当前位置: 仪器信息网 > 行业主题 > >

检流计

仪器信息网检流计专题为您提供2024年最新检流计价格报价、厂家品牌的相关信息, 包括检流计参数、型号等,不管是国产,还是进口品牌的检流计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合检流计相关的耗材配件、试剂标物,还有检流计相关的最新资讯、资料,以及检流计相关的解决方案。

检流计相关的仪器

  • 一、用途 本检双桥电阻箱(以下简称电阻箱),是专为各基层检定单位和生产单位检定携带型双桥而设计制造。 使用本电阻箱,可避免过去在检定中多次换接标准电阻和过度电阻的麻烦,又可省去计算量程系数的麻烦,从而大大简化了操作和计算,提高检定效率,同时确保了检定结果的准确性。 该电阻箱精度是0.02级,所以检定0.1级及0.1级以下的电桥,不必引入误差更正值,被检定的电桥得出全量程误差,即可得出合格与否的结论,迅速完成检定工作。 本电阻箱还可作为0.001Ω~10Ω的标准电阻和0.01Ω~0.11Ω非十进过度电阻使用。 本电阻箱还附设了检流计,该检流计采用集成电路放大器,具有可调节灵敏度,不需外配临界电阻,过载能力强、抗冲击,阻尼时间短,读数方便、准确、稳定,是直流电桥、电位差计的理想指零仪。二、主要技术指标1、电阻箱部分 1.1、阻值范围:“检比例臂”盘:0.001Ω、0.01Ω、0.1Ω、1Ω、10Ω五档 “检读数盘”:0.01×(1~11)Ω,既从0.01Ω~0.11Ω;1.2、准确度等级:1.3、参考温度:20±1;1.4、标称使用温度:20±10;1.5、使用环境相对湿度:≤80%。;1.6、导线与外壳之间的绝缘电阻≥500MΩ;1.7、导电线路与外壳间的绝缘强度能承受频率50HZ正弦波交流电压500V,历时1分钟不击穿;1.8、外形尺寸:280mm×200mm×130mm;1.9、重量:<2kg。2、检流计部分:2.1、高分辨率:2.5μV/格2.2、阻尼时间:<4秒2.3、电气调零:>±20格2.4、温度系数:≤0.5 /格2.5、零电压漂移:≤1.5μV/4小时
    留言咨询
  • 尼康将共聚焦成像提高到前所未有的水平 尼康新的强大的全自动共聚焦成像系统,能够高速高灵敏度地获得细胞和分子事件的高质量共聚焦图像。前所未有的新光学电子技术创新设计使得A1拥有空前的系统质量和灵活性,是适用于广大用户的理想工具。 | 概述 尼康A1共聚焦激光显微镜系统通过新的创造使得共聚焦成像达到一个新的质量水准并具有多种功能。全自动的A1和高规格的A1R共2个型号可供选择。A1使用传统的成对检流计来获得高至4096x4096解析度的图像, A1R引入一个独特的混合扫描器系统提供贞速达30fps的512x512像素成像。可以便利的在超高速成像时得到卓绝的图像质量。此外,混合扫描器使得同步光活化和成像成为可能,这些对于揭示细胞动力学和相互作用都是至关重要的。 | 独特的混合扫描技术 ? 420fps的超高速成像 A1R加入了一个共振频率为7.8kHz的共振扫描器来达到420 fps (512 x 32像素) 的高速成像。在512X512分辨率下可达到30fps。并且,共振扫描器视野区域和检流计扫描器视野区域完全重合,常规检流计扫描器也可达到10fps(512X512)的速度。尼康独创的光学时钟产生方法在最高速度时也能实现高的图像质量。其光纤通讯数据传输系统最高传输速度可达4 Gbit/s。极高的速度可实时观察血流中细胞的移动(红色:血管;绿色:细胞核,120pfs) ? 光活化同步高速成像 高速光活化成像由于非共振扫描器和共振扫描器集成在一个单元里,不需要另配独立的用来做光活化的激光器,光活化和荧光成像就可以同时进行。拥有可以高速成像的共振扫描器使得光活化后快速变化信号的获取成为可能。光活化释放组胺而引起细胞内的钙离子浓度发生变化,上图显示Yellow Cameleon 3.60 CFP、YFP两基团发生FRET现象的过程(使用457nm激光成像,拍摄速度光活化同步成像速度30pfs)。 何为混合式扫描头 尼康独有的混合式扫描头同时配备检流计与共振式扫描装置,并允许通过超高速选择器灵活转换使用或者同时使用两组扫描装置。 ? 常规检流计扫描器获得高分辨率图像 检流计扫描器单次扫描可获得高达4096X4096分辨率。同时借助新开发的驱动与采样系统,及图像校正科技,可以10pfs(512X512)的速度高速获取图像。四色标记斑马鱼图像(蓝:胞核、绿:瞳孔、黄:神经、红:肌肉) | 增强的萤光探测效率 扫描头中的二向色镜采用平均98%透射率的低角度二向色镜,荧光强度得到30%的增强。 同时采用尼康独有的六边形针孔相对于传统的方形针孔荧光采集量可提高30%。 尼康独特的光学设计使成像更明亮。这样可以使激光曝光强度最小化,减少了细胞损伤。 | 磷砷化镓(GaAsP)高灵敏度探测器 尼康研发的磷砷化镓多通道荧光探测器配备两通道GaAsP高灵敏度检测器与两通道普通PMT检测器。检测波长范围达到400-750nm。 GaAs PMT的量子效率可提高一倍。远优于普通PMT。 GaAsP PMT的灵敏度远高于普通PMT,即使是过去所很难拍摄的弱荧光样品也可获得具有极低背景噪声的高亮度图像。 | 获取明亮清晰图像的VAAS针孔元件 尼康开发了一项称为虚拟可调孔径系统(VAAS)的创新技术,能在保持图像亮度的情况下去除模糊。针对通过针孔的光和非通过针孔的光进行去卷积,得到更明亮的图像,从而提高信噪比。 | 易用的强大功能 使用NIS-Elements C控制软件将共聚焦成像系统、显微镜及周边设备合为一体,并具备简单直观的操作界面。同时提供可靠全面的后期分析功能。基础设置光路设置 以Ti-E倒置显微镜为基础可将共聚焦系统与N-SIM/N-STORM 超分辨率系统、TIRF系统、光谱检测与完美对焦系统整合提供多模式的成像方案。同时所有的系统都可在同一NIS-Elements平台下完美工作。
    留言咨询
  • 液体增塑剂体积电阻率测试仪-ZST-121一、技术指标1、电阻测量范围: 0.01×104Ω ~1×1018Ω。2、电流测量范围为: 2×10-4A~1×10-16A3、显 示 方 式:数字液晶显示4、内置测试电压: 10V 、50V、100V、250、500、1000V5、基本准确度:1% (*注)6、使用环境: 温度:0℃~40℃,相对湿度80%7、机内测试电压: 10V/50V/100/250/500/1000V 任意切换8、供电形式: AC 220V,50HZ,功耗约5W9、仪器尺寸: 285mm× 245mm× 120 mm10、质量: 约5KG二、工作原理根据欧姆定律,被测电阻Rx等于施加电压V除以通过的电流I。传统的高阻计的工作原理是测量电压V固定,通过测量流过取样电阻的电流I来得到电阻值。从欧姆定律可以看出,由于电流I是与电阻成反比,而不是成正比,所以电阻的显示值是非线性的,即电阻无穷大时,电流为零,即表头的零位处是∞,其附近的刻度非常密,分辨率很低。整个刻度是非线性的。又由于测量不同的电阻时,其电压V也会有些变化,所以普通的高阻计是精度差、分辨率低。本仪器是同时测出电阻两端的电压V和流过电阻的电流I,通过内部的大规模集成电路完成电压除以电流的计算,然后把所得到的结果经过A/D转换后以数字显示出电阻值,即便是电阻两端的电压V和流过电阻的电流I是同时变化,其显示的电阻值不象普通高阻计那样因被测电压V的变化或电流I的变而变,所以,即使测量电压、被测量电阻、电源电压等发生变化对其结果影响不大,其测量精度很高(0),从理论上讲其误差可以做到零,而实际误差可以做到千分之几或万分之几。三、典型应用1、测量绝缘材料电阻(率)2、测量防静电材料的电阻及电阻率3、测量计算机房用活动地板的系统电阻值4、测量防静电鞋、导电鞋的电阻值5、光电二极管暗电流测量6、物理,光学和材料研究四、符合标准:GB/T 10581-2006 《绝缘材料在高温下电阻和电阻率的试验方法》GB/T 1692-2008 《硫化橡胶 绝缘电阻率的测定》GB/T 2439-2001《硫化橡胶或热塑性橡胶 导电性能和耗散性能电阻率的测定》GB/T 12703.4-2010 《纺织品 静电性能的评定 第4部分:电阻率》GB/T 1410-2006《 固体绝缘材料体积电阻率和表面电阻率试验方法》测量技术的考虑和提高测量准确度的途径 ——针对绝缘材料等高阻样品提纲 1. 对试样和电极的要求 1.1. 对试样的要求 1.2. 二电极系统 1.3. 三电极系统 1.4. 对电极材料的要求 2. 影响测量准确度的因素和提高测量准确度的途径2.1. 气候条件的影响和确定 2.2. 工作条件—电压、时间的影响和确定 2.3. 环境条件—漏电流及外来干扰电势的影响1. 对试样和电极的要求 1.1.对试样的要求 ★GB1410-16规定了试样尺寸, ★圆形平板试样,直径为φ100mm或φ50mm, ★方形平板试样为100×100mm2或50×50mm2,★管状试样为长100mm或50mm, ★试样一般不小于3个。★如果不是按照国标严格制备的样品,那么一般的制备原则是:试样尺寸应选择的大一些, 以便安装电极,同时克服材料不均匀性的影响。1.2.二电极系统★测量总电流,无法区分IV和IS,故而测到的是总电阻。 ★特点:简单,方便,用于要求不高的场合。 ★考虑到试样的不均匀性,为了使测得的数值真正反映材料的实际特性,电极的面积应大一些。1.3.三电极系统★为了克服二电极系统无 法区分IV和IS的缺点, 需采用三电极测量系统。★在二电极系统上增加了 保护电极,各电极尺寸也有国标。 ★1 测量电极★2 保护电极 ★3 待测样品★4 高压电极★在测量体电阻时,用测量电极(1)和高压电极(4), 保护电极(2)接地;在测量面电阻时,用测量电极 (1)和保护电极(2),高压 电极(4)接地。 ★由于有了保护电极,三电极系统在测量体电阻率时, 消除了面电导的影响;而测量面电阻率时又消除了 体电导的影响。★电极尺寸的选择,应使得测量电极间的电场 尽可能均匀。 ★对于平板试样,应使保护电极与测量电极间 的间隙均匀,且尽可能的小,使测量电极边 缘的电场不均匀性减小。 ★保护电极的宽度至少应两倍于样品的厚度。 ★测量电极的尺寸要远大于样品的厚度。 ★高压电极应比保护电极内半径大2h 。 ★可参见相关的国家标准。1.3.三电极系统(测量装置,绝缘)★应用三电极系统测量时,测量装置通常是一个有 二个绝缘出线端的金属匣,样品放在其中。 ★匣子本身与保护电极相连。 ★如果线路上的保护电极接地,则匣接地。测量电极和高压电极均应用屏蔽线接入测量电路。 ★当测量线路要求高压电极接地时,则金属匣必须对地绝缘,并且为了消除感应电压的影响,应把它放在接地屏内。对于测量电路,此时测量电极的引线必须有双重屏蔽。? 1 测量电极 ? 2 保护电极 ? 3 待测样品 ? 4 高压电极 平板电极 管形电极1.4.对电极材料的要求?电极与样品表面有良好的接触,其间没有空气 间隙、气泡、空气夹层,否则构成双层介质。 ?电极与材料在试验条件下不起变化,而且不影响被测介质的性能,更不能与介质起化学反应。 ?电极与试样有良好的导电性; ?制作容易、安装方便、工作安全。常用电极有 块状金属电极?:结构简单,使用方便,但是与试样接触不良。 金属箔电极?:与实验接触良好,适于不吸油的试样。表面致密 无孔洞,无法对试样进行正常化处理。 银漆多孔?:试样内部的潮气容易扩散出去,适合研究 材料绝缘电阻与温(湿)度关系。常用的电极材料喷涂或真空蒸发金属电极:与银漆特性相似 导电橡皮电极:接触良好,适合潮湿环境测试,易氧化,不能用于高温测量。 石墨电极:接触良好,制作方便,可用于高温测量,不能用于易吸水或吸油的试样。导电液体电极(水银电极):接触良好,水银有毒,不能用于连续测量和高温测量场合。2. 影响测量准确度的因素和提高测量准确度的途径 2.1.气候条件的影响和确定 ※同样的材料在不同的温度、湿度下测得的结果也是不相同的。 ※因此必须在规定的温度和湿度条件下进行测 试。 ※如果偏离此条件,必须进行校正。正常化处理(预处理)定义:是为了消除试样在试验前条件与测试条件不一致而造成性能的差异,而对试样进行预处理的过程。条件处理※条件处理,为了考核材料能够耐受温度、湿度等各种因素影响的程度,或者测定材料在特定条件下的某种性能和变化规律,在试验前,将试样置于规定温度和湿度的大气中或完全浸泡在水(或其它液体)中,放置规定时间的处理。 ※我国规定的常态实验:温度为20±5℃ ,相对湿度为65±5%2.2.工作条件—电压、时间的影响和确定 稳定电流※加电压后,试样中存在传导电流、充电电流(干 扰) 、吸收电流(干扰)。 ※充电电流在闭合电源后的很短时间就降为零。 ※吸收电流与待测绝缘介质材料特性有关,且随时间逐渐减小,最后接近于零。※作电流时间曲线,在电流稳定后再测量。 ※实际中,一般材料在加电1分钟左右,电流趋于稳定。 ※通常规定,加电压1分钟后,再进行测量。试验电压※对于完整的理想绝缘介质材料,试验电压的大小与其绝缘电阻值无关。 ※实际材料总不可避免的存在杂质和缺陷,使所测得的绝缘电阻值随所加电压的增加而降低。 ※所以,对于每种材料都要规定测试电压的大小。残余电荷与静电※由于电解质的极化特性,在直流电场中介质与电极的分界面上将积聚有极化电荷,而在电极上相应地增加了自由电荷。 ※当外电场去除后,极化电荷逐渐消失,电极上的电荷随极化电荷的消失而缓慢减少。 ※实例:若试样先测体积电阻后立刻测表面电阻时,由于极化电荷的影响,可能使测得的表面电阻偏大,甚至高阻计指针反偏。※绝缘介质材料在制造、加工和测试等过程中还可能产生静电,影响测量的准确性。 ※因此,在测量时为消除极化电荷和静电的影响,试样要彻底放电。2. 影响测量准确度的因素和提高测量准确度的途径 2.3. 环境条件—漏电流及外来干扰电势▲外来电势按来源和性质可分为:外界强电场的干扰、接触电势、热电势、电解电势。 ▲测量前应首先检查有无外来电势的影响。检查有无外来电势的一般方法▲观察试样在施加电压前以及去除电压后指示 器有无偏转来确定。 ▲如有偏转,说明存在外来电势的影响。 ▲当偏转不大,可改变施加电源电压极性(正、 反向),测量两次取平均值。 ▲若外来干扰电势很大,须找出其原因,并设法消除。2.3. 环境条件外界强电场的干扰在超高阻测量时的影响比较显著。 原理:通过杂散电磁耦合或者静电感应方式, 在测量回路中产生附加杂散电流,影响测量准确度。 例子:比如用“高阻计法"测电阻,本来电 流就很小,再经放大,附加电流的影响就很大了。 对策:在测量回路对外电场感应敏感的地方, 如测量电极引线、分流器及检流计等都应有接触电势和热电势接触电势:产生在元件连接处以及不同金属接触处(如测量端的短路开关),由于逸出功不同而产生接触电势。 热电势:在温度很高时,由于热的不均匀性,在检流计、分流器等低阻回路中,将产生热电势(或温差电势)造成检流计零点漂移。 ▲通常热电势很小,接触电势可以通过改善接头来消除。电解电势▲在潮湿环境下或试样表面不清洁场合下,由于直流电场电解作用将在测量电极和保护电极之间产生,它可能达到较大的数值。 对策:使试样表面保持清洁,并置于干燥大气中来减弱这种影响。漏电流▲测量线路的漏电流主要是各元件、开关、电极支架和检流计接线的绝缘电阻不高而形成分路作用,这些漏电流流经检流计将造成测量误差。▲I1表示通过测量回路处于高压端各元件到测量端的漏电流;I2表示从测量端到接地端的漏电流。▲漏电流I1存在,将使测得试样的电阻值偏小;而I2存在,将使得测量电阻值偏大。 ▲要减小I1,则必须提高R1,即提高高压端各绝缘支撑的绝缘电阻。但是,这受到限制,特别是测量高绝缘电阻的试样很难满足。高绝缘电阻测试时抑制漏电流的措施保护技术的原理: ▲只有通过检流计的漏电流才能影响测量结果。 ▲将产生漏电流I1的所有高压部分的 元件放在具有金属夹层的双层绝缘体上,金属夹层接地。在绝缘电阻测试中,必须检查有无漏电流存在。 检查方法: ▲断开试样测量端与分流器的连线,加上电源,合上所有开关,逐步增大检流计灵敏度,视指示器有无偏置; ▲如有偏转,说明有漏电流通过指示仪器,必须找出原因并加以消除; ▲检流计无偏转时才能进行正式测量。绝缘材料绝缘电阻的测量方法标准的演变: GB/1410-2006(2006-06-01——至今)固体绝缘材料体积电阻率和表面电阻率试验方法 GB/1410-1989(1990-01-01——2006-06-01)固体绝缘材料体积电阻率和表面电阻率试验方法 GB/1410-78(更早)固体电工绝缘材料绝缘电阻、体积电阻系数和表面电阻系数试验方法标准截图
    留言咨询
  • 数字控制中心型号DC2000系列双轴数字伺服驱动电路板主要特点:· DSP检流计控制,提供最高的系统性能,轻松获得综合长期稳定性· 速度采用基于模型、状态及空间算法,超过模拟PID伺服系统· 基于仿真预滤器算法使运动控制最佳化· 位置、错误、速度、故障输出信号· 上电独立维持,自调整,校准-无需计算机· 检流计参数识别与适应确保闭环位置精确性· 16位模拟/数字、数字/模拟精度确保系统精确性· 桥式放大器输出支持完整检流计小和大的角速度· 灵活的模拟和数字输入命令配置能力· 为CTI高性能62XX系列检流计设计主要技术指标:参数/型号Dc900Dc2000输入命令XY2-100或高速串行数字命令输入比例系数0.5V/机械角(40° 系统),0.67V/机械角(30° 系统)位置输出比例系数0.50v/° 0.333v/° 最大驱动电流限制8A峰值,5Arms15A峰值,6Arms输入电压要求+/-15V直流电~+/-32V直流电可配
    留言咨询
  • 数字控制中心型号DC900系列单轴数字伺服驱动电路板主要特点:· DSP检流计控制,提供最高的系统性能,轻松获得综合长期稳定性· 速度采用基于模型、状态及空间算法,超过模拟PID伺服系统· 基于仿真预滤器算法使运动控制最佳化· 位置、错误、速度、故障输出信号· 上电独立维持,自调整,校准-无需计算机· 检流计参数识别与适应确保闭环位置精确性· 16位模拟/数字、数字/模拟精度确保系统精确性· 桥式放大器输出支持完整检流计小和大的角速度· 灵活的模拟和数字输入命令配置能力· 为CTI高性能62XX系列检流计设计主要技术指标:参数/型号Dc900Dc2000输入命令XY2-100或高速串行数字命令输入比例系数0.5V/机械角(40° 系统),0.67V/机械角(30° 系统)位置输出比例系数0.50v/° 0.333v/° 最大驱动电流限制8A峰值,5Arms15A峰值,6Arms输入电压要求+/-15V直流电~+/-32V直流电可配
    留言咨询
  • 工频介电常数介质损耗试验仪JJG 563--20040.5,1,2,5.介质损耗因数差值测量准确度级别为0.5,1,2,5,10。(QS-37a)型高压电桥是本公司推出的新一代高压电桥,主要用于测量工业绝缘材料的介质损耗(tgδ)及介电常数(ε)。符合GB1409、GB5654及GB/T1693, ASTM D150-1998(2004) 固体电绝缘材料的交流损耗特性及介电常数的试验方法其采用了西林电桥的经典线路,内附0-2500的数显高压电源及100PF标准电容器,并可按用户要求扩装外接标准电容线路。1-2电桥的特点; l桥体内附电位跟踪器及指零仪,外围接线及少。l电桥采用接触电阻小,机械寿命长的十进开关,保证测量的稳定性l仪器具有双屏蔽,能有效防止外部电磁场的干扰。l仪器内部电阻及电容元件经特殊老化处理,使仪器技术性能稳定可靠。l内附高压电源精度3%l内附标准电容损耗﹤0.00005,名义值100pF3.1.2高压电容电桥通过量程扩展器增加的附加量程,其准确度应当用准确度级别或用公式、图表表示。3.2高压介损仪电桥部分的准确度等级高压介损仪电桥部分的准确度参照高压电容电桥定级。3.3高压电容电桥的基本误差西林型高压电容电桥和自动变换量程的电子式或数字式电桥的基本误差为:△x- =(1+0.003x)△D= ±(D+0.01)电流比较仪型高压电容电桥和手动变换量程的电子式或数字式电桥的基本误差为:()△D= ±jB(D+0.01)各符号的意义为:△X一电容比率示值绝对误差限值 △D一介质损耗因数示值绝对误差限值 A一用百分数表示的电容比率测量准确度级别 B一用百分数表示的介质损耗因数差值测量准确度级别 X一一电容比率测量示值 D一-介质损耗因数测量示值 R,一电容比率量程定标值。它等于该量程最大比率值按一位有效数字化整的数值。3.4稳定性在遵守制造厂规定的使用、运输及贮存条件下,2年内电桥应符合原准确度级别基本误差的规定。在遵守制造厂规定的使用条件下,环境温度每变化10℃所引起的电桥误差值的变化,应不大于电桥基本误差限值的1/3。4通用技术要求4.1屏蔽支路调节器与工频检流计与高压电容电桥配套使用的屏蔽支路调节器,无论是手动调节或自动调节,在调整到电桥规定的平衡状态时,所引起的测量值的变化量应小于电桥允许误差的1/10。与电桥配套使用的工频检流计,其高次谐波抑制比和交叉调制系数两项指标,对介质损耗因数差值测量准确度为0.5级的电桥,应不小于50dB,对1级应不小于40dB,其他情况应不小于30dB。工频检流计的阻尼时间应小于4s。工频检流计的灵敏度应满足如下要求:当参考电流处于电桥规定的最低工作范围时,若电桥测量臂偏调量相当于允许误差的1/10,则检流计的偏转不小于1mm。工频介电常数介质损耗试验仪JJG 563--2004屏蔽支路调节器与工频检流计在通电预热3min后,其零位漂移对测量结果的影响应小于允许误差的1/10。4.2外观及标记高压电容电桥及配套器件外观应完好,各转换开关和接线端钮的标记应齐全清晰,接插件接触良好,开关转动灵活,定位准确。高压电桥上应有型号、名称、原理接线图以及使用频率、量程、准确度级别、参考电流工作范围和出厂编号等标记。4.3绝缘配有交流电源插座的高压电容电桥,插座与电桥外壳可触及的金属部件之间的绝缘电阻应不小于10MΩ,并能耐受50Hz,1.5kV正弦电压1min试验。若电桥具有与高压直接连结的端钮,则该端钮与外壳可触及的金属部件之间的绝缘电阻应大于100MΩ,并能耐受50Hz,15kV正弦电压1min试验。5计量器具控制计量器具控制包括首次检定、后续检定和使用中的检验。5.1检定条件5.1.1环境与电源条件检定场所的布置应使被检电桥与高压引线的距离大于√Um 与电流母线的距离大于VIm。其中:U的单位为kV 1的单位为A。因外界电磁场影响而引起的误差,不应超过电桥允许误差的1/10。或者当改变高压试验电源的极性时,前后两次示值之差,不超过电桥在这一点允许误差的1/5。检定电桥时,应满足表1规定的参考条件。检定前,被检电桥与检定装置在满足表1规定的环境条件下存放时间应超过24h。表1检定参考条件被检电桥介质提耗环境简度相对湿度电源频率电源电压波形畸变因数准确度级别/(%)H系数/{%)0.5.120年535-6550±0.2≤12.5,10:20±1030~7550±0.55.1.2检定用设备5.1.2.1高压电容电桥的电容比率基本误差使用电容量具(或交流电阻量具)整体检定。高压电容电桥的介质损耗因数基本误差使用工频损耗因数量具整体检定。电容量具提供的电容比率不确定度(p=95%)和工频损耗因数量具提供的损耗因数不确定度(p=95%)不得大于被检电桥允许误差的1/3。5.1.2.2绝缘电阻表的测量误差应不大于10%,输出电压为1000V或1500V。5.1.2.3工频耐压试验装置的高压输出容量应不小于500VA,波形失真不大于5%。试验电压的测量误差不大于3%。5.2检定项目工频介电常数介质损耗试验仪JJG 563--2004高压电容电桥的检定项目按表2规定。表2高压电容电桥检定项目检定类别首次检定检定项目后续检定使用中检验外观及标志检查工频耐压试验绝缘电阻试验检流计美敏度及屏蔽支路调节器细度试验(西林型和电流比较仪型电粉)基本误差试验稳定性试验注:“+”表示品检项目。“-”表示可不检项目。5.3检定方法5.3.1外观及标志检查外观及标志的检查,应符合本规程第4.2条要求。西林型和电流比较仪型电桥全部转换开关应做不少于10次的全行程切换。桥体外壳上标明的接地端子,应单独可靠接地。如发现电桥有严重影响计量性能的缺陷,应修复后再检定。5.3.2绝缘试验高压电容电桥工频耐压试验应在仪器的电源开关接通状态下进行。试验时应逐渐地升高电压至规定值,偏差不大于3%,并在此电压下保持1min。试验中应避免试验电源突然接通和分断。测量试验电压时,推荐采用在试验变压器的高压输出端直接测量的方法。试验过程中应无击穿或闪络等破坏性放电现象产生。绝缘电阻试验应在仪器的电源开关接通状态下进行,试验结果应符合4.3条规定。5.3.3检流计灵敏度及屏蔽支路调节器细度试验检流计灵敏度及屏蔽支路调节器细度用两台电容试品在电桥正常测量状态下试验,并在正常参考电流和最大允许参考电流下各进行一次。在调整到电桥规定的平衡状态时,偏调电桥测量臂使测量值偏离该点允许测量误差的1/10,引起检流计的偏转应不小于1mm。在调整到电桥规定的平衡状态时,偏调电桥屏蔽支路一个最小分度,检流计的工频介电常数介质损耗试验仪偏转应不大于1mm。有源电流比较仪电桥的屏蔽支路调节器为反馈式电子放大器,不进行调节细度试验,只在电桥正常参考电流和最大允许参考电流下各进行一次检流计灵敏度试验。5.3.4基本误差试验电桥的电容比率基本误差选用能满足5.1.2.1条要求的电容量具(或交流电阻量工频介电常数介质损耗试验仪JJG 563--2004具),使用图1的电容比较线路或附录AI图的等功率电桥线路整体检定。电桥的损耗因数基本误差选用能满足5.1.2.1条要求的工频损耗因数量具,使用图2的电容比较线路或附录BI图的低压导纳线路整体检定。检定时的参考电流应不小于电桥规定的最小工作电流。检定时读取有效数字的舍入误差应为允许误差的1/10~1/100。TDCrc-g图1用电容比较线路检定电容比率图中:TD一调压器 T-试验变压器 C,、c,一标准空气电容器:-g一被检电桥TDC-Eg8图2用电容比较线路检定损耗因数图中:TD一调压器:T-试验变压器 C,、C,一标准空气电容器:R-交流电阻:C-g8-被检电桥5.3.4.1电容比率基本误差检定1)检定高压电容电桥电容比率测量准确度时,介质损耗因数盘的置数D应满足D’,其中,A为该量程的电容比率测量准确度等级指数。2)西林型电桥的基本量程应逐盘逐点检定。检定选点推荐按表3系列进行,检定盘位一般是x10000,x1000和x100。检定电流比较仪型电桥的基本量程时,检定选点参照表4系列进行。可以只对第一盘逐点检定。
    留言咨询
  • 高压电容电桥 工频介电常数准 确 度: 电压:±0.2% 电流:±0.5% 功率:±0.5%(CosΦ0.1),±1.0%(0.020.1) font="" 阻抗、容抗、感抗:0.5% 电阻、电容、电感、电导、电纳:0.5%工作温度:-10℃~ +40℃工作电源:交流85V~265V绝 缘:⑴、电压、电流输入端对机壳的绝缘电阻≥100MΩ 。 ⑵、工作电源输入端对外壳之间承受工频2KV(有效值),历时1分钟实验。高压电容电桥 工频介电常数项目参数1 电容量测量范围 0~0.1uF2 介损测量范围 -1.111~1.1113 电容量测试精度 小于0.0001 4 介损测试精度 0.2%rdg±1×10-5 5 电桥分辨率 0.000001 连接电脑可显示1×10-7 6 标准电容介损精度 小于1×10-5 7 标准电容测量误差 ±0.05% 8 高压电源范围 0~2500V 9 高压电源误差 小于±3%±3个字 10 高压电源输出波形 50Hz正弦波 11 电极材料及工作面 电极为三电极结构不锈钢材料1Cr13Ni9Ti 12 高压电极直径 ¢98mm 13 测量电极直径 ¢50 mm 14 电极间距 不小于6mm 15 电极加热功率 2*500瓦 16 电极zui.高温度 250℃ 17 电极压力 0~~1.0Mpa连续可调 18 电极最大测量电压 2000V高压电容电桥 工频介电常数《JJG563-2004高压电容电桥检定规程》《JB1811-92压缩气体标准电容器》《GB1409-2016固体绝缘材料相对介电常数和介质损耗因数的试验方法》《ASTM D150固体电绝缘材料的交流损耗特性及介电常数的试验方法》《IEC 60250测定电气绝缘材料在工频、音频、射频(包括米波长)下电容率和电介质损耗因数的推荐方法》工频介电常数及介质损耗测试仪高压电容电桥检定规程1范围本规程适用于在50Hz电源条件下测量电容量和介质损耗因数的西林型、电流比较仪型以及电子式、数字式高压电容电桥的首次检定、后续检定和使用中的检验。基于高压电容电桥原理的高压介损仪的电桥部分按本规程检定,电桥部分与高压电容器组合后按规程附录F校准。本规程不适用于高压电容电桥附加作交流电桥使用的桥路部分的检定。2概述2.1高压电容电桥的工作原理高压电容电桥从工作原理上可以认为是一种测量工频电流比率的装置。当工频高压施加在高压标准电容器和被测设备上时,即产生与它们的电容量和介质损耗因数成比例的同相及正交工频电流分量,这两个工频电流分量经电桥作比例测量后,即可得到被测设备相对于高压标准电容器的电容量比值与介质损耗因数差值。2.2高压电容电桥的分类2.2.1西林型高压电容电桥电桥的电流比例臂由电阻器构成。流过参考电流的比例臂上并联有移相电容器。采用电势平衡指示。高压电容电桥 工频介电常数电桥的电流比例臂由电流比较仪的比例绕组构成。流过参考电流的比例臂上附有移相电路,采用磁势平衡指示。按移相方式可以把这类电桥分为有源与无源两种。属于无源的一种用阻容电路直接移相 属于有源的一种用电子放大元件配合阻容元件正交移相。用磁势合成方法实现所需相移。高压电容电桥 工频介电常数电子式高压电容电桥使用电子电路(包括模拟电路和数字电路)测量幅值比和相位差的高压电容电桥。高压电容电桥的基本误差西林型高压电容电桥和自动变换量程的电子式或数字式电桥的基本误差为:△x- =(1+0.003x)△D= ±(D+0.01)电流比较仪型高压电容电桥和手动变换量程的电子式或数字式电桥的基本误差为:()△D= ±jB(D+0.01)各符号的意义为:△X一电容比率示值绝对误差限值 △D一介质损耗因数示值绝对误差限值 A一用百分数表示的电容比率测量准确度级别 B一用百分数表示的介质损耗因数差值测量准确度级别 屏蔽支路调节器与工频检流计与高压电容电桥配套使用的屏蔽支路调节器,无论是手动调节或自动调节,在调整到电桥规定的平衡状态时,所引起的测量值的变化量应小于电桥允许误差的1/10。与电桥配套使用的工频检流计,其高次谐波抑制比和交叉调制系数两项指标,对介质损耗因数差值测量准确度为0.5级的电桥,应不小于50dB,对1级应不小于40dB,其他情况应不小于30dB。工频检流计的阻尼时间应小于4s。工频检流计的灵敏度应满足如下要求:当参考电流处于电桥规定的最低工作范围时,若电桥测量臂偏调量相当于允许误差的1/10,则检流计的偏转不小于1mm。JJG 563--2004屏蔽支路调节器与工频检流计在通电预热3min后,其零位漂移对测量结果的影响应小于允许误差的1/10。4.2外观及标记高压电容电桥及配套器件外观应完好,各转换开关和接线端钮的标记应齐全清晰,接插件接触良好,开关转动灵活,定位准确。高压电桥上应有型号、名称、原理接线图以及使用频率、量程、准确度级别、参考电流工作范围和出厂编号等标记。4.3绝缘配有交流电源插座的高压电容电桥,插座与电桥外壳可触及的金属部件之间的绝缘电阻应不小于10MΩ,并能耐受50Hz,1.5kV正弦电压1min试验。若电桥具有与高压直接连结的端钮,则该端钮与外壳可触及的金属部件之间的绝缘电阻应大于100MΩ,并能耐受50Hz,15kV正弦电压1min试验。5计量器具控制计量器具控制包括首次检定、后续检定和使用中的检验。5.1检定条件5.1.1环境与电源条件检定场所的布置应使被检电桥与高压引线的距离大于√Um 与电流母线的距离大于VIm。其中:U的单位为kV 1的单位为A。因外界电磁场影响而引起的误差,不应超过电桥允许误差的1/10。或者当改变高压试验电源的极性时,前后两次示值之差,不超过电桥在这一点允许误差的1/5。
    留言咨询
  • WOP激光加工控制软件 400-860-5168转3896
    立陶宛Workshop of Photonics公司从2003年进入飞秒激光微加工领域,成为全球领先的飞秒激光微加工设备以及解决方案提供商。WOP主要业务包括:飞秒激光微加工可行性分析,定制飞秒激光系统和光学组件,激光微加工车间,激光微加工自动化软件,定制激光系统和设备控制电路。■ 加工控制软件激光加工控制软件Workshop SCA软件可以控制激光加工自动进行。这款软件可以提供快速,灵活,可靠的激光加工过程。SCA软件特点:定位阶段直接控制4轴同步定位控制,包括线性、检流计、旋转。定位轴同步动作简介的算法和命令集成微机函数2D/3D的预加工窗口集成控制采用同步位置输出直接激光参数控制机动衰减控制虚拟杆操作 软件选项:SCA ProfessorSCA StudentSCA EngineerSCA Intro
    留言咨询
  • 基于以太网独立控制器EC1000单板、独立、实时嵌入式控制子系统适用于检流计操纵激光系统构建分布式自动化的网络激光加工工厂主要特点:· 作网络应用时有无主机都可操作· 对第三方和使用者应用软件包的基于串口的API接口和DLL库,WinLaseTM支持。联系工厂索取最新的第三方软件支持仿真· RTC仿真库可简单综合到现有的RTC-3/4系统中· 以太网主机接口下载或运行工作,并实时检测状态· 无合成向量表分界的板上闪存,USB端口可用于工作存贮和可携带媒体· 动态16位3轴模拟和数字检流计控制硬件和软件支持通知XYZ扫描· 同步模拟和数字激光控制为YAG、CO2、Fiber和其他激光器提供脉冲、强度和选通控制· 透镜通过微导航自动修正失真· 可选I/O&ldquo 背面板&rdquo 来简化综合,为扫描头提供模块性
    留言咨询
  • 全自动异频介损测试仪检定电桥时,应满足表1规定的参考条件。检定前,被检电桥与检定装置在满足表1规定的环境条件下存放时间应超过24h。表1检定参考条件被检电桥介质提耗环境简度相对湿度电源频率电源电压波形畸变因数准确度级别/(%)H系数/{%)0.5.120年535-6550±0.2≤12.5,10:20±1030~7550±0.55.1.2检定用设备5.1.2.1高压电容电桥的电容比率基本误差使用电容量具(或交流电阻量具)整体检定。高压电容电桥的介质损耗因数基本误差使用工频损耗因数量具整体检定。电容量具提供的电容比率不确定度(p=95%)和工频损耗因数量具提供的损耗因数不确定度(p=95%)不得大于被检电桥允许误差的1/3。5.1.2.2绝缘电阻表的测量误差应不大于10%,输出电压为1000V或1500V。5.1.2.3工频耐压试验装置的高压输出容量应不小于500VA,波形失真不大于5%。试验电压的测量误差不大于3%。全自动异频介损测试仪使用中检验外观及标志检查工频耐压试验绝缘电阻试验检流计美敏度及屏蔽支路调节器细度试验(西林型和电流比较仪型电粉)基本误差试验稳定性试验注:“+”表示品检项目。“-”表示可不检项目。5.3检定方法5.3.1外观及标志检查外观及标志的检查,应符合本规程第4.2条要求。西林型和电流比较仪型电桥全部转换开关应做不少于10次的全行程切换。桥体外壳上标明的接地端子,应单独可靠接地。如发现电桥有严重影响计量性能的缺陷,应修复后再检定。5.3.2绝缘试验高压电容电桥工频耐压试验应在仪器的电源开关接通状态下进行。试验时应逐渐地升高电压至规定值,偏差不大于3%,并在此电压下保持1min。试验中应避免试验电源突然接通和分断。测量试验电压时,推荐采用在试验变压器的高压输出端直接测量的方法。试验过程中应无击穿或闪络等破坏性放电现象产生。绝缘电阻试验应在仪器的电源开关接通状态下进行,试验结果应符合4.3条规定。5.3.3检流计灵敏度及屏蔽支路调节器细度试验检流计灵敏度及屏蔽支路调节器细度用两台电容试品在电桥正常测量状态下试验,并在正常参考电流和最大允许参考电流下各进行一次。在调整到电桥规定的平衡状态时,偏调电桥测量臂使测量值偏离该点允许测量误差的1/10,引起检流计的偏转应不小于1mm。在调整到电桥规定的平衡状态时,偏调电桥屏蔽支路一个最小分度,检流计的偏转应不大于1mm。有源电流比较仪电桥的屏蔽支路调节器为反馈式电子放大器,不进行调节细度试验,只在电桥正常参考电流和最大允许参考电流下各进行一次检流计灵敏度试验。全自动异频介损测试仪基本误差试验电桥的电容比率基本误差选用能满足5.1.2.1条要求的电容量具(或交流电阻量JJG 563--2004具),使用图1的电容比较线路或附录AI图的等功率电桥线路整体检定。电桥的损耗因数基本误差选用能满足5.1.2.1条要求的工频损耗因数量具,使用图2的电容比较线路或附录BI图的低压导纳线路整体检定。检定时的参考电流应不小于电桥规定的最小工作电流。检定时读取有效数字的舍入误差应为允许误差的1/10~1/100。TDCrc-g图1用电容比较线路检定电容比率图中:TD一调压器 T-试验变压器 C,、c,一标准空气电容器:-g一被检电桥TDC-Eg8图2用电容比较线路检定损耗因数图中:TD一调压器:T-试验变压器 C,、C,一标准空气电容器:R-交流电阻:C-g8-被检电桥5.3.4.1电容比率基本误差检定1)检定高压电容电桥电容比率测量准确度时,介质损耗因数盘的置数D应满足D’,其中,A为该量程的电容比率测量准确度等级指数。2)西林型电桥的基本量程应逐盘逐点检定。检定选点推荐按表3系列进行,检定盘位一般是x10000,x1000和x100。检定电流比较仪型电桥的基本量程时,检定选点参照表4系列进行。可以只对第一盘逐点检定。全自动异频介损测试仪是新一代的绝缘油测量电极的专用控温智能化装置,可与国际通用的圆柱型绝缘油电极配套使用。保证绝缘油在规定时间内到达所需温度,并能恒定较长时间,以便通过高压电桥对绝缘油进行介质损耗因素(tgδ)、相对介电常数(εr)进行精密测量,也可与高阻计配套测试体积电阻率ρ(即直流电阻率)本产品温度显示采用内外温同时显示,加热采用智能数字温度仪控制。控制过程采用PID模糊逻辑控制,能彻底消除电网电压、环境温度变化等的影响,具有控温超调量小、控温速度快的优点。温度设置采用数字键盘输入方式,使设定误差真正达到零。符合GB5654-2007.全自动异频介损测试仪*1Range20Hz-99.9Hz100Hz-1kHz1.001kHz-10kHz10.01kHz-100kHz100.1kHz-1MHz1.001MHz-5MHz 6month1MΩA=0.8 B=0.4A=0.4 B=0.2A=0.4 B=0.2A=1 B=0.5A=1 B=0.2A=0.25 B=0.1A=0.25 B=0.1A=1 B=0.5100kΩA=0.4 B=0.05A=0.15 B=0.05A=0.15 B=0.05A=0.3 B=0.08A=3 B=1A=0.3 B=0.1A=0.15 B=0.02A=0.15 B=0.02A=0.3 B=0.08A=3 B=0.510kΩA=0.35 B=0.01A=0.08 B=0.01A=0.15 B=0.01A=0.25 B=0.04A=0.4 B=0.3A=2 B=0.5A=0.25 B=0.01A=0.05 B=0.01A=0.08 B=0.01A=0.15 B=0.02A=0.3 B=0.3A=2 B=0.33kΩA=0.35 B=0.01A=0.08 B=0.01A=0.15 B=0.01A=0.25 B=0.04A=0.4 B=0.3A=2 B=0.5A=0.25 B=0.01A=0.05 B=0.01A=0.08 B=0.01A=0.15 B=0.02A=0.3 B=0.3A=2 B=0.31kΩA=0.35 B=0.01A=0.08 B=0.01A=0.08 B=0.01A=0.2 B=0.02A=0.3 B=0.03A=1.5 B=0.2A=0.25 B=0.005A=0.05 B=0.005A=0.05 B=0.005A=0.08 B=0.02A=0.15 B=0.02A=1 B=0.2300ΩA=0.35 B=0.01A=0.08 B=0.01A=0.08 B=0.01A=0.2 B=0.02A=0.3 B=0.03A=1.5 B=0.2
    留言咨询
  • 玻璃介电常数高压电桥电流比较仪型高压电容电桥电桥的电流比例臂由电流比较仪的比例绕组构成。流过参考电流的比例臂上附有移相电路,采用磁势平衡指示。按移相方式可以把这类电桥分为有源与无源两种。属于无源的一种用阻容电路直接移相 属于有源的一种用电子放大元件配合阻容元件正交移相。用磁势合成方法实现所需相移。高压电桥是本公司推出的新一代高压电桥,主要用于测量工业绝缘材料的介质损耗(tgδ)及介电常数(ε)。符合GB1409、GB5654及GB/T1693, ASTM D150-1998(2004) 固体电绝缘材料的交流损耗特性及介电常数的试验方法其采用了西林电桥的经典线路,内附0-2500的数显高压电源及100PF标准电容器,并可按用户要求扩装外接标准电容线路。2.2.3电子式高压电容电桥使用电子电路(包括模拟电路和数字电路)测量幅值比和相位差的高压电容电桥。2.2.4数字式高压电容电仪器具有 HCUR(电流驱动高端 HD)、LCUR(电流驱动低端 LD)、HPOT(电压检测高端 HS)、 LPOT(电压检测低端 LS)和对应于每测试端的屏蔽端共四对测试端。屏蔽端的使用目的在于减小对地杂散电容的影响和降低电磁干扰。测量时 HD、HS 和 LD、LS 应在被测元件引线上连接,形成完整的四端测量,以减小引线及连接点对测试结果的影响(尤其是损耗测量)。特别是在对低阻抗元件进行检测时,应将检测端 HS、LS 连接至元件的引线端,以防止引线电阻加入被测阻抗,其连接的原则为 HS、LS 所检测的应为被测件上实际存在的电压。换言之,最好 HD、HS 和 LS、LD 不要连接后再与被测元件引线端相连接,否则将增加测试误差。如果接触点及引线电阻 Rlead 远小于被测阻抗(例如:Rlead在进行一些精度要求较高的测量时,使用测量夹具比使用测试导线(仪器附配的开尔文夹具)要好的多。开尔文测试线在 10kHZ 下频率测试时,可以有较好的测量结果, 但超过 10kHZ 频率时,开尔文测试线很难满足测试要求。因为在高频时,导线之间间隙的变化直接改变了测试端杂散电容和电感,而测试导线总是难以加以固定的。因此,在较高频率进行测量时应尽可能使用测试夹具,如果由于条件所限,则仪器清零时测试线的状态应尽可能与测试时保持一致。无论使用仪器提供的测试夹具或开尔文测试电缆或者用户自制夹具,应满足以下几方面的要求。采用数字信号处理方法测量幅值比和相位差的高压电容电桥。2.3高压介损仪本规程涉及的高压介损仪是一种由高压电容电桥、高压试验电源和高压标准电容器组成的测量装置。高压试验电源通常不高于10kV,频率40Hz-70Hz。3计量性能要求3.1高压电容电桥的准确度等级3.1.1高压电容电桥的准确度按电容比率和介质损耗因数分别定级如下:电容比率测量准确度级别为0.001,0.002,0.005,0.01,0.02,0.05,0.1,0.2.JJG 563--20040.5,1,2,5.介质损耗因数差值测量准确度级别为0.5,1,2,5,10。3.1.2高压电容电桥通过量程扩展器增加的附加量程,其准确度应当用准确度级别或用公式、图表表示。3.2高压介损仪电桥部分的准确度等级高压介损仪电桥部分的准确度参照高压电容电桥定级。3.3高压电容电桥的基本误差西林型高压电容电桥和自动变换量程的电子式或数字式电桥的基本误差为:△x- =(1+0.003x)△D= ±(D+0.01)电流比较仪型高压电容电桥和手动变换量程的电子式或数字式电桥的基本误差为:()△D= ±jB(D+0.01)各符号的意义为:△X一电容比率示值绝对误差限值 △D一介质损耗因数示值绝对误差限值 A一用百分数表示的电容比率测量准确度级别 B一用百分数表示的介质损耗因数差值测量准确度级别 玻璃介电常数高压电桥稳定性在遵守制造厂规定的使用、运输及贮存条件下,2年内电桥应符合原准确度级别基本误差的规定。在遵守制造厂规定的使用条件下,环境温度每变化10℃所引起的电桥误差值的变化,应不大于电桥基本误差限值的1/3。4通用技术要求4.1屏蔽支路调节器与工频检流计与高压电容电桥配套使用的屏蔽支路调节器,无论是手动调节或自动调节,在调整到电桥规定的平衡状态时,所引起的测量值的变化量应小于电桥允许误差的1/10。与电桥配套使用的工频检流计,其高次谐波抑制比和交叉调制系数两项指标,对介质损耗因数差值测量准确度为0.5级的电桥,应不小于50dB,对1级应不小于40dB,其他情况应不小于30dB。工频检流计的阻尼时间应小于4s。工频检流计的灵敏度应满足如下要求:当参考电流处于电桥规定的最低工作范围时,若电桥测量臂偏调量相当于允许误差的1/10,则检流计的偏转不小于1mm。玻璃介电常数高压电桥JJG 563--2004屏蔽支路调节器与工频检流计在通电预热3min后,其零位漂移对测量结果的影响应小于允许误差的1/10。4.2外观及标记高压电容电桥及配套器件外观应完好,各转换开关和接线端钮的标记应齐全清晰,接插件接触良好,开关转动灵活,定位准确。高压电桥上应有型号、名称、原理接线图以及使用频率、量程、准确度级别、参考电流工作范围和出厂编号等标记。4.3绝缘配有交流电源插座的高压电容电桥,插座与电桥外壳可触及的金属部件之间的绝缘电阻应不小于10MΩ,并能耐受50Hz,1.5kV正弦电压1min试验。若电桥具有与高压直接连结的端钮,则该端钮与外壳可触及的金属部件之间的绝缘电阻应大于100MΩ,并能耐受50Hz,15kV正弦电压1min试验。玻璃介电常数高压电桥环境与电源条件检定场所的布置应使被检电桥与高压引线的距离大于√Um 与电流母线的距离大于VIm。其中:U的单位为kV 1的单位为A。因外界电磁场影响而引起的误差,不应超过电桥允许误差的1/10。或者当改变高压试验电源的极性时,前后两次示值之差,不超过电桥在这一点允许误差的1/5。检定电桥时,应满足表1规定的参考条件。检定前,被检电桥与检定装置在满足表1规定的环境条件下存放时间应超过24h。表1检定参考条件被检电桥介质提耗环境简度相对湿度电源频率电源电压波形畸变玻璃介电常数高压电桥检定用设备5.1.2.1高压电容电桥的电容比率基本误差使用电容量具(或交流电阻量具)整体检定。高压电容电桥的介质损耗因数基本误差使用工频损耗因数量具整体检定。电容量具提供的电容比率不确定度(p=95%)和工频损耗因数量具提供的损耗因数不确定度(p=95%)不得大于被检电桥允许误差的1/3。5.1.2.2绝缘电阻表的测量误差应不大于10%,输出电压为1000V或1500V。5.1.2.3工频耐压试验装置的高压输出容量应不小于500VA,波形失真不大于5%。试验电压的测量误差不大于3%。5.2检定项目JJG 563--2004高压电容电桥的检定项目按表2规定。表2高压电容电桥检定项目检定类别首次检定检定项目后续检定
    留言咨询
  • ZST-121-绝缘材料体积表面电阻率仪一、实验目的通过测试电阻率,了解绝缘材料的导电特性,以便正确地认识、改进与使用该材料;了解ZST-121超高值绝缘电阻率测试仪(简称高阻仪)的基本原理,掌握使用高阻仪测定绝缘材料材料的体积电阻,表面电阻和绝缘电阻的方法;了解影响测试结果的因素。二、实验仪器1 .ZST-121 型绝缘材料体积表面电阻率仪简介ZST-121 型电阻仪是一种直流式的超高电阻计和微电流两用仪器。仪器的最高量限 1017 Ω 电阻值和 10-14A微电流。适用于科研、工厂、学校、对绝缘材料、电工产品、电子设备以及元件的绝缘电阻测 量和高阻兆欧电阻的测量,也可用于微电流测量。2 .技术指标(1 ) 工作电源: 电压 ~220V 频率 50Hz 消耗功率: 15W(2 ) 测试电压及测试范围:1 . 高电阻的测试电压:(1 ) 电压共分五档: 10 、100 、250 、500 、1000V(2 ) 电压偏差:不大于 5%(3 ) 电压稳定度:不大于 0.2%2 . 高电阻测量:(1 )测量范围: 1 × 106 ~ 1 × 1017 Ω共分八档3 . 微电流测量(1 )测量范围: 1 × 10-5 ~ 1 × 10-14A共分八档(2 )电流极性: “+"或 “- "(3 )仪器的零点漂移:一起在稳定的工作电压及无信号输入时(输入短路);通电一小时后,在 8 小时 内零点漂移不大于全标尺 4% 。(4 )仪器的时间响应:小于 30 秒(4 ) 仪器可连续工作 8 小时三、测试电路原理:仪器作为高电阻测量时其主要原理如图所示, 测试时, 被测试样与高阻抗直流放大器的输入电阻串联并跨接于直流高压测试电源上(由直流高压发生器产生)。高阻抗直流放大器将其输入电阻 上的分压讯号经放大输出至指示仪表,由指示仪表直接读出被测绝缘电阻值。仪器作为微电流测量时, 仅利用高阻抗直流放大器, 将被测微电流讯号进行放大, 由指示仪表 直接读出。 式中:U 一测试电源输出电压;Rx一试样电阻;Ri一微电流放大器的等效输入阻抗。电路结构:主要由下列五部分组成 1 . 直流高压测试电源: 10 、100 、250 、500 、1000V 五档。2 . 测试放电装置(包括输入短路开关):将具有电容性较大的试样在测试前后进行充电和放电, 以减少介质吸收电流及电容充电时,电流对仪器的冲击和保障操作人员的安全。3 . 高阻抗直流放大器:将被测微电流讯号放大后输入至指示仪表。4 . 指示仪表:作为被测绝缘电阻和微电流的指示。5 . 电源:供给仪器各部分工作电源。高阻仪应满足下列要求:(a)测量误差小于 20%;(b)零点漂移每小时不应大子全量程的 4%;(c)输入接线的绝缘电阻应大于仪器输入电阻的 100 倍;(d)测试电路应有良好的屏蔽。三、计算公式:π—3.1416;D2一保护电极的内径 (cm);D1一测量电极的直径 (cn);1n 一自然对数。 四、测试步骤:一、准备工作1 .接通电源前的准备工作:(1 )检查电源联系是否正确(2 )测试电压选择开关置于放电位置,测试电压旋钮放在低档( 10V 挡)。(3 )倍率旋钮放在低量程上(4)将电表“+"、“一"极性开关放在“+"的一边。(5 )输入短路开关应放在短路位置,使放大器输入端短路。(6 )电表机械零点处于零出。2 .接通电源及预热将电源开关打开,预热 15 分钟。(若用高倍率挡时应预热 1 小时)(1)将仪器连接线接好,操作仪器,使高阻表处于备用状态。 仪器的连接:(1)调整“调零"旋钮,使电表指针在“0"点。 (对欧姆刻度来说就是“∞"点)(2)将电缆线一端接在高阻仪面板上的输入插座中,另一端接至电极箱一侧 的测量插座中并旋紧固定套。(3 )将测试电源线一端接在高阻仪面板上的测试电压接线柱Rx上(红色),另一端接至电 极箱一侧的测试电压接线柱上(红色)。(此时高阻仪面板上的“放电一测试"开关应置于“放 电位置"。 )(4 )将接线地线一端接至高阻仪面板上的接地端钮上,另一端接到电极箱的接地端钮上, 然后一并接地。二、测试样品的连接将充分放电及干燥处理的试样(即当试样末加压时,应在仪器上没有明显的指示值)的三个 电极引线分别接于电极箱内相应的三个接线柱上,关闭电极箱盖。三、测量体积电阻值 Rv:(a )将 Rv 、Rs 转换开关旋至 Rv 处。(b)将电压选择开关置于所需要的测试电压位置上,将“倍率选择"旋钮选 至所需的位置。 (在不了解测试值的数量级时,倍率应从低次方开始选择。 )(c)将“放电、测试"开关放在“测试"位置,检查电压应选择的位置,打 开输入短路开关(即按钮抬起来),读取加上测试电压 1 分钟,指示电表显示的电 阻值。读数完毕,将“倍率"打回“ 10-1 "档。四、测量表面电阻值 Rs:(a)将 Rv 、Rs 转换开关旋至 Rs 处。(b)将电压选择开关置于所需要的测试电压位置上,将“倍率选择"旋至所 需要的位置。 (在不了解测试值的数量级时,倍率应从低次方开始选择。 )(c)将“放电、测试"开关放在“测试"位置,检查应选择的位置,打开输 入短路开关(即按钮抬起来),读取加上测试电压 1 分钟时,指示电表显示的电阻 值。读数完毕,将“倍率"打回“ 10-1 "档。(d)接入短路开关,将“放电、测试"开关打回到“放电"位置。更换试样,重复以上操作,待全部试样测量完毕后,切除电源,除去各种连接线,按要求整理、 五、数据及处理:(1)将测得的数据填入下列表格的相应格中.(2)用所得的测试数据分别计算各试样的体积电阻率ρV ,及表面电阻率ρS, 将计算结果填入下表的相应格内.(3)根掂所做实验试分析产生误差的原因,及采取哪些缩小误差的措施。(4)对实验中出现的一些问题进行讨论。 五、实验思考题:l.电导率与电阻率的相互关系如何?2 .影响材料电导率的因素有哪些?3 、材料电性能的主要测量方法有哪些?4 、 进行材料电阻系数的测定有何实际意义?5 、如何区分导体、半导体和绝缘体? 6 、简单介绍测定时间、温度、湿度、测定电压、接触电极材料、间 隙 宽度和测试回路中标准电 阻对测定的影响。 六、背景知识测量材料电阻的方法很多,有高阻(106Ω )测量和低阻(10-2Ω )测量。根据材 料的电阻大小不同, 采用的测量方法各异, 包括: 惠斯顿单电桥法、双电桥测量法、电位差计测量和直流四探针法。它们主要测量材料的电阻率。以下重点介绍低电阻(106Ω) 的测量方法。1 、惠斯顿(Huiston )单电桥法惠斯顿单电桥测量原理图见图 3-21 。图中 CD 之间串联一检流计 G ,Rp 为调节桥路 电流的滑线电阻器, 当 C 、D 两点同电位时, 通过检流计 G 的电流为零。 RN 、R1 、R2的电阻均已知,被测电阻 Rx 的计算为: 图 3-21 惠斯顿单电桥测量原理图在上面的测量中Rx实际并非真正的被测电阻, 测出的电阻包括A 、B两点的导线电 阻和接触电阻。当测量低电阻时, 由于结构和接触电阻无法消除, 灵敏度不高、测量数值偏差较大, 只有当被测电阻相对于导线电阻和接触电阻相当大时, Rx才接近于 RN 。因此惠斯顿单电桥的测量很少用于测量金属电阻,其测量电阻范围通常在在 10~ 106Ω。2 、 双电桥法双电桥法是目前测量金属室温电阻应用最广的方法, 用于测量低电阻( 102~ 10-6Ω)。双电桥测量原理图见 3-223-22 双电桥测量原理图双电桥法测量时,待测电阻Rx和标准电阻RN 相互串连后,串入一有恒电流的回路 中。将可调电阻R1R2R3R4组成电桥四臂, 并与Rx 、RN 并连; 在其间B 、D点连接检流计 G ,那么测量电阻Rx归结为调节R1R2R3R4 电阻使电桥达到平衡, 则检流计为零(G=0), 即VD=VB为了使上式简化, 在设计电桥时, 使R1 =R3,R2=R4 ,并将它们的阻值设计的比较大, 而导线的电阻足够小(选用短粗的导线), 这样使 ? 趋向于零, 则附加项趋近于零,上式近似为:R = R1 R = R3 RR R当检流计为零时,从电桥上读出R1 、,R2 ,而RN 为已知的标准电阻,用上式可求出 Rx值。用双电桥测量电阻可测量 100~ 10-6Ω 的电阻,测量精度为 0.2%。在测量中应注意:连接Rx 、RN 的铜导线尽量粗而短,测量尽可能快。3 .电位差计法电位差计法广泛应用于金属合金的电阻测量,可测量试样的高温和低温电阻,还可 以测试电位差、电流和电阻,它的精度比双电桥法精度高。可以测量 10-7 的微小电势。 电位差计是以被测电位差与仪器电阻的已知电压降平衡的原理为基础。电位差计的工作 原理图见图 3.-23 ,电位差计测量原理图见图 3.-24 3.-23 电位差计的工作原理图 3.-24 电位差计测量原理图电位差计测量电阻的原理:当一恒定电流通过试样和标准电阻时,测定试样和标准 电阻两端的电压降Vx和VN ,RN 已知,通过下式计算出Rx 电位差计法优点:导线(引线)电阻不影响电位差计的电势Vx 、VN ,的测量,而 双电桥法由于引线较长和接触电阻很难消除, 所以在测金属电阻随温度变化, 不够精确。4 . 直流四探针法直流四探针法主要用于半导体材料或超导体等的低电阻率的测量。他具有设备简 单、操作方便,测量较精确等优点。常用于半导体单晶硅掺杂的电阻率测量。图 3-25 为四探针法的测量线路原理图及其接线探针排列。 图 3-25 四探针法的测量线路原理图如图 3-251 、2 、3 、4 四根金属探针彼此相距 1mm ,排在一条直线上,要求四根探 针与样品表面接触良好。由 1 、4 探针通入小电流,当电流通过时,样品各点将有电位 差,同时用高阻静电计、电子毫伏计测出 2 、3 探针间的电位差 V23 ,由下式可直接计 算出样品的电阻率:ρ = C C 是与被测样品的几何尺寸及探针间距有关的测量的系数,称为探针系数。 单位:(cm);I 是探针通入的电流。当被测样品的几何尺寸相对于探针间距大的多时,即把样品看成半无限大,探针间距足够小时,则电阻率为:式中 S 是等距离四探针两针间的间距; 电流 I 的选择很重要, 如果电流过大, 会使样品 发热, 引起电阻率改变, 使测量误差变大。测量时, 四探针也可不排成一条直线, 可以 排成矩形或四方形。
    留言咨询
  • 橡塑材料体积电阻率测试仪当能证明材料不受离子轰击或真空处理的影响时,蒸发或阴极真空喷镀金属能在与8.3给出的相 同条件下使用。GB/T 1410-2006《 固体绝缘材料体积电阻率和表面电阻率试验方法》ASTM D257-99《绝缘材料的直流电阻或电导试验方法》GB/T 1410-2006 固体绝缘材料 体积电阻率和表面电阻率试验方法GB1672-8液体增塑剂体积电阻率的测定GB 12014 防静电工作服GB/T 20991-2007 个体防护装备 鞋的测试方法GB 4385-1995 防静电鞋、导电鞋技术要求GB 12158-2006 防止静电事故通用导则GB 4655-2003 橡胶工业静电安全规程GB/T 1692-2008 硫化橡胶绝缘电阻的测定GB/T 12703.6-2010 纺织品 静电性能的评定 第6部分 纤维泄漏电阻GB 13348-2009 液体石油产品静电安全规程GB/T 15738-2008 导电和抗静电纤维增强塑料电阻率试验方法GB/T 18044-2008 地毯 静电习性评价法 行走试验GB/T 18864-2002 硫化橡胶 工业用抗静电和导电产品 电阻极限范围GB/T 22042-2008 服装 防静电性能 表面电阻率试验方法8.5液体电极使用液体电极往往能得到满意的结果。构成上电极的液体应被框住,例如用不锈钢环来框住,每个 环的下边缘在不接触液体的一面被斜削成锐边。图4给出了使用液体电极的装置。不推荐长期使用或 在高温下使用水银,因为它有毒。8.6胶体石墨分散在水中或其他合适媒质中的胶体石墨可在与8.2给出的相同条件下使用。8.7导电橡皮导电橡皮可用作电极材料。它的优点是能方便快捷地放上和移开。由于只是在测定时才将电极放 到试样上,因此它不妨碍试样的条件处理。导电橡皮应足够柔软,以确保其在加上适当的压力例如 2 kPa(0.2 N/cm2)时能与试样紧密接触。8.8金属箔金属箔可粘贴在试样表面作为测量体积电阻用的电极,但它不适用于测量表面电阻。铅、梯铅合 金、铝和锡箔都是被普遍使用的。通常用少量的凡士林、硅脂、硅油或其他合适的材料作为粘贴剂将它 们粘贴到试样上去。含有下列组分的一种药用胶适合用作导电粘贴剂:分子量为600的无水聚乙二醇 800份(质量)水 200份(质量)软肥皂(药用级) 1份(质量)氯化钾 10份(质量)要在一个平稳的压力下粘贴电极,使之足以消除一切皱折和将多余的粘合剂赶到箔的边缘,再用一 块干净的薄纸擦去。用软物如手指按压能很好地做到这点。这个技巧仅适用于表面非常平滑的试样。 通过精心操作,粘合剂薄层可减小到0. 002 5 mm或更薄。9试样处置电极之间或测量电极与大地之间的杂散电流对于测试仪器的读数没有明显的影响这一点很重要。 测试时加电极到试样上和安放试样时均要极为小心,以免可能产生对测试结果有不良影响的杂散电流 通道。测量表面电阻时,不要清洗表面,除非另有协议或规定。除了同一材料的另一个试样的未被触模过 的表面可触及被测试样外,表面被测部分不应被任何东西触及。橡塑材料体积电阻率测试仪为测定体积电阻率,应按照有关的规范测量每个试样的平均厚度,其厚度测量点应均匀地分布在由 被保护电极所覆盖的整个面积上。注:对于薄试样无论如何在加上电极前测量厚度。一般说来,应与条件处理时相同的湿度(浸在液体中的条件处理除外)和温度下测试电阻。但有时 也可在停止条件处理后的规定时间内进行测量。11. 1体积电阻在测试以前应使试样具有电介质稳定状态。为此,通过测量装置将试样的测量电极1和3短路 (图la)),逐步增加电流测量装置的灵敏度到符合要求,同时观察短路电流的变化,如此继续到短路电 流达到相当恒定的值为止,此值应小于电化电流的稳定值,或者小于电化100 min的电流。由于短路电 流有可能改变方向,因此即使电流为零,也要维持短路状态到需要的时间。当短路电流L变得基本恒 定时(可能需要几小时),记下L的值和方向。然后加上规定的直流电压并同时开始记时」除非另有规定,在如下每个电化时间作一次测量: 1 min,2 min.5 min.10 min.50 min JOO mino如果两次连续测量得出同样的结果,贝lj可以结束试验并 用这个电流值来计算体积电阻。记录第一次观察到相同测量结果时的电化时间。如果在100 min内不 能达到稳定状态,则记录体积电阻与电化时间的函数关系。橡塑材料体积电阻率测试仪式中:⑶——体积电阻率,单位为欧姆米(Q &bull m)(或欧姆厘米(Q &bull cm));Rx——按H. 1测得的体积电阻,单位为欧姆(Q);A——是被保护电极的有效面积,单位为平方米(奇)(或平方厘米(cm2));h 试样的平均厚度,单位为米(m)(或厘米(cm))。在附录中给出了某些特殊的电极装置的有效面积A的计算公式。对于某些具有高电阻率的材料,电化以前的短路电流L(见11. 1)与电化期间的稳定电流L相比 不能忽略不计。橡塑材料体积电阻率测试仪式中:舟____表面电阻率,单位为欧姆(。);Rx——按II. 2规定而测得的表面电阻,单位为欧姆(Q);P——特定使用电极装置中被保护电极的有效周长,单位为米(m)(或厘米(cm)); g— 两电极之间的距离,单位为米(m)(或厘米(cm))o12.3重现性由于给定试样的电阻随试验条件而改变以及各个试样之间材料的不均匀性,故通常测量的不重现 性不是接近于±10%,而常常有较大的分散性(在大致相同的条件下测得值的比值可能会是10比l)o为使在相似的试样上进行的测量具有可比性,必须在大致相等的电位梯度下进行测量。13报吿报告应至少包括下述情况:a) 关于材料的说明和标志(名称、等级、颜色、制造商等);b) 试样的形状和尺寸;c) 电极和保护装置的形式、材料和尺寸;d) 试样的处理(清洁、预干燥、处理时间、湿度和温度)等;e) 试验条件(试样温度、相对湿度);0测量方法;g) 施加电压;h) 体积电阻率(需要时);注1:当规定了一个固定的电化时间时,注明此时间,给出个别值,并报告中值作为体积电阻率。注2:当在不同的电化时间后测试时,应按如下要求报告:当在相同的电化时间里试样达到一个稳定状态时,给出个别值,并报告中值作为体积电阻率。在这个电化时 闾里有某些试样不能达到稳定状态,则报告不能达到稳定状态的试样数,并分别地给出它们的结果。当测试 结果取决于电化时间时,则报告它们之间的关系,例如:以图的形式或给出在电化1 min, 10 min和100 min 后的体积电阻率的中值。橡塑材料体积电阻率测试仪A. 1伏安法本直接法应用如图5所示的线路。用直流电压表测量所施加的电压。用电流测量装置测量电流, 电流测量装置可以是检流计(现在已很少使用)、电子放大器或静电计。一般说来,当试样被充电时,测量装置宜短路以避免在此期间损坏。检流计宜具有高的电流灵敏度,且配有通用分流器(也叫Ayrton分流器)。未知电阻(以Q表示) 计算如下:Uka式中:U …所施加的电压,单位为伏(V);k-—-检流计的灵敏度,以A/刻度表示;a 偏转,以刻度表示。电阻不超过101() Q〜 10“ Q时,可用一个检流计,在100 V下以所需要的精确度进行测量。具有高的输入电阻、并由一个已知高的电阻值R所分流的电子放大器或静电计可用来作为电流测 量装置。借助于电阻尺两端的电压降队来测量电流。未知电阻Rx计算如下:式中:U 是所施加的电压(假设RVRx)。具有不同值的一些电阻R可以装在仪器的箱子里,该仪器常直接用安或其约数来标刻度。这里,能以需要的精确度测量的最大电阻值取决于电流测量装置的性能。U,的误差是由指示器误 差、放大器的零点漂移和增益的稳定性来决定的。在合理设计的放大器和静电计中,增益的不稳定性是 可忽略的,零点漂移也可保持在低的水平,即按测量所需的时间看是无关紧要的。高增益的电子电压表 的指示误差一般为满刻度偏转的±(2%〜 5%),使用具有相同的精确度而又不大于1012 C的电阻器是 可行的。如果电压测量装置有大于io14 n的输入电阻,且在输入电压为10 mV时有满刻度偏转,则能 以约±10%的精确度来测量10~14 A的电流。1016。的电阻可用具有很高电阻的精密电阻器和电子放大电压表或静电计在100 V电压下以所要 求的精确度来测量。A.2比较法A. 2. 1惠斯登电桥法如图6所示,试样与惠斯登电桥的一个臂相连接。三个已知桥臂应具有尽可能高的电阻值,它们受 到桥臂中电阻器的固我误差所限制。通常电阻R,是以十进级变化的,电阻用来作平衡微调,而&N 在测量过程中是固定不变的。检测器是一个直流放大器,它的输入电阻比电桥内任何一个桥臂的电阻 值都高。未知电阻Rx计算如下:性能特点◎ 全自动一键操作可自动扫描最平稳的量程阶段 ◎微电脑处理器反应迅速可在最短时间内计算出最佳频段◎ 夹具数字显示 ◎ 4.3寸TFT液晶显示◎ 中英文可选操作界面◎ 最高2MHz的测试频率,10mHz分辨率◎ 平衡测试功能◎ 变压器参数测试功能◎ 最高测试速度:13ms/次◎ 电压或电流的自动电平调整(ALC)功能◎ V、I 测试信号电平监视功能◎ 内部自带直流偏置源◎ 可外接大电流直流偏置源◎ 10点列表扫描测试功能◎ 30Ω、50Ω、100Ω可选内阻
    留言咨询
  • 产品特点:将UJ系列电位差计、光电检流计、标准电池等集成一体,体积小,重量轻,便于携带;数字显示:电位差值七位显示,数值直观清晰、准确可靠;既可使用内部基准进行校准,又可外接标准电池作基准进行校准,使用方便灵活;保留电位差计测量功能,真实体现电位差计对比检测误差微小的优势;电路采用对称漂移抵消原理,克服了元器件的温漂和时漂,提高测量的准确度;采用无极波段开关,可任意调节;可用内标或外标进行标定。技术指标:测量范围:0~±5V分 辨 率:1uV;内标:1V基准。
    留言咨询
  • 一、产品概述:GBT1409介电常数测试仪-ASTM D150介电常数测试仪采用数字液晶显示,是通过GB1409中的Q表法测试固体/液体绝缘材料介电常数及介质损耗因数的分析仪器。它以单片计算机控制仪器,测量核心采用了频率数字锁定、标准频率测试点自动设定、谐振点自动搜索、Q值量程自动转换、数值显示等新技术,北京航天纵横检测仪器改进了调谐回路,使得调谐测试回路的残余电感减至低值,并保留了原Q表中自动稳幅等技术,使得新仪器在使用时更为方便,测量时更为精确。可直读介电常数及介质损耗结果,免去人工计算的繁琐。经过新升级可通过上位机软件查看测试曲线,北京航天纵横仪器是代替进口设备的产品。北京航天纵横检测仪器器能在较高的测试频率条件下,测量高频电感或谐振回路的Q值,电感器的电感量和分布电容量,电容器的电容量和损耗角正切值,电工材料的高频介质损耗,高频回路有效并联及串联电阻,传输线的特性阻抗等。产地北京房山。二、技术特性:序号项目参数1DDS数字合成信号50KHz-160MHz-ZJD-C2信号源频率覆盖比1600:13信号源频率精度6位有效数3×10-5 ±1个字4Q测量范围/Q分辨率1-1000自动/手动量程;4位有效数,分辨率0.15Q测量工作误差5%6电感测量范围/分辨率1nH-140mH 4位有效数,分辨率0.1nH7电感测量误差5%8调谐电容主电容17-240pF9电容直接测量范围1pF~25nF10调谐电容误差/分辨率±1pF或1% / 0.1pF11谐振点搜索自动扫描12Q合格预置范围5-1000声光提示13Q量程切换自动/手动/北京航天纵横14LCD显示参数F,L,C,Q,Lt,Ct波段等15新增功能自身残余电感和测试引线电感的自动扣除功能16新增功能大电容值直接测量显示功能,测量值可达25nF17消耗功率约25W二、符合标准:GB/T1409-2006测量电气绝缘材料在工频、音频、高频下电容率和介质损耗因数的推荐方法;GB/T1693-2007硫化橡胶介电常数和介质损耗角正切值的测定方法;ASTM D150-11实心电绝缘材料的交流损耗特性和电容率(介电常数)的标准试验方法;GBT5594.4-2015电子元器件结构陶瓷材料性能测试方法; 三、产品特点:1、双扫描技术 - 测试频率和调谐电容的双扫描、自动调谐搜索功能。2、双测试要素输入 - 测试频率及调谐电容值皆可通过数字按键输入。3、双数码化调谐 - 数码化频率调谐,数码化电容调谐。4、自动化测量技术 -对测试件实施 Q 值、谐振点频率和电容的自动测量。5、全参数液晶显示 – 数字显示主调电容、电感、 Q 值、信号源频率、谐振指针。6、DDS 数字直接合成的信号源 -确保信源的高葆真,频率的高精确、幅度的高稳定。7、计算机自动修正技术和测试回路优化—使测试回路 残余电感减至低值,彻底根除 Q 读数值在不同频率时要加以修正的困惑。8、新增功能:电感测试时,仪器自身残余电感和测试引线电感的自动扣除功能。大大提高了在电感值(特别是小电感值)测量时的精度。此技术只有北京航天纵横检测仪器生产的Q表有。9、新增功能:大电容值直接测量显示功能,电容值直接测量值可达25nF(配100uH电感时)。大电容值测量一个按键搞定。此技术只有北京航天纵横检测仪器生产的Q表有。四、工作环境:1、环境温度:0℃~+40℃;2、相对湿度:80%;3、电源:220V±22V,50Hz±2.5Hz。五、配置清单:序号配置数量/单位1航天纵横仪器主机一台2电感九只3夹具一套4液体杯一个5电源线一根6数据线一根7说明书一份8合格证一份9保修卡一张六、适用单位:该仪器可以用于科研机关,学校,例如一些科研院所,大专院校或计量测试部门的实验室需要用介电常数仪对绝缘材料的介质损耗角正切tanδ及介电常数进行测试;北京航天纵横检测仪器同时也适用于工厂或单位,例如一些工厂对无机非金属新材料性能的应用进行研究,另外在电力、电工、化工等领域,如:电厂、电业局实验所、变压器厂、电容器厂、绝缘材料厂、炼油厂等单位对固体及液体绝缘材料的介质损耗和相对介电常数ε的质量检测等等。七、试验步骤:1、按照Q表的操作规程调整仪器,选定测量频率,测定C1和Q1的值。2、将试样放入测试电极中,并调节电容器C,使电路谐振,达到最大Q值记下调谐电容量C2和Q2的值。3、将试样从测试电极中取出,调节C或测试电极的距离,使电路重新谐振,记下C、或测试电极的校正电容值与Q值,北京航天纵横检测仪器并根据测试值计算出损耗角tanδ与介电常数ε。4、其他高频测试仪器按其北京航天纵横检测仪器说明书进行操作,通过测试值计算出损耗角tanδ和介电常数ε。八、试验条件:1、试样表面应清洁、平滑,无裂纹、气泡和杂质等,试样表面应用蘸有无水乙醇的布擦洗。2、试样应在标准实验室温度及湿度下至少调节24h。3、当试样处理有特殊要求时,可按其产品标准规定的进行。九、测试意义:1、介电常数——绝缘材料通常以两种不同方式来使用,即(1)用于固定电学网络部件,同时让其彼此以及与地面绝缘;(2)用于起到某一电容器的电介质作用。在第一种应用中,通常要求固定的电容尽可能小,同时具有可接受且一致的机械,化学和耐热性能。北京航天纵横检测仪器因此要求电容率具有一个低值。在第二种应用中,要求电容率具有一个高值,以使得电容器能够在外型上能尽可能小。有时使用电容率的中间值来评估在导体边缘或末端的应力,以将交流电晕降至最小。2、交流损耗——对于这两种场合(作为电学绝缘材料和作为电容器电介质),交流损耗通常必须是比较小的,以减小材料的加热,同时将其对网络剩余部分的影响降至最小。在高频率应用场合,特别要求损耗指数具有一个低值,因为对于某一给定的损耗指数,电介质损耗直接随着频率而增大。北京航天纵横检测仪器在某些电介质结构中,例如试验用终止衬套和电缆所用的电介质,通常电导增加可获得损耗增大,这有时引入其来控制电压梯度。在比较具有近似相同电容率的材料时或者在材料电容率基本保持恒定的条件下使用任何材料时,这可能有助于考虑耗散因子,功率因子,相位角或损耗角。3、相关性——当获得适当的相关性数据时,耗散因子或功率因子有助于显示某一材料在其它方面的特征,例如电介质击穿,湿分含量,固化程度和任何原因导致的破坏。然而,由于热老化导致的破坏将不会影响耗散因子,除非材料随后暴露在湿分中。北京航天纵横检测仪器当耗散因子的初始值非常重要的,耗散因子随着老化发生的变化通常是及其显著的。十、典型用户及其它产品:沧州大化集团ZJC-50kV电压击穿试验仪中国计量大学ZST-212体积表面电阻率测试仪河南平煤神马聚碳材料有限责任公司ZJD-C介电常数介质损耗测试仪温州市鹿城区科学技术局ZDH-20KV耐电弧试验仪东莞初创应用材料有限公司LDQ-5漏电起痕试验仪北京航空航天大学XRW-300HB热变形维卡温度测定仪中国科学技术大学XNR-400H熔体流动速率测定仪惠州市杜科新材料有限公司JF-6氧指数测定仪宁波东烁新材料科技有限公司CZF-5水平垂直燃烧试验机云南能投硅材科技发展有限公司WDW-50KN材料电子拉力试验机 沧州大化集团中国计量大学河南平煤神马聚碳材料有限责任公司温州市鹿城区科学技术局东莞初创应用材料有限公司北京航空航天大学中国科学技术大学惠州市杜科新材料有限公司宁波东烁新材料科技有限公司云南能投硅材科技发展有限公司天津科技大学十一、相关产品:ZJC-50kV电压击穿试验仪ZST-212体积表面电阻率测试仪ZJD-C介电常数介质损耗测试仪ZDH-20KV耐电弧试验仪LDQ-5漏电起痕试验仪XRW-300HB热变形维卡温度测定仪XNR-400H熔体流动速率测定仪JF-6氧指数测定仪CZF-5水平垂直燃烧试验机WDW-50KN材料电子拉力试验机介质损耗角正切的测量如前所述,介质损耗角正切tanδ是在交流电压作用下,电介质中电流的有功分量与无功分量的比值,它是一个无量纲的数。在一定的电压和频率下,它反映电介质内单位体积中能量损耗的大小,它与电介质的体积尺寸大小无关。因此,能从测得的tanδ 数值直接了解绝缘情况。介质损耗角正切tanδ的测量是判断绝缘状况的一种比较灵敏和有效的方法,从而在电气设备制造、绝缘材料的鉴定以及电气设备的绝缘试验等方面得到了广泛的应用,特别对受潮、老化等分布性缺陷比较有效,对小体积设备比较灵敏,因而tanδ的测量是绝缘试验中一个较为重要的项目。如果绝缘内的缺陷不是分布性而是集中性的,则用测tanδ值来反映绝缘的状况就不很灵敏,被试绝缘的体积越大,越不灵敏,因为此时测得的tanδ反映的是整体绝缘的损耗情况,而带有集中性缺陷的绝缘是不均匀的,可以看成是由两部分介质并联组成的绝缘,其整体的介质损耗为这两部分损耗之和,即或 得 且 若整体绝缘中体积为V2的一小部分绝缘有缺陷,而大部分良好的绝缘的体积为V1,即V2&nLt V1,则得C2&nLt C1,C≈C1),于是 (3-3)由于式(3-3)中的系数很小,所以当第二部分的绝缘出现缺陷,tanδ增大时,并不能使总的tanδ值明显增大。只有当绝缘有缺陷部分所占的体积较大时,在整体的tanδ中才会有明显的反映。例如在一台110kV大型变压器上测得总的tanδ为0.4%,是合格的,但把变压器套管分开单独测得tanδ达3.4%就不合格。所以当变压器等大设备的绝缘由几部分组成时,最好能分别测量各部分的tanδ,以便于发现绝缘的缺陷。电机、电缆等设备,运行中的故障多为集中性缺陷发展造成的,用测tanδ的方法不易发现绝缘的缺陷,故对运行中的电机、电缆等设备进行预防性试验时,不测tanδ。而对套管绝缘,因其体积小,故tanδ测量是一项必不可少且较为有效的试验。当固体绝缘中含有气隙时,随着电压的升高,气隙中将产生局部放电,使tanδ急剧增大,因此在不同电压下测量tanδ,不仅可判断绝缘内部是否存在气隙,而且还可以测出局部放电的起始电压U0,显然U0的值不应低于电气设备的工作电压。在用tanδ 值判断绝缘状况时,除应与有关标准规定值进行比较外,同样必须与该设备历年的tanδ值相比较以及与处于同样运行条件下的同类型其他设备相比较。即使tanδ值未超过标准,但与过去比较或与同样运行条件下的同类型其他设备比,tanδ值有明显增大时,必须要进行处理,以免在运行中发生事故。一、QS1型电桥原理在绝缘预防性试验中,常用来测量设备绝缘的tanδ值和电容C值和方法是采用QS1电桥(平衡电桥),其原理接线图如图3-4所示。它有四个桥臂组成,臂1为被试品Zx,图中用CX及RX的并联等值电路来表示;臂2为标准无损电容器CN,一般为50pF,它是用空气或其他压缩气体作为介质(常用氮气),其tanδ值很小,可认为零;臂3、4为装在电桥本体内的操作调节部分,包括可调电阻R3、可调电容C4及与其并联的固定电阻R4。外加交流高压电源(电压一般为10kV),接到电桥的对角线CD上,在另一对角线AB上则接上平衡指示仪表G,G一般为振动式检流计。进行测量时,调节R3、C4,使电桥平衡,即使检流计中的电流为零,或UAB为零,这时有 (3-4)将上述阻抗值代入式(3-4),并使等式左右的实数部分和虚数部分分别相等,即可求得 (3-5)因tanδ很小,tan2δ&nLt 1,故得 (3-6)由于我国使用的电源频率为50HZ,故ω=2Πf=100Π,为了便于读数,在电桥制造时常取R4=104/Π=3184Ω,因此 (3-7)这样,当调节电桥平衡时,在分度盘上C4的数值就直接以tanδ(%)来表示,读取数值极为方便。为了避免外界电场与电桥各部分之间产生的杂散电容对电桥产生干扰,电桥本体必须加以屏蔽,如图3-4中的虚线所示。由被试品和标准无损电容器连到电桥本体的引线也要使用屏蔽导线。在没有屏蔽时,出高压引线到A、B两点间的杂散电容分别与CX与CN并联(见图3-4),将会影响电桥平衡。加上屏蔽后,上述杂散电容变为高压对地的电容,与整个电桥并联,就不影响电桥的平衡了。但加上屏蔽后,屏蔽与低压臂3、4间也有杂散电容存在,如果要进一步提高测量的标准度,必须消除它们的影响,但在一般情况下,由于低压臂的阻抗及电压降都很小,这些杂散电容的影响可以忽略不计。二、接线方式用国产QS1型电桥测量tanδ时,常有两种接线方式。1.正接线图3-4所示接线方式中,电桥的C点接到电源的高压端,D点接地,这种接线称为正接线。此种接线由于桥臂1及2的阻抗ZX和ZN的数值比Z3和Z4大得多,外加高电压大部分降落在桥臂1及2上,在调节部分R3及C4上的电压降通常只有几伏,对操作人员没有危险。为了防止被试品或标准电容器一旦发生击穿时在低压臂上出现高电压,在电桥的A、B点上和接地的屏蔽间接有放电管F,以保证人身和设备的安全。正接线测量的准确度较高,试验时较安全,对操作人员无危险,但要求被试品不接地,两端部对地绝缘,故此种接线适用于试验室中,不适用于现场试验。2.反接线现场电气设备的外壳大都是接地的,当测量一极接地的试品的tanδ时,可采用如图3-5所示的反接线方式,即把电桥的D点接到电源的高压端,而将C点接地,在这种接线中,被试品处于接地端,调节元件R3、C4处于高压端,因此电桥本体(图3-4虚线框内)的全部元件对机壳必须具有高绝缘强度,调节手柄的绝缘强度更应能保证人身安全,国产便于携带式QS1型电桥的接线即属这种方式。三、干扰的产生与消除在现场测量tanδ时,特别是在110kV及以上的变电所进行测量时,被试品和桥体往往处在周围带电部分的电场作用范围之内,虽然电桥本体及连接线都采用了前面所述的屏蔽,但对被试品通常无法做到全部屏蔽,如图3-6所示。这时等值干扰电源电压U´ 就会通过与被试品高压电极间的杂散电容C´ 产生干扰电流I´ ,因而影响测量的准确。当电桥平衡时,流过检流计的电流IG=0,此时检流计支路可看作开路,干扰电流I´ 在通过C´ 以后分成两路,一路经CX入地,另一路经R3及试验变压器的漏抗入地,由于前者的阻抗远大于后者,故可以认为I´ 实际上全部流过R3。在没有外电场干扰的情况下,电桥平衡时流过R3的电流即为流过被试品的电流IX,相应的介质损耗角为δX,如图3-7所示。有干扰时,由于干扰电流流过R3,改变了电桥的平衡条件,这时要电桥平衡就必须把R3和C4调整到新的数值。由于C4值的改变,测得的损耗角δ´ X已不同于没有下扰时的实际损耗角δX了,因此对流过R3的电流已变成,即相当于在上叠加一个干扰电流、与的夹角就是。同时R3值的改变也引起了测得的CX值改变。引起tanδ和CX测量值的变化将随的数值和相位而定。在干扰源固定时,的相量端点的轨迹为一圆。在某些情况下,当干扰结果使的相量端点落在图3-7 所示的阴影部分的圆弧上时,tanδ值将变为负值,这时电桥在正常接线下已无法达到平衡,只有把C4从桥臂4换接到桥臂3与R3并联,才能使电桥平衡,并按照新的平衡条件计算出tanδ值。当的相量端点落在图3-7中的A、B点时,即干扰电流与同相或反相时,tanδ值不变,但此时的IX值变大或变小,将引起测得的CX值变大或变小。为了避免干扰,消除或减小由电场干扰所引起的误差,可采用下列措施。1.尽量远离干扰源在无法远离干扰源时,加设屏蔽,用金属屏蔽罩或网将被试品与干扰源隔开,并将屏蔽罩与电桥的屏蔽相连,以消除C´ 的影响,但这往往在实际上不易做到。2.采用移相电源由图3-7可看出,在有干扰的情况下,只要使与同相或反相,测得的tanδ值不变,干扰电流的相位一般是无法改变的,但可以改变电源电压从而改变的相位以达到上述目的。应用移相电源消除干扰时,在试验前先将Z4短接,将R3调到最大值,使干扰电流尽量通过检流计(因其内阻很小),并调节移相电源的相角和电压幅值,使检流计指示达最小,这表明与相位相反,移相任务已经完成,即可退去电源电压,保持移相电源相位,拆除Z4间的短接线,然后正式开始测量。若在电源电压正、反相二种情况下测得的tanδ值相等,说明移相效果良好,此时测得的tanδ为真实值。但正、反相两次所测得的电流分别为和,故,因此,被试品电容的实际值应为正、反相两次测得的平均值。用移相法基本上可以消除同频率的电场干扰所造成的测量误差。3.采用倒相法倒相法是一种比较简便的方法。测量时将电源正接和反接各测一次,得到二组测量结果tanδ1、C1和tanδ2、C2,然后进行计算求得tanδ值和CX值。图3-8表示被试品电流和干扰电流的相量图。在图中,当电源反相时,实际上就相当于把干扰电流反相变成'而其余相量不动,故在图中用反相的代替反相的,这样使分析比较方便,而其结果是一样的。由图3-8中可看出由于,,代入上式可得 (3-8)又因 故得 (3-9)应用式(3-8)和式(3-9)可以正确地计算出tanδ值和CX值。当干扰不大,即tanδ1与tanδ2相差不大、C1与C2相差不大时,式(3-8)可简化为 (3-10)即可取两次测量结果的平均值,作为被试品的介质损耗角正切值。在现场进行测量时,不但受到电场的下扰,还可能受到磁场的干扰。一般情况下,磁场的干扰较小,而且电桥本体都有磁屏蔽,CX及CN的引线虽较长,但其阻抗较大,感应弱时,不能引起大的干扰电流。但当电桥靠近电抗器等漏磁通较大的设备时,磁场的干扰较为显著。通常,这一干扰主要是由于磁场作用下电桥检流计内的电流线圈回路所引起的。可以把检流计的极性转换开关放在断开位置,此时如果光带变宽,即说明有此种干扰。为了消除干扰的影响,可设法将电桥移到磁场干扰范围以外。若不能做到,则可以改变检流计极性开关进行两次测量,用两次测量的平均值作为测量结果,以减小磁场干扰的影响。四、测量 tanδ时的注意事项(1)无论采用何种接线方式,电桥本体必须良好接地。(2)反接线时,三根引线均处于高压,必须悬空,与周围接地体应保持足够的绝缘距离。此时,标准电容器外壳带高电压,也不应有接地的物体与外壳相碰。(3)为防止检流计损坏,应在检流计灵敏度最低时接通或断开电源。(4)在体积较大的设备中存在局部缺陷时,测量总体的tanδ 不易反映;而对体积较小的设备就比较容易发现绝缘缺陷,为此,对能分开测量的试品应尽量分开测量。(5)一般绝缘的tanδ均随温度的上升而增大。各种试品在不同温度下的tanδ值也不可能通过通用的换算式获得准确的换算结果。故应争取在差不多的温度下测量tanδ值,并以此作相互比较。通常都以20℃时的值作为标准(绝缘油例外)。为此,一般要求在10~30℃的范围内进行测量。(6)试验时被试品的表面应当干燥、清洁,以消除表面泄漏电流的影响。(7)在进行变压器、电压互感器等绕组的tanδ值和电容值的测量时,应将被试设备所有绕组的首尾短接起来,否则会产生很大的误差。
    留言咨询
  • 环氧树脂体积表面电阻率测试仪某些材料如层压材料在表面层和内部可能有很不同的电阻率,因此测量清洁的表面的内在性能是 有意义的。应完整地规定为获得一致的结果而进行清洁处理的程序,并要记录清洁过程中溶剂或其他 因素对于表面特性可能产生的影响.表面电阻,特别是当它较高时,常以不规则方式变化,且通常非常依赖于电化时间。因此,测量时通 常规定一分钟的电化时间。5电源要求有很稳定的直流电压源。这可用蓄电池或一&bull 个整流稳压的电源来提供。对电源的稳定度要求 是由电压变化导致的电流变化与被测电流相比可忽略不计。加到整个试样上的试验电压通常规定为100 V.250 V.500 va 000 V、2 500 V,5 000 VJO 000 V 和15 000 V。最常用的电压是100 V.500 V和1 000 V。在某些情况下,试样的电阻与施加电压的极性有关。如果电阻是与极性有关的,则宜加以注明。取两次电阻值的几何平均值(对数算术平均值的反对 数)作为结果。由于试样电阻可能与电压有依存关系,因此应在报告中注明试验电压值。6测量方法和精确度环氧树脂体积表面电阻率测试仪附录A给出了描述这些原理的例子。伏安法需要一适当精度的伏特表,但该方法的灵敏度和精确度主要取决于电流测量装置的性能,该 装置可以是一个检流计或电子放大器或静电计。电桥法只需要一灵敏的电流检测器作为零点指示器,测量精确度主要取决于已知的桥臂电阻器,这 些桥臂电阻应在宽的电阻值范围内具有高的精密度和稳定性。电流比较法的精确度取决于已知电阻器的精确度和电流测量装置,包括与它相连的测量电阻器的 稳定度和线性度。只要电压是恒定的,电流的确切数值并不重要。对于不大于IO11 Q的电阻,可以按照11. 1用检流计采用伏特计一安培计法来测定其体积电阻率。 对于较高的电阻,则推荐使用直流放大器或静电计。在电桥法中,不可能直接测量短路试样中的电流(见11. 1)。利用电流测量装置的方法可以自动记录电流,以简化稳态测试过程(见11. l)o现已有测量高电阻的一些专门的线路和仪器。只要它们有足够的精确度和稳定度,且在需要时能 使试样完全短路并在电化前测量电流者,均可使用.环氧树脂体积表面电阻率测试仪组成测量线路的绝缘材料,最好应具有与被试材料差不多的性能。试样的测量误差可以由下列原 因产生:a) 外来寄生电压引起的杂散电流,通常不知道它的大小,并具有漂移的特点;b) 具有未知而易变的电阻值的绝缘与试样电阻、标准电阻器或电流测量装置的不正常的分路.使线路所有部分在使用状态下有尽可能高的绝缘电阻来近似地修正这些影响因素。这种做法可能 导致测试设备很笨重,而又不足以测量高于几百兆欧的绝缘电阻。较为满意的修正方法是使用保护技 术来实现。保护就是在所有关键的绝缘部位插入保护导体,保护导体截住所有可能引起误差的杂散电流。这 些保护导体联接在一起,组成保护系统并与测量端形成三端网络。当线路联接恰当时,所有外来寄生电 压产生的杂散电流被保护系统分流到测量电路以外,任一测量端到保护系统的绝缘电阻与一电阻低得 多的线路元件并联,试样电阻仅限于两测量端之间。采用这个技术可大大地减小误差概率。图1为使 用保护电极测量体积电阻和表面电阻的基本线路。环氧树脂体积表面电阻率测试仪在保护端和被保护端之间所存在的电解电动势、接触电动势或热电动势较小时,均能被补偿掉,使 这样的电动势在测量中不会引入显著的误差。在电流测量法中,由于电流测量装置与被保护端和保护系统之间的电阻并联可能产生误差,因此, 这个电阻宜至少为电流测量装置电阻的10倍,最好为100倍。在有些电桥法中,保护端和测量端具有 大致相同的电位,不过电桥中的一个标准电阻器与不保护端和保护系统之间的电阻是并联的。这个电 阻应至少为标准电阻的10倍,最好为100倍。环氧树脂体积表面电阻率测试仪体积电阻率为测定体积电阻率,试样的形状不限,只要能允许使用第三电极来抵消表面效应引起的误差即可。 对于表面泄漏可忽略不计的试样,测量体积电阻时可去掉保护,只要已证明去掉保护对结果的影响可忽 略不计。在被保护电极与保护电极之间的试样表面上的间隙要有均匀的宽度,并且在表面泄漏不致于引起 测量误差的条件下间隙应尽可能的窄。1 mm的间隙通常为切实可行的最小间隙。图2及图3给出了三电极装置的例子。在测量体积电阻时,电极1是被保护电极,电极2为保护电 极,电极3为不保护电极。被保护电极的直径M (图2)或长度丄(图3)应至少为试样厚度/1的10倍,通 常至少为25 mm。不保护电极的直径也(或长度厶)和保护电极的外直径公(或保护电极两外边缘之间 的长度G应该等于保护电极的内径必(或保护电极两内边缘之间的长度上)加上至少2倍的试样 厚度。概述绝缘材料用的电极材料应是一类容易加到试样上、能与试样表面紧密接触、且不致于因电极电阻或 对试样的污染而引入很大误差的导电材料.在试验条件下,电极材料应能耐腐蚀。下面是可使用的一 些典型的电极材料。电极应与给定形状和尺寸的合适的背衬电极一同使用。简便的做法是用两种不同的电极材料或两种不同的使用方法来了解电极材料是否会引入很大 误差。8.2导电银漆某些高导电率的商品银漆,无论是气干的或低温烘干的,是足够疏松的、能透过湿气,因此可在加上 电极后对试样进行条件处理。这种特点特别适合研究电阻-……湿气效应以及电阻随温度的变化。然 而,在导电漆被用作一种电极材料以前,应证实漆中的溶剂不影响试样的电性能。用精巧的毛刷可做到 使保护电极的边缘相当光滑。但对于圆电极,可先用圆规画出电极的轮廊,然后用刷子来涂满内部的方 法来获得精细的边缘。如电极漆是用喷枪喷上去的,则可采用固定模框。8.3喷镀金属可使用能满意地粘合在试样上的喷镀金属。薄的喷镀电极的优点是一旦喷在试样上便可立即使 用。这种电极或许是足够疏松的,可允许对试样进行条件处理,但这一特点应被证实.固定的模框可用 来制取被保护电极与保护电极之间的间隙。
    留言咨询
  • 产品介绍: 智能型QJ36 数字电阻电桥是传统智能导体电阻测试仪的升级版,本测试装置为综合性测试系统,包含直流电桥、放大式检流计、恒流源和标准电阻等附件的功能。本 智 能 仪 器 技 术 性 能 能 满 足 国际电工委员会(IEC)468和国标 GB/T3048.4-2007导体直流电阻试验标准。测量数据符合标 准,为企业节约材料,质量源头得到控制。工作效率进一步提高。配合传统的 1m 电桥夹具进行测量,这样既符合了产品质量测试标准,又减少了不必要的浪费,提高了产品的生产效率。标准:● GB/T3048.4-2007;产品优势:● 采用高分辨率触摸屏,多位数值显示,数据读取直观;● 集合多种测试方法:实芯线,扁形线,重量法,其他;● 采用先进的高精度芯片和温度传感器,具有测试精度高,数据重复性好;● 一键式测量,无须用户手动切换档位和值的换算,操作更加方便; ● 自动换算成20℃下的电阻率,数据自动转换等优点;● 造型美观,坚固耐用,便于携带。技术参数:● 使用环境a、参比条件:温度 20℃±0.5℃ 相对湿度 40%-60%; b、标称条件:温度 10℃-30℃ 相对湿度 25%-75%; ● 各量程主要参数: 量 程 分辨率 测量范围基本误差200μΩ0.01μΩ0-199.99μΩ±0.3%Rx2mΩ0.1μΩ0-1.9999mΩ20mΩ1μΩ0-19.999mΩ200mΩ10μΩ0-199.99mΩ2Ω100μΩ0-1.9999Ω20Ω1mΩ0-19.999Ω200Ω10mΩ0-199.99Ω2kΩ100mΩ0-1.9999kΩ● 温度精度:0.1℃。规格:● 外形尺寸:520(W)mm×420(D)mm×30(H)mm;● 电源:AC220V 50Hz;● 重量:7.5kg。
    留言咨询
  • 液体增塑剂体积电阻率的测定仪GB/T 22043-2008 服装 防静电性能 通过材料的电阻(垂直电阻)试验方法GB/T 24249-2009 防静电洁净织物GB 26539-2011 防静电陶瓷砖 Antistatic ceramic tileGB/T 26825-2011 抗静电防腐胶GB 50515-2010 导(防)静电地面设计规范GB 50611-2010 电子工程防静电设计规范GJB 105-1998-Z 电子产品防静电放电控制手册GJB 3007A-2009 防静电工作区技术要求GJB 5104-2004 无线电引信风帽用防静电涂料及风帽静电性能通用要求液体增塑剂体积电阻率的测定仪采用高性能微处理器控制的绝缘电阻测试仪。输出电压1-1000v连续可调,可以测试5*102Ω~1*1016Ω的直显电阻/电阻率(超出显示电流换算可到20次方),最大显示99999数,测试速度可达5次/秒。仪器拥有专业分选功能,具有10组设置存储数据,多样分选讯响设置,配备Handler接口,应用于自动分选系统完成全自动流水线测试。内置RS232接口及LAN接口,用于远程控制和数据采集与分析。计算机远程控制指令兼容SCPI(Standard Command for Programmable Instrument仪器标准命令集),高效完成远程控制和数据采集功能高绝缘电阻测量仪用于测量绝缘材料、电工产品、各种元器件的绝缘电阻;与恒温水浴配套后,还能测量不同温度下的塑料电线电缆(无屏蔽层)的绝缘电阻,该仪器具有测量精度高、性能稳定、操作简单、输入端高压短路等优点,仪器的最高量程 16次方超出16次方显示电流通过换算最大可到20次方电阻值(测试电压为 1-1000V)。 本仪表贯彻 Q/TPGG 7-2008 高绝缘电阻测量仪企业标准。液体增塑剂体积电阻率的测定仪介电常数测试仪由高频阻抗分析仪、测试装置,标准介质样品组成,能对绝缘材料进行 高低频介电常数(ε)和介质损耗角(D或tanδ) 的测试。它符合国标GB/T 1409-2006,美标ASTM D150以及IEC60250规范要求。介电常数测试仪工作频率范围是20Hz~2MHz,它能完成工作频率内对绝缘材料的相对介电常数(ε)和介质损耗角 (D或tanδ)变化的测试。 介电常数测试仪中测试装置是由平板电容器组成,平板电容器一般用来夹被测样品,配用高频阻抗分析仪作为指示仪器。绝缘材料的介电常数和损耗值是通过被测样品放入平板电容器和不放样品的D值(损耗值)变化和Cp(电容值)读数通过公式计算得到。 液体增塑剂体积电阻率的测定仪测试电压 1-1000v 1000个档位可以调测试范围 电阻102Ω~10 16Ω基本覆盖半导电材料和超绝缘材料的电阻测量(超出显示电流最大换算可到20次方), 电阻率最高可达到1022Ω.cm测量方式:手动/自动两种界面语言选择:英文/中文 两种显示位数:4/5位 两种选择测量模式:三种测试速度可选择 快速 5 次/秒,慢速 1 次/秒,两种可选回读电压精度 0.5%±1V测试特点:带设置记忆功能 开机一键测试出结果 不用反复设置可设定测量延时和放电延时十种自定义测量模式可以用户自己编辑开机直接调取 满足不同材料的测试需求 量程超限显示 量程上超 和量程下超输入端子 香蕉插头,BNC 插头精度保证期 1年 根据计量证书有效期 可在全国任意检测所检测 精度保证 操作温度和湿度 0℃到40℃80%RH以下(无凝结)液体增塑剂体积电阻率的测定仪伏安法需要一适当精度的伏特表,但该方法的灵敏度和精确度主要取决于电流测量装置的性能,该 装置可以是一个检流计或电子放大器或静电计。电桥法只需要一灵敏的电流检测器作为零点指示器,测量精确度主要取决于已知的桥臂电阻器,这 些桥臂电阻应在宽的电阻值范围内具有高的精密度和稳定性。电流比较法的精确度取决于已知电阻器的精确度和电流测量装置,包括与它相连的测量电阻器的 稳定度和线性度。只要电压是恒定的,电流的确切数值并不重要。对于不大于IO11 Q的电阻,可以按照11. 1用检流计采用伏特计一安培计法来测定其体积电阻率。 对于较高的电阻,则推荐使用直流放大器或静电计。在电桥法中,不可能直接测量短路试样中的电流(见11. 1)。利用电流测量装置的方法可以自动记录电流,以简化稳态测试过程(见11. l)o现已有测量高电阻的一些专门的线路和仪器。只要它们有足够的精确度和稳定度,且在需要时能 使试样完全短路并在电化前测量电流者,均可使用.6.2精确度对于低于io10 n的电阻,测量装置测量未知电阻的总精确度应至少为士io%。而对于更高的电 阻,总精确度应至少为士20%。详见附录A。6.3保护组成测量线路的绝缘材料,最好应具有与被试材料差不多的性能。试样的测量误差可以由下列原 因产生:a) 外来寄生电压引起的杂散电流,通常不知道它的大小,并具有漂移的特点;b) 具有未知而易变的电阻值的绝缘与试样电阻、标准电阻器或电流测量装置的不正常的分路.使线路所有部分在使用状态下有尽可能高的绝缘电阻来近似地修正这些影响因素。这种做法可能 导致测试设备很笨重,而又不足以测量高于几百兆欧的绝缘电阻。较为满意的修正方法是使用保护技 术来实现。保护就是在所有关键的绝缘部位插入保护导体,保护导体截住所有可能引起误差的杂散电流。这 些保护导体联接在一起,组成保护系统并与测量端形成三端网络。当线路联接恰当时,所有外来寄生电 压产生的杂散电流被保护系统分流到测量电路以外,任一测量端到保护系统的绝缘电阻与一电阻低得 多的线路元件并联,试样电阻仅限于两测量端之间。采用这个技术可大大地减小误差概率。图1为使 用保护电极测量体积电阻和表面电阻的基本线路。图5和图7给出了电流测量法中保护系统的使用方法,图中指出保护系统接到电源和电流测量装 置的连接点。图6表示惠斯登电桥法,其保护系统接到两个较低电阻值的桥臂的连接点上。在所有情 况下,保护系统必须完善,包括对测试人员在测量时操作的任何控制仪器的保护。在保护端和被保护端之间所存在的电解电动势、接触电动势或热电动势较小时,均能被补偿掉,使 这样的电动势在测量中不会引入显著的误差。在电流测量法中,由于电流测量装置与被保护端和保护系统之间的电阻并联可能产生误差,因此, 这个电阻宜至少为电流测量装置电阻的10倍,最好为100倍。在有些电桥法中,保护端和测量端具有 大致相同的电位,不过电桥中的一个标准电阻器与不保护端和保护系统之间的电阻是并联的。这个电 阻应至少为标准电阻的10倍,最好为100倍。为确保设备的操作令人满意,应先断开电源和试样的连线进行一次测量。此时,设备应在它的灵敏 度许可范围内指示出无穷大的电阻。如果有一些已知电阻值的标准电阻,则可用来检查设备运行是否 良好。
    留言咨询
  • 1:直流单臂电桥 单臂电桥 电桥 型号:HA/QJ23A本仪器是采用惠斯顿电桥线路、内附零仪、可内装干电池的携带式直流电阻电桥。用来测量1~11.110M&Omega 范围内的直流电阻值。适宜在实验室、车间及无交流电源现场使用。电桥采用JZ8-23A型性能电子放大式零仪,只设机械调零而无电器调零,并具有点动开机/自动关机等能,使用与张丝式检流计样简便。更为重要的是解决了张丝式检流计长期无法解决的容易损坏这难题。JZ8-23A型电路构思新颖,具有结构牢固、灵敏度、抗过载能力特别强等特点。倍 率有效量程分辨力准确度等数(C)***× 0.0010~11.110&Omega 1 M&Omega 0.51× 0.010~111.10&Omega 10 M&Omega 0.20.5× 0.10~1.1110K&Omega 100 M&Omega 0.10.1× 10~11.110K&Omega 1&Omega × 100~111.10K&Omega 10&Omega × 1000~1.1110M&Omega 100&Omega 0.20.5× 10000~5.000M&Omega 1 K&Omega 0.525~11.110M&Omega 5*-使用外接零仪时的准确度等数**-使用内接零仪时的准确度等数桥路电源为4.5v(3节1.5v 1号干电池串联使用),零仪电源为9v(1节6F22型叠层电池)。外形尺寸:(W) 320mm× (H) 280mm× (D) 170mm重量:3Kg2:地震检波器/地震检波仪/中频地震检波器 型号:DZ-CDJ&mdash Z/P40用途及特点· 广泛应用于石油、煤炭、冶金、防程等地震勘探及浅层地震勘探· 具有灵敏度、低失真、合理的阻尼系数、线性响应好、防水性好、具有较的分辨率。芯体均经过严格的低温、运输等试验,质量可靠。 为满足不同用户的需求,有水平及垂直三分量品种,可单或成串使用 DZ-CDJ中频系列检波器主要标DZ-CDJ-Z/P4.5 DZ-CDJ-Z/P10 DZ-CDJ-Z/P15 DZ-CDJ&mdash Z/P28DZ-CDJ-Z/P30 DZ-CDJ-Z/P38DZ-CDJ&mdash Z/P40DZ-CDJ&mdash Z/P60DZ-CDJ&mdash Z/P100自然频率fn (Hz)4.5± 10%10± 5%15± 5%28± 5%30± 5%38± 5%40± 5%60± 5%100± 5%灵敏度G (v/cm.s-1)0.28 ± 5% 0.26 ± 5% 0.30± 5% 0.25± 5% 线圈电阻 Rc(&Omega ) 365± 5% 500± 5% 650± 5% 690 ± 5% 1030± 5% 1080± 5% 内阻R(&Omega ) 345 ± 5% 335 ± 5% 300± 5% 415 ± 5% 560 ± 5% 580 ± 5% 800± 5% 1020 ± 5% 阻尼系数 Bt 0.7 ± 10% 0.58 ± 10% 0.62 ± 10% 0.6 ± 10% 0.5 ± 5% 谐波失真 D &le 0.2 缘电阻Ri (M&Omega )   &ge 20 线圈位移P-P  2(mm) 悬体质量M( g ) 13.212.88.67.95.95.2作温度(℃) &mdash 40 ~ + 70 尺 寸  芯 体 直径 ( mm ) &Phi 27.2度 ( mm ) 3432重量 ( g ) 858678护 壳 长度 ( mm ) 50宽度 ( mm ) &Phi 40度 ( mm ) 68 (垂直)/62(水平) 重量 ( g ) 255247温馨提示:以上产品资料与图片顺序相对应。
    留言咨询
  • 石油蜡和石油脂体积电阻率测定仪主要参数&bull 显示采用4.3寸高分辨率TFT屏显示,操作简单&bull 机身小巧,功能强大测试性能卓越&bull 回读电压精度0.5%±1V&bull 绝缘电阻最大精度 1%快速测试&bull 最小测试周期仅需200ms恒压测试&bull 采用恒压测试法快速测量绝缘电阻丰富的接口配置&bull HANDLER口&bull RS-232接口&bull 以太网接口&bull U盘接口&bull 可连接上位机软件操作 供电&bull 110v~240 V双模式供电&bull 电源频率47Hz~63Hz&bull 最大功耗 50W石油蜡和石油脂体积电阻率测定仪过这两种电阻的电流。附录A给出了描述这些原理的例子。伏安法需要一适当精度的伏特表,但该方法的灵敏度和精确度主要取决于电流测量装置的性能,该装置可以是一个检流计或电子放大器或静电计。电桥法只需要一灵敏的电流检测器作为零点指示器,测量精确度主要取决于已知的桥臂电阻器,这些桥臂电阻应在宽的电阻值范围内具有高的精密度和稳定性。电流比较法的精确度取决于已知电阻器的精确度和电流测量装置,包括与它相连的测量电阻器的稳定度和线性度。只要电压是恒定的,电流的确切数值并不重要。对于不大于10”Ω的电阻,可以按照11.1用检流计采用伏特计一安培计法来测定其体积电阻率。对于较高的电阻,则推荐使用直流放大器或静电计。在电桥法中,不可能直接测量短路试样中的电流(见11.1)。利用电流测量装置的方法可以自动记录电流,以简化稳态测试过程(见11.1)。现已有测量高电阻的一些专门的线路和仪器。只要它们有足够的精确度和稳定度,且在需要时能使试样完全短路并在电化前测量电流者,均可使用。6.2精确度对于低于10”Ω的电阻,测量装置测量未知电阻的总精确度应至少为士10%。而对于更高的电阻,总精确度应至少为士20%。详见附录A.6.3保护组成测量线路的绝缘材料,最好应具有与被试材料差不多的性能。试样的测量误差可以由下列原因产生:a)外来寄生电压引起的杂散电流,通常不知道它的大小,并具有漂移的特点 b)具有未知而易变的电阻值的绝缘与试样电阻、标准电阻器或电流测量装置的不正常的分路。使线路所有部分在使用状态下有尽可能高的绝缘电阻来近似地修正这些影响因素,这种做法可能导致测试设备很笨重,而又不足以测量高于几百兆欧的绝缘电阻。较为满意的修正方法是使用保护技术来实现。保护就是在所有关键的绝缘部位插入保护导体,保护导体截住所有可能引起误差的杂散电流,这些保护导体联接在一起,组成保护系统并与测量端形成三端网络。当线路联接恰当时,所有外来寄生电压产生的杂散电流被保护系统分流到测量电路以外,任一测量端到保护系统的绝缘电阻与一电阻低得多的线路元件并联,试样电阻仅限于两测量端之间。采用这个技术可大大地减小误差概率。图1为使用保护电极测量体积电阻和表面电阻的基本线路。图5和图7给出了电流测量法中保护系统的使用方法,图中指出保护系统接到电源和电流测量装置的连接点。图6表示惠斯登电桥法,其保护系统接到两个较低电阻值的桥臂的连接点上。在所有情况下,保护系统必须完善,包括对测试人员在测量时操作的任何控制仪器的保护。在保护端和被保护端之间所存在的电解电动势、接触电动势或热电动势较小时,均能被补偿掉,使这样的电动势在测量中不会引入显著的误差,石油蜡和石油脂体积电阻率测定仪参数一般功能:测量参数 绝缘电阻 R,泄漏电流 I,表面电阻 Rs,体积电阻 Rv测试电压 1-1000v 1000个档位可以调测试范围 电阻5*102Ω~1*10 16Ω(超出显示电流最大换算可到20次方), 电阻率最高可达到1022Ω.cm测量方式:手动/自动两种界面语言选择:英文/中文 两种显示位数:4/5位 两种选择测量模式:三种测试速度可选择 快速 5 次/秒,慢速 1 次/秒,两种回读电压精度 0.5%±1V测试特点:带设置记忆功能 开机一键测试出结果 不用反复设置可设定测量延时和放电延时量程超限显示 量程上超输入端子 香蕉插头,BNC 插头精度保证期 1年 根据计量证书有效期操作温度和湿度 0℃到40℃80%RH以下(无凝结)存储温度和湿度 -10℃到60℃ 80%RH以下(无凝结)操作环境 室内,最高海拔2000m电源 电压:110V/ 220V AC 频率:47Hz/63Hz 两种供电模式功耗 50 W尺寸 约 331 mm x 329 mm x 80 mm重量 约 4.1kg石油蜡和石油脂体积电阻率测定仪GB/T 1410-2006/IEC 60093:19807试样7.1体积电阻率为测定体积电阻率,试样的形状不限,只要能允许使用第三电极来抵消表面效应引起的误差即可。对于表面泄漏可忽略不计的试样,测量体积电阻时可去掉保护,只要已证明去掉保护对结果的影响可忽略不计。在被保护电极与保护电极之间的试样表面上的间隙要有均匀的宽度,并且在表面泄漏不致于引起测量误差的条件下间隙应尽可能的窄。1mm的间隙通常为切实可行的最小间隙。图2及图3给出了三电极装置的例子。在测量体积电阻时,电极1是被保护电极,电极2为保护电极,电极3为不保护电极。被保护电极的直径d¡ (图2)或长度厶(图3)应至少为试样厚度h的10倍,通常至少为25mm。不保护电极的直径d,(或长度4)和保护电极的外直径d,(或保护电极两外边缘之间的长度4)应该等于保护电极的内径d (或保护电极两内边缘之间的长度4)加上至少2倍的试样厚度。7.2表面电阻率为测定表面电阻率,试样的形状不限,只要允许使用第三电极来抵消体积效应引起的误差即可。推荐使用图2及图3所示的三电极装置。用电极1作为被保护电极,电极3作为保护电极,电极2作为不保护电极。可直接测量电极1和2之间表面间隙的电阻。这样测得的电阻包括了电极1和2之间的表面电阻和这两个电极间的体积电阻。然而,对于很宽范围的环境条件和材料性能,当电极尺寸合适时,体积电阻的影响可忽略不计。为此,对于图2和图3所示的装置,电极的间隙宽度g至少应为试样厚度的2倍,一般说来,1mm为切实可行的最小间隙。被保护电极尺寸d(或长度ム)应至少为试样厚度h的10倍,通常至少为25mm。也可以使用条形电极或具有合适尺寸的其他装置。注,由于通过试样内层的电流的影响,表面电阻率的计算值与试样和电极的尺寸有很大的关系,因此,为了测定时可进行比较,推荐使用与图2所示的电极装置的尺寸相一致的试样,其中d、=50 mm,d:=60 mm.d,=石油蜡和石油脂体积电阻率测定仪8.4 蒸发或阴极真空喷镀金属当能证明材料不受离子轰击或真空处理的影响时,蒸发或阴极真空喷镀金属能在与8.3给出的相同条件下使用。8.5液体电极使用液体电极往往能得到满意的结果。构成上电极的液体应被框住,例如用不锈钢环来框住,每个环的下边缘在不接触液体的一面被斜削成锐边。图4给出了使用液体电极的装置。不推荐长期使用或在高温下使用水银,因为它有毒。8.6胶体石墨分散在水中或其他合适媒质中的胶体石墨可在与8.2给出的相同条件下使用。8.7导电橡皮导电橡皮可用作电极材料。它的优点是能方便快捷地放上和移开。由于只是在测定时才将电极放到试样上,因此它不妨碍试样的条件处理。导电橡皮应足够柔软,以确保其在加上适当的压力例如2 kPa(0.2 N/cm)时能与试样紧密接触。8.8金属箔金属箱可粘贴在试样表面作为测量体积电阻用的电极,但它不适用于测量表面电阻。铅、锑铅合金,铝和锡箔都是被普遍使用的。通常用少量的凡士林、硅脂、硅油或其他合适的材料作为粘贴剂将它们粘贴到试样上去。含有下列组分的一种药用胶适合用作导电粘贴剂:分子量为600的无水聚乙二醇800份(质量)水200份(质量)软肥皂(药用级)1份(质量)氯化钾10份(质量)要在一个平稳的压力下粘贴电极,使之足以消除一切皱折和将多余的粘合剂赶到箔的边缘,再用一块干净的薄纸擦去。用软物如手指按压能很好地做到这点。这个技巧仅适用于表面非常平滑的试样。通过精心操作,粘合剂薄层可减小到0.0025 mm或更薄。9试样处置电极之间或测量电极与大地之间的杂散电流对于测试仪器的读数没有明显的影响这一点很重要,测试时加电极到试样上和安放试样时均要极为小心,以免可能产生对测试结果有不良影响的杂散电流通道。测量表面电阻时,不要清洗表面,除非另有协议或规定。除了同一材料的另一个试样的未被触模过
    留言咨询
  • 显微电泳法Zeta电位分析仪特点1.传统测量原理:通过传统微电泳方法测量胶体颗粒的zeta 电位。与激光光散射法相比,没有黑盒子。2.通过激光暗场照明观察纳米颗粒:502的独特的超显微镜设计提供了一个高对比度的图像,即使是纳米粒子。依赖于颗粒对悬浮介质的相对折射率不同,可测量小至20nm的颗粒。3.在静止层观察颗粒:高水平的激光光学系统和高性能的CCD摄像头可以仅观察静止层的颗粒。其提供的高精度结果不受电渗流的影响。4.水平设置的长方形电泳池:水平放置的长方形电泳池提供了一个高度精确的结果。因为这样的布局几乎不存在由于池壁附近颗粒沉淀引起电渗流非对称化。显微电泳法Zeta电位分析仪原理-旋转棱镜技术 当光线通过一个直角棱镜,目标物体似乎移动了,因为当棱镜缓慢旋转时,光的轨迹偏离了原来的位置。502型的显微镜有一个与内置检流计结合的棱镜(旋转棱镜),其旋转速度和旋转方向棱镜均可以调节。在有格栅的电视监视器上观察粒子。当我们施加电场时,颗粒产生电泳运动。当我们使用旋转棱镜技术调节所观察到的粒子看上去静止不动时,颗粒的zeta电位值(摄氏20度,水系统)将通过数字显示出来。显微电泳法Zeta电位分析仪技术参数原理:1、用户调整旋转棱镜至静止图像。或用秒表测量的粒子的运动时间2、测量范围:± 100毫伏3、粒径适用范围:一般20nm~50μm,依赖于颗粒折射率和沉降状况4、样品量:8毫升5、光学系统: ● 光源:632.8 nm的氦氖激光器 ● 显微镜的放大倍率:×280 ● 电视显示器:CCD单色相机和8.4” 单色液晶显示器6、电泳池: ● 截面:1 ×10毫米 ● 材质:纯二氧化硅 ● 电极距离:4.88cm ● 电场强度:30 V / cm ● 阳极:钼 ● 阴极:钯 ● 电极隔室材质:聚甲醛
    留言咨询
  • 智能白度仪 400-860-5168转1490
    WSB-V智能白度仪具有自动校正,测定结果数字显示等特点,采用脉冲闪光技术,用于测量物体表面的兰光白度。在面粉、淀粉、米粉、白水泥、涂料等领域应用广泛。智能白度仪由托普云农供应,本公司可为您提供智能白度仪多种信息,包括智能白度仪的品牌、图片及2022年新报价等。由于智能白度仪选择一定的有效光谱能量,以检流计反映测定值对有无增白剂的纸的白度,能正确反映数值,比三色光反射仪方便。功能特点:1、使用长寿命光源,长达10万小时。2、全密封设计,满足各种生产现场测定。3、采用简单线性计算方法精度高4、操作简单方便:一键校零,白板全数字校准,校准参数自动保存。5、高集成硬件设计,嵌入式的操作系统。快速数字波算法,两秒完成测定。技术性能符合JJG512-2002白度计测定结果,测定结果数码显示,也可用打印机经数据打印出来。技术参数:漫射照明垂直探测方式(d/o)。本仪器符合GB3978-83:标准照明体和照明观测条件,模拟D65照明体照明,采用d/o照明观测几何条件,漫射球直径φ120mm,测量孔直径φ20mm,设有光吸收器,消除了试样镜面反射光的影响。照射光源:D65光源测量方式:反射重复性:≤0.1示值漂移≤0.1零点漂移≤0.1示值误差≤0.5示值精度:0.1测量孔直径:所测样品不少于φ30mm输出方式:3位半数字显示、也可用于打印机将数据打印出来(打印机为选配件)更多详情:智能白度仪 中国粮油仪器在线
    留言咨询
  • 美国CTI公司成立于1978年,是世界顶级的光学扫描振镜制造商,其产品型号齐全,广泛用于激光打标、雕刻、焊接,打孔等加工领域,以及激光成像,医疗系统等领域。产品包括:高速扫描振镜,适合从2mm光斑到100mm以上的光斑,以及新一代的全数字扫描系统。美国CTI高速光学扫描振镜检流计精度和定义CTI最佳性线性度整个运动过程中的定位精度99.9%步响应时间小角度定位时间从命令发出开始到99%到达位置的时间100uS短期重复度经过一些短时间的运动后回到原位置的能力1uRad温度漂移由于温度影响的光学位置的漂移10ppm/° C零漂由于温度等引起的中心位置的漂移5uRad/° C主要技术指标:适合光斑直径3mm4mm5mm6mm7mm8mm9mm10mm12mm15mm20mm25mm27mm30mm50mm75mm75mm动磁式振镜6200H6210H6215H
    留言咨询
  • 工频介电常数测试仪 400-860-5168转4249
    QS37a型高压电容电桥工频介电常数测试仪QS37a主要用于测量高压工业绝缘材料的介质损失角的正切值及电容量。其采用了西林电桥的经典线路。主要可以测量电容器、互感器、变压器等各种电工油及各种固体绝缘材料在工频高压下的介质损耗(tgd)和电容量( Cx),其测量线路采用“正接法”即测量对地绝缘的试品。由于电桥内附有一个5KV的高压电源及一台高压标准电容器,并将副桥和检流计与高压电桥有机的结合在一起,所以本电桥特别适应测量各类绝缘油和绝缘材料的介损(tgd)及介电常数(ε)。l 桥体本身带有5Kv/100pF标准电容,测量材料介损更为方便。l 桥体内附电位跟踪器及指另仪,外围接线及少。l 桥体采用了多样化的介损测量线路。测量范围及误差 在Cn=100pF R4=3183.2(W)(即10K/π)时 测量项目 测量范围 测量误差 电容量Cx 40pF--20000pF ±(0.5%Cx+2pF) 介质损耗tgd 0~1 ±(1.5%tgdx+1×10-4) 在Cn=100pF R4=318.3(W)(即1K/π)时 测量项目 测量范围 测量误差 电容量Cx 4pF--2000pF ±(0.5%Cx+2pF) 介质损耗tgd 0~0.1 ±(1.5%tgdx+1×10-4) Cx=R4×Cn/R3tgd=ωR4C4高压电源技术特性电压输出:0~2500V/50Hz高压电流输出:0~20mA内置标准电容器电容量的名义值为100pFtgd小于5×10-5
    留言咨询
  • FemtOgene是一套采用小于20飞秒超短脉冲激光进行靶定向基因转染的显微操作处理系统。它可以进行: 激光诱导细胞膜瞬态改变(1) 激光诱导细胞膜瞬态改变(2)l 基因治疗l 干细胞操作l 光学纳米巨细胞注射l 细胞器光学击出l 细胞内染色体分离l 高分辨率成像产品概述:FemtOgene 是一套超紧凑型扫描非线性显微镜。采用检流计式振镜进行光束扫描并配备大数值孔径物镜(40x/1.3)构成的聚焦光学元件。在亚飞升(1x10-15升)焦点体积内产生的多光子效应在细胞膜中诱导产生瞬态纳米孔洞。通过这个孔洞可以将DNA,RNA和蛋白质等巨细胞通过光学纳米注射方法注入到细胞膜中。 飞秒激光脉冲分离染色体 激光诱导细胞膜瞬态改变(3)无损轻柔地形成纳米孔洞不会对细胞产生附加的破坏,有效避免细胞死亡并能促进快速自修复过程。从而靶定向转染操作能够高效地进行。FemtOgene 基于一套亚20飞秒脉宽近红外激光显微镜构成并带有高阶色散补偿装置。创新独特的色散补偿技术解决了基于棱镜技术的飞秒激光器所观察到的光束起伏现象。纳米操作过程通过两种曝光模式进行:(a) 扫描某个感兴趣的区域(ROI) 以及(b) 单点照明。剥蚀,钻孔和切割的精度可以达到亚微米量级。 靶定向转染和光学纳米注射的激光曝光时间在毫秒量级,平均功率10 mW,重复频率85MHz。 人类染色体的纳米加工 靶定向转染。亚20飞秒激光光穿孔应用领域:纳焦亚20 fs 85兆赫兹重复频率激光脉冲可以用于进行靶定向转染,光学巨细胞纳米注射以及光学细胞内细胞器撞出。 人们的最主要的兴趣在于干细胞转染。干细胞将对当前的医学治疗例如基因治疗和组织工程产生根本性的影响。经过基因修整的干细胞可以用来产生免疫系统的调节蛋白。FemtOgene已经用于有效地进行人类唾腺,胰腺干细胞靶定向转染。技术数据:配备色散补偿装置的紧凑型即开即用封离式短脉冲飞秒激光器激光脉冲宽度: 150fs重复频率:85MHz激光平均输出功率:200mW/400mW波长:800±10nm全幅扫描,局部感兴趣区域(ROI)扫描, 线扫描,单点照明(点扫描,钻孔)典型光束扫描区间:350x350μm (水平)200μm(垂直)平台位移行程:120x102mm聚焦光学元件:放大率40倍数值孔径(NA)1.3CCD相机数字成像视频监视接口运行环境温度:15-35摄氏度相对湿度:5-80%电源功率需求:交流230V(50赫兹)系统尺寸基座490x280x480mm3扫描头:280x190x90mm3控制组件:450x300x130mm3飞秒激光器:507x280x81mm3(激光头)483x280x88mm3(用户控制器)175x104x102mm3(色散控制模块)人类干细胞靶定向转染。亚20飞秒激光光穿孔并扩散注入GFP质粒到细胞质中1-2天后出现绿色荧光所有参数可能会有所变动恕不提前通知
    留言咨询
  • 激光光束分析监测器(BWA-MON)系统,可以真正地做到对不管是低能量还是高能量的连续激光和脉冲激光的激光光束进行实时测量、分析和监控。该系统的设计遵循了国际标准ISO11146和ISO13694中对激光、激光设备以及激光光束度量的要求。在所有激光应用中,激光光束轮廓剖面图对很多的激光应用都提供有价值的信息。通过监控这些激光束空间轮廓、圆形度、环心、象散、M平方值等,你可以提前得到关于激光及其光学传输系统任何问题的预警。BWA-MON系统可以提高加工质量,加工稳定性以及减少废料。另外,因为焦点位置可以实时监控,处于闭环控制,对于易受热透镜效应影响的系统可以通过闭环补偿减小其影响。 BWA-MON正在申请专利,使用时连接上持有HAAS LTI专利的BWA-CAM(美国专利号8,237,922),无需移动部件便可测量激光聚焦束腰。(而在此之前,市面上其他的激光光束分析装置,都要使用一些移动或旋转的配件,来实现对激光M平方的实时测量,它们无法满足在线实时的监测应用。) BWA-MON适用于大部分的激光波长和应用,无需移动的配件就可以对激光束及其光学参数实时测量和分析。 BWA-MON是Hass公司的产品,Hass公司在这方面有三十多年的专业光学传输经验。这套监测系统可以用在处理材料的过程中,包括切割、钻孔、焊接、打标或其他任何一种应用。图1:基本的BWA-MON光学设计 BWA-MON的工作流程如下:一束激光进入棱镜,少数光通过第一个反射面进入BA-CAM。大多数的激光束会通过棱镜进入加工镜头。少数光通过第二个反射面进入BWA-CAM,形成实际加工光束的影像,被高度衰减处理过。有这种反射面的可以是道威棱镜、里斯里棱镜、或者一个薄的平行平板。衰减的激光束透过棱镜进入BWA-CAM,激光束腰可以通过一系列的主要感应区域(ROI)观测到。激光束腰位于一系列点的中间(如图五)。每一个点都是激光束腰的横截面图,基本在同一个水平面上。软件能够自动追踪并测量ROI的大小,以精确地进行M平方值计算。图2:BWA-MON适用于大功率激光焊接 BWA-CAM能够测量经过所有聚焦透镜的激光束腰。加工光束和经过第二个反射面的光束有效焦距不同,在棱镜和BWA-CAM中添加一个负透镜解决了此问题。 图1为最常见的低功率BWA-MON光路图。在这个图示中,道威棱镜用来将光线分别传输到加工镜头和BWA-CAM。 BWA-CAM能在一秒内测量出激光的M平方值,在其最高的分辨率下,约333到500毫秒内,系统可以达到帧率为2到3帧每秒的测量结果。这使通过无光源测量激光束腰的应用变为可能。软件能同时分析光束的空间截面,得以快速地计算出激光M平方值。图3为一个感应区域(ROI)的示意图,通过软件分析BWA探测器的数据。图3:在空间内有延迟的激光束腰切片的图解。 Figure 2图2为一个大功率焊接BWA-MON的光路图。在此情况下,只有一个BAW-CAM来监控激光束腰。BA-CAM也可以被放置在第一个反射面后面,这里没有被描述出来。通过一个楔形透镜,透过光束产生一个角度偏差,防止加工过程中的反射光。位于BWA-MON中的聚焦透镜同样地倾斜。图4:BWA-CAM和BA-CAM汇总数据界面 如果加工系统要求高功率同轴,则图7为满足该需求的光路图。 图4显示了BWA-MON利用的两个照相机(BA-CAM和BWA-CAM)的数据画面。上面的画面来自BA-CAM,用于测量原始激光束,下面的画面是聚焦光束,显示了15个ROI点。右边的汇总数据提供了用户选择的剖面或M平方的参数。右边作为质量控制(通过或失败)的图表,变为红色表明用户选定的质量控制参数超出了范围。图5:BWA-CAM帧捕获器的变焦拍了来自一束聚焦激光的15个感应区域。 图5显示了BWA-CAM影像捕获器的页面,是来自一束聚焦激光的15个聚焦的感应区域。从图中可以看到聚焦激光的进入和淡出(从左至右)。所有的这些画面都在CMOS感应器上同时并实时生成。正是有了这些感应区域,软件才能分析光斑的尺寸、发散、像散、束腰位置,瑞利长度以及M平方值。 图6:BA-CAM和BWA-CAM质量控制设定界面 图6为激光束剖面图参数据的示例,用户可以自定义选定参数值的上限和下限。如果有参数超出了用户选定的范围,会在对应位置标出,数据的颜色也会从绿色变为红色。如果某一项值超过范围,系统可以通过接收一个USB输出的信号关闭系统。对于需要精确控制激光的光学系统,系统参数的误差要求非常严格。例如高功率光学系统中,如果有一些参数超出了范围,用户可以在其对系统造成致命影响之前关掉系统。 图7:同轴高功率BWA-MON配置图8:BWA-CAMM平方面曲线界面 图8为BWA-CAM的M平方测量,在这个界面,可以看到由BA-CAM和BWA-CAM共同测量的M平方值,或者单独由BWA-CAM测量的M平方值。X轴显示了已知使用聚焦透镜的聚焦位置,Y轴是激光束腰直径的值。激光束腰的位置和瑞利长度有注解以供参考,透镜上的激光像散和激光光斑尺寸显示在曲线右方的数据栏中。图9:BA-CAM和BWA-CAM数据记录界面 图9为数据记录的界面,用户可以实时地选择符合ISO11146和ISO13694要求的激光束参数进行追踪。记录的数据可以帮助用户在[页面设定]参数的上限值和下限值,同样也为其他类型的测量提供了最原始的数据。图10:光纤直径为200微米的4KW连续光纤激光。 BWA-CAM不仅适用于低功率的激光,也适用于大功率几千瓦的激光设备。图10显示的BWA-CAM的屏幕点功率为4Kw连续波光纤激光,传输光纤为200μm,聚焦透镜焦距200mm。图11:BWA-CAM上显示传输光纤(左图)与激光源光纤没有对准,产生包层模Cladding Mode,右图为千瓦级的100μm激光光纤,光纤耦合对准很好。 BWA-CAM不仅可被用于测量关键的M平方参数,还可以作为帮助检查激光器、光学系统或者两者组合时光路是否正确的诊断工具。图11显示了一个千瓦级连续光纤激光系统,传输光纤与激光源光纤没有对准。左图为包层模Cladding Mode在100微米直径的光纤中。右图为同一个光纤,利用BWA-CAM将其扭动调节,使达到最佳的对齐位置。图12:变焦拍摄直径532纳米光纤激光,显示了一个三轴检流计系统的严重缺陷。 在某些情况下,一个光学系统可能会意外地显示出一个很大的图像点。图12便是这样,它是一个三轴扫描系统,利用532nm的传输光纤,在加工过程中光斑的尺寸应该比图示的小两倍才正确。BWA-CAM清晰的展示它的慧差,光斑的严重慧差表明这个三轴系统光路没有调准。图13:1064nm光纤激光,显示三轴扫描系统的散光现象。 图13展现了另一种情形,1064nm光纤激光,通过三轴扫描系统聚焦,焦点比标准参数大两倍。在这种情况下,可以看出偏差缘于像散,原因是3轴扫描系统未对准。 无论是基本的激光M平方值测量,还是制造业中严格的材料加工应用,或是激光光学系统的故障排除,HAAS激光技术公司现在正在申请专利的BWA-CAM是一款简单、易于集成、易于使用并解决这些问题的最好产品!
    留言咨询
  • 塑料体积表面电阻率测试仪-ZST-121一、符合标准:GB/T 10581-2006《绝缘材料在高温下电阻和电阻率的试验方法》 GB/T 1692-2008《硫化橡胶绝缘电阻率的测定》 GB/T 12703.4-2010《纺织品 静电性能的评定 第4部分:电阻率》 GB/T 10064-2006《测定固体绝缘材料绝缘电阻的试验方法》GB/T 1410-2006《 固体绝缘材料体积电阻率和表面电阻率试验方法》 ASTM D257-99 《绝缘材料的直流电阻或电导试验方法》 GB/T 2439-2001《硫化橡胶或热塑性橡胶 导电性能和耗散性能电阻率的测定》二、概述量限从1×104Ω~1×1018 Ω,是目前国内测量范围宽,准确度0高的数字超高阻测量仪。电流测量范围为2×10-4 ~1×10-16A。机内测试电压为100/250/500/1000V任意可调。本仪器既可测量高电阻,又可测微电流。采用了美国Intel公司的大规模集成电路,使仪器体积小、重量轻、准确度高。以双3.1/2 位数字直接显示电阻的高阻计和电流。主要特点所有测试电压(100/250/500/1000V) 测试时电阻结果直读,免去老式高阻计在不同测试电压下或不同量程时要乘以系数等使用不便的麻烦,使测量超高电阻就如用万用表测量普通电阻样简便。既能测超高电阻又能测微电流电阻测量范围宽:0.01×104Ω~1×1018Ω电流测量范围为:2×10-4A~1×10-16A体积小、重量轻、准确度高电阻、电流双显示性能好稳定、读数方便三、技术指标1、电阻测量范围:0.01×104Ω~1×1018Ω2、电流测量范围为:2×10-4A~1×10-16A3、双表头显示:3.1/2位LED显示4、内置测试电压:100V、250V、500V、1000V5、基本准确度:2% (*注)6、内置测试电压:10V、25V、100V、250、500、1000V7、使用环境:温度:0℃~40℃相对湿度80%8、供电形式:AC 220V,50HZ,功耗约5W9、仪器尺寸:285mm× 245mm× 120 mm10、质量:约2.5KG四、工作原理本仪器是同时测出电阻两端的电压V和流过电阻的电流I,通过内部的大规模集成电路完成电压除以电流的计算,然后把所得到的结果经过A/D转换后以数字显示出电阻值,即便是电阻两端的电压V和流过电阻的电流I是同时变化,其显示的电阻值不象普通高阻计那样因被测电压V的变化或电流I的变化而变,所以,即使测量电压、被测量电阻、电源电压等发生变化对其结果影响不大,其测量精度很高(0),从理论上讲其误差可以做到零,而实际误差可以做到千分之几或万分之几。根据欧姆定律,被测电阻Rx等于施加电压V除以通过的电流I。传统的高阻计的工作原理是测量电压V固定,通过测量流过取样电阻的电流I来得到电阻值。从欧姆定律可以看出,由于电流I是与电阻成反比,而不是成正比,所以电阻的显示值是非线性的,即电阻无穷大时,电流为零,即表头的零位处是∞,其附近的刻度非常密,分辨率很低。整个刻度是非线性的。又由于测量不同的电阻时,其电压V也会有些变化,所以普通的高阻计是精度差、分辨率低。五、典型应用1.硫化橡胶体积、表面电阻率测定2.测量防静电鞋、导电鞋的电阻值3.测量防静电材料的电阻及电阻率4.测量计算机房用活动地板的系统电阻值5.测量绝缘材料电阻(率)6.光电二极管暗电流测量7.物理,光学和材料研究8.高分子材料表面体积电阻率测定电阻率、体积电阻率、表面电阻率的区别与测定方法什么是电阻率?电阻跟导体的材料、横截面积、长度有关。 导体的电阻与两端的电压以及通过导体的电流无关。导体电阻跟它长度成正比,跟它的横截面积成反比.(1)定义或解释 电阻率是用来表示各种物质电阻特性的物理量。用某种材料制成的长为1米、横截面积为1mm2米。的导体的电阻,在数值上等于这种材料的、电阻率。 (2)单位 在国际单位制中,电阻率的单位是欧姆米。一般常用的单位是欧姆毫米2/米。 (3)说明 ①电阻率ρ不仅和导体的材料有关,还和导体的温度有关。在温度变化不大的范围内,几乎所有金属的电阻率随温度作线性变化,即ρ=ρo(1+at)。式中t是摄氏温度,ρo是O℃时的电阻率,a是电阻率温度系数。 ②由于电阻率随温度改变而改变,所以对于某些电器的电阻,必须说明它们所处的物理状态。如一个220 V100 W电灯灯丝的电阻,通电时是484欧姆,未通电时只有40欧姆左右。 ③电阻率和电阻是两个不同的概念。电阻率是反映物质对电流阻碍作用的属性,电阻是反映物体对电流阻碍作用的属性。 什么是体积电阻率? 体积电阻率,是材料每单位体积对电流的阻抗,用来表征材料的电性质。通常体积电阻率越高,材料用做电绝缘部件的效能就越高。通常所说的电阻率即为体积电阻率。,式中,h是试样的厚度(即两极之间的距离);S是电极的面积,ρv的单位是Ωm(欧姆米)。 材料的导电性是由于物质内部存在传递电流的自由电荷,这些自由电荷通常称为载流子,他们可以是电子、空穴、也可以是正负离子。在弱电场作用下,材料的载流子发生迁移引起导电。材料的导电性能通常用与尺寸无关的电阻率或电导率表示,体积电阻率是材料导电性的一种表示方式。简言之,在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻. 什么是表面电阻率?表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;访伸展流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分.在两电极间可能形成的极化忽略不计. 表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻. 材料说明A、通常,绝缘材料用于电气系统的各部件相互绝缘和对地绝缘,固体绝缘材料还起机械支撑作用.一般希望材料有尽可能高的绝缘电阻,并具有合适的机械、化学和耐热性能.B、体积电阻班组可作为选择绝缘材料的一个参数,电阻率随温度和湿度的京戏化而显著变化.体积电阻率的测量常常用来检查绝缘材料是否均匀,或都用来检测那些能影响材料质量而又不能作其他方法检测到的导电杂质.C、当直流电压加到与试样接触的两电极间时,通过试样的电流会指数式地衰减到一个稳定值.电流随时间的减小可能是由于电介质极化和可动离子位移到电极所致.对于体积电阻小于10的10Ω.m的材料,其稳定状态通常在1min内达到.因此,要经过这个电化时间后测定电阻.对于电阻率较高的材料,电流减小的过程可能会持续几分钟、几小时、几天,因此需要用较长的电化时间.如果需要的话,可用体积电阻率与关系来描述材料的特性 .D、由于体积电阻总是要被或多或少地包括到表面电阻的测试中去,因些近似地测量表面电阻,测得的表面电阻值主要反映被测试样表面污染的程度.所以,表面电阻率不是表面材料本身特性的参数,而是一个有关材料表面污染特性的参数.当表面电阻较高时,它常随时间以不规则的方式变化.测量表面电阻通常都规定11min的电化时间. 电阻率的测量方法和精度1、方法:测量高电阻常用的方法是直接法和比较法.直接法是测量加在试样上的直流电压和流过试样的电流而求得试样电阻.直接法主要有检流计法和直流放大法(高阻计法)比较法主要有检流计法和电桥法.2、精度:对于大于10的10Ω的电阻,仪器误差应在±20%的范围内;对于不大于10的10Ω的电阻,仪器误差应在±10%的范围内.3、保护:测量仪器用的绝缘材料一般只具有与被测材料差不多的性能.试样的测试误差可以由下列原因产生:①外来寄生电压引起的杂散电流通渠道.通常不知道它的大小,并且有漂移的特点;②测量线路的绝缘材料与试样电阻标准电阻器或电流测量装置的并联.使用高电阻绝缘奢侈可以改善测量误差,但这种方法将使仪器昂贵而又笨重,而且对高阻值试样的测量仍不能得到满意的结果.较为满意的改进方法是使用保护技术,即在所有主要的绝缘部位安置保护导体,通过它截信了各种可能引起误差的杂散电流;将这些导电联接在一起组成保护系统,并与测量端形成一个三端网络.当线路连接恰当时,所有外来寄生电压的杂散电流被子保护系统分流到测量电路以下,这就可大大减少误差的可能性.在系统的保护端和被保护端之间存在的电解电势,接触电势或热电运势较小时,均能补偿掉,使它们在测量中不引起显著误差.在电流测量中,由于被保护端和保护端之间的电阻与电流测量装置并联可能产生误差,因此前者至少应为电流测量装置输入电阻的10倍,最好为100倍.在电桥法测量中,保护端与测量端带有大致相同的电位,但电桥中的一个标准电阻与不保护端和保护端之间的电阻并联,因此,后者至少为标准电阻的10倍,最好20倍.在开始测试前先断开电源和试样的连线进行一次测量,此时设备应在它的灵敏度许可范围内指示无穷大的电阻.可用一些已知值的标准电阻业检查设备运行是否良好. 体积电阻率为了测业体积电阻率,使用的保护系统应能抵消由表面电流引起的误差.对表面泄漏可忽略的试样,在测量体积电阻时可以去掉保护.在被保护电极与保护电极之间的试样表面上的间隙宽度要均匀,并且在表面泄漏不致引起测量误差的条件下间隙应尽可能窄,实际使用时最小为1MM.表面电阻率为测定表面电阻率,使用的保护系统应尽可能地抵消体积电阻引起的影响。某些绝缘材料的体积电阻率
    留言咨询
  • 型号ST-1551ST-1551硫醇硫测定仪符合GB/T1792标准,采用电位滴定法。适用于测定无硫化氢的喷气燃料、汽油、煤油和轻柴油中的硫醇硫,硫醇硫的测定在评价喷气燃料、汽油、煤油和轻柴油的气味、对燃料系统橡胶部件的不良影响及对燃料系统的腐蚀具有重要意义。是实验室、分析室及科研部门的理想的必备仪器,可广泛应用于电力、石油、化工、商检、高校及科研等部门。生产厂家北京旭鑫仪器设备有限公司技术特点l Windows操作平台,人机对话操作简捷方便,并且有工作站功能。l 进口(瑞士万通)滴定单元,仪器测定精度更高,性能更稳定l 实现全自动化,自动定值加液,自动清洗、自动补液l 自动判别终点,自动滤除假终点,同时可以人工选择判断终点l 双高阻输入,电极电位稳定、可靠l 滴定曲线实时显示,滴定曲线及结果与数据存贮和打印l 整机仪器包括:主机、滴定单元、计算机、打印机等l 可实现全中文/全英文界面显示(可选)技术参数适应标准GB/T1792测量范围3~100μg/g 电位测量范围-1999.5mv~1999.5 mV基本误差0.1%±0.5mV滴定管体积10mL滴定管精度±0.1%FS环境温度5℃~45℃相对湿度10%~80%Rh电源电压 220V±10% 50Hz
    留言咨询
  • 霍尔效应实验,YMP-6106B 简介置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象被称为霍尔效应。YMP-6106B型霍尔效应实验采用一个长方体状半导体样品放置于均匀电磁场中,在这个矩形样品中横向通以电流,那么因为霍尔效应而在这个样品的垂直于电流和磁场的方向上产生一个一定大小的电势差,即为霍尔电压。特点基于光学轨道结构,霍尔探头在磁场中的位置二维可调换向开关改变霍尔电流和磁场方向,用“对称测量法”消除附加不等位电势的影响可升级为数字化实验实验内容了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识学习用“对称测量法”消除副效应的影响,测量试样的UH - IS和UH - IM曲线确定试样的导电类型、载流子浓度以及迁移率能量在电磁场中传输特性实验,YGP-6201 简介YGP-6201型实验装置采用磁耦合谐振式原理,传输效率优于感应式磁场耦合传输,并且电能传输不受空间非磁性障碍物的影响。本实验装置设计有一对谐振线圈,通过高频交流电源给一个线圈通电作为发射线圈,产生磁场能量。另外一个线圈作为接收线圈,接收后转化为电能输出,最后驱动风扇或者LED灯。本实验可以改变两个线圈距离,线圈相对角度,负载电阻和传输介质等,来研究影响传输效率的因素。特点丰富的测试模块,可基于光学轨道灵活安装功能强大的一体化实验电源,涵盖实验所需的全部输入输出信号轻便美观的谐振线圈,可90o左右旋转风扇与LED双重演示,能量传输效果直观明显可升级为数字化实验实验内容两线圈互感系数及耦合系数的实验近似测定输出功率、传输效率与负载电阻关系测定输出功率、传输效率与线圈距离关系测定输出功率、传输效率与线圈相对角度关系测定输出功率、传输效率与不同介质中电源频率关系测定演示不同负载下的传输效率电学综合实验,YGP-6204简介电学综合实验是供高校物理实验室进行电学元件伏安特性测量、光电元件特性测量,电桥原理及应用、RLC 电路原理及应用、集成放大器原理及其应用等实验而设计的开放式教学实验仪器。该仪器配套有工作电源、数字电压传感器、数字电流传感器、数字微电流传感器、光传感器、温度传感器、各种待测元件、各种控制电路元件等。以上系列设计性、综合性、开放性实验的开设,不仅可以让学生深入了解经典的电学现象和原理,还可以了解目前主流的电子信息技术和产品,深入理解其工作原理和产品特性,使学生可以接触到电子信息技术领域的前沿的科技,并对其未来的发展空间产生想象和兴趣。特点独立模块设计,积木式拼搭组合,充分调动学生的动手能力模块底部采用可视化透明材料,方便观察元器件模块采用可拆卸结构,方便更换元器件配置无线电压传感器、无线电流传感器、无线微电流传感器和数据分析软件传感器采样频率最高可达1KHz,每组数据的采集量可达到100000组以上;采样精度达到0.5%,数字化采集实验数据并实时分析,使得物理定律显而易见实验内容1、电学元件伏安特性的测量;2、光敏元件的应用;3、热敏元件的应用;4、电表的改装与校准;5、单臂电桥原理及应用;6、双臂电桥原理及应用;7、非平衡电桥原理及应用;8、RLC 电路的暂态过程研究;9、RLC电路的谐振特性研究;10、整流、滤波及稳压电路;11、集成放大器及其应用;12、应用电路实验。RLC电路实验,YGP-6207简介YGP-6207 RLC电路实验包括RLC电路的暂态过程研究、RLC谐振电路特性研究等内容。学习的知识点有RL、RC、RLC电路中电流、电压的暂态过程特征,指数衰减时间常数定义和测量方法,衰减振荡周期和时间常数定义和测量方法,RC微分电路的用法和参数选择,RC积分电路的用法和参数选择以及RLC电路稳态、谐振、幅频特性、相频特性、高通电路、低通电路、上限频率、下限频率、截止频率、通频带宽度、谐振频率、电感性、电容性、品质因数、选频、共地、电压谐振、电流谐振、相位差的测量等。本实验装置可实现RLC电路实验的分层次教学,完成其中的基础内容、提升内容、进阶内容以及高阶内容。特点独立模块设计,积木式拼搭组合,充分调动学生的动手能力模块底部采用可视化透明材料,方便观察元器件模块采用可拆卸结构,方便更换元器件使用电压传感器测量时间常数非常容易二极管伏安特性曲线使用软件的曲线拟合功能很容易验证曲线是否呈指数实验内容观测RC、RL、RLC串联电路的幅频/相频特性以及品质因数Q观察RC、RL串联电路的暂态过程,测量其指数衰减时间常数观测不同Q值下RLC串联电路的幅频特性测试;RLC并联电路的幅频/相频特性测试;设计RC低通滤波电路和高通滤波电路观察RLC串联电路的暂态过程及其阻尼振荡规律设计二阶RC滤波电路研究RLC并联电路的暂态行为、设计积分或微分电路等设计整流滤波电路、LC三阶低通滤波电路、无阻尼振荡电路等对电路暂态过程进行计算机显示等直流电桥实验,YGP-6209简介YGP-6209直流电桥实验学习的知识点有直流电桥测电阻,交换(换臂)法,倍率选取、电桥灵敏度测量,电阻率测量等。该实验装置可完成直流电桥实验的基础内容、提升内容、进阶内容以及高阶内容,实现分层次教学。特点独立模块设计,积木式拼搭组合,充分调动学生的动手能力模块底部采用可视化透明材料,方便观察元器件模块采用可拆卸结构,方便更换元器件采用微电流传感器替代传统检流计,实现分层次教学实验内容自组电桥,选择合适的倍率、测量不同未知(中值)电阻的阻值,测出电桥的灵敏度考虑电桥比率臂阻值、检流计灵敏度对整个电桥灵敏度及测量精度的影响,计算未知电阻的不确定度,写出结果表达式搭建双臂直流电桥,依据双臂电桥原理及测量方法,测量金属棒的阻值;测量其长度、直径,计算金属棒的电阻率结合工程技术,研究直流电桥的应用,如:温控、光控电路等结合现代科学技术,利用传感器、数据采集、虚拟技术等,将电桥电压采集到计算机中,在软件方面设计应用更多精彩,请关注下方!
    留言咨询
  • 产品说明TVS-GSS系列扫描振镜是用于光束扫描的器件,利用检流计原理实现,是一种小惯量扫描器。一般由反射镜、扫描电机和伺服系统组成,通电线圈在磁场中产生力矩,转子上通过机械扭簧或电子的方法增加复位力矩,其大小与转子偏离平衡位置的角度成正比,整个过程采用闭环反馈控制,由位置传感器、误差放大器、功率放大器、位置区分器、电流积分器等五大部分共同完成,从而完成反射镜的偏转控制。要实现二维扫描,则需要两个扫描振镜正交安装,实现入射光束在X轴和Y轴两个方向的位置控制,再搭配上超维景提供的TVS-MMC系列双光子成像控制器或其他信号源,即可形成面阵扫描,该扫描振镜在多光子显微镜和共聚焦显微镜等扫描成像系统中都有应用。对于高速扫描,可选共振扫描振镜,详情可联系本公司。产品应用多光子显微镜、共聚焦显微镜激光加工、激光打标产品优势大扫描范围:最大光学扫描角度可达±20°位置精准反馈:提供位置反馈信号,可用于用户闭环控制控制简便:用户可使用模拟电压,实现振镜的任意轨迹扫描参数优化:针对用户扫描波形进行参数优化,以提高可靠性和扫描一致性二维扫描振镜技术参数参数TSH8TVS-GSS系列型号TVS-GSS-203HTVS-GSS-310A/DTVS-GSS-618A/DTVS-GSS-720A/D输入光斑直径(mm)35791010121620最大扫描角度±20° ±12.5°±20°±20°±20°Nd:YAG@1064 nm--10080120120150200300CO2--50707070100150200阶跃响应时间(ms)0.250.30.40.7标刻速度(m/s)--4331.71.522定位速度(m/s)--1211117777好质量--700690650500400350300高质量--550500480340260220200点漂移(pRad./°C)比例漂移(ppm/°C)续工作漂移,8小时以上(mrad.)线性度≥99.70%≥99.90%≥99.90%≥99.90%重复精度(uRad.)最大平均工作电流(A/单轴)22.534峰值电流(A)10202025输入信号接口XY2-100或模拟电压士5 V,土10 V输入电源土24 VDC士10%,Max.RMS 3.5 A/轴工作环境温度25°C士10°C重量(不含透镜)(kg)-2.42.94.5主要应用领域激光标刻、飞行打标激光演示、激光医疗科研激光标刻、激光调阻内雕、科研激光标刻、激光调阻内雕、激光打码科研激光标刻、激光调阻切割、钻孔
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制