当前位置: 仪器信息网 > 行业主题 > >

波导器

仪器信息网波导器专题为您提供2024年最新波导器价格报价、厂家品牌的相关信息, 包括波导器参数、型号等,不管是国产,还是进口品牌的波导器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合波导器相关的耗材配件、试剂标物,还有波导器相关的最新资讯、资料,以及波导器相关的解决方案。

波导器相关的资讯

  • 《科学》发文!安徽大学发现新的光波导材料
    光波导是实现光电集成和光子集成的关键。近日,安徽大学先进材料原子工程研究中心朱满洲教授、陈爽副教授科研团队发现金属纳米团簇中的光波导行为。这是在金属纳米团簇材料中发现的重要光传播新现象,填补了纳米团簇光子性质研究的空白,丰富了有源光波导和偏振发光材料的研究,是材料科学前沿的重要研究成果。相关成果日前发表于《科学》。据悉,该论文是安徽大学首次以第一完成单位在《科学》正刊上发表的科研论文。 图为金属纳米团簇光波导 安徽大学供图研究团队发现,配体保护的两种金属团簇材料具有优异的光波导性能,光损耗系数低于大多数无机、有机和杂化材料,研制的两种金属团簇的晶体排列和分子取向导致了其极高的极化比,为有源波导和极化材料家族提供了新成员。这在未来信息储存、集成光学等领域具有潜在应用前景。光波导具有抗干扰能力强、保真度高等特点,其广泛应用于光电调制器、光子耦合器、光子电路等领域。在有源光波导系统中可以利用分子偶极矩取向影响光子传输方向形成偏振光波导。目前,多种光子纳米结构被开发用作光波导材料,但它们仍然存在着光学损耗高和制造工艺复杂等问题。而配体保护的金属纳米团簇具有原子精确的结构、良好的光学性质和较大的斯托克斯位移,这些特点使其非常适合用于光电器件,并且团簇的光学性质可以通过金属掺杂、配体调控、价态调整等手段进行调控。因此,金属纳米团簇非常适合用作光波导材料并探索其结构与性质之间的联系。此次研究中,研究人员设计并合成具有橙色和红色发光的Pt1Ag18和AuxAg19-x纳米团簇,两种纳米团簇的晶体都表现出优异的光波导性能,它们的光损耗系数低于大多数有机、无机以及杂化材料。并且,这种光波导性质在金属纳米团簇中具有一定的普适性,研究团队在AuCu14、Au4Cu6、Pt1Ag37等纳米团簇中都发现了这种现象。由于纳米团簇间的多种弱相互作用,纳米团簇晶体表现出一定程度的柔韧性,弯曲和分支状态的晶体仍然具有明显的光波导行为。由于Pt1Ag18和AuxAg19-x纳米团簇的晶体结构和堆积方式的差异,它们在光波导过程中表现出了不同的偏振发光。Pt1Ag18和AuxAg19-x表现出聚集诱导发射增强的性质,这使得它们的晶体能表现出更强的光致发光。光波导材料是光学器件和光学系统中的关键组成部分,在光通信、光学传感和光学计算等领域发挥着重要的作用。研究人员介绍,金属纳米团簇光波导行为的发现为开发配体保护的金属纳米团簇作为活性光波导材料提供了理论基础和应用前景,为构建基于团簇的小型化集成纳米光子器件提供了支持。
  • 我国高频势阱原子波导研究获重大进展
    我国高频势阱原子波导研究获重大进展对实现原子芯片高频势阱、微型原子激射器的连续运行和物质波干涉研究具有重要意义 记者近日从中国科学院上海光机所获悉,该所量子光学重点实验室王育竹院士领衔的“973”冷原子系综量子信息存储技术——高频势阱研究小组在国际上首次实现了中性原子的高频势阱囚禁和导引。该研究的重要进展将对实现原子芯片高频势阱、微型原子激射器的连续运行和物质波干涉研究具有重要意义。 早在2001年,为研究原子云在强场中的动力学行为,王育竹即提出了利用高频势阱导引和囚禁超冷原子的学术思想。研究组在理论上曾获得过理想的结果,但由于实验难度很大,当时未能实现实验验证。经过研究小组多年来的艰辛努力,在克服实验中的重重困难后,终于实现了高频势阱导引和囚禁超冷原子气体的实验。 利用高频势阱囚禁比传统囚禁超冷原子的势阱具有明显的优势。传统囚禁超冷原子的势阱主要有两类:光偶极势阱和静磁势阱。光偶极阱中存在着固有的原子自发辐射,它会导致加热原子;静磁场只能囚禁所谓的弱场追寻态原子,并且磁阱中存在漏洞,损失囚禁原子,限制了对原子运动状态操纵以及对静磁势阱设计的自由度。比如,在实现相干原子束的相干分束或导引时,就遇到较大困难。 利用高频电磁场导引原子的原理如下:有空间梯度的射频场混合在均匀强静磁场中原子的磁子能级,在静磁场和射频场的作用下,原子的本征态是缀饰态。这些缀饰态的本征能级随空间位置的变化给出了绝热的囚禁势。这种动静结合的综合势场提供了比纯粹的静磁场势阱多得多的优越性,在原子光学中展示出广阔的发展空间,它关联于非常广泛的冷原子系统,比如导引物质波原子激射器、一维原子气体和原子干涉仪。射频阱避免了在极深光势阱中的自发辐射等,与传统的静磁导引相比,射频波导还可以避免Majorana跃迁,在实现连续运行的原子激射器中具有优势。 在国家自然科学基金委和科技部支持下的高频势阱组,承担了国家自然科学基金重点课题“973”冷原子系综量子信息存储研究、磁陷阱中冷原子的参量冷却及超冷原子和BEC物理性质研究。该小组建立了我国第一套集光、机、电为一体的精密可调的高频微型势阱和波导实验装置,包括超高真空系统、光学系统、激光稳频系统、电磁机械系统、高分辨超冷原子成像系统和计算机程序控制系统等。课题组与上海光机所精密光电测控研究与发展中心合作,研制了一套消像差成像系统,用于对高频势阱囚禁的冷原子的成像探测。在这个实验装置上,首先实现了冷原子团穿越直径2毫米的金属铜小孔,并把冷原子团转移到了射频阱区域,转移距离大约40毫米,原子数目达到几百万个,为实现高频势阱创造好了条件。通过对系统的优化和射频网络的匹配,该小组实现了高频势阱对超冷原子云的囚禁和导引。通过改变高频场对原子跃迁频率的失谐量,不但可以导引弱场追寻态原子,而且可以导引强场追寻态的原子,导引的原子数峰值约300万个。 有关专家认为,高频势阱导引超冷原子研究的重要进展为实现原子芯片高频势阱、微型原子激射器的连续运行和物质波干涉研究打下了基础。高亮度的相干原子束对高精度精密测量、物质波刻蚀、物质波成像技术和原子光学研究具有潜在的应用价值。原子激光如同激光在光学应用中一样,具有根本性的重要意义,高频势阱囚禁冷原子实验成功对于开展物质波的相干操控迈出了重要一步。 (量子光学重点实验室供稿)
  • 微立体光刻3D打印125GHz倍频器的波导腔体
    太赫兹波是指频率在0.1THz~10THz内的电磁波,它的波长介于30~3000μm,在频谱中的位置处于微波和可见光之间,长波段部分与毫米波重合,短波段部分与红外线重合,在电磁波频谱中占据非常特殊的位置,具有很多特殊的性质:宽带性、互补性、瞬态性、相干性、低能性、投射性。相对于毫米波而言,太赫兹波的频率更高、波长更短,因此具有更高的分辨率、更强的方向性和更大的信息容量,同时器件可以更小;相对于光波而言,太赫兹波具有更强的穿透性,适合于云雾、硝烟等极端恶劣环境。太赫兹频率源是太赫兹技术发展的关键,其性能指标影响着整个太赫兹系统的性能,所以太赫兹频率源的获得至关重要。通过倍频的方式获得的信号源具有高频稳定性好、设备的主振动频率低、工作频段宽的优点,是目前获取太赫兹频率源广泛采取的方案。基于GaAs肖特基二极管的太赫兹倍频器因其高效率、低能量消耗和室温下可适用性,已广泛用于外差接收器中局部振荡器(LO)的可靠信号源。太赫兹倍频器具有广泛的实际应用,包括大气遥感、医学成像甚至高速通信。目前,用于封装太赫兹倍频器的波导腔体通常采用计算机数控(CNC)加工制造,该工艺成熟,可实现高精确度、高精密度和良好表面光洁度,能满足电子元件与波导腔体间严格的尺寸公差要求。近年来,3D打印凭借其小批量快速加工的能力,逐渐被用于加工被动微波器件。但是,兼具大的打印幅面以及高公差控制的打印设备较少,因此鲜少有3D打印制备超过100GHz频段的器件报道。3D打印的倍频器更是未见报道。图1. 125GHz倍频器的剖面图:(a)波导腔体的布局 (b)MMIC的特写图2. 微纳3D打印的波导腔体(左)和放置MMIC的波导通道(右)近日,英国伯明翰大学的Talal Skaik和Yi Wang等首次采用面投影微立体光刻(PμSL)3D打印工艺制备太赫兹倍频器的波导腔体。研究团队使用摩方精密科技有限公司(BMF)的nanoArch S140系统3D打印了波导腔体,打印材料为耐高温树脂(HTL),如图2所示,外形尺寸为30.4 mm×25.5 mm×19.1 mm,打印层厚为20μm以及光学精度为10μm。打印后在异丙醇中清洗,并进行30分钟的紫外线固化,最后在60°C下进行30分钟的热固化。制备的波导腔体通过光学系统检测并未发现缺陷,与MMIC(单片微波集成电路)配合的波导通道测量值为609μm,优于设计的630μm;同时超高光学精度打印保证了严格的尺寸公差,确保波导腔体的两部分能精确配合,避免MMIC电路的损坏。图3. 电镀后波导腔体的表面光洁度图4. 装配后的太赫兹倍频器为促进信号的传递以及减小外界干扰,在波导腔体表面镀上4μm厚的铜和0.1μm厚的金,平均表面光洁度约为1.4μm,如图3和图4所示,电磁仿真结果表明该粗糙度对变频损耗的影响可以忽略不计。图5. 3D打印与传统CNC加工的太赫兹倍频器的性能参数对比实验测试发现,3D打印制备的太赫兹倍频器与传统CNC制备的倍频器性能非常接近,相关性能参数如图5所示。3D打印的太赫兹倍频器在输出频率为126GHz下达到33mW的最大输出功率,在80mW~110mW的输入功率下转换效率约为32%,与传统CNC加工的倍频器具有相近的最大输出功率和转换功率。此研究成果以题为“125 GHz Frequency Doubler using a Waveguide Cavity Produced by Stereolithography”发表在会议期刊《IEEE Transactions on Terahertz Science and Technology 》上。
  • 一体化芯片同时集成激光器和光子波导,有望催生更精确原子钟实验,用于量子领域
    美国加州大学圣巴巴拉分校与加州理工学院的科学家携手,开发出了首款同时集成激光器和光子波导的芯片,向在硅上实现复杂系统和网络迈出了关键一步。此类光子芯片有助科学家开展更精确的原子钟实验,减少对巨型光学工作台的需求,也可用于量子领域。相关论文已发表于近日出版的《自然》杂志。实验概念图图片来源:《自然》网站集成电路出现后,科学家们开始将晶体管、二极管和其他组件集成在一个芯片上,这大大提高了芯片等的潜力。在过去几年里,光子学领域的科学家一直希望能实现同时集成激光器和光子波导。为研制出此类芯片,工程师们开发了插入式隔离器,以防止可能会出现的导致芯片不稳定的反射。但这种方法需要使用磁性材料,而这也会引发新的问题。在最新研究中,科学家找到了解决这些问题的方法,创造出了第一个真正可用的集成芯片。研究人员首先在硅衬底上放置一个超低损耗氮化硅波导,随后在波导管上覆盖多种硅,并在其上安装了低噪声磷酸铟激光器。通过将两个组件隔离开,防止了蚀刻过程中对波导的损坏。研究团队通过测量芯片的噪声水平来测试其性能,结果令人满意,随后他们用其制造出一个可调谐的微波频率发生器。
  • Nanoscribe微纳加工技术应用于3D中空光波导微观结构研究
    光波导是集成光子电路的关键元素,影响了光子学的许多领域,包括电信,医学,环境科学等。对于小型几何尺寸结构而言,低折射率介质内部的高效波导对于各种需要光与物质间的强相互作用的应用都至关重最近,一个国际研究团队提出了一种全新的限制并引导厘米范围内无衍射光的芯片光笼概念。通过使用Nanoscribe的3D打印系统,科学家们实现了直接在硅基光子芯片上制作中空3D光波导的微观结构,即集成于芯片的用细条排列并围绕成中空的双环结构(见下图)。这项新颖的光笼研究成果能展现光与物质的强相互作用,并开辟全新的应用,例如基于气体和液体的检测以及生物分析和量子技术等。集成光子设备中光与气体、液体或者生物制剂之间的强相互作用能有效应用于环境监测和生物传感器中,而这依赖于先进的光学传感元件来增强光与物质的相互作用。为此,来自于布莱尼兹光子技术研究所(Leibniz Institute of Photonic Technology), LMU慕尼黑大学 (Ludwig-Maximilians-Universit?t Munich), 伦敦帝国理工学院(Imperial College London)以及德国耶拿大学奥托肖特材料研究所(Otto Schott Institute of Materials Research of theFriedrich Schiller University of Jena)的科学家们开创了一种新的3D光笼波导概念。该实验是通过波导借助微观细条捕获光,并借助光子带隙效应将其引导到数毫米距离上。光笼的开放式设计有利于光与物质(例如液体或气体分子)之间的强相互作用。SEM图片来源:Bumjoon Jang, Leibniz Institute of Photonic Technology微纳加工技术应用于3D光波导研究科学家们将细条排列成内外两个六边形结构,其中的中空芯用来引导光束。细条直径仅3.6 μm且细条之间的间距为7 μm,长度为5毫米,纵横比超过1000。该复杂的双环体系光笼微观结构需要直接能打印在硅芯片上。这个十分具有挑战性的制作通过使用德国Nanoscribe公司的3D打印系统成功得以实现。这个3D微观结构的设计能够通过细条之间的空间横向进入波导的核心区域。因此,分子可以从侧面进入中空芯并与核心区域的光进行相互作用。独特的侧面通过方式可将气体扩散时间至少缩短了10000倍。性能测试表明,通过3D光笼的波导效率很高,并且研究证明波导长度可达到3cm,纵横比超过8000。集成芯片使得光笼概念在诸如生物分析或量子技术等众多领域都有很好的应用前景。凭借着拥有极其复杂和超高精度的3D打印技术,Nanoscribe公司的3D微纳加工技术推动着光子电路的研究和创新。三维光子晶体,光子互联以及复合透镜系统和自由曲面耦合器的实现都得益于Nanoscribe的3D打印系统。相关文献:Light guidance in photonic band gap guiding dual-ring lightcages implemented by direct laser writing网址:https://pubs.acs.org/doi/10.1021/acsphotonics.8b01428HollowCore Light Cage: Trapping Light Behind Bars网址:https://www.osapublishing.org/ol/abstract.cfm?uri=ol-44-16-4016 更多有关双光子微纳3D打印产品和技术应用咨询,欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司 德国Nanoscribe 超高精度双光子微纳3D打印系统: Photonic Professional GT2 双光子微纳3D打印系统 Quantum X 双光子灰度光刻微纳打印系统
  • 中科院903万采购等离子设备 助力波导器件研发
    p style="text-indent:32px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"7/spanspan style="font-size:16px line-height:150% font-family:宋体"月span30/span日,中国科学院半导体研究所曝出仪器设备采购需求,将以span903/span万的价格采购两台等离子设备。两台设备分别为厚氮化硅感应耦合等离子体化学气相沉积台和硅基铌酸锂薄膜电感耦合等离子刻蚀机。前者用于/spanspan style="font-size:16px line-height:150% font-family: 宋体"光波导器件表面的氧化硅及氮化硅薄膜淀积,适用于波导器件中包层薄膜的沉积。后者用于坚硬材料刻蚀形成波导,专为刻蚀铌酸锂材料研发,也可刻蚀氧化硅等材料。/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"项目名称:/span/strongspan style="font-size:16px line-height:150% font-family:宋体"2019/spanspan style="font-size:16px line-height:150% font-family:宋体"年中国科学院半导体研究所科研仪器设备采购项目(第三批)/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"项目编号:/span/strongspan style="font-size:16px line-height:150% font-family:宋体"OITC-G190330983 /span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"采购单位联系方式:/span/strong/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"采购单位:/span/strongspan style="font-size: 16px line-height:150% font-family:宋体"中国科学院半导体研究所/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"地址:/span/strongspan style="font-size:16px line-height:150% font-family:宋体"北京市海淀区清华东路甲span35/span号/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"联系方式:/span/strongspan style="font-size:16px line-height:150% font-family:宋体"010-82304941/010-82304907/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"代理机构联系方式:/span/strong/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"代理机构:/span/strongspan style="font-size: 16px line-height:150% font-family:宋体"东方国际招标有限责任公司/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"代理机构联系人:/span/strongspan style="font-size:16px line-height:150% font-family:宋体"010-68290507/span/pp style="text-indent:32px line-height:150%"strongspan style="font-size:16px line-height:150% font-family:宋体"代理机构地址:/span/strongspan style="font-size: 16px line-height:150% font-family:宋体"北京市海淀区清华东路甲span35/span号/span/pp style="text-indent:32px"span style="font-size:16px font-family:宋体"采购详情如下:/span/ptable border="1" cellspacing="0" cellpadding="0" style="border: none"tbodytr class="firstRow"td width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"包号/span/strong/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"货物名称/span/strong/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"数量(台span//span套)/span/strong/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"是否允许进口/span/strong/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"预算(万元)/span/strong/p/td/trtrtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"1/span/strong/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"厚氮化硅感应耦合等离子体化学气相沉积台/span/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"1/span/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"是/span/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"398/span/p/td/trtrtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:16px font-family:宋体"2/span/strong/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"硅基铌酸锂薄膜电感耦合等离子刻蚀机/span/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"1/span/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"是/span/p/tdtd width="114" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:16px font-family:宋体"505/span/p/td/tr/tbody/tablep style="text-indent:32px"strongspan style="font-size:16px font-family: 宋体"各设备工艺技术规格详情:/span/strong/pp style="text-align:center"strongspan style="font-size:16px font-family:宋体"厚氮化硅感应耦合等离子体化学气相沉积台/span/strong/pp style="line-height:150%"span style="font-size: 16px line-height:150% font-family:宋体"(1)/spanspan style="font-size:16px line-height:150% font-family:宋体"氧化硅薄膜沉积/span/ptable border="0" cellspacing="0" cellpadding="0"tbodytr style=" height:26px" class="firstRow"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"*3.15.1.1/spanspan style="font-size:16px line-height:150% font-family:宋体"折射率(span1550nm/span下测量)/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"1.44-1.52/spanspan style="font-size:16px line-height:150% font-family:宋体"可调/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"#3.15.1.2/spanspan style="font-size:16px line-height:150% font-family:宋体"折射率均匀性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-0.01/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"#3.15.1.3/spanspan style="font-size:16px line-height:150% font-family:宋体"折射率重复性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-0.01/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"*3.15.1.4/spanspan style="font-size:16px line-height:150% font-family:宋体"厚度/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体">span20/spanμspanm/span/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.1.5/spanspan style="font-size:16px line-height:150% font-family:宋体"样品尺寸/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3/spanspan style="font-size:16px line-height:150% font-family:宋体"英寸/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.1.6/spanspan style="font-size:16px line-height:150% font-family:宋体"沉积速度/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" 1500A/min/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"#3.15.1.7/spanspan style="font-size:16px line-height:150% font-family:宋体"片内厚度均匀性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-3%/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.1.7/spanspan style="font-size:16px line-height:150% font-family:宋体"片与片厚度均匀性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-5%/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.1.9/spanspan style="font-size:16px line-height:150% font-family:宋体"硅的应力span (/span以span1/span微米薄膜厚度测试span)/span/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" -300MPa /spanspan style="font-size:16px line-height:150% font-family:宋体"压应力/span/p/td/tr/tbody/tablep style="line-height:150%"span style="font-size: 16px line-height:150% font-family:宋体"(2)/spanspan style="font-size:16px line-height:150% font-family:宋体"氮化硅薄膜沉积/span/ptable border="0" cellspacing="0" cellpadding="0"tbodytr style=" height:26px" class="firstRow"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"#3.15.2.1/spanspan style="font-size:16px line-height:150% font-family:宋体"折射率(span1550nm/span下测量)/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"1.8-2.2/spanspan style="font-size:16px line-height:150% font-family:宋体"可调/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"#3.15.2.2/spanspan style="font-size:16px line-height:150% font-family:宋体"折射率均匀性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-0.01/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.2.3/spanspan style="font-size:16px line-height:150% font-family:宋体"折射率重复性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-0.01/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.2.4/spanspan style="font-size:16px line-height:150% font-family:宋体"沉积速度/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" 200A/min/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.2.5/spanspan style="font-size:16px line-height:150% font-family:宋体"样品尺寸/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3/spanspan style="font-size:16px line-height:150% font-family:宋体"英寸/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"#3.15.2.6/spanspan style="font-size:16px line-height:150% font-family:宋体"片内厚度均匀性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-3%/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.2.7/spanspan style="font-size:16px line-height:150% font-family:宋体"片与片厚度均匀性/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" +/-5%/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体"3.15.2.8/spanspan style="font-size:16px line-height:150% font-family:宋体"硅的应力span (/span以span1/span微米薄膜厚度测试span)/span/span/p/tdtd width="179" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family:宋体" 100MPa /spanspan style="font-size:16px line-height:150% font-family:宋体"伸应力/span/p/td/tr/tbody/tablep style="text-align:center"strongspan style="font-size:16px font-family:宋体" /span/strong/pp style="text-align:center"strongspan style="font-size:16px font-family:宋体"硅基铌酸锂薄膜电感耦合等离子刻蚀机/span/strong/pp style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family: 宋体"(span1/span) 铌酸锂刻蚀工艺/span/ptable border="0" cellspacing="0" cellpadding="0"tbodytr style=" height:26px" class="firstRow"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size: 16px font-family: 宋体"3.15.1.1/spanspan style="font-size: 16px font-family: 宋体"刻蚀/spanspan style="font-size:16px font-family:宋体"材料/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"铌酸锂/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".1/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体"刻蚀结构/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"线宽span100nm-1/spanμspanm/span/spanspan style="font-size:16px font-family:宋体"波导/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size: 16px font-family: 宋体"3.15.1.3/spanspan style="font-size: 16px font-family: 宋体"掩膜/span/p/tdtd width="173" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 200nm/spanspan style="font-size: 16px font-family: 宋体"厚/spanspan style="font-size:16px font-family:宋体"Cr/spanspan style="font-size: 16px font-family: 宋体"硬掩模。/span/ppspan style="font-size: 16px font-family: 宋体"所有刻蚀掩膜必须为挺直,侧壁角度/spanspan style="font-size:16px font-family:宋体" 80/spanspan style="font-size:16px font-family:宋体"° /span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size: 16px font-family: 宋体"3.15.1.4/spanspan style="font-size: 16px font-family: 宋体"曝露面积/span/p/tdtd width="173" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体">/spanspan style="font-size:16px font-family:宋体"80%/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".1/spanspan style="font-size:16px font-family:宋体".5/spanspan style="font-size:16px font-family:宋体"刻蚀深度/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"300-700/spanspan style="font-size:16px font-family:宋体"nm/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".1/spanspan style="font-size:16px font-family:宋体".6/spanspan style="font-size:16px font-family:宋体"刻蚀速度/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 30nm/min/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"*/spanspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".1/spanspan style="font-size:16px font-family:宋体".7/spanspan style="font-size:16px font-family:宋体"片内刻蚀深度均匀性/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" /spanspan style="font-size:16px font-family:宋体"± /spanspan style="font-size:16px font-family:宋体"3%/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"#/spanspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".1/spanspan style="font-size:16px font-family:宋体".8/spanspan style="font-size:16px font-family:宋体"片与片刻蚀深度均匀性/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" /spanspan style="font-size:16px font-family:宋体"± /spanspan style="font-size:16px font-family:宋体"5%/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"*/spanspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".1/spanspan style="font-size:16px font-family:宋体".9/spanspan style="font-size:16px font-family:宋体"对应/spanspan style="font-size:16px font-family:宋体"硬掩模/spanspan style="font-size:16px font-family:宋体"选择比/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 5:1/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"*3.15.1.10/spanspan style="font-size:16px font-family:宋体"侧壁倾角/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 75/spanspan style="font-size:16px font-family:宋体"° /span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"*3.15.1.11/spanspan style="font-size:16px font-family:宋体"侧壁粗糙度/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="26"pspan style="font-size:16px font-family:宋体"</spanspan style="font-size:16px font-family:宋体"10nm/spanstrongspan style="font-family: 宋体 " /span/strong/p/td/tr/tbody/tablep style="text-indent:16px line-height:150%"span style="font-size:16px line-height:150% font-family: 宋体"br/(span2/span) 氧化硅刻蚀工艺/span/ptable border="0" cellspacing="0" cellpadding="0"tbodytr style=" height:26px" class="firstRow"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size: 16px font-family: 宋体"3.15.2.1/spanspan style="font-size: 16px font-family: 宋体"刻蚀/spanspan style="font-size:16px font-family:宋体"材料/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"氧化硅/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体"刻蚀结构/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"线宽span5-/span/spanspan style="font-size:16px font-family:宋体"10/spanspan style="font-size:16px font-family:宋体"μ/spanspan style="font-size:16px font-family:宋体"m/spanspan style="font-size:16px font-family:宋体"波导/span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size: 16px font-family: 宋体"3.15.2.3/spanspan style="font-size: 16px font-family: 宋体"掩膜/span/p/tdtd width="173" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 3um/spanspan style="font-size: 16px font-family: 宋体"厚/spanspan style="font-size:16px font-family:宋体"PR/spanspan style="font-size: 16px font-family: 宋体"。/span/ppspan style="font-size: 16px font-family: 宋体"所有刻蚀掩膜必须为挺直,侧壁角度/spanspan style="font-size:16px font-family:宋体" 80/spanspan style="font-size:16px font-family:宋体"° /span/p/td/trtr style=" height:26px"td width="301" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size: 16px font-family: 宋体"3.15.2.4/spanspan style="font-size: 16px font-family: 宋体"曝露面积/span/p/tdtd width="173" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 15%/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体".5/spanspan style="font-size:16px font-family:宋体"刻蚀深度/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"6-15/spanspan style="font-size:16px font-family:宋体"um/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体".6/spanspan style="font-size:16px font-family:宋体"刻蚀速度/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 3000A/min/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"#/spanspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体".7/spanspan style="font-size:16px font-family:宋体"片内刻蚀深度均匀性/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" /spanspan style="font-size:16px font-family:宋体"± /spanspan style="font-size:16px font-family:宋体"3%/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"#/spanspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2/spanspan style="font-size:16px font-family:宋体".8/spanspan style="font-size:16px font-family:宋体"片与片刻蚀深度均匀性/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" /spanspan style="font-size:16px font-family:宋体"± /spanspan style="font-size:16px font-family:宋体"5%/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2./spanspan style="font-size:16px font-family:宋体"9/spanspan style="font-size:16px font-family:宋体"对应光刻胶选择比/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体" 3:1/span/p/td/trtr style=" height:26px"td width="301" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"pspan style="font-size:16px font-family:宋体"3.1/spanspan style="font-size:16px font-family:宋体"5/spanspan style="font-size:16px font-family:宋体".2./spanspan style="font-size:16px font-family:宋体"10/spanspan style="font-size:16px font-family:宋体"角度/span/p/tdtd width="173" style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="26"pspan style="font-size:16px font-family:宋体" 85/spanspan style="font-size:16px font-family:宋体"° /span/p/td/tr/tbody/table
  • 天津大学打破博导终身制 由“资格”变为“岗位”
    天津大学:讲师也能当博导  198名新人上岗,85位原博导未上岗——这是天津大学2016年博士生导师岗位选拔的结果。3年前,该校全面启动研究生教育综合改革,实现导师遴选机制的学术自治,打破终身制,使导师由“资格”转变为“岗位”。  精密仪器与光电子工程学院刚过而立之年的讲师丁振扬,是这次改革的受益者。作为新机制下评选出的首批导师之一,他在2016年秋季学期迎来了自己的第一名博士生。尽管学生并不属于他一个人,而是属于他所在的“导师团”,但这足以让丁振扬感到欣喜:传统的“师兄”带“师弟”、“小导师”帮导师义务带学生的方式,终于画上了句号。  在我国高校中,博导岗位长期与高校职称“绑定”,导致青年教师无法施展拳脚,而已经具有资格的教授却动力不足。此外,“单打独斗”式的导师制已不能适应高校综合性、跨学科的科研、教育需求,不利于团队优势发挥。  为解决这些问题,天津大学此次改革着眼于只聘不评、规模放开、权力下放,让导师岗位选拔实现3个“脱钩”:导师规模与计划配置脱钩,导师岗位与职称体系脱钩,导师岗位与缓退制度脱钩。同时,新机制下导师“上岗”也有3种形式:独立指导、正副导师和导师团队。无论讲师还是教授,所有符合申请标准的教师都可以竞争上岗,具体选拔标准“一院一法”,“上岗”与否取决于各学院所属学位评定分委员会的评定。  改革的关键是考核。对正副导师或导师团队中任何一名导师为第一完成人、学生为第二完成人的学术成果,天津大学都在博士研究生学位申请时予以认定,这就解除了导师和学生双方的顾虑。“团队里每位老师都有自己的长处,随时可以请教一些细节的技术问题,氛围也更好。”2016级博士生芮小博说。  “有了‘名分’,权力大了,责任也就更大。”在精密仪器与光电子工程学院教授胡明列看来,有了自己名下的学生,青年导师做科研的劲头更足,同时新机制也催生了更多跨学科合作,“比如,我的研究方向是激光,化工学院巩金龙教授的研究方向是光电催化,我们经常探讨合作探索新方向的问题。虽然合作还没开始,但起码这项制度给了我们更多的想象和可能”。  经过3年改革实践,天津大学导师岗位选拔制度进一步健全。截至2016年底,该校博导队伍中,年龄40岁以下导师的占比由2014年的9.1%提高到28.2%。
  • 中国计量大学:基于太赫兹波段的负曲率轨道角动量光纤
    随着通信技术的快速发展,近些年的通信容量实现了快速增长,传统的光纤通信网络已经难以满足当前高速通信的需求。增大通信网络的容量和提高通信速度的一种方法是开发太赫兹(Terahertz, THz)波段的光纤通信空间维度。太赫兹波是介于微波和红外光之间的一种电磁波,频率介于0.1THz到10THz之间,由于它带宽大和传输速度快以及可以提供点对点的网络拓扑结构而备受关注。而在空间维度资源中,基于轨道角动量(Orbital Angular Momentum,OAM)的模分复用技术由于携带不同拓朴荷数的相互正交的轨道角动量模式成为扩大通信容量的一种非常有潜力的方案。轨道角动量具有全新的电磁波自由度特性,具有轨道角动量特性的电磁波可以在常用的信息传输方式,如波分复用(Wave Division Multiplexing,WDM)、偏振复用(Polarization Multiplexin,PM)、时分复用(Time Division Multiplexing,TDM)等信息传输方式上成倍的提高信息传输容量。近日,中国计量大学严德贤课题组提出了基于太赫兹波段的负曲率轨道角动量光纤。该光纤以重庆摩方精密科技有限公司提供的HTL聚合物材料(耐高温树脂)为基底,采用两层倾斜椭圆管的结构设计,通过引入环芯区域在0.4-0.8THz波段成功产生50-52个OAM模式,且在所研究的波段内获得了高模式纯度、低限制损耗和低波导色散等传输特性,相关研究成果以“Design of negative curvature fiber carrying multiorbital angular momentum modes forterahertz wave transmission”为题发表在《Results in Physics》。图1.3D打印负曲率轨道角动量光纤结构图图1展示了基于摩方精密nanoArch S140打印技术的3D打印光纤样品图。光纤整体尺寸为6.57mm,靠近纤芯区域的第二层倾斜椭圆管结构最小尺寸为0.051mm。光纤结构设计完成后,在Comsol Multiphysics有限元仿真软件中选取光纤结构的任一截面进行仿真研究。在研究频段内给定相应的太赫兹频率后,可以获得相应的模场分布,针对相应的模式进行数据收集和处理可以得出所需传输特性。在光纤中产生OAM模式的前提条件是有效生成HE和EH模式,且HEl+1,1与EHl-1,1有效模式折射率差异高于10-4。光纤中的OAM模式合成规则可由公式1表述:图3是OAM光纤各种传输特性随频率的变化趋势。由图3(a)和(b)可知,光纤产生的所有HEl+1,1与EHl-1,1之间的折射率差异均高于10-4,表明HE和EH模式均可以有效合成OAM模式。图3(c)是光纤的限制损耗特性,限制损耗与光纤的有效传输距离密切相关,由图可知光纤的限制损耗在0.55-0.8THz区间最低可以达到10-15(dB/cm)量级。图3(d)表示了OAM光纤的低平坦色散趋势,在0.4-0.8THz区间有近零的波导色散参数,有利于太赫兹波在光纤内部的快速传输。OAM模式的高模式纯度特性表明了光纤可以有效携带信息进行传输,由图3(e)所示结果,在0.55-0.8THz区间光纤的OAM模式纯度均高于80%。图3(f)是OAM光纤的有效模场面积特性,一般来说具有较高的有效模场面积可以产生较小的非线性特性,可以进一步提高信息的传输质量。图3.(a)有效模式折射率,(b)有效模式折射率差异,(c)限制损耗,(d)波导色散,(e)OAM模式纯度,(f)有效模场面积随频率的变化趋势官网:https://www.bmftec.cn/links/10
  • 中国计量大学严德贤课题组《Results in Physics》:基于太赫兹波段的负曲率轨道角动量光纤
    随着通信技术的快速发展,近些年的通信容量实现了快速增长,传统的光纤通信网络已经难以满足当前高速通信的需求。增大通信网络的容量和提高通信速度的一种方法是开发太赫兹(Terahertz, THz)波段的光纤通信空间维度。太赫兹波是介于微波和红外光之间的一种电磁波,频率介于0.1THz到10THz之间,由于它带宽大和传输速度快以及可以提供点对点的网络拓扑结构而备受关注。而在空间维度资源中,基于轨道角动量(Orbital Angular Momentum,OAM)的模分复用技术由于携带不同拓朴荷数的相互正交的轨道角动量模式成为扩大通信容量的一种非常有潜力的方案。轨道角动量具有全新的电磁波自由度特性,具有轨道角动量特性的电磁波可以在常用的信息传输方式,如波分复用(Wave Division Multiplexing,WDM)、偏振复用(Polarization Multiplexin,PM)、时分复用(Time Division Multiplexing,TDM)等信息传输方式上成倍的提高信息传输容量。近日,中国计量大学严德贤课题组提出了基于太赫兹波段的负曲率轨道角动量光纤。该光纤以重庆摩方精密科技有限公司提供的HTL聚合物材料(耐高温树脂)为基底,采用两层倾斜椭圆管的结构设计,通过引入环芯区域在0.4-0.8THz波段成功产生50-52个OAM模式,且在所研究的波段内获得了高模式纯度、低限制损耗和低波导色散等传输特性,相关研究成果以“Design of negative curvature fiber carrying multiorbital angular momentum modes for terahertz wave transmission”为题发表在《Results in Physics》。图1.3D打印负曲率轨道角动量光纤结构图图1展示了基于摩方精密nanoArch S140打印技术的3D打印光纤样品图。光纤整体尺寸为6.57mm,靠近纤芯区域的第二层倾斜椭圆管结构最小尺寸为0.051mm。光纤结构设计完成后,在Comsol Multiphysics有限元仿真软件中选取光纤结构的任一截面进行仿真研究。在研究频段内给定相应的太赫兹频率后,可以获得相应的模场分布,针对相应的模式进行数据收集和处理可以得出所需传输特性。在光纤中产生OAM模式的前提条件是有效生成HE和EH模式,且HEl+1,1与EHl-1,1有效模式折射率差异高于10-4。光纤中的OAM模式合成规则可由公式1表述: (1)根据公式1,在图2中给出了和在0.5THz的线性叠加过程以及相位分布图。图2.和在0.5THz的线性叠加过程以及相位分布如图2所示,和在模式合成后环芯区域有效产生OAM模式的模场分布,并获得[-ℼ-ℼ]的相位分布效果,满足在光纤中产生OAM模式的合成规则。图3是OAM光纤各种传输特性随频率的变化趋势。由图3(a)和(b)可知,光纤产生的所有HEl+1,1与EHl-1,1之间的折射率差异均高于10-4,表明HE和EH模式均可以有效合成OAM模式。图3(c)是光纤的限制损耗特性,限制损耗与光纤的有效传输距离密切相关,由图可知光纤的限制损耗在0.55-0.8THz区间可以达到10-15(dB/cm)量级。图3(d)表示了OAM光纤的低平坦色散趋势,在0.4-0.8THz区间有近零的波导色散参数,有利于太赫兹波在光纤内部的快速传输。OAM模式的高模式纯度特性表明了光纤可以有效携带信息进行传输,由图3(e)所示结果,在0.55-0.8THz区间光纤的OAM模式纯度均高于80%。图3(f)是OAM光纤的有效模场面积特性,一般来说具有较高的有效模场面积可以产生较小的非线性特性,可以进一步提高信息的传输质量。图3.(a)有效模式折射率,(b)有效模式折射率差异,(c)限制损耗,(d)波导色散,(e)OAM模式纯度,(f)有效模场面积随频率的变化趋势 文章链接:https://doi.org/10.1016/j.rinp.2021.104766
  • 科学家刷新纳米线激光器波长调谐纪录
    在国家自然科学基金纳米科技重大研究计划的重点项目等支持下,湖南大学教授邹炳锁领导的纳米光子学小组与美国亚利桑那州立大学教授宁存政领导的纳米光子学小组合作,成功演示了调谐范围从500到700纳米范围调谐的半导体激光芯片,创下了一个新的纳米线激光器调谐范围的世界纪录。相关文章发表在最近一期的《美国化学会杂志》上。  宽调谐的半导体激光器拥有许多从光谱技术、光通讯,到芯片原位的生物或分子检测的用途。但实现这样的激光器一直很困难,主要是外延生长的半导体微结构的晶格失配有限,不能大幅度成分调节,因而对半导体带边影响有限,而发光受制于半导体的带边,因此无法实现大范围调谐。邹炳锁领导的纳米光子学小组成员潘安练采用一维纳米结构生长技术,可以将晶格失配大部分驰豫掉或全部消除,这样,可能得到大范围成分调节的半导体纳米线或带。  纳米线沿一个方向布满整个基片,成分均匀变化,可以看到一个连续颜色可变的激光发射带。除了激射外,这样的合金半导体还可能在光伏太阳能电池、分子和生物检测等方面得到很大应用。  邹炳锁领导的团队近年一直致力于一维半导体纳米结构光子学研究,并在国内率先开展纳米线光波导和纳米激光器等方面的研究,处于国内领先和国际先进水平,在多功能半导体纳米结构光子学的研究上取得了多项重要的研究成果。如潘安练、邹炳锁等教授首次合成发光颜色可以在可见光波段可调的半导体合金纳米带和纳米线,率先实现光在纳米线内长程(百微米量级)光波导,实现了硫化镉纳米线常温下的受激发射现象等。小组成员陈克求教授、王玲玲教授等对一维波导理论的研究也取得了重要成果。该小组已有多篇论文在国际著名学术期刊上发表。
  • “80后”博导和她的“气味实验室”
    探索嗅觉之谜的“实验狂人”庄寒异  “牛”的理由  80后的她,是上海最年轻的“东方学者”(上海高校特聘教授)、交大医学院最年轻的博导。她的研究就是两个字:“嗅觉”,这在国内外均是新兴领域。她在国际上首次报道了人类特异性嗅觉缺失的分子机制,此类“嗅觉”研究在军事反恐和农业领域的应用正受到学界关注。  “你知道老鼠遇到狐狸会发生什么?当闻到狐狸的尿味时,按照现在流行的说法,小鼠就‘瞬间石化了’。”说到自己的研究领域,庄寒异眼睛放光,一副欢乐表情。  这其实和她的最新研究成果相关:哺乳动物对硫醇类化合物的嗅觉感知机制是庄寒异的研究内容之一,她在国际上首次发现金属离子“辅助激活”嗅觉受体,验证了自上世纪70年代以来对嗅觉受体可能为金属蛋白的假说,此结果已申请国际专利。相比人类主要感觉中的视觉、听觉,嗅觉在国内外的研究都才起步,“80后”博导庄寒异和她的“气味实验室”就是少数探索者。  探索嗅觉之谜  庄寒异出生在上海,父母皆是医生,10岁那年随父母去美国。受家庭影响,她原本的理想是“寻找人类疾病的致病基因”,因此,当她获得生物和化学双学士学位后,直接申请了美国国立卫生研究院(NIH)的一年期助理研究员,参与寻找糖尿病的致病基因。  一年后,她申请到杜克大学遗传学和基因组学硕博连读的机会,没想到上课第一天就遇到一件奇事——  教授拿出一个小试管在实验室里让大家闻,奇怪的是:有人闻得出气味,有人闻不出 在闻得出气味的人中,有人觉得臭,也有人觉得很香。庄寒异就觉得那像香水味,又像妈妈的味道,让人闻着舒服。  “实验室就七八个人,怎会有如此大的差异?”庄寒异被“嗅觉之谜”吸引住了。原本,人类的嗅觉缺失一般是因为神经变性疾病等多种因素引起的。而实验室的一幕属于特异性嗅觉缺失,即指一般意义上具有正常嗅觉功能的人,对某种特定分子嗅觉缺乏。教授拿来的气味名俗称“佛洛蒙”,在香水、化妆品等产业有所应用,民间认为这有“吸引异性”的作用,但其实在庄寒异的同事中已经证明人群中的喜好程度有极大差异。  就读研究生期间,庄寒异有个重要发现:这种嗅觉差异其实是嗅觉受体的基因差异。庄寒异和她的团队成功找到了针对雄烯酮(佛洛蒙)的人类嗅觉受体:“OR7D4”。  嗅觉受体类似于人体的“气味接收器”,人之所以能闻到气味,是因为有气味的物质“激活”了位于鼻子里嗅上皮中的嗅觉受体,嗅觉受体产生电信号,并把它传到大脑。人体约有400个基因“编译”不同的嗅觉受体,这占到人体总基因数的很大一部分。由于绝大多数气味是由多种气体分子组成,每种气体分子能“激活”相应的多个嗅觉受体,所以尽管嗅觉受体只有400多种,但是产生大量的组合后,人类就能辨识、记忆上万种不同的气味。  对“OR7D4”的发现,是在世界上首次发现人类特异性嗅觉缺失的分子机制,也是有史以来第一次将分子层面的嗅觉受体和人类嗅觉感官直接联系在一起。此结果发表在《自然》上,还受到该杂志“Making The Paper”专栏的特别介绍 同年,《基因组生物学》也发表了专门针对此文章的特别评论。包括路透社在内的媒体接连报道了这一发现。  “实验狂人”  国外专业期刊和大众媒体的报道,实际是国际社会对“嗅觉”研究认识度日益增高的佐证。而在国内,从事嗅觉研究的实验室还不多。2008年,当庄寒异拿到美国博士学位回到上海,旁人只觉惊怪:这个看起来清清爽爽的文静女孩,怎么喜欢和“臭味”打交道?庄寒异的实验室里,有世界各地的“气味”科学家给她寄来的各类气味:黄鼠狼的臭屁味儿、小鼠的尿味儿、还有“仁者见仁、智者见智”的佛洛蒙……  科学兴趣使然,令她对以臭鸡蛋味著称的硫类气味有难以言状的亲切感。她品鉴这些“臭味”的方式,如同品鉴香水:取出气味试纸,在空中挥舞几下。由于怕挥发,闻的时间还不能太长,得马上放回塑胶袋,再投入冰箱里保存。  尽管是个鼻子过敏者,稍有不慎,就喷嚏不止,可庄寒异还总是萌生一些“炮制气味”的疯狂举动。在研究生阶段,她就萌生过研究蚕宝宝嗅觉机制的想法。她在宿舍里养了一大筐蚕宝宝,观察它们在蛾子阶段通过“佛洛蒙”相互吸引,直到蚕宝宝结成了100多个茧。计划未成,但还好是单人宿舍,不然上百个飞蛾在屋里飞来飞去,肯定会吓着室友。  她自言是“实验狂人”。“凡事都得自己动手做做看!”她说这是在文理学院养成的习惯,“四年所有考试只分‘通过’与‘不通过’,大部分时间就是动手做实验,观察科学现象。”由于对气味的兴趣,仅仅近3年,她的研究成果就颇为丰硕:发表SCI文章8篇,其中以第一作者和通讯作者身份发表4篇,总影响因子达到70。目前领衔五六个课题项目。  研究不会“退化”  2009年,庄寒异加盟交大医学院,一头扎进“气味实验室”。这是一个有趣的团队,尽管庄寒异是博士生导师,但她带领的4个博士生年龄分别比她小:4岁、3岁、2岁、1岁。这个年轻团队很快有了重要发现——不光在人类中,OR7D4的功能在各个灵长类物种中也大相径庭。他们比较黑猩猩、红猩猩、大猩猩、倭黑猩猩等对这种基因的反应强度,发现位于刚果、较原始的倭黑猩猩的OR7D4“活性最强”。这一发现发表在2009年的《美国科学院院报》上,并申请一项国际专利。美国知名科普网站“科学日报”还将此特异性嗅觉差异调侃为“找到了‘金刚’为什么无法吸引女主角的原因”。  其实,这一发现的意义还在于通过嗅觉受体观察人类的进化特点,即鼠类和一些灵长类动物所谓的低等哺乳动物的嗅觉比人类“灵敏”,从进化角度来说,人类在在嗅觉方面却有些退化。“这或许和沟通渠道有关,人类的情感沟通方式很多元,嗅觉只是很小的一部分,但对于一些低等动物,嗅觉是交换情感的主要方式,它可以用来交配、也可以用来躲避天敌。”  不仅在进化领域,近年来,嗅觉在医学人文关怀、农业以及反恐和军事方面的应用,正日益受到国外学界关注。比如在医学人文领域,这类研究有望提高嗅觉缺陷患者的生活质量,比如让那些因治疗损及嗅觉的患者恢复嗅觉 在农业领域,以雄烯酮为例,这可能是导致有人觉得猪肉有“异味”的原因之一——这种佛洛蒙主要用于异性吸引,种猪分泌较多,但个体对此气味接受程度差异极大 而在反恐领域,如果能从嗅觉受体的基因层面探测危险物品,显然探测灵敏度更高。  正是因为有实际应用价值,庄寒异的成果不仅能申请到世界专利,其中嗅觉受体的异源表达技术还能授权给国外公司,实现成果转化。“随着生活质量不断提高,人们对嗅觉的探索会越来越深入。”庄寒异说。
  • 退休在即 这位博导却因30万科研经费“栽了”
    p  大学教授是个令人尊敬的职业,为人师表、谆谆教导是人们对这个高尚职业的良好印象。可是在这高尚的背后,少数人的欲望也在慢慢萌发,最后走上了犯罪的道路。经山东省济南市历下区检察院提起公诉,8月31日,该区法院以贪污罪判处套取国家30万元专项科研经费的博士生导师徐某有期徒刑三年零三个月。/ppstrong  博导立项获科研经费/strong/pp  案发前,徐某是山东大学药学院的教授、博士生导师、常务副院长、山东省政协常委。一位受人尊敬的教授如何步入贪腐的泥潭?这要从一个课题立项说起。/pp  2009年,徐某负责申请了以胺肽N为靶点的抗癌候选药物24F的研究与开发项目。这个项目是国家科技部生物技术中心主导的“重大新药创制”专项课题,也是“十一五”重大专项,经费主要由国家财政拨款。/pp  2010年,科研经费拨付到位,总计150万元左右。作为课题负责人,徐某的主要职责是主持完成课题任务的实施以及经费的具体使用。然而,就在项目实施的过程中,一次偶然的学术会议改变了徐某的人生轨迹。/ppstrong  注册成立公司正好缺钱/strong/pp  2009年12月,潍坊市医药局邀请徐某去潍坊市参加生物医药科技发展的一个会议,会后他参观了潍坊高新生物园区的一个新药研发平台,园区给徐某留下良好印象。为了帮助推动平台的有效利用,2010年六七月,在他的组织下,中国生物医药发展论坛在园区举行,借此也对生物园侧面进行了宣传。/pp  论坛举办期间,为了与徐某进一步拉近合作关系,潍坊市高新生物园区的主任武某主动发出邀请,提出希望徐某能来他们这里开个公司,用徐某的影响力吸引一些专家、企业来发展这个平台。徐某听着有些心动,表示可以考虑一下。/pp  想到工作这么多年还没有属于自己的生物实验室,又即将退休,有些实验项目退休后还想继续做,2010年10月,徐某向武某提出,可以在他们生物园区成立一个公司。但是武某说,如果合伙出资的话,企业性质就是股份制,徐某对于公司的事情可能主导不了。/pp  再三考虑之后,徐某觉得公司还是得自己说了算。于是他准备以自己的名义注册成立公司,名字叫潍坊博创国际生物医药研究院(下称博创研究院)。按照规定,成立个人的民办企业需要注册资金。可这笔钱从哪里来呢?徐某想到了自己即将结项的项目还有很多科研经费用不完。/ppstrong  一纸“假合同”成功套取经费/strong/pp  按照山东大学科研经费管理的规定,严禁使用重大专项资金支付各种罚款、捐款、赞助等,严禁以任何方式牟取私利。国家拨款属于专款专用,不准移做他用,每项支出有严格的规定,并且结余款项都要上交财政。/pp  在学校方面不知情的情况下,2010年11月,徐某伪造了一份山东大学与博创研究院的委托加工协议书,以协作费的名义把自己项目中的30万元科研经费先转入潍坊高新生物园发展有限公司账户,之后用于其为法定代表人的博创研究院的验资、注册。/pp  事实上,在徐某伪造的协议中,企业账号还是用的潍坊高新生物园发展有限公司的。而在他用于学校报销的发票上,收款单位同样是潍坊高新生物园,盖的却是博创研究院的章。按照协议上面的日期,当时博创研究院还没有成立。/pp  30万科研经费进了公司的“私囊”/pp  这30万元研究经费的使用因为制作了形式合法的协议,又开具了形式合法的发票,就这样顺利交与学校财务报销了。/pp  而实际上,在博创研究院这30万元分别用于支付日常水电费、物业费、人工费,以及做个人研究实验。至案发前,徐某负责的科研项目已经验收,30万元公款已没有归还条件。/pp  2015年3月,历下区检察院对徐某涉嫌贪污一案进行立案侦查。今年1月11日,案件在两次退查后起诉至法院。/pp  办案检察官告诉记者,近年来科研经费贪腐案件屡见不鲜。虚列劳务费冒名领取、借壳套现、虚开发票是此类案件中常见的手段。类似套取科研经费的行为严重触犯刑法,检察机关对此决不姑息,希望科研人员能够廉洁自律,防微杜渐,引以为戒。/pp/p
  • 上海光机所在太赫兹波电子加速研究中取得重要进展
    近期中国科学院上海光学精密机械研究所李儒新、田野和宋立伟团队在太赫兹波电子加速领域取得重要进展。研究团队基于上海光机所新一代超强超短脉冲激光综合实验装置,利用超强超短激光驱动丝波导产生毫焦耳级太赫兹表面波,并采用表面波进行电子加速,解决了高能量太赫兹波产生以及自由空间太赫兹波至波导能量耦合效率低等难题。该项研究将太赫兹波的产生、传输及耦合集成到波导上,并在波导管中5mm距离实现了最高1.1 MeV的电子能量增益和210 MV/m的平均加速梯度,较当前太赫兹波加速电子能量增益的世界纪录提升了近一个量级,同时为全光学集成化电子加速器研究开辟了崭新途径。相关研究成果于2023年7月13日以“Megaelectronvolt electron acceleration driven by terahertz surface waves”为题发表于《自然光子学》(Nature Photonics)期刊。   小型化集成化的电子加速器将极大地推动其在前沿科学与技术领域的广泛应用。利用太赫兹波驱动电子加速作为近十年来发展的新兴加速技术,能够提供比传统射频加速更高的加速梯度,是实现小型化、低成本加速装置的可靠途径之一,有望将加速器的应用推广向包括小型实验室、医院等在内的更多应用场景。   当前发展的太赫兹电子加速基于自由空间的太赫兹源技术,太赫兹波产生后,经收集、传输、偏振转换,再聚焦至用于加速电子的波导结构。实验上,为了尽可能提高波导内部的太赫兹加速梯度,需要太赫兹源提供足够的能量以弥补光路中散射、反射,以及模式转换的能量损耗。常见的太赫兹源,例如基于光学晶体产生的太赫兹辐射通常需要经过光学元件的收集及导引,并通过分段波片或相移片进行模式转换,不可避免地造成能量损失。相比自由空间的太赫兹辐射,束缚于介质表面的光学表面波,如表面等离极化激元(surface plasmon polaritons, SPP),为太赫兹的导引与模式转换提供了全新的思路。   研究团队近年来在小型化的激光加速电子源与辐射光源等领域长期探索,并于近期发现了太赫兹表面等离极化激元相干放大机制(Nature 611, 55–60 (2022)),能够实现高功率表面等离极化激元相干辐射源。围绕轴对称金属圆柱形波导上的太赫兹表面等离极化激元的索莫菲波属性,以及对低色散基横磁(TM)模式,研究团队进一步将此高功率的太赫兹表面等离极化激元直接与加速波导耦合,实现了85%的耦合效率,能有效将飞秒激光泵浦金属圆柱波导产生的毫焦耳级太赫兹能量与电子束作用,并最终在5mm长度上使电子获得最高1.1 MeV的能量增益及210 MV/m的平均加速梯度,将当前国际上太赫兹波驱动的电子能量增益最好结果提升了近一个量级。   未来,研究团队将基于这一太赫兹表面波模式驱动电子加速的全新方案进一步发展集成化的全光学电子加速技术,并拓展其在小型辐射源及材料检测等领域的交叉应用。   相关研究工作的合作团队包括北京航空航天大学与张江实验室等,该工作共同第一作者为上海光机所博士研究生余谢秋与特别研究助理曾雨珊,工作得到了科技部重点研发计划、中科院先导B、基础研究特区计划、中科院人才引进计划、国家自然科学基金、中科院青促会和上海市科技启明星扬帆计划等支持。图1 太赫兹表面波驱动电子加速实验示意图图2 实验测得的最大电子能量增益结果图3 自由空间(a)与金属圆柱波导(b)太赫兹耦合状态下,加速波导内的电场强度对比(c)
  • 国际领先水平!龙峰团队“倏逝波荧光全光纤生物传感仪器及在新污染物检测中的应用”科技成果通过专家鉴定
    倏逝波荧光免疫传感器是利用光波在波导内,以全反射方式传输时在波导界面产生倏逝波 ,结合荧光免疫分析原理进行检测的一类新型传感器。该类传感器具有特异性强、灵敏度高、检测速度快、费用低、操作简便等优点,在环境检测、医学临床、食品卫生等领域具有广泛的应用前景。近日,中国人民大学化学与生命资源学院龙峰教授团队牵头完成的“倏逝波荧光全光纤生物传感仪器及在新污染物检测中的应用”科技成果通过了专家鉴定。本次鉴定会由中国环境科学学会主办,鉴定委员会由中国环境科学研究院院士吴丰昌、中国环境监测总站研究员王业耀、北京林业大学教授孙德智、中科院电子学研究所研究员夏善红、北京市政工程设计研究总院教授级高工郄燕秋、北京大学教授刘思彤、北京师范大学教授郭学军等专家组成。鉴定委员会一致认为,该成果整体达到国际领先水平,具有显著的生态环境与社会经济效益,应用前景广阔,一致同意通过鉴定,并建议进一步扩大推广与应用。新污染物治理是全面推进美丽中国建设的重要内容,关系人民健康和生态环境安全,其中监测技术和仪器是开展新污染物治理的关键。为克服现有监测技术与仪器运行维护负担重、核心技术被国外控制、前处理复杂等困难和不足,面向我国新污染物治理体系亟需现场快速精准识别与检测的技术和装备需求,中国人民大学、清华大学、北京勤邦科技股份有限公司、力合科技(湖南)股份有限公司等单位开展多年联合攻关,创新发展了新污染物全光纤生物传感理论与技术,创制了倏逝波荧光全光纤生物传感仪器,建立了不同类型新污染物的现场快速高灵敏检测新方法,并在水环境与饮用水安全、新污染物应急监测、食品安全检测和新污染物科学研究等领域成功实现了产业化应用,对提升我国新污染物治理体系的标准化和精准化具有重要意义。龙峰教授向吴丰昌院士等专家现场介绍所研发的仪器
  • 庄寒异:“80后”博导和她的“气味实验室”
    探索嗅觉之谜的“实验狂人”庄寒异。  “牛”的理由  80后的她,是上海最年轻的“东方学者”(上海高校特聘教授)、交大医学院最年轻的博导。她的研究就是两个字:“嗅觉”,这在国内外均是新兴领域。她在国际上首次报道了人类特异性嗅觉缺失的分子机制,此类“嗅觉”研究在军事反恐和农业领域的应用正受到学界关注。  “你知道老鼠遇到狐狸会发生什么?当闻到狐狸的尿味时,按照现在流行的说法,小鼠就‘瞬间石化了’。”说到自己的研究领域,庄寒异眼睛放光,一副欢乐表情。  这其实和她的最新研究成果相关:哺乳动物对硫醇类化合物的嗅觉感知机制是庄寒异的研究内容之一,她在国际上首次发现金属离子“辅助激活”嗅觉受体,验证了自上世纪70年代以来对嗅觉受体可能为金属蛋白的假说,此结果已申请国际专利。相比人类主要感觉中的视觉、听觉,嗅觉在国内外的研究都才起步,“80后”博导庄寒异和她的“气味实验室”就是少数探索者。  探索嗅觉之谜  庄寒异出生在上海,父母皆是医生,10岁那年随父母去美国。受家庭影响,她原本的理想是“寻找人类疾病的致病基因”,因此,当她获得生物和化学双学士学位后,直接申请了美国国立卫生研究院(NIH)的一年期助理研究员,参与寻找糖尿病的致病基因。  一年后,她申请到杜克大学遗传学和基因组学硕博连读的机会,没想到上课第一天就遇到一件奇事——  教授拿出一个小试管在实验室里让大家闻,奇怪的是:有人闻得出气味,有人闻不出 在闻得出气味的人中,有人觉得臭,也有人觉得很香。庄寒异就觉得那像香水味,又像妈妈的味道,让人闻着舒服。  “实验室就七八个人,怎会有如此大的差异?”庄寒异被“嗅觉之谜”吸引住了。原本,人类的嗅觉缺失一般是因为神经变性疾病等多种因素引起的。而实验室的一幕属于特异性嗅觉缺失,即指一般意义上具有正常嗅觉功能的人,对某种特定分子嗅觉缺乏。教授拿来的气味名俗称“佛洛蒙”,在香水、化妆品等产业有所应用,民间认为这有“吸引异性”的作用,但其实在庄寒异的同事中已经证明人群中的喜好程度有极大差异。  就读研究生期间,庄寒异有个重要发现:这种嗅觉差异其实是嗅觉受体的基因差异。庄寒异和她的团队成功找到了针对雄烯酮(佛洛蒙)的人类嗅觉受体:“OR7D4”。  嗅觉受体类似于人体的“气味接收器”,人之所以能闻到气味,是因为有气味的物质“激活”了位于鼻子里嗅上皮中的嗅觉受体,嗅觉受体产生电信号,并把它传到大脑。人体约有400个基因“编译”不同的嗅觉受体,这占到人体总基因数的很大一部分。由于绝大多数气味是由多种气体分子组成,每种气体分子能“激活”相应的多个嗅觉受体,所以尽管嗅觉受体只有400多种,但是产生大量的组合后,人类就能辨识、记忆上万种不同的气味。  对“OR7D4”的发现,是在世界上首次发现人类特异性嗅觉缺失的分子机制,也是有史以来第一次将分子层面的嗅觉受体和人类嗅觉感官直接联系在一起。此结果发表在《自然》上,还受到该杂志“Making The Paper”专栏的特别介绍 同年,《基因组生物学》也发表了专门针对此文章的特别评论。包括路透社在内的媒体接连报道了这一发现。  “实验狂人”  国外专业期刊和大众媒体的报道,实际是国际社会对“嗅觉”研究认识度日益增高的佐证。而在国内,从事嗅觉研究的实验室还不多。2008年,当庄寒异拿到美国博士学位回到上海,旁人只觉惊怪:这个看起来清清爽爽的文静女孩,怎么喜欢和“臭味”打交道?庄寒异的实验室里,有世界各地的“气味”科学家给她寄来的各类气味:黄鼠狼的臭屁味儿、小鼠的尿味儿、还有“仁者见仁、智者见智”的佛洛蒙̷̷  科学兴趣使然,令她对以臭鸡蛋味著称的硫类气味有难以言状的亲切感。她品鉴这些“臭味”的方式,如同品鉴香水:取出气味试纸,在空中挥舞几下。由于怕挥发,闻的时间还不能太长,得马上放回塑胶袋,再投入冰箱里保存。  尽管是个鼻子过敏者,稍有不慎,就喷嚏不止,可庄寒异还总是萌生一些“炮制气味”的疯狂举动。在研究生阶段,她就萌生过研究蚕宝宝嗅觉机制的想法。她在宿舍里养了一大筐蚕宝宝,观察它们在蛾子阶段通过“佛洛蒙”相互吸引,直到蚕宝宝结成了100多个茧。计划未成,但还好是单人宿舍,不然上百个飞蛾在屋里飞来飞去,肯定会吓着室友。  她自言是“实验狂人”。“凡事都得自己动手做做看!”她说这是在文理学院养成的习惯,“四年所有考试只分‘通过’与‘不通过’,大部分时间就是动手做实验,观察科学现象。”由于对气味的兴趣,仅仅近3年,她的研究成果就颇为丰硕:发表SCI文章8篇,其中以第一作者和通讯作者身份发表4篇,总影响因子达到70。目前领衔五六个课题项目。  研究不会“退化”  2009年,庄寒异加盟交大医学院,一头扎进“气味实验室”。这是一个有趣的团队,尽管庄寒异是博士生导师,但她带领的4个博士生年龄分别比她小:4岁、3岁、2岁、1岁。这个年轻团队很快有了重要发现——不光在人类中,OR7D4的功能在各个灵长类物种中也大相径庭。他们比较黑猩猩、红猩猩、大猩猩、倭黑猩猩等对这种基因的反应强度,发现位于刚果、较原始的倭黑猩猩的OR7D4“活性最强”。这一发现发表在2009年的《美国科学院院报》上,并申请一项国际专利。美国知名科普网站“科学日报”还将此特异性嗅觉差异调侃为“找到了‘金刚’为什么无法吸引女主角的原因”。  其实,这一发现的意义还在于通过嗅觉受体观察人类的进化特点,即鼠类和一些灵长类动物所谓的低等哺乳动物的嗅觉比人类“灵敏”,从进化角度来说,人类在在嗅觉方面却有些退化。“这或许和沟通渠道有关,人类的情感沟通方式很多元,嗅觉只是很小的一部分,但对于一些低等动物,嗅觉是交换情感的主要方式,它可以用来交配、也可以用来躲避天敌。”  不仅在进化领域,近年来,嗅觉在医学人文关怀、农业以及反恐和军事方面的应用,正日益受到国外学界关注。比如在医学人文领域,这类研究有望提高嗅觉缺陷患者的生活质量,比如让那些因治疗损及嗅觉的患者恢复嗅觉 在农业领域,以雄烯酮为例,这可能是导致有人觉得猪肉有“异味”的原因之一——这种佛洛蒙主要用于异性吸引,种猪分泌较多,但个体对此气味接受程度差异极大 而在反恐领域,如果能从嗅觉受体的基因层面探测危险物品,显然探测灵敏度更高。  正是因为有实际应用价值,庄寒异的成果不仅能申请到世界专利,其中嗅觉受体的异源表达技术还能授权给国外公司,实现成果转化。“随着生活质量不断提高,人们对嗅觉的探索会越来越深入。”庄寒异说。
  • 30岁当博导,38岁当选最年轻院士:他的人生就像安了加速器!
    p  2003年,38岁的卢柯当选中国科学院院士,是改革开放后当选年龄最小的院士,这个纪录至今仍未被打破。/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 391px" title="微信图片_20180328224103.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201803/insimg/654e331b-6efc-45e5-bd32-094045daf12c.jpg" width="450" height="391"//pp  在常人眼里,今年52岁的卢柯一直在“惊悚地成长”——16岁上大学,30岁当博导,32岁担任国家重点实验室主任,36岁出任中科院金属研究所所长,38岁当选为中国科学院院士,40岁当选德国科学院院士,41岁成为美国《科学》杂志的首位中国评审编辑,48岁成为中国“万人计划”的首批杰出人才6位人选之一。卢柯的人生就像安了加速器,每一步都走得比同龄人更快更受瞩目。/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 338px" title="微信图片_20180328224119.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201803/insimg/68b33972-879f-454e-95b5-98028c961097.jpg" width="450" height="338"//pp strong 缺什么就补什么/strong/pp  熟悉卢柯的人都知道,他除了锻炼身体没别的爱好,一心扑在工作上:几乎每个晚上都有工作,每周只休息半天,离开金属所不是回家就是去机场——参加国内外各种学术交流和会议,其他地方几乎不去。他把自己定位成职业科学家,“不做科研,还能做什么?”/pp  他效率非常高,几乎是用半天的时间就能把一天的活儿干完。他一直在加速理解什么是科研,加速实践自己的科研想法。他的理由是:“越早经历,越早能修正自己的错误,死之前做有价值事情的时间就越多。”/pp  为什么能这么快呢?卢柯认为客观上是自己运气好,主观上方法和努力很重要。学习有学习的方法,做科研有做科研的方法。跌跟头爬起来也有爬起来的方法。他的方法是“讲求效率,缺什么就学什么,不被动等待。”/pp  16岁,卢柯考入南京理工大学金属材料及热处理专业,志愿是父母填报的,他根本不知道材料是什么。大四做毕业设计实验时,他能动手做了,才觉得有意思。“感兴趣了,毕业分配又不想回甘肃,那就考研吧。”可考研很费劲,他高考分数超甘肃录取线60多分,但全系120多人,他入学成绩倒数第二,高考英语也只有30多分。/pp  那就从头学起,他玩命学英语,把专业最经典的英文原版教材——《位错引论》,花了一年时间翻译成中文看。一年后,他考研总成绩是系里考中科院的学生中最高的。/pp  读研时上课少,卢柯很多知识都自学。做实验需要物理学知识,他就捧着《非晶态物理学》自学,把书都翻烂了。到德国读博士后,他发现自己的热力学知识不够,就找书从头开始看。学完后,他还用热力学方法对自己的研究做了一个系统计算,这个计算让他发了一篇论文。/pp  现在,他的学生做实验碰到热力学知识来问卢柯,他都能迅速地给出解答。学生诧异:“老师你怎么对热力学这么熟悉?”他就说,“热力学是我自己学的,所以印象极其深刻。你缺什么,就要自己去补什么。”/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 191px" title="微信图片_20180328224424.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201803/insimg/415d533d-9bda-4460-a725-f64213f91aec.jpg" width="450" height="191"//pp style="TEXT-ALIGN: center"卢柯课题组合影/pp  实验做完了,理论上解释不通也要去学习。2011年,卢柯开创了梯度纳米结构材料研究领域。研究之前,他只知道自己有点思路上跟别人不一样,他期待这一点能带来什么变化。实验结果让他惊讶,他一度无法解释金属中原本不相容的“高强度和高塑性”为何能在纳米尺度下兼得。他向人请教转换思路,从力学性能本质出发去分析,最终才弄明白。/pp  卢柯总结自学的经验:“自己先琢磨,琢磨不透就去找人问。你就说,这个是什么,我看不懂,你给我讲一下嘛。我去问,你觉得我笨又有什么,我就这样。”最近,他又开始自学界面方面的教课书了。/pp  研究生毕业后,卢柯才确定了自己的兴趣——纳米材料。他想探究纳米尺度的材料能带来什么。他觉得确定的时间有点晚了。/pp  2016年5月19日,在中国科学院大学玉泉路校区的科学前沿进展讲座上,他把自己的求学体会转送给在场的300多名国科大本科生:“去找兴趣,越早找到越好。国科大的科学前沿讲座涉及各个领域,是找兴趣的好机会。”/pp  “这一轮精品讲座扫下来,你对什么感兴趣,你到底喜欢什么,应该会有点思路。至少你能了解到老师们的兴趣。有时候,改变你兴趣的,不是一个学科,而是一个人。你跟了一个导师,这辈子就可能‘捂’进去这个领域了,能‘捂’进去是好事儿。”/pp strong 科研就是自己跟自己斗/strong/pp  “捂”进纳米材料领域后,卢柯一直专注于对材料“制备-结构-性能”关系的思考,并取得了一系列成就。2000年至今,卢柯课题组先后研究出“纳米孪晶结构”“梯度纳米结构”“纳米层片结构”等几种新型纳米结构,研究水平国际领先,为开发高综合性能纳米金属材料开辟了新途径。/pp  不是没有过挫折和痛苦,卢柯的实验也曾好多次做不下去。他说,“做不下去时,就跳出来,放到更大的视野下去看看。”/pp  1998年,卢柯在参加学术会议的路上偶遇一位国际大牛,他兴奋地说起自己在做的表面纳米化研究。大牛一瓢冷水泼下来,“你去看某某人的文章,有人早研究过了,nothing new。”/pp  备受打击的卢柯并没有叫停实验。他读完文章后,仔细分析别人做了什么,还有什么东西可以做。他和学生花了很长时间做样品。从1997年—2005年,第一代样品做出来,卢柯觉得“完了,就到这儿为止了!”样品坑坑洼洼,粗糙度太大,根本看不见表面纳米层对力学性能的效果。/pp  “要放弃吗?”/pp  “要放弃,这是技术问题,但大目标不变。”/pp  “万一错了呢?”/pp  “有可能错,那你也得承受。科研有风险,这是一个斗智斗勇的过程。”/pp  “跟谁斗?”/pp  “跟自己斗!”/pp  卢柯扔掉第一代样品,扔掉了之前的原理,换思路带领学生又做了五年,还是什么都没做出来。不过,这回他认定自己的思路是对的,不放弃。/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 321px" title="微信图片_20180328224430.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201803/insimg/a55bebb0-8a83-41b4-b96b-3bdcf84e76c3.jpg" width="450" height="321"//pp style="TEXT-ALIGN: center"2016年5月19日,卢柯在中国科学院大学科学前沿进展讲座现场/pp  一年后,“两头粗中间细,界面光洁,强度和塑性都很高”的梯度纳米结构样品就做出来了。2011年,这项成果被发表在《Science》,起初大家都不相信能实现,后来又都跟风做。2015年,美国材料学会秋季大会上,还开设了专门研讨 “梯度纳米结构材料”的分会。/pp  同时期,卢柯课题组还开展其他多项研究。2003年,他们发现利用表面纳米化技术将铁表层的晶粒细化到纳米尺度,其氮化温度显著降低。表面纳米化技术成功应用到了宝钢集团冷轧厂的拉矫辊上,大幅提高了拉矫辊的使用周期。/pp  像这样能在短时间内投入使用的材料和技术是少数,“99%的新材料都停在死谷里,等待着走出去。”材料研发过程的复杂性、长周期、大尺度跨越、低成本要求,卡死了很多新材料走向实际应用,也让卢柯和很多从业者感到不幸,“大部分人在死之前,是看不到他研究的材料能用上的。”/pp strong 照猫画虎,画出的永远是猫斗/strong/pp  经常会有人质疑:中国的制造业不行,是因为材料不行。卢柯觉得很冤枉,“美国、日本制造业发达,不仅是材料好,是整个系统都好。我们材料可以做得很好,但其他环节中只要有一个出问题,就不行。”/pp  新材料使用前要经过4个阶段:发现新材料—发现优异性能—材料研究与发展—材料应用。在最关键的“材料研究与发展”阶段,又要经历“材料—部件—系统”3个维度的转变。每个维度都有不同领域的人在做,很容易产生断层现象。/pp  这种断层是不幸的源头之一。“做材料的只关心材料能不能做出来,具有什么组织结构,什么性能等 做部件的只关心技术能否实现,成本低不低,批量生产可不可靠等 到系统时,又只关心系统的设计、稳定性、制造、功能、成本等。”卢柯说。/pp  卢柯能把控的是要求自己和学生:“既要有技巧把材料做好,又要看到部件和系统对材料的需求。既要创新,又要在漫长研发周期中,学会坚守。”/pp  “坚守什么? 坚守对基础知识的探索,坚守精益求精。不求甚解,是我们落后的原因。”卢柯反复告诫自己的研究生。/pp  “与其说我们和国外的差距是材料技术上的差距,不如说是差在我们对材料本身的理解上。你都不知道这种制备能得到什么样的结构,这样的结构能有什么样的性能,你怎么能控制材料?” 在5月19日的讲座上,卢柯与本科生分享自己科研体会:“我们经常做的是把国外的东西拿来解剖,然后照猫画虎地做。人家是按照自己的知识体系建立起来的,我们画出的永远是猫。虽然现在引进技术,能让我们快速地走到一个阶段,但是我们很难突破,我们完全是在学习别人。”/pp  卢柯认为:“要想有所突破,你就要从根上做,最基础的开始做。”计算模拟能简化材料设计,但是材料科学的基本规律,还有很多未知的。他说,“千万不要因为模拟计算量增大,就减少基础研究的实验工作量”。/pp  他强调,“坚守似乎不是创新,但是它是把你的创新变得有价值,非常重要的一个步骤”。/pp  strong“大概齐”文化太误人/strong/pp  卢柯经常拿网球来举例问学生:“知道业余选手的我和网球天王费德勒的差别在哪儿吗?”“我是‘大概齐’玩一玩就行,自己打好一个球就很高兴,后面打得稀里哗啦也无所谓。老费的每一个动作、每个环节都是严格训练出来的,他必须按照职业要求来打,无论身体多疲惫,动作都要精准。”/pp  在他看来,职业科学家和职业选手一样——都要精准。科学研究最怕的就是“大概齐”,粗糙结果的发表会让很多人,尤其是你自己走弯路。/pp  但是,中国的“大概齐”文化太强大了。“我们生活中都是这种文化,就像炒菜,这少点、那多点都没事儿。很多人都不懂得区分,以至于蔓延到工作和学习上。”而西方人的文化是“定量”文化,大量的测量工具都是西方人发现的,他们测量就为了定量。/pp  卢柯观察到,一般人参加国际会议,做完poster(展板),材料就直接扔掉了。“可德国人不是,你花这么大精力做的poster,得拿回去挂在实验室。”/pp  他在德国读博士后期间,有一回自己用画框把poster镶了起来,拿了锤子和钉子准备去挂,被导师看见了,导师立刻让他下来。第二天导师请来了技工,上下测量,选了视线最好的地方。第三天卢柯准备去挂poster,导师又不让,“这里光线有点暗,看起来会很压抑,等技术员再来这儿安装2个灯。”就这样,卢柯前后一共被折回来6次,才看着技工把poster完美地挂在墙上。/pp  “是很费劲。但看起来非常好看,而且一挂就是好多年,我每次去都去能看到它。”卢柯认为,这是一种精神。/pp  后来,卢柯曾多次到德国、美国、法国等地访学,访学时他最关注的是科学家们的思维方式。他学习德国人的严谨,一步步按照规则来 也学习美国人的思维跳跃,弄清楚原理后大踏步前进。这些学习,对他的影响是综合的。所以,同事说他“离开金属所不是回家就是去机场”,也可以换成另一句话:“他不是在工作,就是在学习。”/pp  卢柯最不能容忍的是实验数据模糊或错误。有学生来汇报说实验材料的统计平均精密值是多少多少,卢柯会直接打断:“说最大的、最小的,大概值、大约数没有用。”也有学生写的论文,被卢柯发现有个数据没有考虑到温度的影响,结果不精确。卢柯就让他调整温度重新做,果然结果变化了,学生原本要发表的论文也被要求重新写。/pp  但是,行为上的严谨和思想上的宽松并不矛盾。只要卢柯在沈阳,他只留出上午两个小时和下午一个半小时给自己,剩下的时间都留给学生。“讨论他们的实验结果,讨论他们还想做什么。实在没事儿,就闲聊天,大家很享受。”/pp strong 职业科学家要一辈子与青年同行斗/strong/pp  纳米材料的未来会怎么样?卢柯认为,“可以研究的事儿非常多,前景非常广阔”。未来,可能现在的材料都不存在了,新的材料会取代它们。“纳米材料会重塑我们的世界。”/pp  卢柯猜测自己应该能活到80岁。“那时候,我希望能弄明白纳米材料科学的基本框架,吃透纳米材料科学的基本原理。脑子里还要存很多的科研经历和故事,和年轻人聊天时,能聊点好玩的、对他们有价值的信息。”/pp  去年,卢柯去拜访了自己80多岁的德国导师。见面前,老先生刚做了一场手术,看起来精神不济,卢柯调侃说,“跟我讲讲你这一年都做了什么”,老先生的眼神立马就亮了。/pp  老先生退休后,自费参加国际学术会,去年他去了布拉格,今年还计划要到日本,只为做一个poster。其实也就是自己一个人在书房里勾勾画画计算推导的一些想法,或许根本就没人能看明白。/pp  为什么还要让他去呢?他太太说:“得让他去,他只有到那里才会神采飞扬。”/pp  人老了,孤独是最可怕的。卢柯想象自己退休以后,肯定不会一个人窝在沙发里,对着天花板发呆。他反问自己:职业科学家除了做科研,还能做什么呢?“做得动时,就去实验室 做不动时,就到青年人中去,青年人是我的同行。”/pp  想象着导师跟年轻人聊天时神采飞扬的模样,卢柯说,“我以后肯定也会这样。”正如,此刻,聊天中的他神采飞扬。/p
  • 微波光子器件研究获突破 外媒评“或改变微波通信未来”
    国家973计划项目“面向宽带泛在接入的微波光子器件与集成系统基础研究”重点针对微波光子相互作用下的高带宽转换机理、高精细调控方法、高灵活协同机制等3个科学问题,在微波光子作用机理、关键器件与原型系统方面取得了重要突破,为未来发展提供了相应的理论与技术支撑。  在“高带宽”方面,研究团队揭示了新材料光学响应的增强机理与特性规律,首次实验发现了石墨烯等二维材料具有微波与光波类似的可饱和吸收特性,可用于实现更高带宽的调制器,相关成果被国外媒体报道并被认为是“石墨烯在微波光子学中崛起”、“可能改变微波通信的未来” 发明了倒梯形波导结构,攻克了高带宽、窄线宽、可调谐、高稳频等关键技术,研制成功了国际领先的30GHz模拟直调半导体激光器。在“高精细”方面,研究团队研制了精度2.2MHz、范围 112GHz的微波处理光子集成芯片,性能指标领先 实现了光域微波超宽带精细调控和大动态超宽带稳相微波光传输。在“高灵活”方面,面对宽带泛在接入的共性问题,研究团队首次提出了基于软件定义的微波光波资源统一调度与功能虚拟化的C-RoFlex模型 研制了覆盖L/S/Ku/Ka且子信道带宽 15-120MHz灵活可变的微波光子柔性卫星转发器样机 构建了分布式大动态可协同的智能光载无线(I-ROF)原型系统与研究平台。  该项目所取得的“宽带集成、稳相传输、多频重构”等创新成果在嫦娥三号X波段信标信号采集、北斗导航高轨卫星的轨道监测和微波光子柔性卫星转发器等国家重大工程中得到验证和技术应用。
  • 超声波破碎仪的基本工作原理
    超声波破碎仪的基本工作原理超声波破碎仪是一种利用超声波振动产生的高频机械波动力,对样品进行破碎、分散、乳化等处理的实验仪器。其基本工作原理涉及超声波的产生和传播,以及超声波在液体中产生的声波效应。以下是超声波破碎仪的基本工作原理: 超声波的产生: 超声波破碎仪内部通常包含一个压电陶瓷晶体,该晶体可以通过电压的作用发生振动。当施加高频电压时,压电晶体会迅速振动,产生高频的超声波。超声波的传播: 通过振动的压电晶体,超声波会传播到连接样品的处理装置(通常是破碎杵、破碎管或破碎尖等)。这个处理装置的设计可以将超声波传递到液体中的样品。声波效应: 超声波在液体中产生高强度的声波效应,形成破碎区域。当超声波传播到液体中,它会产生交替的高压和低压区域,形成声波节点和反节点。在高压区域,液体分子受到挤压,形成微小的气泡;在低压区域,气泡迅速坍塌,产生局部高温和高压。这种声波效应称为“空化”效应。空化效应的作用: 空化效应导致液体中的气泡在瞬间形成和坍塌,产生局部高温和高压。这些瞬时的高能量作用于样品中的细胞、分子或颗粒,导致物质的破碎、分散或乳化。作用于样品: 超声波的高频振动和声波效应作用于样品,可以打破细胞膜、细胞壁或分散颗粒,使样品更均匀地分散在液体中。总体而言,超声波破碎仪利用超声波的机械波效应,通过声波在液体中产生的高压和低压区域的交替作用,实现对样品的破碎、分散和乳化等处理。这种方法在生物、化学和材料科学等领域中被广泛应用。
  • 谱育科技发布谱育科技EXPEC 790系列 全自动超级微波化学工作站新品
    产品概述EXPEC 790系列 全自动超级微波化学工作站基于传统微波消解技术,优化微波激励设计,增加全自动高压密闭、自动加液、自动定容、自动样品转移等自动化功能,提升微波消解效率及操作便捷性。同时,支持“一键式”消解--分析仪器联用独特功能,使得消解、分析更加智能化、标准化和安全化。仪器具备消解速度快、试剂用量少、干净、节能、易于监控等优势,被广泛用于生物、食品、医药、地质、冶金、煤炭、环境监测等领域,成为元素分析样品处理最有力的工具之一。性能优势1、微波直接耦合技术● 直接耦合微波激励和波导设计,提升微波效率;● 微波阻抗完全匹配,提高微波传输效率;● 桶型对称式样品架,保证样品消解一致性。2、精准温度控制技术● 超高消解能力,温度高达300℃,压力高达20Mpa;● 直接温度测量,精准测温、快速反馈;● PID自整定控温,实时调节,准确控制;● 程控阶梯控温,灵活配置消解方法。3、程控预加压技术● 在升温过程中有效抑制样品爆沸,无样品交叉干扰;● 样品管内外压力平衡,样品管不易变形,大幅提高使用寿命。4、腔体快速降温技术● 程控独立循环水机对于消解后的腔体快速水冷;● 精密螺旋式水冷工艺提高接触面积,缩短冷却时间。5、自动消解● 可直接加载/创建消解方法,激活后可无人值守;● 4个消解罐可独立运行不同方法,提高消解效率。6、自动加液● 注射泵加液控制,保证加液精度;● 蠕动泵组独立通道添加试剂,触液材料均为PTFE,可耐强酸(HNO3、HCl、HF、HClO4等)腐蚀。7、自动过滤● 自动补给和检测滤芯,保证无脱落;● 每次取样自动更换新滤芯,保证无交叉污染。8、自动转移● 自动进样器模式:样品定容混匀后自动转移至自动进样器的样品盘(样品盘规格可配);● 分析仪器联用模式:定容后,自动气吹混匀,支持分析仪器ICP-OES/MS联用,自动分析。产品应用全自动超级微波化学工作站适用于化妆品、药品、环境、食品、地矿、石油化工等样品的消解。预加压和高温加热功能满足复杂样品对高温、高压的特殊要求,实现塑料、纤维等难消解样品的充分消解,同时支持4个消解腔可独立运行不同方法,实现灵活应用。 石油化工 土壤 地矿 药品创新点:EXPEC 790系列新一代的超级微波化学工作站,可解决各种复杂样品消解难题,自动化操作设计,赋予微波消解新的应用场景,为未来实验室分析4.0提供自动化前处理基础。1.高效直接微波耦合设计:直接耦合微波激励和波导设计,提升微波传输效率;微波阻抗完全匹配,将微波传输效率提高到最佳;2.高效节能:300℃超高温与20Mpa超高压的消解环境,将消解效率提升到最佳,同时降低酸液消耗3.智能全自动设计:支持自动进样及分析仪器联用模式,为前处理+分析自动化提供了可靠的基础。谱育科技EXPEC 790系列 全自动超级微波化学工作站
  • AFSEM™ 小试牛刀——SEM中原位AFM定量表征光子学微结构表面粗糙度
    近期,老牌期刊 Sensors and Actuators A: Physical 刊载了C. Ranacher等人题为Mid-infrared absorption gas sensing using a silicon strip waveguide的文章。此研究工作的目的是发展一种能够与当代硅基电子器件方便集成的新型气体探测器,探测器的核心部分是条状硅基光波导,工作的机理是基于条状硅基波导在中红外波段的倏逝场传播特性会受到波导周围气氛的变化而发生改变这一现象。C. Ranacher等人通过有限元模拟以及时域有限差分方法,设计了合理的器件结构,并通过一系列微加工工艺获得了原型器件,后从实验上验证了这种基于条状硅基光波导的器件可以探测到浓度低至5000 ppm的二氧化碳气体,在气体探测方面具有高的可行性(如图1、图2)。 图1:硅基条型光波导结构示意图图2:气体测试平台示意图参考文章:Mid-infrared absorption gas sensing using a silicon strip waveguide值得指出的是,对于光波导来说,结构表面的粗糙程度对结构的固有损耗有大的影响,常需要结构的表面足够光滑。传统的SEM观测模式下,研究者们可以获取样品形貌的图像信息,但很难对图像信息进行量化,也就无法定量对比不同样品的粗糙度或定量分析粗糙度对器件特性的影响。本文当中,为了能够准确、快捷、方便、定量化地对光波导探测器不同部分的粗糙度进行表征,C. Ranacher等人联系到了维也纳技术大学,利用该校电镜中心拥有的扫描电镜专用原位AFM探测系统AFSEM™ (注:奥地利GETec Microscopy公司将扫描电镜专用原位AFM探测系统命名为AFSEM,并已注册专用商标AFSEM™ ),在SEM中选取了感兴趣的样品部分并进行了原位AFM形貌轮廓定量化表征,相应的结果如图3所示,其中硅表面和氮化硅表面的粗糙度均方根分别为1.26 nm和1.17 nm。有了明确的量化结果,对于不同工艺结果的对比也就有了量化的依据,从而可以作为参考,优化工艺;另一方面,对于考量由粗糙度引起的波导固有损耗问题,也有了量化的分析依据。图3:(a) Taper结构的SEM形貌图像;(b) Launchpad表面的衍射光栅结构的SEM形貌图像;(c) 原位AFM表征结果:左下图为氮化硅层的表面轮廓图像,右上图为硅基条状结构的表面轮廓图像;(d) 衍射光栅的AFM轮廓表征结果通过传统的光学显微镜、电子显微镜,研究者们可以直观地获取样品的形貌图像信息。不过,随着对样品形貌信息的定量化表征需求及三维微纳结构轮廓信息表征的需求增多,能够与传统显微手段兼容并进行原位定量化轮廓形貌表征的设备就显得愈发重要。另一方面,随着聚焦电子束(FEB,focused electron beam)、聚焦离子束(FIB,focused ion beam)技术的发展,对样品进行微区定域加工的各类工艺被越来越广泛地应用于微纳米技术领域的相关研究当中。通常,在FIB系统当中能够获得的样品微区物性信息非常有限,如果要对工艺处理之后的样品进行微区定量化的形貌表征以及力学、电学、磁学特性分析,往往需要将样品转移至其他的物性分析系统或者表征平台。然而,不少材料对空气中的氧气或水分十分敏感,往往短时间暴露在大气环境中,就会使样品的表面特性发生变化,从而无法获得样品经过FIB系统处理后的原位信息。此外,有不少学科,需要利用FIB对样品进行逐层减薄并配合AFM进行逐层的物性定量分析,在这种情况下需要反复地将样品放入FIB腔体或从FIB腔体中去除,而且还需要对微区进行定标处理,非常麻烦,并且同样存在样品转移过程当中在大气环境中的沾污及氧化问题。有鉴于此,一种能够与SEM或FIB系统快速集成、并实现AFM原位观测的模块,就显得非常有必要。GETec Microscopy公司致力于研发集成于SEM、FIB系统的原位AFM探测系统,已有超过十年的时间,并于2015年正式推出了扫描电镜专用原位AFM探测系统AFSEM™ 。AFSEM™ 基于自感应悬臂梁技术,因此不需要额外的激光器及四象限探测器,即可实现AFM的功能,从而能够方便地与市场上的各类光学显微镜、SEM、FIB设备集成,在各种狭小腔体中进行原位的AFM轮廓测试(图4、图5)。另一方面,通过选择悬臂梁的不同功能型针(图6、图7),还可以在SEM腔体中,原位对微纳结构进行磁学、力学、电学特性观测,大程度地满足研究者们对各类样品微区特性的表征需求。对于联用系统,相信很多使用者都有过不同系统安装、调试、匹配过程繁琐的经历,或是联用效果差强人意的经历。不过,对于AFSEMTM系统,您完全不必有此方面的顾虑,通过文章下方的视频,您可以看到AFSEM™ 安装到SEM系统的过程十分简单,并且可以快速的找到感兴趣的样品区域并进行AFM的成像。图4:(左)自感应悬臂梁工作示意图;(右)AFSEMTM与SEM集成实图情况 图5:AFSEMTM在SEM中原位获取骨骼组织的定量化形貌信息 图6:自感应悬臂梁与功能型针(1) 图7:自感应悬臂梁与功能型针(2)目前Quantum Design中国子公司已将GETec扫描电镜专用原位AFM探测系统AFSEM™ 引进中国市场。AFSEM技术与SEM技术的结合,使得人们对微观和纳米新探索新发现成为可能。
  • 新型磁共振行波发射系统提升图像质量和准确性
    超高场磁共振是物理、生物和医学研究中的尖端电磁成像装备,具有亚毫米级别高分辨率成像性能,在恶性肿瘤早期检测、无创绘制人脑介观尺度脑图谱等临床和基础研究前沿领域具有不可替代的应用价值。目前入门级7T人体超高场磁共振单台售价高达1亿元,国内仅有极少数医院和科研院所装备。但是,这样一台造价极其昂贵的医学影像装备,却难以胜任常规医用磁共振(1.5T和3T)所能开展的身体部位(胸腹部等)成像,广泛限制着超高场磁共振在临床诊断中的应用。近日,西安电子科技大学杭州研究院姜文教授PI团队高阳准聘副教授研究提出了一种新型的磁共振行波发射系统,通过引入空心介质波导结构包绕成像物体,实现了大尺寸生物体内的电磁波高效调控,解决了经典方法面临的发射效率低和大尺度空间内自旋质子激励偏差问题。相关研究成果发表于《自然通讯》杂志。同时,该研究团队与浙江大学张孝通研究员合作,成果在西门子7T磁共振设备上得到了验证,可获得低驻波伪影人体头部成像数据。 采用新方法的7T磁共振成像结果具有低驻波伪影。论文作者供图
  • 高效革新 重磅首发 | 谱育科技超级微波化学工作站 新品上市预告
    EXPEC 790系列 超级微波化学工作站突破传统、高效革新全自动超级微波、全面提升样品消解能力独特的“一键式”消解,释放您的双手消解-分析联用功能让元素分析更方便、安全、高效新一代 超级微波 超级微波化学工作站 全自动超级微波化学工作站超级微波,引领消解技术创新微波直接耦合技术微波直接耦合到激励腔,波导阻抗完全匹配,将微波传输效率提高到最佳。程控预加压技术压力平衡预加压设计,升温过程中消解管内压力平衡,有效抑制样品爆沸,无样品交叉干扰,避免爆管。快速降温技术精密螺旋式水冷降温工艺设计,最大程度提高接触面积、缩短冷却时间,实现消解后快速水冷。精准控制技术罐内温度可高达300℃,压力高达20Mpa,程控阶梯控温(PID),测量调节反馈,一步到位。进入全自动时代自动消解可直接加载/创建消解方法,激活后可无人值守;4个消解罐可独立运行不同方法,提高消解效率。自动加液 注射加液控制,保证加液精度;蠕动泵组独立通道添加剂,触液材料均为PTEE,可耐强酸腐蚀。 自动过滤自动补给和检测滤芯,保证无脱落;每次取样自动更新滤芯,保证无交叉污染。自动转移自动进样器模式:样品定容混匀后自动转移至自动进样器的样品盘。(样品盘规格可配)基于超级微波的全自动重金属分析系统全自动微波消解+分析仪器(ICP-MS / ICP-OES)联用,一键启动,自动分析,直出报告。从消解到分析,全流程无需人工干预。应用案例全自动超级微波化学工作站适用于化妆品、药品、环境、食品、地矿、石油化工等样品的消解。预加压和高温加热功能能完全满足复杂样品对高温、高压的特殊要求,实现塑料、纤维等难消解样品的充分消解,同时支持4个消解腔可独立运行不同方法,实现灵活应用。石油化工土壤地矿药品
  • 高效革新,重磅首发 | 谱育科技超级微波化学工作站 新品上市预告
    谱育科技成立5周年 诚意之作重磅推出一系列新品,敬请期待!谱育出品,必属精品 EXPEC 790系列 超级微波化学工作站 突破传统、高效革新全自动超级微波、全面提升样品消解能力独特的“一键式”消解,释放您的双手消解-分析联用功能让元素分析更方便、安全、高效 新一代 超级微波超级微波化学工作站全自动超级微波化学工作站超级微波,引领消解技术创新微波直接耦合技术微波直接耦合到激励腔,波导阻抗完全匹配,将微波传输效率提高到最佳。程控预加压技术压力平衡预加压设计,升温过程中消解管内压力平衡,有效抑制样品爆沸,无样品交叉干扰,避免爆管。快速降温技术精密螺旋式水冷降温工艺设计,最大程度提高接触面积、缩短冷却时间,实现消解后快速水冷。精准控制技术罐内温度可高达300℃,压力高达20Mpa,程控阶梯控温(PID),测量调节反馈,一步到位。进入全自动时代自动消解可直接加载/创建消解方法,激活后可无人值守;4个消解罐可独立运行不同方法,提高消解效率。1自动加液注射加液控制,保证加液精度;蠕动泵组独立通道添加剂,触液材料均为PTEE,可耐强酸腐蚀。2自动过滤自动补给和检测滤芯,保证无脱落;每次取样自动更新滤芯,保证无交叉污染。3自动转移自动进样器模式:样品定容混匀后自动转移至自动进样器的样品盘。(样品盘规格可配)4基于超级微波的全自动重金属分析系统全自动微波消解+分析仪器(ICP-MS / ICP-OES)联用,一键启动,自动分析,直出报告。从消解到分析,全流程无需人工干预。应用案例全自动超级微波化学工作站适用于化妆品、药品、环境、食品、地矿、石油化工等样品的消解。预加压和高温加热功能能完全满足复杂样品对高温、高压的特殊要求,实现塑料、纤维等难消解样品的充分消解,同时支持4个消解腔可独立运行不同方法,实现灵活应用。石油化工土壤地矿药品
  • 展会邀约丨卓立汉光携众多展品亮相武汉光博会
    第十七届“中国光谷”国际光电子博览会暨论坛(以下简称“武汉光博会”)将于2020年11月11日-13日在武汉中国光谷科技会展中心举办。本届展会将集中展示激光与智能制造、光学与精密光学、光通信及5G通信、芯片和光电显示四大主题。 作为光学精密机械产品及解决方案的知名供应商,卓立汉光将围绕今年备受关注的各项应用主题,为观众们倾力呈现更多精彩的展品及解决方案。展会详情:会议时间:2020年11月11日-13日会议地点:武汉中国光谷科技会展中心卓立汉光展台:A2-227展位精彩展品一览:PLC 光分路器耦合系统系统功能:将平面波导器件上的各个导光通路(即波导通路)与光纤阵列中的光纤一一对准,然后点胶、固化。卓立汉光提供的PLC 光分路器耦合系统可提供较高对准精度!自动AA 对位点胶系统系统功能:通过机器视觉进行引导,实现对摄像头模组等微型组件进行点胶的自动化设备,可以实现对微型组件进行形位公差补偿、安装误差补偿。产品特性:效率高,可靠性好,大幅度节省人工。6 轴并联系统应用领域:空间精密对位、微小器件加工和装配、光通信器件调芯、晶片检验等应用。卓立汉光解决方案:高精度、高集成度、高效率的 6 个自由度运动6 轴并联系统 隔振平台难点:振动隔离技术卓立汉光方案:可提供各种尺寸主动、被动(阻尼、气浮以及拼接、异形等) 隔振平台应用领域:光学、电子、精密机械制造、冶金、航天、航空、 航海、精密化工和无损检测等领域。 武汉光博会,卓立汉光积极筹备,精选参展产品和解决方案,期待与您现场交流新产品、新技术、新思路。11月11日-13日,武汉见!
  • 西安光机所微纳光子学亚波长器件研究取得重要进展
    微纳光子学亚波长器件研究获进展 或让电子学和光子学在纳米尺度上联姻  微纳光子学主要研究在微纳尺度下光与物质相互作用的规律及其光的产生、传输、调控、探测和传感等方面的应用。微纳光子学亚波长器件能有效提高光子集成度,有望像电子芯片一样把光子器件集成到尺寸很小的单一光芯片上。纳米表面等离子体学是一新兴微纳光子学领域,主要研究金属纳米结构中光与物质的相互作用。它具有尺寸小,速度快和克服传统衍射极限等特点,有望实现电子学和光子学在纳米尺度上的完美联姻,将为新一代的光电技术开创新的平台。  金属-介质-金属F-P腔是最基本的纳米等离子体波导结构,具有良好的局域场增强和共振滤波特性,是制作纳米滤波器、波分复用器、光开关、激光器等微纳光器件的基础。但由于纳米等离子体结构中金属腔的固有损耗和能量反射,F-P腔在波分复用器应用中透射效率往往较低,这给实际应用带来不利。  针对此问题,中科院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室刘雪明研究员及其课题组成员陆华、宫永康等近期开展了相关研究并取得一定成果。到目前为止,已在Optics Express, Optics Letters, J. Opt. Soc. Am. B, Applied Physics B等国际著名光学期刊上发表论文十余篇。最近,科研人员提出了一种提高表面等离子体F-P腔波分复用器透射效率的双腔逆向干涉相消法。该方法能有效避免腔的能量反射,使入射光能完全从通道端口出射,极大增强了透射效率。此设计方法还能有效的抑制噪声光的反馈。同时,科研人员利用耦合模方法验证了这种设计方法的可行性。这种波分复用器相比目前报道的基于F-P单腔共振滤波的波分复用器的透射效率提高了50%以上。相关的成果于2011年6月20日发表在Optics Express上,论文题目为:Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities。  该研究成果引起了美国光学学会(Optical Society of America, OSA)的注意,并于6月27日被选为“Image of the week”。  论文链接
  • 浙大28岁美女博导科研成果:让手机三四天不用充电!
    3月16日,浙江大学官方微信公众号发文称,该校归国女博导陆盈盈研究成果能让手机三四天不用充电,金属锂电池的能量密度提高了三四倍。不但续航能力大为增强,而且电池的充电速度会是现在的几倍速度快。在安全性上,也更加有保障。  众所周知,在这个奥巴马和川普都用手机拉票的时代  手机没电  已经是生活中最大危机之一   手机没电,你可能秒变路痴  叫不到好吃的  错过最热的电影和最新的话题  感觉身体被掏空!   可是!  在不远的将来,这些都不用愁了!  因为——  浙大的特聘研究员陆盈盈  带领她的14人团队研究出了  能量密度提高了三四倍的金属锂电池  这款能量密度达到  目前所使用电池的三到四倍的金属锂电池  厉害到什么程度呢?  现在使用一天就要充电的智能手机,  如果用他们的电池可以用三到四天,  续航能力大为增强  就算不停地打游戏都不要紧。  而且电池的充电速度会是现在的几倍速度快。  在安全性上,也更加有保障。  陆盈盈说  这款电池实验室阶段的技术已经成熟了  能量密度提高了三四倍  而科研团队目前正做着规模产业化方面的努力   什么?陆盈盈?就是那位传说中的海归美女学霸?  是的,你没有看错,浙大的科技界女神陆盈盈又给我们带来惊喜啦!   她,曾经多次登上新闻,成为网络红人  她,曾经登上央视,受到瞩目   这位足以颠覆人们对女博士印象的  美女学霸到底有多牛?  跟小编一起来看看吧~  2010年6月  陆盈盈从浙江大学化学工程与生物工程学院毕业  获得学士学位  随后来到美国康奈尔大学读博士  四年后又在斯坦福大学完成了博士后的研究工作陆盈盈生活照(图片来自网络)  毕业后,几乎毫无纠结地  陆盈盈回到了祖国  对于这个选择,她是这样说的:  “理由很简单,因为我是中国人,我在国内做科研就是一件再适合不过的事。唯有回来,别无他念。出生在这里,生长在这里,这里就是我的家,我的根。一个国家强大不强大,能不能往前走,需要每一个人尽自己的一份力。而我所能为国家做的事,就是回来做好科研工作,让我们国家在新能源领域有所发展。”陆盈盈生活照(图片来自网络)  2015年,陆盈盈通过了  第十一批国家青年“千人计划”  回到浙江大学  成为了母校的一名特聘研究员  在浙江大学化学工程联合国家重点实验室  她主攻锂电池等  能源化工材料、锂电池安全问题、  高能量大功率储能器件等方向的研究。  但是,因为高颜值、超牛简历走红后  陆盈盈也受到了一些质疑   当时新华社记者特地用电子邮件  采访了陆盈盈博士学位的指导老师  美国康奈尔大学  化学与生物工程系教授Lynden A.Archer  请他谈谈对这位中国“85后”学术水平的评价  得到的回复是这样的:  Lynden A.Archer教授介绍说  陆盈盈的博士论文研究的问题是  能源储存领域的一大挑战  “是一个持续了四十年的学术难题”。  “刚开始时,我担心这个问题对于一个博士生来说有点太大了。探索已经进行了30年的时间。世界上许多知名学者曾经试图解决该难题,但都未成功。但事实表明,我的担心是多余的。”  “她的博士论文非常精彩!她的论文在广度与深度上都比一般的博士论文出众。基于她在研究领域的贡献,2014年12月,陆盈盈被授予WC Hooey研究奖,这是康奈尔大学化学与生物工程系授予研究生的最高荣誉。”  再来看看陆盈盈的学术论文、专著吧    1. Y. Lu*, Z. Tu*, and L. A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater. 13, 961-969, 2014. (*: authors contributed equally to this work)  2. Y. Lu, S. K. Das, S. S. Moganty, L. A. Archer, Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries, Adv. Mater. 24, 4430-4435, 2012. This paper has been highlighted in Nature Materials | Research Highlights: V. J. Dusastre, Hybrid electrolytes, Nat. Mater. 11, 745, 2012.  3.Y. Lu, K. Korf, Y. Kambe, and L. A. Archer, Ionic liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries, Angew. Chem. Int. Ed. 53,488-492, 2014.  4.Y. Lu, M. Tikekar, R. Mohanty, K. Hendrickson, L. Ma, L. A. Archer, Stable cycling of lithium metal batteries, Adv. Energy Mater. DOI: 10.1002/aenm.201402073.  5.Y. Lu, S. S. Moganty, J. L. Schaefer, L. A. Archer, Ionic liquid-nanoparticle hybrid electrolytes, J. Mater. Chem. 22, 4066-4072, 2012.  6.Y. Lu, Z. Tu, J. Shu, L. A. Archer, Stable lithium electrodeposition in salt-reinforced electrolytes, J. Power Sources 279, 413-418, 2015.  7.Y. Lu, S. Xu, J. Shu, W. I. A. Aladat, L. A. Archer, High voltage LIB cathodes enabled by salt-reinforced liquid electrolytes, Electrochem. Comm. 51, 23-26, 2015.  8.K. S. Korf*, Y. Lu*, Y. Kambe, L. A. Archer, Piperidinium Tethered Nanoparticle-hybrid Electrolyte for Lithium Metal Batteries, J. Mater. Chem. A 2, 11866-11873, 2014. (*: authors contributed equally to this work)  9.S. Xu, Y. Lu, and L. A. Archer, A Rechargeable Na-CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes J. Mater. Chem. A 2, 17723-17729, 2014.  10.Y. H. Wen, Y. Lu, K. M. Dobosz, and L. A. Archer, Structure, Ion Transport and Rheology of Nanoparticle Salts, Macromolecules 47(13), 4479-4492, 2014.  11.L. Ma, H. Zhuang, Y. Lu, S. S. Moganty, R. Hennig, L. A. Archer, Tethered Molecular Sorbents: Enabling Metal-Sulfur Battery Cathodes, Adv. Energy Mater. DOI:10.1003/aenm.201400390.  12.Z. Tu, Y. Kambe, Y. Lu, L. A. Archer, Nanoparticle polymer-ceramic composite electrolytes for lithium metal batteries, Adv. Energy Mater. 4, 1300654, 2014.  13.S. K. Das, S. Xu, A.-H. Emwas, Y. Lu, S. Srivastava, L. A. Archer, High energy lithium-oxygen batteries-transport barriers and thermodynamics, Energy Environ. Sci.5, 8927-8931, 2012.  14.S. S. Moganty, S. Srivastava, Y. Lu, J. L. Schaefer, S. A. Rizvi, L. A. Archer, Ionic liquid-tethered nanoparticle suspensions: a novel class of ionogels, Chem. Mater. 24, 1386-1392, 2012.  15.J. L. Schaefer, Y. Lu, S. S. Moganty, P. Agarwal, N. Jayaprakash, L. A. Archer, Electrolytes for high-energy batteries, Applied Nanoscience 2, 99-109, 2012.  16.Z. Yao, J. Zhang, M. Chen, B. Li, Y. Lu, K. Cao, Preparation of well-defined block copolymer having one polystyrene segment and another poly(styrene-alt-maleic anhydride) segment with RAFT polymerization, J. Appl. Poly. Sci. 121(3), 1740-1746, 2011.  专利  1.L. A. Archer, S. S. Moganty, Y. Lu Ionic liquid-tethered nanoparticles, related methods and applications, US patent 20, 140, 154, 5, 88, 2014.  2.Y. Lu, Z. Tu, L. A. Archer, M. Tikekar, R. Mohanty, K. Hendrickson, Dendrite inhibited electrolyte and battery, 62020657, 2014.  回国一年多来,陆盈盈带领着她的团队  一直在科研一线奋斗  2017年3月6日  浙江省妇联表彰了省内一大批优秀女性  其中就包括陆盈盈陆盈盈上台发言(图片来自网络)  其实,陆盈盈能引起人们的关注  不仅是因为她的年轻、高颜值  更是因为她的努力、独立和自信  要知道在国外的实验室里  做科研的男女比例差不多是1:1  女生实力不容小觑  而在国内  科研界女性比例极小  2013年两院院士中只有5%是女性  长江学者中,女性只有3.9%  更有多项研究指出  女性科研工作者出现了“高位缺席”现象  所以说,像陆盈盈这样的女性科研人员  比例并不大  一些女性科研工作者因为社会家庭的原因  主动放弃本来挺有天赋的科研世界  而陆盈盈并不这么看  她说:  “女性拥有一份自己的事业,  也是十分有魅力的事情。”
  • 微波消解样品前处理的最新进展
    Mars6 微波消解仪最新 One-Touch 和 PowerMax 技术,更适合相关行业原料和产物的批量样品前处理 微波消解微波动力学原理:CEM PowerMax 微波动力学原理,PowerMax 优化动力学能量模式,配置了特殊设计的双向垂直波导腔,动态匹配功率发射对应实时反应过程变化,有能力轻松应对更困难的微波消解样品反应。    微波消解最新智能整合:One Touch 一键式智能整合: 可自动识别反应腔中的反应罐类型、数量和位置,而且自动检测温压控制系统的安装。随后,根据样品的特性和当量,自动检索应用方法数据库,自动能量优化数据匹配计算,全过程智能控制无需设定,却同时实现温度、压力、功率调整曲线的全过程显示,0-40罐多目标跟踪实时温度状况显示。 USP药典通则233即&ldquo 杂质元素测试步骤&rdquo ,是目前实验室推荐的测试程序,以取代之前的USP药典通则231,即药物研发领域(包括天然原料和核糖体DNA (rDNA)等)原料和产物重金属含量检测分析和样品前处理。USP药典通则231使用现有的分析仪器,ICP-OES、ICP-MS和微波法来取代电热板、马弗炉、和技术人员目视测定方法。ICP方法的进步需要更清洁的样本实现更低的检出限制。 医药行业元素分析方法转换的成本是巨大的、包括仪器采购,微波消解方法和ICP方法开发、检测项目确定、培训和文档等。某些样品消解很容易,但像一些包含生物分子的原料样品就不那么容易了。CEM公司的目标是让技术员走到微波消解仪前、安全快速的组装消解罐、添加适量的样品和酸试剂、并置入微波消解仪腔体中完成消解全过程。CEM公司分析化学产品线产品经理Jason Keith说:&ldquo CEM广泛丰富的内置培训教程和预编程方法可帮助实现这一目标。&rdquo MARS 6一键式智能整合操作系统,One - Touch 一键式核心操作机制,创新的革命性设计,实现了高水准的控制能力,完美整合 CEM 高超的软硬件识别技术 + 温压传感 + PowerMAX 微波能量动力学 + 40 年方法数据库技术,一键式整合完成多步动作,尤如机器内部有一名活的应用化学专家在帮你工作,形成人机一体化智能协同,软硬件的一致性行动,MARS6 新一代反应装置使简洁操作的梦想真正成为现实。原文参考:http://www.genengnews.com/gen-articles/simplifying-complex-biological-matrices/4109/?page=2更多详情,请联系培安公司:电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288Email: sales@pynnco.com 网站:www.pynnco.com
  • 2023中国微波周盛大开幕
    2023中国微波周是由中国电子学会主办,微波分会承办的全国性学术会议,是为全国微波毫米波技术领域的科学家、技术工程师与管理人员提供的一个广泛交流科研成果和最新进展的平台。全国微波毫米波会议(NCMMW)、国际微波毫米波技术会议(ICMMT)与国际无线技术会议(IWS)联合组成“中国微波周”,行业引领力、产业推动力和国际影响力逐年提升,成为微波毫米波行业集“产、学、研、用”于一体的综合性交流平台。 2023中国微波周由中国电子学会微波分会、中电科思仪科技股份有限公司共同承办,于5月15日至17日在青岛东方影都会议中心重磅亮相,同期打造一系列配套活动,以大会报告、主题沙龙、专题论坛、论文评选和成果展示等多元化的活动,2000多位领域专家、学者、领域同仁齐聚一堂,参加了开幕式大会活动。本次会议隆重召开得到了电子学会、微波分会、山东省人民政府,青岛市人民政府、黄岛区政府、西海岸新区管委、青岛经济技术开发区管委的大力支持,2023中国微波周主席深圳大学校长毛军发院士致辞,揭开中国微波周的序幕;电子学会曹学勤副秘书长致辞,对这次大会的规模和会议组织给以肯定,鼓励搭建交流平台,增强微波毫米领域技术、成果交流与共享;青岛市政府陈万胜副秘书长致辞,中国微波周形成了以会聚才、以展促用、以用促研的融合交流平台,鼓励在青岛结出丰硕成果;中电科思仪科技股份有限公司张红卫董事长代表承办单位向参会的各位领导、嘉宾表示热烈欢迎并致辞!大会报告精彩纷呈,郝跃院士带来了“宽禁带半导体微波毫米波器件新进展”报告,分享了该领域超高频和毫米波器件的最新进展;IEEE-MTT协会主席Nuno Borges Carvalho教授带来了“ENERGY sustainability for Net ZERO Radio Communications”报告,介绍了净零无线电通信系统的能源可持续性研究进展,重点探讨了实现任意时间地点能源可持续的无线电通信新模式;中国电科首席科学家胡明春分享了“开放式相控阵”针对电子信息系统可扩展、可定义、可重构的新要求,探讨开放式相控阵概念内涵、主要架构和典型应用,探索新一代射频系统形态;中国电科首席科学家年夫顺“微波毫米波与太赫兹测试仪器发展动态 ”重点分析了宽带测量与高速测量、时域测量与频域测量、稳态测量与瞬态测量等热点测量技术发展动态,分享了复杂电磁环境模拟与测试评估、线性与非线性网络参数测量与表征、宽频带微波同轴测量、太赫兹波导测量等测量仪器研制进展,对测试领域内未来重点发展方向提出重点预测和发展建议。展会中电科思仪科技股份有限公司精彩亮相。携最新部组件、天衡星系列微波、太赫兹仪器及手持与模块化等仪器隆重展示,面向应用全面展示通信雷达等信号模拟与分析、天线、材料、组件自动测试以及信号大功率产生等解决方案,用户关注如潮。中电科思仪科技股份有限公司作为我国电子测试测量技术创新的源泉,承载着五十余年砥砺奋进的光辉传承,致力于电子测试测量前沿技术探索和研究,与同仁相知青岛,共赢发展。
  • Spectro FluidScan获IBO 2009设计银奖
    IBO 2009年工业设计奖揭晓——Spectro FluidScan获便携式分析仪器工业设计银奖 ——德祥独代  仪器市场展望(Instrument Business Outlook, IBO) 2009年工业设计奖揭晓:美国斯派超公司手持式红外油品状态监测仪FluidScan获得便携式分析仪器工业设计银奖!  IBO奖项的设立是为了表彰分析仪器、便携式仪器和实验室仪器领域工业设计方面的成就。本届展望会的主题是“工业设计如何能改善产品的性能和终端用户的经验”。  Fscan是一台融合两项*技术,*Flip-Top样品窗,及*的光学波导技术的一台便携式红外油品分析仪,可在一分钟的时间内测试:   总碱值 TBN   总酸值 TAN   氧化程度   硝化程度   硫化程度   不正确的润滑油   添加剂损耗情况   烟炱   乙二醇/防冻剂   水分  德祥科技作为Spectro Inc在中国的独家总代理,在中国独家提供FluidScan的销售和支持。
  • ANTOP奖 | 谱育科技荣获『超级微波消解仪创新奖』
    在分析测试百科网主办的ANTOP 2021颁奖典礼上,谱育科技EXPEC 790系列获得“超级微波消解仪创新奖”。“ANTOP奖主要为表彰分析测试行业中有利于推动分析测试行业正向发展的突出成果,以记录最被行业人士认同、对行业产生卓越贡献或独特影响的人/物/事。超级微波化学工作站790系列EXPEC谱育科技EXPEC 790系列超级微波化学工作站,由EXPEC 790S、EXPEC 790F组成。EXPEC 790系列突破了传统的消解模式,采用了自动化操作设计,赋予微波消解新的应用场景,为未来实验室分析4.0提供自动化前处理基础,可解决各种复杂样品消解难题。自产品上市以来,EXPEC 790系列凭借消解速度快、试剂用量少、干净、节能、易于监控等优势已被广泛用于生物、食品、医药、地质、材料、化妆品、环境监测等领域,成为了样品处理强有力的工具之一。790系列,突破创新,只为精益求精创新点1微波直接耦合设计:直接耦合微波激励,波导阻抗最为匹配,提升微波传输效率,形成超高消解温度和超高的消解压力,有效解决复杂样品的消解问题;创新点2超简的使用方式:无需常规消解管的繁琐组装,一键式的消解操作,实现全流程的消解功能;消解管内外压力平衡设计,同时提升了消解安全性;创新点3超低的使用成本:低成本消解管、低成本清洗、低成本试剂,常规分析无需赶酸,有效较少等待时间,使用成本大大降低;创新点4全流程自动化设计:实现了消解过程(加酸、加液、加压、加热、降温、泄压)的自动化,更具独创的自动定容、自动转移、联用分析功能,实现了消解到定容甚至分析的全流程自动化。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制