当前位置: 仪器信息网 > 行业主题 > >

石英光纤

仪器信息网石英光纤专题为您提供2024年最新石英光纤价格报价、厂家品牌的相关信息, 包括石英光纤参数、型号等,不管是国产,还是进口品牌的石英光纤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合石英光纤相关的耗材配件、试剂标物,还有石英光纤相关的最新资讯、资料,以及石英光纤相关的解决方案。

石英光纤相关的资讯

  • 美国研发出新型光纤 光纤技术将突破玻璃限制发展
    北京时间2月28日上午消息 由美国宾夕法尼亚州立大学的化学家John Badding带领的一组科学家,研发出了一种由硒化锌为核心材质的光纤,可用于半导体的淡黄化合物。  这种新型光纤,可对光进行更高效更自由的操作,将为激光雷达技术开拓更多应用打下基础。这种技术可进一步改进医疗激光手术,为军队提供更先进的激光器,用于测量检测污染物,探测恐怖主义的化学药物传播,科学家们的这项研究成果已经登载在材料科学顶级期刊Advanced Materials。  Badding说:“我们都知道光纤是现代信息时代的发展基石,新研制出的这种长而细的光纤,只有三根人类头发那么细,却可以每秒传输太字节的数据,相当于250个DVD里刻录的信息。而且,仍然有各种方法可以改善这个技术。”  Badding解释说,现有的光纤技术总是受限于玻璃材质,他说:“玻璃的原子排列是偶然性的,而新材质与之相反,硒化锌晶体物质是高度有序的,这种有序性非常有利于光在长波中的传输,特别是在中红外中的传输。”  Badding说:“和石英玻璃传统上用于光纤不同,硒化锌是一种化合物半导体,我们一直都知道,硒化锌是一种有用的化合物,可以对光进行多种操作,这是石英玻璃无法做到的。特殊之处是让硒化锌变成纤维结构,这是以前从未做到的。”  科学家们发现,由硒化锌合成的光纤有两大用途,首先他们发现新的光纤在颜色转换时更有效率,Badding解释说:“传统的光纤用于信号、显示以及艺术上,但并不能保证时刻都能得到想要的颜色,硒化锌利用非线性频率转换,在颜色变化上能力非常好。”  其次,科学家们发现,新光纤不仅在可见光谱中提供更多功能的应用,在红外线中也可以,波长的电磁辐射比可见光更长。
  • 发扬奋斗精神,建造光纤激光器最强“心脏”
    光纤激光器被称为第三代激光器,其中“高性能稀土掺杂石英光纤”作为光纤激光器的“心脏”被列入国家战略性先进电子材料。其制备技术和产品长期被国外垄断,成为制约中国高功率光纤激光器发展的“卡脖子”元件。   从本世纪初,为解决我国高功率光纤激光器的稀土掺杂激光光纤“卡脖子”难题,为追赶我国在稀土掺杂激光光纤方面与国际先进水平差距,单元技术实验室胡丽丽研究员组织研究团队开展光纤研制工作和平台建设,创建了溶胶凝胶结合高温烧结制备稀土掺杂石英玻璃的新方法,阐明了稀土离子掺杂石英玻璃的发光、光学性能与局域结构的关联,并建立了相互作用的结构模型。提出了MCVD结合纳米溶胶液浸泡制备高掺杂离子分散性光纤预制棒的新思路,全面攻克了万瓦级光纤高效、高稳定性及高可靠性的技术难题,批量研制的光纤在GF和工业领域实现近万台套的规模应用。2011年以来胡丽丽研究员带领激光光纤研究团队持续开展稀土掺杂石英玻璃结构与性能的基础研究、大模场掺镱光子晶体光纤、大模场高功率包层结构稀土掺杂石英光纤、耐辐照稀土掺杂石英光纤等的研制,打破了国外对我国高功率激光光纤的垄断,解决了我国高功率光纤激光器关键元件国产化“卡脖子”问题。满足了高功率光纤激光器对核心元件的重大需求,为我国实现高功率光纤激光器最强“心脏”自主可控做出了重要贡献。   近十年来,胡丽丽研究员带领团队不断探索和总结,撰写了《稀土掺杂石英光纤及应用》著作,由上海科学技术出版社出版,并面向国内外发行。该著作获2022年度国家科学技术学术著作出版基金资助出版,获评2023年2月榜“世纪好书”。   作为第一完成人和突出贡献者,胡丽丽研究员获2016年上海市技术发明奖特等奖一项、2017年国家技术发明奖二等奖一项、2022年中国科学院杰出科技成就奖一项,获“全国三八红旗手”“上海市第十六届十大科技精英”等荣誉称号。
  • 清华团队:基于多模光纤模式色散和深度学习的高速全光纤化成像技术
    多模光纤成像技术因其超细微型探头和柔性结构带来的灵活性优势,在生物体内成像、工业检测等领域具有广阔的应用前景,获得了业界广泛的关注。目前,多模光纤成像技术主要分为两类,一类通过在光纤远端产生聚焦点进行扫描成像,另一类通过探测光纤近端的散斑场来恢复光纤远端被探测的全场图像。这两种技术途径已有较完善的理论支撑,能得到较清晰的探测图像,但同时也具有一些难以弥补的劣势。例如:受限于空间光调制器、CCD或CMOS器件的刷新速度,成像帧率较低,难以对高速的事件进行成像;结构中包含自由空间光学元件,因此需要精密的光学对准,无法与传像主体集成实现全光纤化,限制了其应用范围;成像波长受限于CCD或CMOS器件的感光光谱范围,限制了其在红外波段的成像能力。上图 高速多模光纤成像系统示意图。a:实验原理图;b:以神经网络进行图像恢复的流程图;c:光纤探头示意图;d:照明光(黄色箭头)侧面注入探测光纤的示意图,信号光(红色箭头)在纤芯中传播;e:探测光纤远端照片,端面通过烧球来更好地聚焦照明光,比例尺500微米。为此,清华大学精密仪器系先进激光技术研究团队基于十多年来在光纤激光器、光纤器件和光纤传感的技术积累,提出了基于多模光纤模式色散和深度学习的高速全光纤化成像技术。该技术采用皮秒脉冲光纤激光照明被测物,利用多模光纤的模间色散特性将被探测图像的空间信息在时域上展开,时域信息通过单像素探测器进行探测,并借助神经网络训练的方法,由一维时域信息恢复出二维图像信息,整体结构和原理如图1所示。图2 被探测图像与其对应的波形和恢复结果该技术通过一个光纤侧面耦合器将皮秒脉冲光纤激光耦合到探测光纤中,然后从光纤的远端出射照到物体上,反射光进入探测光纤后紧接着进入与之连接的一公里长的50/125微米直径多模阶跃光纤中传播。由于模间色散的存在,进入多模光纤的脉冲光会产生分裂形成脉冲串。如图2所示,不同的光纤横模具有不同的群速度,因此在时域上会彼此分离,而这些横模包含了被探测图像的空间信息,通过模式色散便可将被探测物体的空域信息在时域上展开。图3 不同类型图案的成像效果通过超快光电探测器可以获得脉冲串波形,经神经网络模型进行训练后,可以直接从不同的脉冲波形中恢复出被探测图像。图3展示了来自不同数据库中图案的成像效果。该系统的成像帧率主要取决于脉冲光的重频,目前实验中已实现高达15.4Mfps帧率的成像,并实验验证了达到53.5Mfps帧率的可行性。系统在高帧率成像的同时具备连续采集一万帧图像(大帧深)的能力。如果采用重复频率更高的激光照明源,并搭配更快的光电探测器和时域波形采集设备,其帧率可以持续提升。团队所提出的新技术的突出优点是:帧率主要由脉冲光源的重频决定,成像帧率高;全光纤化的系统结构紧凑,细如发丝的探头大大增加了灵活性;单像素成像,探测波段不再受限于可见光,可扩展到近红外、甚至中波红外等其他波段;采集时域信号而非空间分布,抗干扰能力强。该系统在某些高速成像场景中比如体内高速细胞成像,或工业场景下对难以开放系统的内部高速成像检测等领域具有巨大应用潜力。该研究成果近日以“深度学习赋能全光纤高速图像探测”(All-fiber high-speed image detection enabled by deep learning)为题,发表在《自然通讯》(Nature Communications)上。该论文通讯作者为清华大学精密仪器系副教授肖起榕,第一作者为精密仪器系2018级博士生刘洲天。该研究得到了国家自然科学基金资助。 清华大学精密仪器系先进激光技术研究团队学术带头人为系主任、教授柳强,团队以现代化强国建设与国家重大需求为导向,着眼于光电子技术领域的科学与技术发展前沿,围绕固体激光、光纤光学、自适应光学、激光探测等方向,开展基础科学探索、应用基础研究和系统技术研发,全面覆盖高功率激光光源、光束控制、光电探测等技术领域。团队承担国家科技重大专项、国家重点研发计划、“973”计划、“863”计划、重点验证、专项配套型号研究等一系列重大项目,形成了从高功率激光光源到微弱光电信号测控的整套技术链条,具备完整的激光光电和测控技术能力,在相应研究方面取得了重要进展。2018年获批建设光子测控技术教育部重点实验室,2019年入选重点领域科技创新团队。
  • 高速氟素塑料光纤技术联合实验室成立
    4月15日讯 AGC(旭硝子株式会社)日前在北京举办了世界上最快的塑料光纤“FONTEX”的技术论坛。AGC宣布,将从今年7月起,开始在中国地区销售“FONTEX”。“FONTEX”是世界首创的可以进行10千兆比特每秒(Gbps)大容量数据通信的塑料光纤,与现有的石英光纤相比,具有能在弯折、卷曲状态下保持通信的特点。未来有望在“全高清电视”、“3D电视”等民用信息家电布线等领域得到进一步的推广和应用。  AGC与北京邮电大学还宣布,成立旨在进行“FONTEX”应用研究的“BUPT-AGC超高速氟素塑料光纤技术联合实验室”。该实验室将在“FONTEX”涉及中国市场的电视线路、电视机内布线、室内网络线路、通信线路、电力行业等领域,从事标准规格的应用开发和调查研究等工作。  此外,日本庆应大学小池康博教授的“世界上最快的塑料光纤”研究课题,在今年3月被日本政府最尖端研究开发援助项目列为扶持对象。作为这项研究课题的核心企业,AGC公司为了实现“以来自日本的光纤技术开创新市场”的目标,正在积极进行着40Gbps以上超高速产品以及缆线、接头等各类应用产品批量生产的技术开发工作。  “全高清电视”、“3D电视”最近受到了社会的广泛关注,预计不久的将来,这些产品的新一代显示屏布线、个人电脑周边机器的接续等都将促使大容量数据的高速传输成为市场需求的热点。另外,数据中心和医疗领域为了实现高速度、低耗电的数据通信,也已经开始在服务器、存储器等机器间使用光纤布线。今后,民用光纤布线市场也将迅速扩大,预计2015年,将在全球范围内开创超过1500亿日元(约合人民币115亿元)的新市场。
  • 光谱仪小百科 | 光纤与探头日常维护的5个技巧
    海洋光学的光纤附件、探头和配件可让用户在我们的光谱仪上传输和收集光。从现成的光纤跳线和定制光纤到专门设计的 OEM 附件,您的光纤选项和应用一样多种多样。以下是确保光纤和探头性能可靠、持久的一些技巧。 技巧1:做出明智的选择模块化光谱系统的优异性能取决于各个部分的总和。在选择光谱仪时要注意的方面应与选择光源、取样光学元件、光纤或探头相同。您是否在测量吸光度或反射率?您是否在测量低于 270 nm 的波长,在该波长下紫外线照射会使某些光纤受到曝晒?光纤将放置在您实验的什么位置?样品环境是否具有化学刺激性?确定这些标准将有助于我们指导您找到满足需求并适应样品条件的最佳组件(包括光纤)。技巧2:小心处理光纤连接器和末端如果保养不当,SMA 905 和其他光纤连接器可能会被划伤或损坏,从而影响测量。有时,客户甚至会因端部拉力过猛将连接器或套圈从光纤或探头上意外拉出。由于光纤端部磨损最大,设计了具有额外应力消除和护套保护的末端。但是,在取下端罩时要小心,用一只手握住连接器的光纤,用另一只手拉开端罩。海洋光学XSR 抗紫外老化光纤更进一步,它有一个端罩,用螺丝固定在光纤的末端 -- 无需拉动。技巧3:注意弯曲半径尽管光纤和探头在光谱仪周围移动光,但是这些组件可以承受的弯曲程度是有限的。光纤的弯曲半径表示在光纤发生损坏之前可以承受的弯曲程度。这种损坏程度可能会使光纤衰减和断裂,从而导致更严重的光损耗。这就是为什么定期检测光纤确保光传输的很好方法。光纤断裂,会使光停止传输。海洋光学报告了长时间弯曲半径(LTBR)和短时间弯曲半径(STBR)。LTBR 是存放条件下建议的最小弯曲半径。STBR 是光纤使用期间建议的最小弯曲半径。可见-近红外光、紫外-可见光、SR 和 XSR 光纤的弯曲半径技巧4:避免过热避免超过光纤材料的温度阈值:对于标准光纤,硅纤维的温度阈值为 300 °C,而环氧树脂和 PVDF 管的温度为 100 °C。对于高级光纤,整个组件的额定温度为 220 °C。包括不锈钢 BX 在内的护套可提供更好的保护,但最好咨询您的海洋光学代表,寻求在恶劣环境下的应用帮助。正如一位大学教授最近与我们分享的那样,他大一时化学实验室中的一些海洋光学光纤在初学化学家手中“存活”了 20 年。这些光纤可持续更长时间,但一些学生将这些光纤太靠近他们在测量的本生燃烧火焰,导致光纤护套和 PVDF 管熔化。耐化学性是您应用很重要的另一项标准。避免将光纤浸入可损坏石英、镍、钢、铝或环氧树脂的材料中。在恶劣的样品环境中,选择耐用的护套材料(包括硅胶单线圈或不锈钢 BX)是您不错的选择。定制套筒和套圈是另一种选择。技巧5:记住小东西虽然这并不总是可行,但在不用光纤连接器时,更换光纤连接器的端罩很有用。这有助于防止划伤,避免灰尘和指纹污染。此外,我们建议定期用透镜纸和蒸馏水、酒精或丙酮清洁光纤端部,避免划伤表面。本
  • 海底滑坡光纤监测系统港池试验成功
    记者从南方海洋科学与工程广东省实验室(广州)获悉,近日,该实验室徐景平教授团队自主研制的海底滑坡光纤监测系统在广州南沙海洋地质码头圆满完成港池试验工作,为下一步开展海上试验奠定了坚实的基础。  该海底滑坡光纤监测系统包括柔性光纤形变传感器和配套的座底式海床液压贯入装置。本次港池试验成功完成了海底滑坡光纤监测系统的拆卸、组装、布放、监测、回收和数据处理与解释等工作,验证了该监测系统的总体工作性能和各项技术指标,检验了监测系统在港池条件下的可靠性、稳定性和环境适应性。  海底滑坡是海洋地质灾害研究中最具挑战性的研究主题之一,能够对海洋工程设施与装备和沿海地区人民生命财产安全造成重大损失。我国南海地区海洋油气产区多与海底滑坡区重合,因而海底滑坡的研究关系着南海能源资源的可持续开发利用。目前国内外海底滑坡研究仍多限于对其最终沉积产物的地质地球物理特征认知,而对于海底滑坡预警的最关键环节——海底失稳破坏形变过程,这一滑坡初始状态的研究非常薄弱。  徐景平教授团队研制的基于光纤形变传感技术的海底滑坡监测系统,具有结构简单、灵敏度高和环境适应性好的优势,可用于对海底数米厚沉积物的形变失稳过程进行高精度的观测,获取长期、连续、有效的原位观测数据,进而为海洋工程安全保障及防灾减灾提供强有力的科技支撑。  据了解,参与此次港池试验的人员包括南方海洋科学与工程广东省实验室(广州)首批人才团队引进重大专项“南海海底灾害过程与机理研究”项目的徐景平教授、宋章启研究员、陈宇中、钱学生等人。在项目负责人徐景平的领导下,全体工作人员齐心协力,克服高温酷暑,顺利完成了本次港池试验任务。
  • 透过红外光谱法,洞察石英玻璃羟基含量的秘密
    玻璃中的羟基会严重影响玻璃的性能,即使羟基重量含量低于1%,它也会明显地影响玻璃的粘度、密度、折射率和热膨胀系数。同时,由于玻璃中羟基的存在,它将对某种波长的红外光波形成强烈的吸收,这对于光纤通讯中光学材料的选择是一个十分重要的问题。在电光源行业中,玻璃中羟基含量的高低是直接影响气体放电灯的质量。因此,需要严格监控玻璃中的羟基含量。此外,为了研究羟基含量与玻璃性能之间的关系,以便为设计与制造具有一定特性的玻璃提供必要的数据,这也需要定量地测定玻璃中羟基的含量。你知道吗?利用红外光谱仪可以快速、准确地检测石英玻璃中的羟基含量!这是怎么做到的呢?让我们一起来揭开这个谜底。红外光谱仪是一种神奇的科学仪器,它能够通过测量样品对红外光的吸收情况,分析出样品的化学成分和结构信息。测定玻璃中羟基含量的方法有两类:一、水的热除气法 二、光谱法。比较这两类方法,光谱法更具有其优越性,该法在测试过程中,玻璃内所有羟基都将被探测,但该法需要已知羟基含量的校准标准。对于石英玻璃来说,其中的羟基会在特定的红外波长范围内产生吸收峰。通过检测这些吸收峰的强度和位置,我们就能分析出石英玻璃中羟基的含量。在水晶或者石英玻璃行业做相关分析的老师如何需要了解具体方案可以联系能谱科技,我们将给您一套完整的解决方案!
  • 又双叒叕升级啦!新版气体吸收池支持光纤耦合输入、输出
    继锁相放大器升级之后,昕虹光电另一个明星产品长光程气体池也进行了功能上的升级!我们在原有HPHC系列长光程气体吸收池的基础上,增加了预对准的输入光纤耦合和输出光纤耦合。 图 使用光纤耦合输入的HPHC长光程气体池 相较于电信号,使用光纤传输的光信号更能抗电磁干扰,并且不会产生电火花,在较为复杂的环境(例如工业生产)、或是需要防爆的场景中是不可或缺的工具。虎年升级的新功能将使得广大用户在使用气体池的场景选择下更加灵活。 HPHC系列长光程气体吸收池技术参数:型号HPHC-AHPHC-B有效光程14.5m3.3m光束直径3.5mm气体容积0.84L(一个标准大气压)0.05L(一个标准大气压)外围尺寸0.35(L)×0.17(W)×0.15(H)m³0.15(L)×0.08(W)×0.07(H)m³工作气压10Pa 至 102kPa镜片镀层氧化层镀膜金属(反射率可达 98%)波长范围0.2 至 12μm窗口材料无镀膜或镀膜 CaF₂/ZnSe主体材料特制铝合金、不锈钢气体接口外径φ6mm 快插 可选配置:l 光纤耦合输入、输出;l 集成光线准直器;l 集成光电探测器;l 集成气压显示;l 集成温度显示;l 窗片材料升级,镀增透膜(石英、蓝宝石、BaF2,特殊另议);l 加热套件定制(保温套、加热带、温控器、继电器、传感器)。 若您有相关需求,欢迎联系我们!
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 微型光纤光谱仪的选型有哪些注意事项?
    光谱学是测量紫外、可见、近红外和红外波段光强度的技术。光谱测量被广泛应用于多种领域,如颜色测量、化学成份的浓度测量或辐射度学分析、膜厚测量、气体成分分析等领域。  在上世纪九十年代以来,微电子领域中的多象元光学探测器(例如CCD,光电二极管阵列)制造技术迅猛发展,使生产低成本扫描仪和CCD相机成为可能。美国海洋光学公司的微型光纤光谱仪使用了同样的CCD(CCD光谱仪)和光电二极管阵列探测器,可以对整个光谱进行快速扫描,不需要转动光栅。  微型光纤光谱仪通常采用光纤作为信号耦合器件,将被测光耦合到光谱仪中进行光谱分析。由于光纤的方便性,用户可以非常灵活的搭建光谱采集系统。其优势在于测量系统的模块化和灵活性,且测量速度非常快,可以用于在线分析。而且由于采用了低成本的通用探测器,降低了光谱仪的成本,从而也降低了整个测量系统的造价。  微型光纤光谱仪基本配置包括包括一个光栅,一个狭缝和一个探测器。这些部件的参数在选购光谱仪时必须详细说明。光谱仪的性能取决于这些部件的精确组合与校准,校准后光纤光谱仪,原则上这些配件都不能有任何的变动。那么微型光纤光谱仪在选型时有哪些必须要注意的呢?  ① 光学分辨率  光学分辨率是配置微型光纤光谱仪时经常被考虑的主要因素之一。当用户为了追求微型光纤光谱仪的高分辨率时,在选型时会选择具有尽可能多像元数探测器的微型光谱仪。而实际上光学分辨率不仅仅由探测器的像元数决定,还与狭缝宽度和光栅的刻线密度有关。所以当讨论分辨率时,通常用色散或用波长范围除以像元数。  半高全宽值(FWHM),即最大峰值光强一半处所对应的谱线宽度是一种表述分辨率更好的方法(见上图)。用FWHM可以对不同光谱仪的实际光学性能进行直接对比。用这种表示方法可以避免一些缺陷,例如:有的光栅并没有用到全部像元 采用交叉式Czerny-Turner光路设计的光谱仪中,光学系统不能把狭缝清晰地成像在探测器上,这是由于光路中过大的反射角和固有的系统放大倍率造成的。   ② 灵敏度  灵敏度是配置光谱仪时所需要考虑的另一个因素。现在的主流微型光纤光谱仪都采用线阵探测器,所以灵敏度跟像素数没有任何关系。但面阵探测器例外,因为面阵探测器在垂直方向的每个像素都会被累积,在某种意义上垂直方向上的所有像素的累积可以被看成一个更大的像素。因此,在考虑某种应用对灵敏度的要求时,更重要的是看探测器的响应曲线。下图中给出了海洋光学微型光纤光谱仪采用的两种典型探测器的灵敏度响应曲线。  ③信噪比  信噪比也是选配微型光纤光谱仪的一个因素。对于CCD光谱仪,较高的灵敏度导致了较低的信噪比。在一定范围内,可以通过对光谱进行多次平均来提高信噪比。平均次数的平方根恰好是信噪比提高的倍数。例如,光谱平均100次,信噪比能提高10倍。有些应用需要较高的信噪比,此时用户应当比较在光谱仪中的光学平台和探测器的综合信噪比。需要强调的是,用户一定要搞清楚厂家给出的信噪比是不是整个光谱仪系统的信噪比,因为只有整个光谱仪系统的信噪比才是最重要的。一个信噪比高的探测器配一个性能不高的光路,那么它的高信噪比就没有实际意义。比较不同探测器和微型光纤光谱仪间的信噪比的比较好的方法是:测量100次,然后对每个像元计算平均值和标准偏差,信噪比等于平均值除以标准偏差。测量信噪比时,信号强度应当接近饱和,并设置正确的平滑值(如果需要的话)。  ④ 光栅选择  光栅选择是最比较复杂的。通常有两个因素决定了光栅的选择:波长范围和光学分辨率。波长范围受限于所选择的探测器或光栅,或二者都有。光学分辨率不仅受限于光栅,还受限于狭缝宽度和探测器的像元数和像元尺寸。还要考虑第三个因素,即光栅还会影响系统的灵敏度,这是因为不同的光栅的闪耀波长(即最高效率)位置各不相同。当对系统进行最优化配置时,最好查看一下光栅的效率曲线。下图中是海洋光学微型光纤光谱仪采用的几种典型的600线/mm光栅的效率曲线,效率最高点从紫外区到近红外区。  ⑤ 狭缝  狭缝了也是选配微型光纤光谱仪的一个因素。微型光纤光谱仪有多种狭缝尺寸供您选择,狭缝安装在光纤接头处(见图),并且被永久的固定在光谱仪上。有两点需要记住,狭缝越小,光学分辨率越高 狭缝越大,进入光学平台的光通量越多,即灵敏度越高。从本质上说,需要折中兼顾光谱仪的分辨率和灵敏度。    ⑥ 其他  选择微型光纤光谱仪的其他选项会相对容易一些。例如可以选择升级UV4探测器后,探测器上的标准BK7窗片将会被石英窗片替代,用来增强海洋光学微型光纤光谱仪在波长340nm以下紫外区的响应能力。而其它探测器,比如薄型背照式CCD或CMOS则不需要这个选项。而为了避免二、三级衍射效应的影响,可以通过在位于狭缝与消包层模式孔之间的SMA905连接器中安装长通滤光片或在探测器的窗口处安装OFLV消除高阶衍射滤光片。  正如上面介绍的几个因素所表明的,通过一些简单的步骤就就可以配置好满足您应用的微型光纤光谱仪。除了光谱仪,我们可能还需要考虑种类纷杂的光源和采样附件。
  • 400um光纤耦合千瓦半导体激光器
    成果名称400um光纤耦合千瓦半导体激光器单位名称北京工业大学联系人李强联系邮箱ncltlq@bjut.edu.cn成果成熟度□研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产合作方式&radic 技术转让 &radic 技术入股 &radic 合作开发 □其他成果简介:  400&mu m光纤耦合千瓦半导体激光头实物图 400&mu m光纤耦合千瓦半导体激光器整机实物图本项目研发的光纤耦合半导体激光器光纤耦合输出功率大于1000W,光束质量好,耦合光纤芯径400&mu m,光纤耦合效率大于96%,总的电光效率42.99%。样机集成激光模块、电源、冷却、控制等为一体,通过触摸屏实现激光器开关、输出功率设置、状态监测显示。激光器可以放置于机柜上方,也可以与机柜分离放置,适应科研应用及工业加工配合机床或者机械手的应用需求。产品化样机配备了用于激光焊接、激光熔覆的加工头,已进行了不锈钢等材料的激光焊接、激光熔覆加工应用。本项目研发的高光束质量光纤耦合输出半导体激光器,采用标准的半导体阵列(10mm bar),避免采用特殊的半导体激光器所带来的器件成本增加;采用微光学元件对半导体阵列的发光单元重构、变换,单阵列输出功率高,组合阵列数减少,装配工艺相对简单,降低了制作成本;耦合传输光纤采用高功率石英传输光纤,提高激光器的传输效率和可靠性,满足推广应用的要求。本项目创新点是采用标准的半导体阵列(10mm bar),通过微光学元件将阵列发光单元重构、变换的新方法,极大提高阵列的光束质量。本项目所研制的400&mu m光纤耦合千瓦激光器中,所使用的每一个半导体阵列都采用了该技术提高了光束质量,使得每个空间合束模块能够获得高功率、高光束质量的激光输出。该项技术不仅可以应用于半导体激光器的直接应用,而且在用于泵浦源应用时,可以提高泵浦激光的功率密度,可以为提高输出激光的功率和光束质量。可以预期的是,利用该项技术,在现有的400&mu m光纤耦合千瓦激光器的技术基础上,通过合束更多的激光波长,获得2000W,甚至更高的激光输出功率,为工业应用提供更高功率的激光源。而且该项技术应用于泵浦固体激光器、光纤激光器等方面,提高了泵浦光的功率密度,也为实现高性能的固体激光器、光纤激光器等提供更好的技术支持。应用前景:输出激光光强分布图半导体激光器与其他传统的材料加工用大功率激光器如 CO2 激光器、YAG 激光器相比,具有体积小巧,结构紧凑,是灯泵 Nd:YAG 激光器的1/3,光电转化效率高,节省能源,无污染,系统稳定性高,寿命长,维护费用低的特点。目前大功率光纤耦合半导体激光器用于激光熔覆、激光焊接在中国处于启动阶段,国产光纤耦合半导体激光器,只能将标准半导体阵列激光耦合入大芯径光纤(芯径600&mu m以上光纤),由于激光亮度低,只能用于金属材料的激光熔覆。而本项目研制的400um光纤耦合千瓦半导体激光器,由于光束质量好,可直接用于激光熔覆、激光焊接、切割等领域,代替国外产品。本项目开发的千瓦级光纤耦合半导体激光器除了具有国内外的半导体激光亮度的基础指标外,还具有其它优点:1. 自主开发,具有完全的自主知识产权;2.采用标准半导体阵列,使整体原材料成本降低20%-25%;3.空间合束组合模块后,进行偏振、波长合束的方法组合,使产业化中方便进行模块化工艺设计,适于大批量生产;4.采用微光学元件对光束进行整形,使装配难度及后端光纤耦合难度降低,从而降低生产成本;可附加多种功能,如指示光、光电探测器等,更灵活适应用于各种行业;5.多个半导体阵列模块可灵活组合,可方便为用户提供多种解决方案。知识产权及项目获奖情况:本项目开发的千瓦级光纤耦合半导体激光器受到北京市科学技术委员会首都科技条件平台资助,是自主开发产品,具有完全的自主知识产权。专利情况:(1)大功率固体激光高效率光纤耦合方法,专利号:CN101122659A(2)激光二极管电极连接装置,专利号:CN100527532C
  • 西安炬光收购美国APOLLO“光学整形与光纤耦合”业务
    近日,由中国科学院西安光学精密机械研究所和数名归国留学人员组成的团队共同创立的西安炬光科技有限公司宣布收购美国Apollo Instruments公司半导体激光器光学整形与光纤耦合业务,Apollo Instruments公司将所有光学整形及光纤耦合技术及知识产权完全出售给西安炬光科技有限公司。  西安炬光公司是一家专业从事大功率半导体激光器研发和生产的高新技术企业。在此次收购业务之前,西安炬光公司生产的激光器产品主要以敞开式以及低亮度光纤耦合半导体激光器为主,先后推出了具有高功率、高可靠性、高稳定性等特点的9大系列百余个品种的产品,不仅在国内占据了较大市场份额,而且部分产品还出口美国、欧洲以及中东等地区。而美国Apollo Instruments公司在高亮度光纤耦合方面拥有先进的技术及专利,在高功率、高亮度等方面处于国际先进水平。随着半导体激光器功率、稳定性的提高,高亮度的光纤耦合激光器市场应用面越来越广,此次收购工作意味着西安炬光公司的产品及服务基本上覆盖了所有高功率半导体激光器市场。  通过这次实施跨国业务的收购,使西安炬光公司出色的工程化生产能力和完善的质量管理体系,在与国际先进的光纤耦合技术有机结合后,将会进一步提高公司产品的可靠性和稳定性,并扩大和丰富公司的生产范围和产品种类,从而更好地适应国内外高功率激光器市场多元化的需求,对增强西安炬光公司的国际竞争力及提升炬光科技产品的品牌形象起到了积极的促进作用。
  • 3~4 μm中红外激光新机遇:红光LD泵浦的稀土共掺氟化物光纤
    近日,电子科技大学光电科学与工程学院李剑峰教授、罗鸿禹副研究员课题组提出了一种利用红光LD泵浦Er3+/Dy3+共掺氟化物光纤实现波长大于3 μm中红外激光激射的新方法,不但在3.5 μm波长附近获得了瓦级激光高效输出,同时还实现了3.05~3.7 μm波长宽带调谐。相关研究成果以“Red-diode-clad-pumped Er3+/Dy3+ codoped ZrF4 fiber: A promising mid-infrared laser platform”为题发表在Optics Letters上。3~4 μm中红外波段是一个重要的光谱区间,它不但覆盖了众多气体分子及化学键的吸收峰,同时也是一个重要的大气传输窗口,因此位于该区间的激光在气体监测、材料加工、空间通信等领域具有重要的应用价值。尽管在该波段目前已存在多种技术手段如:带内级联激光器、光参量振荡器、固体激光器、气体激光器等,但全固态光纤激光器因在光束质量、转化效率、系统集成性及可靠性上优良的综合表现,仍具备极强的竞争力。然而,从实用性角度来讲,该波段在激光激射体系上还难以达到1~2 μm掺Yb3+、Er3+及Tm3+石英光纤激光器的成熟度(即采用商用LD包层泵浦直接实现高效激光输出),从而发挥出光纤激光器的全部优势。该团队提出采用红光LD泵浦双包层Er3+/Dy3+共掺氟化物光纤,通过直接激励Er3+高能级4F9/2,借助Er3+与Dy3+间以及内部的能量传递和Dy3+的带内吸收过程(图1),不仅可以有效释放Er3+长寿命能级4I11/2和4I13/2上的离子,加速离子循环,促进Er3+中4F9/2→4I9/2跃迁实现3.5μm附近激光高效激射,同时还可以激活Dy3+中6H13/2→6H15/2跃迁大幅拓展辐射带宽。图1 659 nm红光泵浦的Er3+/Dy3+共掺氟化物光纤简化能级示意图。ET:能量传递;ETU:能量传递上转换;CR:交叉驰豫;MR:多声子弛豫在自由运转状态下(F-P腔),采用21%输出耦合可以获得斜效率为8.8%的3.4μm单波带激光输出,最大功率为0.8W ;采用40%输出耦合可以获得斜效率为10.7%的3.3μm和3.5μm双波带激光输出,最大总功率为0.95W,进一步的功率提升仅受限于当前泵浦功率。在波长调谐状态下(Littrow结构光栅),可以获得3.05~3.7μm波长连续调谐激光输出(图2)。图2 659 nm红光LD泵浦的Er3+/Dy3+共掺氟化物光纤激光器。(a)实验装置示意图(包含自由运转和波长调谐结构);(b)自由运转状态下的功率演化和光谱图;(c)波长调谐状态下的功率和光谱演化图相较于现有的3~4 μm光纤激光器,该团队提出的红光LD泵浦的Er3+/Dy3+共掺氟化物光纤激光器,不仅具有简单的结构和高的运转效率,同时还可以实现宽带激光波长覆盖,为未来商用3~4 μm激光器小型化和集成化提供了新的机遇,同时该系统超宽的增益带也为中红外宽带信号放大以及少周期超短脉冲产生等提供了机会。
  • 光纤传感器助力物联网发展市场容量将近万亿
    近年来,传感器朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能 尽缘、无感应的电气性能 耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区或者对人有害的地区,如核辐射区),起到人的线人作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  基本工作原理及应用领域  光纤传感器的基本工作原理是将来自光源的光经过光纤送进调制器,使待测参数与进进调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送进光探测器,经解调后,获得被测参数。  光纤传感器的应用于对磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的丈量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了很多行业多年来一直存在的技术困难,具有很大的市场需求。主要表现在以下几个方面的应用:  1、市建设中桥梁、大坝、油田等的干涉陀螺仪和光栅压力传感器的应用。光纤传感器可预埋在混凝土、碳纤维增强塑料及各种复合材料中,用于测试应力松驰、施工应力和动荷载应力,从而评估桥梁短期施工阶段和长期营运状态的结构性能。  2、电力系统,需要测定温度、电流等参数,如对高压变压器和大型电机的定子、转子内的温度检测等,由于电类传感器易受电磁场的干扰,无法在这类场合中使用,只能用光纤传感器。分布式光纤温度传感器是近几年发展起来的一种用于实时丈量空间温度场分布的高新技术,分布式光纤温度传感系统不仅具有普遍光纤传感器的优点,还具有对光纤沿线各点的温度的分布传感能力,利用这种特点我们可以连续实时丈量光纤沿线几公里内各点温度,定位精度可达米的量级,丈量精度可达1度的水平,非常适用大范围交点测温的应用场合。  在实际生活中,光纤传感器种类是非常多的,但是,我们将这些传感器类型归结为两大类型,即传感型与传光型。和传统电传感器进行比较,光纤传感器具有很多的优点,例如抗干扰能力较强、绝缘性好、灵敏度偏高,所以,当前在各个领域都有光纤传感器的身影。  光纤传感器助力物联网发展市场容量将近万亿  自出现光纤传感器后,它的优势与应用引起了各个国家人们的高度关注。并且对光纤传感技术进行了深入的研究。现如今,通过光纤传感器可以对位移、温度、速度、角度等物理量进行测量。现如今,很多西方发达国家将对光纤传感器研究的重点放在光纤控制系统、核辐射监控、民用计划等多个方面,同时已经取得了可喜的成绩。  我国对光纤传感器的研究起步较晚,有很多研究所、企业等对光纤传感器的深入研究促进了光纤传感技术的发展。在2010年,张旭平的关于&ldquo 布里渊效应连续分布式光纤传感技术&rdquo 通过了专家的鉴定。专家组都认为此技术有很强的创新性,技术已达到世界先进水平,因此,有广阔的发展前景。此技术的发展主要是应用了物联网技术,从而加速了我国物联网的发展。  传感器成为物联网极其重要的一组成部分。因此,传感器性能好坏决定了物联网的性能好坏。可以说,物联网获得信息的主要手段为传感器。这样一来,传感器所采集信息的可靠性与准确性都会对控制节点处理和传输信息产生一定影响。由此看来,传感器的可靠性、抗干扰性等都会对物联网应用性能发挥举足轻重的作用。  光纤传感技术在物联网中的应用  通过上述分析得知,物联网的发展必须要借助大量传感器获得各种环境参数,从而为物联网更可靠的数据信息,再经过系统的处理,得到人们需要的结果。以下是对光纤传感技术在物联网中的应用进行详细的探讨。  目前应用最广的光纤传感器有四种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。其中,光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器 光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型 在光纤光栅传感器的产品中包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。自今年来电力的发展是突飞猛进的,这种情况下,面对着强大电流的测量问题,光纤电流传感器可以很好的避免一些由于电力过强而引发的事故。
  • 天津大学光纤传感监测等4项成果获2016国家科技奖
    p style="text-align: center"img style="width: 399px height: 300px " src="http://img1.17img.cn/17img/images/201701/insimg/72a2ce84-3206-49f9-ba7c-4be0f6388773.jpg" title="1.jpg" border="0" height="300" hspace="0" vspace="0" width="399"//pp  2017年1月9日,国家科学技术奖励大会在北京人民大会堂举行。天津大学4项成果获2016年国家科技奖。其中由天津大学作为第一完成单位获得国家技术发明二等奖两项,参与完成的两项成果均获得国家科技进步二等奖。这也是近年来天津大学首次以第一完成单位身份,在同一年度获得两项国家技术发明奖。/pp  strong突破国外技术封锁 自主创新水下滑翔机“海燕”领先国际/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201701/insimg/2ef4e1ee-2347-4b8d-ac8c-b5ca7316e0bd.jpg" title="2.jpg"//pp style="text-align: center "strong(国家技术发明二等奖获得者王树新教授)/strong/pp  混合驱动水下滑翔机“海燕”是天津大学自主研发的一种新型水下滑翔机,由天津大学教授、海洋国家实验室海洋观测与探测联合实验室首席科学家王树新带领团队历经十余年研制成功。/pp  拥有国际先进的水下滑翔机一直是建成世界海洋强国重要的标志性成果之一,因此美国等国家对该技术一直采取严密封锁。“海燕”的成功研制打破了国外对中国技术封锁的壁垒,扭转了中国在某些关键技术上受制于人的局面。/pp  去年12月,中国海军一艘救生船在南海有关海域捕获一架美国无人潜航器。后经中美双方友好协商,于12月20日中午在南海有关海域顺利完成美无人潜航器的移交工作。/pp  据了解,无论在续航里程、下潜深度以及稳定性等诸多方面,美军潜航器都无法与“海燕”相比,海燕采用了最新的混合推进技术,以浮力驱动为核心并融合其他驱动方式,具有体积小、重量轻(小于100kg)、航程远等优点。/pp  早在2014年,“海燕”在南海北部水深大于1500米海域通过测试,创造了中国水下滑翔机无故障航程最远、时间最长、剖面运动最多、工作深度最大等诸多纪录。/pp  “海燕”最大下潜深度1514.2m,实现了复杂海洋环境下大深度平稳滑翔运动 推进速度最大可达1.69m/s,1108.4公里实测航点位置平均偏差小于2km 连续航程超过1100km,实现水下滑翔机航程从百公里级提升至千公里级的突破。/pp  “海燕”的研制成功不仅解决了我国相关技术的“有”“无”问题,而且引领了新型水下滑翔机技术发展。在“大深度”、“长航程”、“高精度”三方面取得了创新性成果。/pp  由于混合驱动水下滑翔机结合了自主水下航行器(AUV)操纵性好、轨迹精度高与传统水下滑翔机性好、续航能力强的优点,“海燕”在海洋环境监测、海洋资源探测及海洋安全领域具有广泛的应用前景。/pp  strong混合式光纤传感技术 引领光纤传感安全监测科技前沿/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201701/insimg/689bc77d-87c9-4b1f-a067-a17bea4a02c6.jpg" title="3.jpg"//pp style="text-align: center "strong(国家技术发明二等奖获得者刘铁根教授)/strong/pp  传感器技术是基础设施安全监测必不可少的核心技术之一。光纤传感技术作为传感器技术的发展前沿,是国内外发展的战略性新兴产业。由于缺乏高效的传感器技术,很多工程事故未能做到“防患于未然”,因而发明一种高效、稳定、适应性强的新型传感技术成为国家产业发展的迫切需要。/pp  由天津大学刘铁根教授所在的团队自主研发的混合式光纤传感技术解决了当下光纤传感领域的诸多难题,为保障重大工程项目安全提供了可靠的监测保障。/pp  据了解,不同的工业产业对传感器有着不同的需求。在电力应用中,传感器需要抗强电磁干扰、电绝缘 在石油化工应用中,传感器需要本身不带电 在航空航天、土木工程应用中,传感器则需要在恶劣环境下长期工作。与常规电测传感器技术相比,光纤传感技术能够从根本上适应上述各类应用环境和工程需求。/pp  然而,光纤传感技术要真正投入应用,还必须要解决信号解调中的方法单一、长期漂移和响应慢,传感器封装中的交叉敏感、胶粘老化失效和传感灵敏度低,传感组网融合困难等难点问题。/pp  面对难题,刘铁根教授团队选择迎难而上,终于通过深入研究,实现一系列光纤传感领域的技术突破。高精度、高稳定混合式光纤传感解调技术,恶劣环境下高可靠性光纤多传感器封装技术,多波段混叠式光纤多气体传感技术以及混合式光纤传感组网融合技术。这些技术突破引领了光纤传感安全监测领域技术探索的前沿。/pp  混合式光纤传感技术近10年来已应用到28项国家航空航天试验及重大关键基础设施工程的安全监测。其在全国电力和石化行业分立式光纤传感市场占有率超过30%,近三年共取得直接经济效益2.4亿元。成功地对多起过热异常进行了预警。2012 年,该技术成功对独山子石化分公司50万方罐区温度超过阈值进行报警,将事故隐患消除在初始阶段。/pp  目前,该项目已获得授权发明专利56项,其中美国专利3项。制定国家军用标准1项。获光纤传感产品测试认证38项。获天津市、教育部和中国仪器仪表学会科学技术奖一等奖各1项,获中国发明专利优秀奖1项。发表学术论文216篇,SCI检索 103篇,其中在国际顶级光学工程期刊上发表47篇。鉴定委员会认为“该项研究成果在理论探索、技术研发和工程应用中具有多项创新,总体技术达到国际领先水平”。/pp strong 聚焦国家需求 两项成果获得国家科技进步二等奖/strong/pp  在本次大会上,天津大学参与完成的两项成果获得国家科技进步二等奖,其中包括王成山教授为第一完成人的“配电网高可靠性供电关键技术及工程应用”项目,以及练继建教授作为第二完成人的“长距离输水工程水力控制理论与关键技术”项目。两项成果都与国民经济建设紧密结合,特别注重解决国家重点领域、重要支柱产业的技术难题。/pp  在世界范围内,持续快速发展的大规模配电网供电可靠性提升一直面临四大难题:建设方案的经济性与可靠性协调困难 复杂故障辨识准确率低 快速抢修技术尚未突破 电网侧与用户侧一体化协调控制困难。/pp  天津大学王成山教授团队与国网天津市电力公司、中国电力科学研究院、国网浙江省电力公司、国电南瑞科技股份有限公司、天津天大求实电力新技术股份有限公司等单位经过近10年的产学研联合攻关,实现了配电网高可靠性供电关键技术的重大突破。创建了多电压级网架协调规划理论和分析方法,开发了配电网建设优化决策系统 提出了复杂故障辨识方法,突破了自适应负荷转供技术,研制了配电自动化系统与关键装备 提出了故障抢修效能动态评估方法,突破了多源信息协同的抢修资源优化调度技术,开发了配电网故障抢修平台 提出了电网侧与用户侧多电源协调供电模式,开发了含分布式电源的配电网运行控制系统,满足了重要用户供电保障需求。项目获授权发明专利43项、软件著作权8项,发表SCI/EI论文65篇。成果经鉴定整体达到国际领先水平。/pp  长距离输水工程是进行水资源配置的关键手段,我国已建跨流域输水工程达到31座,供水比例高达20%。长距离输水工程水力控制系统具有强非线性、多流态和多约束等特点,调控参数多,不确定性大,累积效应严重 用水需求多变,运行调度复杂,调控难度大。控制不当极易出现爆管、结构物破坏、漫堤溃决和冰害等事故。长距离输水工程的安全调度和运行是保障国家水资源安全的关键。/pp  天津大学练继建教授课题组与中国水利水电科学研究院、清华大学、长江勘测规划设计研究有限责任公司、武汉大学、南水北调中线干线工程建设管理局等单位联合攻关完成的“长距离输水工程水力控制理论与关键技术”,在国家科技支撑计划等40余项重大科研与咨询项目支持下,历经20余年的工程实践、理论探索和技术创新,建立了复杂长距离输水系统水力仿真与控制理论方法 发明了分段低压输水新技术,揭示了其共振原理,提出了输水单元水流振荡方程及避免水力共振的设计方法,降低管道承压70%-90% 提出了冰期输水冰害防治的控制技术,提高冰期输水能力0%-15%。研究成果已在我国19项大型输水工程中得到应用,惠及人口2.1亿,工程节支增收逾18亿元。/p
  • 中国首台天文观测高分辨率光纤光谱仪通过验收
    高分辨率光谱仪本体,设有主动温控系统,以适应高精度视向速度观测的需要。 1月6日,由中国科学院国家天文台南京天文光学技术研究所为山东大学威海分校研制的中国第一台天文观测高分辨率光纤光谱仪通过验收。验收专家组由国家自然科学基金委、国家天文台、山东大学和北京大学的专家组成。 该仪器配置在山东大学威海天文台的1米望远镜上。光谱仪光学系统采用白瞳设计,光束口径92.5mm。仪器设有良好的恒温、隔震系统,由光纤引导连接到望远镜的卡焦接口,并配备有平场定标,波长定标及碘蒸汽盒定标装置和独立的导星系统。光谱仪一次曝光可覆盖波长范围为375nm~1000nm,光谱分辨率为40000~60000。 该仪器的科学目标是进行恒星视向速度测量,高分辨率、高信噪比的星际参数测量和化学元素丰度测量等。从2010年8月仪器交付使用以来,山东大学威海天文台进行了大量的试观测。试观测期间,光谱仪性能优良,工作状态良好。高稳定度的恒温系统和高精度的碘蒸汽吸收装置为高精度视向速度测量提供了有力的保障。试观测中对于视星等8等的恒星,一小时曝光观测的信噪比好于100。
  • 基于损失模式共振光纤传感器的增强型光谱电化学装置
    光谱电化学(SEC)测量在分析化学中起着至关重要的作用,利用透明或半透明电极对电化学过程进行光学分析。电化学读数提供了有关电极状态的信息,而透射光谱的变化有助于识别电化学反应的产物。 据麦姆斯咨询报道,近日,波兰华沙理工大学(Warsaw University of Technology)的研究人员开发了一种增强型光谱电化学装置,其中,基于双域(光学和电化学)光纤的传感器直接用作工作电极,同时像光谱电化学一样单独测量分析物的光学特性。该传感器采用反射(探针状)配置,其中只有短纤芯部分涂有氧化铟锡(ITO)并浸入分析物中。对ITO纳米涂层的性能进行了优化,以满足在期望的反射光谱范围内获得损失模式共振(LMR)的条件。基于LMR和分光光度计的测量在单独的光路中进行。这产生了一种具有电化学激活的两个垂直定向光谱通道的新形式。相关研究成果以“Enhanced spectroelectrochemistry with lossy-mode resonance optical fiber sensor”为题发表在Scientific Reports期刊上。 在这项工作中,ITO-LMR传感器是基于聚合物包层的石英(PCS,芯径 = 380 μm)多模光纤。由于传感器设计为反射(探针状)配置以有效地引导在光纤端面之一处反射的光,因此使用直流磁控溅射技术在其中一个光纤端面上沉积一层铝膜。必须注意的是,只有当LMR传感器用作工作电极时,传感器/电极的光学询问(通道2中的光学测量)才是可能的,而当使用铂网或ITO涂覆的载玻片时则不可能。增强型SEC装置(LMR传感器作为工作电极)的示意图 增强型SEC装置提供了三种类型的询问读数:电化学测量、与分析物体积相对应的光谱分析(类似于标准SEC)、反映传感器/电极表面状态的LMR光谱分析。在每个询问路径中,分别用铁氰化钾和亚甲基蓝两种氧化还原反应探针进行循环伏安法(CV)实验。随后,在传感器的计时电流(CA)测量期间进行同步测量,并检查读数之间的相互关系。(A)铁氰化钾和亚甲基蓝溶液中LMR传感器的CV扫描;(B)LMR光谱的演变,其中施加电压以诱导氧化还原探针的氧化和还原;(C)计时电流响应,显示LMR传感器在亚甲基蓝溶液中的可重复响应。LMR传感器支持的增强型SEC配置中的多步电流法测量结果(铁氰化钾作为氧化还原探针)LMR传感器支持的增强型SEC配置中的多步电流法测量结果(亚甲基蓝作为氧化还原探针) 总而言之,研究人员开发了一种基于ITO的损失模式共振光纤传感器的增强型光谱电化学测量系统。由于ITO膜的优化厚度和光学性质,在光学域中观察到了LMR,而ITO的电学性质允许将传感器也用作电化学装置中的工作电极。通过检测两种氧化还原探针,即铁氰化钾和亚甲基蓝,证明了该方法。由于LMR强烈地依赖于外部介质的属性和传感器表面发生的变化,因此外加电压的变化会引起共振波长的移动以及特定波长的透射。此外,外加电压引起的变化具有高度可逆性。与标准工作电极相比,“针状”形式的传感器结构紧凑,因此在测量系统内传感器的放置方面提供了很大的灵活性,并能够减小分析样品的体积。此外,这种传感器的制造具有可扩展性,高度可重复性和低成本。利用ITO-LMR增强型光谱电化学装置,增加了关于工作电极表面状态、氧化还原反应本身的信息,并交叉验证了获得的结果,从而提高了分析的灵敏度。这种三通道系统将来可以应用于其他分析,也可以应用于需要使用便携式系统的传感应用。论文信息:https://www.nature.com/articles/s41598-023-42853-0延伸阅读:
  • 常态条件下实现自适应超高光谱纯度激光
    区别于普通光源,激光具有相干性高、单色性纯和方向性好等优点。因此,自激光问世以来,科学家们一直致力于激光参数极致调控的研究,以推动科学研究和工业应用的发展。其中,光谱纯度是决定激光相干性的关键因素。激光运转过程中自发辐射对其强度和相位的影响、泵浦源的功率抖动、谐振腔的温度变化和振动以及发光增益介质的晶格缺陷等原因都会对激光器的线宽进行展宽,从而降低输出激光的相干性。基于稳频控制的腔外伺服电学反馈技术和基于光子寿命延长的固定外腔光反馈技术是当前实现窄线宽激光输出的常用手段。腔外伺服电学反馈技术的核心是引入高稳定度频率基准参考源,固定外腔光反馈技术实现线宽压缩的程度有限,且不能自动匹配主腔激光波长的变化。因此如何在常态条件下实现激光线宽深度压缩的同时,还能自适应波长的变化具有重要的科学意义和工业应用价值。重庆大学朱涛教授团队从源头出发,系统深入地研究了超窄线宽激光的波长自适应光谱纯化机制,提出通过外部微弱的分布扰动信号来有效抑制激光腔的自发辐射,从而在常态条件下实现激光光谱深度纯化的思想。在此基础上提出了一种主腔结合弱分布反馈外腔的激光新构型,这种构型对光纤激光器、半导体激光器等具有增益类型的激光器均适用,并且弱分布反馈的方式可以通过连续波导实现连续的弱分布反馈,也可采用干涉结构如WGM等实现离散的弱分布反馈,其中弱分布反馈的物理过程可以是瑞利散射,也可以是构建的分布弱反射等。他们在论文中展现了半导体DFB激光器结合弱分布反馈的超窄线宽激光器,在常态条件下实现了十赫兹量级的自适应输出(理论上该线宽可以低至赫兹以下)。分布弱反馈深度压缩激光线宽的核心首先是减缓了激光腔内运转过程中自发辐射的耦合速率,从而大幅减小了激光本底线宽;其次是较弱的分布反馈可对激光腔中光子相位在时空域上进行自适应连续修正,避免了固定外腔反馈形成的激光相位突变和多纵模振荡,保证激光单纵模持续运转的同时可实现激光线宽的极致压缩。这项工作为在常态条件下实现自适应超高光谱纯度激光提供了有力的理论和实验基础。图1 激光光谱纯化原理图图2 光谱纯化及自适应动态演化过程该研究团队提出的思路和激光构型为改进和获得各种增益类型的高相干激光光源打开了新的视野,对实现其它激光参数的极致调控也具有重要的参考意义。目前,研究团队下一步将在高相干的基础上进一步研究激光时频空参数的极致调控,并推动激光精密测量领域向着精度更高、速度更快、范围更广的方向发展。该工作以“Ultra-high spectral purity laser derived from weak external distributed perturbation”为题发表在Opto-Electronic Advances (光电进展)2023年第2期。
  • 诺贝尔物理学奖得主、“光纤之父”高锟逝世,享年84岁
    p/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201809/uepic/42b3634f-405d-4cc6-a01c-d9e771210ebe.jpg" title="753.jpg" alt="753.jpg"//pp style="text-align: justify text-indent: 2em "诺贝尔物理学奖得主、香港中文大学前校长高锟逝世,享年84岁。高锟一生最大成就,莫过于发明光纤通讯,亦因如此,他有“光纤之父”之称,享誉全球。高锟一生都离不开科学,曾为入读心仪的电机工程系,刻意到英国留学。br//pp style="text-indent: 2em text-align: justify "高锟在六十年代已提出光纤理论,但初时不获认同,更被批评“痴人说梦”。然而,他并没有放弃,更持续不懈研究,终获得世人拜服的成就。/pp style="text-indent: 2em text-align: justify "高锟于2003年确诊脑退化症后,行动和认知能力受到很大影响。2009年获得的诺贝尔物理学奖,对他来说,可算是“迟来的奖项”。/pp style="text-indent: 2em text-align: justify "高锟于1948年移居香港;1954年赴英国攻读电机工程,并于1957年及1965年获伦敦大学学士和哲学博士学位;1970年加入香港中文大学,筹办电子学系,并担任系主任;1987-1996年任香港中文大学第三任校长;1996年当选为中国科学院外籍院士;2000年被《亚洲新闻周刊》选为“二十世纪亚洲风云人物”;2009年获得诺贝尔物理学奖;2010年获颁香港特别行政区大紫荆勋章。/pp style="text-indent: 2em text-align: justify "60年代提光纤理论 起初不获认同/pp style="text-indent: 2em text-align: justify "高锟1933年出生于江苏省金山县(今上海市金山区),祖父高吹万是晚清诗人和革命家,父亲高君湘是律师,另有一名弟弟高鋙。高锟于1948年举家移居台湾,至1949年迁往香港。/pp style="text-indent: 2em text-align: justify "在香港,高锟就读圣若瑟书院,中学毕业后考入香港大学,但由于他想读电机工程系,港大当时未开设此科,于是远赴英国,进入英国伦敦的伍利奇理工学院(现格林威治大学)。在英国留学时,高锟于舞会中认识后来的妻子黄美芸,两人于1959年结婚,婚后有一子一女。/pp style="text-indent: 2em text-align: justify "1966年,高锟在国际电话电报公司(ITT)任职期间,开始研究利用玻璃纤维传送讯号,发表过一篇题为《光频率介质纤维表面波导》的论文,提出利用石英基玻璃纤维,可进行长距离及高讯息量的讯息传送。/pp style="text-indent: 2em text-align: justify "高锟的理论初时未获认同,更有媒体嘲笑他“痴人说梦”。但他未有放弃,继续研究及改良技术,至1981年第一代光纤系统面世,他亦因此获得“光纤之父”美誉。在1987年,高锟回港出任中文大学第三任校长,期间创立讯息工程学系,直至1996年退休。/pp style="text-indent: 2em text-align: justify "2009年成就终获确认 获诺贝尔物理学奖/pp style="text-indent: 2em text-align: justify "退休后,高锟生活较为低调。2003年,高锟由于打麻将时反应迟缓,在朋友建议之下到医院检查,确诊为老年痴呆(脑退化症),其后生活都大受影响,表达能力亦下降,需要妻子在旁照顾。/pp style="text-indent: 2em text-align: justify "由于科学领域的诺贝尔奖,理论获确认需要较长时间,即使有杰出成就,往往也要在数十年后才能得奖,高锟也不例外。2009年,高锟首次提出光纤通讯后四十多年,终获得迟来的诺贝尔物理学奖,诺贝尔委员会赞扬他“在纤维中传送光以达成光学通讯的开拓成就(for groundbreaking achievements concerning the transmission of light in fibers for optical communication)”/pp style="text-indent: 2em text-align: justify "2010年,高锟先后获得“影响世界华人大奖”,以及英女王寿辰“爵士勋衔”及香港“大紫荆勋章”。他和妻子亦在2010年9月成立高锟慈善基金,晚年主要于香港和美国加州山景城两地居住。/ppbr style="text-indent: 2em text-align: left "//p
  • 海洋光学推出高分辨率微型光纤光谱仪
    海洋光学(Ocean Optics)于近期推出高性能,900-2200nm 光谱响应的近红外光谱仪:NIRQuest 512-2.2。该产品是用于水分检测、化学分析、高分辨率激光检测和光纤特征研究等的理想设备。海洋光学NIRQuest 512-2.2 近红外光纤光谱仪尺寸小,且测量范围可达900-2200nm  NIRQuest 512-2.2采用高稳定性、512像元的滨松 (Hamamatsu) 铟镓化砷 (InGaAs) 阵列探测器,集成二阶热电制冷和低电子噪声的小型光学平台。根据配置 -- 有六种光栅选项和五种尺寸入射狭缝可供选择--光学分辨率可达~0.5 nm-5.0 nm ( FWHM 全宽半高值),高的分辨率要求对激光特征分析是相当有用。  独特的外部硬件触发功能允许用户通过外部触发来捕捉光谱,或者在数据获得之后来控制触发其它器件。该功能有利于自动过程控制的集成开发或从同步闪光的太阳能模拟器中捕捉光谱。  光谱仪采用的SpectraSuite操作软件是一个模块化、以 Java 开发的操作平台,可在Windows,Mac OS 和Linux 操作系统下运行工作。 此外,NIRQuest 512-2.2能与海洋光学的Remora网络适配器一起使用,可将系统变为通过以太网或已有无线连接控制使用的多用户光谱数据服务器。  推出NIRQuest 512-2.2之后,海洋光学现提供的NIRQuest近红外光谱仪光谱测量范围选项如下:900-1700 nm、900-2050 nm、900-2200nm 和900-2500nm 。多种光栅、光学平台和光学附件使得 NIRQuest 系列能适应各种各样的应用,如医学诊断、食物饮料监测、药物分析、环境监控和过程控制等等。  关于海洋光学 (Ocean Optics) 和豪迈 (HALMA) :  总部位于达尼丁,佛罗里达的海洋光学是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过120,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学是致力于安全检测领域的英国豪迈集团的子公司。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司。豪迈目前在上海、北京、广州和成都设有代表处,并且已在中国开设多个工厂和生产基地。
  • 国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动
    p  近日,由哈尔滨工业大学董永康教授牵头作为项目负责人的国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动暨实施方案论证会顺利召开。/pp  作为国家重大科学仪器设备开发专项之一,该项目旨在开发具有自主知识产权、高精度、高可靠性与环境适应度、核心部件国产化的分布式光纤应变监测仪,充分利用云计算与大数据系统架构与技术,实现大型基础设施、地质灾害等远程实时安全监测,实现工程化开发、应用示范并进行产业化推广。项目由我校董永康教授牵头作为项目负责人,中兴通讯股份有限公司作为产业化牵头单位,联合中铁大桥科学研究院有限公司、中交公路规划设计院有限公司、中交第一公路勘察设计研究院有限公司和中国科学院武汉岩土力学研究所共同申报。该项目对于改善我国在大型基础设施、大型结构装备、地质灾害等安全监测水平,提升公共安全水平,减小经济损失和社会影响具有重要意义。/pp  在启动会上,项目负责人董永康教授作了项目总体情况汇报,6个项目课题负责人分别进行了课题实施方案汇报。项目专家组对项目的研究目标、研究内容及研究方案的可行性给予充分的肯定,并针对项目和各课题后续工作的具体实施、拟解决的关键科学和技术问题等提出了建设性的意见和建议。/pp  中国工程院院士杜彦良教授主持启动会,项目组专家及委员共30余位参加本次了会议。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201801/insimg/c8ed9c9b-8ffd-4d71-983f-a71c9483e324.jpg" title="LKsd-fyqtwzv2273554.jpg" style="width: 500px height: 333px " width="500" vspace="0" hspace="0" height="333" border="0"//pp style="text-align: center "与会专家合影/p
  • 自适应光学仪器可以带来“超视力”吗?
    人类的视力有极限吗?最近,科学家在实验中运用新技术,通过光学仪器矫正人的视力,有的被试者的视力甚至达到了2.0。  新技术为“超视力”提供可能  中国科学技术大学周逸峰小组与中科院成都光电所张雨东小组合作,创造性地将视知觉训练与人眼自适应光学技术结合起来。在实验中,他们对20岁左右的正常被试者测量视力等视功能后,让他们每天参加一小时的视觉训练。这种训练,即在自适应光学系统上,呈现一种高空间频率光波的黑白条纹图像,让被试者根据要求完成图像的检测任务。训练程序根据完成任务情况,自动调控图像参数,使之维持在一定的难度水平上。如此反复多次,坚持10—12天,每天1小时左右。  周逸峰指出,“这项实验反映了在一定的条件下,经过学习,成年神经系统对图像识别的能力可大大提高。即便是发育成熟后,正常成年视觉神经系统仍具有相当程度的可塑性。不过,这些可塑性的发挥,受限于人眼的光学系统质量。”  据专家介绍,人眼的光学系统,除了存在近视、远视等“低阶像差”外,还存在难以用普通手段测量和矫正的“高阶像差”。研究小组对被试者进行高阶像差的矫正,使之拥有较理想的人眼光学系统,在此基础上配合视知觉训练,让被试者的视力有了明显的提高,有的甚至达到了2.0及以上的视力。据介绍,他们的“超视力”在5个月后复测时仍可保持。该研究成果可用于探索新的治疗方法,来提高视力低下患者的视功能,也为达到“超视力”提供了可能。  目前还处于临床阶段  关于这项技术的最新应用情况,周逸峰在接受采访时介绍:“目前,我们与合作单位中科院光电技术研究所一起正在进行面向临床应用的产品开发和推广,已经研制出自适应光学视力治疗仪,7月份进入医院进行临床试验,在国家药监局审批注册后即可上市用于临床。”同时,周逸峰还指出:“这项技术还处于临床试验阶段,从之前测试的结果来看,效果比较显著,但由于临床试验受到各种因素的制约,不能保证每次试验都达到预期效果。”  对此,焦永红指出,“自适应光学技术属于高科技,作为一种辅助的装置,它主要从两个层面推动眼科技术的发展。其一,让使用设备的医务人员可以更清楚地分析数据;其二,可以让病人接受的手术更加精准。目前,它仍属于前瞻性的研究。”  关于视知觉训练,焦永红则认为:“视知觉训练主要通过锻炼肌肉的灵敏度,通过反复刺激的方法来训练人的能力。这项训练比较主观,而且需要坚持。因此,被试者的视力恢复水平可能因人而异。”  不过,任何一项新技术的发展都是不断尝试、不断推新的过程。屈光手术自90年代初期试用以来,已经发展成熟,这一技术通过改变人眼的光学系统,使得人眼视力水平得到很大改善。焦永红认为:目前,自适应光学技术还处在临床适应阶段,从原理上说,这项技术可以辅助临床试验,让手术更加精准。  是否具有“超视力”不重要  那么视力的优劣该如何测定呢?2.0的视力是怎样的“超视力”呢?  目前国内有两种视力表记录法:小数记录法、五分记录法。一般情况下,正常裸视力能达到1.0,也就是5.0。小数记录法的1.5,2.0分别相当于五分记录法的5.2,5.3。  对于视力有限性的问题,北京同仁医院眼科中心眼肌科主任焦永红指出:“人的视力受限于最小视角,它是指视网膜视觉细胞能分辨的最近距离的两点对眼的最小夹角。”视力表是根据视角的原理制定的。正常人眼能看清最小物体的视角为1分视角,又称最小视角。  焦永红认为,“人的视力是有极限的,单纯通过视力表的指标来衡量人的视力的优劣并不是目的。1.5的视力已经是正常视力,不同衡量体系得出的结论也不同。衡量视力水平,不能光看指数,还要看眼睛各个方面是否协调一致。关键在于眼睛的健康,无各种眼科疾病,这才是我们追求的目标。至于是否是2.0这样的"超视力"并不重要。”  焦永红说:“视力检查是一种知觉检查,具有较强的主观性,一些其他的因素,也会影响到检查结果。”常见的影响视力检查准确性的因素有:光线,比如灯箱老旧、光源亮度不达标、面板刮花、检测地点周围光线昏暗等;环境,如周边环境吵闹、噪音大等;此外,如果在感冒、发烧或服药期间,视力也可能下降。  中国人民解放军第二炮兵总医院眼科主任医师蔡春梅介绍说:“目前所测的视力主要为远视力,被试者离视力表5米。视力达到2.0,说明远视力很好,不排除有其他眼睛问题的可能,没有一个评论视力优劣的绝对指数,普通人达到1.0的视力就是正常视力。”  通常情况下,人们认为成人的视力不具备可塑性。就此,蔡春梅认为:“如果一个成年人存在屈光不正的问题,如近视、远视、散光等问题,通过镜片、手术矫正的方法,才可以矫正视力。”自适应光学技术也正基于此,通过仪器调整人眼的光学系统,才能够有效的矫正视力。
  • 电子探针丨带您走进光纤的微观世界-低损耗光纤
    导语信息关乎一切,为满足信息化数字化支撑新质生产力的创新发展目标和要求,国家层面在算力枢纽、大数据和云计算集群、“东数西算”等工程作了资源调配和长远的规划。用户层面对高质量视频和数据传输需求、对低时延的更苛刻要求、5G技术使用的接入,以及千兆光纤入户规划,对超高速互联网接入的追求似乎永无止境。低损耗光纤的研究正是为了满足高质量的数据接入需求。岛津电子探针通过搭配52.5°高取出角和全聚焦晶体波谱仪,具有高分辨率和高灵敏度的特征,可以为光通信企业及研究院的产品生产、研发、技术突破等方面,如未来的多芯或空芯的研究提供坚实的数据支持。光纤损耗小科普光纤损耗是指每单位长度上的信号衰减,单位为dB/km。光纤损耗的高低直接影响了传输距离或中继站间隔距离的远近,对光纤通信有着重要的现实意义。光纤之父高锟博士提出:光纤的高损耗并不是其本身固有的,而是由材料中所含的杂质引起的。之后,科研人员和光通信企业开始致力于光纤损耗降低的课题研究。根据光纤损耗,把光纤大致分为普通光纤、低损耗光纤、超低损耗光纤三类,其中,&bull 普通光纤衰减为0.20dB/km左右,&bull 低损耗光纤衰减小于0.185dB/km、&bull 超低损耗光纤的衰减小于0.170dB/km。长久以来,国外厂商在低损耗和超低损耗光纤的研究中保持领先地位。现在国内新建主干网络以及骨干网的升级改造中已有大规模低损耗光纤的部署。岛津电子探针的特点岛津电子探针EPMA通过配置统一四英寸罗兰圆半径的、兼具灵敏度和分辨率的全聚焦分光晶体,以及52.5°的特征X射线高取出角,使之对于微量元素的测试更具优势,不会错过微量元素的轻微变化。【注:从微米级别空间尺度产生的元素特征X射线经过全聚焦晶体衍射后还会汇聚到微米级别范围,不会有检测信号的损失,也无需在检测器前开更大尺寸的狭缝,从而具有更高的特征X射线检测灵敏度和分辨率。】【注:高取出角可获得特征X射线试样在基体内部更短的穿梭路径,减少基体效应的影响,即更少的基体吸收更少的二次荧光等,从而具有更高的特征X射线检测灵敏度。】在远距离传输中,由于光纤材料的吸收(材料本征的紫外和红外吸收以及金属阳离子和OH-等杂质离子吸收)和散射、光纤连接以及耦合等方面造成的衰减问题难以避免,低损耗光纤的推出则为解决这一难题提供了新的思路。在骨干网改造、超高速宽带网络的建设过程中,低损耗(Low-loss optical fiber, LL)、超低损耗(Ultra-low-loss optical fiber, ULL)光纤已有大规模部署。我们使用岛津电子探针EPMA-1720测试了两种低损耗光纤。&bull 第一种光纤为单模光纤,纤芯直径10μm,掺杂Ge+F。低损耗光纤元素分布情况测试结果如下:&bull 第二种光纤纤芯为比较高纯度的SiO2,在包层区掺氟降低折射率,未掺杂常规元素Ge。定量元素线、面分布特征分析见以下系列图。超低损耗光纤元素分布情况测试结果如下:结语信息通信是重要的国家级基础设施,通信光纤建设也是重要的民生工程,对高质量数据通信要求都在不断提高。目前骨干超高速400G、800G乃至1T的工程规划都给光通信企业带来机遇和挑战,研发和生产亦是永无止境。岛津电子探针有着高灵敏度和高元素特征X射线分辨率的特性,能够为光通信企业及研究院的产品开发、技术突破等方面提供可靠的检测和分析手段。本文内容非商业广告,仅供专业人士参考。
  • ES-3800B 中阶梯光纤光谱仪
    table width="633" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="501" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"ES-3800B /span/strongstrongspan style=" line-height:150% font-family:宋体"中阶梯光纤光谱仪/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"北京金泰祁氏光电科技有限公司/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="167" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"武建芬/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="160" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="174" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"Wujianfen@jintai-tech.com/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 √已有样机 □通过小试 □通过中试 □可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="501" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□技术转让 □技术入股 □合作开发 √其他/span/p/td/trtr style=" height:273px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="273"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/a35400b6-412e-416e-a7c7-d9adc5112121.jpg" title="22.jpg" style="width: 400px height: 370px " width="400" vspace="0" hspace="0" height="370" border="0"//pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/8727fe34-c722-426f-856a-29cfa346d7a2.jpg" title="23.jpg" style="width: 400px height: 276px " width="400" vspace="0" hspace="0" height="276" border="0"//pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"/spanbr//pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"(1)先进的光学系统设计——中阶梯光栅与棱镜组合系统;(2)高效的数采系统——紫外增强科研级CCD;(3)便捷的采光系统——抗紫外辐照石英光纤;(4)丰富的标准谱线库——谱线定性分析,定量分析。/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"主要技术指标:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/e5b0e944-7535-4f7a-a645-e7962514d6bb.jpg" style="" title="006.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/36fd7576-f8b7-4c5f-be04-c52aa0e643a0.jpg" style="" title="007.jpg"//pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术特点:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"无转动部件,全光谱无遗漏成像;全谱范围,高分辨率(0.03nm@200nm),干扰光谱重叠弱;体积小,使用简单,可在较小成像焦距下轻松获得高的光谱分辨率;根据需要获取的信号性质不同,可以选配不同的探测器;稳态光谱的测量,可配CCD探测器;时间分辨光谱,ICCD是绝佳的搭配对象;4万条标准谱线库,借由软件分析功能,还原出完整的宽谱高分辨光谱曲线;机器壳体采用多次时效处理的航空铝材料,保证仪器性能指标的稳定性 ;高性价比,是科学实验的有力高端工具。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"元素分析,材料识别,环境监测,医疗,食品安全等应用都离不开光谱仪器的应用。ES-3800B中阶梯光纤光谱仪适用领域包括拉曼光谱(Raman)、吸收光谱(Absorption spectroscopy)和连续光源测试等,现在仪器朝着微小型化、智能化方向发展,光谱仪的精密度和稳定性达到更高水平,未来光谱检测将应用到更多行业。/span/p/td/trtr style=" height:72px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="633" height="72"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"ES-3800/spanspan style=" line-height:150% font-family:宋体"系列作为国内首款自主研发的基于中阶梯光栅的商用光纤光谱仪,拥有国家知识产权、软件著作权以及6项在申技术发明专利,已授权外观专利:光谱仪,专利号:201730114950),技术指标同进口产品相当。目前,高端光谱仪市场均为进口企业占领,可预测该项目产品的产业化,将取代同类产品。/span/p/td/tr/tbody/tablepbr//p
  • 定制光纤品牌“飞博盖德”为双子南座望远镜设计顶级光纤阵列
    飞博盖德为双子南座天文望远镜制造光纤阵列。2016年2月18日,美国新泽西州的斯特灵市传来消息,英国豪迈的定制光纤品牌“飞博盖德”(www.fiberguide.com.cn)已经在新双子南座天文望远镜(GHOST)中制造光纤阵列。澳洲天文台(AAO)是该项目的建造商和领导机构。飞博盖德的光纤阵列采用了最先进的制造技术,此次项目中的光纤阵列采用的就是这项技术。由飞博盖德生产的高质量、高性能的光纤阵列成为该项目成功的关键。届时,双子南座天文望远镜将配备双目标大面积全波长光谱望远镜,其覆盖范围介于363~950 nm,分辨率介于50000~75000。新的双子南座天文望远镜由澳洲天文台建造。每根飞博盖德的光纤均携带一部分来自星体的光束,从而尽量减少了因大气模糊造成的损失。通过采用飞博盖德专有的制造技术,以及其在天文学、安全和数据通信类型光纤阵列的丰富经验,可以减少传统光纤的指向误差和插入损耗等问题。新的天文观测仪器可使观察者更高效地观测夜空。双子南座天文望远镜的项目负责人安德鲁?舍伊尼斯说:“双子南座望远镜是世界上最大也是最成功的世界级双子望远镜仪器,而飞博盖德的光纤一直是澳洲天文台在望远镜科技发展中不可或缺的组成部分。一旦该项目交付,双子南座望远镜将为我们提供更多了解宇宙的机会,例如发现与研究太阳系外行星”。双子南座天文望远镜能够为了解双子南座天空提供无与伦比的便利,并进一步加强认识宇宙的机会。欲详细了解飞博盖德的应用于天文的产品,或光纤阵列和光纤束建设的专门知识,请访问飞博盖德的中文官方网站。关于飞博盖德和英国豪迈:美国飞博盖德工业有限公司(Fiberguide)生产多种工业标准的和按需定制的高传输光纤和超精密光阵列。公司经过美国食品和药品管理局登记注册,被确定为合同制造商和定制设备制造商。飞博盖德的光纤工厂位于美国新泽西州的斯特林(Stirling),同时在爱达荷州的卡德维尔(Caldwell)也有制造/装配厂。飞博盖德是英国豪迈(Halma)的子公司,隶属于豪迈的环境与分析事业部。1894年创立的英国豪迈如今是全球安全、医疗、环保产业的投资集团,伦敦证券交易所的上市公司,富时指数的成分股。集团在全球有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有代表处,并在多地建立了工厂。欲了解更多公司信息,请关注英国豪迈官方微博(www.weibo.com/halma)和官方微信(HALMACHINA)。业务合作联系人:谈理(Teddy Tan)飞博盖德大中华区销售经理电话:021 - 60167698邮箱:ttan@fiberguide.com媒体联络联系人:陆瑶 (Lucas Lu)英国豪迈中国区公关经理电话:021 - 60167667电邮:lucas.lu@halma.cn
  • 中美联合研制自适应光学双光子荧光显微镜
    像差问题一直困扰着光学领域的工作者。像差会使光波前发生形变,不仅降低成像的信噪比和分辨率,使得很多时候我们只能&ldquo 雾里看花&rdquo ,更甚者,产生赝像,或无法获得有意义的图像。像差问题对双光子成像的影响尤为严重,因为在那里,荧光信号对入射光强度的依赖是平方关系,一旦入射光波前形变,不仅聚焦强度大幅下降,成像分辨率也急剧恶化。因此,如何解决像差问题,实现活体,例如小鼠大脑皮层,深层区域的高质量成像成为光学成像发展中最具挑战性的问题之一。  美国Howard Hughes Medical Institute (霍华德· 休斯医学研究所)在Janelia Farm Research Campus的吉娜博士小组与来自中科院上海光机所强场激光物理国家重点实验室的王琛博士最近成功将一种新的自适应光学的方法和双光子显微镜结合,研制出一种新的自适应光学双光子荧光显微镜。通过校正活体小鼠大脑的像差,在视觉皮层的不同深度处均获得了提高数倍的成像分辨率和信号强度,大大改进了成像质量,使得原来在活体鼠脑中不可见或者模糊的细节变得清晰可见,她们成功将该方法应用于老鼠视觉皮层第五层(约500µ m)的形貌结构成像和钙离子功能成像。这一新的自适应光学方法,首次使得在活体小鼠深层区域成像中获得近衍射极限的成像分辨率成为现实。这一成果以题Multiplexed aberration measurement for deep tissue imaging in vivo发表在最新一期的Nature Methods (自然· 方法)杂志上。  在该自适应光学双光子荧光显微镜中,她们将空间光位相调制器光学共轭到显微物镜的后焦平面,通过位相调制器将入射光分成若干子区域,每一块子区域的波前都可以被独立控制。同时,她们用数字微阵列光处理器,以不同的频率同时调制其中一半子区域的入射光强度,以另一半子区域作为&ldquo 参考波前&rdquo 。来自所有子区域光束会在焦点处会聚干涉,通过监测焦点激发的双光子信号随时间的变化情况,并进行傅里叶变换分析,可以&ldquo 分解&rdquo 得到被调制的每一块子区域的&ldquo 光线&rdquo 的贡献信息,从而可以实现对一半子区域波前的并行测量。对另一半子区域重复这一测量过程,从而获得整个入射波前的信息并进行校正。该方法耗时很短,通常约1~3分钟左右即可完成像差的测量和校正,无需复杂的计算,适用于任何标记密度和标记类型的样品。更重要的是,得到的像差校正图案可以用于提高较大视场范围内的成像质量。该方法无疑为在体研究小鼠大脑皮层深层区域的生物、医学问题提供了可行性方案。
  • 全球光纤市场 中国市场占据49%份额
    光纤权威研究机构CRU表示,今年以来西欧、美国、巴西和俄罗斯等主要光纤市场增长疲软,而中国市场继续强劲增长,从2011年占全球份额的46%增长到2012年前三季度的49%,而且预计2012年第四季度仍将保持这个态势。  换言之,中国光纤市场份额2012年预计将占全球市场的49%。  2012年前三季度全球光缆销量1.77亿芯公里,相比去年同期的1.59亿芯公里,增长了11%。裸光纤的产量是1.92亿芯公里,这意味着,今年全球光纤总产量将超过2.5亿芯公里。  今年美国在“刺激法案”的带动下,电信开支增长有令人鼓舞的迹象。美国AT&T、中国三大运营商和欧盟运营商将在11月下旬批准90亿欧元(115亿美元)的电信开支。  从中国光纤厂商今年上半年的财报来看,上半年中国光纤一直处于供应紧张的状态,这种状态将一直延续到下半年。同时,自2010年中国光纤厂商掀起扩产风潮以来,光纤产能已经逐步释放。
  • 基于光纤传感的尿比重仪
    仪器名称基于光纤传感的尿比重仪单位名称深圳大学联系人李学金联系邮箱lixuejin@szu.edu.cn成果成熟度□正在研发 &radic 已有样机 □通过小试 □通过中试 □可以量产合作方式□技术转让 &radic 技术入股 □合作开发 □其他成果简介:基于光纤传感的尿比重仪是一种新型肾功能及人体体液溶质含量的监控仪器。采用先进的光纤传感技术,可实现高灵敏的实时在线检测(现有比重仪做不到),并能大大缩小仪器的体积。本仪器的灵敏度比市场上现有尿比重仪高10倍以上,并能实现检测即时数显和实时记录等功能。还可以通过转换标定体系,转换成液体浓度、折射率等量的检测。应用前景:基于光纤传感的尿比重仪主要用于检测人体尿液的比重值,用于临床医学上诊断肾脏的浓缩功能,并可用于初步诊断糖尿病、蛋白尿、急性肾炎、高热、脱水、尿崩症、尿毒症、慢性肾小球肾炎、急性肾炎多尿期等;也可以反映一些疾病的程度,如糖尿病患者,如果血糖升高,尿比重值也会相应升高。另外,本仪器还可广泛用于各种液体的浓度、折射率的检测或监控,如酿酒过程中,酒精浓度的监控;各种化学药剂生产过程中的浓度监控(相比电学的方法,采用光学的检测方法,不但灵敏度高,而且在易燃易爆环境中使用安全可靠);环境水体污染程度检测等。本仪器可应用于人体健康指标智能监测,安装于小便池中,人们可以通过每次小便及时得知自己的健康情况,是一种新型的智能家居。随着&ldquo 智慧城市&rdquo 列入十二五规划的一项重要内容,物联网应用技术将得到一个新的发展和完善。智能家居做为物联网最广泛的应用,不管是在物联网的大浪潮下、还是在智慧城市建设中都有着广泛的前景,蕴含着巨大的市场潜力。知识产权及项目获奖情况:已获得专利,专利名称:一种液体比重仪,专利号:201520045154.2
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 光纤光谱仪中标信息
    一、采购项目名称 : 光纤光谱仪( 070323w0801 ) 二、采购代理机构 :浙江大学后勤集团技术物资服务中心 三、确定成交日期 : 2007 年 4 月 9 日 四、本项目公告日期 : 2007 年 4 月 9 日 五、项目成交单位 :   标项一(光纤光谱仪):必达泰克光电科技有限公司 相关链接:http://www.zupc.zju.edu.cn/wwwroot/Notice/noticeJ0135.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制