当前位置: 仪器信息网 > 行业主题 > >

变形镜

仪器信息网变形镜专题为您提供2024年最新变形镜价格报价、厂家品牌的相关信息, 包括变形镜参数、型号等,不管是国产,还是进口品牌的变形镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合变形镜相关的耗材配件、试剂标物,还有变形镜相关的最新资讯、资料,以及变形镜相关的解决方案。

变形镜相关的资讯

  • 激光变形镜将在莞量产 投产后年产值5亿
    东莞首个涉及高端光学元器件—变形镜制造的科技成果转化项目迈出重要一步。12月5日,中国工程院院士牛憨笨、清华大学深圳研究院院长嵇世山、清华大学精仪系副主任季林红教授等专家聚首东莞,对东莞市兰光光学科技有限公司(下称兰光光学)与清华大学共同承担的变形镜项目批量生产能力进行了论证和评估。评估组一致认为,兰光光学已经具备了该项目实现批量生产的基本条件。  东莞市科技局副调研员肖铮勇表示,该项目符合“科技东莞”的发展要求,对国家高科技产业、地方经济建设具有重大意义,企业要以本次评估为契机,尽快列入政府“一事一议”重大项目,争取更多的专项资金扶持,并不断完善项目,力争尽快产业化,并进一步将产学研合作做深做大。  据了解,变形镜批量生产中的关键技术能够直接运用于大量民用领域,对东莞产业发展具有较强的辐射能力,将带动东莞激光器产业整体发展水平迈上新的台阶。  变形镜是大型激光装置中的关键技术  昨日,评估组听取了清华大学关于《变形镜技术研制状态与对批量生产的要求》和兰光光学公司的《发展规划》及《为建设变形镜生产线所开展的工作》三项报告,并对变形镜生产车间进行了实地考察。  清华大学相关负责人介绍,变形镜制造技术是现代高精度大型激光装置中的关键技术,也是开发新型、洁净和可持续的民用清洁能源的关键技术。  项目从2002年开始研发,到2011年工程样机达到国际先进水平,目前已在设计、制造、集成调试、控制和检测等五大类技术中取得重要突破,全套制造工艺流程也已初步定型,下一步将面临批量生产。  事实上,兰光光学一直将该项目作为产业转型发展的突破口,在组织结构、厂房建设、设备购置、人才队伍等方面做了大量工作。前期已投入了大量资金,购置了¢600mm口径干涉仪等关键设备,初步形成了较为完善的产品质量控制体系。  同时,牛憨笨院士也指出,由于项目技术难度大、要求高,资金需求量大,兰光光学目前距离完整的生产线要求尚存差距,比如欠缺大口径镀膜机、磁流变抛光设备、多槽超声波清洗机等高精密大型设备,需要进一步投入。  评估组建议兰光光学公司应尽快建立健全、深化完善产学研结合的实践机制 清华大学应进一步加强技术指导、加快工艺转移、人才培养 校企双方应加强协同创新,以保证该项目批量化生产的顺利实施。  有望带动东莞整个激光器产业的升级  兰光光学成立于2011年,是一家专业从事光学器件及产品科研、生产、销售的高科技企业。其前身是一家生产天花板装饰材料的传统企业。在该公司董事长毛卫平看来,此次与清华大学合作,承接变形镜批量生产项目也是该公司从传统劳动密集型企业向高科技型企业转型的关键。  据了解,“变形镜”是集光机电为一体的高科技含量的产品。该项目是清华大学通过承担国家重大专项任务,形成了具有自主知识产权的科研成果,已具备进一步实现产业化的技术基础。兰光光学公司就该项目与清华大学进行产学研合作。  目前,兰光光学已投资2000多万元用于首条生产线的设备购置及体系建设,项目运行后年产值有望达到5亿元。  除此之外,该公司项目“工业用高功率固体紫外激光器”、紫外光学设备等也有巨大的市场潜力,而通过介入大型科研项目,也将加快企业向高端制造业转型的步伐。  据了解,变形镜每套价值高达100万美元以上,并且作为长期运行的易损耗产品,每年还需要10%的备件,市场潜力巨大。  此外,变形镜批量生产所需的关键技术,有望辐射和带动东莞整个激光器产业的升级。据介绍,变形镜批量生产中的关键技术能够直接用于大量民用领域,因此对当地产业发展具有较强的辐射能力。“目前华南地区的激光设备出厂台数占全国的70%以上。”专家指出,这一项目投产后也将带动东莞乃至华南地区工业激光器行业上一个台阶。
  • 北京首台淬火/变形相变仪将落户北京科技大学
    继2006年上海大学后,北京科技大学与北京仪尊时代科技有限公司正式签约,购买德国巴赫热分析公司生产的世界领先产品--DIL805淬火/变形热膨胀仪(相变仪)。成为该设备在中国的第二个使用者。目前,德国巴赫公司在该领域的欧美市场占有率几乎百分之百。近年来,很多中国的金属、尤其是钢铁方面研究人员对该设备表现出了浓厚的兴趣,显示出中国钢铁行业在特种钢和优质钢方面长足进步,也是缩小我们与欧美国家在钢铁领域差距的一个缩影。相信该设备将成为该校金属学研究的得力帮手。 有关此产品的介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。screen.width-300)this.width=screen.width-300"
  • 薄膜拉伸强度测试仪如何区分弹性变形和塑性变形
    在薄膜拉伸强度测试中,准确区分弹性变形和塑性变形对于材料工程师、物理学家以及产品开发者而言,是至关重要的一环。这两种变形类型不仅决定了材料的基本性能,还直接关系到产品的使用寿命和安全性。本文旨在深入探讨薄膜拉伸强度测试中弹性变形与塑性变形的区分方法,以及它们在材料科学领域的应用。一、弹性变形与塑性变形的基本概念弹性变形,指的是材料在外力作用下产生变形,当外力消失时能够恢复到原始形状和尺寸的现象。这种变形是可逆的,不涉及材料的内部结构变化。而塑性变形则是指材料在外力作用下产生变形后,即使外力消失也不能完全恢复到原始形状和尺寸的现象。塑性变形是不可逆的,通常伴随着材料内部结构的改变。二、薄膜拉伸强度测试中的变形观察在薄膜拉伸强度测试中,我们可以通过观察材料的应力-应变曲线来区分弹性变形和塑性变形。在弹性变形阶段,应力与应变之间呈线性关系,即应力增加时,应变也按一定比例增加。当应力达到弹性极限时,材料开始进入塑性变形阶段,此时应力-应变曲线呈非线性关系,应变继续增加但应力增长缓慢或不再增长。三、区分弹性变形与塑性变形的具体方法应力-应变曲线分析:如前所述,通过分析应力-应变曲线的形状和变化,可以判断材料是否进入塑性变形阶段。在弹性变形阶段,曲线呈直线状;而在塑性变形阶段,曲线则呈现弯曲或平坦的趋势。卸载试验:在拉伸测试过程中,当材料达到一定的应力水平时,可以突然卸载并观察材料的恢复情况。如果材料能够迅速恢复到原始长度,则说明之前的变形主要是弹性变形;如果材料不能完全恢复,则说明存在塑性变形。残余应变测量:在拉伸测试结束后,通过测量材料的残余应变可以判断塑性变形的程度。残余应变越大,说明塑性变形越显著。四、弹性变形与塑性变形在材料科学中的应用材料选择:了解材料的弹性变形和塑性变形特性有助于选择合适的材料以满足特定需求。例如,在需要高弹性的场合(如橡胶制品),应选择弹性变形能力强的材料;而在需要承受大变形而不破裂的场合(如金属薄板),则应选择塑性变形能力强的材料。产品设计:在产品设计过程中,考虑到材料的弹性变形和塑性变形特性,可以优化产品结构以提高其性能和安全性。例如,在设计弹性元件时,需要充分利用材料的弹性变形能力;而在设计承力结构时,则需要考虑材料的塑性变形特性以确保结构的稳定性和安全性。质量控制:通过测量材料的弹性模量、屈服强度等力学性能指标,可以评估材料的性能是否满足要求。同时,通过观察材料的变形行为(如弹性变形和塑性变形)可以判断材料是否存在缺陷或质量问题。五、结论在薄膜拉伸强度测试中准确区分弹性变形和塑性变形对于材料科学领域具有重要意义。通过分析应力-应变曲线、进行卸载试验和测量残余应变等方法可以判断材料的变形类型。了解材料的弹性变形和塑性变形特性有助于选择合适的材料、优化产品设计和提高产品质量。未来随着材料科学的发展和技术的进步相信我们将能够更加深入地理解材料的变形行为并开发出更多高性能的材料。
  • 热变形磁体性能进一步提高
    图1. 热变形前后磁体的X射线衍射图谱图2. 热变形磁体的扫描电子显微镜照片当前使用的稀土永磁体其制备方法主要有粘接、烧结和热变形三种。粘接磁体的能量密度较低,烧结磁体虽然性能优异,但制备工艺相对比较复杂。相比之下,热变形磁体具有能量密度高、抗腐蚀性能好、工艺简单、生产效率高的优点。因此,热变形磁体的研究进展一直受到学术界和企业界的高度关注。目前,国内制备的热变形磁体的磁性能与国际上相比仍存在较大差距,这一差距首先体现在矫顽力和磁能积两个方面。而且对于热变形磁体而言,磁能积的提高通常会显著降低材料的矫顽力,这两个性能指标犹如鱼和熊掌一样不可兼得。这成为近几年来制约热变形磁体发展的主要因素之一。为了提高热变形磁体的磁性能,磁材事业部永磁团队热压小组群策群力,提出了多项措施方案,并积极开展尝试。目前他们已经成功制备了磁能积为47.3 MGOe、矫顽力达16.17 kOe的高性能热变形磁体以及矫顽力达22.7 kOe、磁能积为37.8 MGOe的高矫顽力热变形磁体。图1给出了热变形磁体变形前后的的X射线衍射图谱。从中我们可以清楚地看出,热变形之后,磁体的(004)、(006)和(008)三组同族晶面以及(105)晶面的强度大大增强,说明在热变形过程中这些晶面发生了明显的择优取向生长。图2给出了热压磁体轴向断面的扫描电子显微镜(SEM)照片。可以看出,热变形后磁体中存在大量规则排列的片状Nd-Fe-B纳米晶,其厚度约为80nm。这些纳米晶的片层面对应XRD图谱中衍射峰强度加强的晶面,即Nd-Fe-B晶粒中发生择优取向生长的晶面。由于工艺优化后磁体内片状晶的变形程度增大,取向更加一致,从而导致磁体的性能得到了大幅度提升。该研究的部分结果已发表在Journal of Magnetism and Magnetic Materials, Journal of Applied Physics等期刊上,当前最新工作进展的2篇论文也被第56届国际磁学与磁性材料大会接收。
  • 布鲁克推出原位纳米力学测试仪PI 89,用于分析电镜下材料变形
    p style="text-indent: 0em text-align: center "img src="https://img1.17img.cn/17img/images/202010/uepic/292673aa-e45e-4b57-a7c3-93a83223508b.jpg" title="1.jpg.png" alt="1.jpg.png" style="text-align: center max-width: 100% max-height: 100% "//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em " Hysitron PI 89 SEM PicoIndenter:提供卓越的范围和灵活性/span/pp style="text-indent: 2em "strong仪器信息网讯 /strong美国时间2020年10月14日,布鲁克纳米机械测试业务(Bruker Nanomechanical Testing business)宣布发布Hysitron PI 89 SEM PicoIndenter™ ,可在扫描电子显微镜(SEM)内提供比以往更大的负载和更极端环境提供纳米机械测试功能。将有助于研究人员进一步理解高强度材料的变形机理。新产品系统结合了布鲁克的高性能控制器、专有的电容式传感器和固有位移技术,以实现卓越的力和位移范围。/pp style="text-indent: 2em "PI 89 SEM PicoIndenter是第一台具有两种旋转和倾斜台配置的原位仪器。这使得样品可以灵活地朝向电子柱进行自顶向下的成像、向FIB柱倾斜进行铣削、主轴旋转进行晶体对准,并与多种检测器兼容以实现复杂材料的结构-性能相关性。/pp style="text-indent: 2em "“阿拉巴马大学很高兴成为布鲁克公司Hysitron PI 89 SEM PicoIndenter原位纳米机械测试装置的第一批用户,”span style="color: rgb(0, 112, 192) "阿拉巴马州分析研究中心主任Gregory Thompson博士/span表示。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "机械工程学教授Keivan Davami博士/span补充说:“该平台的先进功能,可以在达到极限温度的同时,同时施加负载,将提供前所未有的结构表征捕获,包括透射菊池衍射和电子背散射衍射,以支持多个研究项目。”/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "布鲁克纳米机械测试业务总经理Oden Warren博士/span表示:“ Hysitron PI 89是我们用于电子显微镜原位纳米机械测试的PicoIndenter系列的有力补充。” “新平台具有出色的多功能性,易用性和刚度,可支持更高的负载,并拥有多项专利功能,可为客户在SEM中提供更广泛的测试灵活性和行业领先的性能。我们很高兴看到这个新一代仪器使新的研究成为可能。”span style="text-indent: 2em " /span/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong关于Hysitron PI 89 SEM PicoIndenter/strong/span/pp style="text-indent: 2em "Hysitron PI 89系统是布鲁克知名的Hysitron PicoIndenter用于SEM的测试仪器系列。 PI 89以布鲁克最先进的电容换能器技术为基础,为研究人员提供了一种功能强大的先进仪器,具有卓越的性能和多功能性。它的功能包括自动纳米压痕、加速机械性能映射(XPM)、疲劳测试、纳米摩擦学、薄膜和纳米线的推拉(PTP)张力(已获得专利)、直接拉力、SPM成像、电特性模块、高温测试(已获得专利)、旋转和倾斜台(已获得专利),并与使用EBSD,EDS,CBD,TKD和STEM检测器的分析成像兼容。/pp style="text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "关于Hysitron/span/strong/pp style="text-indent: 2em "2017年2月,布鲁克宣布收购纳米力学仪器制造商Hysitron(海思创)。该收购将Hysitron的创新纳米机械测试仪器添加到布鲁克已有的原子力显微镜(AFM),表面轮廓仪,摩擦学和机械测试系统的产品组合中,大大提高了布鲁克在纳米材料研究市场的领先地位。/pp style="text-indent: 2em "Hysitron总部位于明尼苏达州的伊登普雷利,公司自1992年成立以来率先开发了用于测量纳米级材料的机械性能的解决方案。其领先的纳米压痕产品被学术界和工业研究人员用于材料科学、生命科学和半导体领域的应用。除纳米压痕和微压痕外,Hysitron的仪器产品还包括摩擦学、模量映射、动态机械分析、原位SEM(扫描电子)和TEM(透射电子)纳米机械测试。/ppbr//p
  • 江门中微子实验的“变形金刚塔”建成
    作者:倪思洁 来源:中国科学报5月24日,记者从中国科学院高能物理研究所了解到,江门中微子实验的升降平台已安装完成,并顶升至38米,为下一步有机玻璃球安装工作做好了准备。江门中微子实验核心探测设备——中微子探测器位于地下实验大厅内44米深的水池中央。它由直径41米的不锈钢网壳、直径35.4米的有机玻璃球,以及2万吨液体闪烁体、2万只20英寸光电倍增管、2.5万只3英寸光电倍增管等关键部件组成。升降平台是完成有机玻璃球安装的重要辅助平台,其直径和高度逐层可变,可谓“变形金刚塔”。它将全程服役于有机玻璃球的安装。工程人员将在该平台上逐层完成有机玻璃的吊装就位、拼接聚合、固化、退火、打磨、清洗、贴膜等工序,最终完成有机玻璃球的整体安装。“变形金刚塔”——有机玻璃球安装升降平台(俯视图)中国科学院高能物理研究所供图“变形金刚塔”——有机玻璃球安装升降平台(仰视图)中国科学院高能物理研究所供图
  • 热变形维卡软化点温度测定仪:原理、结构、操作方法
    热变形维卡软化点温度测定仪是一种用于测量材料在高温环境下的热变形和软化点的实验设备。这种设备在质量控制、材料科学、塑料工业等领域都有广泛的应用。本文将详细介绍热变形维卡软化点温度测定仪的原理、结构、操作方法以及可能出现的误差和处理方法。和晟 HS-XRW-300MA 热变形维卡软化点温度测定仪热变形维卡软化点温度测定仪主要由加热装置、测试系统和测量仪器等组成。加热装置包括电炉、热电偶和加热炉壳等部分,用于提供高温环境。测试系统包括试样、加载装置和位移传感器等,用于测量材料的热变形和软化点。测量仪器则是用于记录和显示测量数据的设备。操作热变形维卡软化点温度测定仪需要遵循一定的步骤和注意事项。首先,选择合适的试样和试剂,确保试样在高温环境下能够充分软化和变形。其次,将试样放置在加热装置中,并使用加载装置施加一定的压力。然后,逐渐升高温度,并记录试样的变形量和温度变化。最后,通过测量仪器输出测量结果,并进行数据处理和分析。在使用热变形维卡软化点温度测定仪时,可能会出现一些误差。例如,由于加热不均匀或加载压力不一致,可能会导致测量结果出现偏差。此外,由于试样本身的性质和制备方法也会对测量结果产生影响。因此,在进行测量时,需要采取一些措施来减小误差,例如多次测量取平均值、选择合适的加热方式和加载压力等。热变形维卡软化点温度测定仪的测量结果可以反映材料在高温环境下的性能和特点。因此,正确理解和使用测量结果是至关重要的。在实践中,需要根据具体的实验条件和要求,选择合适的测定仪器和试剂,并严格按照操作规程进行测量。同时,需要充分考虑误差和处理方法,以确保测量结果的准确性和可靠性。总之,热变形维卡软化点温度测定仪是一种重要的实验设备,可以用于测量材料在高温环境下的热变形和软化点。了解其原理、结构、操作方法以及可能出现的误差和处理方法,对于科学研究和实际应用都具有重要意义。
  • 单智伟团队:在金属镁塑性变形行为和内在机制领域取得新进展
    镁是最轻的金属结构材料,在航空航天、交通运输,电子产品和医疗等领域具有广阔的应用前景。然而,相比于传统金属材料,如钢铁和铝合金,镁的塑性变形加工较困难,工艺成本高,制约了其广泛应用。微观机制是决定宏观性能的内在因素,因此,研发高塑性镁合金需要精准认知其微观塑性变形机制,相关研究也一直是镁合金领域关注的重点和热点。众所周知,金属材料在塑性变形时一般会发生加工硬化现象,即随着变形量的增加,材料内部缺陷和损伤逐步累积,流变应力不断增加。当硬化到一定程度时,材料将不具备继续塑性变形的能力,最终发生断裂。对于金属镁而言,其沿晶体学轴压缩时加工硬化十分明显,塑性变形量一般仅在5%-10%左右。针对镁的塑性变形行为和内在机制,西安交通大学单智伟教授团队近年来开展了系统深入研究。研究发现,对于亚微米尺寸的镁单晶,当沿轴压缩时,首先发生由锥面位错滑移主导的塑性变形(详见Liu et al. Science, 365 (6448), 73-75, 2019)。令人意想不到的是,随着加工硬化的不断加剧,原本认为塑性已消耗殆尽的样品并没有断裂失效。当流变应力升高到1 GPa水平时,样品突然被压为扁平状,且没有裂纹产生。此外,被压扁的样品已不再是单晶,而是由多个具有共轴取向关系的小晶粒组成,小晶粒内部有大量的基面和非基面位错。图1 亚微米镁单晶柱在轴压缩下的变形过程。(a)初始样品;(b) 位错的形成和运动;(c) 在样品右下角形成的新晶粒(白色箭头);(d) 新晶粒中产生位错(白色箭头);(e)样品被压为扁平状;(f) 在扁平样品上采集的电子衍射。(g)应力-应变曲线显示出变形的三个阶段:弹性变形、塑性变形-加工硬化阶段、塑性变形-应变突跳阶段。通过系统的晶体学分析、显微学分析、原子尺度表征,并结合分子动力学模拟,该团队提出新晶粒是通过锥面-基面转变形成的。在新晶粒形成后,原本已消耗殆尽的塑性得到了再生,继续加载时样品仍可持续发生很大的塑性变形。该研究将这种由变形诱导的在基体晶粒中形成新晶粒的过程称为“deformation graining(形变转晶)”。该过程不必依赖扩散,可在室温下快速发生,所形成的新晶粒与基体晶粒具有特定的晶体学取向对应关系。在新形成的晶粒中,可以继续发生由位错和孪生协调的塑性变形,使得样品重新具有了塑性变形能力(可比拟为“返老还童”)。该研究丰富了对塑性变形机制的认识,为镁的变形加工提供了新的启发:在高应力或高应变速率下加工,可由高应力引发新的变形机制,进而提高镁的变形加工能力。图2 新晶粒在加载时长大,卸载时缩小,二次加载时再次长大,反映了晶界的高可动性图3 新晶粒及其晶界结构该成果以"金属镁塑性变形能力再生新机制"(Rejuvenation of plasticity via deformation graining in magnesium)为题发表于《自然通讯》(Nature Communications),西安交通大学刘博宇教授为本论文的第一作者,西安交通大学单智伟教授为第一通讯作者,合肥工业大学张真教授为共同第一作者和通讯作者,西安交通大学马恩教授和美国麻省理工学院李巨教授为共同通讯作者。参与该工作的还包括西安交通大学博士研究生刘飞和杨楠、内华达大学李斌教授、吉林大学陈鹏教授、中国科学技术大学王宇教授和江苏科技大学彭金华博士。西安交通大学金属强度国家重点实验室为第一通讯单位。该研究得到了国家自然科学基金委、111计划2.0、西安交大青年拔尖人才计划等项目的资助。近年来,单智伟研究团队依托西安交通大学材料学院、金属材料强度国家重点实验室、西安交通大学微纳中心和陕西省镁基新材料工程研究中心,开展了一系列富有成效的基础研究、技术攻关和成果转化。2014年,发现了镁中不同于位错和孪晶的室温变形新机制,成果发表于《自然通讯》,并荣获美国TMS学会镁分会年度最佳基础研究论文奖;系统研究了镁合金中析出相形貌对孪晶行为的影响,并进而发展了一种判断镁合金强塑性的简单判据,成果发表于《材料科学技术》(封面推荐,2018);发现通过活化二氧化碳,可以在室温下将镁表面的氧化层或腐蚀产物转变成一种致密的保护膜层,不仅可显著提升镁及其合金的抗腐蚀性和强韧性,而且大幅提高镁的抗氧化能力,从而发明了一种绿色、低成本镁合金涂层新技术,成果发表于《自然通讯》(2018),并获得国家发明专利授权;应用基于原位电镜的先进测试与表征技术,结合原子尺度成像和三维图像重构技术,揭示了镁中锥面位错的结构特征和滑移行为,首次实验证明其是镁中有效的塑性载体,指出通过促进锥面位错滑移(可通过提高应力和减小晶粒尺寸来实现)可以有效提高镁的塑性,成果发表于《科学》(2019)。针对原镁冶炼工艺落后、自动化程度低和环境污染严重的现状,提出并验证了原本需要在真空条件下进行的原镁冶炼可以在常压进行,并与华西能源公司联合攻关,开展了原镁常压生产的工业化装置的开发。针对原镁杂质元素种类多、含量高、波动大的痼疾,从原子机理出发,开发出全新的工艺流程,可在不显著增加成本的情况下,从料球直接生产出99.99%以上纯度的高纯镁,革新了此前领域内普遍认为皮江法(硅热还原法)不能直接生产高纯原镁的认知。上述成果的推广和应用,有望从整体上提升镁基产品的质量和性能。论文链接:https://www.nature.com/articles/s41467-022-28688-9
  • 特种工程塑料高温性能分析:超高温热变形维卡温度的测定(MAX.500℃)
    首先,让我们来了解一下什么是工程塑料?Whats”工程塑料,是指一类具有良好物理性质、机械性能、耐磨性、耐腐蚀性、绝缘性、耐热性、耐寒性、耐老化性等特点的高性能塑料材料。这些材料可以承受较高的温度和压力,具有较好的机械强度和耐用性,相对于传统的通用塑料具有更高的综合性能和更广泛的应用范围,相对于金属材料更轻、更薄、更能耐受高温,因此在工业和科技领域中被广泛应用并逐步成为发展趋势。例如常见的用于制造发动机内罩、轴承的聚醚酮(PEEK)、用于制造耐高温的薄膜、涂料,防火织物的聚酰亚胺(PI)、用于制造餐具、耐酸碱的管道阀门的聚苯硫醚(PPS)等。在工程和科研领域中,材料高温下性能的精确测定对材料研究和产品设计至关重要。如果工程塑料材料在实际使用中耐热性不好,就可能会出现以下问题:Question”1)部件变形或软化:在高温环境下,超级工程塑料可能会失去其结构稳定性,导致部件变形或软化,影响其性能和寿命。2)减弱耐久性:高温环境可能会导致超级工程塑料的分子结构发生变化,从而降低材料的耐久性和使用寿命。3)失去机械强度:高温环境可能会导致超级工程塑料的机械强度减弱,从而影响其承载能力和抗冲击性能。4)失效:如果超级工程塑料的耐热性能不好,那么在高温环境下,部件可能会失效,从而影响整个系统的性能和安全性。这些问题的出现会影响整个机械设备的性能和寿命。此外,还可能会对人员和环境造成安全隐患,例如部件失效引发事故、释放有害气体等。因而在使用工程塑料时,必须考虑其耐热性能,并根据实际使用情况选择适合的材料。表征高分子复合材料耐温性能的一个重要指标是热变形温度。但随着高性能聚酰亚胺塑料和各种纤维增强材料的研制和发展,由于其材料本身性能优越,通用仪器很难满足其测试要求。目前国内测定材料热变形的设备大多采用油介质加热,最高测定温度不超过300℃。同时由于加热时介质油的挥发和分解,产生大量的油烟,极易造成环境污染和人员中毒。通用热变形测试仪由金属材料加工制造,高温时,金属自身变形量增大,会对测试材料变形量产生影响,得到的材料热变形数据并不能反应材料的真实性能。而安田精机的高温热变形温度测定仪在测试材料的高温性能方面具有突出的优势。出色的高温稳定性和机械性能安田精机的高温热变形测试设备采用石英材质制作支架、测试台和压头等部位,该材质能够在高达500℃的极端温度下保持卓越的性能,设备最高测试温度可以达到500℃,同时可选择更换维卡测试头,支持维卡测试。【已知石英材质的热膨胀系数是5.6x10-7/℃,而SUS304不锈钢材质是17.3x10-6/℃,这意味着在同样高的温度下石英材质更不容易变形】精密的温度控制和实时监测加热方式放弃使用介质油加热,而选用更加环保安全、便捷经济的空气加热,为了保证温度分布均匀,各测试台的空气隔室是独立的,各自具备温控功能,能够均衡升温;防样条碳化功能为保护试样在高温下不发生碳化,测试过程中可以注入氮气保护,氮气可以将氧气排出,由于其自身具有惰性,可以降低塑料的氧化速度;安田精机的高温热变形温度测定仪可广泛应用于材料科学、汽车制造、航空航天和能源等领域。其卓越性能、高温范围、精密温度控制和广泛的应用领域为特种工程塑料高温性能分析提供了解决方案。感兴趣的朋友欢迎私信我们了解!更多精密物性设备,尽在仕家万联!
  • 国内首台淬火/变形相变仪将落户上海大学
    德国巴赫热分析公司的世界领先产品--DIL805淬火/变形热膨胀仪(相变仪)拥有世界上众多的金属研究的用户。由于价格昂贵,在中国一直没有此领域的使用者。日前,上海大学材料学院经过反复的调研论证,已经和巴赫公司的中国总代理-北京仪尊时代科技有限公司签署了购买合同。所以,上海大学将成为国内首台高级相变仪的使用者,希望它将成为该校金属学研究的得力帮手。同时,仪尊时代感谢上海大学的信任和支持,将继续为推动此产品的市场而做出努力!有关此产品的介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。
  • 微纳3D打印结合二次翻模形成的微柱在磁场作用下实现定向可控变形
    北京理工大学宇航学院的陈少华教授课题组柴泽博士,近日在知名期刊《Soft Matter》发表了一篇高质量文章“Controllabledirectional deformation of micro-pillars actuated by a magnetic field”。研究人员在实验过程中使用了深圳摩方材料科技有限公司微尺度3D打印设备S140,该设备具有10um精度的分辨率,94*52*45mm大小的三维加工尺寸。基于该设备加工了阵列的微柱结构,通过PDMS二次倒模形成含有磁性颗粒的PDMS微柱阵列,通过磁场控制来研究微柱变形,进而研究可逆粘附、可控润湿性和方向性表面输运等特殊功能性表面的设计和研究。微柱阵列(BMF nanoArchS140 GR resin)填充磁性颗粒的柔性微柱阵列的制备工艺如图(a)所示,先通过深圳摩方(BMF)10μm精度的微立体光固化3D打印机S140打印出微米级别的微柱阵列,再倒模出纯PDMS孔洞模具,最后二次倒模获得含有磁性颗粒的PDMS微柱阵列;(b)PDMS模具的SEM图像,该模具的孔的大小与3D打印的微柱的大小相同;(c-d)从顶视图(c)和侧视图(d)观察的磁性颗粒填充的微柱阵列的SEM图像;(e)单根微柱;(f)夹角为90°时,永磁铁和微柱阵列表面之间具有不同距离的微柱变形形态;(g)距离一定时,磁体围绕固定微柱样品以半圆形旋转,微柱的变形形态。众所周知,可以通过改变微结构表面的形貌来设计特殊的表面功能。本文提出了一种通过旋转磁场控制微柱阵列方向变形的简单有效的方法。每个微柱的大变形可以通过磁场强度和方向来调整。当磁场强度固定时,微柱的变形方向由磁场方向控制。当确定磁场方向时,微柱的挠度随磁场强度的增加而增加。根据最小势能原理,进一步建立了揭示微柱大变形机理的理论模型。从理论上预测变形柱的形态与实验结果非常吻合。目前的实验技术和理论结果有利于典型功能性表面的设计和制备。例如,通过外场精准控制表面微结构的变形,实现目标表面界面粘附性和液体浸润性的可连续性调控,以及呈现梯度变化。为实现仿生壁虎脚设计,微纳器件转印,生物医学微液滴混合及方向性输运等提供技术支持。BMF nanoArchS140System
  • 微纳3D打印结合二次翻模形成的微柱在磁场作用下实现定向可控变形
    北京理工大学宇航学院的陈少华教授课题组柴泽博士,近日在知名期刊《Soft Matter》发表了一篇高质量文章“Controllabledirectional deformation of micro-pillars actuated by a magnetic field”。研究人员在实验过程中使用了深圳摩方材料科技有限公司微尺度3D打印设备S140,该设备具有10um精度的分辨率,94*52*45mm大小的三维加工尺寸。基于该设备加工了阵列的微柱结构,通过PDMS二次倒模形成含有磁性颗粒的PDMS微柱阵列,通过磁场控制来研究微柱变形,进而研究可逆粘附、可控润湿性和方向性表面输运等特殊功能性表面的设计和研究。微柱阵列(BMF nanoArchS140 GR resin)填充磁性颗粒的柔性微柱阵列的制备工艺如图(a)所示,先通过深圳摩方(BMF)10μm精度的微立体光固化3D打印机S140打印出微米级别的微柱阵列,再倒模出纯PDMS孔洞模具,最后二次倒模获得含有磁性颗粒的PDMS微柱阵列;(b)PDMS模具的SEM图像,该模具的孔的大小与3D打印的微柱的大小相同;(c-d)从顶视图(c)和侧视图(d)观察的磁性颗粒填充的微柱阵列的SEM图像;(e)单根微柱;(f)夹角为90°时,永磁铁和微柱阵列表面之间具有不同距离的微柱变形形态;(g)距离一定时,磁体围绕固定微柱样品以半圆形旋转,微柱的变形形态。众所周知,可以通过改变微结构表面的形貌来设计特殊的表面功能。本文提出了一种通过旋转磁场控制微柱阵列方向变形的简单有效的方法。每个微柱的大变形可以通过磁场强度和方向来调整。当磁场强度固定时,微柱的变形方向由磁场方向控制。当确定磁场方向时,微柱的挠度随磁场强度的增加而增加。根据最小势能原理,进一步建立了揭示微柱大变形机理的理论模型。从理论上预测变形柱的形态与实验结果非常吻合。目前的实验技术和理论结果有利于典型功能性表面的设计和制备。例如,通过外场精准控制表面微结构的变形,实现目标表面界面粘附性和液体浸润性的可连续性调控,以及呈现梯度变化。为实现仿生壁虎脚设计,微纳器件转印,生物医学微液滴混合及方向性输运等提供技术支持。BMF nanoArchS140System
  • 淬火/变形膨胀仪(相变仪)在上海大学正式投入使用
    世界最先进的相变仪产品—德国巴赫公司的DIL805淬火/变形膨胀仪,已于2006年11月23日在上海大学顺利验收,并正式投入使用。DIL805相变仪外观雍容华贵、工艺制作精美、性能先进可靠、操作及其方便,处处绽放着顶尖级仪器的品位,备受用户的青睐。我们相信该仪器必将成为我国钢铁及合金研究领域最得力的助手。 有关此产品的详细介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。
  • Nature:形状变形的纳米磁性编码微型机器人
    磁性软体机器人已有多种应用,特别是在与人体密切相关的生物医学领域。如自折叠式“折纸”机器人可以在肠道中爬行、修补伤口、将吞下的物体取出来;胶囊状的机器人可以沿着胃的内表面滚动,进行活组织检查并运送药物。此外,科学家们还研制出了尺寸从几百微米到几厘米不等的更薄的线型机器人,它们有可能在大脑血管中穿行,以治疗中风或动脉瘤。磁性软体机器人的进一步小型化可能带来新的应用,如在小的血管中进行操作甚至操纵单个细胞,但制备这样的微型机器人并非易事[1]。 2019年11月,瑞士联邦理工学院的Cui Jizhai(现任职复旦大学) 、Huang Tian-Yun 及其同事在Nature发表了名为“Nanomagnetic encoding of shape-morphing micromachines”的文章[2],该工作使用电子束光刻技术,制造出了只有几微米大小的可磁重组机器人,通过对单个区域的纳米磁体进行设计,将形状变化指令通过编程的方式输入微型机器人,对纳米磁体施加特殊的磁场序列后,实现微型机器人的形状变化,如图一所示。图一 四片式变形微机械的设计 a.磁体磁态随尺寸增大的示意图:i.超顺磁性;ii.室温下稳定的单畴;iii.多畴态。b. 部,四个面板微机械,面板I上有520 nm×60 nm(I型)纳米磁体阵列,面板II上有398 nm×80 nm(II型)纳米磁体阵列;底部,纳米磁体阵列的相应SEM图像。c. 体积相同但长宽比不同的单畴纳米磁体的磁光克尔效应磁滞回线。d.根据矫顽力的不同选择两个磁场对微机械进行编码的示意图。e. 应用控制磁场B=15 mT时的磁性结构(I型和II型纳米磁体)和微机械折叠行为示意图,光学显微镜图像显示了所制造器件的四种不同结构。从左到右,上/下折叠的面板数为4/0、3/1、2/2(折叠方向不同的对面面板)和2/2(折叠方向相同的对面面板)。 这项工作构建了一个模块化单元的集合,这些模块化单元可以编程为字母表中的字母,此外还构建了一个微型的“鸟”,能够进行复杂的行为,包括“拍打”、“悬停”、“转弯”和“侧滑”,如图二所示。这为创造未来的智能微系统建立了一条路线,这些智能微系统可以重新配置和原位重新编程,可以适应复杂的情况。图二 折纸式的微型“鸟”与多种形状变形模式 文章中,作者使用了英国Durham Magneto Optics Ltd.公司的磁光克尔效应系统-NanoMOKE3对不同型的纳米磁体进行了磁滞回线测试,同时使用该设备的电磁铁产生的磁场对纳米磁体阵列进行了编程。NanoMOKE3可以进行微区的超高灵敏度测试,在本工作中,作者通过激光聚焦在不同的纳米磁体上获得对应的磁滞回线,如图一c所示,为微型机器人的磁学编码工作提供了帮助。图三 磁光克尔效应系统-NanoMOKE3 NanoMOKE3主要技术特点:超高灵敏度~10-12emu微区磁滞回线,激光光斑~2μm超快测试速度,1秒内可获得磁滞回线克尔角检测<0.5 mdeg纵向/横向/向克尔磁畴成像扩展无液氦低温MOKE图四 与Montana S50超精细多功能无液氦低温光学恒温器联用的低温MOKE 温度范围4.2K~350K磁场纵向>0.4T,向>0.3T 参考文献:[1] X H,zhao. et al. Nature 575, 58-59 (2019)[2] Cui, J. et al. Nature 575, 164–168 (2019).
  • 助力材料高温变形测量——钢研纳克推出YYHT系列高温引伸计
    材料在外力作用下发生形状尺寸的变化称为材料的变形,变形的大小直接影响材料的性能,因此材料变形是其力学性能的重要指标。变形的测量都是通过引伸计来实现,材料在高温环境中的变形测量需要用到高温引伸计,YYHT系列高温引伸计可以满足各种形状尺寸材料在高温环境下变形的测量需求。1、简介YYHT系列高温引伸计具有精度高、灵敏度高、稳定性好、使用方便等特性,符合JJG762、GB/T12160、ASTM E83、ISO 9513等标准中对0.5级(或者B2级)精度的要求,可以适应不同规格和尺寸试样,相比于普通的引伸计,使用调节简单便捷,基于其极低的试样接触力,YYHT系列引伸计可以应用于薄板等对表面接触力比较敏感的样品测试。其技术参数如下:精度等级0.5级引伸计标距10mm/25mm/30mm/50m/80mm或定制最大变形量±5mm/±10mm或定制使用温度室温至1200℃输出灵敏度≈2.5mV/V应变片阻值350Ω供桥电压值≤8V输出端接头常规四芯、五芯、九孔、九针或USB等插头,可根据用户需求定制初始接触力0.15N最大接触力1.27N同时钢研纳克还推出活动支架方便高温引伸计与试验机的连接,试验机无需改动可根据试样尺寸和高温炉位置调整引伸计的上下位置,调节方便,操作简单,与试验机连接稳固,刚性好。2、验证高温引伸计测量的数据直接影响材料的性能,这就要求高温引伸计测量必须准确、稳定、可靠,所以引伸计不只要满足引伸计标定器的校准要求,还需要大量的测试和试验进行验证,保证数据的准确性。以下是我们部分验证的数据。(1)与普通引伸计的一致性检验,如图所示将普通手动引伸计和YYHT系列高温引伸计同时安装在同一根试样上,测试特定位置的变形量,测试结果如下表所示:特征点Rp0.1Rp0.2Rp0.3Rp0.4YYU引伸计(mm)0.11400.16450.21570.2672YYHT引伸计(mm)0.11420.16440.21580.2675从表中可以看出YYHT系列引伸计和常用引伸计测得的变形量一致。(2)与进口引伸计的一致性检验,分别将YYHT引伸计和进口引伸计安装在同一台试验机上,在特定温度条件下分别测试同一组标准样品,应力应变曲线如下所示:其中红色和绿色线为进口引伸计所得,其余为YYHT高温引伸计所得,曲线重合度高,一致性好。通过大量,多次及不同温度区间反复测试比较,YYHT高温引伸计测试精度高,稳定性好,测试数据准确,能够完成高温环境下材料变形的测量工作。3、应用YYHT系列高温引伸计已应用于用户的材料测试工作,如图所示为某测试中心一机双YYHT高温引伸计,可以满足不同尺寸试样的高温变形测量要求。通过权威机构的校准检验,完全满足国标0.5级和美标B2级的要求,证书如下:同时也满足高温拉伸新标准GB/T228.2中对应变控制的要求,曲线如下:目前YYHT系列高温引伸计以其应用范围广,数据准确稳定,精度高,安装便捷,性价比高等特点已广泛应用于材料在高温环境下的变形测量,助力高温材料的性能测试,受到用户的一致好评。
  • 北航: 具有高运动精度和高输出力的可变形磁流体机器人
    在生物医学研究中,对生物颗粒(如细胞和生物组织)的操作,特别是捕获和运输,是各种生物应用的基础。许多工具和驱动系统被设计用来提高操作的准确性和效率。磁驱动机器人具有精确操纵粒子或生物组织的能力,在生物医学、生物工程和生物物理学领域具有重要的潜力。然而,具有预定形状的刚性机器人的变形能力是有限的,这限制了其在狭小的空间的运动。 近日,北京航空航天大学机械工程学院仿生与微纳研究所冯林副教授等研发了一种可变小型机器人,该机器人是利用具有磁性和流体性质的铁磁流体这一新型材料所研制的。该磁流体基机器人不仅可以根据不同的磁场的分布形成不同的形状,从而完成不同的任务;并且还可以借助于操作平台的疏水处理,使得磁流体基机器人与基板间的摩擦减小,进而简单高效地提高了机器人的实际输出力。图1. 通过多种形状的永磁铁产生的集中磁场改变磁流体形状进而达到搬运不同模块的目的为了证明这种磁流体基机器人所具有的且刚性机器人所欠缺的实际应用能力,作者设计了几个验证实验:1.制造不同形状的永磁体并磁化,观察不同磁场下磁流体基机器人的变形情况;2. 打印不同形状的模块,测试磁流体机器人的搬运能力;3.打印狭缝,测试机器人穿越窄缝的性能。通过采用PμSL 3D打印技术(nanoArch S140,摩方精密),实现了验证实验中的搬运模块、永磁模具及狭缝的精密制造。图2. 永磁体的制造流程及磁流体基机器人的变形图3. 磁流体基机器人在平面上的三自由度运动图4. 磁流体基机器人穿越狭缝动画及实物演示该项研究成果获得国家重点研发计划(No.2019YFB1309700)及北京新星科技计划项目(No. Z191100001119003)支持,以“Deformable ferrofluid-based millirobot with high motion accuracy and high output force”为题发表于国际期刊《Applied PhysicsLetters》(北京航空航天大学陈迪晓硕士为第一作者)。文章链接:https://doi.org/10.1063/5.0042893官网:https://www.bmftec.cn/links/10
  • 北航: 具有高运动精度和高输出力的可变形磁流体机器人
    在生物医学研究中,对生物颗粒(如细胞和生物组织)的操作,特别是捕获和运输,是各种生物应用的基础。许多工具和驱动系统被设计用来提高操作的准确性和效率。磁驱动机器人具有精确操纵粒子或生物组织的能力,在生物医学、生物工程和生物物理学领域具有重要的潜力。然而,具有预定形状的刚性机器人的变形能力是有限的,这限制了其在狭小的空间的运动。 近日,北京航空航天大学机械工程学院仿生与微纳研究所冯林副教授等研发了一种可变小型机器人,该机器人是利用具有磁性和流体性质的铁磁流体这一新型材料所研制的。该磁流体基机器人不仅可以根据不同的磁场的分布形成不同的形状,从而完成不同的任务;并且还可以借助于操作平台的疏水处理,使得磁流体基机器人与基板间的摩擦减小,进而简单高效地提高了机器人的实际输出力。图1. 通过多种形状的永磁铁产生的集中磁场改变磁流体形状进而达到搬运不同模块的目的为了证明这种磁流体基机器人所具有的且刚性机器人所欠缺的实际应用能力,作者设计了几个验证实验:1.制造不同形状的永磁体并磁化,观察不同磁场下磁流体基机器人的变形情况;2. 打印不同形状的模块,测试磁流体机器人的搬运能力;3.打印狭缝,测试机器人穿越窄缝的性能。通过采用PμSL 3D打印技术(nanoArch S140,摩方精密),实现了验证实验中的搬运模块、永磁模具及狭缝的精密制造。图2. 永磁体的制造流程及磁流体基机器人的变形图3. 磁流体基机器人在平面上的三自由度运动图4. 磁流体基机器人穿越狭缝动画及实物演示该项研究成果获得国家重点研发计划(No.2019YFB1309700)及北京新星科技计划项目(No. Z191100001119003)支持,以“Deformable ferrofluid-based millirobot with high motion accuracy and high output force”为题发表于国际期刊《Applied PhysicsLetters》(北京航空航天大学陈迪晓硕士为第一作者)。文章链接:https://doi.org/10.1063/5.0042893官网:https://www.bmftec.cn/links/10
  • 高铁检测仪器发布高温维卡热变形温度试验机新品
    1 机台说明: 本试验机用于测定塑料试片加负荷(三点加荷下的弯曲应力)的变形温度(负荷变形温度的测定)和塑料样品在规定的受控测试条件下,发生规定的针穿透现象时的温度(塑料Vicat软化温度测试法),最高测试温度可达500℃。2 原理:? HDT热变形温度的测定法:标准试样在规定荷重下,平放位置(首选)或侧向位置,承受三点弯曲而产生曲折应力,在均匀升温速率(120℃/Hr),测试达规定变形量时温度;? 塑料Vicat软化温度测试法:使用一选定的均匀温度上升率(50℃或120℃/Hr)于一规定的负荷下,横截面积为1平方毫米的平头针穿透一热塑性样品时的温度.此测试方法在质量控制,发展和塑料材料的表现特性领域中有比较好的作用,可以用此测试方法取得的数据与热塑性材料的加热软化质量相比较。3 符合标准:本机器符合ASTM-D648,ASTM-D1525; ISO-75 / ISO-306;DIN 53461 / DIN53460相关标准要求制作。创新点:创新点:温度:常温~500℃,采用特殊的空气动力介质加热系统。目前国内外的维卡软化点试验机:常温~300℃,油浴加热。有如下优势:1.加热方式升级:避免了使用油介质,在升温速率较高的情况下,油会出现分解、冒烟、烧焦的现象,长期使用会出现杂质,影响油的传热,长期使用会出现趋势性数据偏离;2.数据稳定:传热介质的消耗量很小,不会因温度变化而分解,数据稳定;3.使用范围更广:可以测试航空航天用特种塑料,如PEK(聚醚酮)、PEEK(聚醚醚酮)、PI(聚酰亚胺)等,也可用于常规塑料。4.材料优势:有些高分子材料在油浴中会溶胀或者溶解,采用HV-5000则没有任何影响。高温维卡热变形温度试验机
  • 全自动热变形维卡软化点测试仪实机展示:让测试更加简单!
    【自动 连续 温控 安全 智能】全自动热变形维卡软化点测试仪实机展示:让测试更加简单! Easy!!”◆ 独特全自动机械手设计,可自动进行试样加载、自动测试、自动冷却、自动回收、自动更换样条,可连续测试多达120个样品,实现夜间无人化运行模式; ◆ 内置冷冻机,采用双管冷却系统,具有稳定的温升精度,可在30分钟内,由250℃快速冷却至23℃,便于快速开始下一个试验; ◆ 压力杆尖端可更换,系统可同时进行DTUL测试和VICAT测试,此外还可以专门进行球压测试。适配标准:GB/T1633,1634;ISO-75-1,306;ASTM-D648;JIS-K7191-1;K7206;D1525;IEC-335-1。
  • 俞书宏院士团队和吴恒安教授团队成功揭示淡水河蚌铰链中可变形硬组织耐疲劳机制
    脆性材料作为结构或功能部件被广泛应用于航空航天、电子器件和组织工程等领域。由于人工脆性材料对微裂纹和不易察觉的缺陷很敏感,在长时间的循环载荷作用下,材料很容易累积损伤产生疲劳裂纹,进而存在失效的风险。随着可折叠穿戴设备的发展,对具有高疲劳抗性的可变形功能材料的需求日益凸显。通过模仿典型的生物矿物材料如珍珠母、骨骼等的结构设计可以提升脆性材料疲劳抗性,但这常依赖于疲劳裂纹扩展过程中增韧行为,然而一旦裂纹开始扩展,就会对器件的性能产生不可逆的影响,因此寻找并开发新的耐疲劳结构模型对未来可变形功能材料的设计制备具有重要的科学意义和应用价值。中国科学技术大学俞书宏院士团队和吴恒安教授团队成功揭示了双壳纲褶纹冠蚌铰链内的可变形生物矿物硬组织的耐疲劳机制,提出了一种多尺度结构设计与成分固有特性相结合的耐疲劳设计新策略,为未来耐疲劳结构材料的合理创制发展提供了新的见解。研究成果以“Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicata”为题,于6月23日发表在国际顶尖学术期刊《Science》上。审稿人评价称:“这份手稿展示了一个非常有趣的工作”、“这是一份令人兴奋的稿件。它集成了诸多表征技术来理解双壳纲铰链组织的显著疲劳抗性”、“这无疑激发了对生物复合材料的进一步研究,以设计抗疲劳性能增强的新材料”。同期《Science》观点栏目(Perspectives)以“A bendable biological ceramic”为题发表了评述(Science 2023, 380, 1216-1218),评述称“通过整合不同尺度的原理——从铰链的整体结构到单个晶体的原子结构——孟等人揭示了大自然如何主要从脆性成分中创造出抗疲劳、可弯曲、有弹性的结构。这些跨尺度原理要求在最精细的尺度上精确,而软体动物如此精确地沉积壳的细胞和分子机制是一个正在探索的领域”;“匹配生物精细控制对于对生物启发材料感兴趣的人类工程师来说是一个特别的挑战,正如开发模仿珍珠质强度和韧性的复合材料所面临的困难所证明的那样”;“尽管孟等人研究的力学性能与这种特殊生物体的需求相匹配,这些原理如何在更广泛的系统范围内得到完善,这是令人兴奋的前景。”论文共同第一作者为中国科学技术大学合肥微尺度物质科学国家研究中心博士研究生孟祥森,近代力学系周立川博士(现就职于合肥工业大学)、化学系刘蕾博士。我校俞书宏院士、吴恒安教授和茅瓅波副研究员为论文通讯作者。双壳纲动物褶纹冠蚌(Cristaria plicata)又称鸡冠蚌,是一种常见的淡水蚌类。为了满足生存需求(滤食、运动等),其外壳在一生中需要进行数十万次的开合运动,而连接两片外壳的铰链部位也会经历反复的受压和变形,表现出优异的耐疲劳性能。本工作中,研究人员揭示了铰链部位中的折扇形矿物硬组织所蕴含的跨尺度耐疲劳设计原理。从计算机断层扫描图(CT)和剖面光学照片可以看出,铰链可以分为两个不同的区域:外韧带(OL)和折扇形矿物硬组织(FFR)(图1,A和B)。研究人员首先观察了这两个区域在双壳开合过程中的运动行为(图1,D和E),并结合有限元分析(FEA),明晰了不同区域所承担的力学角色。在闭合过程中,OL发生拉伸,承担主要的周向应力并储存大部分弹性应变能;FFR区域在周向弯曲变形,并在受限的径向变形下提供强有力的径向支撑用以固定OL(图1,F到H)。图1(A)褶纹冠蚌和截面照片;(B)铰链切片照片和CT重构图;(C)在正常开合和过载状态下的疲劳测试结果;(D)开合前后铰链各区域形状变化及其轮廓图;(E)有限元模型对应的开合前后的铰链各区域形状变化及其轮廓图;(F)铰链有限元分析模型示意图;(G)开合状态下铰链各区域周向应力分布;(H)开合状态下铰链各区域径向应力分布。研究人员对FFR在不同尺度上的观察发现,其具有跨尺度多级结构特征。在宏观尺度上,FFR的扇形外形能使其在OL和外壳之间实现有效的载荷传递。进一步的深入观察发现,FFR由弹性有机基质和嵌入其中的脆性文石纳米线组成。文石纳米线直径约为100-200纳米,线的长轴方向在形貌上和扇形的径向方向一致,在晶体学上纳米线沿002晶向取向(图2,A到H)。考虑到文石晶体在002晶向的压缩模量远大于其他晶向,这种微观形貌和晶体学取向上的一致性意味着FFR能有效地为OL的拉伸提供支撑(图2,I和J)。这一结果也通过压缩力学和FEA模拟进行了进一步的验证。此外,FEA模拟结果显示,这种微米尺度上的软硬复合微观结构在压缩、拉伸、剪切三种受力状态下能够进行协调变形,在这个过程中有机基质承担了大部分的压缩和剪切应变,极大地减少了材料内部的应力集中,从而避免了文石纳米线侧向断裂,降低了FFR发生疲劳损伤的可能性。图2(A)FFR在纵向上的自然断面扫描图;(B)FFR在横向上的自然断面扫描图;(C和D)FFR脱钙处理之后的扫描图;(E和F)文石纳米线中的孪晶结构透射电子显微图片;(G和H)文石纳米线沿长度方向上的晶体学特征;(I和J)整个FFR中纳米线在形貌上和晶体学上的取向分析示意图。从FFR的横截面观察,文石纳米线呈近似六边形,研究人员通过高分辨透射电子显微镜也在纳米线中发现了纳米孪晶结构,考虑到文石纳米线沿002方向生长,这一结构可能与文石晶体Pmcn空间群易形成(110)孪晶界密切相关。这种沿纳米线纵向方向的孪晶结构的存在,在纳米尺度上大大强化了纳米线抗弯曲断裂的能力(图2,E和F)。与典型的天然硬质生物矿物材料(如骨骼、牙釉质)以及人工材料(如金属、水凝胶)等相比,FFR所展现的特殊之处在于它能在承担较大周向变形的同时,保持长时间的结构功能的稳定。这项研究从宏观到微纳米尺度上揭示了FFR的跨尺度多级结构设计原则(图3)。图3 典型生物和人工结构材料的耐疲劳设计机制。FFR中所具备的跨尺度结构特征使其在可变形能力上明显优于典型的生物矿物如牙釉质和骨骼,与常见的人工弹性体材料相比,FFR也一定程度保持了其高硬度和刚度。这项研究揭示了含脆性基元的生物矿物材料在较大形变下的耐疲劳设计新机制,填补了国际上含脆性组元的仿生耐疲劳材料设计的空白,所提出的整合跨尺度结构特征与功能特性的设计策略,能够在不同尺度上充分发挥每种成分的固有特性,从而实现材料整体性能的优化。这种兼顾变形性和耐疲劳性的跨尺度设计原则有望为未来功能材料的仿生设计和创制提供崭新思路。该研究得到了国家重点研发计划、新基石科学基金会、国家自然科学基金重点项目和中国科学院青促会等项目的资助支持。论文链接:https://www.science.org/doi/10.1126/science.ade2038Featured by Science Perspectives:https://www.science.org/doi/10.1126/science.adi5939
  • 上海交大曹骎团队成功解析额颞叶变性病人脑组织冷冻电镜结构
    近日,《Nature》以“Amyloid fibrils in disease FTLD-TDP are composed of TMEM106B not TDP-43”为题在线发表了上海交通大学Bio-X研究院长聘教轨副教授曹骎与美国加州大学洛杉矶分校David Eisenberg课题组等的合作研究成果,解析了额颞叶变性病人脑组织中提取的淀粉样纤维的高分辨率结构,为该疾病的病理机制研究提供了重要信息。图1 Nature文章封面淀粉样纤维(amyloid fibrils)是由蛋白质发生液-固相变生成的聚集产物,与人类疾病,尤其是神经退行性疾病有着紧密的联系,如Aβ和tau纤维之于阿尔兹海默症,α-synuclein纤维之于帕金森氏症等。额颞叶变性(frontotemporal lobar degeneration, FTLD)是仅次于阿尔兹海默症及帕金森氏症的第三大神经退行性疾病,早先的研究指出FTLD病人脑组织中也存在淀粉样纤维,然而这一结论并未得到分子层面的证实,同时形成这些纤维的蛋白也未得到鉴定。图2 TMEM106B纤维结构解析(a)本研究中FTLD病人的脑切片免疫用诊断(上)及提取的淀粉样纤维的负染电镜照片(下)。(b)纤维冷冻电镜数据处理,包括二维分类(左)和三维重构(右)。(c)解析的纤维结构。为揭示FTLD与淀粉样纤维的关联,此项工作尝试从40个患有FTLD-TDP(一种FTLD的主要亚型)的捐献者脑组织中提取淀粉样纤维,最终在其中38个患者中发现了纤维,成功从其中4个患者中提取了纤维,并使用冷冻电镜三维螺旋重构的技术解析了这些纤维的近原子分辨率的结构(最高分辨率为0.29纳米)。出人意料的是,纤维的结构显示,这些纤维来自于一种从未被报道可以发生淀粉样聚集的蛋白—TMEM106B。此工作证实了FTLD是一种淀粉样纤维相关疾病,为淀粉样纤维蛋白家族拓展了一个全新的成员,同时为FTLD的病理机制提出了一个全新的假说,即TMEM106B的纤维化参与了FTLD的发病过程,并可能通过抑制TMEM106B的纤维化治疗这一疾病。曹骎博士为论文的共同第一作者,另一位第一作者是Eisenberg课题组博士研究生江逸潇。论文的合作单位有美国加州大学洛杉矶分校、霍华德-休斯研究所、上海交通大学以及美国Mayo Clinic研究所。曹骎博士2008年毕业于上海交通大学生物工程专业,获工学学士学位;2013年毕业于北京大学生物化学与分子生物学专业,获理学博士学位;2013年至2021年在加州大学洛杉矶分校从事科学研究,任博士后及助理研究员;2021年5月全职回国工作,加入上海交通大学Bio-X研究院,任长聘教轨副教授、课题组长、博士生导师。主要研究方向为蛋白相分离相变的分子机理研究及抑制剂设计,代表性论著包括Nature Chemistry (2018), Nature Structural & Molecular Biology (2018, 2019, 2020, 2021)等。论文链接:https://www.nature.com/articles/s41586-022-04670-9
  • 北航《Applied Physics Letters》: 具有高运动精度和高输出力的可变形磁流体机器人
    在生物医学研究中,对生物颗粒(如细胞和生物组织)的操作,特别是捕获和运输,是各种生物应用的基础。许多工具和驱动系统被设计用来提高操作的准确性和效率。磁驱动机器人具有精确操纵粒子或生物组织的能力,在生物医学、生物工程和生物物理学领域具有重要的潜力。然而,具有预定形状的刚性机器人的变形能力是有限的,这限制了其在狭小的空间的运动。 近日,北京航空航天大学机械工程学院仿生与微纳研究所冯林副教授等研发了一种可变小型机器人,该机器人是利用具有磁性和流体性质的铁磁流体这一新型材料所研制的。该磁流体基机器人不仅可以根据不同的磁场的分布形成不同的形状,从而完成不同的任务;并且还可以借助于操作平台的疏水处理,使得磁流体基机器人与基板间的摩擦减小,进而简单高效地提高了机器人的实际输出力。图1. 通过多种形状的永磁铁产生的集中磁场改变磁流体形状进而达到搬运不同模块的目的为了证明这种磁流体基机器人所具有的且刚性机器人所欠缺的实际应用能力,作者设计了几个验证实验:1.制造不同形状的永磁体并磁化,观察不同磁场下磁流体基机器人的变形情况;2. 打印不同形状的模块,测试磁流体机器人的搬运能力;3.打印狭缝,测试机器人穿越窄缝的性能。通过采用PμSL 3D打印技术(nanoArch S140,摩方精密),实现了验证实验中的搬运模块、永磁模具及狭缝的精密制造。图2. 永磁体的制造流程及磁流体基机器人的变形图3. 磁流体基机器人在平面上的三自由度运动图4. 磁流体基机器人穿越狭缝动画及实物演示该项研究成果获得国家重点研发计划(No.2019YFB1309700)及北京新星科技计划项目(No. Z191100001119003)支持,以“Deformable ferrofluid-based millirobot with high motion accuracy and high output force”为题发表于国际期刊《Applied PhysicsLetters》(北京航空航天大学陈迪晓硕士为第一作者)。文章链接:https://doi.org/10.1063/5.0042893
  • 俄罗斯科研人员用纳米圆盘制成的柔性光学传感器可以监测结构中的变形
    俄罗斯克拉斯诺亚尔斯克科学中心和西伯利亚联邦大学的科研人员从理论上研究纳米圆盘二维光栅光学特性,并提出可监测结构形变的光学传感器模型。该研究成果发表在《纳米材料》杂志上。该设备的工作原理基于在变形过程中结构谐振波长的变化。研究人员发现,光栅在两个相互垂直的方向被压缩和拉伸时的光学反应不同。被压缩时,共振波长没有变化,但被拉伸时,可以观察到产生移动。这种器件的灵敏度由结构变形系数相对于谐振波长的差异决定。该设备应用范围决定了其必须具有高弹性。因此,研究人员建议将纳米颗粒置于凝胶基质中或植于柔性基材上,例如聚二甲基硅氧烷薄膜上。利用这些高弹性材料,使传感器看起来像软物质或活体组织。它能使传感器像 “活体植物”一样,根据光栅的变化和相应的光谱偏移,监测结构变形。这种结构利用其光栅变形进行监测,而纳米粒子本身没有发生改变,从而保证其高灵敏度。采用此种方法,极大减少了设备技术难度,并降低了成本。
  • 东方德菲--旋转滴方法研究界面扩张流变性质
    北京东方德菲仪器有限公司SVT20N视频旋转滴张力仪使用 &ldquo 旋转滴方法研究界面扩张流变性质&rdquo 的文章 在物理化学学报上发表 我公司代理的德国Dataphysics公司生产的SVT20N视频旋转滴张力仪是使用旋转滴方法研究界面扩张流变性质的仪器,相对于普遍应用的Langmuir槽法和悬挂滴方法,它增加了转速振荡的功能,可以更精确地测量超低界面张力体系的扩张流变性质。 中国科学院理化技术研究所利用我公司SVT20N视频旋转滴张力仪,采用旋转滴方法,研究2-丙基-4,5-二庚烷基苯磺酸钠(DHPBS)在癸烷-水界面上的扩张流变性质的文章在物理化学学报上发表。有关文章的信息如下: 旋转滴方法研究界面扩张流变性质 张磊1 宫清涛1 周朝辉1 王武宁2 张路1 赵濉1 余稼镛1 (1中国科学院理化技术研究所,北京 100080;2 北京东方德菲仪器有限公司,北京 100089) 摘要:采用旋转滴方法,对2-丙基-4,5-二庚烷基苯磺酸钠(DHPBS)在癸烷-水界面上的扩张流变性质进行了研究,较为详细地介绍了SVT20N视频旋转滴张力仪的装置和实验方法,考察了油滴注入体积、基础转速及振荡振幅等试验条件对扩张模量的影响。研究结果表明,旋转滴方法是一种研究扩张流变性质的新型手段,在涉及低界面张力现象的领域具有良好的应用前景. 关键词:旋转滴方法; 烷基苯磺酸盐; 界面扩张性质; 扩张模量 Study of Interfacial Dilational Properties by the Spinning Drop Technique ZHANG Lei1 GONG Qing-Tao1 ZHOU Zhao-Hui1 WANG Wu-Ning2 ZHANG Lu1 ZHAO Sui1 YU Jia-Yong1 (1 Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100080, p.R.China 2 Beijing Eastern-Dataphy Instruments Co.,Ltd.,Beijing 100089, p.R.China) Abstract: The dilational viscoelastic properties of 4,5-dihepty-2-propylbenzene sulfonate (DHPBS) at the decane/water interface were investigated with a spinning drop tensiometer. The instrument of the spinning drop tensiometer SVT20N and the corrrlative experimental method were discussed in detail. The influence of oil drop volume, rotational speed, and oscillating amplitude on the interfacial dilational modulus were expounded. Experimental results show that spinning drop analysis is a novel method for probing interfacial dilational properties and has good prospects for application in the measurement of low interfacial tension phenomena. Key word: Spinning drop analysis Sodium alkyl benzene sulfonate Interfacial dilational property Dilational modilus
  • 功能强大!科学家用CRISPR制造可变形智能材料
    p style="text-align: justify text-indent: 2em "还有什么是CRISPR不能做的吗?科学家已经使用这种基因编辑工具制造了大量基因改造生物,同时还用它来追踪动物发育、检测疾病以及控制害虫。/pp style="text-align: justify text-indent: 2em "如今,他们又发现了这种基因编辑工具的另一个应用——span style="color: rgb(0, 176, 240) "使用CRISPR创建智能材料,后者能够根据指令改变自己的形状。/span/pp style="text-align: justify text-indent: 2em "研究人员在日前出版的美国《科学》杂志上发表报告称,这种可变形的材料能够用来运送药物,并为几乎所有的生物信号“站岗放哨”。这项研究由剑桥市麻省理工学院生物工程师James Collins主持。/pp style="text-align: justify text-indent: 2em "Collins的团队研究的是由脱氧核糖核酸(DNA)链连接在一起的充满水的高分子聚合物(被称为DNA水凝胶)。为了改变这些材料的性质,Collins和他的团队采用了一种形式的CRISPR,后者使用一种叫做Cas12a的DNA剪切酶。(基因编辑器CRISPR-Cas9使用Cas9酶在需要的位置剪切DNA序列)/pp style="text-align: justify text-indent: 2em "Cas12a酶可以被编程来识别一种特定的DNA序列。这种酶会切断其目标的DNA链,然后切断附近的单链DNA。/pp style="text-align: justify text-indent: 2em "这一特性使得研究人员能够构建一系列由CRISPR控制的水凝胶,其中包含一个目标DNA序列以及单链DNA——当Cas12a识别出一个刺激物中的目标序列后,这些单链DNA就会断裂。/pp style="text-align: justify text-indent: 2em "单个DNA链的断裂触发水凝胶改变形状,或者在某些情况下完全溶解,进而释放有效载荷。/pp style="text-align: justify text-indent: 2em "例如,作为一项治疗的一部分,出于对刺激的响应,研究小组创造的这些水凝胶可以释放酶、药物甚至人类细胞。/pp style="text-align: justify text-indent: 2em "Collins希望这种水凝胶能被用来创建智能的治疗方法,例如在肿瘤存在时释放抗癌药物,或者在感染部位周围释放抗生素。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "研究人员还将CRISPR控制的水凝胶集成到电子电路中。/span/pp style="text-align: justify text-indent: 2em "在一项尝试中,他们把水凝胶放入一个名为微流体室的小芯片状的装置中,这个装置与一个电子电路相连。当检测到来自包括埃博拉病毒和耐甲氧西林金黄色葡萄球菌等在内的病原体的遗传物质时,作为响应,该电路将会被关闭。/pp style="text-align: justify text-indent: 2em "研究团队甚至利用水凝胶开发了一个诊断工具原型——当它在实验室样本中识别出埃博拉病毒的遗传物质时便会发送无线电信号。如果一名团队成员在背包里携带了无线电探测器,他只需简单地走近这些样本就能识别出其中的阳性样本。/pp style="text-align: justify text-indent: 2em "纽约州康奈尔大学伊萨卡分校生物工程师Dan Luo说,CRISPR水凝胶是对其他响应性水凝胶的一次改进,因为科学家可以很容易地确定是什么触发了材料的变化。过去创造智能水凝胶时所使用的酶要么不能切割特定的DNA 序列,要么只能切割少量特定的序列,进而限制了它们的适应性。/pp style="text-align: justify text-indent: 2em "“我们现在正处于CRISPR的时代。”Collins说,“它已经接管了生物学和生物技术。我们已经证明,它现在可以进入材料和生物材料领域。”/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "CRISPR又被称为基因剪刀,是生物科学领域的游戏规则改变者,这种突破性的技术通过Cas9酶发现、切除并取代DNA的特定部分。/span这种技术的影响极其深远,从改变老鼠皮毛的颜色到设计不传播疟疾的蚊子和抗虫害作物,再到修正镰状细胞性贫血等各类遗传疾病等等。该技术十分精准、廉价、易于使用,并且非常强大。/p
  • 非变性质谱在生物制药完整蛋白分析中的应用
    p  何为非变性质谱?就是选用温和的溶液体系及质谱条件,使蛋白保持在非变性状态下被分析。听到这,有些小伙伴可能会一头雾水:师兄师姐教我处理蛋白质样品的时候,第一步就是要变性啊,怎么现在又不要变性了?/pp  在通常的蛋白质相关分析中,为了破坏蛋白质的三维立体空间结构,便于酶解等操作,会通过加热或是加入高浓度的变性试剂(如尿素、盐酸胍等),使蛋白质变性 另外,对于常用的分离手段——反相色谱来讲,其流动相的酸性pH条件与高有机相同样也会使蛋白质变性。当需要对蛋白质中的非共价结合进行研究时,为了避免非共价结合被强烈的变性条件所破坏,则需在非变性的液相-色谱条件下(通常为50mM醋酸铵,pH=7的中性体系)进行研究 另外,对于组成较为复杂的蛋白样品,在非变性条件下分析时,由于体系中质子数减少,所以蛋白电荷态数目也会相应减少,电荷态之间的相互重叠度也会下降,进而减少复杂组分之间的相互影响,从而能够得到复杂蛋白样品中每个组分的分子量信息(图1)。/pp style="TEXT-ALIGN: center"img title="图1_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/56171fe8-be7c-4cc8-a672-814a9fe87e30.jpg"//pp style="TEXT-ALIGN: center" strong图1/strong 同一样品分别于变性及非变性条件下进行分子量测定的原始谱图/pp  目前,strong非变性质谱技术主要应用在两个方面/strong:一是strong生物制药领域/strong,通过打开单克隆抗体链间二硫键后在Cys位点上偶联小分子药物(Cys-ADC)的完整分子量分析,此类药物的链间仅靠非共价力结合,故变性条件下各条链会分离,无法测得其完整状态的分子量 另一应用方向为strong研究蛋白质多聚体/strong,非变性条件下不仅可以保持各个亚基间的非共价相互作用,同时由于中性条件更接近生理状态,得到的结果更具意义。/pp  现在,非变性质谱与氢氘交换、X-ray衍射、核磁共振、冷冻电镜和cross-linking等技术联合使用、互为补充,已经越来越多的被应用在结构生物学、生物医药等领域的研究中。本期文章将会重点介绍非变性质谱在治疗性生物医药制品完整分子量测定中的研究,下期文章将会侧重介绍非变性质谱用于蛋白复合物的研究进展。/ppspan style="COLOR: #002060"strongOrbitrap超高分辨质谱:非变性质谱研究的理想平台/strong/span/pp  古人云:工欲善其事,必先利其器。要想研究做得好,趁手工具不可少!针对于非变性质谱研究中的需求,我们在Orbitrap质谱平台上对相关参数进行了优化,包括离子源区脱溶剂能量、质量范围的扩展以及高质荷比离子传输效率的优化等,使Orbitrap在固有的高分辨率、高质量精度及高灵敏度基础上,在非变性质谱领域也能有出色表现。/pp style="TEXT-ALIGN: center"img title="图2_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/caeec8f3-896f-4e02-a44a-84aae9ecd287.jpg"//pp style="TEXT-ALIGN: center"  strong图2/strong Orbitrap质谱平台用于非变性质谱分析/pp  上文中提到,在生物制药领域中,会通过分子工程设计,在单克隆抗体的特定氨基酸上通过化学反应,偶联上小分子治疗药物,通过单克隆抗体的靶向识别功能将小分子药物精确带至病变细胞处并释放,达到精确给药、减少毒副作用的目的,这类药物被称作抗体药物偶联物(Antibody Drug Conjugates,ADCs)。在这类药物中,通过将单抗链间二硫键打开从而在Cys位点上偶联药物的Cys-ADC,由于其链间仅靠非共价力结合,故需在非变性质谱条件下才能对其完整分子量进行测定(图3)。/pp style="TEXT-ALIGN: center"img title="图3_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/270ff8dd-d5c1-442b-baf1-f287fcb557b9.jpg"//pp style="TEXT-ALIGN: center" strong 图3/strong Cys-ADC结构示意图/pp style="TEXT-ALIGN: center"  图4展示了使用非变性质谱平台对Cys-ADC进行完整分子量测量的结果。由图中不难发现,使用体积排阻色谱(SEC),可以将单克隆抗体与其他杂质分离开,而Orbitrap质谱平台能够得到基线分离、信噪比高的原始谱图。经数据处理软件解卷积处理后,可见偶联了0/2/4/6/8个小分子药物的簇峰分布,符合Cys-ADC的典型分布特征 解卷积后计算所得该ADC的药物/抗体比值(Drug to Antibody Ratio, DAR),与之前报道过的DAR值相符。/pp style="TEXT-ALIGN: center"img title="图4_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/b494de8a-6ac5-42cf-ad12-d84637e32bef.jpg"//pp style="TEXT-ALIGN: center"  strong图4 /strong使用非变性质谱平台对Cys-ADC进行完整分子量测量。/pp style="TEXT-ALIGN: center"  (上),原始色谱/质谱图 (下),解卷积后谱图。/pp  作为对照,在变性条件下也对同一个样品进行了分子量测定(图5),发现链间的非共价结合在强烈的变性条件下均被破坏,只能观察到部分ADC的分子量信息。该实验进一步说明了在非变性条件下对Cys-ADC进行分子量测定的必要性。/pp style="TEXT-ALIGN: center"img title="图5_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/46b85220-b769-47dc-b534-f92c93b56cff.jpg"//pp style="TEXT-ALIGN: center"  strong图5/strong 变性质谱条件下对Cys-ADC进行分子量测量。/pp style="TEXT-ALIGN: center"  (上),原始色谱/质谱图 (下),解卷积后谱图。/pp  对于常见的另外一种ADC——Lys-linked ADC,虽然其小分子药物与单克隆抗体是通过共价键相结合,但偶联上小分子药物后,ADC的复杂度大大增加,此时若在非变性条件下进行分子量测定,可以减少信号之间的干扰,得到更加准确的测量结果(图6)。/pp style="TEXT-ALIGN: center"img title="图6_20170406090915_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/7c9e60f0-f01a-45eb-85eb-f9dceece9c46.jpg"//pp style="TEXT-ALIGN: center"  ▲非变性条件可减少复杂组分间信号重叠/pp style="TEXT-ALIGN: center"img title="非变性2_20170406090518_副本.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/e634be51-bf68-49f2-b7be-e205227a7242.jpg"//pp style="TEXT-ALIGN: center"  ▲非变性条件下Lys-ADC完整分子量测量结果/pp style="TEXT-ALIGN: center"  strong图6 /strong使用非变性质谱平台对Lys-ADC进行完整分子量测量。/pp  strong小结/strong/pp  本期我们对非变性质谱技术的原理、适用范围进行了介绍,并以Cys-ADC与Lys-ADC样品的完整分子量测量为例展示了该方法的应用,不知道小伙伴们有没有对非变性质谱技术有个初步的了解呢?下期我们将会介绍该技术在蛋白复合物研究中的应用,各位看官走过路过不要错过,我们下期见!/pp  参考文献/pp  [1] Dabaene et al., Anal Chem. 2014, Nov 4 86 (21):10674-83./pp /p
  • 《食用变性淀粉》国家标准通过审定
    3月12日,经国家标准委批复,由中国商业联合会提出、诸城市兴贸玉米开发有限公司等11家单位负责起草的《食用变性淀粉》国家标准在诸城通过审定。  变性淀粉是原淀粉经过某种方法处理,不同程度地改变其原来的物理或化学特性后的产品。由于变性淀粉具有许多优良的性能,所以被广泛应用于食品、纺织、造纸、饲料等诸多领域,在食品中被广泛用于饮料、冷冻米面食品、调味品、糖果等。目前,美国、加拿大、欧洲等发达国家和地区对食品中使用变性淀粉都制定了相关条款,规定了食品中使用变性淀粉的品种和使用量。这次《食用变性淀粉》国家标准的审定,为确保变性淀粉作为食品添加剂的安全性提供了保障。
  • 非变性质谱代谢组学鉴定金属结合化合物
    大家好,本周为大家介绍的是一篇发表在Nature Chemistry上的文章Native mass spectrometry-based metabolomics identifies metal-binding compounds1,文章通讯作者是来自美国加州大学斯卡格斯药学和药物科学学院的Pieter C. Dorrestein教授。生命活动的正常运行离不开金属的帮助,微生物获取金属的一种常见策略是通过生产小分子电离团来结合金属并形成非共价复合物。尽管结合金属的小分子具有各种生理功能和潜在的药学应用,在复杂生物成分(如微生物培养提取物)中找到金属结合化合物仍具有挑战。由于小分子-金属结合位点是多样的,金属结合情况必须通过实验来确定,常用的实验方法有电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)、X射线荧光光谱(XRF)、紫外-可见吸收光谱和核磁共振(NMR)等方法,这些方法通常通量较低,且在小分子成分不确定和金属种类复杂的情况下无法判断小分子-金属结合情况。为了发现新的小分子-金属复合物,本文开发了一种非靶向LC-MS/MS方法,结合非变性质谱(native MS)和一种新的计算工具离子识别分子网络,通过相关性分析、用户定义的质量差异和MS/MS相似性匹配相关化合物。该方法能够在复杂的生物样品中筛选金属结合化合物,作者把这个方法称为非变性质谱代谢组学。一、非变性代谢组学概念小分子非靶向分析采用的萃取、样品制备和LC-MS/MS方法通常在低pH值、高比例有机相和低金属浓度的条件下,这些条件不利于金属络合。因此作者采用了非变性质谱的实验思路,考察了在较高的pH值下,小分子与金属的结合比例较高,并开发了一个两步非变性ESI-LC-MS/MS工作流程,该流程具备在线柱后pH调节和金属引入的能力(图1),在金属引入后有足够的时间形成小分子-金属复合物。使用MZmine和GNPS中的计算离子身份分子网络(IIMN)来分析数据。该实验流程是作者开发的第二代方法,此前的第一代方法使用的是双管注射泵(double-barrel syringe pump)注射氢氧化铵溶液,随后注射一种或多种金属盐。二代方法与一代的区别在于使用了HPLC二元泵进行乙酸铵溶液的补液过程,使溶剂组成和梯度更稳定。图1. 基于非变性质谱的代谢组学实验流程。二、方法考察作者首先制备了市售的铁载体标准混合物,即耶尔森菌杆菌素(1)、弧菌杆菌素(2)、肠杆菌素(3)、高铁环六肽(7)和红酵母酸(6),编号与图2相对应。标准品通过HPLC分离,然后通过第一代装置进行液相色谱后pH调节和过量(毫摩尔)氯化铁注入,仅在铁注入后观察到每种铁载体的三价铁加合物(图2a)。随后,作者进行了以下的考察:①考察了加和物峰面积呈现铁的浓度依赖性,但不完全与铁载体本身对铁的亲和力相对应,这可能由于每种载体的电喷雾效率不同以及流动相溶液组成的变化,因此作者开发了带有补流泵的第二代装置,可减少由梯度导致的溶剂组成的变化,并将有机溶剂浓度降低约50%。②考察了铁载体与铁的加和是否是非特异性加和,将能与铁结合的高铁色素分子与一系列不能结合铁的其他分子混合,同样实验流程下发现只有高铁色素结合了铁,证明加和物的形成是特异性结合(图2b)。③考察了载体的金属选择性,向载体加入生理水平(微摩尔)的金属混合物,包括铁、铜、钴、镍、锌和锰盐,发现载体对金属的选择性与文献报道一致,例如两种铁载体对铁的选择性都高于其他金属;两个相似的物质的区分,去铁胺B(DFB)可与铜结合,而去铁胺E(DFE)不能。图2. 液相后注入金属法在标准铁载体样品中的测试。接着,作者将此方法应用于谷氨酰杆菌JB182的培养提取物。该微生物是从液体奶酪培养基中分离出来的,而奶酪是一个缺铁的环境。作者利用非变性代谢组学工作流程,从培养提取物中观察到未结合铁的去铁胺E和结合了三价铁的铁胺E。去铁胺E是使用IIMN观察到的唯一结合铁的分子(图3),检测到的其他分子都不是铁结合的。图3. 谷氨酰杆菌JB182培养提取物的非变性代谢组学测试。a. 去铁胺E是使用IIMN观察到的唯一结合铁的分子;b. 标准液相方法鉴定到的去铁胺E大多没有结合金属,其3.03分钟处的MS1为图d;c. 液相后注入铁鉴定到的去铁胺E结合了金属,其3.05分钟处的MS1为图e。作者用同样的方法测试了大肠杆菌Nissle 1917提取物,并在液相后将pH调整为7(模仿大肠杆菌胞质pH),发现了一些结合铁的载体分子(图4a)及其相应的铁复合物(图4b-d),除图4标注的三种,还存在一些yersiniabactin和aerobactin的衍生物也能结合铁,共发现了至少15种额外的铁载体。衍生物的发现也说明了IIMN识别结构相似性的能力,且修饰也通常与生物合成或代谢有关。除了研究生理条件下的铁结合外,作者也尝试鉴定了锌结合分子,因为大肠杆菌Nissle的锌获取机制尚未完全阐明。使用本文的方法,作者发现了yersiniabactin及其许多衍生物也与锌结合,包括HPTzTn-COOH,这种结合也通过NMR进行了辅助验证。由此可推断yersiniabactin通过获取锌来逃避抗菌蛋白对锌的螯合,增强大肠杆菌Nissle在发炎的肠道中繁殖的能力。此外,作者还测试了比大肠杆菌Nissle基因组大十倍的酒用真菌Eutypa lata,也发现了结合铁的分子衍生物(图4e-f)图4. 非变性代谢组学方法用于鉴定细菌和真菌培养提取物。最后,作者将本方法应用到环境样品中,测试该方法是否可以在超复杂样品中识别金属结合化合物。作者分析了2017年6月浮游植物爆发期间在加州海流生态系统中收集的固相萃取的表层海洋样本。表层海水中的溶解有机质(dissolved organic matter,DOM)是十分复杂的样本,在液相后调节pH至8后,鉴定到了软骨藻酸为铜结合分子,与文献报道的一致。IIMN还分析到软骨藻酸以二聚体的形式与铜离子结合(图5),可能以类似于EDTA的构型与铜配位。图5. 非变性代谢组学方法用于鉴定表层海水中的溶解有机质。总结:本文开发的非变性代谢组学方法通过液相后补充金属或调节pH,可以从复杂的样本中识别已知的和新的金属离子载体。1.Aron, A. T. Petras, D. Schmid, R. Gauglitz, J. M. Büttel, I. Antelo, L. Zhi, H. Nuccio, S.-P. Saak, C. C. Malarney, K. P. Thines, E. Dutton, R. J. Aluwihare, L. I. Raffatellu, M. Dorrestein, P. C., Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nature Chemistry 2022, 14 (1), 100-109.
  • 北航冯林课题组《Journal of Applied Physics》:具有全方位自适应移动性的可变形磁流体微型机器人
    磁活性流体或铁流体在外部磁场作用下可以改变其形状和粘度。它可以在较高浓度的磁性粒子中获得高的磁驱动力。由于其独特的性能,铁流体在众多领域有较为广泛的应用。当铁流体的载体液体和环境液体不相容时,前者因其高度的自聚性并不会在小体积中迅速分散。这一特性可以有效地防止磁性纳米粒子扩散过快。同时,基于其流体特性,铁流体具有较高的可变形性,并能通过狭窄的通道和障碍物。此外,铁流体在磁场中也具有高输出力。然而控制铁流体机器人在三维空间的运动,并使用机器人进行药物输送仍有待研究。近日,北京航空航天大学机械工程学院仿生与微纳研究所冯林副教授等研发了一种四线圈梯度磁场控制系统,该系统可以实现磁流体微型机器人在三维空间中的运动控制。同时,使用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密),研究团队依据在药物递送的实际应用环境中可能出现的复杂环境进行设计并打印相关模型,并对磁流体微型机器人在药物递送相关领域的性质和优势展开了进一步的研究。相关成果以“Deformable Ferrofluid Microrobot with Omnidirectional Self-adaptive Mobility”为题发表在《Journal of Applied Physics》期刊上。图一 由电磁线圈系统控制在血管模型中移动的铁流体机器人的概念图及系统图。经过数值模拟和实际测量,该系统产生的磁场梯度可以达到4.14T/m,并可以实现对磁流体机器人的三维控制,最大的控制误差不超过0.3mm。最后,线圈系统控制铁流体液滴在最大内径为3毫米的三维血管模型中实现自主运动。控制效果的实现使得铁流体机器人在通过血管导航进行药物输送方面具有技术潜力。图二 (a) 磁流体机器人运动的示意图。(b)不同时刻的磁流体机器人的位置和状态。比例尺:5毫米。(复杂环境尺寸特征:长38mm宽22mm高5mm,其中折线和曲线通道直径为1.5mm,左下角圆柱阵列援助直径0.5mm,间距0.5mm。)通过对磁流体机器人的变形能力的研究,发现机器人可以通过比其直径小四倍的缝隙(图二)。同时 ,基于有限元模拟,磁流体机器人的变形可以使流场中的阻力减少43.75%,这使得磁流体机器人在人体血管高流速环境中运动成为可能。此外,利用3D打印的血管模型,对磁控系统控制微型机器人在三维血环境中运动能力进行了验证(图三)。图三 (a) 血管模型中磁流体运动的控制示意图。(b)三维血管模型中不同时刻铁流体机器人的真实位置和状态。比例尺:5毫米。该项研究成果获得国家重点研发计划(No. 2019YFB1309700)及北京新星科技计划项目(No. Z191100001119003)支持。 原文链接:https://doi.org/10.1063/5.0076653 作者: 纪易明
  • 中山大学李惠琳:非变性质谱技术推动蛋白质结构研究,助力新药研发
    蛋白质是生命的物质基础,通过与不同生物分子间的相互作用在生物体内执行着各项重要工作,其功能与结构直接相关。因此,解析蛋白质及其复合物高阶结构对于深入理解蛋白质功能、生理现象及药物研发具有重要意义。过去的60余年,随着X-射线晶体衍射(X-ray)、核磁共振(NMR)以及冷冻电镜(cryoEM)等技术的出现和不断发展,蛋白质结构解析取得了长足发展。然而,如何在分析蛋白质时使其保持近似自然生理环境的非变性状态,对其动态、异质性、相互作用等属性的研究是结构生物学领域的热点和难点。  质谱技术的不断发展使其在蛋白质结构表征领域发挥了越来越重要的作用。非变性质谱(native MS)兴起于20世纪90年代,是一种可以分析蛋白高阶结构的生物质谱方法。与传统的破坏蛋白质立体结构和弱相互作用力的方法不同,非变性质谱采用质谱兼容的近生理pH值的溶液体系(主要为醋酸铵)和更温和的电离方式,使生物大分子在气相中能够最大程度地保持自然折叠状态、非共价相互作用和相关的生物学功能。因此,非变性质谱可以提供分子质量、寡聚态、构象(折叠vs 去折叠)、异质性、配体结合、靶蛋白-小分子亲和力以及复合物中蛋白亚基的相互作用网络关系等更具生物学意义的重要信息,为蛋白质“序列-结构-功能”关系提供分子基础,已成为结构生物学不可或缺的互补工具,在生物制药、蛋白一配体、蛋白一蛋白复合物结构分析等诸多领域具有广泛应用。  近年来,蛋白质结构研究领域经历着剧烈的技术迭代。2021年人工智能(AI) AlphaFol2横空出世,将蛋白质3D结构预测的精度从60%提升到90%以上,在给传统结构解析技术带来冲击的同时,也为结构质谱的发展提供了契机。  未来,非变性质谱技术的发展需要简化样品处理,提升仪器的灵敏度、分析通量和鲁棒性,实现内源性蛋白复合物样本的直接或原位分析,推动其在生物医药表征、蛋白多聚态等领域的更广泛应用。非变性质谱技术与离子消度(MS)、自上而下串联解离(top-down)、电荷检测质谱(CDMsS)等创新联用技术和方法的不断开发及完善,将极大地提升结构信息的广度、丰富度及精确度,补充生物物理学方法缺失的结构信息。同时,非变性质谱与cryoEM1、氢完交换质谱(HDX-MS)、交联质谱等技术联用将更加常态化,这些实验数据与AI结构预测算法的进一步整合将有效解决蛋白及蛋白复合物结构预测存在的精度问题,推动结构生物学发展,助力新药研发。  此外,非变性质谱技术的应用发展将更加关注:1)蛋白复合物结构一功能关系的研究,通过与计算机模拟(MD)、HDX-Ms、cryoEM等技术联用,揭示标志物蛋白在人类疾病发展过程中的作用,推动靶向药物设计和精淮医疗 2)通过研究小分子与靶蛋白的相互作用获取二者结合的亲和力信息,加速靶向药物筛选 3)翻译后修饰(PTMS)、突变等因素导致的蛋白高度异质性及其对蛋白或亚基折叠动力学、构象及构象变化、结合计量比等造成的结构和功能影响 4)蛋白与其他生物分子(配体、DNAA/RNA、金属离子等)之间的相互作用。  李惠琳,中山大学药学院教授,博士生导师。主要从事生物大分子质谱新技术的开发及应用,其研究主要侧重于1)开发整合结构质谱技术,并对蛋白质机器结构、功能和动态变化及靶向药物作用分子机制进行深入研究2)开发middle-down/top-down蛋白质组学技术,探索蛋白翻译后修饰在生命过程中的调控机制。承担国家自然科学基金项目3项,荣获美国质谱学会颁发的Postdoctoral Career Development Award (2014) ,入选珠江人才计划(青年拔尖人才,2019),其研究成果发表在Nature Chemistry, Analytical Chemistry, J. Am.Soc.Mass Spectrom.等杂志。  "非变性质谱技术研究与应用"专栏共收录7篇论文,既介绍了非变性质谱技术的样品制备、离子源、质量分析器、联用技术等基础内容,也涵括了样品提取、样品引入、离子化及电荷操控等方式,以及在蛋白结构及构象解析、蛋白・蛋白相互作用等领域的应用,代表了国内非变性质谱技术的发展现状。希望本专栏能成为《质谱学报》广大读者颇有价值的科技文献,同时也希望更多的学者加入到非变性质谱研究领域,推动我国结构质谱技术的创新发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制