当前位置: 仪器信息网 > 行业主题 > >

荷重仪

仪器信息网荷重仪专题为您提供2024年最新荷重仪价格报价、厂家品牌的相关信息, 包括荷重仪参数、型号等,不管是国产,还是进口品牌的荷重仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合荷重仪相关的耗材配件、试剂标物,还有荷重仪相关的最新资讯、资料,以及荷重仪相关的解决方案。

荷重仪相关的资讯

  • 中合众全程保障农业农村部-全国农业综合执法培训
    农业农村部农业综合执法培训 农业综合执法能力提升培训班为进一步加强农业综合行政执法大队执法能力,促进农业农村经济健康发展,由农业农村部牵头于2020年10月21日-2020年10月24日,在贵阳举办全国农业综合执法能力提升培训班,厦门中合众科技有限公司是农业部培训合作单位,在现场培训由我司技术总工黄文池现场为学员培训综合执法系统和农产品投入品监管培训。 中合众现场讲解我司农业综合执法全套方案 在培训期间,厦门中合众科技有限公司技术黄工对农业执法全套方案(云平台+执法箱)进行介绍,自主开发的智能综合执法平台与现场执法设备相结合。针对目前农业综合执法监管模式缺失、地域复杂性及线上监管难度大的执法现状。我司农业综合执法一体化解决方案依托大数据技术,建立农业综合执法勘查取证平台,可实现时间定位违法迹象;利用勘查取证装备携行箱,执法全程可实现案件证据保留,随时回溯复查。配合我司智能化快检设备,及时检测农资投入品、农产品质量安全检测设备全范围无缝对接。检测数据和结果及时上传后台,真正实现农业执法过程一体化,执法数据智能化。直击培训现场,农业综合执法一体化方案还需配备取证装备相继结合,所携带的农资打假专项设备、动物疫病检测仪和微流控PCR检测仪(转基因检测、非洲猪瘟)与执法智能结合形成智能执法一体化,也备受相关领导及众多参与者的关注。 我司检测设备展示◆◆◆ 农资打假设备其中,新一代农资打假专用快速检测设备,采用先进的拉曼光谱+红外光谱检测技术,着力解决当前农资执法过程中,现场检测农药是否含有有效成分、是否添加其他隐性成分,解决化学农资产品假冒伪劣鉴别手段缺乏、时效性差、成本高等的问题,利农惠农,提高执法水平,保障农民利益。真正发挥快检的高效性检测。◆◆◆ 动物疫病检测仪便携式动物疫病快速检测仪集动物疫病监控、兽药残留检测、饲料真菌毒素检测于一体的新型快速检测设备。仪器采用先进图像识别数字化处理技术,结合免疫荧光层析快速检测技术,配合简便、高效、准确的免疫层析技术,可满足禽畜疫病监控、禽畜免疫情况监测、兽药残留检测、饲料真菌毒素检测等需求,广泛应用于农业执法管理单位、各禽畜养殖户、饲料公司、疫苗单位等,同时可以已经在宇通动物疫病检测仪形成移动式方案,实现实地检测。◆◆◆ PCR恒温荧光检测仪FD微流控PCR检测仪利用微流控芯片和恒温扩增技术相结合,可检测转基因、非洲猪瘟及其他动物疫病检测,将提取的DNA模板加入微流控芯片中,放入带有实时荧光检测的微流控荧光读数仪中,进行恒温扩增。同时,芯片中加入内标检测孔,对待测样本的检测扩增进行全程监控,以防止假阴性的出现。若样本中含有目的片段而得到恒温扩增,通过荧光检测仪实时捕获荧光信号,直观的反应扩增产物的产生。农产品安全与人们身体健康息息相关,为执法部门提供更加智能优质的产品及服务,致力于一体化解决方案,践行用数字科技铸就未来的公司使命,我们一直在路上!
  • 中合众科技为西藏日喀则市市场监督管理局提供食品安全快速检测解决方案
    标题:中合众科技为西藏日喀则市市场监督管理局提供食品安全快速检测解决方案 2023年3月30日下午,西藏日喀则市市场监管局在全市范围内举办了一场食品安全快速检测培训活动。本次培训会由日喀则市市场监管局主办,邀请了厦门中合众科技有限公司作为专业快检技术团队参加。此次培训旨在推进机关干部作风转变,提升市场监管人员食品安全快检业务技能,充分发挥食品快检设备作用,进一步提高食品安全监管效能。副局长格平在培训会上强调了食品安全快速检测工作的重要性和必要性,要求各学员在监管工作中担起责任,充分运用现有资源做好快检工作,有效防范和化解食品质量安全风险,全力保障人民群众“菜篮子”安全。此次培训邀请了食品安全检测领域专家——厦门中合众科技有限公司产品经理黄文池培训内容涵盖了食品安全快速检测基本原理、各类快速检测仪器操作规范、检测实施步骤和要求等方面。通过“理论学习与实践操作”相结合的方式,参训人员集中学习了食品中农药残留、亚硝酸盐和瘦肉精等常见不合格项快速检测方法,并就实际操作中存在的问题进行了答疑,确保每一位参训人员懂理论,能操作。下一步,日喀则市市场监管局将加大力度,扩大对食用农产品,特别是蔬菜、畜禽肉类中农兽药残留检验检测的覆盖范围,增加风险隐患品种抽检的数量和频率,及时发现食品安全问题,消除安全隐患。同时,市场监管局还将与中合众科技合作,建设辖区内智能化农贸市场监管,为老百姓“舌尖上的安全”筑起一道严密的过滤网和防护网。厦门中合众科技有限公司作为国内领先的食品快检技术企业,一直致力于为广大客户提供高质量的产品和服务。此次受邀参加日喀则市市场监管局的培训活动,充分展示了该公司在食品安全快速检测领域的专业实力和技术优势。未来,厦门中合众科技有限公司将继续与各级市场监管部门保持密切合作,共同为保障人民群众的饮食安全做出更大的贡献。
  • 中荷签协议乳制品中欧检测系统同步
    近期,中国与荷兰签署18项协议,其中两项涉及乳制品,分别是中荷乳制品框架协议、伊利集团与荷兰瓦赫宁根大学达成的共建食品安全保障体系合作。  根据中荷协议,荷兰将派遣专家来华,在未来几年内帮助中国生奶年产量提高至400亿公斤(去年为353.1亿公斤)。根据共建食品安全保障体系合作协议,两国将率先针对牧场管理等奶源上游的技术进行先期开发,全部建成后,将实现中国与欧盟乳品检测系统同步。&ldquo 欧洲的食品监管,非常严格。双方携手,可以逐步实现中国与欧盟乳品检测系统的同步。&rdquo 浙江省商务研究院院长张汉东表示,虽然一个协议并不能改变全局,但可以提升中国食品安全。
  • 2000名质谱人和衷共济,第十三届质谱网络会议圆满落幕!
    仪器信息网讯 2022年12月13-16日,第十三届质谱网络会议(iCMS 2022)在线上召开。由于疫情的影响,本次会议召开同期,多位报告专家、本网工作人员也陆续出现流感症状,身体多有不适,因此本届质谱网络会议的顺利召开十分珍贵。特别让人动容的是,本次会议的多位报告专家带病出席,竭尽全力为线上的听众带来精彩的报告内容。在此,仪器信息网对所有在特殊时期一如既往大力支持我们的专家老师、赞助企业以及广大用户朋友们表示衷心的感谢,也希望大家能够注意身体健康,争取平稳地度过这个特殊的时期。  本届会议的41位报告专家阵容  本届会议得到以下赞助商的大力支持来自中国和北美等地区的约41位专家学者分享了精彩报告,内容既包括高速发展的质谱最新技术、最热门的临床质谱技术应用进展、极具应用前景的毒品分析方法,也涵盖了各类质谱技术在生命科学、食品、制药、环境四大领域的应用进展。本文将分为上下两篇从以下从四个方面加以概述。  质谱技术新维度与新深度  质谱新技术新方法是历届质谱网络会议(iCMS)的重要主题,本届会议安排的内容涵盖离子淌度质谱技术、超高分辨静电离子阱质谱技术、结构质谱技术、质谱成像技术、微流控质谱技术、创新电离技术及小型化质谱技术等多方面。  来自中科院上海有机化学所的郭寅龙研究员进行了题为”基于离子淌度质谱技术分析小分子代谢物“的报告。近些年,离子淌度技术(ion mobility spectrometry,也称“离子迁移谱”)取得了快速发展,离子淌度质谱的联用技术也得到了广泛应用,这使得质谱分析能力从相对简单的质荷比拓展到复杂的三维结构,从简单的异构体区分发展到复杂的构象解析。在实际应用中,由于小分子代谢物化学性质迥异,且普遍存在同分异构现象,增加了分析难度,报告介绍了离子淌度-质谱(IM-MS)技术为复杂基质中小分子代谢物的快速分离和分析提供了新思路。来自宁波大学的丁力教授进行了题为“超高分辨静电离子阱质谱技术”的报告。报告着重讲述了利用静电离子阱FT技术实现超高分辨率质谱分析,利用高次谐波,平面静电离子阱可以在较短分析时间里获得更高的分辨率。此外,除了Orbitrap以外,还有多种形式的静电离子阱,并且各具优势。来自核工业背景地质研究院的郭冬发研究员带来了题为“多接收电感耦合等离子体质谱仪(MC-ICP-MS)离子传输调控方法”的报告,详细介绍了离子传输调控品质在电感耦合等离子体质谱仪器性能实现方面的重要性。报告以国产双聚焦MC-ICP-MS为例,分享若干离子传输过程中的调控方法。  新型的离子源技术是质谱创新发展的重要方向之一,本次会议也邀请到国内从事离子源技术创新研发的团队介绍相关的研究成果。来自中科院大连化学物理研究所的王方军研究员带来了题为“极紫外光解离谱创新仪器和方法应用”的报告,介绍了报告人在近期工作中搭建的世界首个50-150 nm极紫外激光皮秒脉冲解离-高分辨质谱装置(XUPD-HRMS),并实现了蛋白质1 ps超快解离和新型结构特征自由基碎片离子的高灵敏度探测,与商品化质谱相比解离激发速率提升10个数量级。  此外,质谱技术的不断发展使其在蛋白质结构表征领域发挥了越来越重要的作用,非变性质谱(native MS)是用于分析蛋白高阶结构的生物质谱方法,近年来蛋白质结构研究领域经历着技术迭代,其与离子淌度(IMS)、自上而下串联解离质谱(top-down)、电荷检测质谱(CDMS)等联用技术和方法不断开发与完善。来自中山大学李惠琳教授带来了题为“质谱用于蛋白结构表征”的报告,介绍了蛋白结构及构象解析质谱技术的发展情况及应用发展现状。来自湖南大学的岳磊教授带来了题为“新维度结构质谱仪器开发和应用”的报告,介绍了几种新型质谱技术,如高分辨离子淌度技术,可以有效的分离生物活性分子的构象异构体,产生新的尺寸维度信息。而基于质谱的离子光谱技术,可以结合质谱的灵敏度和光谱的特异性,产生特征性的指纹信息,为复杂团簇化学和痕量生物活性分子的快速精准分析带来了可能。  此外,还有多场质谱新方法方面的报告,研究内容涉及了多组学包括蛋白质组学、代谢组学研究的质谱方法,对扩展质谱的在组学研究的应用范围具有重要作用。  质谱技术与多组学、医药及生命科学  以高性能质谱为核心的多组学研究已成为各类疾病筛查、早期诊断、治疗监测和预后评估的生物标志物创新发现的关键技术平台。作为质谱技术的发展前沿,组学质谱技术的发展和应用越来越引起大家的关注。  来自加拿大阿尔伯塔大学的厉良教授带来题为“高覆盖代谢组学研究的最新进展”的报告,作为代谢组学领域的代表专家,报告者详细介绍了目前关于高覆盖代谢组学研究中最新的进展。北京大学心血管研究所的郑乐民教授带来题为“代谢组学与心脑血管疾病”的报告,报告介绍了通过代谢组学发现的琥珀酸等心血管疾病治疗靶点的科研成果,希望推动代谢组学技术在心血管等疾病研究中的应用。中日友好医院病理科钟定荣带来了题为“质谱分析技术在甲状腺肿瘤良恶性肿瘤鉴别中的应用”的报告,利用癌组织的代谢产物不同于正常甲状腺和良性甲状腺病变来进行良恶性的区分,质谱技术由于其在代谢产物分析方面的优势,可能会带来解决方案。来自暨南大学的胡斌教授带来了题为“人体呼气质谱分析”的报告,人体呼气是一种生物气溶胶,含有大量挥发性物质、水汽以及融合在水汽小液滴中的不挥发性物质如有机代谢物、生物大分子和微生物等等,报告介绍了人体呼气分析在疾病诊断等涉及人体健康与分子医学领域具有重要的应用进展。上海交通大学的吕海涛研究员带来了题为“功能代谢组学革新胰腺癌精准诊断与治疗发现”的报告,报告者介绍了基于功能代谢组学革新肝胆胰疾病诊断与解析天然产物治疗疾病的新机制。来自吉林大学的顾景凯教授带来了题为“基于质谱技术的PEG与多臂PEG化药物的体内命运研究”的报告,报告者采用差分离子淌度(DMS)与Q-Q-TOF的TOF-MS和MSAll扫描方式相结合的质谱解决策略,发展了PEG及其高分子衍生物的全轮廓的体外质量控制与体内命运分析的新方法,可为PEG等聚合物的精准分析与体内命运研究提供了强有力的技术支持。来自南方科技大学的田瑞军教授带来题为“面向临床蛋白质组学应用的高通量质谱分析方法”的报告,报告者致力于开发基于生物质谱技术的蛋白质组学新方法和新技术,并专注于其在动态蛋白质复合物及肿瘤微环境信号转导研究方面的应用。  本次会议和北美华人质谱学会联合组织,特别邀请了4位报告者着重介绍了库伦质谱法进行蛋白定量研究、蛋白质组学与阿尔兹海默症病理机制相关研究、靶向放射配体治疗性分子质谱分析等方向的最新研究进展,邀请到美国新泽西理工大学陈浩教授、美国圣祖德儿童医院彭隽敏教授、北卡罗莱纳大学陈先教授以及诺华生物傅韵霖博士带来精彩的报告分享。  下篇文章将陆续更新发布,敬请关注。  本次会议利用网络平台进行在线直播,整个会议日程安排紧凑有序。全世界各地参会者通过网络平台交流与学习,无论在学校、在家、还是在公司,都可以聆听专家们的报告,而且还可以在问答区进行发言和提问。第十三届质谱网络会议圆满落幕,探知质谱新技术,洞悉应用新世界!下一届质谱网络会议将于2023年末举办,让我们共同期待下次质谱界的交流学习!
  • 数显小负荷布式硬度计在有色金属检测中应用广泛
    数显小负荷布式硬度计在有色金属检测中应用广泛山东云唐智能科技有限公司数显小负荷布式硬度计在有色金属检测中确实有广泛的应用。这种仪器适用于铸铁、钢材、有色金属及软合金材料的硬度测定,尤其在黑色金属、有色金属及轴承合金材料的布氏硬度检测中发挥着重要的作用。此外,该设备对飞机、汽车等安全部件进行硬度检测也是非常理想的仪器。具体来说,数显小负荷布式硬度计具有以下特点:测量范围广泛:其测量范围为4~450HBS,4~650HBW,适用于各种硬度的材料测试。自动化程度高:采用LCD液晶显示屏,数字显示,菜单式操作,试验过程自动化,能自动保存每次试验的参数设置,试验过程自动化。精确度高:采用先进的无摩擦主轴系统,保证试验的准确可靠。应用范围广:不仅适用于软金属材料及小型零件的布氏硬度试验,也适用于对黑色金属、有色金属及轴承合金材料的布氏硬度检测。在实际应用中,数显小负荷布式硬度计可以满足不同种类和形状的试样测试,其操作简便、测试准确可靠,为有色金属检测提供了有力支持。数显小负荷布式硬度计在有色金属检测中有广泛的应用,以下是几个具体的应用案例:检测铝、铅、锡等软料硬度:数显小负荷布式硬度计可以用于检测铝、铅、锡等软料的硬度,这些材料在汽车、电子、包装等领域有广泛应用。通过使用数显小负荷布式硬度计,可以快速、准确地检测这些材料的硬度,从而控制产品质量和生产过程。检测轴承合金材料的硬度:轴承合金材料广泛应用于机械、汽车、航空等领域,其硬度是影响轴承性能的重要因素之一。数显小负荷布式硬度计可以用于检测轴承合金材料的硬度,帮助企业控制产品质量和确保设备正常运行。检测有色金属管材的硬度:有色金属管材在石油、化工、食品等领域有广泛应用,其硬度是评价管材质量的重要指标之一。数显小负荷布式硬度计可以用于检测有色金属管材的硬度,帮助企业控制产品质量和确保管道系统的安全可靠性。检测硬质合金材料的硬度:硬质合金材料具有高硬度、高耐磨性和良好的耐热性等特点,广泛应用于刀具、模具等领域。数显小负荷布式硬度计可以用于检测硬质合金材料的硬度,帮助企业控制产品质量和提高生产效率。总之,云唐数显小负荷布式硬度计在有色金属检测中具有广泛的应用价值,可以帮助企业提高产品质量和生产效率,确保设备和人身安全。
  • 日本加强对中国产荷兰芹中六氯苯的监控检查
    2013年3月13日,日本厚生劳动省医药食品局食品安全部监视安全课发布食安输发0313第1号:加强对中国产荷兰芹中六氯苯的监控检查。  根据2012年度进口食品等的监控检查计划,按2012年3月29日发布的食安输发0329第2号(最终修正:2013年3月12日发布的食安输发0312第1号),对中国产生鲜荷兰芹实施检查时,发现其违反了食品卫生法。因此,将对其残留农药六氯苯的监控检查频率提高到30%。具体如下记:强化检查日期国家检查对象检查项目制造商、制造厂、出口商及包装商2013年3月13日中国荷兰芹及其加工品(限简单加工)残留农药(六氯苯)SHIJIAZHUANG AODEJIAIMP. & EXP. TRADECO.,LTD.
  • 中荷“食物-环境-资源耦合与调控机制”国际联合实验室成立
    p style="text-align: justify " 近日,中国—荷兰“食物-环境-资源耦合与调控机制”国际联合实验室(Sino-Dutch International Joint Laboratory on Coupling of Food, Environmental Protection and Resource Use - COFER)在中国科学院遗传与发育生物学研究所农业资源研究中心揭牌成立。该实验室旨在开展中国和全球可持续食物生产—消费系统、农牧系统耦合、面源污染与绿色农业发展等研究,加强中国和荷兰学术合作研究,开展针对青年学者和研究生的联合培养,同时提供一个可面向其他院校和科研单位科研人员的开放研究平台。/pp style="text-align: justify " 农业资源中心主任胡春胜、荷兰瓦赫宁根大学教授Carolien Kroeze、Oene Oenema在讲话中表达了共同的意愿,希望中国-荷兰“食物-环境-资源耦合与调控机制”国际联合实验室成为双方交流的平台,以此平台为基础开展科学研究、人才培养、项目申报等方面的合作。/pp style="text-align: justify " 中国-荷兰“食物-环境-资源耦合与调控机制”国际联合实验室是在瓦赫宁根大学与农业资源中心多年的合作基础上建立的。今年5月,中心党委书记赵军在访问荷兰瓦赫宁根大学时,也曾专门针对中国-荷兰国际联合实验室的建立事宜与瓦大校长Arthur Mol等进行了深入探讨,进一步推动双方合作事宜。农业资源中心将会以实验室的成立为契机,不断扩展中心的国际合作,开创中心国际合作新局面。/ppbr//p
  • 大连化物所发展光催化中仿生电荷传输层的可控组装策略
    近日,中科院大连化物所催化基础国家重点实验室、太阳能研究部(DNL16)李灿院士,李仁贵研究员等在光催化水氧化研究方面取得新进展。   团队仿习自然光合体系中电荷传输链的原理,基于团队发现的半导体光催化剂晶面间光生电荷分离现象,在铬酸铅光催化剂光生空穴富集的氧化晶面上可控组装氧化石墨烯作为电荷传输层,进而将钴立方烷分子催化剂选择性组装到氧化石墨烯电荷传输层,实现了光生空穴从铬酸铅光催化剂至钴立方烷分子催化剂之间的快速传输,显著提升了光催化水氧化性能。   光催化分解水制氢是将太阳能转化为化学能的重要途径之一。其中,光生空穴参与的水氧化反应是涉及多电子多质子转移的复杂过程,是光催化分解水反应的关键。虽然负载合适的水氧化助催化剂有助于提高水氧化反应性能,但是半导体与水氧化助催化剂之间的界面势垒会阻碍光生电荷的传输和利用。李灿团队长期从事太阳能人工光合成过程中的关键基础科学问题研究,尤其在光催化分解水研究方面,先后在国际上提出双助催化剂策略(J. Catal.,2009;Catal. Lett.,2010;Acc. Chem. Res.,2013)、在光电催化分解水研究中发现部分氧化的石墨烯在水氧化催化剂和捕光半导体之间具有类似自然光合作用过程中酪氨酸的电荷传输功能(J. Am. Chem. Soc.,2018)、实验上确认了晶面间光生电荷分离效应(Nature Comm.,2013;Energy Environ. Sci.,2016;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2022)、提出可规模化太阳能分解水制氢的氢农场策略(Angew. Chem. Int. Ed.,2020),提出光催化完全分解水氢氧逆反应抑制新策略(Nature Catal.,2023)等,受到了国际学术界的广泛关注。   研究团队借鉴自然光合系统电荷传递链中酪氨酸等电荷传输媒介的作用,利用铬酸铅光催化剂光生电子和空穴在不同暴露晶面间的光生电荷分离性质,借助超声辅助的手段在铬酸铅光生空穴富集的氧化晶面上可控组装氧化石墨烯电荷传输层。   进一步,团队确认通过氧化石墨烯电荷传输层与钴立方烷水氧化催化剂之间强的范德华作用力,可以选择性地将钴立方烷分子催化剂吸附到铬酸铅的氧化晶面,从而实现了光生空穴从铬酸铅到钴立方烷分子催化剂的有效传输,显著提升了铬酸铅的光催化水氧化性能。   此外,团队通过表面光电压谱等手段证明,在铬酸铅氧化晶面与钴立方烷分子之间引入氧化石墨烯电荷传输媒介,可以有效抑制光生电荷在界面的复合,延长光生电荷的寿命,显著提升光催化水氧化反应性能。   该工作发展了基于仿生思路实现光生电荷传输和助催化剂可控构筑的策略,为微纳尺度上高效人工光催化剂的理性设计和构筑奠定了基础。   相关研究成果以“Graphene Mediates Charge Transfer between Lead Chromate and a Cobalt Cubane Cocatalyst for Photocatalytic Water Oxidation”为题,于近日发表在《德国应用化学》(Angewandte Chemie International Edition)。该工作的第一作者是503组联合培养博士研究生蒋文超。以上工作得到国家重点研发计划、国家自然科学基金委“人工光合成”基础科学中心项目等资助。
  • 【瑞士步琦】卷烟中薄荷油微胶囊的制备及应用
    卷烟中薄荷油微胶囊的制备及应用当前,烟草行业提出低焦油、低危害、高香气的发展趋势,在满足低焦油卷烟的同时面临着香气不足的缺点,卷烟生产中需要大量增补烟香,以满足低焦油、低危害、高香气特点。当前研究主要集中在两部分:制丝线加料环节添加增香成分在滤嘴中添加香料微胶囊其中在滤嘴中添加香料微胶囊的方式得到了较好的产品反馈。通常,香料微胶囊放置在滤嘴与烟支接头处,或滤嘴中段制成复合型滤嘴,烟支点燃吸食时微囊内部的香料即可释放香味成分,增香的同时也有效避免因高温燃烧破坏香味成分的风险。本文在原香味卷烟制备[1]的基础上,重点介绍采用微胶囊造粒仪 B-390 进行香料薄荷油成分包埋,对高价位低焦油卷烟进行增香处理。 1实验仪器步琦微胶囊造粒仪 B-390,配喷嘴加热模块步琦加热水浴锅 B-305步琦循环冷水机 F-314外置注射泵磁力搅拌器显微镜 2实验材料30 %(w/v)明胶水溶液中链甘油三酯薄荷油蒸馏水 3实验流程将 30% 明胶水溶液置于 65℃ 水浴中预热备用,防止实验过程中温度降低而影响明胶溶液的流动性。开启微胶囊造粒仪 B-390 的喷嘴加热装置至 70℃,实际喷嘴温度达到设定数值后进行微胶囊包埋,制备薄荷油微胶囊。实验参数如下:喷嘴尺寸同心喷嘴:450 μm(薄荷油)900 μm(明胶)进样流速薄荷油:注射泵速:2.4 mL/min明胶:30 - 35 mL/min振动频率100 – 140 Hz压力180 - 220 mbar振幅9喷嘴加热温度70 ℃水浴锅加热温度65 ℃准备中链甘油三酯接收液用于接收微胶囊(冷油浴),使用循环冷却水机提前预冷至 10℃。注意:中链甘油三酯溶液高度至少要保证 10cm,以便于薄荷油微胶囊有足够的下沉时间进行冷凝,并进行磁力搅拌(形成温和缓慢的旋涡,无气泡)。 4实验结果使用步琦微胶囊造粒仪 B-390 可以一步化进行薄荷油微胶囊的制备。微胶囊造粒仪 B-390 的喷嘴配有加热功能,可以使明胶溶液的温度一直高于其固化温度,保证溶液的流动性便于从喷嘴处喷出并被振动切割为颗粒体。通过显微镜观察制得的薄荷油微胶囊,其外观呈现球型,微胶囊尺寸均匀,直径在 1.7-1.8 mm(Std.Dev. ±5 %)。5参考文献包秀萍、王松峰等。薄荷油微胶囊的制备及其在卷烟中的应用,河南农业科学,2013,42(3):146-149
  • Eijkelkamp参加中荷土壤质量环境标准制定方法研究总结会议
    5月25日,中荷土壤质量环境标准制定方法研究总结会议在环境保护部南京环科所召开。环保部生态司领导、荷兰基础设施与环境部司长Ruud Cino、环保部南京环科所专家在开幕式上分别致辞,环保部科技司、国际司,中国环科院等代表也参加了会议,全国各省(市)环境保护厅(局)相关技术人员参加了随后两天开展的培训。 在 培训中,荷兰专家介绍了荷兰土壤筛选值及其应用经验、人体健康风险评估方法,并从欧盟角度评价中国的土壤筛选值。环保部介绍了中国土壤环境管理与法规标准 需求,环保部南京环科所对中荷土壤环境质量标准制定方法研究项目进行了总结,并对我国土壤环境标准体系框架及体系进行了展望。 荷兰土壤合作平台(NSP)也组团参加了这次活动,在经验交流会上,分别就各自在土壤修复领域的经验与案例做了报告。Eijkelkamp公司作为NSP的核心成员,一直积极参与中国土壤污染与修复的市场。Eijkelkamp的各种土壤和地下水采样与分析设备是开展污染场地调查与风险评估活动中的必要手段。 土壤和地下水修复研究设备目录,欢迎索取
  • 中荷合作农药环境风险评价项目—生物中心GLP实验室预检查在京顺利举行
    2009年10月19日至23日,“中荷合作农药环境风险评价项目—生物中心GLP实验室预检查”工作会议在农业部农药检定所生物技术研究测试中心召开。会议由姜辉主任主持,魏启文副所长在开幕式上做了重要讲话,对检查员Christine  Mitchell女士的到来表示欢迎并指出,中国在执行农药管理的过程中非常注意承担国际义务,积极参与国际合作,同时特别注意借鉴其他发达国家和国际组织在农药GLP实验室建设方面取得的宝贵经验。目前,中国与荷兰建立的农药环境风险评估及GLP体系建设方面的合作已经取得了令人满意的阶段性成果,同时对合作项目最终取得圆满成功充满期待”。  在此次GLP检查的首次会议上,首先由姜辉主任对生物中心GLP实验室建设准备工作进行了简要阐述,介绍了生物中心几年来在农药GLP实验室建设方面所做的努力和取得的成绩,包括实验室设施改造、试验条件与设备升级、人员培训、质量保障体系与安全体系建设等情况。随后,荷方专家Christine女士就此次检查的范围、目的及基本程序做了简要介绍,在随后的检查中,Christine女士在王晓军副主任及相关技术人员的陪同下,对生物中心GLP试验所涉及的设施条件、试验计划、管理文件、试验项目、仪器使用、记录、档案、报告、质量保证等工作过程进行了OECD  GLP原则一致性检查。在整个检查过程中Christine女士深入实验室与研究人员就相关问题进行了充分讨论和交流。  经过一周的检查,荷方专家在生物中心全体人员的积极配合下,顺利地完成了各项检查程序,并于10月23日召开了末次会议,会上,叶纪明副所长对GLP实验室建设工作取得的积极进展给予充分肯定,同时感谢了Christine女士此次来我所指导工作。随后,大家听取了Christine女士的现场检查情况介绍,她对一周以来检查中涉及到的相关议题给出检查意见。同时生物中心的相关人员也提出自己的疑问和建议并与Christine交流和讨论。  通过开展此次GLP实验室预检查,生物中心对GLP实验室建设和运行过程有了更直接和具体的了解,相关人员得到了一次非常难得的现场培训机会,进一步明确了下一阶段工作重点,为生物中心后续GLP体系建设打下了坚实的基础。
  • 自旋-轨道态选择的电荷转移反应研究取得进展
    碰撞电荷转移反应广泛存在于星际介质、行星大气、等离子体等复杂气相环境中。从分子层面探究电荷转移反应的机理对剖析这些复杂气相环境的物质演化和能量传递过程有重要作用。Ar++N2→Ar+N2+是经典的电荷转移体系,受到广泛的实验和理论研究。然而,不同研究之间无法相互吻合,存在争议。这主要是由于以往实验产物探测分辨率相对较低,反应物离子束同时含有基态Ar+(2P3/2)和激发态Ar+(2P1/2),实验中难以区分不同自旋-轨道态的Ar+离子对反应产物的贡献。   中国科学院化学研究所分子反应动力学实验室高蕻课题组自主设计搭建了一套量子态选择的离子-分子交叉束装置,其能量分辨率达到国际领先水平。研究通过共振增强多光子电离方法制备处于特定自旋-轨道态的Ar+(2P3/2)离子束。实验首次精确地测量了产物N2+离子的振动和转动态分布及其与散射角的相关性(图a、b)。美国新墨西哥大学郭华课题组对该体系开展了全维度trajectory surface hopping计算。计算结果与实验结果达到半定量吻合的程度,首次揭示了该反应两种完全不同的电荷转移机制(图c、d)。一是经典的由长程相互作用决定的Harpoon电荷转移机理,主要发生在N2+(v′=1)产物通道,产生的N2+离子集中在前向散射区域且转动激发较低(图c);第二种机理在N2+(v′=2)产物通道中起主导作用,而该通道产物主要分布在前向区域却具有很高的转动激发(图d),这与经典的硬球碰撞模型不符。理论计算表明,这是由两个反应物分子的长程吸引势和短程排斥势之间的微妙平衡引起的硬碰撞辉散射(Hard collision glory scattering)过程,这是科学家首次在电荷转移反应中观测到这种特殊的散射机理。   相关研究成果发表《自然-化学》(Nature Chemistry)上。研究工作得到中国科学院、北京市自然科学基金和北京分子科学国家研究中心的支持。该研究由化学所和新墨西哥大学合作完成。(a)产物N2+散射图,(b)理论计算的N2+不同振动能级的转动量子态分布以及N2+的v′ = 1(c)和v′ = 2(d)振动能级的转动激发与散射角的相关性图。
  • 荷兰经销商参观考察海能仪器
    2012年10月21日,来自荷兰的客商来到济南海能仪器有限公司参观访问,公司总经理王志刚等高层领导热情接待了荷兰客人。  此次荷兰客商来访,缘于Analytica China 2012上与海能仪器的愉快交流。客商对海能新推出的海能TANK微波消解系列以及海能物理光学系列十分关注。此次参观旨在通过实地考察,更加全面、深入地了解海能公司及海能仪器产品,以期未来更多的合作。  参观考察期间,客商在王总及公司高层陪伴下参观了公司的仪器生产线以及TANK微波消解仪、物理光学系列等产品。  为期3天的参观考察,海能仪器的企业规模、产品技术水平以及热情接待等给荷兰客商留下了良好深刻的印象,荷兰客商表示,本着互利互惠的原则,希望能与海能公司展开长期、全面的合作。
  • 吸入式疫苗紧急申请中,粒度在药物设计中是何种角色?
    在昨日浦江创新论坛全体大会上,军事科学院研究员、中国科协副主席、中国工程院院士陈薇表示,正在申请雾化吸入式新冠疫苗紧急使用。吸入式新冠疫苗的研发初衷是什么?对于吸入药物的设计,粒度扮演了什么样的角色?一、吸入式新冠疫苗 vs 注射式新冠疫苗据陈院士介绍,吸入式新冠疫苗可以:强化免疫状态注射式新冠疫苗形成的体液免疫、细胞免疫,吸入式新冠疫苗还可形成黏膜免疫,这三重免疫是最理想的状态。减少药物剂量雾化吸入式疫苗只需针剂疫苗的五分之一的剂量。解决包装问题注射式新冠疫苗需要一瓶一瓶装,而雾化吸入式疫苗就可以解决目前疫苗瓶子的瓶颈问题。 二、吸入式新冠疫苗是如何作用的呢?雾化吸入治疗,是应用特制的吸入装置将药物以及溶剂,雾化成液体的微滴,吸入并沉积于各级气管、支气管、肺泡中,从而激发黏膜免疫。这种免疫是通过肌肉注射所不能带来的。通常,通过肌肉注射的新冠疫苗只能诱导体液免疫和细胞免疫。此外,使用雾化吸入方式免疫是无痛的,且拥有更高的可及性。该治疗方法是一种方便的局部给药的方式,与其他全身给药方式相比,药物以微滴的形式输送至呼吸道,具有副作用小,起效迅速等优势。 三、雾化吸入药物的粒度设计要求雾化吸入治疗,药物在肺部沉积的区域主要取决于吸入气雾剂中颗粒(液滴)的空气动力学粒径分布。颗粒的粒径分布须能达到设计要求,从而使药物能有效地沉积在肺部的目标靶位。一般认为粒径 0.5 - 7μm的药物微粒才能到达肺部发挥药效,其中大多数应在 5μm 以下,以确保药物能有效沉积到肺部起效。如下图:目前吸入制剂粒径分布测量方法主要有多级撞击器和激光衍射法两种。因激光衍射法具有测量速度快、粒级分级多,且实验操作简便等优势,是雾化吸入制剂研发和生产过程中进行快速的装置筛选、处方研究和质量控制的理想方法。四、雾化颗粒的粒度表征技术 德国新帕泰克 HELOS & INHALER 激光衍射粒度仪,专门针对干粉吸入剂DPI、定量吸入气雾剂MDI、雾化吸入溶液Nebulizer、柔雾剂Soft mist和喷雾器分析开发的粒径分析仪。能够实现在 0.25 - 1750μm 范围内的粒度测量。 采用新帕泰克专业的人工喉管以及泵系统完美连接,确保吸入测试条件符合要求,并且通过适配器可与各种不同的吸入装置适配,广泛应用于气雾剂装置的开发与评估、处方研究的粒度分析等。HELOS & INHALER 气雾激光粒度仪五、HELOS &INHALER 应用实例示例1:输出特性分析 | Nebulizer吸入药物雾化过程中,雾滴的量比较稳定,雾滴的粒度大小恒定一致示例2:输出特性分析 | DPI吸入过程中粒径的动态变化,0.4 秒后,活性成分API不再释放(红色曲线)示例3:局部作用吸入剂的粒度分析 | 支气管粒径分布结构清楚地将吸入剂的API与载体乳糖区分开。API约占药物体积的25%,平均粒径为 4 µm。示例4:全身作用吸入剂的粒度分析 | 细支气管API成分约占吸入药物体积含量的 15%, API的平均粒径约为 2.5 µm, 这样可以使药物更深地渗透到呼吸道,直至细支气管。德国新帕泰克 HELOS & INHALER,正在助力吸入式新冠疫苗的开发与评估,是加速气雾剂装置的开发与评估、处方研究,医药DPI、MDI以及Nebulizer等产品粒度分析的好帮手!
  • AI在检测监测中扮演何种角色?
    人工智能,也就是我们俗称的AI,是近年来关注度非常高的计算机技术科学之一。这门技术科学,主要是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统,更简单的说就是让计算机能够以人类的思维逻辑去推算、演算数据,从而辅助人类进行更加客观、准确的判断。 发展至今,AI已经收获了非常多的成果,甚至在一些传统的智力竞技中战胜了人类,例如围棋。但是针对AI的发展却依旧存在不少争议。一方面,作为人类,我们对于智能的认知,其实还是围绕我们自身的“智能(思维模式)”展开的,换言之我们只是让计算机通过数据的堆栈学习,来模范我们的思维逻辑,并不是真正意义上的思考(这涉及到哲学思想);另一方面,假设AI真的能够发展自我思考的程度,那么它们又会如何去看待人类这个群体。   但无论争议是否存在,AI确实已经被广泛运用,并且展示了兼顾人类思维逻辑和计算机理性思维的巨大优势。从2019年世锦赛开始,AI被大范围地运用到体育竞技的裁定中,其中甚至包含了体操这种特殊的比赛项目。而AI在裁判的过程中,能通过采集运动员的三维图像,追踪运动员的动作,并针对旋转、跳跃、扭动等动作进行分析,依照事先学习的评分标准和裁定方式,以一种客观的视角对选手的技术动作,尤其是难度和完成度两方面进行评分。当然这种评分最终还是需要人工来进一步优化成绩的合理性,不过至少可以减少、避免判而不公、错而不罚的情况出现。并且,这项AI裁判逻辑在羽毛球、网球、乒乓球这类项目中,实用价值更加突出。   AI的实用价值不仅仅是在竞技裁判这方面,在医疗监测、病状诊断上,表现更加突出。众所周知,医疗检测对于病状的判明已经后续的针对性治疗有非常大的价值,而许多疾病的病状会在一定程度上呈现相似性。AI通过大量的数据学习,可以实现对症状的判断与归纳,这对于病灶检测有非常重要的意义。尤其是在胃镜这类特殊的医疗检测项目上,AI能够弥补白光内镜的缺陷,从而帮助医生更快更准确的掌握病状细节,更准确的进行判断。尤其是针对早期胃癌,能够有效地避免漏诊发生。   事实上,目前AI在面对复杂检测的时候,并不能实现自主判断,更多时候还是起到辅助作用,这也是为什么针对目前AI的思考逻辑仍然存在争议,但是可以确定的一点是,AI的出现,确实强化了检测监测技术在细节上的把握程度,在对于精度要求高的检测项目上,更能起到重要的作用。并且可以预期的是,随着技术以及算法的进一步推进,这种在检测监测技术发展上带来的改变将会更加直观。因此,从现有成果上来看,AI的价值有目共睹。
  • 高铁检测仪器发布高温维卡热变形温度试验机新品
    1 机台说明: 本试验机用于测定塑料试片加负荷(三点加荷下的弯曲应力)的变形温度(负荷变形温度的测定)和塑料样品在规定的受控测试条件下,发生规定的针穿透现象时的温度(塑料Vicat软化温度测试法),最高测试温度可达500℃。2 原理:? HDT热变形温度的测定法:标准试样在规定荷重下,平放位置(首选)或侧向位置,承受三点弯曲而产生曲折应力,在均匀升温速率(120℃/Hr),测试达规定变形量时温度;? 塑料Vicat软化温度测试法:使用一选定的均匀温度上升率(50℃或120℃/Hr)于一规定的负荷下,横截面积为1平方毫米的平头针穿透一热塑性样品时的温度.此测试方法在质量控制,发展和塑料材料的表现特性领域中有比较好的作用,可以用此测试方法取得的数据与热塑性材料的加热软化质量相比较。3 符合标准:本机器符合ASTM-D648,ASTM-D1525; ISO-75 / ISO-306;DIN 53461 / DIN53460相关标准要求制作。创新点:创新点:温度:常温~500℃,采用特殊的空气动力介质加热系统。目前国内外的维卡软化点试验机:常温~300℃,油浴加热。有如下优势:1.加热方式升级:避免了使用油介质,在升温速率较高的情况下,油会出现分解、冒烟、烧焦的现象,长期使用会出现杂质,影响油的传热,长期使用会出现趋势性数据偏离;2.数据稳定:传热介质的消耗量很小,不会因温度变化而分解,数据稳定;3.使用范围更广:可以测试航空航天用特种塑料,如PEK(聚醚酮)、PEEK(聚醚醚酮)、PI(聚酰亚胺)等,也可用于常规塑料。4.材料优势:有些高分子材料在油浴中会溶胀或者溶解,采用HV-5000则没有任何影响。高温维卡热变形温度试验机
  • 节水的三种途径
    各行业的客户和企业正在推动可持续措施的实施,如何管理我们的水资源,是环境管理的核心。水资源不像能源,它没有任何可替代品。在世界上一些地区,虽然水资源丰富,但已被污染;而其它一些地区,水资源匮乏,这些地区正在为获得珍贵的水资源而斗争。工业领域的生产过程中需要大量水,水可以作为原料,也可以将水转化为蒸汽作为动力,还可以用于清洗使用。此外,能采取有效可持续性措施并致力于环境保护的公司品牌和产品越来越受消费者青睐。受新冠肺炎疫情影响及可替代产品的竞争,生产厂商将面临供应链中断的局面。因此,厂商必须提高内部效率以应对需求的不断变化并达到环境保护的目标。降低用水量或实现水资源的重复利用是重要的可持续发展目标。由于对水的需求量如此之大,我们需要在水和废水的使用和处理方面做出更智慧的选择。制造商可以通过以下三种主要途径在提高生产效率的同时降低用水量:改进清洗程序、降低废水负荷和实现水的就地循环利用。改进清洗程序食品饮料生产大部分是批次生产工艺。无论是从一个批次到下一个批次,还是从一种产品到下一种产品,设备都处于流水作业状态,因此清洗至关重要。正确的清洗方式是产品质量和消费者安全的保证。清洗过程通常分为强力清洗或简单地通过延长时间来进行清洗,其中包括冲洗和重复洗涤过程,这些都将消耗大量的水。清洗过程通常涉及多个阶段,包括酸洗、碱洗和冲洗阶段。清洗效果的检验大多通过目视或特定的污染物检测来完成,如过敏原测试,甚至是离线微生物检测。这些方法中有的没有效果,有的不能充分反映清洗状况——不但耗时长,而且理论上没有说服力,更无法全面了解和掌握清洗效果,在产品质量和安全方面存在风险。在这里,数据至关重要。当能够通过数据检查和确认清洁程度时,不仅为商品质量和安全提供了保障和依据,而且在水的使用方面也可以做出更智慧的选择。通过实时数据优化就地清洗循环,可以更智慧、更有效地使用水资源,减少清洗用水量。降低废水负荷食品饮料制造商往往不太重视废水管理这一问题。因为它只与工厂成本相关,而不与产品本身——即收益来源相关。由于采用批次生产工艺,废水负荷往往随批次情况和产品种类而变化,或者取决于生产需求。为了保证达到排放要求并免于受到处罚,废水排放量的变化给废水处理过程的管控带来困难。通常会采用平衡罐来应对废水负荷变化,或将多日的废水负荷送至第三方实验室进行分析和检测。这些程序在一定程度上有所帮助,但当废水负荷过大且对于无法提供有价值的水质数据,工厂会将这些废水转移,打乱处理程序,甚至将不达标的水排放到外界环境中。此外,如果废水负荷突然增大,这可能意味着工艺系统出现了问题或可能存在潜在的产品损失。这些问题可通过对生产过程的有效监控来解决,以避免出现泄漏、工艺紊乱或参数偏离。监测有助于了解废水负荷,从而使操作人员能够更智慧、更快地判断采取何种措施,包括将废水进行存储或是转移,或在合适的情况下进行排放。排放洁净的废水而不是将废水进行转移,可以大大节省资源和成本。实现水的就地循环利用生产设施中的水有很多用途,通过现场的水处理设施可以为水的再利用提供多种机会。对于某些用水,如作为食品饮料的配料,要求水质非常纯净。但对于其它用途,如洗涤或灌溉,则不需要高质量的水。水处理和再循环工艺技术为水的再利用提供了多种机会,包括凝结水回收和精制、膜处理浓水处理和冲洗水回收等等。再生水的用途包括锅炉给水、冷却塔补给水、就地清洗预冲洗,甚至是饮用水。如果设有污水处理设施,就应当优先考虑水的重复使用 - 只要没有被污染到认为是“废弃物”的程度,工厂应努力实现在其整个设施中的“水中和”。确定水质有助于水资源的正确处理和安全再利用。对整个生产和清洗过程中的用水情况进行优化,对于产品的安全性和一致性来说至关重要。实现水资源的就地重复利用、降低废水负荷和改进清洗程序是减少食品饮料制造业用水的三种途径。总有机碳TOC是判断水质是否受到有机物污染或者有机物缺乏的一种综合方法,TOC是一个可被用于衡量残余的污染物、验证设备的清洁度以及判断水质是否适合重复利用的参数。通过TOC数据进行有效的监控并提前采取工艺控制将有助于减少产品召回,降低产品废品率和缩短停工时间,并为水资源的就地处理和循环利用提供机会。水资源无任何可替代品,制造商和消费者都在努力通过节水、改进废水处理工艺、智慧用水(水质符合使用目的即可),更好地管理水资源。这些可持续性措施不仅能降低成本、提高效率、改善工艺,而且还可以作为营销手段,用来提升食品饮料品牌的形象和声誉。原文英文版刊登于www.newfoodmagazine.com,本文有所修改。 ◆ ◆ ◆联系我们,了解更多!
  • 北斗三号卫星低能离子能谱仪载荷研制成功
    由中国科学技术大学物理学院副教授单旭为主任设计师,地球和空间科学学院、物理学院组成的空间等离子体科学探测载荷研制团队,联合航天科技集团五院513所等单位,近期成功研制北斗三号卫星低能离子探测载荷。载荷研制成果论文被《开放天文学》期刊接受发表,首次在轨观测结果在线发表于《中国科学-技术科学》期刊。 北斗三号卫星低能离子能谱仪载荷在轨运行示意图 课题组供图空间低能离子是空间等离子体探测的基本要素,卫星载荷的原位探测数据不仅可以用来研究太阳活动及其太阳风对行星际空间和行星磁场的作用、磁层结构及其动力学、磁场重联和环电流现象等空间物理,而且还能对空间天气极端事件予以预警,为卫星或飞船的安全运行提供保障。因此,绝大部分的探测卫星都会携带空间等离子体探测载荷。与国际先进的低能粒子载荷相比,我国的同类载荷相对落后,获得第一手的基准数据较少,相关科学和应用研究受限。在中国科学院院士王水、窦贤康等人的倡议下,2012年中国科大地球和空间科学学院汪毓明团队、物理学院陈向军团队和安琪/刘树彬团队联合组建了中国科大空间低能粒子有效载荷研制团队,由单旭任载荷主任设计师,带领团队进行关键技术攻关。2014年团队完成了空间低能离子谱仪原理样机和性能定标,2015年2月顺利通过专家组评审。2016年3月团队承担实践十八号卫星载荷研制任务,得益于前期的技术攻关,在一年时间内完成了原理样机、鉴定件和飞行件航天产品研制,并于2017年2月交付装星,7月卫星发射。载荷研制成果论文于2019年发表在《中国科学-技术科学》期刊。审稿专家表示:“看到中国大学研制出紧凑、功能强大的空间离子谱仪,非常令人鼓舞。与同类仪器参数相比,该谱仪比其它离子谱仪具有更高的性能”。2018年团队承担北斗三号卫星等离子体探测包的低能离子载荷研制任务,在上款载荷的基础上,进一步拓展了离子能量探测范围;提高了能量和角度分辨率;减小了载荷功耗、尺寸和重量。载荷飞行件产品于2019年11月交付,2020年6月卫星发射成功。2020年8月27日首次开机测试正常,2021年9月23日正式开始科学数据测量。其中,首次在轨测量得出的离子微分通量定量数据,与美国国家航空航天局的Van Allan探测结果一致,数据质量达到国际先进水平。相关研究结果近期在线发表在《中国科学-技术科学》期刊上,审稿专家认为:“结果非常具有吸引力,获取的科学数据对研究磁层离子动力学和监测空间环境很重要”。北斗三号卫星低能离子载荷的成功研制,标志着中国科大空间低能粒子载荷研制团队和平台建设日趋成熟,已经具备承担相关国家空间探测计划任务的能力。中国科大单旭为上述论文的第一作者和通讯作者,缪彬副研究员为首次在轨观测成果论文的共同第一作者,汪毓明教授为项目负责人、论文的共同通讯作者。相关论文信息:https://doi.org/10.1007/s11431-022-2143-6https://doi.org/10.1007/s11431-018-9288-8
  • 接触角测量仪表面电荷和接触角的关系
    接触角测量仪表面电荷和接触角的关系表面电荷和接触角之间存在一定的关系,表面电荷状态可以影响液体在固体表面上的润湿性质,从而影响接触角。以下是表面电荷和接触角之间可能的关系:表面电荷引起的电场效应: 表面电荷会在固体表面形成电场。这个电场可以影响液体分子在表面的分布,进而改变液滴在表面上的形状。在一些情况下,表面电荷可能导致电场效应使得液滴更容易在表面展开,从而使接触角减小。表面电荷和表面能: 表面电荷状态可以影响固体表面的表面能。一般而言,表面电荷越高,表面能越大。而表面能的变化会直接影响接触角,即固液界面的润湿性。高表面能通常与低接触角(液滴更容易湿润表面)相关。电荷导致的化学反应: 表面电荷可能引发固体表面与液体之间的化学反应,形成新的化合物。这些化合物的性质可能与原有的表面性质不同,从而改变了液体在固体表面上的润湿性,影响接触角。电荷中性化和润湿性质:表面电荷可能被中性化,特别是在高湿度环境下。这种中性化可能导致原先带有电荷的固体表面变得更加亲水(亲湿),从而减小接触角。电荷分布和表面纹理:表面电荷的分布可能影响固体表面的纹理。表面纹理是影响液滴在固体表面行为的重要因素,进而影响接触角。需要注意的是,表面电荷与接触角之间的关系是复杂的,取决于多种因素的相互作用,包括表面材料的性质、电荷密度、液体性质、环境条件等。在研究和应用中,需要综合考虑这些因素,以更好地理解和控制固液界面的性质。
  • 北斗三号卫星低能离子能谱仪载荷研制成功
    记者27日从中国科学技术大学了解到,由该校物理学院单旭副教授为主任设计师,地球和空间科学学院以及物理学院组成的空间等离子体科学探测载荷研制团队,联合航天五院513所等单位,近期成功研制北斗三号卫星低能离子探测载荷(LEIS)。据了解,空间低能离子是空间等离子体探测的基本要素,卫星载荷的原位探测数据不仅可以用来研究太阳活动及太阳风对行星际空间和行星磁场的作用、磁层结构及其动力学、磁场重联和环电流现象等空间物理,而且还能对空间天气极端事件予以预警,为卫星或飞船的安全运行提供保障。因此,绝大部分的探测卫星都会携带空间等离子体探测载荷。与国际先进的低能粒子载荷相比,我国的同类载荷相对落后,获得第一手的基准数据较少,相关科学和应用研究受限。2012年,中国科大空间低能粒子有效载荷研制团队组建。2014年,团队完成了空间低能离子谱仪原理样机和性能定标。2016年3月,团队承担实践十八号卫星载荷研制任务,得益于前期的技术攻关,在一年时间内完成了原理样机、鉴定件和飞行件航天产品研制,并于2017年2月交付装星,7月卫星发射。专家对此评价:“与同类仪器参数相比,该谱仪比其他离子谱仪具有更高的性能。”2018年,团队承担北斗三号卫星等离子体探测包的低能离子载荷研制任务,在实践十八号卫星载荷的基础上,进一步拓展了离子能量探测范围,提高了能量和角度分辨率,减小了载荷功耗、尺寸和重量。载荷飞行件产品于2019年11月交付;2020年6月卫星发射成功;2020年8月27日首次开机测试正常;2021年9月23日正式开始科学数据测量,与美国航空航天局的范艾伦探测器(Van Allan)探测结果一致,数据质量达到国际先进水平。相关研究结果近期在线发表于《中国科学︰技术科学》上。
  • “夸父一号”卫星载荷“硬X射线成像仪”首图发布
    2022年11月21日下午,“夸父一号”(ASO-S)载荷“硬X射线成像仪”(HXI)首图发布会在中国科学院紫金山天文台举行,会议同时向全国太阳物理同行网络直播。“夸父一号”卫星的全称为“先进天基太阳天文台”(ASO-S),于2022年10月9日在酒泉卫星中心成功发射。作为中国首颗综合性太阳探测卫星,“夸父一号”卫星的科学目标瞄准“一磁两暴”,即同时观测太阳磁场及太阳上两类最剧烈的爆发现象―耀斑和日冕物质抛射,研究它们的形成、演化、相互作用和彼此关联,同时为空间天气预报提供支持。作为卫星三大载荷之一的“硬X射线成像仪”,由中国科学院紫金山天文台牵头负责研制,承担着“一磁两暴”中观测太阳耀斑非热辐射的任务。ASO-S卫星工程首席科学家甘为群主持了发布会。在发布会上,HXI载荷主任设计师张哲首先介绍了ASO-S卫星和HXI载荷的设计、研制、发射及在轨早期梗概,然后详细展示了卫星入轨一个多月以来HXI载荷开展的各项在轨测试和定标工作,结果表明HXI载荷状态正常,各项功能性能均满足设计指标要求,已顺利投入科学观测活动,后续将继续配合科学需求,做好仪器功能性能的进一步优化。图 1. HXI观测到的一个太阳耀斑,是一个较小的C级耀斑,发生在2022年10月22日。此图为HXI分析软件测试版中的耀斑光变。图 2. 左图展示了2022年11月11日01时发生的一个耀斑图像,背景是SDO卫星拍摄的AIA 1700 Å图像,叠加的等值线为HXI两个能段的成像(25-30和30-35 keV,注意这里的图像尚未进行光栅定标,位置为平移对齐,但图像和太阳自转轴的倾角以及平台抖动带来的影响均已修正),可以看出经典的双足点源结构,且其中一个在高能具有精细的双源结构;右图显示了该耀斑在全日面图像上的位置。图 3. HXI观测到的2022年11月11日03时耀斑的光变(左)及成像(右)。左图分别展示了全开探测器、背景探测器的光变和10-300 keV的动态能谱图,右图为峰值期间AIA 1700 Å图像和叠加的HXI 25-30 keV的硬X射线源。两者的一致性充分说明HXI优异的成像性能和成像算法的正确性。随后,HXI载荷数据科学家苏杨就HXI在轨观测数据及结果进行了详细解读。首先介绍了HXI的科学目标、性能参数、数据特点,科学团队在发射前、后的一系列数据、软件、算法、模拟方面的准备工作,然后重点介绍了HXI开机以来数据的处理分析和成像结果。通过对比11月11日爆发的“双十一”系列耀斑的HXI数据和SDO/AIA图像,表明HXI各项功能指标达到预期目标,准直器性能、对齐精度、指向镜数据、探测器性能、成像算法、修正算法、能量定标算法均达到理想的效果。更重要的是,在准直器前后1.2米距离上最难对齐的36微米节距光栅子准直器(最高分辨率达到3.2角秒)在成像中也表现突出,这是很难得的一点。这说明在尚未进行光栅定标的情况下成像的优越性能已经超过HXI团队的预期,未来在进行详细的光栅子准直器定标后预计会达到更好的成像质量。卫星工程首席科学家甘为群总结,卫星发射才42天,HXI开机不足34天,其硬件团队就完成了绝大部分的在轨测试工作,证明了HXI在轨性能几乎完美地达到了预期的各项技术指标,为科学团队出成果创造了绝佳条件。HXI科学团队这段时间夜以继日,加班加点,由于准备充分,在HXI开机的第20天逮到第一个M级耀斑的当晚就获得了首幅太阳硬X射线图像。经过多方比对并经后续观测反复确认,这是我国首次获得太阳硬X射线图像,也是当下国际上地球视角唯一的太阳硬X射线像,其图像质量达到了国际先进水平。硬X射线成像原理与普通光学成像不同,除了精密的“光学系统”,还需要后端的成像算法等一系列的处理。今天的结果展示,虽然只有几张图,但却代表着0到1质的提升。尤其是HXI硬件团队与科学团队的紧密合作,堪称ASO-S卫星工程的楷模。甘为群希望,在接下来的ASO-S卫星另两个载荷FMG和LST首图发布中能有新的惊喜。ASO-S科学应用系统指挥(代理)、中科院紫金山天文台副台长范一中最后代表台领导对HXI团队取得的成就表示热烈祝贺,也衷心感谢在长达数年的HXI载荷研制过程中,团队成员的辛勤付出和忘我的工作精神,希望在接下来的在轨测试优化和科学观测中继续发扬团结协作传统,精心策划,争取早出成果、出好成果、出大成果。
  • 荷兰两大品牌仪器商在中国实现战略合作
    p style="text-align: center "span style="color: rgb(255, 0, 0) "strong热烈祝贺荷兰飞纳台式扫描电镜牵手荷兰帕纳科台式X射线荧光光谱仪/strong/span/pp  从即日起,荷兰飞纳台式扫描电镜正式牵手荷兰帕纳科台式 X 射线荧光光谱仪。专注于飞纳台式扫描电镜的复纳科学仪器(上海)有限公司(以下简称:复纳科学仪器)正式成为荷兰帕纳科公司(以下简称:帕纳科)在中国长江以南地区高校和科研院所的授权分销商,负责帕纳科台式X射线荧光光谱仪(XRF)在此区域的销售、应用和售后服务工作。/pp style="text-align: center "img style="width: 550px height: 423px " title="1.png" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201602/insimg/cd14e406-216c-4f84-b0ac-9c382c580c3f.jpg" width="550" height="423"//pp  飞纳台式扫描电镜源自飞利浦电镜技术,其制造商荷兰Phenom-World由美国FEI 控股,前身是飞利浦电子光学部门,而荷兰帕纳科公司的前身是飞利浦分析仪器部。此次合作,源自于飞利浦的“大家庭”得以“重新团聚”,基于这个良好的开始,复纳科学仪器将与帕纳科互帮互助,携手开创台式科研设备在中国的新局面,为客户带来性能卓越、操作简单、稳定高效、维护方便的台式科研设备!/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201602/insimg/3789f575-3f10-4fb7-b671-8a92fd3f1f19.jpg"//pp  台式X 射线荧光光谱仪能够执行元素鉴定和量化乃至更复杂的元素分析,目前有三个型号可供客户选择,分别为:适用于科研的基础型号 Epsilon 1 系列 元素分辨能力更强、效率更高的 Epsilon 3X 台式顶尖型号 Epsilon 3XLE ,XLE 全拼为:“Extra Light Element”,意味着可分析非常轻的元素,比如“F”元素, Epsilon 3XLE 的性能可与落地式 XRF的性能媲美,然而具备了台式设备体积小、操作简单、维护方便、对环境无特殊要求等优点,是将来 XRF 设备的发展趋势。/pp  荷兰帕纳科英文名称“PANalytical”, 全拼为“Philips Analytical”,前身是飞利浦公司分析仪器部,目前隶属于思百吉集团,自上个世纪四十年代公司推出了世界上第一台 X 射线分析仪器起,帕纳科现已成为全球最大的 X 射线分析仪器生产厂家。/pp  复纳科学仪器自2012年创立起,就专注荷兰飞纳 (Phenom) 台式扫描电镜在中国的高校、企业和科研院所的市场推广、应用支持、样品测试、销售和售后维修工作。过去几年中,复纳科学仪器在中国完成了500多台飞纳台式电镜的安装,培训和验收,在台式扫描电镜领域不断突破,屡创销售佳绩,优质的产品和卓越的服务为复纳纳科学仪器打下了较好的用户基础。此次,帕纳科牵手复纳科学仪器,旨在为中国长江以南地区的高校、科研院所客户提供台式 X 射线荧光光谱仪,让更多的客户受益于台式科研设备的操作简单、维护方便、精确高效。台式科研设备的自动化、智能化将进一步减少对操作人员知识经验技术水平的依赖,降低用户操作科研设备的技术门槛,预示着无需雇用专人维护机器。台式科研设备将是未来科研仪器发展的一个趋势,不可避免的代替一部分低端的传统落地式科研设备。/p
  • 荷兰外商投资局中国事务首席代表一行莅临聚光科技考察
    2018年10月15日上午,荷兰外商投资局中国事务首席代表、荷兰王国驻上海总领事馆领事Mr. Roland Brouwer(钟铠任)以及荷兰外商投资局华东、华中事务首席代表张小愿女士一行到访聚光科技(杭州)股份有限公司(以下简称“聚光科技”)。聚光科技环境资源事业部大气销售部总监林磊、产品研发中心、业务发展部等相关领导接待了来宾。钟铠任先生参观了聚光科技的新、老产业园区,双方就中-荷企业在科技与资本合作、国际业务拓展等议题进行了座谈交流。  钟铠任一行首先参观了聚光科技企业展厅,了解了聚光科技的战略框架、资质荣誉、发展历程、核心能力、业务领域以及聚光科技各业务板块优势集聚整合、融合发展的特征。钟铠任先生一行对聚光科技产品、服务及系统解决方案的专业、独到性给予了极大的肯定,对聚光科技的高速发展予以了高度的评价,暨有聚光科技2012年对荷兰BB公司投资的巨大成功,钟铠任先生表达了对聚光科技未来在荷兰发展的关注与更多期待。钟铠任先生一行参观聚光科技展厅  荷兰是欧洲大陆最重要的陆海空交通枢纽之一,中荷两国互联互通发展迅速,是中国“一带一路”建设的天然合作伙伴,共建“一带一路”符合两国根本利益。随着李克强总理近期抵达阿姆斯特丹对荷兰进行正式访问,中荷关系在两国领导人直接引领下正步入历史最好时期,在政治、经贸、科技、人文等各领域取得丰硕的成果。实际上,荷兰还是全球最具竞争力和创新力的国家之一,荷兰在智能城市、节能环保、水资源管理、循环经济、绿色发展等领域积累了大量先进经验和成熟做法,在这些方面加强合作,不仅契合中国人民追求更好生活品质的愿望,也能为荷兰企业开拓市场提供机遇,并促进世界可持续发展。 座谈会现场  在随后举行的座谈会上,业务发展部刘晋正向钟铠任先生等人详细介绍了公司的发展现状和优势领域。聚光科技是国内先进的城市智能化整体解决方案提供商,同时也是国内绿色智慧城市建设的先驱之一;公司目前拥有500余人的研发团队,拥有着雄厚的研发实力;在产品应用方面,聚光科技的产品全面覆盖环境与安全监测管理,环境治理,智慧水利水务,生态环境综合发展,智慧工业,智慧实验室等领域。在市场战略方面,聚光科技正积极在全球范围内布局市场,国际市场已拓展至亚洲、欧洲、北美洲、非洲和大洋洲等众多地区。  钟铠任表示,荷兰是中国在欧盟第二大贸易伙伴,对于中国企业而言存在相当的发展机遇。荷兰外商投资局是荷兰经济部下属分管外商直接投资的专责机构,主要职能是从政府层面为计划在荷兰设立公司、扩大或重组现有荷兰运营机构的外国企业提供政策、法规等投资环境的相关服务,并为企业与荷兰商业伙伴和政府机构之间牵线搭桥,促进两国之间的经济交流。钟铠任看来,聚光科技与荷兰在多产业领域存在合作机会,尤其是在循环经济发展方向,希望双方能够在将来共同寻找合作契机,促进两地合作共赢,共建中荷深度合作的“一带一路”。 钟铠任先生一行参观聚光中心  参观洽谈结束后,大家进行了合影留念,为今后的合作打下了良好的基础,此行圆满结束。
  • 仪器人的骄傲!北理工研制生命科学载荷首次登入国际空间站
    p  北京时间4日凌晨5时7分,由strong北京理工大学邓玉林教授团队/strong研制的strong“空间环境下在PCR反应中DNA错配规律研究的科学载荷”/strong在美国佛罗里达州肯尼迪空间中心由负责运营国际空间站科学研究平台的NanoRacks公司通过SpaceX公司“猎鹰9号”火箭乘坐龙飞船送往国际空间站。该载荷将在空间辐射及微重力环境下,在轨开展抗体编码基因的突变规律研究。本次搭载项目的顺利实施,是中国空间科学项目首次登入国际空间站,标志着中美空间科学合作取得了“零”的突破。根据双方协议,美方将把北理工校旗带到国际空间站,由宇航员在空间站内展开,这是中国高校校旗首次出现在国际空间站内,意义深远。/pp  本次登入国际空间站的北理工空间生命科学载荷,是科技部重大科学仪器开发专项和国防科工局民用航天专项支持下,由北京理工大学生命学院教授、国际宇航科学院院士邓玉林团队自主创新研制,是继该团队所研制的载荷在2011年神舟八号搭载、2016年长征七号首飞搭载以及2017年天舟一号搭载之后又一次实现太空之旅。此次北理工载荷将被带入到国际空间站美国实验舱,实验数据将传回给北理工研究人员进行后续的科学研究。/pp  span style="color: rgb(255, 0, 0) "strong“小实验”破冰中美太空“大合作”/strong/span/pp  能够由美方搭载,并进入国际空间站,除了北理工在空间生命科学研究领域取得的成绩得到国际充分认可外,也得益于中方团队对相关法律的认真研究,并形成突破。2011年,美国国会曾出台“沃尔夫法案”禁止美国国家航空航天局(NASA)及与NASA有合同关系的美国航天企业与中国航天领域进行任何接触和合作,该法案为组织中美太空合作的“壁垒”。北理工生命学院邓玉林教授团队带着北理工人特有的“敢为天下先”创新精神,大胆尝试通过商业合作模式,在2015年8月与美国NanoRacks公司签署协议,并通过各项审查,为国际空间站带去首个中国项目,受到各方广泛关注。/pp  此次搭载是中美两国30年来在空间领域的首次合作,具有“破冰”之意义,通过商业合作模式实现中美空间站领域合作,也为中美太空合作开辟了新的途径,开创了中美空间领域合作的新局面。/pp  span style="color: rgb(255, 0, 0) "strong“小小”载荷开展“大量”研究/strong/span/pp  本次北理工的空间载荷从关注航天员生命健康切入,延展到空间环境影响微(分子)进化的探索。空间飞行过程中航天员将面临多种健康威胁,其中空间辐射和微重力是导致航天员生理功能失调的重要因素。团队负责人邓玉林介绍到:“在神舟八号载荷实验的研究中,我们发现了在空间环境中DNA变异的一些新现象,从而推断空间环境之于基因突变可能与生物分子进化有着重要的联系。鉴于抗体是人体中较为保守的重要生物学元素,我们提出大胆的创新设想,将抗体编码基因片段作为研究空间环境对分子进化影响的模型,开展了此次空间实验。”/pp  据团队主要成员北京理工大学生命学院副教授李晓琼介绍,此次载荷是采用微型微流控PCR仪,对抗体DNA片段进行在轨飞行状态下的基因扩增,来模拟人类生命的延续与发展。在空间飞行结束后,分析基因突变规律,进而探讨空间辐射及微重力环境下的基因诱变机理。/pp  “这是一项基础性生命科学研究,具有重大的科学意义。团队在国际上首次利用空间环境开展‘微进化’研究,一方面有助于我们认识空间环境对于生物进化规律的影响,另一方面当我们掌握基因突变规律,对其做出相应改变和修饰,以更好的适应环境,对预防和控制疾病有着重要意义,对人类发展具有重要的影响。”团队成员生命学院王睿博士介绍到。/pp  此次空间实验不仅具有理论上的创新,在技术上也做出了多种新的探索。据介绍,团队利用微流控芯片模拟人体发育过程,利用扩增技术模拟细胞中基因复制,实现对生命扩增与发展的动态过程模拟,从而掌握环境对基因扩增的影响 同时,团队突破了在太空变温条件下实现基因扩增的技术难题,“温度过高会给芯片带来巨大的压力,容易产生破裂。2011年‘神八’搭载时,我们就攻克了这项难关——用微流控芯片来实现变温PCR扩增技术,在‘狭小’的载荷仪器中,开展‘大量’的科学研究。”李晓琼说。本次搭载共有两组、12块芯片,60个通道,将对20个基因在空间环境下进行突变规律的研究。“能在体积如此严苛的载荷条件下,实现20种基因的突变规律研究,这一技术在国际上也是领先的。”王睿说。/pp  span style="color: rgb(255, 0, 0) "strong未来还将与欧洲太空局合作/strong/span/pp  神八、长七、天舟一号、国际空间站??每一次搭载都彰显着北理工国防新型交叉学科空间生物与医学工程在仪表、自动控制、信息电子与生命科学、医学的交叉融合方面已经形成特色,展现出雄厚的技术实力,同时也在人才培养和团队建设方面取得了可喜的成绩。这次任务由十余人的队伍完成,分为科学和载荷两个部分,每个部分都由青年教师和学生构成。邓玉林用“敢想、敢干、敢创新”来形容团队中的师生。他说:“无论是科学还是载荷,我们都做到了多项创新,面对空间辐射、复杂机制、规律难以把握、整体实验设计、核心芯片研制等一个又一个难题,我们从老师到博士生,每个人都非常刻苦努力,严格按照时间节点完成,团队开辟了一种有效的模式,‘青年教师+学生’,并密切与企业对接,可以说是非常成功的模式范例。”/pp  邓玉林坦言,一项项科研项目的开展不仅仅收获了丰富的科研成果,更锻炼了学生们攻坚克难的科研态度,加强了师生们的国际交往能力,历练了他们的大局意识、全局精神,对于未来独立科研和技术开发提供了难得的机遇。/pp  近年来,北京理工大学瞄准世界科技前沿,立足服务国家重大战略,充分发挥自身多年来在国防科技领域研究中积累的工程技术优势,加强生物医学工程学科建设,着力学科深度交叉融合,实现了在空间生命科学领域的快速发展。在国家重大项目的资助下,在上级和兄弟单位的大力支持下,抓住机会,实现北理工空间生命载荷的多次搭载,为我国深空探测研究做出贡献,在国际空间研究领域形成影响。下一阶段,北理工与欧洲太空局(ESA)在国际空间站的合作已经启动,相信在未来,北理工将在人类探索宇宙空间的伟大征程中,写下属于自己的精彩笔触。/p
  • 小载荷疲劳测试,那都不是事儿~
    疲劳性能作为材料的一项基本性能指标,在日常的测试中,我们会碰到各种各样的挑战。其中有一些材料:如生物材料、电子元器件等,所用到的载荷较小,因此对试验设备配置的要求也更高。您是否还在苦苦找寻如何进行小载荷疲劳测试的配置?您是否还在担心小载荷疲劳测试结果不稳定且易受影响?别慌!英斯特朗给你支招!一般来说,低于10N的测试我们称之为小载荷测试。此类测试中有各种因素影响测试结果,如试样的制备、夹持和测量误差都有可能会导致测试结果的显著差异。英斯特朗Eletropuls动静态万能试验机结合专利的Dynacell动态载荷传感器以及基于刚度的调谐方式可实现精确的小载荷疲劳测试。另外,可配置高低温环境箱、水浴槽和非接触式视频引伸计等进行试样在特定环境条件下的材料力学性能。那么英斯特朗Eletropuls动静态万能试验机到底可以做哪些小载荷疲劳测试呢?让我们一起来一睹为快!英斯特朗小载荷测试应用案例1软组织测试一般而言,软组织材料如水凝胶、硅胶、树脂等,测试力值相对较低,因此,测试设备的配置和测试方法对测试结果的准确性至关重要。Instron电子动静态万能试验机E1000非常适用于对软组织材料的循环或疲劳测试。在此类测试中,E1000将会配合小载荷传感器如250N Dynacell载荷传感器、100N、50N或10N静态载荷传感器用于更精确的载荷测试。以下为使用E1000配合250N Dyancell载荷传感器及水浴箱进行的水凝胶的动态拉伸测试,测试条件为载荷1±0.5N,2Hz。此测试优势在于应用250N Dynacell载荷传感器消除惯性力,并使用高级幅度控制方式确保载荷峰值。同时如需要消除测试过程中的外部噪音,可在软件中设置过滤消除噪音功能,确保得到您想要的测试数据。2金属薄片测试此测试是根据标准ASTM B593对电子元器件如电路板上、插座上的铜合金材料进行弯曲疲劳性能进行验证,确认其疲劳寿命。ASTM B593在该测试中,由于加载链运动会产生惯性力,使用Instron专利Dynacell载荷传感器可以减轻这种影响。由于惯性力和加载链共振问题,在任何试验机上实现对柔性样品的纯载荷控制历来都具有挑战性。ElectroPuls基于刚度的调谐考虑了这些因素,可以更好地实现柔性样品的载荷控制测试。3电子元器件薄片测试该测试是对一种较小较薄的电子元器件材料进行循环测试。由于样品载荷达到mN级别,测试难度较大,无法进行自动调谐,故需进行手动回路调谐。且经过空载下的噪音比较,显示夹具的重量对于噪音的产生有很大影响。故我们最终通过使用客户自制夹具(重量仅为几克)来减轻噪音影响(下图左)。下图右显示采用客户自制轻夹具空载噪音低至±1mN。该测试使用Instron Electropuls E3000动静态测试系统配置10N载荷传感器。如需消除噪音,可开启波形过滤功能,但由于客户要求最原始数据,因此未启用该功能。测试条件:载荷峰值-25 mN ,80mN,位移振幅控±0.5mm,10Hz,200周期循环测试英斯特朗ElectroPuls动静态万能试验机测试范围广泛,可实现从单轴试验到拉扭双轴测试。不仅可用于小载荷疲劳测试,同样可用于金属、塑料等材料测试,其最大测试能力可达到10kN/100Nm。ElectroPuls,以更简单、更智能、更安全的方式满足您的测试需求。如您需了解更多英斯特朗有限公司,请拨打英斯特朗官方热线:400-820-2006。
  • 科学家首次“拍摄”到光催化剂光生电荷转移演化的全时空图像
    太阳能光催化反应可以实现分解水产生氢气、还原二氧化碳产生太阳燃料,是科学领域“圣杯”式的课题,并受到全世界关注。在过去半个世纪的光催化研究中,科学家在光催化剂制备和光催化反应研究方面做出了努力,但光催化反应中光生电荷的分离、转移和参与化学反应的时空复杂性,因而关于该过程的基本机制一直不清楚。  日前,中国科学院院士、中科院大连化学物理研究所研究员李灿,研究员范峰滔等揭开了这一谜团。研究人员综合集成多种可在时空尺度衔接的技术,对光催化剂纳米颗粒的光生电荷转移进行全时空探测,揭示了复杂的多重电荷转移机制,“拍摄”到光生电荷转移演化全时空影像。该研究明确了电荷分离机制与光催化分解水效率之间的本质关联,为突破太阳能光催化反应的“瓶颈”提供了新的认识和研究策略。10月12日,相关研究成果发表在国际学术期刊《自然》(Nature)上。  光催化分解水的核心科学挑战在于如何实现高效的光生电荷的分离和传输。由于这一过程跨越从飞秒到秒、从原子到微米的巨大时空尺度,揭开这一全过程的微观机制颇具挑战性。“长期以来,我们的团队前赴后继致力于解决这一问题,在这个工作中,集成多种先进技术和理论,在时空全域追踪了光生电荷在纳米颗粒中分离和转移演化的全过程。”李灿说。  光催化过程中,光生电子和空穴需要从微纳米颗粒内部分离,并转移到催化剂的表面,从而启动化学反应。范峰滔介绍,在如此微小的物理尺度上,光催化剂往往缺乏分离电荷所需的驱动力,因此,实现高效的电荷分离需要一个有效的电场。为了在光催化剂颗粒中形成一个定向重排的电场,科研人员将一种特定的缺陷选择性地合成到颗粒的特定晶面,有效促进了电荷的分离。为了更好地剖析纳秒范围内高效电荷分离机制,科研人员使用了时间分辨光发射电子显微镜,发现了光生电子在亚皮秒时间尺度就可以选择性的转移到特定晶面区域,且电子在超快的时间尺度上可以从一个表面移动到另一个表面。  “长期以来光催化中的主导电荷分离机制很难解释跨越如此大空间尺度超快电荷转移。”范峰滔说,“我们将超快的电荷转移归因于新的弹道传输机制,其中载流子以极高的速度传播,在与晶格发生作用之前就已经跨越了整个粒子。”  进一步,为了直接观察电荷转移过程,研究人员进行了瞬时光电压分析,发现随着时间尺度从纳秒到微秒的发展,空穴逐渐出现在含有缺陷的晶面。研究表明,晶面上光生电子和空穴的有效空间分离是由于时空各向异性的电荷转移机制共同决定的,这一复杂机制可以通过各向异性晶面和缺陷结构来可控的调整。  “通过集成结合多种先进的表征技术和理论模拟,包括时间分辨光发射显微镜(飞秒到纳秒)、瞬态表面光电压光谱(纳秒到微秒)和表面光电压显微镜(微秒到秒)等,像接力赛一样,第一次在一个光催化剂颗粒中跟踪电子和空穴到表面反应中心的整个机制。”李灿说,“时空追踪电荷转移的能力将促进对能源转换过程中复杂机制的认识,为理性设计性能更优的光催化剂提供了新的思路和研究方法。”  “未来,这一成果有望促进太阳能光催化分解水制取太阳燃料在实际生活中的应用,让梦想逐渐变为现实,为我们的生产和生活提供清洁、绿色的能源。”李灿说。  该项工作得到国家自然科学基金委“人工光合成”基础科学中心项目、中科院稳定支持基础研究领域青年团队计划、国家重点研发计划及大连化学物理研究所创新基金等的支持。
  • 我国自主研发的量子磁力仪载荷实现全球磁场测量
    我国首台自主研发的量子磁力仪载荷——“CPT原子磁场精密测量系统”于7月27日搭载空间新技术试验卫星(SATech-01)发射。11月7日,国产量子磁力仪载荷的无磁伸展臂在轨展开,载荷进入在轨长期工作阶段,目前已获取五天的有效探测数据,实现了全球磁场测量,推进了我国量子磁力仪的空间应用研究。CPT原子磁场精密测量系统由CPT原子/量子磁力仪、AMR磁阻磁力仪、NST星敏感器、无磁伸展臂组成,由中国科学院国家空间科学中心太阳活动和空间天气重点实验室、复杂航天系统与电子信息技术重点实验室,以及中科院沈阳自动化研究所联合研制。无磁伸展臂一次性展开至4.35m后,处于伸展臂顶端的CPT原子磁力仪探头、AMR磁阻磁力仪探头、NST星敏感器远离卫星磁干扰和遮挡,开始获取有效探测数据。CPT原子/量子磁力仪在轨测量噪声峰峰值0.1nT。NST星敏感器获取了卫星在不同模式、不同时段下伸展臂的姿态变化实时数据,结合AMR磁阻磁力仪的三轴磁场探测,首次在轨验证了磁场矢量和姿态一体化同步探测技术。国产量子磁力仪首次全球磁场勘测图(空间中心太阳活动与空间天气重点实验室供图)CPT原子磁场精密测量系统载荷(空间中心、沈阳自动化所供图)无磁伸展臂地面展开测试(沈阳自动化所、空间中心和微小卫星研究院供图)CPT原子磁场精密测量系统伸展臂在轨展开状态示意图(微小卫星研究院供图)CPT原子磁力仪和AMR磁阻磁力仪在轨测量结果(空间中心供图)NST星敏感器相对于卫星本体坐标系的测试结果(空间中心、中科新伦琴NST星敏团队提供供图)
  • 和衷共济,合作共赢—睿科仪器助力苏州站“仪商汇”仪器渠道峰会
    2016年6月19日,由中国仪器仪表行业协会代理商分会主办的“仪商汇”仪器渠道峰会在苏州友联假日酒店成功举办。活动共吸引了厂商、代理商、经销商内近210名代表参加。会上,宣布成立江苏省仪器渠道商联盟,同时仪器行业内多位渠道商大咖,分享了新形势下仪器行业渠道商的新探索、新思考,引发全体参会代表的集体共鸣,成为本场活动的最大亮点。 睿科仪器此次携Fotector-02HT高通量全自动固相萃取仪和AutoEVA-20Plus全自动平行浓缩仪全程助力此次盛会。会议间隙,睿科区域经理就睿科的发展理念和产品特色进行了展示和介绍,并与现场众多的经销商、代理商展开了深入交流。 苏州站“仪商汇”仪器渠道峰会活动结束之后,睿科也将继续推行“合作共赢”项目,招募全国各地代理商,欢迎咨询合作事宜。睿科仪器将与客户以及合作伙伴长期合作,携手共赢。相关仪器产品:Reeko Fotector-02HT高通量全自动固相萃取仪Reeko AutoEVA-20Plus全自动平行浓缩仪
  • 陈建峰院士:荷电再生技术焕发口罩“新生”
    p  strong仪器信息网讯/strong 面对口罩紧缺的情况,如何重复利用手中的口罩成为公众关注的问题。口罩过滤的原理主要是利用静电吸附以及纤维排列后对超细颗粒和飞沫的阻隔,口罩中间的荷电层对于携带病毒细菌等微粒或飞沫防护起到重要作用。口罩使用过程中,因细菌病毒在静电层的沉积以及哈气(水汽)等导致荷电层静电的消除,都会损伤其过滤效果,甚至失效。重复使用口罩需要解决两点问题:/pp  strong一是如何杀死或者去除沉积到口罩上的新冠病毒等病毒细菌 /strong/ppstrong  二是如何为中间静电层补充静电,如何在不破坏口罩材料及微观结构的情况下,重新将外界电荷转移至中层无纺布。/strong/pp  2月,陈建峰院士团队应对应急时期口罩重复使用的问题,提出开展“口罩荷电再生重复使用技术”研究。团队研究人员通过实验研究,发现采用便携式静电发生器(如家用电器)对普通一次性医用平面无纺布口罩进行二次荷电处理,使其再生静电效应而达到可重复使用的现象,由此提出并形成了“口罩荷电再生重复使用”的技术方法及其导则。首先将使用后的一次性医用无纺布口罩置于56度以上热水泡30分钟消毒处理(参见新型冠状病毒肺炎防控方案(第四版)),随后采用电吹风机、电风扇、电子点火器等对“失效”的口罩进行吹干荷电处理,证实口罩可重新荷电而再生静电效应。/pp style="text-align: center "img width="500" height="334" title="N95口罩.jpg" style="width: 500px height: 334px max-height: 100% max-width: 100% " alt="N95口罩.jpg" src="https://img1.17img.cn/17img/images/202002/uepic/9fa2548c-8d3d-4bf6-876f-4163b5b8a199.jpg" border="0" vspace="0"//pp  在北京化工大学党委的大力支持下,团队研究人员利用学校实验室设备资源搭建口罩过滤性能检测系统,积极开展荷电再生技术方案优化及效果的科学验证。对4类广泛使用的普通口罩(一次性防尘口罩、一次性医用口罩、一次性医用外科口罩、国外进口KF94口罩),进行了荷电再生重复使用实验研究。/pp  再生口罩样品,经国家劳动保护用品质量监督检验中心(北京)检测,结果表明:/pp  3类口罩(一次性医用口罩、一次性医用外科口罩和国外进口KF94口罩)再生后,口罩重要指标(0.1微米微粒过滤效率,即阻隔率)与新口罩相当(衰减约0.5-1.5%) /pp  一次性防尘口罩再生后,其过滤效率较新口罩提升50% /pp  一次性医用外科口罩荷电再生循环10次后,其过滤效率与新口罩相当(衰减约0.5%)。/pp  strong这表明:当前疫情应急时期,口罩重复使用是可行的/strong,可缓解当前市场需求与供给的矛盾,且可节约资源、减少环境污染。近日,“口罩荷电再生重复使用技术”得到中央领导同志充分肯定。/pp  strong口罩再生重复使用操作过程/strong:/pp  1. 热水灭毒:将用过的一次性医用无纺布口罩置于大于 56 ℃热水中浸泡 30 分钟(参考《新型冠状病毒肺炎防控方案(第四版)》56 ℃ 30 分钟可有效灭活病毒),灭活新冠病毒,水 洗去尘埃。水洗后将口罩挂干或晾干。【通常沸水与室温水(按 20 ℃计)1:1 体积比混合 后约为 60 ℃,为提高灭毒杀菌效果,可适当提高沸水比例。注意:热水浸泡灭毒和水洗 过程中不要揉搓口罩,以免破坏其微观结构 最好一人一锅热水泡,以免交叉污染】/pp  2. 荷电再生:将挂干/晾干后的口罩平放在干燥、绝缘材质表面,用电吹风机吹风 10-20 分钟, 出风口与口罩距离约 10 厘米(注意吹风机出口温度,不要太高温度以防止烫坏口罩纤维,可仿照洗发后吹干头发的过程)。或者,用普通电风扇吹口罩约 20 分钟,距离约 5 厘米。或用普通家用电子点火器等静电发生器对口罩进行全面覆盖的“电击”,使口罩重新荷电。/pp  3. 纸屑检验:在绝缘桌面上洒一些干燥的碎纸屑,将荷电再生后的口罩外层接近碎纸屑,距离大于 1 毫米但并未直接接触时,可观察到口罩对碎纸屑的静电吸附现象,则表明口罩荷 电量足够,可以重复使用。【如静电吸附现象不明显,则延长第二步荷电再生的处理时间,再次通过“纸屑吸附”检验再生口罩荷电情况,至荷电量足够,可以重复使用。】/pp  本导则提出的方法,适用于较低风险暴露人员个人参照使用,不建议推荐用于已患病者、 医护人员及实验人员等。本导则仅适用于新冠肺炎疫情防控时期应急使用。/ppbr//p
  • 荷兰将在华购2000吨地沟油造飞行用油
    不让地沟油上桌,那就让它们上天吧!  荷兰航空将在中国购买2000吨地沟油,转化成航空用油,其一年需求量为12万吨  就在“地沟油”因危害餐桌安全而成为国内社会公害时,在地球的另一端,地沟油在别人眼里却可以“飞上天”。  网友纷纷说,如果废弃油都“上天”了,能实现大规模推广,岂不是地沟再无油可捞?到那时,地沟油就真的能消失无踪影。  7月中旬左右,2000吨产自上海的废弃油就将开始它们的“飞天之旅”,在通过报关等手续后,这些油将被荷兰航空的技术人员加工成航空生物煤油,供飞机使用。  在2011年11月,荷兰航空就来中国采购样品,提出从山东青岛带走20吨地沟油样品回去试飞。如果可以使用,将每年从中国采购12万吨地沟油。  去年来考察  带走20吨地沟油样品  据介绍,荷兰航空使用的地沟油燃料是由DynamicFuels公司通过SkyNRG提供。SkyNRG成立于2009年,是由荷航、北海集团和春协合作组成的一家生物燃油公司。  2011年6月,荷兰皇家航空一架波音737飞机搭乘着171名乘客,从阿姆斯特丹飞往巴黎,荷兰航空成为全球首家使用生物燃料进行商业飞行的航空公司。  为了拓展货源。2011年11月23日,荷兰地沟油航班运营方委派商务代表赴中国采购样品,提出从青岛带走20吨地沟油样品回去试飞。  SkyNRG公司的董事、总经理德克克罗内梅杰在接受记者采访时介绍,从去年开始荷兰方面已经在中国积极寻找废弃油原材料的供应,且对来自中国很多样品进行了测试,测试结果非常满意。目前公司主要关注中国的大中型城市,这些城市的人口比较多、食用油消费量高,废弃油的产量也相对较多。除了中国,公司还从北美以及欧洲其他国家进口废弃油原材料。  地沟油“上天”  英国航空公司也在尝试  据相关人士介绍,随着地沟油航班的开始起航,荷兰国内对地沟油原料制成的航空燃油需求量非常大,远远超出当地的提供能力。  据悉,上海绿铭环保科技股份有限公司已与荷兰皇家航空签订战略合作协议。绿铭将为荷兰皇家航空提供由废弃油转化成的“0号生物柴油”1万多吨,不久后第一批油即将发货,经过荷兰公司的技术再处理后变为航空生物煤油,供飞机使用。  2011年,荷航还宣布,从9月份起,启用以生物煤油(即俗称的“地沟油”)为燃料的客机执飞阿姆斯特丹至巴黎的航班,以减少碳排放。  而荷兰航空并不是唯一一家将废弃油“飞上天”的公司。公开资料显示,早在2008年,英国已有航空公司尝试了将动物油脂转化为航空燃油,并进行了试航 2011年,英国汤姆森航空公司也尝试将飞机其中一个引擎中的燃料,改变成废弃油处理成的燃料油,实现了试航成功 2012年6月,荷兰航空的“废弃油”航班也开始执飞洲际航线。  本组文据新华社、《半岛都市报》  释疑  德克曾表示,由于原料成本和技术问题,该公司的这种地沟油燃油的价格是普通飞机燃油的3倍多。因为价格原因,目前荷航采取了50%地沟油燃料,50%化石燃料的混合燃料。  但荷兰有一个很现实的问题:国家小、人口少,吃油也不多,地沟油原料严重不足。据SkyNRG公司来华负责采购地沟油样品的商务代表称:“我们每年需要12万吨地沟油,有长期的、大量的需求。”  为何到中国买地沟油?  荷兰国家小,吃油少  买的其实不是地沟油?  是经过处理的生物柴油  链接  防堵“地沟油”  国内还在想笨办法  为了防堵“地沟油”流向餐桌,云南昆明市近期出台“禁散令”。  据不完全统计,除昆明之外,北京、海南、青岛、西安、乌鲁木齐等多地为防堵“地沟油”,都明令禁止散装食用油销售。云南省卫生厅卫生监督局专家柴剑波表示,由于我国尚未出台“地沟油”检测标准,所以各地只能采取禁散这样的“笨办法”,来防止“地沟油”流向餐桌。  业内专家介绍,餐饮服务单位的餐厨废弃物,经过非法提炼与加工,形成了“地沟油”,然后又通过“回收油”“潲水油”等散装形式,重新流向餐饮企业的餐桌。柴剑波认为,“禁散令”只是堵住了“地沟油”的出口,要斩断“地沟油”的黑色利益链条,必须要管好“入口”,即餐厨废弃物。  “他们采购的其实不是传统意义上的地沟油,实际上它是我们所说的0号生物柴油,是地沟油进行加工后的成品。”青岛某生物能源科技开发公司副总经理郑德华说,在荷兰,当地的地沟油实际上都是废油脂,因为国外地沟油处置比较先进,不会像国内这样地沟油会被随意倒进下水道,掺杂各种垃圾、杂质,还需要工人像掏垃圾一样先掏出来,然后送进生产线去做工艺处理。  郑德华说,目前收购一吨地沟油的成本大约是4500多元,处理成本约为1500多元,再加上运输、检验等成本,一吨地沟油加工成生物柴油后的出厂成本在6500元上下。  据他分析,6500元一吨的价格,对荷兰方面来说,他们会觉得比较高。因为荷兰地沟油的收集都是政府出钱资助企业收集,因此不需要承担高昂的收集成本。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制