当前位置: 仪器信息网 > 行业主题 > >

糖液计

仪器信息网糖液计专题为您提供2024年最新糖液计价格报价、厂家品牌的相关信息, 包括糖液计参数、型号等,不管是国产,还是进口品牌的糖液计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合糖液计相关的耗材配件、试剂标物,还有糖液计相关的最新资讯、资料,以及糖液计相关的解决方案。

糖液计相关的论坛

  • 糖液计的使用?

    糖液计又是一种什么东西?玻璃里面有一张纸,里面写着重量百分比,是什么意思????我是用糖液计来测量豆浆的糖度,最终的结果是表示什么呢?要用多少的水溶于样品中呢?哪里有得查?糖液计跟糖度计又是两种不一样的东西.真是太多东西要学了......请高手指教指教啦!!!

  • 乳品添加剂-增稠剂-1 异构化乳糖液

    1.1使用范围:鲜乳最大使用量(g/kg): 1.51.2使用范围:乳粉最大使用量(g/kg): 15.0简介  异构化乳糖,外观为白色结晶,甜度是蔗糖的0.6倍,是黏度低、热值低、易溶于水、性能稳定、安全性高、使用方便的一种新型低聚糖,也是一种有特殊保健功能的还原性二糖。工业上可以用干酪生产的副产物乳清中的乳糖在氢氧化钠作催化剂条件下进行加热使异构化,经离子交换、脱色、浓缩结晶等工序制取。在反应物中加入硼酸盐有助于异构化反应。    异构化乳糖对人体健康功能显著。人体肠道内有益菌为双歧杆菌,异构化乳糖是双歧杆菌生长最好的糖源,它在小肠内不被分解,移到大肠内可被所有双歧杆菌利用,使双歧杆菌增长占优势、抑制腐败细菌及病原菌的生长,对改变肠内菌丛、保持肠道正常功能、防病治病抗老化等起重要作用。    异构化乳糖防治便秘和防癌功效也很显著。肠内双歧杆菌增殖,pH值降低,促进了肠的蠕动,使粪便变软,排便数量及次数均可增加,并能使肠内易造成腐败菌生长的无用物在肠内滞留时间缩短,起到防止肠癌的作用。    用母乳喂养的婴儿比人工喂养的婴儿的肠道双歧杆菌占绝对优势(占总菌的90%以上),前者比后者抵抗力强,患病率低,生长发育好,因为母乳中有促进婴儿肠内双歧杆菌生长的因子。如在奶粉中加入0.5%的异构化乳糖,人工喂养婴儿,可使婴儿肠内双歧杆菌比例增加,接近母乳育儿,抵抗力增强,促进生长发育,降低患病率。    异构化乳糖可广泛用于保健食品中,如添加到乳饮料、碳酸饮料、果汁饮料、糖果、奶粉等食品中作膳食疗效食品,也可单独作医疗用品。 国家标准  食品添加剂 异构化乳糖液 GB 8816-88   Food additive Lactulose liquid   本标准适用于以乳糖为原料,以氢氧化钠为异构剂制得的异构化乳糖液。本品是双叉杆菌(bifidus)的增殖因子,主要用于鲜奶、奶粉、饼干等食品中,具有帮助消化吸收蛋白质、乳糖,产生维生素B组等功能。异构化乳糖中含有四种糖,即:乳酮糖、乳糖、 乳酮糖结构式半乳糖、果糖。其中起增殖双叉杆菌作用的是乳酮糖、又叫乳果糖、乳士糖、半乳糖基果糖甙。乳酮糖的结构式:   分子式C12H22O11   分子量342.30(按1983年国际原子量表) 技术要求  1 外观:一级品为黄色透明液体。二级品为棕色透明液体。   2 异 异构化乳糖液应符合的要求构化乳糖液应符合下列要求: 验收规则  1 异构化乳糖液应由生产厂质量检验部门进行检验,生产厂应保证所有出厂的异构乳糖液均符合本标准,每批出厂产品都应附有一定格式的合格证。   2 使用单位有权按照本标准规定的验收规则和试验方法检验所收到的异构化乳糖液是否符合本标准。   3 用清洁、干燥的玻璃管从每批10%的包装物中取出试样,取样时将玻璃管垂直插入容器内部,搅拌均匀,而后取样,每批取样总量不得少于200mL,将试样分别放入两只干净的磨口塞玻璃瓶中,混匀,粘贴标签。注明生产厂名称,批号,取样日期,一瓶送化验室分析,一瓶密封放在暗处保存2个月备查。   4 若检验结果中有一项指标不符合标准,应重新自两倍数量的包装件中取出异构化乳糖液进行复验。重新检验的结果中,即使只有一项指标不符合国家标准,应视为此批异构化乳糖液不能验收。   5 若供需双方对异构糖液质量发生异议,需要仲裁时,仲裁机构可由双方协商选定,仲裁应按照本标准规定的验收规则和检验方法进行。 包装、标志、贮存、运输  1 食品添加剂异构化乳糖液应装入食品用无毒聚乙烯塑料桶或玻璃瓶中,并外部用纸箱包装,每桶净重5kg,每箱净重20kg。   2 外包装应附有下列标志:生产厂名、产品名称、生产日期,质量标准、净重、批号、本标准编号及“食品添加剂”字样。   3 异构化乳糖液系食品添加剂,严禁与酸、碱、有毒物品及其他易腐蚀物品放在一起、在贮存与运输过程中应避免有毒物质污染,应存放在阴凉暗处,不准倒放。   4 二级品保存期:不得超过4个月。

  • DV-S粘度计测定微生物多糖发酵液粘度

    微生物多糖包括某些细菌、真菌和蓝藻类产生的多糖,主要以三种形式存在:粘附在细胞表面上,分泌到培养基中,构成细胞的成分。微生物多糖,因其安全无毒、理化性质独特等优良性质而倍受关注。近几年,随着对微生物多糖研究的深入,世界上微生物多糖的产量和年增长量均在10%以上,而一些新型多糖年增长量在30%以上。到目前为止,已大量投产的微生物胞外多糖主要有黄原胶、热凝多糖、结冷胶、小核菌葡聚糖、短梗霉多糖等。微生物多糖具有植物多糖不具备的优良性质,它们生产周期短,不受季节、地域和病虫害条件限制,具有较强的市场竞争力和广阔的发展前景。随着对微生物多糖的结构和功能研究的不断深入,工业化的微生物多糖产品应用在各个领域,如美容养生的保健食品、工业染料的稳定剂、石油工业中的钻井泥浆处理剂、提高采油的注水稠化剂、意料中的代血浆、纺织造纸的上胶料、化妆品的拼料以及生物化学医药工业和实验室用的吸附剂、固定化酶或固定化细胞的载体等各个方面。微生物多糖的应用如此广泛,它的粘度如何呢?粘度是对流体内部摩擦的一种量度,是影响流体物理性质的一个重要参数。对于微生物多糖这种非牛顿流体来说,测定其粘度是鉴定其物理性质的一个重要方面。大部分非牛顿流体都是假塑性流体,特别是一些高分子溶液和悬浮液均具有剪切稀化的特性,假塑性流体的表观粘度随着剪切速率发生变化的范围很大,所以不能把它们作为牛顿流体来处理,必须对它的流动问题进行单独的测试。通常情况下,非牛顿流体的流变测量主要是在对流体施加一定剪切应力的条件下,通过跟踪流体对手里的响应值而获得。根据公式剪切应力Շ=kγn,k和n可以通过流变仪测出,但是流变仪价格昂贵,难以普及,因此可以通过测定不同剪切速率下的粘度值而计算出来。实验室采用美国BROOKFIELD公司的DV-S旋转粘度计测定流体的不同剪切速率下的粘度值,DV-S粘度计是BROOKFIELD最新研发的最经济的数字显示粘度计,采用全中文操作面板,操作简便,采用应力传感器,反应迅速,结合实验室仪器的使用可得到微生物多糖的粘度。

  • 人工甜味剂,也会影响血糖吗?

    现在喝饮料之前,都会习惯性的看一看配料表里有没有“糖”的出现,毕竟糖这东西吃多了不好。如果有像是阿斯巴甜、木糖醇这种人工代糖,就说明这瓶饮料不会对我们的健康产生多大的危害啦。可是,居然这种人工代糖“甜味剂”,也会影响我们的血糖吗?血糖、胰岛素分泌不稳定,更容易让我们发胖当体内的血糖、胰岛素剧烈变化的时候,我们更难以控制自己的体重。尤其是在餐后,血糖猛地升高,胰岛素也会随之升高。而胰岛素逐渐下降后,会提示大脑它准备好下次进餐了,有一定促进“食欲”的作用,让我们开始出现饥饿感。所以,血糖不稳定的人,非常容易发胖。人工甜味剂,基本上都会对血糖有一定影响蔗糖素、阿斯巴甜、木糖醇等代糖,甜度是普通蔗糖的几十倍、几百倍,所以放入食品中的量比较少,热量微乎其微。但是,这些代糖仍然会对血糖产生一定影响,从而影响胰岛素分泌。再说,加入了人工代糖的甜点、饼干、蛋糕等本身就含有淀粉,虽然没有加入真正的糖,可淀粉也能分解成为葡萄糖,从而影响血糖。哪种甜味剂,对血糖影响最小?阿斯巴甜、木糖醇、麦芽糖醇,山梨醇,木糖醇,赤藓糖醇,异麦芽糖醇、甜叶菊中,甜叶菊对于餐后血糖的影响是最小的。对于有控制血糖需求的人来说,可以选用甜叶菊做为代糖的食品,而没有严格控制血糖需求的人来说,不管是阿斯巴甜、木糖醇、山梨醇都虽然有升高血糖的能力,但是比起蔗糖来说已经差得很远了。

  • 糖度计简介及使用原理

    一、简介  糖度计是用于快速测定含糖溶液以及其它非糖溶液的浓度或折射率。广泛应用于制糖、食品、饮料等工业  部门及农业生产和科研中。适用于酱油,番茄酱等各种酱类(调味料)产品的浓度测量、适用于果酱,糖稀  ,液糖等含糖分较多产品的糖度测量、适用于果汁,清凉饮料及炭酸饮料的生产线上,品质管理,发货前  检验等、适用于水果从种植至销售的过程中,它可适用于测定准确的收采时期,作甜度分级分类。此外,  在纺织工业浆料的浓度测定也获得普遍的应用。二、设计原理  光线从一种介质进入另一种介质时会产生折射现象,且入射角正弦之比恒为定值,此比值称为折光率。果  蔬汁液中可溶性固形物含量与折光率在一定条件下(同一温度、压力)成正比例,故测定果蔬汁液的折光  率,可求出果蔬汁液的浓度(含糖量的多少)。常用仪器是手持式折光仪,也称糖镜、手持式糖度计,通  过测定果蔬可溶性固形物含量(含糖量),可了解果蔬的品质,大约估计果实的成熟度。手持糖度计一般  是圆柱形的,将待测的糖液放入后面可打开的槽中,抹均匀,关上盖子,然后将糖度计对着光,从前面的  孔中看,就可以读数了

  • 【讨论】紧急求助:半乳糖醛酸的液相条件

    [color=#DC143C][size=4][font=黑体] 我是第一次做液相色谱,想问下大家,半乳糖醛酸的液相条件是什么? 我在一篇文献中查到,用紫外检测器 ,流动相是磷酸盐缓冲液,但我用后连标准品都没有峰,所以想询问下朋友们有没有知道原因出在哪个,或者推荐个其他的色谱条件! 很着急用,麻烦大家了,无比感谢!!![/font][/size][/color]

  • CNS_19.006_山梨糖醇和山梨糖醇液

    刘琦[align=center][/align][align=center]第[size=21px]1[font='times new roman'][size=21px]章基本信息[/size][/font][/size][/align]山梨糖醇别名山梨醇,英文名是Sorbitol、D-Glucitol、Sorbol、D-Sorbitol。分子式是C6H14O6,分子量为182.17,密度为1.489 g/cm3,沸点为295℃。是蔷薇科植物的主要光合作用产物。山梨糖醇液是含67%~73% D-山梨糖醇的水溶液。毒性试验显示,内服过量会引起腹泻和消化紊乱。[img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106161539566336_8129_1608728_3.jpeg[/img]1.1 理化性质1.1.1物理性质山梨糖醇为无色针状结晶,或白色晶体粉末,无臭,有清凉甜味,难溶于有机溶剂,它耐酸,耐热性能好,与氨基酸,蛋白质等不易起美拉德反应。山梨糖醇液为无色,透明稠状液体。依结晶条件不同,熔点在88~102℃范围内变化,相对密度约1.49。易溶于水(1g 溶于约0.45mL水中),微溶于乙醇和乙酸。山梨糖醇液为清亮无色糖浆状液体,有甜味,对石蕊呈中性,可与水、甘油和丙二醇混溶[1],pH值为6~7。山梨糖醇有清凉的甜味,其甜度约为蔗糖的50%~70%。1g 山梨糖醇在人体内产生16.7kJ热量。食用后在血液内不转化为葡萄糖,也不受胰岛素影响。作为甜味剂使用不会引起龋齿。山梨糖醇具有良好的保湿性能,可使食品保持一定的水分,防止干燥,还可防止糖,盐等析出结晶,能保持甜,酸,苦味强度的平衡,增强食品的风味,由于它是不挥发的多元醇,所以还有保持食品香气的功能。[size=14px]1.1.2[size=14px]化学性质山梨糖醇的化学性质相对稳定,不燃烧,不腐蚀,不挥发;浓度高时具有抗微生物的特性。有旋光性,略有甜味,具有吸湿性,能溶解多种金属,高温下不稳定。能参与酐化、酯化、醚化、氧化、还原和异构化等反应[color=#333333],并能与多种金属形成络合物[4]。山梨糖醇不含醛基,不易被氧化,加热时不与氨基酸产生美拉德反应。[/color][/size][/size][align=center]第[size=21px]2[font='times new roman'][size=21px]章功能及应用[/size][/font][/size][/align]山梨糖醇有吸湿,保水作用,在口香糖[color=#333333],糖果[color=#333333]生产中加入少许可起保持食品柔软,改进组织和减少硬化起砂的作用。用量为百分之八左右,在面包,糕点中用于保水目的,使用量为百分之二左右,用于甜食和食品中能防止在物流过程中变味,还能螯合金属离子,用于罐头饮料和葡萄酒[color=#333333]中,可防止因金属离子而引食品混浊。根据《食品安全国家标准 食品添加剂使用标准》(GB2760-2014)中规定:山梨糖醇和山梨糖醇液的功能有甜味剂、膨松剂、乳化剂、水分保持剂、稳定剂、增稠剂(如表1[2])。[/color][/color][/color][align=center]表1山梨糖醇和山梨糖醇液 sorbitol and sorbitol syrup[/align]CNS号 19.006,19.023 INS号 420(i),420(ii)功能 甜味剂、膨松剂、乳化剂、水分保持剂、稳定剂、增稠剂[align=center]允许使用范围及限量[/align]食品分类号食品名称最大使用量/(g/kg)备注01.04炼乳及其调制产品按生产需要适量使用淡炼乳(原味),调制炼乳02.0302.02类以外的脂肪乳化制品,包括混合的和(或)调味的脂肪乳化制品(仅限植脂奶油)按生产需要适量使用仅限植物奶油03.0冷冻饮品(03.04食用冰除外)按生产需要适量使用03.04食用冰块除外04.01.02.05果酱按生产需要适量使用 04.02.02.03腌渍的蔬菜按生产需要适量使用 04.05.02.01熟制坚果与籽类(仅限油炸坚果与籽类)按生产需要适量使用仅限油炸坚果与籽类05.01.02巧克力和巧克力制品,除外05.01.01以外的可可制品按生产需要适量使用 05.02糖果按生产需要适量使用 06.03.02.01生湿面制品(如面条、饺子皮、馄饨皮、烧麦皮)30.0 07.01面包按生产需要适量使用 07.02糕点按生产需要适量使用月饼除外07.03饼干按生产需要适量使用 07.04焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)按生产需要适量使用仅限焙烤食品馅料09.02.03冷冻鱼糜制品(包括鱼丸等)0.5仅当水分保持剂使用时,其最大使用量调整为20g/kg12.0调味品按生产需要适量使用 14.0饮料类(14.01包装饮用水除外)按生产需要适量使用14.01包装饮用水除外。固体饮料按稀释倍数增加使用量16.06膨化食品按生产需要适量使用 16.07其他(豆制品工艺)按生产需要适量使用仅限豆制品工艺16.07其他(制糖工艺)按生产需要适量使用仅限制糖工艺16.07其他(酿造工艺)按生产需要适量使用仅限酿造工艺09.04.01熟干水产品按生产需要适量使用仅限使用山梨糖醇09.04.02经烹调或油炸的水产品按生产需要适量使用仅限使用山梨糖醇09.04.03熏、烤水产品按生产需要适量使用仅限使用山梨糖醇[table][/table]它是在日本最早允许作为食品添加剂使用的糖醇之一,用于提高食品保湿性,或作为稠化剂之用。可作甜味剂,如常用于制造无糖口香糖。也用作化妆品及牙膏的保湿剂、赋形剂,并可用作甘油代用品。2.1功能2.2.1甜味剂山梨醇是一种只含羟基官能团的碳水化合物,具有低热甜味剂的性质。2000年6月国际粮农和卫生组织食品法典委员会确认山梨醇、木糖醇、麦芽糖醇、乳糖醇、甘露醇等可作为食品添加剂加到食品中,制作无糖甜食品。在欧美发达国家中,以山梨醇等替代食糖生产糖果、点心等各类食品已十分普遍,发展趋势非常明显,其中最突出的是口香糖。在日本,各种食品和糖果都广泛使用山梨醇为甜味剂[3]。2.1.2膨松剂具有多羟基结构的山梨糖醇还具有降低水分活度,控制结晶、改善或保持柔软度的性质[],故在食品工业中经常将山梨糖醇作为一种膨松剂使用。在糖果制造中使用山梨糖醇可抑制蔗糖结晶,加上山梨糖醇本身具有的保湿性,可赋予糖果柔软的质感。在冰制品和冰激凌中可降低冰点,使产品柔软,易于勺食,且同样可抑制产品中糖类重新结晶[5]。2.1.3乳化剂山梨糖醇含有6个羟基,可与许多有机酸发生酯化作用。山梨糖醇脱水与脂肪酸合成的山梨醇脂肪酸酯统称为司盘类表面活性剂,是优良的食品乳化剂[6],可改善缩短乳化进程。在面包生产过程中可防止面包中淀粉凝沉,改善面团的加工性能;生产的糕点外观美,食用性好。还可以广泛应用于冰淇淋以及豆奶生产中。山梨糖醇制取脱水山梨醇酐,再与棕榈酸单酯化制得的司盘40,可用作印刷油墨及多种油品的乳化剂。其中,作为食品添加剂,山梨醇酐硬脂酸酯(司盘60)、山梨醇酐单棕榈酸酯(司盘65)、山梨醇酐单油酸酯(司盘80)均已经列入食品添加剂使用卫生标准中,可应用于椰子汁、果汁、牛乳、奶糖、冰淇淋、面包、糕点、麦乳精、人造奶油和巧克力等食品中[5]。2.1.4水分保持剂山梨醇的多羟基结构使其具有与水结合的性质,并具有控制食品黏度和质构、保持湿度、改善脱水食品的复水性质等作用。山梨醇的良好吸湿性,使其在潮湿的环境下会吸收一些水分,当湿度降低时,山梨醇则释放一些水分,进而建立一种湿度平衡[7],能够防止食品干裂,使食品柔软,保持新鲜度,延长有效期,防止变质。因此,山梨糖醇经常作为保湿剂应用于焙烤食品中。在饼干蛋糕和酥皮糕点中加入适量的山梨糖醇,可防止产品干裂,且有助于产品的外观。但山梨糖醇不适宜用于脆酥食品中。此外,山梨糖醇与其他糖类共存时会出现吸湿性增加的现象,使用时需特别注意[5]。2.1.5稳定剂山梨糖醇不含有醛基,不易被氧化,加热时不与氨基酸产生美拉德反应。有一定的生理活性,能防止类胡萝卜素和食用脂肪及蛋白质的变性。在浓缩牛乳中加入山梨糖醇可延长保存期,对鱼肉酱、果酱蜜饯也有明显地稳定和长期保存的作用,山梨糖醇属于不挥发性多元醇在保持食品香气方面有较好的作用。粉末和液体形式的山梨糖醇均可保持香气和滋味,因而可作咖啡、茶、巧克力饮料和加香饮料等产品的稳定性的无糖载体[8]。山梨糖醇还能螯合金属离子,用于饮料和葡萄糖酒,可以防止金属离子引起的浑浊[font='calibri'][[font='calibri']9]。近年开发成功的中成药产品,如双黄连口服液、双黄连粉针和安宫牛黄丸、清开灵输液等,既保持了中药的综合药效,又具有西药使用方便的特点,添加少量山梨糖醇,可起到稳定药效和防止沉淀的作用。2.1.6[size=14px]增稠剂可用于酒类、清凉饮料的增稠。2.1.7其他作用①山梨糖醇与甘露醇都是具有扩张细胞外液容积作用的高渗脱水利尿药。中国药典规定[10],临床用甘露醇输液为20%的过饱和溶液。温度较低时,甘露醇易结晶析出 (见表2[11] )。[/size][/font][/font][align=center][size=12px]表2甘露醇在水中溶解度与温度的关系[/size][/align]温度[font='calibri'] /[font='calibri']℃ 010203040D-[size=14px]甘露醇10.413.718.625.234.6/g ( 100 g H2O) - 1[/size][/font][/font][table][/table]可见甘露醇输液20℃以下易结晶析出,而我国大部分地区冬季室温低于20℃,用药前需预热使之溶解,不仅给临床用药尤其是急救用药造成困难,也易引起患者的猜疑,造成医患之间的矛盾。在甘露醇输液生产中加适量山梨醇,配成复方甘露醇输液,即可防止甘露醇结晶析出,且疗效相同[12]。②冷冻保护剂:美国批准的 Neupogen(人粒细胞集落刺激因子)的新剂型,即是在其制剂中用山梨糖醇代替甘露醇作为保护剂,可使 Neupogen在冷冻环境时,仍能保持其生物活性[13]。目前甘露醇的价格是山梨糖醇的3~5倍(最高时达 10倍),用山梨糖醇代替甘露醇能达到同样效果,既可降低成本,而且原料来源更广。随着基因工程的高速发展,大量的基因因子需要保护,山梨糖醇在这方面的应用将更为广阔。2.2山梨糖醇的价值[font='calibri']2[font='calibri'].2.1山梨糖醇的直接药用价值山梨糖醇具有利尿、脱水的特性,能降低颅内压,防止水肿,可作为药物直接使用,用于脑水肿、青光眼;也用于心肾功能正常的水肿少尿;口服可作缓泻剂或糖尿病患者的蔗糖代用品。临床制剂有山梨醇注射液、山梨醇铁注射液、复方氨基酸注射液等。山梨醇在复方氨基酸中所起的作用主要有: ①可提高氨基酸的利用率;②平衡注射液中碳氮之比;③可避免葡萄糖灭菌时引起糖中醛基与氨基酸中的氨基发生美拉德反应而产生焦色素,并且也不易产生热原;④使伤口、创面部位尽量保持干燥,加快愈合,避免感染等。2[size=14px].2.2山梨糖醇可作为药用辅料山梨糖醇能与多种辅助形剂配伍 (与氧化剂禁配 ),广泛用于药物的固体分散剂、填充剂、湿润剂、稀释剂、胶囊的增塑剂、甜味剂、矫味剂、软膏的基质等作辅料。其不同用途的用量见表3[14]。[/size][/font][/font][align=center]表3山梨醇在药用辅料中不同用途和用量[/align]用途代替甘油和丙二醇润滑剂口服和外用溶液的赋形剂防止糖浆和酏剂结顶无糖甜昧剂增稠剂片剂粘结度和水份控制剂明胶和纤维膜增塑剂供注射用稀释剂DSS、四环素、抗坏血酸、复合维生素 B、维生素和铁盐的赋形浓度/%25~903~1525~90 15~3025~9025~903~105~2010~25以下25~90[table][/table][size=14px]2.2.3[size=14px]山梨糖醇的其他用途①制备维生素C[color=#333333]山梨糖醇可用于生产维生素C的原料,其经发酵和化学合成可制得维生素C。制药行业,VC合成消耗山梨醇的量最大,占全世界山梨糖醇总消耗量的16% (我国高达50% )。[img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106161539569529_9169_1608728_3.jpeg[/img]以传统山梨糖醇制备维生素C的工艺过程(二步发酵法)如下:[/color][/size][/size][align=center][/align]②其他合成树脂和塑料,分离分析低沸点类含氧化合物等。也用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液、稠化剂、硬化剂、杀虫剂等。用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液,用于低沸点含氧化合物、胺类化合物、氮或氧杂环化合物的分离分析。还用于有机合成。利用山梨醇所具有的保湿性能,用作牙膏、化妆品、烟草的调湿剂。是甘油的代用品,保湿性较甘油缓和,口味也较好。可以和其他保湿剂并用,以求得协同的效果。也用于医药工业作为制造维生素C的原料。也可用于工业表面活性剂的原料,用它生产斯盘和吐温类的表面活性剂。以山梨糖醇和环氧丙烷为原料,可以生产具有一定阻燃性能的聚氨酯硬质泡沫塑料。[color=#333333]在医药工业中,山梨[color=#333333]糖[color=#333333]醇经过硝化生成的失水山梨醇酯是治疗冠心病的药物。[/color][/color][/color][align=center][font='times new roman'][size=21px]第三章[font='times new roman']来源和合成[/font][/size][/font][/align]3.1 自然来源山梨糖醇广泛分布于自然界植物果实中,在梨、桃、苹果中广泛分布,含量约为1%~2%,1872年法国化学家Joseph Boussingault首先从山梨树果汁中分离而得[15]。常温下有液体和固体2种状态:液体山梨醇为50%~70%的水溶液,无色、无臭、味甜,pH值为6~7,10%水溶液的旋光度[a] 20d为-1.98°;固体山梨醇为白色针状、片状、粒状结晶粉末,极易溶于水,味道清凉爽口,甜度约为蔗糖的60%[15]。3.2人工合成山梨糖醇的产品规格主要有50%山梨醇液、70%山梨醇液和结晶山梨醇等[3]。山梨糖醇的生产包括氢化法、电化学法和发酵法。3.2.1催化加氢法氢化法是目前最常用的生产方法。催化加氢法所用原料主要是葡萄糖,少数工艺以淀粉、蔗糖、纤维素等为原料。以淀粉、蔗糖等生产山梨糖醇。步骤:①通过酶法或酸法将其转化成葡萄糖,②再催化加氢制备山梨糖醇[16]。1942年,日本首次采用葡萄糖催化加氢法生产山梨醇;其后,德国罗莱班公司采用固定床反应器催化加氢生产山梨醇[17-18]。目前,国内外普遍采用葡萄糖催化加氢法工业化生产山梨醇。生产装置:①间歇式,②连续式。工业上目前较多采用高压柱形反应器的连续式氢化新技术。将葡萄糖溶液通过高压泵连续注入装有固体块状催化剂的柱式反应器中,反应一段时间后排出即为山梨糖醇。催化器在反应器中处于静状态,没有搅拌和冲击的影响,而葡萄糖溶液和氢气连续不断的通过催化剂的表面,使氢化反应均匀完全。连续氢化所得的山梨糖醇溶液经过离子交换树脂精制通过升膜式或降膜式蒸发器脱水浓缩即可得液体山梨糖醇成品,进一步结晶即为结晶状山梨糖醇。催化剂是该技术的关键因素[19],传统工艺多使用Ni基催化剂。3.2.2山梨糖醇的电化学法生产技术[20]电化学法制备山梨糖醇,是通过电解法在阴极上将葡萄糖或果糖还原为山梨糖醇。与催化加氢法相比,电化学法具有工艺流程短、安全性高、产物易分离提纯、生产过程中废物排放少等优点。但由于转化率低(约70%),且每次电解只能在一个电极上合成一种产品,导致成本较高,因此电化学法生产山梨糖醇至今仍未实现工业化。直到20世纪80年代中叶,Park和Pintauro等提出了成对电氧化和还原工艺,即在同一个电解槽内同时合成葡萄糖酸盐和山梨糖醇,使得电化学法制备山梨糖醇的技术有了巨大的进步。成对电氧化和还原工艺以葡萄糖为原料,以NaBr为催化剂,加入辅助电解质Na2SO4,在50℃~60℃进行成对电化学反应。溴离子首先在阳极表面上失去电子生成溴分子,继而与葡萄糖作用,生成葡萄糖酸内酯中间体,在水溶液中与葡萄糖酸存在平衡,由于溶液中还有Na盐或Ca盐,则进一步生成葡萄糖酸盐,以避免葡萄糖酸内酯在阴极被还原。葡萄糖在阴极表面上获得2个电子被还原成山梨糖醇。因为山梨醇和甘露醇是同分异构体,所以有小部分的葡萄糖还原会成为甘露醇。3.2.3山梨糖醇的发酵法生产技术[20-21]长期以来山梨糖醇的生产都只有氢化法,直到1984年有报道利用一种生成乙醇的微生物Zymomonasmobilis可将果糖和葡萄糖的混合物转化为乙醇,且山梨糖醇的生成是与葡萄糖脱氢形成葡萄糖内酯的反应同时进行。Zymomonasmobilis最初是从发酵龙舌兰、棕榈和蔗糖等植物汁中分离得到的,经过生物转化来生产山梨糖醇和葡萄糖酸。用渗透性试剂(如甲醇或洗涤剂等)浓缩Zymomonasmobilis细胞处理后,葡萄糖酸和山梨醇产率分别为94%~95%和98%~99%。但这种生产方法操作麻烦,成本也高,目前仅限于实验室研究。[size=14px]3.2.4[size=14px]其他合成方法(1):将配制好的53%葡萄糖水溶液加入高压釜,加入葡萄糖重量0.1%的镍催化剂。经置换空气后,在约3.5MPa、150℃、pH8.2-8.4条件下加氢,终点控制残糖在0.5%以下。沉淀5min后,将所得山梨糖醇溶液通过离子交换树脂精制即得。原料消耗定额:盐酸19kg/t、液碱36kg/t、固碱6kg/t、铝镍合金粉3kg/t、口服糖518kg/t、活性炭4kg/t。(2):采用淀粉糖化所得精制葡萄糖,中压连续或间歇加氢制得。(3):将53%的葡萄糖水溶液(事先用碱液调pH=8.2~8.4)和葡萄糖质量0.1%的镍铝催化剂加入高压釜,排尽空气后进行反应,控制温度150℃,压力3.5MPa:当葡萄糖含量达0.5%以下,反应即达终点。静置沉淀、过滤。滤液用强酸性苯乙烯系阳离子交换树脂001×7及强碱性系铵Ⅰ型[color=#333333]阴离子交换树脂201×7进行精制,去除镍、铁等杂质,即得成品D-山犁醇。[/color][/size][/size][align=center][font='times new roman'][size=21px]第四章[font='times new roman']对人体的影响[/font][/size][/font][/align]4.1 [font='calibri']利尿作用山梨糖醇在人体内小部分被转变成糖原,大部分不被代谢,以原形经肾小管排出。山梨糖醇静滴后,可使血浆渗透压增高、组织脱水,经肾小球滤过,几乎不被肾小管重吸收,从而起到利尿作用。[font='calibri']4.2防止龋齿由于蔗糖能被口腔中的微生物利用,易引起龋齿,多吃不利牙齿健康。而山梨糖醇在口腔中不被龋齿的链球菌所利用,并能使口腔中的pH值略微上升,是一种防龋齿的甜味剂。4.3[size=14px]代替蔗糖,适用于一些特殊人群由于蔗糖能直接引起血糖浓度的变化,高血压、高血脂、糖尿病患者和肥胖症患者等对蔗糖敏感的人群不适用。而在哺乳动物及人体系统中,山梨糖醇通过山梨醇脱氢酶氧化成果糖,然后进入果糖-1-磷酸酯途径代谢,代谢与机体内的胰岛素无关,不受胰岛素的控制,最终代谢物为二氧化碳和水,在血液中不转化为葡萄糖,对血糖值和尿糖没有影响。因而使用山梨糖醇代替蔗糖,对糖尿病患者山梨醇比蔗糖更易忍受。所以可避免糖尿病、肥胖症、肝病、胆囊炎等患者的不适。Wheeler等研究了2种氢化淀粉水解物14:8:78和7:60:33(山梨糖醇:麦芽糖醇:其他更高聚合度的低聚糖醇)与葡萄糖相比,对无糖尿病者、非胰岛素依赖型糖尿病患者及胰岛素依赖型糖尿病患者血糖的影响,结果表明,对于所有的试验组,因摄入氢化淀粉水解物而增加的胰岛素量显著低于葡萄糖,氢化淀粉水解物引起的总血糖反应也都显著低于葡萄糖。这除了氢化淀粉水解物中葡萄糖含量较低的原因外,还可能由于山梨糖醇对葡萄糖吸收有抑制作用[22-23]。4.4其他此外,山梨糖醇还可刺激胰腺分泌胰脂肪酶等,促进胰岛素释放,使肝胆汁分泌增加,山梨糖醇不被胃酶分解,在肠中滞留时间比葡萄糖长,有润肠作用[24]。但是人体肠道可能吸收的山梨醇量不多于10g~20g,如摄入量过多,会引起渗透性腹泻[20]。[/size][/font][/font][align=center][font='times new roman'][size=21px]第五章[font='times new roman']违规事件[/font][/size][/font][/align]5.1 EBay停售在线拍卖公司EBay Inc(EBAY)2012年3月22日宣布,在意大利周末发生患者服用网购有毒山梨糖醇致死事件后,已在全球范围阻止在其网站上出售这种产品。而此前,国内也曾爆出味千就包装面过量使用添加剂的报道,当时味千回应称,2010年1月内地机构宣布在面制品允许添加山梨糖醇[25]。[size=14px]5.2[size=14px]雀巢添加剂2013年1月份的《进境不合格食品、化妆品信息》显示,雀巢一批巧克力棒因违规使用化学物质山梨糖醇而被销毁。2013年3月上海出入境检验检疫局销毁了2.7吨雀巢巧克力棒。被销毁的雀巢巧克力棒含有过高的山梨糖醇,这是一种甜味剂,过量使用可能导致肠道问题。上海出入境检验检疫局宣传部工作人员表示,上海出入境检验检疫局确销毁过一批雀巢巧克力棒,但外媒报道的时间不对。该工作人员称,在国家质量监督检验检疫总局的官方网站公布了这一信息。“外媒的报道也是从总局网站上摘抄的,但不知为什么他们把时间说成了本周。”经调查得知,被检出问题的雀巢产品具体是“雀巢奇巧榛子味牛奶巧克力脆谷棒”这款产品,产地意大利,不合格原因是违规使用化学物质山梨糖醇。信息显示,上海出入境检验检疫局总共查获2.7吨雀巢巧克力棒,已采取销毁方式处理。在日本山梨糖醇作为食品甜味剂,使用范围和限量如下:清凉饮料为百分之一到三,蛋白在百分之三左右,巧克力为百分之四左右。山梨糖醇的最大使用量是40g/kg,但一般都不会达到那么高的值,所以一般情况就是分为可用和不可用,“违规使用[color=#333333]”应该就是不可用。那么既然按照《食品添加剂使用标准》的规定,山梨糖醇可以用于巧克力和巧克力制品,而巧克力棒属于糕点,因而推测可能是进口申报的时候报的不是糕点,而导致与我国质量标准不符[26]。[/color][/size][/size][align=center][font='times new roman'][size=21px]第六章发展前景[/size][/font][/align]我国山梨糖醇产业发展迅猛,20世纪90年代,产能约为30 kt/a,2005年约为550 kt;2013年达到1200 kt[27];2015年年末,全国总产能突破3000 kt。我国山梨糖醇产能大幅跃升,成为山梨醇出口大国[28]。 近年来,国内产能超过100 kt/a的山梨糖醇生产厂家主要有:长春大成实业集团有限公司(350 kt/a)、山东天力药业有限公司(400 kt/a)、茌平县同创生物技术有限公司(200 kt/a)、利达(柳州)化工有限公司(160 kt/a)、山东青援食品有限公司(140 kt/a)、罗盖特(中国)精细化工有限公司(120 kt/a)、秦皇岛骊华淀粉股份有限公司(100 kt/a)、诸城兴贸玉米开发有限公司(100 kt/a)、山东鲁维制药有限公司(100 kt/a)、山东鲁洲集团(100 kt/a)等[27]。随着山梨醇产能的激增,其下游产业的需求量趋于饱和,因此,对山梨醇的下游应用及提高产品附加值提出了更高的要求[29]。6.1[font='calibri']前景期望[font='calibri']山梨糖醇具有优良的性能,低廉的价格,是全球消费量最大的糖醇,约占糖醇总消费量的1/3。山梨[size=14px]糖醇近年已成为世界食品工业界的新宠,随着经济技术在我国快速发展,山梨醇行业将呈快速上升趋势,其市场前景也将是一片光明。[/size][/font][/font][align=center][font='times new roman'][size=21px]参考文献[/size][/font][/align][1] 李凤林、黄聪亮、余蕾.食品添加剂:化学工业出版社,2008.[2] 《食品安全国家标准食品添加剂使用标准》(GB2760-2014).[3] 周日尤,伍玉碧. 我国山梨醇工业的现状与发展 [J]. 现代化工, 2000(9):49-51.[4] 山梨醇化学性质.化学网[引用日期2014-6-20].[5] Smith.Jim,Hong-Shum.L. ,姜竹茂.食品添加剂实用手册 [M]. 北京:中国农业出版社,2005:396-406.[6] 张晓英,赵统领. 山梨醇的制备与应用 [J]. 中国食品添加剂, 2001(5):49-50.[7] O. R. Fennema,王璋,等. 食品化学(第三版)[M]. 北京:中国轻工业出版社,2003:664-666.[8] 金树人. 中国糖醇行业的形势与发展动态[J]. 牙膏工业, 2006(2):47-48.[9] 潘道东. 功能性食品添加剂 [M]. 北京:中国轻工业出版社, 103-105.[10] 中华人民共和国药典 ( 95年版二部 ) [ M ].北京: 化学工业出版社 , 1995.[11] 丁绪淮 ,等 .工业结晶 [ M ]. 北京: 化学工业出版社 , 1995.[12] 郑云鹏 .复方甘露醇注射液防止结晶试验 [J]. 中国药学杂志 , 1989, ( 7): 417-418.[13] 罗青波. 国内外“三醇”产销现状分析 [ N ].医药经济报 , 1999-12-27(3).[14] 上海医药管理局科技情报所 . 药用辅料手册 [ M ]. 1988.[15] 汪薇,罗威,罗立新,等. 山梨醇的研究开发进展 [J]. 中国食品添加剂,2004(1):77-80.[16] 孙然,刘超超,李海亮. 山梨醇的主要应用及生产工艺分析 [J]. 中国高新技术企业,2008(9):99-100.[17] Klein J C,Hercules D M. Surface analysis by X-ray photoelectron spectroscopy and auger electron spectroscopy of molybdenum-doped Raney nickel catalysts[J]. Anal Chem, 1984,56(4):685-689.[18] 徐三魁,王向宇,梁丽珍. 葡萄糖加氢制山梨醇催化剂研究 及发展趋势[J]. 现代化工,2006,26(11):29-31.[19] 袁长富,李仲良,卢春山,等. 山梨醇制备及转化催化剂研 究进展[J]. 化工生产与技术,2007,14(1):34-37.[20] 郑建仙. 功能性糖醇 [M]. 北京:化学工业出版社,2005: 114-145.[21] 朱建良,吴振兴. 生物法制备山梨醇的研究进展 [J]. 化工时刊, 2006(5):47-51.[22] 杨程芳,郑建仙. 功能性糖醇—氢化淀粉水解物 [J]. 中国食品 添加剂,2005(3):113-117.[23] WHEELER M L, FINEBERG S E, FINEBERG N S, et al. Animal versus plant protein meals in individuals with type 2 diabetes and microalbuminuria: effects on renal, glycemic, and lipid parameters [J]. Diabetes Care, 2002,25:1277-1282.[24] 尤新. 淀粉糖品生产与应用手册(第一版)[M]. 北京:中国轻工业出版社,1997:326-342.[25] EBay全球停售山梨糖醇,因意大利发生致死事件.[26] 2.7吨雀巢产品山梨糖醇超标被销毁. 新华网[引用日期2013-03-08].[font='calibri'][27] [font='calibri']江镇海. 山梨醇的市场应用现状与发展趋势[J]. 上海化 工,2014,39(12):33-35.[28] [size=14px]王成福,庞颂,杜瑞锋. 异山梨醇制备技术研究[J]. 轻工 科技,2017(6):52-54.[29] Ruppert A M,Weinberg K. Hydrogenolysis goes bio:from carbohydrates and sugar alcohols to platform chemicals[J]. Angew Chem Int Edit,2012,51(11):2564-2601.[/size][/font][/font]

  • 液相测定果糖葡萄糖蔗糖求助

    各位前辈好,我测定过模拟体系(由果糖蔗糖葡萄糖和几种氨基酸组成)的果糖蔗糖葡萄糖含量一直测不出,试了很多方法都不行(示差和蒸发光),文献的方法试过好多,但总有各种问题失败。已经连续两周晚上四点回了,实在坚持不住了,毕业压力也大。请各位前辈老师能够给予指导帮助。感谢。机器是waters的1525,2414的示差。蒸发光是alletc的3300,柱子是xbride的氨基柱(4.5x260),流动相是乙腈,试过梯度等度。80/20,70/30,75/25……

  • 液相低聚果糖

    液相色谱做的低聚果糖用乙醇分离样品,四糖峰分的不好,请问用什么试剂能把样品分的更好一些,乙腈也试了,效果不好。

  • 口服液粗多糖检测问题

    用《保健食品功效成分检测方法》的方法测口服液的粗多糖(按葡聚糖计算),得到的结果比理论值低几倍,且不稳定,个人认为出问题的主要是铜试剂沉淀葡聚糖这一步,求有遇到类似问题的朋友指导要点…

  • 【分享】食品饮料中甜味剂糖精钠液相色谱分析

    【分享】食品饮料中甜味剂糖精钠液相色谱分析

    摘要糖精钠是有机化工合成产品,是食品添加剂。是一种甜味剂。除了在味觉上引起甜的感觉外,对人体无任何营养价值。相反,当食用较多的糖精时,会影响肠胃消化酶的正常分泌,使食欲减退。因此,糖精钠的含量的控制很有必要。为此南京科捷应用LC-600液相色谱仪器对糖精钠的分析方法进行了研究,可同时应用高效液相色谱法对橙汁、碳酸饮料中山梨酸、苯甲酸、糖精钠的含量进行检测,检测快速,结果准确可靠。关键词:食品添加剂 饲料添加剂饮料 糖精钠中山梨酸 苯甲酸 橙汁 甜味剂 液相色谱法1.苯甲酸、山梨酸、糖精钠(0.04mg/mL)高效液相色谱图http://ng1.17img.cn/bbsfiles/images/2011/05/201105311535_297105_2242538_3.jpg2.本方法的应用范围  1) 食品:冷饮、饮料、果冻、凉果、蛋白糖等  2) 饲料添加剂:猪饲料、香甜剂等  3) 日化行业:牙膏、嗖口水、眼药水等  4) 电镀行业:电镀光亮剂3.仪器配置检测项目苯甲酸、山梨酸、糖精钠本项目实验单位南京科捷分析仪器应用研究所实验仪器型号及配置LC-600液相色谱仪P600宝石恒流泵 1台UV600紫外检测器 1台7725i六通进样阀 1只WS600色谱工作站 1套[

  • 液相测糖问题

    刚接触液相 有很多东西不明白 请各位帮忙解决下 我用的是示差检测器 氨基柱来测糖类混合物中各组分的含量1:总糖含量未知,有几个组分的标样没有 但是知道保留时间2:个各组分只是聚合度的不同,最后没有标样的组分的响应因子会变化吗?3:两组样品能根据百分含量来进行比较吗?而且两组样品的总糖含量不知道是否一样还是有其他方法能定量的知道各组分的含量?

  • 【资料】生物表面活性剂鼠李糖脂发酵液应用研究

    [em0815] 微生物技术采油新进展:生物表面活性剂鼠李糖脂发酵液驱油应用研究韩立滨公司名称:大庆沃太斯化工有限公司地 址:大庆高新技术产业开发区宏伟园区 邮编:163411电 话:0459-5619800 传真:0459-5619868 E-Mail:victex2008@126.com http://www.cnvictex.com一、概述表面活性剂是具有亲水基和疏水基的离子或非离子型化合物,具有降低表面张力、稳定乳化液、增溶和改变分子极性等作用,表面活性剂分为化学表面活性剂和生物表面活性剂,其中生物表面活性剂是微生物在代谢过程中的产物,包括糖脂、脂肽、脂蛋白、磷脂以及中性类脂衍生物等,具有明显的表面活性,能大幅度降低油水界面张力,形成胶束溶液。此外,还可以改变油层润湿性、洗油能力强、吸附滞留量小、稳定性高、耐盐以及无毒等优点。因此,近年来,环境友好的生物表面活性剂的生产和使用日益受到人们的广泛关注。预计到2010年,生物表面活性剂将会占领市场10%的份额,销售额达两亿美元。目前,国内外研究较多的是由铜绿假单胞菌(Peudomonas aeruginosa)产生的鼠李糖脂,它是一类非常重要的生物表面活性剂,不仅具有乳化、增溶、降低表/界面张力等功能,而且毒性小、易于生物降解,因而在石油开采、医药、食品、日化及环境保护等许多领域具有极大的应用潜力。大庆沃太斯化工有限公司依托中科院上海有机所的先进技术,经自主研发的鼠李糖脂产品质量已经达到国内先进水平,具有年产2000吨以上的生产能力,是国内唯一能够大规模生产的厂家。二、生物表面活性剂国内外的研究进展国外,生物表面活性剂是七十年代后期发展起来的生物工程技术。近年来,生物表面活性剂应用于EOR方面,日益受到人们重视,如德国winter-shullAG公司将生物表面活性剂用于三次采油矿场试验,取得了明显效果,并已申请了多项专利。美国,先后有六大公司应用生物工程技术进行三次采油试验研究工作都见到了理想的效果。我国,生物表面活性剂研究工作始于八十年代初。“七五”期作为国家重点科技攻关项目实验研究做了大量的工作。“八五”期间又进行了生物表面活性剂的中试放大,随着科技手段的不断发展,研究水平不断的提高,生物表面活性剂的应用领域不断扩大,同时生物表面活性剂在石油采油的应用中取得了长足的进步。大庆油田于1997年-2000年在萨北开发区小井距试验区葡I4-7油层开展了生物表面活性剂三元复合驱先导性矿场试验,采用与进口表活剂ORS41复配的强碱体系,取得了全区提高采收率16.64%,中心井提高采收率23.24%的好效果。由于加入了浓度为0.2%生物表面活性剂,使体系中磺酸盐类表面活性剂的浓度由0.3%下降到0.15%,降低了化学表活剂50%的用量,复合驱化学剂总成本降低了35.5%。三、鼠李糖脂简介1、鼠李糖脂是一种阴离子表面活性剂,鼠李糖脂最突出的特性是它的表面活性,具有显著降低水的表面张力,改变固体表面的润湿性,具有乳化、破乳、消泡、洗涤、分散与絮凝、抗静电和润滑等多种功能。鼠李糖脂表面活性剂能使水的表面张力从72 mN/m降至30 mN/m左右,使油水界面张力从43 mN/m降低至1 mN/m左右。本产品与化学表面活性剂复配后的体系达到10-3-10-4 mN/m超低界面张力值。鼠李糖脂的另外一个重要特性是它的抗菌性。已经报道有好几种鼠李糖脂混合物具有抗菌和抗真菌的效果。2. 性状该产品外观为乳白色、带有脂香味粘稠的水溶性液体,其组成包括鼠李糖脂、菌体干细胞、多糖、中性脂等,其中鼠李糖脂的有效含量在30 g/L以上。3. 作用机理 总述:该产品的主要成份是生物大分子,它们具有粘弹性和乳化性,能起到增大驱油波及效率的作用,在油层中具有封堵、变形、运移、再封堵的特性,可实现从水井到油井的全过程调剖驱油;具有较高的表面活性能力,有效改变储集层岩石表面的润湿状态,降低原油与岩石表面的润湿角,降低油水界面张力,从而减少了原油在储层孔隙中的流动阻力,原油得以从岩石颗粒表面释放,从而起到提高原油采收率的作用。鼠李糖脂发酵液成分及其对油层的作用鼠李糖脂发酵液组分物质名称对油层的作用鼠李糖脂为代表的各种糖脂类表面活性剂物质1、降低岩石-油-水系统界面张力及表面张力2、形成油-水乳浊液 3、增强油相相容性有机酸类1、提高孔隙度和渗透率 2、降低油黏度菌体的蛋白及核酸大分子类封堵高渗透层,增大水驱扫油率并降低油水比醇、酮、醛溶剂类溶解岩石孔隙中原油,降低原油黏度(1)鼠李糖脂发酵液中的表面活性剂物质形成临界毛管胶束、增溶、乳化、互溶阶段的洗油机理 生物表面活性剂鼠李糖脂等小分子溶液达到临界胶束浓度后,其活性分子会自发迁移到油相界面,由热力学公式△G0m=△H0M-T△S0M可知油相界面自由能降低。表现为聚集于油相,使亲油基团插入油相,亲水基团留在水相,形成圆柱胶束,胶束内核提供了一个增溶的空间,使油相处于岩心孔道中央,发生油相聚集溶合,同时也使多个鼠李糖脂类分子亲油基与油结合形成乳状液,使黏度得到降低。动力来源除了驱替的压力、油水自由能的降低还有微毛管束的拉伸作用,蜂窝状的底层孔隙使得溶液胶束受毛管力作用被沿着岩石孔道推进,胶束经过岩心孔道时受到油滴间表面张力的作用使残余油进入胶束形成油带,它的形成使采出油的含水率得到降低。当油与鼠李糖脂类活性分子结合经过岩心多路液流汇集处或孔道张力集中的弯道处多发生乳化,使油黏度进一步降低。增溶乳化的胶束受驱动力推进,遇到不动的残余油则表现为互溶。此时的油相与水相界面张力及自由能达到最低值。当油相聚集岩心孔道中央达到一定量后挤压水相与岩石孔隙面接触,水相与岩心孔隙形成表面张力膜,增强了水对岩石的润湿性,有利于残油油滴驱出。后续水驱期间,受驱动推力及毛细管共同作用使驱出的油含水率降低,压力平稳,采收率曲线提高平缓。随着水驱的推进鼠李糖脂类表活剂分子随着被驱出的量而减少,其乳化作用、降低界面张力作用及降黏作用的能力快速降低,当压力达到驱动溶液流动的恒定值则表现为平稳,此时的含水率也接近稳定。(2)鼠李糖脂发酵液中的菌体蛋白、核酸等有机大分子调驱机理 一定浓度的发酵液进入油层后,微生物代谢的生物有机物及菌体残余物质聚合形成微生物封堵,在驱替压力作用下向受力作用低的大孔导流动即高渗透区域,并调整吸水剖面,增大水驱扫油效率,降低油水比,起到宏观和微观的调剖作用,是一种有选择的封堵,改变水流向,达到提高采收率的作用。从室内驱油试验压力曲线研究证明,该微生物大分子及菌体类似于胶体,即生物大分子及菌体蛋白是有伸缩性与粘弹性,能够在复杂的非均质油层中表现出与压力相反的缓冲效应,该效应形成提高采收率的封堵调驱机理。(3)鼠李糖脂发酵液作为本源微生物营养激活剂提高采收率鼠李糖脂发酵液成分中含有大量的氮元素、碳元素及磷元素,菌体分解的核酸及蛋白等小分子是地层本源微生物迅速生长的高级营养物质,是微生物产生大量代谢物,有表面活性剂、气体、有机酸等进一步发挥微生物采油原理。(4)结论一、鼠李糖脂驱油机理包括四个阶段:形成毛管胶束阶段,增容阶段,乳化阶段,互溶阶段,四个阶段相互依存,协同的洗油机理,提高了原油的采收率。二、与单一鼠李糖脂相比未处理的鼠李糖脂发酵液驱油效果更好,鼠李糖脂与菌体蛋白、菌体代谢物有机酸、醛酮类化合物共同作用原油,既有表面活性剂作用又有大分子封堵调驱作用,提高原油采收率。三、大分子物质封堵岩层大孔道的调驱机理,降低流速比、使驱替液向油层小孔道驱替未动用剩余油、以及降低油水界面张力、乳化并降低原油粘度增容的协同洗油机理是提高采收率的综合效应指标。四、鼠李糖脂发酵液本身是油层中本源微生物的营养激活剂,能促进本源微生物生长发挥微生物采油。

  • 液相分离几种单糖

    我要分离六种单糖,葡糖糖、半乳糖、甘露糖、鼠李糖、阿拉伯糖、木糖,仪器是Waters HPLC,检测器ELSD,柱子是XBridge Amide,请问各位前辈用什么流动相条件可以基线分离?万分感谢!

  • 关于液相色谱检测糖高果糖浆糖组分

    刚换了一根柱子,检测出来几个以前没有的或者很少出来的峰,不知道是哪的问题!请大侠赐教!还有就是如果是其他的糖组分,那么这几个究竟是什么糖呢?图片一张是我怀疑有问题的图,另一张是另一台液相走出的图谱[img]https://ng1.17img.cn/bbsfiles/images/2018/08/201808311200249181_1130_3029907_3.jpeg[/img][img]https://ng1.17img.cn/bbsfiles/images/2018/08/201808311200250121_9396_3029907_3.jpeg[/img]

  • 【原创】手持糖度计的使用方法

    手持式糖度计的原理及使用方法一、目的及原理  利用手持式折光仪测定果蔬中的总可溶性固形物(Total Soluble Solid,TSS)含量,可大致表示果蔬的含糖量。  光线从一种介质进入另一种介质时会产生折射现象,且入射角正弦之比恒为定值,此比值称为折光率。果蔬汁液中可溶性固形物含量与折光率在一定条件下(同一温度、压力)成正比例,故测定果蔬汁液的折光率,可求出果蔬汁液的浓度(含糖量的多少)。   常用仪器是手持式折光仪,也称糖镜、手持式糖度计,该仪器的构造如下图所示。   通过测定果蔬可溶性固形物含量(含糖量),可了解果蔬的品质,大约估计果实的成熟度。二、药品与器材  番茄、柑桔、菠萝  蒸馏水  烧杯、滴管、卷纸、手持式折光仪三、操作步骤  打开手持式折光仪盖板(a),用干净的纱布或卷纸小心擦干棱镜玻璃面。在棱镜玻璃面上滴2滴蒸馏水,盖上盖板。于水平状态,从接眼部(b)处观察,检查视野中明暗交界线是否处在刻度的零线上。若与零线不重合,则旋动刻度调节螺旋,使分界线面刚好落在零线上。打开盖板,用纱布或卷纸将水擦干,然后如上法在棱镜玻璃面上滴2滴果蔬汁,进行观测,读取视野中明暗交界线上的刻度,即为果蔬汁中可溶性固形物含量(%)(糖的大致含量)。重复三次。 [em0815]

  • 药用辅料乳糖液相检查

    参照中国药典2010年版二部第1207页,进行含量和有关物质检测。试验条件:色谱柱:ULTIMATE XB-NH2 LOT:2703.04 SN:271101716【含量测定】照高效液相色谱法(附录V D)测定。色谱条件与系统适用性试验用氨基键合硅胶为填充剂;以乙腈-水(70:30)为流动相;示差折光检测器检测;柱温为45°C,检测器温度为40°C。取乳糖对照品与蔗糖对照品各适量,加水溶解并稀释制成每lml各含lmg的溶液,取10μl,注人液相色谱仪,乳糖峰与蔗糖峰之间的分离度应符合要求,理论板数以乳糖峰计箅不得低于5000。测定法取本品适量,精密称定,加水溶解并定量稀释制成每lml约含乳糖lmg的溶液,精密量取10μl,注人液相色谱仪,记录色谱图;另取乳糖对照品适量,同法测定,按外标法以峰面积计箅,即得。有关物质取本品适量,加水溶解并稀释制成每lml含100mg的溶液,作为供试品溶液;精密量取lml ,置100ml量瓶中,加水稀释至刻度,摇匀,作为对照溶液。照含量测定项下的方法试验,记录色谱图至主成分峰保留时间的2倍。供试品溶液的色谱图中除溶剂峰以外,如显杂质峰,各杂质峰面积的和不得大于对照溶液峰面积的0.5倍(0. 5 %)。含量测定系统适用性典型色谱图:http://ng1.17img.cn/bbsfiles/images/2013/09/201309241540_466981_2771408_3.gif对照品和供试品典型色谱图:http://ng1.17img.cn/bbsfiles/images/2013/09/201309241540_466984_2771408_3.gifhttp://ng1.17img.cn/bbsfiles/images/2013/09/201309241541_466985_2771408_3.gif有关物质典型色谱图:1.溶剂空白http://ng1.17img.cn/bbsfiles/images/2013/09/201309241543_466988_2771408_3.gif2.供试品溶液:http://ng1.17img.cn/bbsfiles/images/2013/09/201309241544_466990_2771408_3.gif对照溶液:http://ng1.17img.cn/bbsfiles/images/2013/09/201309241544_466991_2771408_3.gif试验结论:试验结果表明:乳糖峰与蔗糖峰之间的分离度为5.2,大于1.5,符合要求,理论板数以乳糖峰计箅均大于5000。满足乳糖的含量测定和有关物质检查需要。

  • 求助液相色谱分析单糖

    [color=#444444]大家好,向你们求助一个关于液相测单糖的问题。我用的柱子是反向C18柱,流动相是PH 为6.8的磷酸盐缓冲液:乙腈为85:15,紫外检测器,柱温35。按理说PMP 衍生法测单糖是很经典的方法,我也按照文献的方法(单糖600ul,0.3M NaOH 600ul,0.5M 的PMP 的甲醇溶液,70℃反应100min,然后冷却静置加入0.3M Hcl 600ul,然后用氯仿萃取3次 )跑完发现PMP 峰高达到4000mA ,而单糖葡萄糖的峰高最大只有峰高只有100mA,降低PMP 浓度即稀释10倍,单糖浓度增加到0.01%,PMP 峰高仍有2000+mA ,单糖的峰高也只有几十mA ,峰高差距太大啊!而且发现杂峰很多,峰高和单糖的差不多啊!我现在有个问题是,PMP 浓度还要再降吗?还有就是杂峰也忒多了吧,都没法确定单糖的出峰位置啊!今天跑了一个木糖发现70多min才出一个很小的峰浓度为0.02%.和文献报道的出峰时间有很大出入。现在很是迷茫,大家给点建议和思路吧。心太累。每次做液相,仪器总出问题,仪器没问题了,又是其他各种问题。[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制