可以测量的物料重量下限为20d=20x0.1g=0.2g假如用DJ-500J电子天平称量一个物体显示重量为5.00g,可以计算5/d=5/0.1=50, 通过查表二可以得知物体的真实重量=显示重量+最大允许误差=5±0.5e=5±0.05g,表示这个物体的真实重量在4.95-5.05g之间。假如用DJ-500J电子天平称量一个物体显示重量为101.15g,可以计算101.15/d=101.15/0.1=1011.5,通过查表二可以得知物体的真实重量=显示重量+最大允许误差=101.15±e=101.15±0.1g,表示这个物体的真实重量在101.05-101.25g之间。表一 Ⅱ、Ⅲ和Ⅵ级天平,最小称量e可以用d值取代表二,天平的最大允许误差电子天平的安装电子天平是精密仪器,应安放位置在水平,紧固,稳定,无震动的台面,不受太阳直射,无强气流干扰和避免空调出风口,无强电磁干扰和热源,无腐蚀气氛环境。电子天平的使用环境Ⅰ级天平,环境温度20±2.5℃,其温度波动小于1℃/h,相对湿度50%—75%Ⅱ级天平,环境温度20±7.5℃,其温度波动小于5℃/h,相对湿度40%—80%Ⅲ和Ⅵ级天平,环境温度20±15℃,其温度波动小于5℃/h,相对湿度40%—85%气泡的水平调整:旋转左或右调平底座,把水准泡先调到液腔中央线。单独旋转一个左或右调平底座,其实是调整天平的倾斜度,肯定可以将水准泡调到中央线。关键是调哪一个调平底座。初学者可以这样判断,先手动倾斜天平,使水准泡达到中央线,然后看调平底座,哪一个高了,或者低了,调整其中一个调平底座的高矮,就可以使水准泡移动到中央线。注意:天平的水平泡达到中央线之后,才能采用下一个步骤 同时旋转两个调平底座,幅度必须一致,都须顺时针或者逆时针,让水准泡在中央线移动,最终移动到液腔中央。电子天平的预热:一般在30min-1h,如果长时间未使用,要预热2h以上。校准:校型号的电子天平是指校准砝码在电子天平内部,用电机驱动有内置砝码升降装置的电子天平,校准时只要按一下校准键就可以完成校准过程。外校型号的电子天平是指通过手动,校准时先按校准键,再把标准砝码放到电子天平秤盘上,来完成校准过程。砝码用单独的砝码盒保存。称量:直接称量法:对一些在空气中无吸湿性的试样或试剂,如金属或合金等可用直接法称量。称量时将试样放在干净而干燥的小表面皿上或油光纸上,一次称取一定质量的试样。称量步骤:先称出干燥洁净的表面皿或油光纸的质量,按去皮键,示数稳定打开天平门,缓缓往表面皿中加入试样,当达到所需质量时停止加样,关上天平门,显示平衡后即可记录所称试样的净质量。指定质量称量法:对于可用直接法称量的试样,在例行分析中,为简化计算工作往往需要称出预定质量的试样。这时可在已知质量的称量容器(如表面皿或不锈钢等金属材料做成的小皿)内,直接投放待称试样,直至达到所需要的质量。称量步骤:称量时,将自备的称量容器(如表面皿)置于天平盘上,左手持骨匙盛试样后小心地伸向表面皿的近上方,以手指轻击匙柄(如图),将试样弹入,直到所加试样量与预定量之差相近时,极其小心地以左手拇指、中指及掌心拿稳骨匙,以食指摩擦匙柄,让匙里的试样以尽可能少的量慢慢抖入表面皿。这时,既要注意试样抖入量,同时也要注意显示屏的读数,当读数正好等于所需要的量时,立即停止抖入试样,若不慎多加了试样,则用骨匙取出多余的试样(不要放回原试样瓶中)。称好后,用干净的小纸片衬垫取出表面皿,将试样全部转移到接受的容器内。试样若为可溶性盐类,可用少量纯水将沾在表面皿上的粉末吹洗进容器。注意:试样决不能失落在秤盘上和天平箱内;称好的试样必须定量地由称量器皿中转移到接受容器内;称量完毕后要仔细检查是否有试样失落在天平箱内外,必要时加以清除。差减称量法(相减法):如果试样是粉末或易吸湿的物质,则需把试样装在称量瓶内称量。倒出一份试样前后两次质量之差,即为该份试样的质量。 称量步骤:称出称量瓶的质量m1后,取出称量瓶倾出一定量的试样,将称量瓶放在天平盘上,称其质量m2,m2-m1则为倒出试样的质量。称量时,用纸条叠成宽度适中的两三层纸带,毛边朝下套在称量瓶上。左手拇指与食指拿住纸条,由天平的左门放在天平盘的正中,取下纸带,称出瓶和试样的质量。然后左手仍用纸带把称量瓶从盘上取下,放在容器上方。右手用另一小纸片衬垫打开瓶盖,但勿使瓶盖离开容器上方。慢慢倾斜瓶身至接近水平,瓶底略低于瓶口,切勿使瓶底高于瓶口,以防试样冲出。此时原在瓶底的试样慢慢下移至接近瓶口。在称量瓶口离容器上方约1cm处,用盖轻轻敲瓶口上部使试样落入接受的容器内。倒出试样后,把称量瓶轻轻竖起,同时用盖敲打瓶口上部,使粘在瓶口的试样落下(或落入称量瓶或落入容器,所以倒出试样的手续必须在容器口正上方进行)。盖好瓶盖,放回天平盘上,称出其质量。两次质量之差,即为倒出的试样质量。若不慎倒出的试样超过了所需的量,则应弃之重称。如果接受的容器口较小(如锥形瓶等),也可以在瓶口上放一只洗净的小漏斗,将试样倒入漏斗内,待称好试样后,用少量纯水将试样洗入容器内称量完毕:将取出被称物,用软毛刷将天平内外清理干净。关好天平门,关闭显示器,盖上防尘罩,进行登记。注意事项:使用前应按规定将气泡对准和通电预热。容器和称物质量之和不得超过称量范围。不允许无尘纸直接放到天平上称量。如需取下天平上的秤盘,请将秤盘按顺时针方向转动后再取下,切勿往上硬拔,以免损坏传感器。 严禁用溶剂清洁外壳,应用软布清洁外壳。 电子天平常见的问题:问题一、电子天平内硅胶是否应该放置硅胶?如果是,该定期更换、多长时间更换一次为好呢。如果是在符合电子天平使用环境的恒温恒湿天平室,不建议使用硅胶;如果不是是在符合电子天平使用环境的恒温恒湿的环境,可以使用变色硅胶,但有一半变色就要更换。问题二、电子天平能够测量的最小称量是多少?如果做工艺性测试试验和化学分析测试,建议使用GB/T 26497-2011中的计算方式,也就是文中的计算方式,这样比较简单。如果做药物实验,建议使用USP规则计算。也就是美国药典通则,它描述了在保证要求的称量准确度的前提下,可以接受的样品量下限。最小称量值只适用于样本净重量,皮重或毛重除外。它可通过以下公式表示:Mmin = k × s / U.这里k是扩展因子(通常≥2);s是天平重复性,即测试砝码不少于10次重复称量值的标准差(比如以毫克为质量单位),不同的环境,同一型号不同产品,所测算出的重复性具体值也可能也不同;U是要求的称量准确度(中国药典规定:“精密称定”时U取0.10%,“称定”时U取1%)。问题三、天平多长时间校正一次?天平超过最大允许误差或者误差超过初始调整误差的2倍就需要校正。一般来说,天平的精确度越高,使用越频繁,校正周期就越短。在实验室,推荐每周至少校正一次。如条件允许,最好每天校正一次。问题四、测量时为什么天平示数一直跳动,稳定不下来?常见的原因, 天平没有调整水平或者没有预热,物料有升华或者吸潮,天平室空气流动和静电影响等原因,天平坏掉的可能性也存在,但比较少。问题五、在不超过天平量程的条件下,为什么不能质量比较大的物料载具?即便在称量范围,称量的总质量越大,天平的最大允许误差就越大。称量物料的精度就越差。问题六、电子天平的最后一位是可疑数字吗?电子天平最后一位代表电子天平的分度值,即电子天平可以辨别的增加或者减少重量的最小值。电子天平的精确度是分度值(e)物体的真实重量=显示重量+最大允许误差,有些人认为天平倒数第二位代表真实值也不一定正确的,如上文中举的例子。问题七、当物料重量满足最小秤量就可以电子天平可以使用电子天平吗?满足最小称量,就满足电子天平的最大允许误差值。以上文用DJ-500J电子天平称量一个物体显示重量为5.00g为例,表示这个物体的真实重量在4.95-5.05g之间。真实重量和显示重量有接近1%误差,但不满足分析化学定量实验所用的器具,误差控制在0.5%以内的要求。本文内容来源于网络,用于交流学习,如有侵权,请联系我们删除!超微量天平的优势创新调整系统新的 2 点式调整系统确保非常高的测量精度,同时减少线性误差,在整个称重量程内保证可靠结果。首屈一指的测量精度*新 Tegra 系列处理器与专为根据环境条件调整筛选而设计的原创解决方案相结合,确保出众的工作条件可重复性和快速结果稳定性。新的数据管理体验可扩大至高达 32 GB 的内存能够记录复杂报告形式的测量数据,以及显示统计数据等信息的图表。可重复性,符合 USP非常好的称重精度和 sd ≤ 1d 的可重复性,加上符合 USP 要求(第 41 和 1251 条),为重量测量品质树立新的标准。符合人体工程学,操作安全终端和称重设备之间的无线通信支持在层流柜和通风橱中使用天平。通过移动设备操作Wi-Fi 功能支持将天平数据传输到使用 iOS 或 Android 系统的移动设备。数据安全性由于采用 ALIBI 内存自动执行测量结果记录,您的数据始终安全,并且可以在需要时随时使用。
  • Explorer天平的“甜蜜”体验 ——制糖厂商天平解决方案
    奥豪斯Explorer系列天平,广泛应用于各大行业。特别在食品行业,全球方面有着良好的经验,今天我们来分享一个来自土耳其的客户案例。看看天平在制糖厂商中是如何应用的。客户背景 Konya Seker公司于1952年在土耳其成立,现已经稳步成长为中东地区最大的制糖厂商。这家公司同时生产各种各样的糖类制品,这些制品都是由不同的成分组成,例如巧克力、饼干、芝麻糖等等。应用背景Konya Seker通过多年努力,已经成功获得客户的信任,他家的每款产品都有较好的质量和口味。为了维持好的声誉,Konya Seker致力于公司的研发事业。其中研发的关键是控制产品的质量,并且保证过程的精确和结果的成效性。 今年当Konya Seker决定建立一个新的研发实验室时,天平作为一个必备的实验室设备,其称量功能是保证研发质量的关键。所以为了确保研发质量,该公司曾考虑购买之前实验室使用过的天平产品。但是,当他们有机会接触和尝试OHAUS Explorer天平一段时间后,Explorer天平的智能化操作性能、直观的操作界面等特性让他们感受到了这款天平的优势所在。通过两周的体验,Konya Seker的员工一致决定为整个实验室配套OHAUS Explorer天平。客户评价 Konya Seker很快的发现Explorer天平能够带来极致精确的称量,另外快速、高效也是一个附加价值所在。他们还发现无线感应功能帮助使用人员双手脱离天平去做别的工作,操作十分方便。同时,Konya Seker的员工十分的惊讶这款天平能够用土耳其语进行编程。用当地语言进行称量曾经一度被认为是一个遥不可及的想法,但是通过Explorer天平,让一切变为了可能!
  • 5位天平,为你而生——奥豪斯准微量天平亮相成都衡器展
    十万分之一天平代表着什么?多种独出心裁的性能,耐用的结构设计,快速的响应时间,经得起反复使用的高可靠性。Explorer准微量天平集这些特点于一身,赶快来现场跟我们一起体验吧!“小5”天平的华丽亮相瞧!奥豪斯展台上出现的神秘嘉宾是谁?正是奥豪斯5位准微量天平。在奥豪斯主持人的隆重介绍下,天平“小5”华丽亮相。围绕着天平仪器主题,奥豪斯产品经理也进行了详细的产品介绍,吸引了各方观众驻足围观。准微量天平,为你而生 奥豪斯Explorer准微量系列天平是为实验室称量要求精确到十万分之一而设计的。Explorer系列准微量天平在不断创新的技术支持下,完美设计了高速一体化称量系统,确保了称量结果的准确性。在称量应用方面的功能设计也尤为突出,是一款不可多得的十万分之一准微量天平。Explorer准微量天平除了拥有完美精度之外,还有三大卖点:● 卓越性能,准确称量 —— Explorer系列可提供从52g-220g,可读性0.1mg—0.01mg的多种天平型号。最新研发的配备高速一体化传感器和13种称量应用功能完美结合,全面提升产品性能。拥有内置2组内校砝码的AutoCal? 全自动校准系统,避免了未进行定时校准或手动校准砝码不准等造成天平称量不准确的潜在因素,确保称量准确。 ● 直观的操作界面,现代化用户体验 ——自带数据库储存功能、USB接口和多种称量模式,并且Explorer准微量天平采用SmarText?2.0软件,一款便捷的图形界面软件,搭载5.7英寸彩色触摸屏,快捷图标菜单导航,令Explorer如智能手机一般直观便捷。 ● 巧妙设计,简便操作 ——为了操作简便、称量准确,满足多种应用场合的要求,Explorer准微量天平配有4个无线感应器提供非接触式去皮清零操作、自动开启风罩门、静电消除等功能,带给您轻松的操作体验。本届衡器展即将落下尾声,而奥豪斯产品创新的道路却才刚刚开始。我们等待着和用户一起探索和探讨新技术新发展,更多的产品和业务咨询,请拨打4008-217-188,欢迎大家来电垂询!
  • 奥豪斯福利 | 您的天平有福了
    称重百年事,称心奥豪斯。作为拥有百年历史的品牌,奥豪斯天平深受各行业用户的信赖。为回馈用户对奥豪斯的支持,我们特为您的天平送出福利!即日起,凡是购买奥豪斯EX, AX, PX, PR系列0.01mg、0.1mg和1mg精度型号天平的用户,可以在奥豪斯公众号售后服务板块注册账号,添加电子天平产品信息并正确填写产品序列号即可获赠天平防尘罩一个。限量400个先到先得!该天平防尘罩可以有效保护分析天平和精密天平避免受到灰尘的影响,确保稳定的称量性能。如何参与活动第 一步:进入奥豪斯公众号(奥豪斯仪器),点击下方菜单栏的【服务大厅 - 售后服务】登录或注册账号第二步:点击【我的产品】添加购买的天平产品信息(1mg精度以上型号)及收货信息(姓名、手机、地址)后,即视为活动报名成功(如果页面没显示活动,请点击右上角手动刷新页面)请正确填写以上信息待小编后台确认信息后将给您邮寄天平防尘罩一个(每个月初安排邮寄)本活动最 终解释权归奥豪斯所有奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 中国的天平工业从这儿诞生
    上海天美天平仪器有限公司,隶属天美(控股)有限公司,成立于2010年,专门生产电子天平、水分仪、粘度计及热分析等实验室仪器。前身为上海建华仪器工业社、上海天平仪器厂、上海精密科学仪器有限公司天平仪器厂。同时,上海天美天平也是瑞士普利赛斯电子天平在中国的制造基地。公司初创,奠定基础上海建华仪器工业社,成立于1948年,主要生产机械天平,是上海天美天平仪器公司最早的前身,也是国内最早天平仪器的制造单位。1950年更名为上海新科衡器仪器厂。1953年,研制出中国第一台的机械天平TG328A。TG328A为全自动加码光学分析天平,历经60多载,共生产销售出30多万台,服务于全国各大院校、科研院所、检测单位及工业企业的实验室。自本世纪初开始,逐渐被电子天平取代,产销量逐年下降,于2014年正式退市。不过,至今在一些实验室里还能见到它的身影。1953年,同时研制成功SC69-02C水分测定仪,中国第一台的水分测定仪。 TG328A机械天平 SC69-02C水分测定仪 公私合营,上海骄傲上海天平仪器厂,成立于1958年,由当时的上海新科衡器仪器厂、上海科达永仪器厂、上海新时代仪器厂等九家工厂合并而成,为上海天美天平仪器公司真正意义上的前身。上海天平仪器厂成立后,诞生了中国的第一台精密微量天平、第一台电子天平、第一台水分仪、第一台粘度计等众多的第一。中国的天平工业也从这儿诞生!1965年,成功研制国内首台TG335精密微量天平。为此,《解放日报》1965年10月5日头版进行了报道。1979年11月,成功研制我国第一台电子天平MD2K-1。为此,《上海科技报》1979年12月28日作了专题报道。并于1986年推出中国第一台万分之一电子天平MD110-2! TG335机械天平 MD110-2电子天平 成立精科,改革廿载1988年成立上海精密科学仪器公司,下设分析仪器厂、物理光学仪器厂、雷磁仪器厂及天平仪器厂。 1995年与上海第二天平仪器厂合并,成立上海精密科学仪器公司天平仪器总厂。1991年,成功研制FA/JA系列电子天平,它开启了国内应用智能单片机技术大规模生产电子天平的新时代。截止2015年,该系列电子天平已累计生产和销售了10多万台,客户覆盖大学、研究所、医药、环保、粮油食品、橡胶、塑料、化玻及珠宝等行业。1992年,成功研制DSH20电子红外水分测定仪,它是中国第一台真正意义上的红外水分测定仪。1993年,成功研制中国第一台数字式粘度计NDJ-5S。2002年,通过ISO9001 : 2000质量体系标准认证。2004年,通过ISO14001:2004环境体系认证。 加入天美,凤凰涅盘2010年,总部位于香港的天美(控股)有限公司,先后收购瑞士普利赛斯称重设备公司及上海精密科学仪器有限公司天平产品线,并成立上海天美天平仪器有限公司!天美(控股),全球领先的科学仪器公司,1988年成立,总部位于香港,港交所上市公司,主要业务有实验室成套解决方案,产品覆盖表面科学仪器、分析仪器、生命科学设备、实验室常规仪器及实验室称量仪器等,主要客户覆盖全球大学、科研院所、检测中心及工业领域客户等。经过近30年的发展,天美(控股)在全球范围内已形成上海天美、瑞士Precisa、美国Scion、美国IXRF、法国Froilabo、英国Edinburgh等六大研发及制造基地,天美(中国)及天美(亚洲)、天美(欧洲)、天美(美洲)等四大营销及服务中心。2015年,销售约1.8亿美金,员工近900人。普利赛斯,瑞士仪器仪表制造商,创建于1935年,欧洲著名品牌,全球著名三大电子天平品牌之一。普利赛斯,凭借其核心称重技术及“品质至上”、“开拓创新”的理念,向全球仪器仪表客户及合作伙伴提供高精度称重产品及解决方案,包括电子天平、水分仪、灰分仪等。上海天美天平,依托瑞士普利赛斯及上海天平厂的核心称重技术,秉承“瑞士精度,瑞士品质”的一贯要求及先进的制造工艺,利用天美全球化研发、制造平台及营销、服务网络,天美天平为中国客户提供性价比最好的瑞士天平,天美天平的明天会更好! 上海天平仪器厂(1958)上海精科公司天平仪器厂(1988)上海天美天平仪器有限公司(2010)
  • 外校 Or 内校,实验天平该如何选择?
    称量不仅仅是为了得到一个样品的质量,显示值与真值之间的误差远比它本身重要,决定相关分析可靠性的关键是误差。 可现实..... 我们习惯用分辨率评估误差。01天平是一种衡器,由埃及人发明,是衡量物体质量的仪器。它依据杠杆原理制成,在杠杆的两端各有一小盘,一端放砝码,另一端放要称的物体,杠杆中央装有指针,两端平衡时,两端的质量相等。天平在实验室中常见,而且必要。现代的天平,有普通天平、分析天平,有常量分析天平、微量分析天平、半微量分析天平,越来越精密,越来越灵敏,种类也越来越多。虽然最根本的原理还是一样的,但不同种类的天平,价格又可能相差非常多,让人眼花缭乱,无从选择。 今天我们就天平校准的区分,“外校” or “内校” ,进行天平选择的分析和介绍。02电子天平在的使用中,为确保天平灵敏度等处于最佳状态,需定期进行平衡校准。市面上常见的电子天平校准方式有内校和外校。外校型 电子天平:指通过手动,校准时先按校准键,再把标准砝码放到电子天平秤盘上,来完成校准过程。砝码用单独的砝码盒保存。內校型 电子天平:指校准砝码在电子天平内部,用电机驱动有内置砝码升降装置的电子天平,校准时只需按一下校准键就可以自动完成校准过程。03电子天平的准确性与校准方式无关,主要看砝码的等级和电子天平传感器质量。一般新出厂的天平所带的外带砝码和内置砝码等级是相同的,所以准确性基本没有区别。但随着使用时间的推移,外带砝码的损耗一般比内置砝码要大:会受灰尘、酸碱腐蚀等等影响,例如一个手指印就会有几十微克重。如果保管不当还有丢失的情况存在。所以若出现计量检验不合格的情况,就需要更换砝码。内置砝码的天平一般不会出现上述情况,并可以通过修改天平的校正程序参数来修正偏差。免去外校操作步骤的繁琐,方便快捷,但价格会普遍比外校天平价格贵20%左右。而如果对天平的精密度要求非常高的, 也可以对内校天平按外校步骤进行校准,这样得到的校准报告是最精确的。另外,有些品牌还推出了带有自动校准功能的外校天平,例如赛多利斯的带eCheck功能外校电子天平。会在插电源开机时自动启动,把内校砝码加载上去看偏差多少,并把偏差部分修正过来。但不能手动启动,也没有校准报告输出,是天平为了自检而设的功能。 虽然此类天平也是必须按外校步骤定期进行校准,但是对于对实验精度要求相对比较高的客户,就能免去校准周期内发生的误差,而价格也是和普通外校天平相差无二。总的来说,外部校准的缺点是操作比较复杂,对砝码要求比较严格,如果砝码有灰尘或磨损现象,会对校准产生影响,但是外校方式可选择性强,用户可以用不同质量的砝码进行校准;内部校准方式操作简单,省略很多操作步骤,也避免了标准砝码不同而带来的误差,但价格上比外校型天平高很多。任何抛开实验要求的对比都是耍流氓。大家可根据自己的实际情况(实验精度要求、经费等)选择合适的天平。● ● ●精选原创文章列表 全球仅有的烷基汞气相专用柱,到底好不好用? 日化企业如何在变化中的行业“求变”—— 记第四届化妆品技术研讨会 90后广药女生的抉择之一:毕业了要不要去小私企? 请挑些日子有功的事情坚持一二 惊讶!德国制造竟然是山寨货的先驱? 十年好基友,竟瞒着对方... 那么,新柱子到底要不要及时测柱效? 广州绿百草正式成为德国Sartorius授权经销商 广州绿百草正式成为美国VWR公司授权代理商 跳槽高峰期,如何找到一份好工作? 一个仪器经销商小老板对员工的年会讲话 用心坚持一件事4年,会带来什么? 仪器经销商:说好的2016一起赚钱,我怎么就剩个裤衩? 惊讶!雾霾是怎样干掉我们的? 仪器随笔 — 谁送了我一个奶酪 十载 ? 人物 | 一个六年"特训"老油条销售经理的辗转发展 广州绿百草炫十年风采丨第八届慕尼黑(上海)生化展完美落幕 十载 ? 人物 | 一个分析仪器行业“小”老板的打工创业之路 用尽洪荒之力,叫你如何避免IKA T18刀头损坏 关于鸦片面膜中的禁限用物质——“糖皮质激素”的检测全面解决方案汇总 阿蛋学仪器 | 色谱分离的原理 So Easy ! 1万多买的新色谱柱柱压猛然飙升?原因竟然只是1个小失误!!广州绿百草 实验室综合供应商
  • CISILE 2016 逛展:天平的全扫描
    仪器信息网讯 2016年5月22日,“第十四届中国国际科学仪器及实验室装备展览会(CISILE 2016)在北京国家会议中心举办。本次会议展览面积25000平方米,汇聚了中国、美国、德国等20多个国家和地区的600余家企业参展。仪器信息网跟随CISILE 2016主办单位中国仪器仪表行业协会(以下简称行业协会)走进实验室仪器设备企业展台。  行业协会实验室仪器分会副秘书长王家龙携信息网编辑与厂商热烈交流  天平作为常用的实验室仪器设备,往往不是展会的明星产品。天平行业按其产品结构划分为:电子天平、机械天平、砝码和天平扩展产品。电子天平成为CISILE 2016的绝对主流。  从参展天平厂商数量而言,CISILE 2016是中国天平厂商占据绝对优势地位。沈阳龙腾电子有限公司、上海良平仪器仪表有限公司、上海佑科仪器仪表有限公司、上海第二天平厂、华志科学仪器有限公司、天津市德安特传感技术有限公司、上海越平科学仪器有限公司、长沙湘平科技发展有限公司、上海衡平仪器仪表厂、湘仪天平仪器设备有限公司南京汤姆斯衡器有限公司等公司参展,上海舜宇恒平科学仪器有限公司等许多国内企业缺席。外国公司方面,只有美国奥豪斯公司、广州市艾安得仪器有限公司携日本A&D产品、艾德姆衡器(武汉)有限公司等为数不多的国外企业及其相关天平产品参展 特勒-托利多、德国赛多利斯集团公司缺席。行业协会实验室仪器分会副秘书长王家龙说到,中国拥有世界最大、最完全的天平制造业。CISILE 2016天平企业集锦  从各个企业展位展示的内容看,沈阳龙腾和天津德安特产品线更为齐全 沈阳龙腾在超大量程电子天平(最大称重5000kg,最小读数50g)方面占优,天津德安特超大量程电子天平(最大称重2000kg,可读性50g)称重范围更小 德安特带来的EX-H微量分析天平可读性达到0.001mg,而沈阳龙腾带来的是ESJ182-4(双量程)十万分之一分析天平。可能是异地参展的关系,超大量程电子天平现场没有实物样机。  德安特EX-H微量分析天平  十万分之一分析天平屈指可数,只找到两款:德安特EX-EII系列、奥豪斯EX225DZH/AD奥豪斯EX225DZH/AD  万分之一天平成为CISILE 2016参展产品的主流。各企业纷纷携主力产品参展。例如:沈阳龙腾带来的双量程ESJ200-4 华志科学仪器PTY双量程系列,采用了自家全新一代单体质量传感器专利技术,具有响应快、耐久性强、一致性均衡的特点,灵敏性和稳定性兼具 上海衡平带来了自家销量最大的FA2004 奥豪斯AX124ZH、长沙湘平ES-A204、湘仪AE2204、日本A&D CH-300、南京汤姆斯TM-EXH2204H、上海越平FA1004C等。由于舜宇恒平的缺席,在展会现场,编者未能看到“第二届国产好仪器”评审用户正在热评的AE 224,稍有遗憾。参展万分之一天平荟萃  当然也少不了数量繁多的水分测试天平,如上海良平的JA1003。水分测试天平  与各企业的交谈中,编者也注意到各家企业的市场策略有所不同。德安特依赖自己的镀金陶瓷可变电容传感技术,同时为美国、德国、日本等发达国家部分企业提供OEM服务 华志公司实行的双品牌策略,以美国康州HZ电子有限公司的身份,自2008年开始,在海外推出PULISITE品牌。王家龙说到,用于计量传递的中国砝码已经成为世界主流 中国万分之一分析天平与世界先进水平的差距不大,不管是外形、精度、稳定性等各个方面都比较接近。电子天平将沿着更精准的计量性能、更完备的功能、更友好的界面、更智能化、更好的适应性方面继续改进。现在,约每年进口电子天平近5亿元,随着“十三五”期间,我国电子天平加强市场开拓,有可能使国产电子天平占电子天平市场比例提高到2/3。
  • 天平称量不精准的3大原因
    天平称量不精准的3大原因!有时候工作做得再精细,检测结果却还是不让人满意。最后我们发现,原来一开始称量的时候,数据就是错的。那么造成实验室分析样品称量不精准的原因有哪些呢?总结来看,大体可分为分析天平没校准、环境及样品物理因素影响、和操作不当等三个方面的原因。所以,称不准就从这几方面来找原因吧。1、分析天平在使用前没有经过校准一台分析天平在使用之前,首先要确认它的正确性是否合格,否则该天平所称量的正确性得不到保证。分析天平从首次使用起,应对其定期校准。连续使用的天平,大约每星期校准一次。校准时应按规定程序进行,必须使用标准砝码进行校准,否则将起不到校准的作用。 2、分析天平安装不正确在安装分析天平时首先要选择选防尘、防潮、防震、防风、防晒、恒温的房间作为天平室。 其次,天平应安放在牢固可靠的工作台上,并选择适当的位置安放。天平安装前,应按装箱清单进行清点,看各部件是否齐全、完好,并对天平的所有部件进行仔细清洁。 安装时,应参照天平的说明书正确装配天平。 安装完毕后,应再次检查各部分安装是否正常,然后检查电源电压是否符合天平的要求,打开天平检查是否正常。 3、环境及样品的物理因素影响在使用分析天平进行称量的过程中,环境和物理因素会对称量结果产生干扰,如温度、样品挥发、吸湿、磁力、静电等的干扰。 (1)温度的变化对分析天平的影响如果在称量过程中发现显示值单方向漂移,就有可能是温度变化所产生的影响。若样品与周围环境之间的温度存在差异,则这个温度差异就会导致沿称重容器流动的气流。 空气沿着容器外侧流动产生一个向上的作用力,这个力就导致称重结果产生错误:样品在动态浮力作用下,称得的重量比实际要轻。这个作用直到温度平衡形成以后才会终止。当把样品从干燥炉或冰箱中取出以后,要等到样品温度与实验室或称量室温度一致时才可以称量。 样品要放在表面积尽可能小的去皮容器中,取放称量容器要使用镊子夹取,而不能将手放入称量室中。 (2)样品吸湿或挥发对称量结果的影响如果在称量的过程中显示值单方向持续漂移,则可能测量的是挥发性或吸湿性样品。若样品吸湿性较强,则重量会增大;若被测量样品属易挥发物质,则重量会减小。 对于吸湿性或挥发性样品可使用细颈容器,给容器加盖或上塞,使用清洁干燥的称重容器并保持称盘上不粘有灰尘、污染物及水滴。 (3)样品或容器带静电对称量结果的影响如果每次称量都显示不同的称量结果或显示值不稳定,或称量结果的重复性差,则可考虑是称量容器或者样品带有静电。静电现象的影响将使每次称量时称重容器均显示不同的重量,结果的重复性很差。具有高绝缘度的材料如玻璃、塑料制的称重容器等容易带静电。 这种带电现象主要是由于样品或容器在搬运过程中搅拌或摩擦产生的,而且一旦带电则排除电荷会非常缓慢,在相对湿度低于40%的干燥空气中出现样品或容器带静电的几率会增加。通常可采用打开加湿器或适当调节空调系统来增加空气湿度,把称重容器放在金属容器内再进行称量,设法给分析天平接地等措施,来去除或屏蔽称重样品上的静电。 (4)使用者操作不当造成称量不准确称量前没有检查,盲目称量。称量前应检查天平是否正常,天平是否水平,称盘是否洁净,显示是否归零等等。解决这一问题,要严格按天平使用要求进行操作。 4、小结 造成实验室分析样品称量不精准的原因大致就可分为上述三个方面的原因。所以,如何你也有称不准的现象,就从这几方面来找原因吧。
  • 天平一百周年 | 历经百年的岛津天平究竟有哪些未曾公开的秘密?
    想知道你具备什么天平特质吗?超强感应力还是鹰眼般的洞察力?自1875年创业,岛津就开始了对技术的不断追求和探索这一点可以从1918年就诞生的天平中得到佐证岛津天平究竟有哪些未曾公开的秘密?1981年的它发生了什么?为什么2004年是它的“平”生转折点?与它一同成长的你是否也与它拥有同样迷人的特质?” 天平的百年实录今日开卷,岛津邀您一同揭开这百年的秘密̷̷ ?长按/扫描上方二维码关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 我国电子天平市场迎“暖春”
    据悉,目前我们国内规模以上的电子仪器企业有500多家,其中如电子天平等电子测量仪器制造企业130多家,电子测量仪器骨干企业几十家,针对目前的时域、频域、数域、阻抗域、调制域等五域的电子测量仪器,我国都开发了相应的产品,其中有几十个品种产品达到国际同类产品的先进水平,应用到了急需的国防、科研、生产等各个领域,电子测量仪器产量和销售量近900万台,增长幅度都在14%左右,生产产值和销售额都在100亿元左右。  电子天平行业面临严峻考验  电子天平在生产经营中。受国外经济危机和国内经济政策调整的影响,整个行业经营压力明显加大,以及电子天平产业的营销手段升级,生产制造的产能过剩问题严重,与产品同质化严重及经营成本上升等不利因素制约,致使电子天平行业面临着前所未有的严峻考验。  我国电子天平市场迎&ldquo 暖春&rdquo   一、营销手段升级:企业通过零首付和疯狂促销等过度营销情势抢占市场,导致用户欠款现象增多,企业回款压力剧增,资金链面临问题严重。这是一方面,另一方面营销手段提升也导致了市场竞争更加激烈,厂家在考虑生产,考虑创新之外,营销成了头等议题,也给经营带来了巨大的压力。  二、经营成本始终在上升:随着原材料价格以及人力成本的上涨,企业经营风险增加,再加上创新意识的脆弱,控制成本又往往随便疏忽产品质量,变相增加了维修成本,企业盈利难度在始终加大。  三、产品同质现象严重:企业对基础研发投入力度不够,导致产品种类及性能相似度较高,产品缺少区别化,在市场处于低迷状态下,致使行业价格战的发生,有损于行业的强势展开。  国产电子天平的发展方向  国内经济的迅速发展,市场对电子天平的需求量也日益巨增,又由于企业制度的改革,不断地出现更多的电子天平生产厂商,当前国内电子天平产品的竞争日趋激烈,国产电子天平产品要想更多地打入国际市场,就一定要有国际技术水平的产品质量做保障。  首先需要不断地学习、了解国际最新动态,要求创新、改进生产技术水平才能够提高电子天平产品的技术和质量水平,接近或者赶上世界发达国家电子天平产品发展水平。国内电子天平重视发展1mg~0.1mg读数的高精度电子天平技术,在温度补偿、时间飘移和示值重复性误差方面提高天平质量水平。从而提高我国电子天平的技术水平,赢得更大市场的发展空间。  其次、在&ldquo 十一五&rdquo 期间实验室电子天平行业的诸多企业通过加强企业技术创新,加强提高产品的技术水平,正在努力赶上和接近世界先进水平,虽然目前实验室电子天平行业的产品品种基本齐全、质量稳定,但产品大部分仍为中低档产品,技术含量较低,主要高档产品仍然依赖进口,比如一些高精度的电子天平有一部分仍然需要进口,所以致力于发展高精度高稳定的电子天平是大势所趋。  虽然国产的电子天平产品还不能在短期内赶上国际同行业产品的水平,但经过切实可行的努力是可以缩小期间的差距的,可以在现有的技术基础上作出进一步的研究。总之运用高新电子技术生产高精度高稳定度的电子天平是现今世界电子天平的发展必然方向。  随着经济回暖,电子测量仪器市场将会迎来又一个春天。主要原因有:  一、国家对学校基础化建设的重视,不仅大学实验室建设是国家所关注的,中小学实验室建设也已进入教育部规划中   二、国家对食品安全等公共卫生事业的重视,将提高政府对此类检测测量仪器的重视   三、随着网络通信的日益发达,通信类检测仪器同样会迎来发展高度。  面对我国高速发展的电子测量仪器市场,我国的电子测量仪器有关企业将加快技术进步和市场开发的步伐,努力做好国内外市场的开拓工作,真正把中国的电子测量仪器产业做强做大,将更多、更好、更新的电子测量仪器产品提供给广大用户。
  • 天平 基础知识 (检定篇)
    依据《JJG1036-2008电子天平》检定规程术语最大秤量:不计添加皮重时的最大称量能力;最小秤量:小于该载荷时称量结果可能产生过大的相对误差;称量范围:最小秤量和最大秤量之间的范围。计量性能要求检定分度值(e): 用于划分天平级别与进行计量检定的,以质量单位表示的值;实际分度值(d): 相邻两个示值的差;准确度级别: 天平按照检定分度值和检定分度数,划分成下列四个准确度级别:特种准确度级、高准确度级、中准确度级 、普通准确度级 ;偏载误差: 同一载荷下不同位置的示值误差,均应符合相应载荷最大允许误的要求 ;重复性:同一载荷多次称量结果间的差值,不得超过相应载荷最大允许误差的绝对值;示值误差:加载或卸载时各载荷点的示值误差不得超过相应载荷最大允许误差的要求。天平准确度级别与e、n的关系用d计算最小秤量,例如:一台电子天平,d=1mg,e=10mg,Max=210g,计算最小秤量。对照上表,该天平为级天平,而1mg≤e≤50mg,所以该天平的最小秤量Min=20d=20mg。确定天平的准确度等级,例如:一台天平,d=1mg,e=10mg,Max=210g,由公式 ,查表,5×103≤n≤1×105,所以该天平为 级天平。最大允许误差通用技术要求外观要求:1、天平必须具备下列标记:制造厂名称或商标、产品名称、准确度级别、型式批准标记、制造计量器具许可证标记、最大秤量、最小秤量、实际分度值、检定分度值、出厂编号、出厂日期等;2、适当时必备的标记:电源电压、电源频率、在满足正常工作要求时的特殊温度界限、由若干独立但又相互关联的模块组成的天平,每一模块均应有识别标记。结构的一般要求:1、自检程序、显示相关符号、表明工作状态;2、温度要求(-10℃~+40℃);3. 可备有接口与外部设备连接,并数据传输不受干扰;4. 具有良好绝缘和耐压。称量结果的示值:1、读数装置的读数准确、可靠、清晰;2、超过Max+9e时,应无显示或显示溢出;3、示值形式(含有计量单位,多显示器时应一致);4、数字示值(至少应从最右端起显示出一位数字、小数和整数用“.”分开,分度值自动改变时, “.”保持在原位。);5、打印(未平衡时,不得打印)。水平指示器:天平应安装水平指示器,并将水平指示器牢固安装在操作者明显可见的位置。未安装水平指示器的天平,不应有显见的倾斜。置零装置:1、天平可以有一个或多个置零装置;2、置零装置的效果不得改变天平的最大秤量;3、初始置零装置的效果不应超过20%最大秤量。零点跟踪装置:1、天平应具有零点跟踪装置,零点跟踪装置在出厂时默认为开启状态;2、置零装置和零点跟踪装置的总效果,不得超过最大秤量的4%。注:通常出厂设置零点跟踪为4d~5d,一般用10d摆脱零点跟踪。去皮装置:1、去皮装置应能保证准确置零,从而进行净重衡量;2、去皮装置不得在零点以下或最大秤量以上使用。主要器具-砝码应配备一组标准砝码,其扩展不确定度(k=2)不得大于被检天平在该载荷下最大允许误差绝对值的1/3,该标准砝码的磁性不得超过相应要求。 实际分度值(d)标准砝码等级1μgE2等级0.01mgE2等级0.1mgE2等级、F1等级1mgE2等级、F1等级、F2等级>1mgE2等级、F1等级、F2等级检定项目偏载误差:试验载荷选择1/3(最大秤量+最大加法除皮效果)的砝码。优选个数较少的砝码,如果不是单个砝码,允许砝码叠放使用。单个砝码应放置在测量区域的中心位置,若使用多个砝码,应均匀分布在测量区域内。按秤盘的表面积,将秤盘划分为四个区域,下图为天平偏载误差检定位置示意图。Ec≤MPE,示值误差应是对零点修正后的修正误差。本规程与原规程不同,在对偏载测试时应对零点进行修正。例如:E0=-0.5g,E=0.5g,则Ec=E-E0=0.5-(-0.5)=1.0g重复性:1、相同载荷多次测量结果的差值不得大于该载荷点下最大允许误差的绝对值;2、如果天平具有自动置零或零点跟踪装置,应处于工作状态;3、试验载荷应选择80%~100%最大秤量的单个砝码,测试次数不少于6次;4、在做重复性检定时,试验载荷可以选取接近80%~100%最大秤量的单个砝码测试,如:Max=210g,重复性测试可以选取200g测试;5、测量中每次加载前可置零。重复性检定时不用记录零点示值,每次加载前可将天平置零,这与原规程不一样;6、天平的重复性等于Emax-Emin,式中Emax为加载时天平示值误差的最大值;为-Emin加载时天平示值误差的最小值,Emax-Emin≤MPE。示值误差:1、各载荷点的示值误差不得超过该天平在该载荷时的最大允许误差;2、测试时,载荷应从零载荷开始,逐渐地往上加载,直至加到天平的最大秤量,然后逐渐的卸下载荷,直到零载荷为止;3、试验载荷必须包括下述载荷点:空载、最小秤量、最大允许误差转换点所对应的载荷(或接近最大允许误差转变点)、最大秤量;例如:一台电子天平,d=0.1mg,e=1mg,Max=210g;试验载荷必须包括:1mg,10mg,50g,200g,210g这几个载荷点;4、无论加载或卸载,应保证有足够的测量点数,对应首次检定的天平,测量点数不得少于10点;对于后续检定或使用中检验的天平,测量点数可以适当减少,但不得少于6点。 Ec≤MPE,示值误差应是对零点修正后的修正误差。计算公式:E=I+0.5e-ΔL-L,Ec=E-E0E——化整前的示值误差;I——天平示值;e——检定分度值(e≠d时,d代替e);ΔL —— 附加砝码值;L ——载荷值;E0——零点或零点附近的误差。注:按本规程要求检定合格的天平发给检定证书,检定不合格的天平发给检定结果通知书,并注明不合格项目。检定周期 一般不超过一年 。 本文内容来源于网络,用于交流学习,如有侵权,请联系我们删除!--------------------------------------------------------------------------------------------------------------------------------------------------超微量天平的优势创新调整系统新的 2 点式调整系统确保非常高的测量精度,同时减少线性误差,在整个称重量程内保证可靠结果。首屈一指的测量精度*新 Tegra 系列处理器与专为根据环境条件调整筛选而设计的原创解决方案相结合,确保出众的工作条件可重复性和快速结果稳定性。新的数据管理体验可扩大至高达 32 GB 的内存能够记录复杂报告形式的测量数据,以及显示统计数据等信息的图表。可重复性,符合 USP非常好的称重精度和 sd ≤ 1d 的可重复性,加上符合 USP 要求(第 41 和 1251 条),为重量测量品质树立新的标准。符合人体工程学,操作安全终端和称重设备之间的无线通信支持在层流柜和通风橱中使用天平。通过移动设备操作Wi-Fi 功能支持将天平数据传输到使用 iOS 或 Android 系统的移动设备。数据安全性由于采用 ALIBI 内存自动执行测量结果记录,您的数据始终安全,并且可以在需要时随时使用。
  • 赛多利斯最新CPA系列电子天平
    哥廷根,2007年10月18日—赛多利斯最新CPA卓越系列电子天平,集技术、质量、功能于一身,能可靠满足实验室日常使用,开创了实验室称量的新标准。29种型号,从微量天平到大量程天平,最大量程达到34 kg。所有CPA天平均采用赛多利斯Monolithic称重传感器。轻按CAL键,就能通过内置的电机驱动砝码进行全自动校准和调整。当环境温度改变超过一定值,或在特定时间间隔后,CPA的isoCAL校准/调整功能可进行全自动内置调整。因此,CPA天平能独立在规定时间内进行校准和调整,确保始终如一的高精确度。CPA外壳坚固,结构耐用。触感反馈式按键确保操作准确、有效。并且这些操作键能适应频繁的使用,即使经过数千次的使用,也始终能确保日复一日的精密工作。高对比度带背景光显示屏,在任何光线条件下,都能确保读数准确(微量、半微量天平不带背景光)。分析天平、微量天平以及1 mg精密天平的防风罩的设计和尺寸能适应各自天平的可读性,并且清洁方便。例如,防风罩的防风门开启顺滑,能很方便地进入称量室。连接赛多利斯的数据打印机或电脑,CPA天平能生成强制文件,用于质量管理系统。
  • 告别“假天平”,远离称量雷区
    天平在使用过程中除了人为因素外,以下八大环境因素也会影响其称量精准性,需要特别留意。就天平使用的常见问题小编总结以下解决方法,让你远离称量雷区,轻松应对精准称量困恼。1、空气流动因素解决方法-避免空气流动-使用防风罩-使用网格称盘2、温差因素解决方法-让天平在实验室稳定一段时间-把样品放置在天平附近3、震动因素解决方法-平稳的实验地点-使用稳定的大理石实验台4、静电因素解决方法-使用去静电装置消除静电5、挥发和回潮因素解决方法-封闭样品盘-快速读数6、热辐射因素解决方法-避免热源-穿着实验服7、磁场因素解决方法-避免易磁化的材料 (钢、铁)-在样品和秤盘之间放置不导磁的物品-如果准确度可以保证,使用应变片传感器的天平8、空气浮力因素解决方法-使用浮力补偿公式计算浮力的影响最后小编敲黑板再为大家提供一些放置天平的建议:-天平应该放置在实验室远离窗户、门、空调、加热器、电机、风扇等的角落;-实验桌要求放置水平,建议使用大理石实验台;-环境温度控制在恒定值,湿度控制在rh40%以上;-实验开始前保证足够时间的上电预热,万分位天平预热1小时以上;十万分位天平预热4小时以上或不断电;-建议将样品摆放在天平附近,如从冰箱取出请快速读数或放置一会儿再做称量。希望以上这些小tips可以帮助大家更好地使用电子天平。欲了解更多产品信息,请及时与我们联系!
  • 简述电子点天平的组成部分
    电子天平构造原理基本构造是相同的。主要由以下几个部分组成:    (1)秤盘    秤盘多为金属材料制成,安装在天平的传感器上,是天平进行称量的承受装置。它具有一定的几何形状和厚度,以圆形和方形的居多。使用中应注意卫生清洁,更不要随意掉换秤盘。    (2)传感器    传感器是的关键部件之一,由外壳、磁钢、极靴和线圈等组成,装在秤盘的下方。它的精度很高也很灵敏。应保持天平称量室的清洁,切忌称样时撒落物品而影响传感器的正常工作。    (3)位置检测器位置检测器是由高灵敏度的远红外发光管和对称式光敏电池组成的。它的作用是将秤盘上的载荷转变成电信号输出。    (4)PID调节器    PID(比例、积分、微分)调节器的作用,就是保证传感器快速而稳定地工作。    (5)功率放大器    其作用是将微弱的信号进行放大,以保证天平的精度和工作要求。    (6)低通滤波器    它的作用是排除外界和某些电器元件产生的高频信号的干扰,以保证传感器的输出为一恒定的直流电压。    (7)模数(A/D)转换器    它的优点在于转换精度高,易于自动调零能有效地排除干扰,将输入信号转换成数字信号。    (8)微计算机    此部件可说是电子天平的关键部件了o它是电子天平的数据处理部件,它具有记忆、计算和查表等功能    (9)显示器    现在的显示器基本上有两种:一种是数码管的显示器 另一种是液晶显示器。它们的作用是将输出的数字信号显示在显示屏幕上。    (10)机壳    其作用是保护电子天平免受到灰尘等物质的侵害,同时也是电子元件的基座等。    (11)底脚    电子天平的支撑部件,同时也是电子天平水平的调节部件,一般均靠后面两个调整脚来调节天平的水平。下面为欧洲瑞德威电子天平的图片:
  • 2016国际治疗药物监测与临床毒理学会区域会议
    为了促进治疗药物监测的标准化和规范化发展,由中国药理学会治疗药物监测研究专业委员会、广东省药理学会治疗药物监测研究专业委员会、国际治疗药物监测与临床毒理学会(IATDMCT)和广东省人民医院主办的“2016 国际治疗药物监测与临床毒理学会区域会议”将于 2016 年 8 月16~17 日在广州召开。 岛津公司分析仪器及天平部积极参与并全程配合会议议程。岛津天平广东省总代理——广州仪通兴仪器仪表有限公司
  • 你的奥豪斯天平配打印机了吗?
    如果你想了解称量的全过程,以满足数据追溯和审计追踪的需求;如果你不想在称量时忙于记录,希望节省时间并避免抄写的错误发生; 奥豪斯推荐您配备SF40A天平打印机它时尚美丽,却从不喧宾夺主SF40A小巧便携,侧面线条层次分明,雪白的机身上经典奥豪斯红醒目却不高调。无论是在实验室还是工业现场,SF40A都可以完美契合。在拥有华丽外表的同时,SF40A的兼容性也非常强大。每台奥豪斯天平的背后都有一台默默付出的SF40A。由于奥豪斯的天平,水分仪,工业称重产品的串口默认设置都相同,因此与SF40A连接时,无需额外设置,即插即用,轻松获得称重数据,打印实验报告。它传统,始终守护数据安全SF40A按键上的LED指示灯可以直观判断打印机使用状态。绿色LED灯常亮表示连接成功;闪烁则表示连接失败。在完成称量后,一键打印称量结果。SF40A为传统的针式打印机,其打印结果耐热、耐光,可以保持3-5年不褪色,保证药企数据追溯和审计追踪的要求。除了满足一般的称重需求外,SF40A还可实现清零/去皮、统计、求和等功能,大大提高称重效率,帮助客户快速进行称重数据的处理,即使功能简单的天平型号也可实现高级的应用。更为难得的是,SF40A内置中文字体,可以实现所见即所得的打印,看着更为亲切。奥豪斯始终致力于天平软件的不断更新和完善。天平支持的打印内容可根据客户需求开启或者关闭。
  • 借助“国产替代”的东风,国产天平将再次腾飞——访上海天美天平仪器有限公司总经理练达
    上海天美天平仪器有限公司,隶属天美(控股)有限公司,成立于2010年,专门生产电子天平、水分仪、粘度计及热分析等实验室仪器。前身为上海建华仪器工业社、上海天平仪器厂、上海精密科学仪器有限公司天平仪器厂,至今有近70年的天平生产历史。同时,上海天美天平也是瑞士普利赛斯电子天平在中国的制造基地。近日,上海天美公司向清华大学科学博物馆捐赠两台“古董”天平。日前,仪器信息网编辑特别采访了上海天美天平仪器有限公司总经理练达。一、请您分享一下本次捐赠仪式的契机?本次捐赠的仪器有什么样的历史故事?您认为本次捐赠对彼此有怎样重要的意义?本次天美捐赠给清华大学科学博物馆的2台仪器,1台为上海天平厂1966年生产的TG332微量分析天平,另1台为上海精科1992年生产的SH10A快速水分测定仪,均为“上平”的古董天平。捐赠这2台仪器的机会非常难得。应该是2024年1月份,中国检验检测学会测试装备分会在上海天美召开科学仪器自主创新标准的研讨会,清华大学分析测试中心的邢志教授正好也参会,看到我们实验室展示的微量机械天平,就提出能不能捐赠1台给清华大学科学博物馆(筹建)。我们请示付总及集团领导后,他们非常赞同,因此达成了本次的捐赠。这2台仪器有非常高的历史价值,TG332微量分析天平的研发时间为1964年,至今已有60年的历史。这台捐赠天平是1966年生产的,至今也有58年的历史,完全是古董级,目前仍可正常工作。它的最大量程20 g,分度值为0.01 mg,十万分之一的精度,为国内外最高精度机械天平之一,可作为质量基准使用。SH10A快速水分测定仪为炮筒式外形设计,为单盘机械天平外加红外烘干装置,对样品进行水分的快速测定。它的实际研发时间可以追溯到1953年。经清华大学科博馆刘老师确认,这两台仪器科博馆目前均没有。另外,据刘老师介绍,科博馆目前已收集非常多的“上平”天平,但缺乏微量级别的,也没有这种“炮筒式”设计的水分测定仪。因此,本次捐赠填补了清华大学科博馆的空白。本次捐赠意义也非常大。我加入天美后有更多的机会接触并了解“上平”“上海精科”。上海天平厂为中国天平的创始者,国产天平的领导者,为中国的天平工业作出过非常大的贡献。在中国的最高理工科学府成列、展示“上平”最高精度的机械天平意义非凡,让更多的清华乃至全国的学生、老师、年轻人近距离了解“上平”,了解中国科学仪器那段辉煌历史,同时让大家有机会认识我们天美,也算是物有所归。二、贵公司作为一家拥有近70年天平生产历史的企业,回顾过往,请简单介绍一下公司的发展历程、取得了哪些成绩?上海天美天平仪器有限公司,源于“上海精科”“上海天平仪器厂”,至今已有近70年的历史。发展历史主要分为四个阶段:1. 公司初创,奠定基础上海建华仪器工业社,上海天平厂前身,成立于1948年,国内最早天平仪器生产企业,1950年更名为上海新科衡器仪器厂。1953年,研制出中国第一台的机械天平TG328A,研制成功SC69-02C水分测定仪,中国第1台的水分测定仪。TG328A机械天平TSC69-02C水分测定仪2. 公私合营,上海骄傲上海天平厂,1958年4月10日正式成立,由当时上海新科衡器仪器厂、上海科达永仪器厂、上海新时代仪器厂等九家工厂合并而成。天平厂成立后,诞生了中国的第1台精密微量天平、第1台电子天平、第1台分析电子天平、第1台水分测定仪等众多的中国天平“第一”。上海天平厂外景(早期)上海天平厂外景(后期)1964年,上海天平厂成功研制中国第1台双盘微量天平TG332,分度值0.01 mg。1965年成功研制TG335微量天平,分度值0.001 mg(1μg)。它的诞生,开创了国内机械天平的先河,为中国的科学研究事业打下坚实基础,也为后来电子天平的开发创造了条件。TG335机械天平MD110-2分析电子天平 1978年,上海天平厂成功研制中国第1台电子天平MD2K-1, 显示分度值0.01 g。全球范围内也属领先。1986年,研制中国第1台分析电子天平MD100-2,显示分度值0.1 mg。3. 成立精科,厚积薄发1988年,成立上海精密科学仪器公司,品牌升级为“上海精科”。1991年成功研制FA/JA系列电子天平,它开启了国内应用智能单片机技术大规模生产电子天平的新时代。1992年成功研制DSH20电子红外水分测定仪,它是中国第1台红外水分测定仪。1993年成功研制中国第一台数字式粘度计NDJ-5S。1995年上海天平仪器厂与上海第二天平仪器厂合并,成立上海精科天平仪器总厂。上海精密科学仪器有限公司 天平仪器总厂(外景)进入本世纪初,中国加入WTO,中小国产天平企业明显收到国外品牌的全方位挤压,在技术、产品、品牌营销及人才等方面均处于下风,市场份额有所缩减。但上海天平厂在中国拥有众多的客户资源及品牌影响力,天平业务屡创新高,2002年销售额近亿元。4. 加入天美,凤凰涅槃2010年,依托上海精科天平事业部,上海精科与天美集团合资成立“上海精科天美科学仪器有限公司”。2014年天美全资收购,成立“上海天美天平仪器有限公司”,真正实现凤凰涅槃。针对国产天平的技术及发展现状,天美决定在全球范围内寻找天平卖家,包括瑞士、德国等,最终选择、收购全球天平排名前三的“瑞士普利赛斯称重设备有限公司”。收购完成后,天美加大“天美天平”与“普利赛斯”的融合创新。一方面转移分析及精密电子天平生产至上海工厂生产,另一方面加大研发投入并推进瑞士普利赛斯及上海天美天平的合作,研发半微量及微量电子天平等。2011年,转移生产普利赛斯320XB系列电子天平。2015年,转移生产普利赛斯321LS系列电子天平。2016年,全新研发上市390HA/HE系列高端电子天平(彩色触摸屏)。2017年,研发升级FA-C系列电子天平。2018年,研发上市彩色触摸屏显示的321XJ系列电子天平。2022年,全新研发上市“PHASblocTM”一体式称重传感器及520PT/PB系列电子天平。2023年,研发上市LMT系列水分测定仪, 转移生产XM60系列水分测定仪。三、您如何看待目前国产天平的技术现状?能否实现国产替代?与进口产品相比有哪些优势或亟待完善的地方?目前,国产天平基本具备了“国产替代”的技术实力。多家公司已成功研发并生产半微量电子天平。微量电子天平也在研发中,很快可以实现量产。部分厂商成功研制一体式电磁力平衡称重传感器。更有厂商实现了“温度补偿”的电子天平核心生产工艺。只要客户给与同等机会,愿意购买国产天平并最终实施,国产天平厂商必将进入一个新的发展周期。天美完全拥有进口天平的技术、产品及生产工艺,又拥有国产仪器厂商的身份,普利赛斯系列电子天平及水分测定仪销量逐年增长,已建立一定的市场影响力。另外,常州一家电子天平厂商,在低成本、规模化生产方面做的非常成功,电子天平及水分测定仪的产销量很大,同时也给国内外知名厂商贴牌生产。福州一电子天平厂商,在半微量、一体式电子天平等新产品研发及市场开拓等方面做的也非常成功。华为手机,比亚迪/小米的新能源汽车等众多国产品牌,已为我们国产天平建立了非常成功的榜样,国产天平的春天必将到来。但电子天平“国产替代”的道路会很曲折。根据我20多年科学仪器的从业经历,包括在跨国公司服务十多年,国产仪器要被更多的客户认可、接受,信任最关键。因为诸多历史的原因,国产仪器的口碑一直不好,即便国产仪器技术及品质方面已取得了非常大的进步,老师愿意“冒险”购买使用的意愿度不高。因此,我们国产天平厂商,一方面应关注研发更多的新产品,持续提高天平的品质,同时应加强宣传,积极展示我们取得的成就。为此,我要特别感谢仪器信息网,感谢仪器信息网的老师们。好在一批制造型企业包括新能源汽车、制药企业等,他们对质量及生产成本控制需求,迫使他们不能再一味迷信进口仪器而去主动尝试使用国产仪器并取得成功。天美天平近几年在这方面取得了一定的成绩。在比亚迪汽车销售100多台XM60系列电子水分测定仪,在蜂巢能源成功销售150多台XJ系列电子天平,在扬州一家太阳能光伏企业销售70台以上的LS系列电子天平。另外还包括一大批的制药企业。国产天平“国产替代”的商机已经产生。四、在国产天平的开发和推广过程中,贵公司进行了哪些有效部署?在国外品牌的引进及消化吸收层面,做了哪些具体的工作?这些工作对国产天平的技术提升及品牌发展有哪些助力?产出了哪些亮眼的新产品?天美天平源于“上海精科/上海天平厂”及“瑞士普利赛斯”,成立之初生产的产品包括国产FA-C系列电子天平、LHS/DHS/YLS系列水分测定仪等。但相比较进口品牌,电子天平/水分测定仪的技术及品质方面要落后一大截。通过“引进”,天美天平2011年成功引进普利赛斯“温度补偿”电子天平核心生产工艺,转移生产普利赛斯320XB系列电子天平,2015年成功转移生产普利赛斯321LS系列电子天平。普利赛斯电子天平销量及市场份额逐年上升。普利赛斯XB/LS系列电子天平已成为天美天平的主打、热销产品,每年都有3000台以上的电子天平销往国内外市场。2023年又成功转移生产330XM60系列水分测定仪及167BJ系列便携式电子天平等。目前,已形成相当大的生产规模。通过“消化”“吸收”“再创新”,天美天平2017年基于原FA/JA电子天平而研发上市FA-C系列电子天平。2018年基于普利赛斯321LS系列电子天平,研发上市彩色触摸屏显示的321XJ系列电子天平。2023年基于普利赛斯XM60系列水分测定仪研发上市彩色触摸屏显示的335LMT系列电子水分测定仪。针对比亚迪汽车部分工厂“24小时高温连续工作”的需求,我们对XM60水分测定仪做了三、四方面的创新性设计改进,更好满足他们的工作。这些新产品的成功研发上市,极大地提高了国产电子天平品质,降低生产成本及销售价格,更好满足了中国客户的需求,同时也给天美取得很好的回报。通过“融合创新”,天美天平与瑞士普利赛斯研发团队合作, 2016年研发上市全新的390HA/HE系列高端电子天平,拥有“超大彩色触摸屏显示”“全自动线性校准”“自动去除静电”“红外感应控制”“环境监测补偿”“浮力修正”等多项全新技术,新产品一经推出,深受中国制药、科研、高校等客户青睐,销售火爆。2022年研发上市“PHASblocTM”一体式电磁力平衡称重传感器及520PT/PB系列电子天平。同时,天美天平在2017年成功注册了“Precisa”“普利赛斯”品牌,为“国产替代”打下良好的基础。五、在天平产品线层面,贵公司未来有什么样的战略规划和公司愿景?天美目前最大的遗憾就是缺少量产的微量电子天平,接下来最重要的策略就是联合瑞士普利赛斯,研发390HA/HE系列微量电子天平并实现量产。策略二:针对部分工业客户需求,研发推出421IM系列高精度电磁力平衡称重模块。策略三:基于普利赛斯电子天平技术及工艺,全面升级原“上平/上海精科”电子天平及水分测定仪产品,停止“FA-C系列电子天平”“LHS/DHS系列水分测定仪”等产品的生产。策略四:做好“国产替代”宣传,加大天平市场开拓力度及天平渠道建设,每年实现1000台套以上的电子天平/水分测定仪增长,至2028年实现年产销10000台套的目标,再现“上平”昔日的辉煌。中国的天平工业从这儿诞生,借助“国产替代”的东风,国产天平必将再次腾飞!
  • 天平新标准-Cubis 特别优惠
    天平新标准-Cubis 特别优惠 革新成就飞跃,2011年赛多利斯又一次升级了令用户趋之若鹜的天平新标准——Cubis完全模块化的设计,最大限度的满足您独一无二的需求;基于模块的研发设计,为天平更快的拓展功能提供无限可能;满足最严格的APC(先进制药规范),可适用于制药行业规范领域的质量管理体系;Q智能向导功能,帮您快速配置任务和工作顺序,进行无差错操作;专利超级单体传感器技术,成就第一台五位数上皿式天平; 偏心负载补偿Q-称盘:消除样品不在称盘中央时引起的误差;自动Q水平:只需轻轻一按水泡自动跑到中央;自动防风罩:操作简单只需按键控制防风门;内置静电消除器:消除样品或容器上的静电荷干扰。这就是Cubis,更精确、更简便、更紧凑、更坚固、更严格、更安全、并且潜力无限的高端天平。10月31日前订购可免费获得自动调水平功能。更多信息 制作 赛多利斯科学仪器(北京)有限公司 电话:010-80426424 传真:010-80426488 联系人:于小姐 Email: ssilsb@sartorius.com Web: www.sartorius.com.cn
  • 超级经济舱 | 奥豪斯AR天平上市十年光荣退役,PX系列天平震撼来袭,勇攀高峰!
    备受全球用户特别是中国用户喜爱的称量仪器AR系列电子天平诞生于2009年,至今已服务全球用户近十年。其以优异稳定的性能,精准的称量和简单便捷的操作体验,新颖的密度直读功能,受到了专业用户的喜爱;同时,其独有的60M ARM高速处理器、美观实用的宽视角智能背亮液晶屏和DDE数据同步采集工具,又有效地提升了用户的使用体验,使AR系列天平风靡一时,成为奥豪斯最经典的产品之一。AR系列天平见证了奥豪斯稳扎稳打、精益求精的步伐,如今誉满全球,即将光荣退役。在此,奥豪斯感谢各位用户及同仁对AR系列天平的支持及喜爱。十年磨一剑,一剑用十年。AR系列天平,是奥豪斯在称量仪器领域不断开拓创新——“灵感源于务实”的精神写照。正是基于这样的企业精神,奥豪斯隆重推出PX系列天平替代AR系列,为各位用户及同仁带来再一次称量实验的惊喜!PX系列天平,全名Pioneer PX系列电子天平,寓意为“乘风破浪的开拓者”。何谓“开拓者”?即敢为人先,为用户提供具有超凡性价比的高品质产品,使用户以“经济舱”的价格,享受到最豪华的体验。PX系列天平的画龙点睛之处即:拥有3款最具性价比的十万分位准微量天平。其中2款为双量程天平,可进行十万分称量和万分位称量的切换;1款为单量程天平,专注于十万位称量。除了强势推出的这三款“超级经济舱”版十万位准微量天平,PX系列天平依然沿袭了产品线丰富全面的传统:提供万分之一、千分之一、百分之一的内校、外校的分析和精密天平。 量程涵盖面更广,可满足更多用户不同精度、不同量程的称量需求。在此基础上,奥豪斯PX系列天平还有以下的独特之处:1. ESR红色接地静电消除条天平作为精密仪器之一,其称量结果极易受环境影响。静电干扰时影响称量的不利因素之一,这种情况在秋冬季——干燥易产生静电的季节更甚。许多万分位以上电子天平,必须具备自带除静电装置或额外配备静电消除器,才能保证精准的称量结果。PX天平专配ESR静电消除条,用经济的方法解决了以上困扰——PX系列的准微量天平和分析天平在风罩顶部,嵌入一条红色接地静电消除条:每次称重前,只需接触静电消除条,即可去除人体静电,避免人体静电对称重的影响。这个独特而实用的设计,已由奥豪斯申请专利,是目前唯一一款具有顶部静电消除功能的电子天平,这是PX的第一个独特之处!2. 多语言选择的双行液晶屏显示功能PX系列天平在显示屏的操作硬件和软件设计上,都进行了非常细致的优化。双行液晶屏显示功能,帮助使用者进行操作引导。考虑到全球用户的不同语言习惯,添加了语言选择项:支持中文、英语、韩语、日语共四种语言的双行数据显示。中文字体提醒,指导使用者完成正确操作,无需查阅操作手册,简单方便。开机的“Hello”问候语,能为用户每次使用带来一丝温暖。液晶屏的背光功能有“高/中/低”三种亮度切换,以满足用户不同使用环境和使用习惯的屏幕亮度要求;不仅如此,屏幕的背光还可根据无操作的时长(10分钟/20分钟/30分钟),自动变暗。用户可依照自己的使用习惯,设定屏幕亮度及自动亮度模式,保证每一次使用,都能体验屏显的最佳状态。这是PX的第二个独特之处!3. 标配USB接口+R232接口,数据通讯更便捷根据当下用户使用习惯的改变与升级,奥豪斯PX系列天平还在数据通讯方面进行了升级优化:第一, 增加标配USB接口,专用于连接电脑导出称量数据,方便用户在大数据时代的即时数据处理需求;第二, 奥豪斯PX系列天平继续传承了AR天平可以满足用户数据自定义打印、贸易结算等需求,方便用户在不同场景下的称量需求。一切创新与传承,都是为了给用户提供更简单便捷、更实用的使用体验,这也是奥豪斯PX天平的第三个独特之处!PX系列天平——让用户真正体验“超级经济舱”,正是我们此次为各位用户及同仁精心准备的看得见、摸得着的诚意!希望新的PX天平在用户的实验室称量路上,与各位并肩作伴,成为大家喜爱的仪器设备! 如果您想了解奥豪斯PX系列天平的详情,请拨打电话奥豪斯销售服务专线,我们的专业工程师将竭诚为您服务!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制