当前位置: 仪器信息网 > 行业主题 > >

磁栅尺

仪器信息网磁栅尺专题为您提供2024年最新磁栅尺价格报价、厂家品牌的相关信息, 包括磁栅尺参数、型号等,不管是国产,还是进口品牌的磁栅尺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁栅尺相关的耗材配件、试剂标物,还有磁栅尺相关的最新资讯、资料,以及磁栅尺相关的解决方案。

磁栅尺相关的方案

  • 锂离子电池爆炸机理分析
    研究LiCoO2(或L1.05Co1/3Ni1/3Mn3O2)/LixC6锂离子电池材料的热分解特性以及锂离子电池在加热、过充、短路等情况下的爆炸机理.实验表明, 50~350℃之间负极表面存在SEI膜的分解、LixC6与电解液乃至LixC6与PVDF等3种放热反应,电解液于178℃时开始放热, Li1-Co1/3Ni1/3Mn1/3O2的热分解反应起始于230℃.锂离子电池在150℃加热时爆炸,1.5C过充至15 min时爆炸,短路情况下不发生爆炸.
  • X射线工业CT解析锂电池爆炸原因
    通过图像分析,失效的电池会出现“枕突”的迹象,最终可能导致起火或爆炸。经过多次谨慎测试分析,主要是电池的问题,是因为负极板受到了挤压,一部分电池因为绝缘胶带稀薄,造成了短路,导致手机自燃现象的发生。可见,X射线三维CT检测技术在锂电池检测领域,具有重要的意义。
  • 慈菇渣粉面包制备工艺及其配方研究-美国FTC
    本试验通过将慈菇渣烘干制粉用于面包的制作,综合感官评定、比容和质构3个方面来研究对面包品质的影响,从而确定慈菇渣粉在面包中的Z佳添加量,得到相关产品,期待为慈菇在食品行业的广泛应用提供研发思路。
  • Plasma 3000型全谱电感耦合等离子体原子发射光谱测定锂电池负极材料石墨中磁性物质的含量
    近年来,随着锂离子电池在动力电池与储能领域方面的广泛应用,高能量密度、高电位与高安全性能已成为未来主要发展趋势。其中,安全性能是锂离子电池的关键性能指标,由于锂离子电池的安全性能问题而引起电磁着火、爆炸造成人身伤害与财务损失的报道屡见不鲜。锂离子电池材料的生产过程中不可避免的会引入一些磁性物质,这些磁性物质以极微小颗粒状态存在。这类磁性物质颗粒会严重影响电池的安全性能与可靠性。磁性物质颗粒在锂离子电池充放电过程中,电解质中的有机物质会以磁性颗粒为基体团聚生长形成棱角或尖刺,同时,这种磁性颗粒会先在正极氧化,再到负极还原,磁性颗粒在运动过程中有可能会刺穿电池隔膜,造成电池内部短路后急剧自放电,引起电池发热、燃烧、甚至爆炸。因此,有必要对正负极的中磁性进行检测和控制。
  • 一次性餐具勺子不挥发性蒸发残渣的测试方法
    作为一次性餐饮具中的一员,一次性勺子中的不挥发性残渣是评价其使用安全性的重要因素之一。本文以某企业生产的一次性勺子为检测样品,利用Labthink兰光ERT-01蒸发残渣恒重仪对其进行蒸发残渣性能的测试,并对试验的过程、设备的原理、设备参数及适用范围等内容进行介绍,从而为企业监测一次性餐饮具中的不挥发性残渣的含量提供一种简单可靠的试验方法。
  • 电渣冶金用含氟渣系对夹杂物的影响研究
    本文以 MoSi2电阻炉为熔炼设备,以电渣重熔过程常用的几种渣系与支承辊用钢进行了渣金平衡实验,分别利用金相显微镜、SEM-EDS 对不同时刻所取试样进行了数量、尺寸及形貌、成分的测定,得出 S4 渣及 S5 渣的变形渣 S6 渣(即保持 S5 渣其它组元成分比例不变,将 MgO 含量提升到 13%)冶炼过程中夹杂物面积百分比相对于其它渣系均较低;在钢液凝固过程后钢中易氧化元素重新与钢中溶解[O]结合形成相应非金属夹杂物,并伴随钢液的凝固常有 Ti、V 的氮化物、碳化物夹杂生成,采用三七渣冶炼,终点钢样中夹杂物多成塑性夹杂,而采用五元渣系冶炼,终点钢样中夹杂物呈向塑性夹杂转变的趋势。
  • 一次性勺子中不挥发性残渣含量的监测方法
    利用Labthink兰光ERT-01蒸发残渣恒重仪对其进行蒸发残渣性能的测试,并对试验的过程、设备的原理、设备参数及适用范围等内容进行介绍,从而为企业监测一次性餐饮具中的不挥发性残渣的含量提供一种简单可靠的试验方法。
  • 低场核磁法表征半固态电池凝胶材料的固化
    随着电池技术的不断发展,电池能量密度不断提高,但是电池爆炸释放的能量也随之增大,产生的伤害也更加严重。为了显著提高电池能量密度、充电速度、安全性、使用寿命等性能,半固态电池应运而生。半固态电池是利用凝胶聚合物材料的离子传导性质,在材料本身内部进行电荷转移,实现能量的储存与释放,是用凝胶态电解质代替了传统液态电解质的新一代电池。有着广泛的应用前景,如新能源汽车、光伏储能、电动化航空等一些列领域。
  • 海能仪器:电位滴定法检测煎炸油的酸价(电位滴定仪)
    煎炸过两天后油的平均酸价为2.39mg/g,电位滴定检测出来的结果平行性良好,符合国标的要求。小吃摊上用过两天的煎炸油的酸价,比之前检测的未经煎炸过调和油的酸价(平均含量为0.22mg/g)要高10倍多,建议路边摊的油炸食品大家还是少吃为好。精密度小于1mg/g时,在重复条件下获得的两次独立测定结果的绝对差值不得超过算术平均值15% 当酸价大于等于1mg/g时,在重复条件下获得的两次独立测定结果的绝对差值不得超过算术平均值12%.
  • 瑞绅葆铸铁重熔机制备钢渣样品
    我国钢渣的利用率较低源于钢渣应用的众多制约因素,其中钢渣成分的复杂性和波动性,造成其使用难度增大。在分析钢渣成分的基础上,探讨了钢渣处理方法及钢渣利用的可行性,对提高企业经济效益,保护生态环境均有重大的经济和社会效益。近期某钢铁厂通过瑞绅葆CIRF-01型铸铁重熔机处理生产过程的钢渣样品,用于钢渣成分分析
  • 采用加速氧化法OXITEST和RANCIMAT测定煎炸油的诱导期
    采用两种不同的加速氧化法OXITEST和RANCIMAT测定了15种煎炸油的诱导期,并将其与之前用气相色谱法测定的脂肪酸含量进行了比较。以棕榈油为主要来源的饱和脂肪酸含量高的煎炸油通过增加其诱导期来提高其氧化稳定性。此外,通过线性回归分析,两种仪器的诱导期值之间具有良好的相关性。因此,创新的OXITEST方法可能是一种简单、快速、环保的方法,可以替代的RANCIMAT方法来评估含油和脂肪产品的氧化稳定性。
  • 煎炸型年货的正确打开方式
    俗话说,民以食为天。走到哪里都离不开吃,举家团圆的农历新年,更是把”吃货“的本色发挥得淋漓尽致!春节期间,煎炸类食品的“出镜率”非常高,尤其受到人们的热捧与欢迎!每逢佳节来临,各家各户都会自制或购买各类油炸、煎炸食物。常听家中老人道,开开油锅炸些煎堆油角,是为求来年的日子也像油锅似的———油油润润!寓言新的一年家人生活富富足足!
  • 基于核磁沙砾岩油储全尺寸孔径分布研究
    介绍一篇中国石油大学(华东)卢双舫老师团队在19年7月发表在Energy&Fuels上的文章:砂砾岩全尺度孔径分布和可动油分布研究。文章针对砂砾岩这种非均质性较强、孔喉结构复杂、孔径分布较广的特殊岩石,提出了一种结合低温氮气吸附和核磁共振的孔径分布的全尺度表征方法,分析了砂砾岩孔隙和可动油的分布特征及影响因素。
  • 光伏电池片焊带剥离力测试方法
    现在市面上光伏电池片的规格有5栅,6栅,9栅,12栅多种规格,我们针对这么多的规格产品,研发了多工位光伏电池片焊带剥离测试试验机,在简单方便省时的调整方式下,一台设备可做多个规格的测试,省时省力省成本。
  • 医用垫片热合强度、穿刺力和蒸发残渣的性能检测
    垫片是用橡胶、纸或塑料制成,放在两平面之间以加强密封,为防止流体泄漏设置在静密封面之间的密封材料。当其应用到医药行业中,成为直接接触药品的材料,其性能将被严格要求,接下来,笔者将介绍医药行业常用几款垫片,并根据国家药品包装容器(材料)标准的要求,详细说明热合强度、穿刺力和蒸发残渣项目的检测方法。
  • 鲕状赤铁矿“磁化焙烧-晶粒长大-磁选”新工艺研究
    摘 要: 基于宣龙式鲕状赤铁矿嵌布粒度极细、结构复杂等特点,进行了磁化焙烧-晶粒长大-磁选新工艺研究。在焙烧温度为800℃,煤粉配比10%,焙烧时间45min的条件下,使赤铁矿还原焙烧成磁铁矿,经过弱磁选,可得到铁精矿品位62.5%,回收率85.5%的良好选矿技术指标。通过一系列观测手段及相关理论说明,证实了磁铁矿晶粒能够长大。
  • 当阳地区鲊广椒中乳酸菌的分离鉴定及其应用
    采用传统培养分离方法和分子生物学技术对湖北省当阳地区鲊广椒中的乳酸菌进行分离鉴定,通过电子舌和电子鼻技术评价植物乳杆菌(Lactobacillus plantarum)强化发酵对鲊广椒品质的影响,并通过主成分分析(PCA)获得具有优良鲊广椒发酵特性的菌株。
  • 低场核磁弛豫技术用于CMP抛光液的原位分散性检测
    低场核磁弛豫技术以水分子(溶剂)为探针,可以实时检测悬浮液体系中水分子的状态变化。低场核磁弛豫技术可以区分出纳米颗粒与溶剂的固液界面间那一层薄薄的表面溶剂分子,当颗粒尺寸或颗粒分散性发生变化时,颗粒表面的溶剂分子也会发生相应的变化。低场核磁弛豫技术可以灵敏的检测到这这种变化状态和变化过程,从而可以快速地评价例如抛光液以及相关悬浮液样品的分散性和悬浮液中颗粒尺寸的变化过程。
  • 电位滴定法检测不同煎炸时间对煎炸油酸价的影响
    煎炸油是用棉籽油、菜籽油、大豆油和棕榈油等根据生产使用需要,将两种以上经精炼的油脂按一定比例调配,制成含芥酸低、脂肪酸组成平衡、起酥性能好,烟点高的煎炸调和油,因此煎炸油在餐饮业和食品加工行业有重要的作用。然而,煎炸油因含有不饱和脂肪酸等易氧化的成分,容易发生变质,其质量往往会受煎炸时长、存放温度等因素影响,发生水解和氧化作用,进而发生酸败,严重影响公众的健康。目前,酸价和过氧化值是衡量煎炸油酸败程度的重要指标。在国标《GB 5009.229-2016 食品安全国家标准 食品中酸价的测定》中就对酸价的测定方法有明确的规定,选取不同煎炸时长的煎炸油为样品,用电位滴定仪测定其中的酸价含量,具有操作简单,重复性好等优点。
  • 光伏电池片焊带剥离测试标准
    光伏电池片在焊接过程中受焊接温度,焊带规格,助焊剂,焊接工艺等诸多因素影响,容易出现焊带与电池片主栅线焊接强度不够,为了确保电池片焊接的质量,所以需要对焊接进行剥离强度检测。
  • 低场核磁共振技术:揭示多孔介质孔径分布对新能源电池性能的影响
    随着新能源技术的飞速发展,电池性能的提升成为研究的热点。在众多电池材料中,多孔碳和石墨因其独特的孔隙结构而备受关注。本文将探讨低场核磁共振技术如何应用于多孔介质孔径分布的检测,以及这一技术对新能源电池性能优化的重要性。
  • 锂电池隔膜穿刺测试研究
    锂离子二次电池又称充电电池(以下简称锂电池),因其能量密度高、电池电压高等优点,被广泛用作信息终端和消费电子等领域的能源。近年来,其应用范围渐渐扩大至日常生活领域(包括混合电动汽车等),未来的需求将进一步增加。锂电池的组成部分中,锂电池隔离膜防止正极和负极之间的接触,同时起到允许锂离子通过的间隔物的作用。隔离膜抗穿刺能力对锂电池的安全使用造成重大影响。
  • 电池隔膜抗穿刺性能的验证方法
    本文采用Labthink兰光XLW(PC)智能电子拉力试验机对电池隔膜样品的抗穿刺性能进行验证,并通过对验证方法、试验原理、设备参数及适用范围等内容的详细描述,为企业监控电池隔膜的抗穿刺性能提供参考。
  • 锂离子电池隔膜材料的抗穿刺性能测试方法
    电池隔膜是锂电子电池不可或缺的组成部分,隔膜抗穿刺性能优劣对电池性能具有重要影响。本文采用Labthink兰光XLW(PC)智能电子拉力试验机对电池隔膜样品的抗穿刺性能进行验证,并通过对验证方法、试验原理、设备参数及适用范围等内容的详细描述,为企业监控电池隔膜的抗穿刺性能提供参考。
  • ICPE-9820测定锂离子电池正极材料磷酸铁锂中磁性异物含量
    本文参考《GB/T 41704-2022 锂离子电池正极材料检测方法 磁性异物含量和残余碱含量的测定》标准,使用岛津ICPE-9820型电感耦合等离子体发射光谱仪(ICP-OES)建立了测定锂离子电池正极材料磷酸铁锂中磁性异物含量的方法。实验结果表明,该方法标准曲线线性良好(r>0.9995),灵敏度高,方法检出限为0.05~0.65 μg/kg之间,测定结果准确,加标回收率在92.0%~105%之间,重复性良好,适用于锂离子电池正极材料磷酸铁锂中磁性异物的测试。
  • 固态电池,最新Science!
    与用于日常手机和电动汽车的传统锂离子电池相比,固态电池(SSBs)具有重要的潜在优势。在这些潜在优势中,有更高的能量密度和更快的充电速度。由于没有易燃有机溶剂,固体电解质分离器还可以提供更长的寿命、更宽的工作温度和更高的安全性。SSBs的一个关键方面是其微观结构对质量传输驱动的尺寸变化(应变)的应力响应。在液体电解质电池中,正极颗粒中也存在成分应变,但在SSBs中,这些应变导致膨胀或收缩的电极颗粒与固体电解质之间的接触力学问题。在阳极侧,锂金属的电镀在与固体电解质的界面上产生了自己的复杂应力状态。SSBs的一个关键特征是,这种电镀不仅可以发生在电极-电解质界面上,而且可以发生在固体电解质本身、气孔内或沿晶界。这种受限的锂沉积形成了具有高静水压应力的区域,能够在电解质中引发破裂。尽管SSBs中的大多数故障是由机械驱动的,但大多数研究都致力于改善电解质的离子传输和电化学稳定性。为了弥补这一差距,在这篇综述中,美国橡树岭国家实验室Sergiy Kalnaus提出了SSB的力学框架,并审查了该领域的前端研究,重点是压力产生、预防和缓解的机制。相关论文以“Solid-state batteries: The critical role of mechanics"为题,发表在Science。图片具有高电化学稳定性的固体电解质与锂金属和离子电导率高于任何液体电解质的硫化物固体电解质的发现,促使研究界转向SSBs。尽管这些发现已经播下了SSBs可以实现快速充电和能量密度加倍的愿景,但只有充分了解电池材料的机械行为并且将多尺度力学集成到SSBs的开发中,才能实现这一承诺。图片固态电池的前景开发下一代固态电池(SSBs)需要我们思考和设计材料挑战解决方案的方式发生范式转变,包括概念化电池及其接口运行的方式(图1)。采用锂金属阳极和层状氧化物或转化阴极的固态锂金属电池有可能使当今的使用液体电解质的锂离子电池的比能量几乎增加一倍。然而,存储和释放这种能量会伴随着电极的尺寸变化:阴极的晶格拉伸和扭曲以及阳极的金属锂沉积。液体电解质可以立即适应电极的体积变化,而不会在电解质中积聚应力或失去与阴极颗粒的接触。然而,当改用SSBs时,这些成分应变、它们引起的应力以及如何缓解这些应力对于电池性能至关重要。SSBs中的大多数故障首先是机械故障。SSBs的成功设计将与材料如何有效地管理这些电池中的应力和应变的演变密切相关。要在SSBs中实现高能量,最重要的是使用锂金属阳极。从以往来看,锂金属阳极一直被认为是不安全的,因为锂沉积物有可能生长,锂沉积物会穿透电池,导致短路和随后的热失控。解决锂生长问题最有希望的解决方案是使用固态电解质(SSE)代替液体电解质,因为它具有机械抑制锂枝晶渗透的潜力。然而,原型固态锂金属电池的实际经验表明,即使是强的电解质材料,锂也具有不同寻常的渗透和破裂倾向。解决阴极-电解质界面和锂-电解质界面挑战的关键是清楚地了解涉及电池相关长度尺度、温度和应变率的所有材料的力学原理。图片图 1.锂金属SSBs及其相应的力学和传递现象的示意图【SSBs中运行的压力释放机制】由于锂传输和沉积不可避免地会产生局部应力,因此考虑锂金属和SSE中可能的应力消除机制至关重要。目标是激活非弹性或粘弹性应变以降低应力大小。这种激活机制在不同类别的固体电解质和金属锂中是不同的。固态电解质是否能够管理由氧化还原反应施加的应变引起的应力将取决于在所施加的电流密度(应变率)和工作温度下操作应力消除机制的可用性。当非弹性流无法在特定的长度和时间尺度下激活时,应力通过断裂进行释放。图片图 2.锂金属的长度尺度和速率依赖性力学【陶瓷的塑性变形】SSBs中的主要应力来源包括(i)Li镀入固体电解质中的缺陷,(ii)由于固体电解质约束的阴极颗粒膨胀而产生的应力,以及(iii)外部施加到电池上的应力(典型的应力)。SSBs工程的目标是采用能够在SSBs中可逆变形并限制应力而不产生断裂的电池材料组合。虽然通过扩散流或位错滑移来限制应力累积是金属锂的合适机制,但陶瓷电解质在室温下不会激活滑移系统,而是会断裂。在这种情况下,材料的增韧不是通过位错的产生而是通过移动现有位错来实现的。因此,关键是有意在材料中引入高位错密度,以便有可能在裂纹端周围的小体积中找到足够的位错(图 3)。具有高抗断裂性的非晶固体电解质的一个例子是锂磷氮氧化物(Lipon)。使用这种非晶薄膜固体电解质构建的电池已成功循环超过10,000次,容量保持率为 95%,并且没有锂渗透 (6。此外,已证明电流密度高达10 mA/cm2。对无定形Lipon力学的研究有限,但表明制备成薄膜时材料坚固。Lipon具有一定程度的延展性。这种延性行为在中得到了进一步揭示,表明Lipon可以在剪切中致密和变形以降低应力强度。图片图 3.通过非晶材料中的致密化和剪切流动触发塑性,并通过在结晶陶瓷中引入位错来增韧,从而避免断裂对离子传导非晶材料和玻璃的变形行为和断裂的研究相当有限。然而,在Lipon中,室温下观察到与LPS玻璃类似的部分恢复。根据分子动力学(MD)模拟,有人提出Lipon中的致密化是通过P-O-P键角的变化而发生的。这种结构变化可能是可逆粘弹性应变背后的原因。然而,由于MD方法无法实现时间尺度,模拟致密化恢复是不可行的。在不需要外部能量输入的情况下至少部分恢复致密体积的能力值得进一步研究。在循环负载下,这种部分恢复会产生类似磁滞的循环行为(图 4)。图片图 4. 在循环加载纳米压痕时,Lipon的形变恢复会导致类似滞后的行为【电化学疲劳】尽管已经在应力消除的背景下讨论了断裂,但断裂的起源通常要复杂得多。在传统结构材料中,循环应力和应变会导致损伤累积,最终导致断裂失效。活性电极材料对由主体结构中锂的重复插入和脱除引起的循环电化学负载做出响应,其方式类似于对外部机械力的循环施加的结构响应。对于阴极,由此产生的变化导致在两个不同长度和时间尺度上不可逆的损伤累积,并由不同的机制驱动:(i)多晶阴极颗粒中的晶间断裂,以及(ii)单阴极颗粒中锂化引起的位错动力学和穿晶断裂。电极颗粒的循环电化学应变导致尺寸变化,足以扩展固体电解质和阴极活性材料之间的界面裂纹。固体电解质内可以产生额外的裂纹,作为界面裂纹的延伸或作为新的断裂表面,作为减少SSBs中大而复杂的应力的方法(图 5)。现有的实验证据表明,大多数此类界面破裂发生在第一个循环内,并导致初始容量损失。然而,这种裂纹的演变可能是一个循环过程,让人想起疲劳裂纹的扩展;目前,还没有足够的实验信息来自信地支持或拒绝这一假设。图片图 5.复合固态阴极的疲劳损伤【固体电解质中的锂增长】根据目前对固体电解质失效的理解,裂纹的形成对锂通过陶瓷电解质隔膜的扩展起着重要的作用。大多数锂诱导失效的理论处理都认为锂丝是从金属-电解质界面向电解质主体传播的(模式I降解)。然而,锂的还原和随后的锂沉积很容易发生在电解质内,远离与锂的界面(模式II降解)。最后,可以想象这样一种情况,即锂沿着多晶陶瓷电解质的晶界均匀地沉积,从而穿过电解质而不需要裂纹扩展。当电池内施加高电流密度时,这种情况可能会在泄漏电流非常高的情况下发生(图6)。图片图 6.锂通过固体电解质传播的示意图【小结】最近的研究对应变的起源以及SSBs各组成部分的应力消除机制提供了洞察力。最重要的经验之一或许是,在较小的长度范围内,锂的强度是块状锂的100多倍,因此无法放松在锂电镀过程中在界面上积累的应力。这就需要通过固体电解质释放应力,通常会导致失效。电池因锂离子扩散导致电解质破裂而失效,这是最关键的失效类型,也是最常研究的导致短路的失效类型。与突然短路相比,充放电循环下电池容量的降低虽然不那么明显,但仍具有很大的危害性,这与阴极/固体电解质界面裂纹的形成有关。这两种失效模式都与锂、固体电解质和正极活性材料的长度尺度和额定力学以及它们在不断裂的情况下耗散应变能的能力直接相关。尽管在了解这些关键材料的应力释放方面取得了很大进展,但我们的认识仍然存在很大差距。该研究对SSBs力学进行了综述,并为构思和设计机械稳健的SSBs搭建了一个总体框架,即:(i)识别和理解局部应变的来源;(ii)理解应变产生的应力,尤其是电池界面上的应力,以及电池材料如何应对应变。
  • 不同原料对鲊广椒品质的影响
    本研究分别以大米和玉米为原料制备鲊广椒,采用电子舌、电子鼻分别对鲊广椒的滋味、风味品质进行评价,并结合GC_MS技术对鲊广椒中挥发性风味物质种类和含量进行解析,进而探讨不同原料对鲊广椒品质的影响,以期为后续鲊广椒的产业化推动提供一定依据。
  • 银浆流变性能对硅太阳电池电性能的影响
    通过改变有机相中乙基纤维素的质量分数, 制备了具有不同流变性能的银浆, 并应用于硅太阳电池。对银浆流变性能、电池正面电极形貌和电池电性能等的分析测试结果表明, 银浆的流变性能影响所印制电池的电极形貌及其电性能。当有机相中乙基纤维素质量分数为 6% 时, 银浆具有较高低剪切速率下的黏度和较低高剪切速率下的黏度, 能使所印的电极栅线边缘整齐, 具有较高的高度和较小的线宽, 所印制电池电性能优越, 具有较好的填充因子( FF ) 和转换效率( G) 。
  • 过氧化爆炸物 TATP 和 HMTD 的实时快速检测解决方案
    执法部门对能快速并准确检测爆炸物及其残余物的分析工具需求巨大。新型过氧化爆炸物三過氧化三丙酮(TATP)是近年来多起恐怖事件中的元凶,同时因其不含硝基的特性,对TATP的现场快速检测是维护公共安全的难点和重点之一。直接进样化学电离质谱仪(CI-MS)因其高灵敏度,实时分析等优势,在在线分析痕量爆炸物等领域具有巨大的应用潜力。TOFWERK Vocus CI-TOF仪器适用于分析多种类别和挥发度不一的有机化合物。简而言之,空气样品被直接采集到Vocus反应腔,经电离后被飞行时间质谱检测器记录其信号。因无需任何样品前处理,整个过程耗时极短,保证了爆炸物检测的实时性,适用于高通量样品或者人流密度高时检测。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制