当前位置: 仪器信息网 > 行业主题 > >

轨道秤

仪器信息网轨道秤专题为您提供2024年最新轨道秤价格报价、厂家品牌的相关信息, 包括轨道秤参数、型号等,不管是国产,还是进口品牌的轨道秤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合轨道秤相关的耗材配件、试剂标物,还有轨道秤相关的最新资讯、资料,以及轨道秤相关的解决方案。

轨道秤相关的论坛

  • 【分享】城市轨道交通噪声的形成与分类

    噪声通过声源、途径、接受点3 个方面进行分类和研究。了解声源、途径、接受点就可以有针对性地寻求降低、衰减噪声的措施和途径, 对现存噪声进行防护, 最大限度地减少对人体造成的损害。城市轨道交通按产生噪声的声源可分为:轮轨噪声、车辆非动力噪声, 牵引动力噪声、高架轨道噪声及地下铁道的地面承载噪声等。  一、轮轨噪声  钢轨与车轮之间相互作用而产生的声响。车轮和轨道相接触处产生力的相互作用, 造成车轮和轨道的振动而向外辐射声波。轮轨噪声主要有摩擦噪声、撞击噪声和轰鸣噪声。  二、车辆非动力噪声    主要是指制动系统在实施制动时闸瓦与制动盘之间的摩擦振动, 它激发制动闸瓦片、闸瓦托架以及制动盘等产生自激振动形成噪声。此外, 还有制动悬挂连接件之间的间隙在运行中相互撞击产生的噪声等。  三、牵引动力系统噪声  牵引系统设备运转所产生的噪声, 包括牵引电机及其冷却风扇、齿轮箱以及空气压缩机的噪声, 它是城市轨道交通的主要噪声。近年的研究表明, 使用车裙与车下吸声处理相结合的措施可降低噪声。   四、高架轨道噪声   当列车行驶在高架铁路上时, 轮轨相互作用产生的振动通过轨道传递给支承结构, 支承结构将噪声向周边地区进行传播, 形成较高的噪声。抑制高架轨道噪声一方面可从降低钢轨振动的技术着手, 另一方面从限制传递给高架结构的振动考虑。沿轨道侧面设置声屏障, 可以降低钢轨噪声向周围地区的传播。   五、地下铁道的地面承载噪声   地下铁道轮轨间相互作用而产生的振动被传递给隧道结构, 继而又传向周围的土壤。振动通过土壤再向邻近的建筑物传播, 从而导致地下及墙壁的振动和噪声向建筑物内房间的第二次辐射, 它是一种低频声响。抑制和降低地面承载噪声和振动的措施:  1、车轮踏面的镟修、钢轨面的磨削以及采用无缝钢轨代替接缝钢轨等, 都有利于衰减轮轨相互作用而产生的振动和噪声, 同样也适用于降低地面承载噪声和振动。   2、在轨道和路基之间铺设一层弹性材料, 可以起到减弱振动传递的作用。另一种有效的措施是装设弹性的“ 浮置板面”的轨道路基, 即在钢轨与混凝土轨道基板面之间设置一层弹性垫板, 这种结构可以削弱被传递到隧道墙壁的振动噪声达10 dB(A)~ 20 dB 3. (A )。   3、在轨道和路基面之间采用碎石构成的道床, 可以起到衰减从钢轨向路基传递的振动和噪声, 这种道床还可以降低车内噪声级, 但采用这种道床要求有较大的隧道半径。

  • 【资料】高速轨道交通减振降噪技术的研究

    过量的噪声和振动将严重影响乘客和轨道交通沿线人们正常的生活、工作和休息、损害身心健康、降低工作效率;另一方面,噪声和振动还可能引起轨道交通系统相应的设备和结构以及周边建筑物和设备的疲劳损坏,缩短有效使用寿命。由此,轨道交通噪声和振动的控制已成为改善乘客舒适性和环境保护的重要内容之一。所以,减小列车的振动和噪声水平、减少轨道交通引起的振动和噪声问题就成为轨道交通车辆制造和系统建设中的十分重要的问题。   轨道交通振动与噪声源主要包括:   (1) 主要振动源   ◆ 列车与结构的动态相互作用;   ◆ 车辆动力系统振动;   ◆ 轨道结构振动;   ◆ 轮轨不平顺;   (2) 主要噪声源   ◆ 轮轨噪声,包括滚动噪声、冲击噪声、摩擦噪声。   ◆ 结构噪声(由于轮轨表面相互作用产生的振动通过轨道、桥梁和地基等传递导致相应结构振动而辐射噪声);   ◆ 车辆动力设备噪声,包括牵引电机、通风机以及压缩机等设备噪声,集电弓噪声;   ◆ 车辆运行时的空气动力噪声。   针对轨道交通的振动和噪声控制问题,开展过大量的研究工作。主要围绕振源与声源控制、振动传播与声传播控制以及材料和结构控制等三大方面展开研究并采取振动和噪声控制措施。   采用弹性车轮、充气橡胶车轮、阻尼车轮及弹性踏面车轮等技术,通常可减振降噪达到2-10dBA。   用改变车轮结构的方法来改变噪声的发射性能,降低轮轨噪声。国外的有些厂家,例如,德国通过把制动盘放在轮辐上来减少噪声的发射,其试验结果证明对1000Hz以上的噪声有明显的抑制作用,大约可降低噪声5dB左右。   采用减振降噪动力驱动系统,例如,运用线性电机驱动及径向转向架。温哥华、多伦多、底特律、大阪等在二十世纪八十年代的轨道交通系统中,采用了线性电机车辆。此外,由于采用径向转向架,车辆能顺利地通过曲线,减少轮轨磨耗和消除常规固定轴距转向架通过曲线时刺耳的尖叫声,所以,噪声比一般车辆降低近20dBA,特别适用于高架轨道交通系统。   轨道结构主要由钢轨、扣件及轨下基础组成。根据振动理论,轮轨之间的振动噪声与钢轨各部件的质量、刚度以及结构阻尼联系密切。轨道结构的减振降噪,主要是通过改变结构参数来实现的。   国外在轨道结构方面已尝试了许多减振降噪措施,主要有:   1. 采用焊接长钢轨;   2. 采用减振型钢轨;   3. 采用减振型扣件;   4. 采用减振型轨下基础;   5. 采用钢轨打磨技术。   这些措施均已被证明具有不同程度的减振降噪效果,适应于环保要求。   减振型轨下基础的研究也很有价值。为了适用于不同减振要求,各国都对传统的碎石道床与整体道床作了大量改进研究工作,开发了各种减振型轨下基础。主要有:在碎石道床的基础上,研制了弹性轨枕道床和道碴垫道床,增加道床弹性,有效降低道碴振动,与一般碎石道床相比,其减振效果可达5-15dB。在整体道床基础上,实用技术有短轨枕包套式和弹性长轨枕整体道床。在**新干线的特殊减振地段,采用了防振型板式轨道。在新加坡、香港地铁中,特殊减振地段采用浮置板结构,减振效果非常显著。进行轨道不平顺控制也能获得很好的减振降噪结果。例如,钢轨打磨后,在振动频率为8-100Hz范围内,振动下降4-8dBA,站台上的振动下降5-15dBA。证明了控制轨道不平顺是降低轮轨之间振动与噪声的有效措施。   目前,国外高架桥结构大多采用箱形梁形式。据**在山手线对各种构造形式、断面形式和不同跨度的桥梁所进行的对比试验结果,表明控空板形式噪声最低。近年来,新建的巴黎地区快速铁路高架桥和新加坡高架铁道均采用箱形梁。研究箱形梁的减振降噪是国际上在这一领域的热点。   吸声桥面和路面研究。高架轨道交通线的桥面是声的反射面,降低桥面的声反射,可以大大降低轨道交通列车通过时的噪声。   吸声结构研究。高架轨道交通噪声的各个声源中,桥梁振动的辐射噪声对周边环境,尤其是低楼层噪声敏感区的声环境有较大影响。高吸声、[wiki]安全[/wiki]、美观、易清洗保养是设计吸声结构的要点。   声屏障是降低轨道交通运行噪声的有效措施。美国、**、英国、法国、澳大利亚及香港地区,都在交通主干线上修建声屏障并取得了较好的噪声治理效果。   声屏障是地面和高架轨道交通采用的最常用的降噪方法。由于轨道交通的横截面通常尺寸紧凑,声屏障已经接近线路的设备限界,列车车身与屏障之间的距离很小,一般小于一米。车身外板的材料通常是不吸声的金属,如果声屏障也用不吸声或吸声系数很小的材料制成,则噪声的声波将在车身和声屏障间的窄弄中来回折射,最后从上方逸出,声屏障的降噪效果就很差,因此不吸声的隔声型声屏障不适合轨道交通。只有吸声系数大于0.8的声屏障才有比较好的降噪效果。   声屏障技术应用都比较普遍,现有的吸声型声屏障均为板式结构。频带窄,尤其是低频段吸声系数小,通常吸声系数只有0.5左右,是现有吸声型声屏障(或组合型声屏障的吸声单元)的共同缺点。   除此之外,现有吸声型声屏障还存在其他问题。总之,由于交通噪声主要成份分布在100~5kHz,单纯阻性吸声或抗性材料难以在如此宽的频率范围内达到满意的吸声效果,而将研究阻抗复合型声屏障作为拓宽吸声频带、提高降噪效果的主要方向。如何降低成本、厚度、尺寸和重量,提高使用寿命,是新型声屏障研制者的追求。

  • 【分享】噪声基础知识--城市轨道交通系统噪声源

    城市轨道交通按产生噪声的声源可分为:轮轨噪声、车辆非动力噪声、牵引动力系统噪声、高架轨道噪声、地下铁道的地面承载噪声等。  一、轮轨噪声  钢轨与车轮之间相互作用而产生的声响。这种相互作用在车轮和轨道相接触处产生力的作用,造成车轮和轨道的振动而向外辐射声波。其产生的主要原因有:   ①当车辆在一条较小半径曲线线路上运行时,车轮沿曲线钢轨并非纯滚动运行,要产生局部的横向滑动,即所谓“卡滞一滑动效应”。正是这种在曲线上车轮对轨道的不完善的导向造成“卡滞一滑动效应”,结合车轮和轨道的振动响应,形成一种高音调的尖啸声(摩擦噪声)。  ②由车轮或钢轨表面的局部不连续性所产生的撞击噪声。  ③由于车轮和钢轨接触表面局部小面积粗糙所造成的轰鸣噪声。  二、车辆非动力噪声  主要指制动系统中在实施制动时闸瓦与制动盘之间摩擦振动,它激发制动闸瓦片、闸瓦托架以及制动盘等产生自激振动形成噪声,此外还有车辆的辅助系统(空调装置、空压机等)所辐射的噪声。  三、牵引动力系统噪声   牵引系统设备运转所产生的噪声,包括牵引电机及其冷却风扇、齿轮箱以及空气压缩机的噪声,它是城市轨道交通主要的噪声。牵引系统的噪声,特别是电机冷却风扇的噪声,随列车运行速度的提高而增长,其程度往往要大于轮轨噪声。  四、高架轨道噪声  当列车行驶于高架铁路上时,轮轨相互作用所产生的振动通过轨道传递给支承结构,支承结构将噪声向周边地区进行传播,它比之列车行驶于一般的路堤带坡度道床时所产生的噪声级要高得多,一般要高20dB(A)。  五、地下铁道的地面承载噪声  地下铁道轮轨间相互作用而产生的振动被传递给隧道结构,继而又传向周围的土壤。振动通过土壤再向邻近的建筑物传播,从而导致地下及墙壁的振动和噪声向建筑物内房间的第二次辐射,它是一种低频声响,就如同外界振动使房间中的窗户所发出的“喀喀”声响。地面承载噪声和振动是一个相当严重的干扰源,它也是公众向交通部门抱怨的一个主要对象。

  • 【资料】浅析环保城市轨道交通

    1 国内轨道交通发展的环境现状近年来,随着快速轨道交通在国内城市综合交通体系中充当客运骨干地位的确立和定位,我国大型、特大型城市的轨道交通规划、建设步人了一个空前的高峰期。目前,全国超过百万人口的城市有34个,除已运营的100多km轨道交通线路外,还有21座城市33条线路、长约650km的轨道交通线路正在筹建或建设中,预计本世纪初30年内,全国运营的轨道交通线路将突破1000km。短时间内,建设、运营如此规模庞大、复杂、综合的轨道交通线路,不仅仅在规划理论、设计或建设技术、新材料、配套设备等方面存在诸多的困难和难题,更重要的是在获得“快速、便捷、大容量”运营线路的同时,轨道交通所带来的诸如振动、噪声、电磁辐射、景观等环境污染问题接踵而至,并对沿线居民、文教、高、精、尖科研院所正常的生活、学习、工作造成很大的影响。在这些污染中,以振动和噪声的危害居首。振动污染已被世界环境组织列为第七大公害。纵观国内外的轨道交通运营史,美国纽约地铁车站的噪声曾高达100-115dB,接近人耳的痛阂 捷克发生了地铁线路四周古教堂因振动产生裂缝、乃至倒塌的恶性事件 我国北京地铁西单车站四周的居民,因无法忍受地铁造成的振动和噪声而进行投诉。凡此种种环境污染事件,不得不引起社会广泛的思考和关注,尤其在“以人为本”的今天,轨道交通的环保问题,已成为健康、可持续发展的首要问题。下面从规划设计、施工、运营等一整套体系出发,分析重点环境污染问题,从而提出实现环保轨道交通的方法和措施。2 城市轨道交通规划设计阶段的环保措施城轨交通的环境污染,主要以建成通车后的振动和噪声污染为主,其次为电磁辐射污染和景观污染等。防治措施通常采用主动和被动两种形式。主动防治即先行分析污染源、污染产生的机理、影响因素,而后对症下药,从污染产生的源头上采用先进的技术设计手段,阻断或削弱污染。2.1 城市轨道交通的振动和嗓声2.1.1 城市轨道交通振动、噪声的特点、产生气理和影响因素城市轨道交通的振动和噪声随着列车运行间隔、运行时间呈现出间歇性和非全天候的特点,其主要产生于轮轨系统和动力系统。列车运行时产生的振动属于随机振动问题,其引起的振波通过结构传到四周地层,进而通过土壤向四面传播,诱发四周结构及建筑物的二次振动。导致振动的主要因素有:轨道不平顺引起的随机性激振源、车轮偏心引起的周期性激振源、车轮通过轨缝、道岔时的瞬间激振源和轮轨碰撞等。噪声分为空气声和固体声,一般通过声源、传播途径和接受点三个方面来分析,除轨轮噪声为线声源外,其余均为点声源。噪声级的强度主要由轨道设置位置确定:地下车内噪声大于地面噪声 高架噪声大于地面噪声。影响噪声的因素主要有:列车速度、轮轨结构、钢轨波磨、钢轨类型、最小曲线半径、车辆设备、活塞风、通风系统、隧道结构及埋深、高架结构振动辐射、集电弓摩擦和列车运行产生的气流噪声等。运营城轨的振动和噪声不是相互独立的,二者之间在某种程度上存在着必然的联系,大部分的运营噪声往往是轮轨相互撞击而产生的,其减振降噪的技术措施,应以控制振动为主,振动减小意味着占噪声主导地位的固体声也随之减小。2.1.2 基于环保的减振降噪规划设计措施在轨道交通路网规划和可行性研究前期,采取的环保措施是:以现场环境调查或环评告为依据,对环境敏感点尽量绕避,对可能的小半径段落尽量采取增大曲线半径的做法,但此两点往往受地形、地物、地质、线路敷设方式、城市规划等条件的制约不易实现。

  • 【分享】美找到自旋轨道强相互作用新材料 显示不凡性质

    近日美国能源部阿尔贡先进光源(APS)实验室研究发现,一种含有重元素铱的氧化材料,受到铱5d层价态上的自旋轨道相互作用的控制,显示出非同寻常的性质。该研究成果发表在近期《物理评论快报》上。  该研究由阿尔贡APS国家实验室、肯塔基大学、橡树岭国家实验室以及北伊利诺伊州立大学联合开展,在APS的X射线科学分部用4-ID-D光束,对一种名为三氧化钡铱的多晶体进行了X射线吸收和磁环双色探测,在铱的5d层价态分析了电子自旋、轨道角动量和自旋轨道耦合。  研究人员本来认为,铱在5d层的电子波会和邻位有很强的重叠并“绑”在一起,再加上一个来自氧离子的强大晶体场围绕着铱离子,5d层电子的角动量和自旋轨道相互作用几乎会“被消灭掉”。这次研究却发现,5d层电子存在很大的轨道角动量,约是它们自旋角动量的3倍,由此在铱原子中形成很强的自旋轨道耦合。  由于固体性质由其组成原子的外层价电子所决定,如由相邻原子的电子云重叠而形成的晶体场等强相互作用。但当固体中自旋轨道相互作用力起重要作用时,就会显示出有趣的性质:如在含有稀土的永磁体材料中,位于4f层的电子引起的磁性,会被材料中相邻电子5d层和6d层的价效所屏蔽。它们的自旋轨道耦合时,自旋对称被打破,将4f层的磁性运动固定到特定的晶格方向,由此产生了很强的永磁效果。  研究人员迈克尔·万·威内达尔说:“这种新材料的基本状态不是由强晶体场作用而是由自旋轨道作用和库仑作用这种较弱的力来最终决定。”  领导该研究的APS物理学家丹尼尔·哈斯克说,研究自旋轨道耦合具有重要意义,这种类原子行为可用于化学掺杂,破坏材料中的磁序。  研究人员称,与砷化镓相比,弱绝缘性的三氧化钡铱自旋轨道相互作用更强,过渡金属氧化物的自旋轨道特征可能更加适于自旋控制设备。  作为下一代自旋电子设备,自旋晶体管有着巨大的应用前景。开发自旋晶体管需要找到具有大量电子自旋轨道的新型材料。由于自旋轨道的相互作用是随着原子数量而迅速增加,含有重元素的材料成为该领域的最佳候选。  在半导体中,自旋轨道耦合可以通过电场调节自旋累积来控制,这是开发自旋晶体管的一个很有前途的方向。比如开发自旋电子设备,基于电子自旋而不是所带的电荷,能使其功能更加强大、速度更高而且能耗更低。

  • 比起传统电气化铁路,氢能轨道交通赢麻了

    近年来,随着新能源在轨道交通的应用兴起,[b]氢能正成为轨道交通领域备受关注的技术“新秀”[/b]。业内人士普遍认为,当前,在轨道交通清洁化需求、政策支持等因素推动下,氢能轨道交通正持续升温。[align=center][b][back=#ffff00]满足降碳需求[/back][/b][/align]“氢能轨道交通采用氢能源作为动力,从全产业链角度来看,更加低碳环保。”四川荣创新能动力系统有限公司董事长陈维荣在2023世界氢能青年科学家论坛上指出,“据测算[back=#ffff00][/back],一列时速160公里的氢能源市域动车,一天跑500公里,一年大概可以减少1万多公斤二氧化碳的排放,减碳效果显著。因此,[b]氢能轨道交通是我国交通领域实现‘双碳’目标的重要手段之一[/b]。”氢能巨大的减碳潜力也获得了更多的政策支持。目前,成都、佛山、张家口、青岛等地在“十四五”规划中明确提出,要把有轨电车、城际交通纳入氢能应用范围中。[align=center][b][back=#ffff00]竞争优势明显[/back][/b][/align]陈维荣指出,氢能轨道交通的核心是以氢能为动力系统,由于避免了传统电气化铁路的接触网、变电所等复杂工程问题,氢能轨道交通的一次性建设成本和全寿命周期运营成本,[b]比传统电气化铁路成本低10%—20%[/b],有很好的竞争优势。“目前,氢燃料电池已开始在乘用车、客车、物流车等当中推广应用,由于需要布局更多加氢站,短期内难以大规模商业化。相比而言,[b]轨道交通系统的线路相对固定,让氢气的运输和储存更简单[/b]。”陈维荣表示。[b]基于上述应用优势,目前国内外都在积极推进氢能轨道交通的研究和应用。[/b]国内氢能轨道交通发展持续加快,以中国中车、国能集团、中国中铁为主的相关企业瞄准能源转型方向,加快推动燃料电池在氢能轨道交通领域的应用。2023年6月,“宁东号”氢动力机车在中国中车下线,这是目前氢燃料电池装机功率最大的氢动力机车,也是国内首台由内燃机车改造而来的氢动力机车;同年7月,国内首台氢能源地铁施工作业车在湖北襄阳正式下线,与传统燃油作业车相比,该车全生命周期可累计减少碳排放225吨。[b]国际范围内[/b],法国阿尔斯通、德国西门子、日本丰田等公司都在研发氢能轨道机车;英国和德国等欧洲国家计划在2035年逐步将现有内燃机车替换为氢能机车;马来西亚已完成38列氢能智轨车的全球招标;印度发布了35列氢能列车的招标计划等,这些都为氢能轨道交通发展带来更多机遇。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 比起传统电气化铁路,氢能轨道交通赢麻了

    近年来,随着新能源在轨道交通的应用兴起,[b]氢能正成为轨道交通领域备受关注的技术“新秀”[/b]。业内人士普遍认为,当前,在轨道交通清洁化需求、政策支持等因素推动下,氢能轨道交通正持续升温。[align=center][b][back=#ffff00]满足降碳需求[/back][/b][/align]“氢能轨道交通采用氢能源作为动力,从全产业链角度来看,更加低碳环保。”四川荣创新能动力系统有限公司董事长陈维荣在2023世界氢能青年科学家论坛上指出,“据测算[back=#ffff00][/back],一列时速160公里的氢能源市域动车,一天跑500公里,一年大概可以减少1万多公斤二氧化碳的排放,减碳效果显著。因此,[b]氢能轨道交通是我国交通领域实现‘双碳’目标的重要手段之一[/b]。”氢能巨大的减碳潜力也获得了更多的政策支持。目前,成都、佛山、张家口、青岛等地在“十四五”规划中明确提出,要把有轨电车、城际交通纳入氢能应用范围中。[align=center][b][back=#ffff00]竞争优势明显[/back][/b][/align]陈维荣指出,氢能轨道交通的核心是以氢能为动力系统,由于避免了传统电气化铁路的接触网、变电所等复杂工程问题,氢能轨道交通的一次性建设成本和全寿命周期运营成本,[b]比传统电气化铁路成本低10%—20%[/b],有很好的竞争优势。“目前,氢燃料电池已开始在乘用车、客车、物流车等当中推广应用,由于需要布局更多加氢站,短期内难以大规模商业化。相比而言,[b]轨道交通系统的线路相对固定,让氢气的运输和储存更简单[/b]。”陈维荣表示。[b]基于上述应用优势,目前国内外都在积极推进氢能轨道交通的研究和应用。[/b]国内氢能轨道交通发展持续加快,以中国中车、国能集团、中国中铁为主的相关企业瞄准能源转型方向,加快推动燃料电池在氢能轨道交通领域的应用。2023年6月,“宁东号”氢动力机车在中国中车下线,这是目前氢燃料电池装机功率最大的氢动力机车,也是国内首台由内燃机车改造而来的氢动力机车;同年7月,国内首台氢能源地铁施工作业车在湖北襄阳正式下线,与传统燃油作业车相比,该车全生命周期可累计减少碳排放225吨。[b]国际范围内[/b],法国阿尔斯通、德国西门子、日本丰田等公司都在研发氢能轨道机车;英国和德国等欧洲国家计划在2035年逐步将现有内燃机车替换为氢能机车;马来西亚已完成38列氢能智轨车的全球招标;印度发布了35列氢能列车的招标计划等,这些都为氢能轨道交通发展带来更多机遇。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 大型轨道水浴振荡器45L特色

    这款[url=http://www.f-lab.cn/shaking-baths/wbt-450.html][b]大型[b]轨道水浴振荡器[/b][/b]WBT-450[/url]是高精度[b]轨道水浴摇床[/b],[b]轨道水浴震荡器[/b]或[b]轨道振荡水浴[/b],使用先进的数字PID温度控制器,为满足多用应用而设计,[b]大型[b]轨道水浴振荡器[/b][/b]用电子控制振荡机制,提供安静的振荡运动和精密的速度控制[b],[/b]在进口[b]轨道振荡水浴器品牌[/b]中具有较低的[b][b]轨道水浴振荡器价格。[/b][/b][img=大型轨道水浴振荡器45L]http://www.f-lab.cn/Upload/WBT-450.JPG[/img][b]大型[b]轨道水浴振荡器[/b][/b]特色:●卓越的耐久性和高热效率●创新的易于使用的数字PID控制器●电控振动机理提供了安静的往复运动和速度的精确控制●万能不锈钢弹簧架不锈钢浴(可选):各种瓶皿和Tubes(可选)●专利振动机理:最小的噪声和振动不锈钢水浴槽提供良好的耐用性和高效的热效率创新性的PID控制器方便使用电子控制振荡机制提供安静的运动和精密温度控制专利的振荡机制提供最小的噪音和振动适合多数实验室应用轨道振荡模式适合长时间工作(几周或几个月)独立开关控制速度和加热器独立的RPM读取和温度数字读取不需要维护基于PID技术的微处理器精密温度控制振荡速度和温度可调大型轨道水浴振荡器45L:[url]http://www.f-lab.cn/shaking-baths/wbt-450.html[/url][b][/b]

  • 科学家观察到电子分裂为自旋子和轨道子

    将对高温超导和量子计算机等前沿领域产生重要影响科技日报 2012年04月20日 星期五 本报讯 据物理学家组织网、《自然》网站等媒体4月18日报道,最近,一个由瑞士保罗·谢尔研究所实验物理学家和德国德累斯顿固体和材料研究所理论物理学家领导的国际研究小组通过实验发现,一个电子分裂成两个独立的准粒子:自旋子(spinon)和轨道子(orbiton)。这一结果发表在近日的《自然》杂志上。 以往人们认为电子是一种基本粒子,无法分裂为更小部分。上世纪80年代,物理学家预言,电子以原子的一维链形式存在,可以分裂成3个准粒子:空穴子携带电子电荷,自旋子携带旋转属性(一种与磁性有关的内在量子性质),轨道子携带轨道位。1996年,物理学家将电子空穴和自旋子分开,自旋和轨道这两种性质伴随着每一个电子。 然而,新实验观察到这两种性质分开了——电子衰变为两个不同部分,各自携带电子的部分属性:一个是自旋子,具有电子的旋转属性;另一个是轨道子,具有电子绕核运动的属性,但这些新粒子都无法离开它们的物质材料。 研究人员用瑞士光源(Swiss Light Source)的X射线对一种叫做Sr2CuO3的锶铜氧化物进行照射,让其中铜原子的电子跃迁到高能轨道,相应电子绕核运动的速度也就越高。他们发现,电子被X射线激发后分裂为两部分:一个是轨道子,产生轨道能量;另一个是自旋子,携带电子的自旋性及其他性质。Sr2CuO3有着特殊性质,材料中的粒子会被限制只能以一个方向运动,向前或向后。通过比较X射线照射材料前后的能量与动量的变换,可以追踪分析新生粒子的性质。 实验小组领导托斯登·施密特说:“这些实验不仅需要很强的X射线,把能量收缩在极狭窄范围,才能对铜原子的电子产生影响,还要有极高精度的X射线探测仪。” “这是首次观察到电子分成了独立的自旋子和轨道子。现在我们知道了怎样找到它们。下一步是同时产生出空穴子、自旋子和轨道子来。”理论小组领导杰罗恩·范德·布林克说,“在材料中,这些准粒子能以不同的速度、完全不同的方向运动。这是因为它们被限制在材料中时,性质就像波。当被激发时,波分裂为多个,每个携带电子的不同特征,但它们不能在材料以外独立存在。” 观察到电子分裂将对一些前沿领域产生重要影响,如高温超导和量子计算机。Sr2CuO3中的电子和铜基超导材料中的电子有着相似的性质,该研究为高温超导研究提供了一条新途径。此外,研究轨道子有助于开发量子计算机。“同时用自旋子和轨道子来编码和操控信息,这可能是未来发展的方向。”英国牛津大学物理学家安德鲁·波斯罗伊德说,“量子计算机的一个主要障碍是量子效应会在完成计算之前被破坏。而轨道子的跃迁速度只要几飞秒(1飞秒=10的负15次方秒),这样的速度为制造现实量子计算机带来了更多机会。”(常丽君)

  • 【分享】轨道交通的噪声特性与分析

    、噪声的产生与传播机理  轨道交通噪声主要来源于高架线路列车运行时轮轨的接触噪声、车辆非动力系统噪声(车辆的空压机、空调机、电动机等),以及桥梁结构的二次振动引起的辐射噪声、小半径曲线路段上车辆轮缘与钢轨间的摩擦声。噪声的大小与车辆型式、曲线半径、桥梁与轨道结构等因素有关。  二、噪声测试结果  在测试高架线路噪声时,桥面以上部分的噪声峰值大于桥面以下的噪声峰值。当列车以60~80 km/ h 速度行驶在高架线路上时,其噪声连续等效声级可达85~90 dB(A) ( 单列车通过) 。其噪声特点是声级高,作用时间长,且以中低频为主。  三、轨道交通噪声分析  结合噪声的产生和传播机理分析上述噪声测试结果,可以看出:   1、高架线箱梁下的噪声峰值为80 ~ 85 dB (A) ;  2、高架线路的噪声峰值一般超标量为10~ 15 dB(A) ;  3、随着建筑物距线路中心距离的增大,噪声峰值也有所衰减。建筑物距离线路中心30 m 处, 噪声可衰减5 dB (A) 左右。箱梁下的噪声高达80 dB (A) 以上,说明钢轨扣件和轨下基础减振效果差,轮轨动力作用直接传递到梁体,引起较大的二次噪声。

  • 【分享】日金星探测器未能进入预定轨道 与金星擦身而过

    中新网12月8日电 据日本共同社报道,关于为进入金星轨道进行了引擎反向喷射的日本“拂晓”号金星探测器,日本宇宙航空研究开发机构8日上午召开记者会宣布,探测器未能成功进入预定轨道。这是继火星探测器“希望”号之后,日本行星探测器进入轨道再次以失败告终。   日本宇航机构将成立以宇宙科学研究所所长为首的调查对策组调查具体原因。  日本宇航机构项目负责人中村正人透露,由于“拂晓”号的反向喷射在短时间内停止,因此已经与金星擦身而过。  若“拂晓”号完好无损,6年后将有机会再次接近金星,运作小组将研究届时能否再次尝试进入轨道。  “拂晓”号7日早晨进行反向喷射后,与地球的通信出现故障。

  • 【分享】我国防治轨道交通振动噪音污染存在三大问题

    我国现有20多个城市在建或将建城市轨道交通工程,但因轨道振动和噪音污染引发的群体性事件也呈高发、多发态势,甚至一个以维护自身休息权、健康权和财产权等为诉求的新利益群体正在轨道交通线附近形成。据估计,仅北京就有近50万人生活在距离轨道不足50米两侧,切身利益与轨道交通息息相关。 例如,目前北京轨道公司因为振动噪声问题已被市民起诉达十几次,多次发生居民阻止轨道交通工地施工、地铁试运行期间部分业主网上发表维权号召、一些市民到市政府集体上访等事件,最后公司不得不投入巨资加装声屏障及轨道减振设备。 轨道交通关系城市发展百年大计,一旦竣工投入使用后再进行改造,社会成本十分巨大。目前,我国在防治轨道交通振动噪音污染方面主要存在三大问题: 其一,国家环评标准滞后,与社会发展脱节。国家关于振动、噪声的标准已大大滞后于现实发展要求,高于人民群众忍受程度;其二,认识上存误区,导致城轨建设偏差。比如,增设声屏障等设备,不但不能隔断振动而且还会引起二次振动。且规划中普遍存在能省则省的心理,未将减振降噪措施纳入;其三,轨道交通减振降噪后期改造费巨大,且难以根除。2007年,北京地铁五号线试运行后,因居民抗议仅减振改造一项就花费5000多万元。目前全国城轨建设如不将减振降噪纳入规划,以后的改造成本会是“天文数字”。 其实,轨道交通振动噪声污染的有效控制与治理并非不可实现,国内外已经形成较为成熟的解决方案。如北京城铁十三号线在通过西直门线路时,使用了德国的钢弹簧浮制板,列车从地铁指挥中心大楼底部穿越,楼内工作人员基本没有感觉。 在我国刚刚进入轨道交通高速发展的关键期,应加大对轨道振动噪声的防治力度。首先,需要由国家发改委牵头,尽快召集轨道规划、环评等部门、建设单位以及国内外专家,成立轨道交通扰民治理小组,制定出治理思路和方案。对正在建设或规划中的轨道交通进行紧急集中普查,限期达到全线环保减振降噪要求。 其次,尽快修改1988年颁布的《城市区域环境振动标准》(此标准仍比日本1976年的标准低了5分贝)和1993年颁布的《城市区域环境噪声标准》。 再有,强制要求轨道交通工程采取减振降噪措施。当前采用的一些减振降噪技术使用周期一般为20年左右时间。考虑到未来环保要求以及设备更新需要,全线轨道交通最低要有10分贝的减振降噪设备,同时轨枕应做到可以随时更换。

  • 【分享】建设项目竣工环境保护验收技术规范 城市轨道交通(HJ/T 403–2007)

    为贯彻《中华人民共和国环境保护法》和《建设项目环境保护管理条例》,保护环境,规范城市轨道交通建设项目竣工环境保护验收工作,制定本标准。本标准规定了城市轨道交通建设项目竣工环境保护验收的一般技术性规范要求。本标准适用于城市轨道交通的新建、改建、扩建和技术改造项目竣工环境保护的验收。其他与城市轨道交通项目有关的环境影响评价、环境保护工程设计、建设项目竣工后的日常监督管理性监测亦可参照执行。本标准为首次发布。本标准为指导性标准。http://www.instrument.com.cn/download/shtml/065979.shtml

  • 靠近轨道的居民别担心声屏障能降噪音还能防台风

    轨道交通建设,主要节点分为洞通(隧道全线贯通)、轨通(轨道铺设完成)、电通(全线送电)、车通四大部分。昨天下午,宁波轨道交通1号线一期高架段220米提篮拱桥的轨道铺通了。这标志着,宁波轨道交通1号线一期工程实现了全线(含高架段)“轨通”,距离今年年中的正式通车又进了一步。记者还打听到一个好消息:高架段靠近居民区的地方都正在安装声屏障,这些声屏障能降噪音还能防台风。5个高架站都已铺轨和安装机电其实,1号线一期工程地下段目前已实现洞通、轨通和电通,地下15个车站主体结构装修和设备安装调试基本完成,区间接触网、环网、疏散平台施工等安装完毕。高架段包含5个站:高桥西站、高桥站、梁祝站、芦港站及徐家漕长乐站。这些站台建设进展如何?昨天下午,记者赶到芦港站时看到,芦港站的站台层和站厅层的地面大都贴好了花岗岩,上下电扶梯等已安装到位;站台层上,工人们正顶着大风进行屏蔽门的安装。宁波市轨道交通工程建设指挥部机电处工作人员介绍了高架段的最新进度:5个高架站铺轨和机电安装都完成了,徐家漕长乐站及芦港车站进入联调联试阶段,梁祝、高桥及高桥西进入车站设备单体调试阶段。很快,5个高架段车站就能全部调试完毕实现电通,到时候动力照明、电扶梯、屏蔽门等机电设备的安装调试和车辆的上线调试都会有源源不断的动力。靠近居民区高架段将装3.9公里声屏障还有一件事,对住在靠近高架段的居民来说是个好消息。1号线一期工程高架段将安装有3.9公里的声屏障,以减少噪音对周边的影响。目前,声屏障的安装已经完成50%。为什么要安装声屏障?负责声屏障施工的江苏远兴环保集团有限公司戴春雷介绍:“就是用来减少噪音污染的。”这些声屏障分全封闭、半封闭和直立式三种。全封闭是指高架段两侧都设有声屏障,半封闭是指单侧设立,而直立式是指在轨道旁特定区域设立1米左右高的声屏障。“在理想条件下,全封闭的声屏障可降低噪音15分贝以上。”戴春雷说,高架段其他区域也预留了一些声屏障的安装位置,通车试运营后可根据需要安装。这些声屏障的材料和抗台风能力都比较好。特别是全封闭式的声屏障,可以抵挡12级台风。记者了解到,高架段剩下的施工正紧张进行中,部分标段及工种施工人员春节不休,全力保证今年年中1号线一期全线通车试运营。

  • 欧航局退役卫星降至安全轨道 设法确保不被解体

    欧洲航天局12日宣布,该局已退役的ERS-2号观测卫星5日耗尽了自身燃料,目前其运行轨道的高度已降至距地573公里,与其他卫星或空间碎片碰撞的危险已降到极低程度。  欧航局曾在早些时候宣布这颗卫星退役,为避免其成为危险的太空垃圾,欧航局决定在卫星仍有足够燃料的情况下,使其下降到高度较低、相对安全的轨道上。位于德国的欧航局地面控制中心从7月6日开始发出指令,降低ERS-2号卫星的轨道高度,欧航局位于法属圭亚那和肯尼亚的观测站对卫星的运行进行监测,未发现异常。  欧航局说,该局将一直监测这颗卫星,设法确保它在太空中的最后运行阶段不会解体,以免产生新的空间碎片。欧航局预计该卫星最终将与地球大气剧烈摩擦并燃烧,其绝大多数部件将灰飞烟灭。(科技日报)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制