当前位置: 仪器信息网 > 行业主题 > >

芯片

仪器信息网芯片专题为您提供2024年最新芯片价格报价、厂家品牌的相关信息, 包括芯片参数、型号等,不管是国产,还是进口品牌的芯片您都可以在这里找到。 除此之外,仪器信息网还免费为您整合芯片相关的耗材配件、试剂标物,还有芯片相关的最新资讯、资料,以及芯片相关的解决方案。

芯片相关的资讯

  • DNA测试芯片暴利拆解:芯片成本不足20美元
    新创公司InSilixa开发出一款新的DNA测试芯片,据称可在1小时内以不到20美元的成本完成高准确度的DNA测试 相形之下,现有以手持读取器进行测试的成本高达250美元左右。  这款名为Hydra-1K的芯片可大幅削减现有疾病检测方法所需的时间与费用,为重点照护(pointofcare)带来分子级的诊断准确度。不过,这款设计目前才刚开始进行为期18-24个月的实地测试。  我们已经隐密地开发二年半了,这是我们第一次展示这项成果,"InSilixa创办人兼CEOArjangHassibi在日前举行的HotChips大会上表示。  InSilixa声称所采取的测试途径不仅成本更低,而且比现有的分子诊断更迅速,但完全不影响准确度。  InSilixa最近还向世界卫生组织(WHO)会员国展示其芯片成功检测结核的结果。  该公司目前正致力于为该芯片开发一项疾病的商业应用。该公司的目标在于使其芯片成为一款开放的平台,让医疗从业人员与研究人员可用于瞄准一系列的广泛测试,这比该公司能够自行开发的应用还更多更有意义。"但我们自已也将保留几项应用领域,"Hassibi说。  相较于其他的实验室上芯片(lab-on-a-chip),InSilixia的设计是针对像在芯片上进行化学键合的实时分析。Hassibi说,目前有些设计利用必须以化学药剂清洗芯片表面的合成途径,但这些化学药剂中可能含有降低测试准确度的杂质。  该公司主要的秘密武器就在于用来进行检测的化学物质。除此之外,"我们有一半的研发都用于使该系统可用于不懂编程的医生和化学家,"他说。  该公司正致力于寻求美国FDA510(k)的批准,预计需时约六个月。  原理:如何运作?   InSilixa的DNA测试芯片采用IBM250nm制程制造,成本约30-50美元。它利用每个分子传感器约100um的32x32数组。制造该芯片的挑战之处在于多级芯片封装制程。 光传感器在每一数组点进行化学键合实时检测  个别的数组元素由光电二极管和加热器组成,以刺激化学反应。该芯片利用5W功率加热  芯片与电路板  LVDS接口提供数据,绘制时间和温度的2D数组影像  Hydra-1K读取器芯片是一款独立的FPGA板
  • 神奇的生物芯片
    p style="text-indent: 2em "strong芯片(Chip)/strong在电子设备中的使用由来已久。众所周知,这类电子芯片由集成电路组成,通过连线和半导体工艺被撮合在一起,不仅形状小巧,还能快速检测、储存或处理大量的数据,已成为手机、电脑、电视、车载多媒体系统等几乎所有电子设备的核心元件,是人类科技史上最成功的发明之一。/pp  strongspan style="color: rgb(255, 0, 0) "“生物化”的电子芯片/span/strong/pp  近年来,在生物学及医学领域,一种更为神奇的生物芯片应运而生(图1)。它们的外表酷似电子芯片,却在普通芯片触及不到的生物学检测及临床治疗方面大显身手。有些种类的芯片甚至可以直接安置在人体内部,收集并检测人体内产生的生理信号,已成为分子生物学研究、疾病预防和治疗过程中常用的利器。美国前总统克林顿曾指出,未来,基因芯片将为我们一生中的疾病预防指点迷津。生物芯片的重要性及其在疾病诊断和治疗方面的地位可见一斑。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/0e890c3d-37cf-4e80-a5c0-861372297e57.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "图1:形形色色的生物芯片。图片来自网络/span/pp  那么生物芯片究竟是何方神圣?又是怎样造福于人类的呢?从制造工艺的角度来讲,生物芯片可称为电子芯片“生物化”后的产物。与传统芯片(图2A)相比,生物芯片(图2B)仅保留了与之相同的硅底或玻璃底座部分,但在底座之上却不再是集成电路,而是固定核酸、蛋白质(图2C)等生物大分子,或细胞、组织等生物材料。虽然外形相似,但其功能及用途却发生了翻天覆地的变化。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 453px " src="https://img1.17img.cn/17img/images/201908/uepic/7e49bfd7-caac-4147-bbbb-9dbe30f6388c.jpg" title="2.jpg" alt="2.jpg" width="600" height="453" border="0" vspace="0"//pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "图2:传统芯片与生物芯片的比较。A、用于电子设备的芯片外形。B、生物芯片外形。C、生物芯片结构示意图。其表面以核酸分子构成的称为基因芯片或DNA芯片,其表面以抗体等蛋白大分子构成的称为蛋白芯片。图片来自网络/span/pp  strongspan style="color: rgb(255, 0, 0) "最先研发的基因芯片/span/strong/pp  最早的生物芯片是以核酸片段为原料制作而成的“基因芯片”(Gene chip),又叫“基因微阵列”(Gene microarray),由美国Affymetrix公司于1996年率先研制并首先将其应用在基因测序方面。近几年,随着芯片技术的发展,蛋白芯片、细胞芯片、组织芯片等相继加入了生物芯片阵营。但迄今为止,基因芯片仍是开发最为成功、应用最为广泛的一类生物芯片。/pp  此类芯片以双链DNA的碱基互补配对属性为工作原理,将大量(通常每平方厘米点阵密度高于400)单链、短片核苷酸(又名探针)固定于支持物上后与样品DNA进行孵育,样品中的DNA一旦与探针形成互补配对,就可以释放出荧光信号,被荧光探测仪所捕捉并转化成电子数据供计算机进一步进行分析。/pp  虽然基因芯片的原理相对简单,但其强大的检测能力却不容置疑。在生物学家、软件工程师及材料学家的合力优化下,目前单个基因芯片可以同时、快速、准确地分析数以千计基因组信息。如今市场以及临床上应用广泛的基因诊断、癌症筛选均需要借助基因芯片完成。除此之外,基因芯片技术还在药物筛选、分子育种、司法鉴定、食品微生物检测、环境监测、国防、航天等许多领域大显身手,为科学家们从事生物类基础研究、临床上进行疾病诊断、治疗和防治,以及医学界筛选新型药物和进行药物基因组学等重要研究提供了核心技术平台。/pp  strongspan style="color: rgb(255, 0, 0) "无可取代的蛋白芯片/span/strong/pp  与基因芯片相比,蛋白芯片的应用虽不如基因芯片广泛,但在肿瘤标志物检测方面,仍具有无可取代的重要地位。蛋白芯片是以蛋白质(主要指抗体)代替DNA固定于芯片表面作为探针,检测蛋白溶液中可以被抗体探针识别的相应蛋白的技术。根据遗传学规律,基因表达的最终结果是相应蛋白表达。因此,在多数情况下,基因表达量的变化也与蛋白表达量成正相关。与基因芯片相比,这种蛋白芯片可供检测的通量、灵敏度虽然稍逊一筹,但抗体对蛋白识别的特异性却远大于DNA进行互补配对的特异性。因此,在诸如一些重要疾病(包括肿瘤)的鉴定,以及蛋白类靶向药物筛选方面,蛋白芯片由于具有基因芯片无法超越的准确性,其推广程度远大于基因芯片。/pp  strongspan style="color: rgb(255, 0, 0) "新奇成员植入式芯片/span/strong/pp  目前,随着生物科技的发展,以及各式各样的科研及诊疗需求,除了基因及蛋白芯片外,生物芯片家族中相继出现了许多更为新奇的成员,如芯片界的新星——植入式芯片。植入式芯片开发的时期较基因及蛋白芯片稍晚,但这并不妨碍它立刻展现出可以进行身份识别或活体检测的巨大优势,在生物类产品林立的今天仍具有广阔的开发潜力。与基因和蛋白芯片相比,这种植入式芯片的原理及使用方法稍显“惊悚”。植入式芯片,顾名思义,是一类需要通过手术、注射等外科手段将芯片植入人体或活体动物内部工作的设备。其测定对象也不再是从组织中提取出的DNA或蛋白质,而是芯片周围组织的生理情况,如神经元活动、血液指标等。除此之外,为了适应这些新的功能,植入式芯片的外形也发生了极大的改变,除了采集信息的核心部分,成品芯片内还增加了电池、天线及信号发射装置,体积却压缩得更为小巧。/pp  最早开发的植入式芯片为一类简单的ID芯片,其芯片仅具有向扫描仪发射预先写入的信息、编号等单一功能,又被称为生物芯片转发器(biochip transponder)。这种ID芯片可以通过注射的方式被植入皮下,自1991年开始由世界各地的动物园陆续推广,主要用于标记并区分受保护的野生动物(相当于家畜身上的耳环、烙印或刺青)。由2000年开始,ID芯片的使用变得更加普及,在欧美等地许多国家都规定在宠物许可证上登记的宠物使用该芯片。这种ID芯片的外观是一枚胶囊状的玻璃管,管内分别含有一个带有数字信息的激光身份编码、一个天线和一个作为电容器的硅晶片。芯片可以通过配套的一次性注射器注入,并通过与之兼容的扫描仪激活并识别,通过向扫描仪发射无线电信号传递信息。/pp  尽管ID芯片在动物中的应用十分普及,但关于ID芯片在人体中的应用仍存有较大争议。事实上,ID芯片技术本身已相当成熟,但在人体植入ID芯片带来的潜在伦理及安全问题是造成ID芯片无法普及的主要障碍。如有人提出在儿童体内植入这种ID芯片,可以方便家人在不慎遗失儿童后快速追踪,但如果此儿童的ID信号被犯罪分子跟踪的话,那么后果将不堪设想。也有人担心,这种提供他人行踪的技术可能会为犯罪分子作案提供便利。/pp  因此,目前在人体中得到推广的主要是几种与疾病探查、治疗有关的植入式芯片。如对糖尿病患者而言,在餐前饭后刺穿手指采血并测量血糖指数是每个人都要忍受的痛苦(图3A和B)。而近年来,血糖芯片的问世已陆续为这些糖尿病患者带来福音。血糖芯片的个头小巧,可一次性植入皮下并长期、多次检测体液中的糖分变化(图3C)。该芯片仅为0.5× 2.0毫米大小,植入这种芯片既不会让患者感到不舒服,也使患者免除了日日采血的痛苦,是一项造福于人类的伟大发明。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 533px " src="https://img1.17img.cn/17img/images/201908/uepic/cc2f3353-a961-411e-b356-a12b02bb6ea3.jpg" title="3.jpg" alt="3.jpg" width="600" height="533" border="0" vspace="0"//pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "图3:血糖芯片的工作原理。A和B、传统的穿刺法取血。C、新型血糖芯片的大小。图片来自网络/span/pp  除血糖芯片外,还有另一类脑机芯片得到了科研人员的格外推崇。这类芯片主要通过植入大脑皮层接受脑电波等神经信号,并将脑电波信号上传至电子计算机设备(即脑机接口技术),是一项具有广阔前景并引发人无限遐想的高科技技术。脑机接口的过程非常复杂,其全套技术至今仍处在开发阶段。2016年,俄亥俄州立大学研究人员为一位24岁的全身瘫痪的男孩Ian Burkhart通过手术在大脑皮层内植入了这种脑机芯片,它们能在大脑内采集运动相关的神经信号,并将数据传输到神经辅助装置进行“解码”。计算机会将“解码”后的指令发送给绑在手臂上的电极,通过刺激肌肉来实现手臂运动。通过训练,Ian Burkhart最终得以实现通过芯片传输控制手的抓举和一些日常动作。/pp  生物芯片的发展自上世纪90年代开始起步,如今仍属于生物领域的前沿学科。可以预见,在21世纪,生物芯片的应用及新技术的开发仍然将会给整个生物领域持续带来新的变革。可喜的是,在大多数芯片技术应用方面,我国生物芯片技术的发展都紧跟国际前沿,其产业化水平也有大规模提升。虽然目前我们仍面临众多技术难题,但随着我国科研力量的不断增强,以及产业化的深入,生物芯片产业将有希望成为21世纪最大的产业之一。/p
  • 什么是多肽芯片技术?
    什么是多肽芯片?多肽芯片是一种新型的生物芯片,是研究蛋白质与蛋白质或其他物质(如核酸、多糖、化合物)之间相互作用最直观的研究技术。多肽芯片在诸多领域中具有广泛的应用前景,如疫苗开发、药物研发和筛选、临床检测以及蛋白质的基础功能研究。 多肽芯片如何制备多肽芯片是将已知的蛋白序列或任意设计的氨基酸序列分解成包含重叠氨基酸的多肽片段,将这些多肽片段按一定次序固定在经特殊处理过的载体基质上,每张芯片包含成千上万甚至更多的肽链。将待测物与芯片反应,经过免疫检测技术发现与待测物有结合反应的位点/域,经过图像数据处理与分析,寻找蛋白质/氨基酸与待测物的结合部位。 多肽芯片技术及仪器l 多肽芯片技术可高通量点样,多肽芯片上承载大量的多肽片段,可快速高效的找到相应结合位点/域;l 点样技术稳定可靠,多肽芯片上固载的多肽片段包含蛋白全序列,相对于原大分子蛋白质而言更稳定,不易分解失活,采集的数据更为准确;l 点样灵活多样,多肽片段可不局限于已知的蛋白结构,构成多肽分子的氨基酸可以是进行过化学修饰的非天然氨基酸,在药物研发和筛选方面具有很强的灵活性;l Aurora多肽芯片点样仪:Aurora集团30年来致力于制造生物医药领域自动化高通量设备。Aurora多肽芯片点样仪采用化学固相合成法,可按需制备稳定的多肽微阵列芯片,如新冠病毒原始毒株及其突变体奥密克戎S蛋白、N蛋白的微阵列芯片,更多产品详情可进一步了解产品价格或技术参数等信息【内容源自Aurorabiomed公众号《多肽芯片为什么那么火?》,转载请注明】
  • “向上捅破天”技术亮相,利扬芯片推出北斗短报文芯片测试方案
    有媒体报道,华为Mate50将支持卫星通信,另外,华为消费者业务CEO余承东在Mate50预热视频中直言,华为即将发布一项“向上捅破天”的技术,对此,华为一内部人士证实,9月6日发布的Mate50确实将支持卫星通信,这意味着华为将抢先苹果在手机上实现卫星通讯。有券商研报称,华为Mate50系列要用卫星通信:通过北斗发送紧急短信。业内人士猜测,Mate 50系列将搭载北斗的短报文服务。对此,9月5日晚,国内独立第三方集成电路测试技术服务商利扬芯片(688135)公告,公司近期已完成全球首颗北斗短报文SoC芯片的测试方案开发并进入量产阶段,短报文芯片由战略合作伙伴重庆西南集成电路设计有限责任公司设计研发,公司为该芯片独家提供晶圆级(ChipProbing,下称“CP”)测试服务。对于该事件对公司影响,利扬芯片表示,公司拥有短报文芯片测试解决方案并可提供独家晶圆级量产测试服务,随着该款芯片测试实践推出的“北斗射频基带一体化芯片测试方案”,进一步丰富了公司测试技术服务的类型,满足北斗导航、射频、基带等一系列芯片的测试需求。新技术有助于巩固和提升公司的核心竞争力和市场地位,服务更多优质客户,预计对公司未来的市场拓展和业绩成长性产生积极的影响。值得一提的是,利扬芯片称,公司本次研发的短报文芯片测试方案在后续量产测试技术服务过程中,不排除未来受市场需求、市场拓展、市场竞争等影响,目前该芯片的测试技术服务对公司2022年营业收入贡献影响较小,对公司未来营业收入和盈利能力的影响程度具有一定的不确定性。据了解,利扬芯片是一家独立第三方集成电路测试公司,专注于测试领域的研发,聚焦于芯片电子电路、性能、逻辑功能、信号、通信、系统应用等技术,在产业链的位置为独立第三方,仅提供专业测试服务,测试报告更加中立、客观。
  • 国产示波器厂商面临芯片卡脖子,拟IPO融资2亿开展芯片研发
    近日,国产电子测试测量仪器厂商深圳市鼎阳科技股份有限公司发布IPO招股说明书,拟募资约3.4亿多元,其中2亿多元用于高端通用电子测试测量仪器芯片及核心算法研发项目。针对高端电子测试测量设备可能发生的卡脖子问题,鼎阳科技本次募集用于高端通用电子测试测量仪器芯片及核心算法研发项目的资金投资情况如下,招股书显示,在高端通用电子测试测量仪器芯片及核心算法研发项目中,芯片研发主要集中于4GHz 数字示波器前端放大器芯片、高速ADC芯片、低相噪频率综合本振模块和40GHz宽带定向耦合器模块等部分的设计。这些芯片属于信息链芯片。据了解,信号链芯片主要包括放大器、数模转换类,其中转换器属于其中技术壁垒最高细分品类。转换器是由模拟电磁波转换成0101比特流最关键的环节,具体又可以分为ADC和DAC两类,ADC作用是对模拟信号进行高频采样,将其转换成数字信号;DAC的作用是将数字信号调制成模拟信号。其中ADC在总需求中占比接近80%。ADC/DAC是整个模拟芯片皇冠上的明珠,核心难度有两点:抽样频率和采样精度难以兼得(高速高精度ADC壁垒最高)以及需要整个制造和研发环节的精密配合。ADC关键指标包括“转换速率”和“转换精度”,其中高速高精度ADC壁垒最高。数据转换器主要看两个基本指标,转换速率和转换精度。转换速率通常用单位sps(Samples per Second)即每秒采样次数来表示,比如1Msps、1Gsps对应的数据转换器每秒采样次数分别是100万次、10亿次;转换精度通常用分辨率(位)表示,分辨率越高表明转换出来的数字/模拟信号与原来的信号之间的差距越小。高性能数据转换器需具备高速率或高精度的数据转换能力。鼎阳科技是一家专注于通用电子测试测量仪器的开发和技术创新的企业,目前已研发出具有自主核心技术的数字示波器、波形与信号发生器、频谱分析仪、矢量网络分析仪等产品,具备国内先进通用电子测试测量仪器研发、生产和销售能力。该公司依与示波器领域国际领导企业之一力科和全球电商平台亚马逊建立了稳定的业务合作关系。其自主品牌“SIGLENT”已经成为全球知名的通用电子测试测量仪器品牌,主要销售区域为北美、欧洲和亚洲电子相关产业发达的地区。该公司先后承担国家部委、深圳市和宝安区研发及产业化项目合计9项,现有专利167项(其中发明专利106项)和软件著作权30项,公司2017年、2018年连续两年被评为深圳市宝安区创新百强企业,2020年被广东知识产权保护协会评为广东省知识产权示范单位。招股书显示,鼎阳科技向境外采购的重要原材料包括 ADC、DAC、FPGA、处理器及放大器等 IC 芯片,该等芯片的供应商均为美国厂商。截至本招股说明书签署日,公司在产产品或在研产品所使用的芯片中,美国TI公司生产的四款 ADC 和一款 DAC 属于美国商业管制清单(CCL)中对中国进行出口管制的产品,需要取得美国商务部工业安全局的出口许可。公司已经取得这五款芯片的许可,其中四款芯片的有效期到 2023 年,其余一款芯片的有效期到2025年。报告期内,这五款芯片中仅两款用于具体产品,且实现销售。美国近期将 I/O≥700 个或 SerDes≥500G 的FPGA从《出口管制条例》中移出许可例外,国内厂商若购买相关FPGA则需要取得美国商务部工业安全局的出口许可。目前鼎阳科技研发、生产尚不需要该等 FPGA,但由于公司产品结构逐步向更高档次发展,对 ADC、DAC、FPGA、处理器及放大器等IC芯片的性能要求逐步提高,公司后续研发及生产所使用的IC芯片等原材料亦可能涉及美国商业管制清单中的产品。目前我国由于高端芯片,特别是模拟芯片等受制于人,使得电子测试测量仪器厂商在技术升级的过程中困难重重。高端电子测试测量仪器对模拟芯片的性能提出了更高的要求,目前国产芯片无法满足需求。而ADC芯片的产业链和半导体产业的一样,其产业链庞大而复杂,可以分为:上游支撑产业链,包括半导体设备、材料、生产环境;中游核心产业链,包括 IC 设计、 IC 制造、 IC 封装测试;下游需求产业链,覆盖工业、通信、消费电子、航空、国防及医疗等。聚焦ADC领域,全球主要供应商仍是TI、ADI为首的几家国际大厂,而高性能ADC在军用领域、高端医疗器械以及精密测量等领域起着至关重要的作用,因此ADC技术的国产替代对于我国各下游产业的发展意义重大。
  • 生物芯片北京国家工程研究中心新疆分中心生物芯片培训班
    生物芯片北京国家工程研究中心新疆分中心生物芯片培训班 主办:生物芯片北京国家工程研究中心新疆分中心协办:生物芯片北京国家工程研究中心   生物芯片技术凭借着显著的优势和巨大的潜力,已经成为在医学、农业、微生物等相关研究领域快速增长的一项重要技术。随着基因组学、蛋白质组学的不断深入研究,生物芯片技术的应用范围不断扩大,已经广泛应用于重大疾病预警、产前诊断、食品安全检测、作物经济性状关联研究(GWAS)、遗传育种;动植物病理学、农作物病虫害防治、种质资源鉴定、转基因作物等领域。  以生物芯片为工具的研究已经渗透到生命科学领域研究中的每个角落,随着研究的不断深入,产生了大量的科研成果,几乎每天都有大量高水平研究文章发表。为了扩大交流,促进科研成果转化,搭建科研成果与成果转化之间的桥梁,由生物芯片北京国家工程研究中心新疆分中心举办&ldquo 生物芯片技术在生命科学领域的应用&rdquo 培训班。本培训班将系统讲解基因芯片的设计、制作以及相关实验操作,旨在为您打造一片属于您的&ldquo 芯&rdquo 天地。  在此次培训班的尾声,2012' 喀纳斯科学与艺术论坛恰在乌鲁木齐举行。此次论坛特邀请了多位院士、科技部领导及三甲医院院长,将围绕新疆特高发疾病等重大科学问题开展学术探讨和合作交流。欢迎各位在8月10日前来观会。培训内容 | 生物芯片技术培训1.1 理论部分:生物芯片技术在生命科学领域中的应用1.2 理论部分:表达谱芯片构建、探针设计、数据分析等基础理论知识讲解2.1 实践部分: 观摩芯片点制过程2.2 实践部分:晶芯表达谱实验整个实验流程(视频)2.3 实践部分: 芯片杂交、清洗、扫描(培训学员模拟杂交、扫描)2.4 实践部分: 数据分析(培训学员亲自对数据进行分析)2.5 实践部分: SAM、Cluster等数据分析软件使用2.6 实践部分:分子功能注释系统(MAS)分析注册方法:申请培训学员填写培训回执表后,发到培训联系人吕国栋邮箱中,进行确认,培训联系人在收到回执表后3天之内给予回复。培训时间:2012年8月7-9日培训地点:新疆医科大学第一附属医院 科技楼4楼 省部共建国家重点实验室培育基地会议室(新疆乌鲁木齐市新市区鲤鱼山路1号)。培训费用:培训费用免费,食宿费用自理。培训规模:20人左右,为保证培训班质量,采取小班模式。请学员自带电脑。培训资料:包括培训讲师幻灯、培训教材、培训学员通讯录、培训证书(生物芯片北京国家研究中心印)、精美礼品一份。注意事项报到时间:2012年8月6日报到地点:新疆医科大学第一附属医院 科技楼7楼生物芯片北京国家工程研究中心新疆分中心。住宿地点:新疆医科大学第一附属医院附近宾馆酒店(仅供参考):1、新疆昆仑宾馆(三星级)地址:乌鲁木齐市新疆维吾尔自治区 友好北路146号电话:0991-51900002、乌鲁木齐宇豪馨怡酒(四星级)地址:乌鲁木齐市新疆维吾尔自治区 新市区新医路359号电话:0991-4328555行车路线:1、火车站(距新疆医科大学第一附属医院8公里左右):(1)、乘出租车到达新疆医科大学第一附属医院(车费大约15元左右)。(2)、乘坐906,52路公交车均可以到达新疆医科大学第一附属医院(车费1元)。2、机 场(距新疆医科大学第一附属医院13公里左右):(1)、乘坐出租车到新疆医科大学第一附属医院(大约21元左右);(2)、从乌鲁木齐地窝堡国际机场535路公交车通往新疆医科大学第一附属医院。联系方式:联系人: 新疆医科大学第一附属医院 生物芯片北京国家工程研究中心新疆分中心 吕国栋电话: 0991-4366042 邮箱:xjmicroarray@163.com客户培训回执表姓名:E-mail:单位:电话:地址:邮编:是否需要帮助预定宾馆(协议宾馆): 是 否备注:如果需要安排宾馆,请注明入住时间:您感兴趣的领域:
  • 小芯片,大突破!艾玮得深度参与的太空器官芯片研究在中国空间站完成
    近日,江苏艾玮得生物科技有限公司与东南大学苏州医疗器械研究院、中国航天员科研训练中心、数字医学工程全国重点实验室一起,共同研发制作的太空血管组织芯片(Taikonaut-Blood-Vessels-on-a-Chip, Taikonaut),在中国空间站完成了国内首例太空器官芯片在长期微重力条件下的培养实验,也是国际上首例人工血管组织芯片研究。这次研究主要针对航天员长期空间飞行后导致的身体反应,对于通过药物防护等方法帮助航天员保持身体机能,重新适应地球重力环境具有重要意义。中国航天员科研训练中心副研究员王春艳:这个芯片是咱们国家独立自主研制的,神舟十五号任务中是国家第一次在轨实施了器官芯片项目,也是国际首次在轨开展的人工血管芯片的研究。它也标志着咱们国家成为世界上第2个具备在轨开展器官芯片研究能力的国家。 太空血管组织芯片研究针对空间飞行导致的立位耐力不良的细胞学机制研究需求,聚焦微重力对血管氧化应激水平的变化和血管结构与功能的影响,研究长期空间飞行导致的立位耐力下降的细胞学机制,以及在空间环境下某些化合物对抗航天员立位耐力不良防护机制,为发展有效的对抗防护措施提供理论和实验依据。研究人员在实验室用原代细胞构建具有功能性的人工血管,并将其安装至自主研发的太空血管芯片中,进行微流体培养以确保血管的稳定性。同时,结合影像学分析方法,对实时观察并采集到的血管形态变化进行分析。该实验基于失重导致的立位耐力不良、运动能力降低、血管结构及功能重塑等长期航天飞行导致心血管系统功能失调的问题。研究导致血管结构和功能变化的细胞学机制,并测试保护性药物对避免预期问题的有效性。 值得一提的是,包括与神州十五号一起返回的太空血管组织芯片在内,艾玮得生物已在器官芯片研发与应用中取得多个“第一”的好成绩。 艾玮得生物深度参与器官芯片相关国家标准的撰写。目前国内第一个器官芯片技术标准已立项公示。国内第一个使用器官芯片数据获批IND的新药江苏艾玮得生物科技有限公司(AVATARGET)是一家专注于人体器官芯片及生命科学设备研发与生产的创新科技公司,其核心技术转化于东南大学器官芯片科研团队,技术成果已成功应用在新药研发、精准医疗、疾病建模、美妆安全性评价等科研场景中。目前,艾玮得已与恒瑞、先声、齐鲁、美国哥伦比亚大学、江苏省人民医院等国内外知名药企,多所医院、研究机构及高校达成深度合作,持续推动器官芯片在更多高端医疗器械领域的应用,助力生命科学快速发展。
  • 生物芯片北京国家工程研究中心宁夏分中心生物芯片培训班
    生物芯片北京国家工程研究中心宁夏分中心生物芯片培训班&mdash &mdash 打造一片属于您的&ldquo 芯&rdquo 天地   生物芯片技术凭借着显著的优势和巨大的潜力,已经成为在医学、农业、微生物等相关研究领域快速增长的一项重要技术。随着基因组学、蛋白质组学的不断深入研究,生物芯片技术的应用范围不断扩大,已经广泛应用于重大疾病预警、产前诊断、食品安全检测、作物经济性状关联研究(GWAS)、遗传育种;动植物病理学、农作物病虫害防治、种质资源鉴定、转基因作物等领域。  以生物芯片为工具的研究已经渗透到生命科学领域研究中的每个角落,随着研究的不断深入,产生了大量的科研成果,几乎每天都有大量高水平研究文章发表。为了扩大交流,促进科研成果转化,搭建科研成果与成果转化之间的桥梁,由生物芯片北京国家工程研究中心宁夏分中心举办&ldquo 生物芯片技术在生命科学领域的应用&rdquo 培训班。本培训班将系统讲解基因芯片的设计、制作以及相关实验操作,旨在为您打造一片属于您的&ldquo 芯&rdquo 天地。培训内容:生物芯片技术培训1.1 理论部分:生物芯片技术在生命科学领域中的应用1.2 理论部分:表达谱芯片构建、探针设计、数据分析等基础理论知识讲解2.1 实践部分: 观摩芯片点制过程2.2 实践部分:晶芯表达谱实验整个实验流程(视频)2.3 实践部分: 芯片杂交、清洗、扫描(培训学员模拟杂交、扫描)2.4 实践部分: 数据分析(培训学员亲自对数据进行分析)2.5 实践部分: SAM、Cluster等数据分析软件使用2.6 实践部分:分子功能注释系统(MAS)分析1:注册方法:申请培训学员填写培训回执表后,发到培训联系人于晶晶(yujingjing333@163.com)邮箱中,进行确认,培训联系人在收到回执表后3天之内给予回复。2:培训地点:宁夏医科大学总医院 生物芯片北京国家工程研究中心宁夏分中心实验室(宁夏银川市兴庆区胜利街804号)。3:培训时间:2012年7月25-27日4:培训费用:2000元/人,收费包含培训期间芯片试剂耗材费,实验操作及数据分析培训费,中午工作餐、听课费。住宿费自理。优惠措施:宁夏地区培训学员培训费用:1000元/人。报到时现金缴纳培训费,也可提前转账支付。缴纳培训费账户信息用户名:宁夏医科大学总医院开户行:中国工商银行银川胜利街支行人民币帐号: 2902006919100004647 (请注明缴费用于参加宁夏分中心生物芯片培训班)5:培训班规模:20人左右,为保证培训班质量,采取小班模式。请学员自带电脑。6:培训资料:包括培训讲师幻灯、培训教材、培训学员通讯录、培训证书(生物芯片北京国家研究中心印)、精美礼品一份。7:报到时间:2012年7月24日。(提前转账支付者请在报到时务必携带出示缴费收据证明)  报到地点:宁夏医科大学总医院 生物芯片北京国家工程研究中心宁夏分中心(宁夏银川市兴庆区胜利街804号, 科技楼三楼)。8:住宿地点:宁夏医科大学总医院附近宾馆酒店:1)银川御泉湾温泉假日酒店(四星级)地址:银川市兴庆区胜利南街541号 电话:0951-67348882)银川天豹酒店(三星级)地址:宁夏银川市兴庆区清和南街1352号 电话:0951-78995553)如家快捷酒店(银川南门广场店)地址:银川市兴庆区清河南街345号 电话:0951-60823334)兰花花大酒店延安店地址:银川市兴庆区胜利南街739号 电话:0951-4076588;0951-4076388具体前往报名地点的路线如下: 1)火车站(距宁夏医科大学总医院8公里左右):乘出租车到达宁夏医科大学总医院(大约30元左右)。 2)机场(距宁夏医科大学总医院20公里左右): a:乘坐出租车到宁夏医科大学总医院(大约80元左右);b:从宁夏河东机场乘机场大巴至民航大厦(25元), 再转乘出租车(8元)。 3)12路,23路,302路,37路,38路,3路,中巴5路,15路公交车通往医科大学总医院。9:联系方式:联系人: 宁夏医科大学总医院 生物芯片北京国家工程研究中心宁夏分中心实验室 于晶晶电话: 13895193050邮箱: yujingjing333@163.com备注:宁夏医科大学总医院附近交通示意图:客户培训回执表:姓名:E-mail:单位:电话:地址:邮编:是否需要帮助预定宾馆(协议宾馆): 是 否备注:如果需要安排宾馆,请注明入住时间:您感兴趣的领域: 主办方:生物芯片北京国家工程研究中心分中心宁夏分中心协办方:生物芯片北京国家工程研究中心
  • 华微发布海风系列II型_芯片实验室_器官芯片控制系统新品
    创新点:海风HW-SeaBreeze 芯片实验室。 可实现器官芯片、仿生环境建立、维持等操作。关键技术:(1)器官芯片 (液滴/液流 ,液/气/氧/温/光/电/时:多维精准控制);(2)柔性操控 (保持活性;液滴/液流,电场/气压/激光多场景控制);(3)精准控温 (恒温孵育:微流培养池/器官芯片 液滴数字PCR );(4)测控方式 (支持 拉曼/影像/阻抗等无标记筛选,荧光标记筛选)(5)耗材定制 (芯片内生物存活7日,按需定制, 价格远低进口) ■ 应用领域:器官芯片、药物开发、肿瘤细胞医疗、细胞培养、仿生微环境、文库、单细胞(菌)液滴包裹/操控/筛选、单亲克隆、滴内PCR、定向进化等。海风系列II型_芯片实验室_器官芯片控制系统
  • 美国授权华为芯片购买许可 汽车芯片或成华为战略焦点
    2021年8月25日,华盛顿(路透社)——两位知情人士说,美国官员已经批准了价值数亿美元的许可证申请,允许中国被列入黑名单的电信公司华为为其不断增长的汽车零部件业务购买芯片。  全球最大的电信设备制造商华为一直受到特朗普政府对其网络设备和智能手机业务中使用的芯片和其他组件销售的贸易限制的阻碍。  拜登政府一直在加强对华为出口的强硬路线,拒绝向华为出售用于5G设备或与5G设备配套使用的芯片。  但在最近几周和几个月,熟悉申请流程的人士告诉路透社,美国已授予许可证,授权供应商向华为出售视频屏幕和传感器等车辆部件的芯片。  批准之际,华为正将业务重点转向不易受美国贸易禁令影响的产品。  汽车芯片通常被认为并不复杂,因而降低了审批门槛。一位知情人士表示,政府正在为可能有其他5G功能部件的车辆上的芯片发放许可证。  当被问及汽车许可证时,美国商务部发言人表示,政府继续一贯地实施许可证政策,“限制华为可能损害美国国家安全和外交政策利益的活动获取商品、软件或技术”。  该人士补充说,商务部禁止披露许可证批准或拒绝。  华为发言人拒绝就许可证置评,但表示:“我们将自己定位为智能互联车辆的新零部件供应商,我们的目标是帮助汽车原始设备制造商制造更好的车辆。”  美国以对美国国家安全和外交政策利益的威胁为由,竭尽全力放缓华为关键通信相关业务的增长。  2019年,华为被美国商务部列入贸易黑名单,禁止在没有特别许可证的情况下,向华为销售美国商品和技术。此后,美国在去年加大了限制,限制使用美国设备在国外生产的芯片的销售。  华为在2021年上半年公布了有史以来最大的收入下滑,此前美国的限制迫使其出售了一大块曾经占据主导地位的手机业务,而新的增长领域尚未完全成熟。  该公司轮值主席徐直军(Eric Xu)在今年早些时候的上海车展上宣布与包括北汽集团在内的三家中国国有汽车制造商签订协议,为智能汽车操作系统“Huawei Inside”供货,突显了向智能汽车的转变。  一位消息人士表示,华为在该领域雄心勃勃的另一个迹象是,在供应商获得授权向华为出售数千万美元芯片的许可证后,该公司已要求他们再次申请,并要求更高的价值,如10亿或20亿美元。执照一般有效期为四年。  全球电子咨询公司Supply Frame的首席营销官Richard Barnett表示,华为正处于试图投资5万亿美元(6.8万亿新元)汽车市场的“早期阶段”,该市场在中国国内外都有巨大的潜在增长。  “汽车和卡车现在都是轮子上的电脑,”Barnett说,“这种融合正推动华为的战略重点成为该领域更大的参与者。”
  • 芯片上的患者—多器官串联芯片应用于精准医疗
    芯片上的患者—多器官串联芯片Multi-Organ-on-Chip应用于精准医疗北京佰司特科技有限责任公司An Individual Patient's "Body" on Chips – How Organismoid Theory Can Translate Into Your Personal Precision Therapy ApproachFrontiers in Medicine, 2021, Vol. 8Marx U, Accastelli E, David R, Erfurth H, Koenig L, Lauster R, Ramme AP, Reinke P, Volk HD, Winter A, Dehne EM类有机体的概念在12年前就被提出来,当时被称为“芯片上的人体human-on-a-chip”或“芯片上的身体body-on-a-chip”,从“多器官串联芯片Multi-Organ-on-Chip”发展而来,将多个类器官串联起来培养。微生理系统MPS成为体外在生物学上可接受的最小尺度模拟人体生理和形态的技术平台,因此,微生理系统能够以前所未有的精度为每个患者筛选出个性化治疗方案。与此同时,第一个人类类器官——干细胞衍生的复杂三维器官模型,可以在体外扩增和自我组织——已经证明,只要给人类干细胞提供相应诱导分化及生长环境,就可以在体外自我组装成人体类器官。这些早期的类器官可以精确地反映出人体中对应器官的一系列独特的生理状态和病理特征。我们现在把过去的“芯片上的人体human-on-a-chip”的概念发展成“类有机体Organismoid”的理论。首先,我们提出了“类有机体”的概念,即通过体外的自我组装的过程,模仿个体从卵细胞到性成熟的发生过程,培养出的——微小的、无思维、无情感的体外的人体等效物。随后,我们提出了类有机体的分化和培养方法,使其能在体外长时间维持正常功能,以及通过自然或人工诱发疾病干扰类有机体来模拟个体疾病过程。最后,我们讨论了如何使用这一系列健康和疾病模型的类有机体来代替病人,测试药物疗效或药物剂量,即个体化精准医疗。 图1 |每个人个体命运的类有机体。(A)个体发育(黄色)从卵细胞受精开始,随后出生,并在18 ~ 20年后性成熟,发育出功能完整的大脑和成年骨骼。然后,成人的身体会经历一个持续数十年的功能和结构相对稳定的阶段。随着身体年龄的增长,这个成年期会被不断延长的生病和康复期打断(粉色)。情感和意识——人类的灵魂和思想——从童年开始连续发展,并贯穿一生。(B)根据类有机体理论,个性化的类有机体可以通过持续几个月的体外培养(黄色)来建立。由此产生的成体类有机体可以模拟健康人类成年几周(S-短期)、几个月(M-中期)或几年(L-长期)的阶段。然后,这些可以用来模拟急性、亚慢性和慢性疾病时期(粉色)和个体在相应的时间框架内的治疗后恢复。大量相同的类有机体还可以提供足够数量的生物学重复和对照,确保了数据的准确性,真实性,可重复性。此外,这些健康的类有机体在预防医学的评估方面很有用,比如为各自的个体接种疫苗。 类有机体理论人的个体寿命的特征是人体的生理和形态的发育阶段(发育期)和功能维持阶段(成年期),以及个体与社会在灵魂和思想上的双向交流,如图1A所示。社会起源本质上与人的大脑的大小和结构有关——大脑由大约860亿个神经元以及数量大致相等的非神经元细胞(2)组成,这些细胞高度连接,聚集在一起处理、整合和协调它从感觉器官接收到的信息(3)—以及它与身体其他部分的相互联系。成熟的人体生理遵循一个简单的进化,即选择性结构计划,也就是组成遵循功能。早在2007年,我们就注意到这样一个事实:“……几乎所有的器官和系统都是由多个相同的、功能独立的结构单元组建成的,从几个细胞层到几毫米组织。由于其独特的功能性、高度的自立性和这些结构单元在各自器官中的多样性,它们对药物和生物制剂的反应模式几乎代表了整个器官。大自然创造了这些微小但复杂的结构单元,以实现器官和系统最主要的功能。在一个特定的器官内,这些结构的重复是天然的风险管理工具,以防止器官局部损伤时功能完全丧失。然而,从进化的角度来看,这一概念使得器官的大小和形状可以很容易地调整到特定物种的需要(例如,小鼠和人类的肝脏使用几乎相同的结构单元)(4)。这一理论,结合微生理系统(MPS)的发展,为在生物芯片上以生物学上可接受的最小尺度模拟人体的器官提供了理论基础(5-7)。2012年,我们引入了“芯片上的人体”(man-on-a-chip)的概念,从“多器官串联芯片Multi-Organ-on-Chip”发展而来,即将多个类器官(比体内缩小10万倍)串联起来培养。我们举例说明了人体主要器官的功能单位,并简要描述了减小尺寸的原理(5)。这是发展一种理论的起点,即建立一种微小的、无思维、无情感的体外的人体等效物,我们现在称之为organismoids类有机体。不同的术语,如芯片上的人体,芯片上的身体,或通用的生理模板,在过去已经被用于代表有机体。在MPS领域中已经使用过这个概念,通过培养10个人的主要器官的等效物(类器官)来实现完整的体内平衡:循环,内分泌,胃肠道,免疫,皮肤,肌肉骨骼,神经,生殖,呼吸和泌尿系统。类有机体的理论基于两个按时间顺序相互关联的概念,每个概念有三个实施原则。类有机体的体外发育依赖于(i)(诱导多能)干细胞为基础的体外早期类器官形成;(ii)以生理学为基础,通过血液灌流和神经分布,应用于芯片上的MPS,将此类早期器官的比例/数量整合为早期自我维持的类有机体;以及(iii)通过类器官在芯片上的串联培养加速刺激个体发育,完成体外个体发育成为健康成熟的类有机体(模拟成年期)的转变。因此,利用芯片上的类有机体模拟病人的疾病和治愈过程的概念遵循以下原则:(一)通过自然疾病过程或通过来自病人的病原体或病变组织的传播在生物体中诱发疾病;(ii)通过对同一个患者来源的健康和病变类有机体进行相同数量的试验来模拟对大量患者进行的人体临床试验;以及(iii)为每个患者精确选择正确的药物或疗法和最有效的用药方案。在这篇文章中,我们带你通过类有机体理论的概念和原则,用实际结果阐述它对我们的医疗保健系统的颠覆性创新的潜力,并提供一个可行性方法的展望。 微流控培养系统——早期类器官形成类有机体的关键类器官已被证明是模拟不同器官特异性特的有力工具。然而,如上所述,标记物表达和功能往往在早期就停止了。我们从1912年就知道,体外培养的环境决定了它们的生存能力和功能(100)。驱动类器官自组装和分化的各向微环境因子在传统培养条件下相当均匀地覆盖类器官或广泛的表面积,阻碍了由功能驱动的空间定向和成熟。但这些源自相互作用的组织并导致细胞重排的时空线索,是发育成熟器官功能的关键。但这些源自相互作用的组织并导致细胞重排的时空因子,是成熟器官功能发育的关键。特别是内皮组织相互作用及其对器官发生过程中局部信号传导的影响已被广泛研究(101-103)。 例如,发育中的中枢神经系统的血管化是大脑发育中至关重要的一步,确保快速分裂的神经前体细胞的氧气和营养供应。外周神经系统的神经结构已被证明以明显的与血管同步的方式发展。此外,内皮细胞对于维持产生小脑细胞的中枢神经系统胚层的重要性也得到了证明(104)。在过去的二十年中,通过将器官模型引入MPS来改善器官模型培养条件已经做出了大量的努力。利用原代和细胞系为基础的模型已经建立了MPS中的数十种人体类器官,并已进行了非常详细的综述(105 - 111)。有充分的证据表明,器官功能的成熟可以通过密切模拟有关生化、物理或电刺激的器官型微环境来实现(106)。看来,神经支配、血管化、淋巴管、微生物群和胆汁产物的肠-肝脏循环模拟是满足多器官MPS中类器官的简单物理结合和生物体中真正的组织相互作用和稳态之间的鸿沟不可或缺的先决条件。后者需要至少10个人类系统(如引言中强调的那样)的主要类器官的串联组合,以及它们通过血管系统、神经支配和淋巴管的生物互联。关于建立包含至少10个技术上可相互连接的器官培养区隔的MPS的两项早期尝试已经发表。这些主要的例子包括康奈尔大学舒勒实验室(Shuler Lab)的13个器官培养系统(170个)和麻省理工学院格里菲斯实验室的10个器官培养PhysioMimix系统(171)。这两种系统都已成功地在培养室中使用生物材料运行了7天或更长时间。然而,两者都缺乏生物血管互连、淋巴管和器官神经支配。 生物体可能会传递什么给我们的医疗系统根据有机体模型理论,有机体模型是活体人体在体外的生物复制品,只是尽可能缩小了规模。它们是由系统创造的整合:生理学上把人体主要器官的功能单位整合成一个有机的、自我维持的模板,反映人体的系统组织干细胞衍生器官等价物在芯片上的快速分化,源于它们之间的相互串扰和生理上的相互依赖。规模的极端缩小,是由于产生个体的生物体样体的大量重复的目标。大量这种相同的、微小的、无脑的、无情绪的生理体外有机体的成熟可以在很长一段时间内保持自我维持的功能性健康内稳态。它们容易受到干扰,导致自然或人为地诱发疾病。患病的生物体被假设以精确地模拟各自病人疾病的病理生理学。反过来,这可能使预测性的患者特异性有机体样研究的表现,以确定最有效的个性化治疗患者有关。类似于对患者队列的临床研究,然后可以产生统计验证的预测,其优势是可以在生理和病理生理条件下比较基因相同的患者有机体样体重复。由此可以推导出两种主要的使用场景。一种是与现实世界中个体患者个人治疗的前沿改进有关 另一种则有可能在临床试验层面改变药物开发范式,节省大量时间和资本支出。关于第一种方案,生物体模型可以用于预测地选择、安排和给药,根据患者的疾病进展准确地选择个性化治疗或药物。通过早期发现不成功的治疗方案,这可以显著降低对每个患者的潜在风险。图5更详细地总结了将有机体应用于个性化精准医疗的优势。该图说明了有机体体方法的概念和原理,以选择最适合您的个性化疾病应用的精准医疗。作为一个假设的例子,癌症被选择为疾病。你的生命周期可能最终包括危及生命的疾病时期,例如,癌症生长(上:蓝色边框的箭头)。从你的健康细胞中建立一个多能干细胞库。随后,在几个月内就会产生大量相同的健康生物体(黄色三角形)。目前有各种治疗癌症的选择,因此,相关的试验组被创建,包括安慰剂治疗、其他治疗组和健康恢复对照组(在黑边箭头中)。在这个假设的例子中,在几周内,CAR-T细胞疗法与检查点抑制剂相结合,会被证明是你最快最有效的治愈方法。因此,这种疗法立即得到了成功的应用。根据生物体形态理论,一个人的干细胞库可以在健康时创建,也可以在疾病发生时从健康的器官中创建。预防性干细胞库(例如,从脐带血中提取)已经在使用中,并将成为未来的选择,因为这需要时间。接近人类的理论提供了精确的试验结果,这是动物试验在患者来源的异种移植模型或人类患者来源的类器官无法实现的。异种移植模型在系统发育上是遥远的,因此不能提供足够的肿瘤生长。此外,它们没有病人的免疫背景来对抗癌症。病人来源的类器官也没有嵌入到病人的免疫系统中,缺乏与有机体的系统性互动。对于第二种情况,数十年来,候选药物进入临床试验成为获批药物的平均成功率一直低于20%;这种将任何原型转化为上市产品的低效率,其他任何行业都承受不起。使用实验动物的候选药物的临床前安全性和疗效评估程序的预测性差是造成这种低效率的主要原因。其后果是平均13.5年的漫长临床试验,以及一种新药获得批准所需的累计成本高达25亿美元(106)。与此同时,在过去30年里,一场基于生物学的治疗策略出现了——利用人体自身的工具来对抗疾病。近年来,药物的生物复杂性不断扩大,从人工合成的小分子药物,到人类单克隆抗体蛋白,最后是针对患者的自体细胞疗法,极大地增加了患者治愈的机会。然而,这一趋势同样显著地降低了通过应用临床前的实验室动物试验来预测这类疗法的安全性和有效性的机会,原因是这类先进治疗药物的人类起源越来越多(172)有机体有可能通过改变药物开发的模式来打破这种成本螺旋上升。2016年,MPS相关报告已经预计,一旦基于MPS的类似于生物体的临床试验研究能够准确预测任何新药物或疗法的疗效、安全性、剂量和时间安排,在用于人类试验和替代动物试验以及1、2期临床试验之前,累积药物开发成本将降低5倍,药物开发时间将减少一半。2018年,毒理学研究领导人论坛(10)草拟了一份高级路线图,以确定“临床试验”预测精度(图6),在与临床试验相对应的芯片研究中运行精细的个性化的“人体”等效物(有机体)。为了实现这一点,套健康的和有病的代表患者疾病状态和健康内稳态的有机体样体将允许一个人进行基于临床前系列药物和先进的有机体样体测试。图5 |说明有机体理论如何应用于个性化医疗的假设例子。 图6 |在芯片上潜在的“临床试验”背景下的“人体”等效物(10)。 图7 |一个假设的例子,说明有机体理论如何可以用来模拟临床试验。 健康的内稳态将允许一个人在大型试验特定患者中模拟临床试验的环境中进行基于有机体的药物和先进疗法的临床前系列试验。与患者队列试验相比,以有机体为基础的试验具有许多关键的优势。图7详细说明了这些优势,并举例说明了利用基于有机体的试验模拟一种假想的新型钠-葡萄糖转运体2(SGLT2)抑制剂治疗2型糖尿病的临床试验。最突出的优势是,在药物开发历史上,基于芯片的有机体试验将首次包括患者身体和同一个体健康身体状态的统计相关的人体自体生物重复。由于缺乏对单个患者的任何生物重复,以及对他们在健康内稳态下的个体生物状态的了解,临床试验传统上需要大量的患者队列。因此,试验被分为1、2和3期,不幸的是,只能近似一个患者个体的病理生物学和他们的完全治愈恢复状态。这两个方面使得传统的临床试验过程成为一种漫长的、成本高得令人难以置信的、低效的药物和先进疗法的开发方式。在含有健康和患病生物体的芯片上进行“临床试验”,消除了这两个障碍。一方面,它们允许近亲繁殖的实验室动物试验的一致性由于基因而得到匹配,每个试验“参与者”在个体有机体水平上的身份,但其背景完全是人类。另一方面,各种不同个体的生物样体的使用反映了临床试验中患者队列的异质性,但具有每个个体患者的生物样体在统计上相关的生物重复的优势。有机体体方法的另一个明显优势是,在进行此类试验时,其独立性不受患者招募和医院使用的影响。鉴于大型PSC库的存在反映了基因倾向、性别和与试验相关的其他类别,基于有机体模型的试验可以在世界任何时间、任何地点进行。关于上面的假设例子,根据糖尿病易感性选择供体,比较遗传祖先和平等的性别分布可能是有趣的干细胞瓶选择策略。第三个优点是试验规模的灵活性。理论上可以产生的患病生物体(通常被称为芯片上的“病人”)的数量是无限的。这使得药代动力学方面的整合,在同一个基于有机体的试验中发现新的化学或生物实体的有效剂量和综合安全性和有效性评估成为可能。目前在实验室动物、健康志愿者和患者的单独临床前和临床试验中产生的数据,如毒性特征、未观察到的副作用水平、吸收和排泄率、代谢物形成、发现有效剂量、持续时间和新药物的时间安排,可以从一项基于生物体的试验中得到。例如,我们治疗2型糖尿病的假设案例研究可以很容易地扩展到更大的剂量范围,并将每天两次剂量的单一口服(这在生物样体中指的是根尖肠的任何给药)进行比较。这将包括对疗效进行剂量依赖的评估,同时观察尿路或生殖道感染的发生和严重程度,以及众所周知的SGLT2抑制剂的副作用。在各自的患者队列中,候选药物使用的治疗窗口的定义来源于这样一项一体化试验,该试验仍处于临床前候选药物开发阶段。关于这两种使用场景,我们设想有机体将对从个人数据库收集的医疗现实世界大数据做出重大贡献。这是因为它能够在每个患者第一次疾病发作(例如,肿瘤生长、病毒复制)的确定位置生成关于微环境破坏的独特可复制数据。有机体和硅芯片的结合将进一步提高对大量患者群体进行精确药物治疗的预测能力,并进一步降低成本。在人们的心目中,复杂的体外细胞培养工作通常与高昂的成本联系在一起。有人可能会猜测,在试验中产生和处理数千个生物体需要天文数字的预算,因为目前可用的MPS在一次性芯片和操作上都很昂贵。在这里,有机体的性质反映了一种自我可持续的人体和规模经济效应开始发挥作用。在现实世界中,一个处于休息状态的人体,每天的蛋白质、碳水化合物和脂肪供应约2000千卡就可以维持。在世界上一些较贫穷的地区,人均几美元就可以实现这一目标。因此,每天喂养10万只生物体的成本也可以达到相同的水平。维持这些生物体的可消耗芯片的价格也预计将下降到1美元的范围,这在计算机芯片和人类基因组测序成本方面已经有过先例。生物机体能够为每一位患者确定最合适的药物,并大幅节约成本和改变药物开发,这种能力的社会经济维度被认为是巨大的。这同样适用于伦理层面。基于MPS的类有机体有可能取代大多数实验室动物试验和在人类志愿者身上进行的第一和第二阶段临床试验。它们将减少三期临床试验患者的多种数量。所有这些都将对全球范围内的患者利益和动物福利产生根本性的积极影响。 患者类有机体体和芯片上病人特异性T细胞疗法——一个挑战这一理论的完美方案先进的细胞疗法,如自体嵌合抗原受体(CAR) T细胞疗法KymriahTM 和YescartaTM,最近已经证明了它们治愈以前的耐药肿瘤患者的潜力(176,177)。除了这两种在2017年被批准用于治疗血液肿瘤的CART细胞产品外,其他几种CAR-T细胞产品最近也被批准。许多新的细胞治疗方法正在酝酿中,使用CAR或转基因T细胞受体对抗各种各样的肿瘤、感染和自侵略性免疫细胞,或者使用调节性T细胞在显性的不良免疫反应中恢复免疫平衡(178)。到2020年底,全球注册了超过1000项使用免疫细胞产品的临床试验(179)。在这些医疗需求未得到满足的领域,这种前所未有的疗效以标准安全测试程序(180)为代价,增加了监管机构的接受度,该程序需要在治疗批准后的患者随访研究中进行回顾性研究。这符合这样一个事实,即由于患者与患者的系统发育距离、各自的基因型差异和免疫不匹配,患者对个性化细胞治疗的反应无法在临床前的实验室动物模型中模拟。同样,在传统的患者来源的类器官培养中,患者的反应也无法预测,因为它们没有融入到一个系统的有机体安排中。除其他外,模拟t细胞输注到目标部位的静脉输送及其与其他主要器官部位的相互作用,都缺失了模拟T细胞疗法及其疗效(患者衍生类器官的精确度)的关键因素。 如前所述,这里的有机体理论提供了一种克服任何其他障碍的替代解决方案。 什么是有机体不能也不应该做的根据有机体理论,有机体不能也不应该模仿人类个体社会起源的主要部分——同理心或意识(分别是灵魂或思想)。因此,它不能模拟病人的精神疾病。300g的人类心肌或髋部骨折的功能障碍及其愈合依赖于生物物理特性,由于规模和所涉及的物理不匹配,其中一些无法在生物类体上表征。伦理考量对人类社会至关重要,也是人性的基础。有机体理论,由于其性质,引入了一些必须考虑伦理的观点。将人类胚胎发育到几厘米大小是最关键的问题之一。在人工环境下(如体外培养),人类卵子的受精及其随后的胚胎发育在世界上许多地方都是被禁止的。生物体理论的作者想要强调的是,他们的伦理范式超越了这一点。人们不应该使用有机体形态理论的概念和原则来创造人类或杂交胚胎,并进一步发展和区分人类或杂交组织。应该使用其他方法来规避个体发生的这一部分。个人同意捐献组织来创造生物体可能是一个很好的工具,以防止在早期阶段的滥用。 结论这里提出的生物体样体理论声称,有能力在体外人工重现个体身体的个体发生,从捐赠者的干细胞开始,产生一定数量的相同的健康成熟的小型化身体等量物,因此被称为生物体样体。该理论进一步声称,这种供体特定的相同生物体样体反映了该个体健康成年期的某个阶段,可以用来模拟该供体在其生命周期的某一特定时间内相关的疾病和康复阶段。以个性化的患病生物体样方法对个体的疾病进行建模,将提供一个尚未满足的患者病理生物学的现实水平,因此,提供一个前所未有的工具,以精确选择正确的药物、治疗计划和剂量来治愈(患病)个体。大自然的遗传和微环境原则编码了人体器官最小功能单元的自组织和维护,并将它们整合到一个交流通讯和高效互动的血液系统中,灌注和神经器官是在芯片上创造生物体的蓝图。我们设想它们将成为下一个层次的人类生物学模拟,提供与人类相对应的最佳可能的近似。在体外实验中,类有机体organismoids将有机地遵循人类的多个类器官串联,近年来,这已被证明能够在小型化的规模上模拟单个组织和器官的不同功能。利用已从类器官学习到的东西,类器官将通过一个小型化的基于生理的血管和毛细血管网络在芯片上生成的全血的系统神经支配和供应,以每个器官的功能单元。通过内皮细胞层将每个类器官从共同的血液中局部分离,将使不同人体器官功能单元的精确拷贝在芯片上实现单独的器官特异性、遗传编码和微环境驱动的自我组装。反过来,这将使成熟的类器官在生理上产生交流,从而导致有机芯片上的内稳态。一旦建立,生物体将只需要每天用消化的食物等量进食,就可以模拟芯片上的长期、所谓的自我维持的身体功能。我们已经说明,类器官体外培养技术和过去10年生产的单器官芯片为体外类器官的培养提供了大量数据。此外,人类iPSC衍生的多器官串联芯片提供了芯片上加速人工器官个体发生的第一个成果。最后,越来越多的关于人类疾病建模和人体组织芯片治疗测试的科学文献指出,当MPS上完全功能性地建立多器官串联芯片以及人体芯片时,这种微生理平台就有能力精确模拟疾病的病理生物学和药物或治疗的作用模式。进一步发展器官芯片的主要挑战是神经支配和类器官毛细血管化的实现,这也需要细胞,特别是免疫细胞迁移到组织中。 类器官串联芯片培养系统--- HUMIMIC多器官串联培养,在没有病人的情况下测试病人类器官串联芯片培养系统包括控制单元和芯片,控制单元能够模拟人体内生理环境,包括温度、压力、真空度、微流道循环频率、时间等参数,芯片有不同的微流道设计,针对不同的器官可以单独设置提供相应的培养条件,提供精准的培养和分化环境。类器官串联芯片培养系统可提供不同类器官的串联共培养方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。通过类器官模拟人类器官组织的生理发育过程,应用于疾病模型、肿瘤发生、以及药物安全性、有效性、毒性、ADME等方面的评估,旨在减少和取代实验室动物测试,简化人体临床试验。 为获取更高相关与准确的测试结果,我们开发了人体器官模型的自动芯片测试:配备具有指示相关性的器官模型的芯片,以能够在接触生物体之前检测其安全性和有效性;最终为芯片配备患者自身相关病变器官的亚基,以评估整个个性化治疗的效果;人体生理反应往往涉及更多介质循环和不同组织间相互作用,多器官芯片才能全面反映出机体器官功能的复杂性、完整性以及功能变化,一个相互作用的系统才能更好的模拟整个系统中器官和组织的不同功能。可提供不同类器官的串联培养解决方案,避免单一类器官无法模拟人体复杂生理学条件下器官相互通讯交流的不足。把多种不同器官和组织培养在芯片上,然后通过微通道连接起来,集成一个相互作用的系统,从而模拟人体中的不同功能器官的交流通讯和互相作用。TissUse专有的商用MOC技术支持的器官培养物的数量范围从单个器官培养到支持复杂器官相互作用研究的器官数量,包括单器官、二器官、三器官和四器官培养的商业化的平台。成功的案例包括:肝脏、肠、皮肤、血管系统、神经组织、心脏组织、软骨、胰腺、肾脏、毛囊、肺组织、脂肪组织、肿瘤模型和骨髓以及各自的多器官串联组合方案。德国TissUse公司专注于类器官培养系统研究22年,推出的HUMIMIC类器官串联芯片培养系统,得到FDA的推荐,可提供不同类器官的串联培养解决方案,避免单一类器官培养无法模拟人体器官相互通讯关联的缺陷,同时也提供相关的技术方案和后续方法试剂支持,属于国际上少有的“Multi-Organ-Chip” 和“Human-on-a-chip”的方案提供者。相关方案已被广泛应用于药物开发、化妆品、食品与营养和消费产品等多个领域.
  • 四川大学华西医院260.00万元采购微流控芯片,生物芯片
    详细信息 四川大学华西医院组织芯片扫描仪采购项目(第二次)公开招标采购公告 四川省-成都市 状态:公告 更新时间: 2023-03-20 四川大学华西医院组织芯片扫描仪采购项目(第二次)公开招标采购公告 2023年03月20日 16:15 公告信息: 采购项目名称 四川大学华西医院组织芯片扫描仪采购项目(第二次) 品目 货物/专用设备/医疗设备/其他医疗设备 采购单位 四川大学华西医院 行政区域 四川省 公告时间 2023年03月20日 16:15 获取招标文件时间 2023年03月21日至2023年03月28日每日上午:9:00 至 12:00 下午:12:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥300 获取招标文件的地点 http://sale.scbid.net 开标时间 2023年04月11日 10:30 开标地点 四川国际招标有限责任公司开标厅(四川省成都市高新区天府大道中段800号天府四街66号航兴国际广场1号楼3楼) 预算金额 ¥260.000000万元(人民币) 联系人及联系方式: 项目联系人 张女士、熊女士 项目联系电话 028-87797107,13281460462,13111881728 采购单位 四川大学华西医院 采购单位地址 成都国学巷37号 采购单位联系方式 张老师028-85423272 代理机构名称 四川国际招标有限责任公司 代理机构地址 中国(四川)自由贸易试验区成都市高新区天府四街66号2栋22层1号 代理机构联系方式 张女士028-87797107 附件: 附件1 采购需求.docx 项目概况 四川大学华西医院组织芯片扫描仪采购项目(第二次) 招标项目的潜在投标人应在http://sale.scbid.net获取招标文件,并于2023年04月11日 10点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:SCIT-ZG(Z)-2023020006L1 项目名称:四川大学华西医院组织芯片扫描仪采购项目(第二次) 预算金额:260.0000000 万元(人民币) 最高限价(如有):180.0000000 万元(人民币) 采购需求: 本项目一个包,采购组织芯片扫描仪(具体详见附件) 合同履行期限:合同签订后,收到采购人正式通知的1个月内。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 2.1本项目专门面向中小企业采购(监狱企业、残疾人福利性单位均视同小微企业,符合中小企业划分标准的个体工商户视同中小企业),非中小企业参与的将视为无效投标。 3.本项目的特定资格要求:3.1截至递交投标文件截止日,供应商未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单。 三、获取招标文件 时间:2023年03月21日 至 2023年03月28日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:http://sale.scbid.net 方式:招标文件自2023年3月21日至2023年3月28日每天9:00-17:00(北京时间,法定节假日除外)在我司指定网站(http://sale.scbid.net)获取,具体获取流程详见该网站的“标书领取操作手册”。 售价:¥300.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年04月11日 10点30分(北京时间) 开标时间:2023年04月11日 10点30分(北京时间) 地点:四川国际招标有限责任公司开标厅(四川省成都市高新区天府大道中段800号天府四街66号航兴国际广场1号楼3楼) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:四川大学华西医院 地址:成都国学巷37号 联系方式:张老师028-85423272 2.采购代理机构信息 名 称:四川国际招标有限责任公司 地 址:中国(四川)自由贸易试验区成都市高新区天府四街66号2栋22层1号 联系方式:张女士028-87797107 3.项目联系方式 项目联系人:张女士、熊女士 电 话: 028-87797107,13281460462,13111881728 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:微流控芯片,生物芯片 开标时间:2023-04-11 10:30 预算金额:260.00万元 采购单位:四川大学华西医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:四川国际招标有限责任公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 四川大学华西医院组织芯片扫描仪采购项目(第二次)公开招标采购公告 四川省-成都市 状态:公告 更新时间: 2023-03-20 四川大学华西医院组织芯片扫描仪采购项目(第二次)公开招标采购公告 2023年03月20日 16:15 公告信息: 采购项目名称 四川大学华西医院组织芯片扫描仪采购项目(第二次) 品目 货物/专用设备/医疗设备/其他医疗设备 采购单位 四川大学华西医院 行政区域 四川省 公告时间 2023年03月20日 16:15 获取招标文件时间 2023年03月21日至2023年03月28日每日上午:9:00 至 12:00 下午:12:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥300 获取招标文件的地点 http://sale.scbid.net 开标时间 2023年04月11日 10:30 开标地点 四川国际招标有限责任公司开标厅(四川省成都市高新区天府大道中段800号天府四街66号航兴国际广场1号楼3楼) 预算金额 ¥260.000000万元(人民币) 联系人及联系方式: 项目联系人 张女士、熊女士 项目联系电话 028-87797107,13281460462,13111881728 采购单位 四川大学华西医院 采购单位地址 成都国学巷37号 采购单位联系方式 张老师028-85423272 代理机构名称 四川国际招标有限责任公司 代理机构地址 中国(四川)自由贸易试验区成都市高新区天府四街66号2栋22层1号 代理机构联系方式 张女士028-87797107 附件: 附件1 采购需求.docx 项目概况 四川大学华西医院组织芯片扫描仪采购项目(第二次) 招标项目的潜在投标人应在http://sale.scbid.net获取招标文件,并于2023年04月11日 10点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:SCIT-ZG(Z)-2023020006L1 项目名称:四川大学华西医院组织芯片扫描仪采购项目(第二次) 预算金额:260.0000000 万元(人民币) 最高限价(如有):180.0000000 万元(人民币) 采购需求: 本项目一个包,采购组织芯片扫描仪(具体详见附件) 合同履行期限:合同签订后,收到采购人正式通知的1个月内。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 2.1本项目专门面向中小企业采购(监狱企业、残疾人福利性单位均视同小微企业,符合中小企业划分标准的个体工商户视同中小企业),非中小企业参与的将视为无效投标。 3.本项目的特定资格要求:3.1截至递交投标文件截止日,供应商未被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单。 三、获取招标文件 时间:2023年03月21日 至 2023年03月28日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外) 地点:http://sale.scbid.net 方式:招标文件自2023年3月21日至2023年3月28日每天9:00-17:00(北京时间,法定节假日除外)在我司指定网站(http://sale.scbid.net)获取,具体获取流程详见该网站的“标书领取操作手册”。 售价:¥300.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年04月11日 10点30分(北京时间) 开标时间:2023年04月11日 10点30分(北京时间) 地点:四川国际招标有限责任公司开标厅(四川省成都市高新区天府大道中段800号天府四街66号航兴国际广场1号楼3楼) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:四川大学华西医院 地址:成都国学巷37号 联系方式:张老师028-85423272 2.采购代理机构信息 名 称:四川国际招标有限责任公司 地 址:中国(四川)自由贸易试验区成都市高新区天府四街66号2栋22层1号 联系方式:张女士028-87797107 3.项目联系方式 项目联系人:张女士、熊女士 电 话: 028-87797107,13281460462,13111881728
  • 利扬芯片:拟购置上海嘉定土地使用权建设“集成电路芯片测试工厂项目”
    利扬芯片12月7日公告,为把握市场机遇,公司结合现阶段集成电路测试产能的经营情况和未来业务发展战略需要,公司全资子公司上海利扬创芯片测试有限公司拟在上海市嘉定区购置土地使用权建设“集成电路芯片测试工厂项目”。投资总额 69,000 万元人民币,项目达产预计年营业收入额为人民币 50,000 万元。
  • 多肽芯片能用在哪里?
    多肽芯片能用在哪里?多肽芯片是一种新型的生物芯片,是研究蛋白质与蛋白质或其他物质(如核酸、多糖、化合物)之间相互作用最直观的研究技术。多肽芯片在诸多领域中具有广泛的应用前景,如疫苗开发、药物研发和筛选、临床检测以及蛋白质的基础功能研究。 多肽芯片可用在抗原表位筛选、药物开发及筛选、临床检测等。l 多肽芯片在抗原表位筛选方面体现出巨大的优势,可大量缩短开发时间,为前期的抗体筛选提供准确的指标和快速的反馈;l 多肽芯片为药物开发及筛选提供有效的解决平台,可有效提高新药研发的成功功率,降低研发失败的可能性,加快药物研发进程;l 现代医疗技术显示,大多数疾病与蛋白质表达异常有关,通过检测患者样本中的蛋白活性即可找到其发病机理,多肽芯片技为该难题提供了快捷的方法,使得对症下药成为可能。 Aurora提供多肽芯片的制备用到的微阵列点样设备——多肽芯片点样仪Aurora多肽芯片点样仪采用化学固相合成法,可按需制备稳定的多肽微阵列芯片,如新冠病毒原始毒株及其突变体奥密克戎S蛋白、N蛋白的微阵列芯片,更多产品详情可进一步了解产品价格或技术参数等信息,直接联系Aurora员。【内容源自Aurorabiomed公众号《多肽芯片为什么那么火?》,转载请注明】Aurora集团30年来致力于制造生物医药领域自动化高通量设备。
  • 重磅!我国又一5nm芯片成功回片!
    近期,联想旗下的鼎道智芯半导体有限公司传来振奋人心的消息,其自主研发的5nm制程芯片已顺利完成回片,这一里程碑事件标志着联想在高端芯片设计与制造领域取得了重大突破,特别是在针对平板电脑优化的AP芯片市场上迈出了坚实的一步。鼎道智芯,这家由联想(上海)有限公司全资控股,并间接隶属于香港联想集团有限公司的新兴半导体企业,自2022年1月成立以来,便承载着联想集团对于自研芯片战略的深厚期望。公司坐落于上海自贸区,注册资本高达3亿元人民币,由联想集团高级副总裁贾朝晖担任法定代表人及执行董事。贾朝晖以其丰富的个人电脑市场成功经验,为鼎道智芯注入了强大的创新动力与领导力。鼎道智芯的业务范围广泛,不仅涵盖半导体科技领域的技术服务、开发、咨询、交流、转让及推广,还深入集成电路设计、销售,以及软硬件开发等多个关键环节。公司定位于智能设备核心部件的软硬件解决方案提供商,旨在通过技术创新,为联想产品带来更强的市场竞争力和更卓越的用户体验。此次5nm芯片的成功回片,是联想集团“端-边-云-网-智”新IT架构战略下,核心技术研发与积累的重要成果。联想集团已明确规划,未来三年内将实现研发投入与研发人才的双倍增长,持续推动技术创新与产业升级。鼎道智芯作为这一战略的关键执行者,正加速推进前沿基础核心技术的研发与应用,为联想智能终端设备的用户体验提升及业务增长贡献力量。值得注意的是,鼎道智芯的快速发展并非孤例。联想集团投资的另一家芯片企业——此芯科技,近期也发布了其首款6nm制程的AI PC芯片P1,进一步丰富了联想的芯片产品矩阵。这款国内首创的AI PC芯片,不仅展现了联想在芯片设计领域的深厚实力,也为联想在全球芯片市场的竞争中增添了新的亮点与优势。随着鼎道智芯5nm芯片及此芯科技P1芯片的相继问世,联想正逐步构建起自主可控的芯片生态体系,为未来的科技竞争奠定坚实的基础。这一系列成就不仅彰显了联想作为PC巨头的战略眼光与执行力,更为整个半导体行业的发展注入了新的活力与希望。
  • 如何让多肽芯片制备更高效?
    如何让多肽芯片制备更高效?多肽芯片的制备原理?多肽芯片是将已知的蛋白序列或任意设计的氨基酸序列分解成包含重叠氨基酸的多肽片段,将这些多肽片段按一定次序固定在经特殊处理过的载体基质上,每张芯片包含成千上万甚至更多的肽链。将待测物与芯片反应,经过免疫检测技术发现与待测物有结合反应的位点/域,经过图像数据处理与分析,寻找蛋白质/氨基酸与待测物的结合部位。 多肽芯片技术具备高通量,稳定可靠,灵活多样的特点。多肽芯片上承载大量的多肽片段,可快速、有效的找到相应结合位点/域;多肽芯片上固载的多肽片段包含蛋白全序列,相对于原大分子蛋白质而言更稳定,不易分解失活,采集的数据更为准确;多肽片段可不局限于已知的蛋白结构,构成多肽分子的氨基酸可以是进行过化学修饰的非天然氨基酸,在药物研发和筛选方面具有很强的灵活性; Aurora多肽芯片点样仪让多肽芯片制备更高效!Aurora集团30年来致力于制造生物医药领域自动化高通量设备。Aurora多肽芯片点样仪采用化学固相合成法,可按需制备稳定的多肽微阵列芯片,如新冠病毒原始毒株及其突变体奥密克戎S蛋白、N蛋白的微阵列芯片,更多产品详情可进一步了解产品价格或技术参数等信息,请发邮件至market@aurorabiomed.com.cn或直接联系Aurora销售人员。【内容源自Aurorabiomed公众号《多肽芯片为什么那么火?》,转载请注明
  • 基因芯片:春天在哪里
    俞菁(化名)是一名手语翻译,她的妈妈因为小时候一次注射庆大霉素致聋,但她自己的听力得以保持健全。俞菁有一位好姐妹,情况却正好相反,她妈妈听力正常,而她自己在小时候在一次药物注射后变成了听障患者。  去年,她们都参加了北京市的一个高危人群致聋基因筛查,结果两个人都是致聋基因的携带者,只是因为俞菁从小有意识去避免注射一种药物,而她的好姐妹却毫无知情用了这种药,导致了两个人走向了完全不同的人生。  博奥生物市场总监赵智贤告诉记者,“俞菁的妈妈和她的聋人姐妹刚出生时没有出现耳聋,都是在后天被注射了链霉素、庆大霉素等氨基糖甙类药物致聋。”我国每年因迟发性耳聋及药物性耳聋的新增患者可达3万多人,其中60%的是由于致聋基因造成。  事实上,很多医生都知道该类药物会导致基因突变引起的药毒性耳聋,但以往依靠传统基因测序方式需要3天,且耗资昂贵。作为此次北京市致聋基因筛查的承担者,博奥生物采用了一种新的耳聋基因芯片检测技术,“该芯片上涵盖了导致中国人群耳聋最常见的4种基因的9个突变位点,做一次检测只需要5小时,价格几百元。”赵智贤说。  基因在我们身体里已经“神秘地行动”很久了,而不管你了解或不了解,信或不信,它都会导致完全不同的结果甚至人生。人类迫切地希望解码自己的基因,在种种关于未来10大技术趋势的预测中,好几项也都跟基因技术相关。  耳聋芯片是目前基因芯片的一种最普通的应用。所谓的基因检测芯片,其外形与电子芯片一样,但上面排列的不是集成电路,而是基因序列。它把大量已知基因序列的核酸片段识别探针,集成在一块指甲大小的玻璃片或硅片表面,通过与样品进行反应,基因会呈现出不同的表达信号,用计算机技术收集信号数据,分析样品的基因突变情况来诊断遗传性疾病。虽说基因芯片早在20世纪末就成功问世,并应用于药物筛选和实验室研究,但普通人对它还是知之甚少。  “有成千上万个鱼钩的钓杆”  如果说以前的基因检测技术均只有一个“鱼钩”,一次只能钓到一条鱼(一种基因)。那么,基因芯片就好比是一根有成千上万个鱼钩的钓杆,可同时捕捉许多不同的鱼,从而实现对千万个基因的同步检测和鉴定。它具有高效率、高通量、快速简便等特点。赵智贤说,耳聋芯片可以提供从孕前、产前到出生的基因检测,“只需要从母亲的羊水中提取一滴样品,或者一滴血就可以完成整个检测。”它可帮助生育父母及时获知新生命的遗传信息并采取措施,降低新生儿患遗传性疾病。  基因芯片将改变“万人一配方”的用药模式,在个性化配方上,未来西医与中医有可能殊途同归。目前医生为同一类病症的患者开出的基本都是标准化药方,其实人的个体差异直接影响用药效果,用药的多少也应有区别。  人类基因组编码大约有10万个不同的基因,一个基因又有成千上万个位点,“多数慢性病会跟几十个基因中几个或更多突变位点相关。基因芯片可以对基因分类,并尽可能找出相关的位点,发现哪些基因和位点对于预后表达得好,哪些表达得不好,再根据比对结果提供个性化治疗”。一位从事基因检测芯片服务的海归创业者解释道。  “结核病最难治的地方,是其耐药性高。原来查基因耐药需要4~8周的时间,而期间多数治疗都是经验用药,如果产生耐药,不但治不了病,反而会加重病情,延误治疗。结核病检测芯片将检测时间缩短至6个小时,为治疗赢取时机。”赵智贤以具体案例作了实证。  基因芯片给西医带来的最大改变,是它可以检测出患者之间的个体差异,使医生诊断和用药更及时和提高准确性,但这需要建立在大量的科研基础之上,而且基因的筛查要经过时间的推移才能显现出效果来。  尽管当前基因芯片技术尚未完全成熟,但是却挡不住它的商业脚步。在国内一些医院或体检机构,现在可以看到这样的广告:只需一滴血或一份唾液样品,你就可以预知会否患上癌症,将健康掌握在自己手中。在美国,越来越多的零售商开始通过互联网直接面向消费者提供基因诊断测试,他们的口号是不借助医生就可以从基因水平上了解自己的健康状况。这种测试甚至已开始通过互联网瞄准国际市场。  通常,消费者只要付款就能得到一份包括自身的基因、特质及潜在病症的风险等级清单,另外还包括一份针对个人的用药建议以及生活、饮食和环境上的综合健康建议,如节食和运动等。国内的价格在2~3万元不等。  基因芯片的“管”与“放”  那么,这种基因诊断到底有多靠谱?博奥生物从技术角度给出了一套标准。基因芯片技术必须建立在大量已知基因和基因改变与疾病关系的基础上,因此其所检测的疾病相关基因数应该越多越好,而且需要建立一个异常庞大的基因与疾病关联数据库,同时要有一套科学的数学模型。还有,基因检测具有一定的种族针对性,“也就是说如果比对的人群数据库不同,检测的结果也会有差异。” 赵智贤说。  而由4位美国生物伦理学、法律及医学方面的专家组成的研究小组对于该种基因测试是否适用于市场进行了研究。他们表示,基因测试都要通过同一类型的集中数据市场前期调查,许多基因测试公司都给出了长期的预测结果,实际上,要完全了解这些风险与益处需要几十年的时间。  基因芯片三大难题  “基因改变与疾病的关系并不能一一对应,所有基因检测的结果,并非一定就会发生。同样,即使你检测出来携带耳聋基因,也并不意味一定会出现药毒性耳聋。基因芯片还不能完全取代目前临床实验室诊断,”海归的基因检测创业者认为,当前这个阶段应该客观地看待基因芯片技术,但是,“谁也不能否认它的医学参考价值”。  基因芯片的商机不可预估,谁都想抢一把风气之先,“管它是不是萝卜先占个坑”,这使得不管是国际还是国内市场都处在一种鱼龙混杂的阶段。目前我国生物芯片企业不少于50家,但获得国家有关部门认证的只有极少数。某些机构把基因检测的销售业务外包出去之后,出现了一些销售方式上的“变味”,有的甚至变成了传销。另外,美国的研究小组也在《科学》杂志发文表示,美国市场上90%的基因测试都没有通过正式的管理评估。  企业在冒进,而真正的市场化却还远没开始。造成这种现象的原因很复杂,赵智贤认为,目前基因芯片在药监局的审批难,进入物价收费流程难以及进入医保体系难这三大难题,使得其真正迈入市场化商业之路还很远,而在此之前出现一些市场“乱象”并不难理解。  目前的基因芯片价格还是相对昂贵,而且操作复杂、费时,对操作人员的专业素质要求比较高,国内缺乏大量相应的专业基因检测和数据分析人员,这也是推进市场化前要越过的障碍之一。2011年卫生部下发通知,决定将基因芯片诊断技术审批权“下放”到省级卫生主管部门。这意味着今后在临床上,将有越来越多的有资质的临床医生使用该项技术。  如何让基因测试尽早接触市场,加速其产业化,是各国政府共同的心态。海归的基因检测创业者如此分析国内外形势。在这种心态下,是先“管”起来,还是先“放”下去,“一管一放”的力度又该如何把握,并导致不同的行业生态,这对于各国政府都不是一件轻松的事情。
  • 新品上市 :RUBY芯片
    加样即运行一体化微流控芯片Ruby上市为实现自动化上样提供可能,配合naica微滴芯片数字PCR系统,为您提供首个“加样即运行”的数字PCR工作流程,无论是手动操作,还是自动化移液工作站,均实现一步移液步骤即完成样本加载。极简工作流程,不需要其他耗材,有效减少从样本到结果过程的可变因素。• 16个样本/芯片,48个样本/运行• 一体化微流控芯片• 结果高度稳定,提高实验效率• 兼容手动和自动化移液设备• 兼容naica微滴芯片数字PCR系统 了解更多信息我们的应用专家整理了技术说明,详细描述Ruby芯片的产品特性。如您感兴趣请发送电子邮件至info@cycloudbio.com与我们取得联系。
  • 中国芯片进口,同比大增
    据中国海关最新数据显示,中国的半导体进口量持续扩大,有报道称,美国可能对高带宽存储器(HBM)芯片实施新的限制,大陆企业纷纷抢购集成电路(IC)。根据海关总署周三公布的数据,2024 年前七个月,芯片进口总量为 3081 亿片,价值约 2120 亿美元。这意味着进口量同比增长 14.5%,美元价值增长 11.5%。集成电路进口量激增反映出人们对美国将对大陆获取高带宽存储器实施新的单方面限制的预期,路透社周二报道称,大陆大型科技公司囤积三星电子生产的此类芯片的动力。彭博社最近的一份报告称,美国的这些措施最早可能在下个月推出。HBM 芯片通常与人工智能(AI) 加速器(例如Nvidia的图形处理单元)捆绑在一起,是构建大型语言模型不可或缺的组件,而大型语言模型是 OpenAI 的 ChatGPT 等生成式 AI服务的基础技术。据路透社报道,这场芯片争夺战导致中国大陆在今年上半年占据了三星 HBM 收入的 30%。 2023 年中国集成电路进口总额为 3490 亿美元,较 2022 年下降 15.4%。海关数据还显示,今年1至7月,大陆半导体出口量达1666亿块,较上年同期增长10.3%,总值同比增长22.5%,达900亿美元。中国集成电路出口反映了海外对传统芯片的强劲需求。传统芯片广泛应用于汽车、家电和各种消费电子产品。海关数据显示,仅 7 月份,集成电路出口就达到 273 亿块,价值 139 亿美元。这一增长正值智能手机等消费电子产品复苏之际。市场研究公司 Canalys 的数据显示,6 月份全球智能手机出货量增长了 12%。 中国去年的集成电路进口数量和金额,双双下滑根据中国海关总署官网公布的 2023 年全国进口重点商品量值表,集成电路进口数量 4795.6 亿颗,同比减少 10.8%;金额为 24590.7 亿元人民币,同比减少 10.6%。二极管及类似半导体器件 2023 年进口 4529.6 亿件,同比减少 23.8%;金额为 1658.1 亿元人民币,同比减少 13.7%。业内分析人士认为中国集成电路和半导体设备进口疲软主要有两方面原因,其一是中国智能手机和笔记本电脑销售疲软等因素影响,其二是中国企业也在努力提高本土芯片产量,以减少对进口芯片的依赖。尽管我国在人工智能芯片领域实现量产尚需时日,但在政府的积极推动和相关政策扶持下,正逐渐建立更具弹性的芯片供应链,已促使本地制造商积极提高成熟节点的产能。这些芯片用于汽车和家电等设备,不受美国当前限制措施的影响。公开信息显示,、华虹集团和联芯国际在扩大生产方面最为积极,重点关注驱动集成电路、CIS / ISP 和功率半导体集成电路等特种工艺。根据集邦咨询 TrendForce 预测,到 2027 年,中国成熟工艺产能占全球市场的份额将从 2023 年的 31% 增至 39%,如果设备采购进展顺利,还将有进一步增长的潜力。 2023年我国集成电路出口额同比降幅收窄至10.1%海关总署统计,2023年我国集成电路出口1359.7亿美元,同比下降10.1%,但仍较疫情前的2019年高出33.9%,同期出口量同比下降1.8%至2678.3亿块。受厂商加速去库存、旺季集中出货带动,全球电子信息行业需求企稳待升。2023年第四季度,我国集成电路出口量额分别同比增长9.3%、2.8%。其中,12月出口额同比增长9%至140.5亿美元,出口量同比增长8.5%至232.9亿块,已连续6个月同比增长,全年出口降幅收窄。美国半导体产业协会(SIA)数据显示,全球11月半导体销售同比增长5.3%至480亿美元,是2022年8月以来首次同比增长,表明全球芯片市场在进入2024年之际继续走强。SIA预测2024年全球市场将同比增长13.1%。我国集成电路出口主要受全球需求变化影响,逐步企稳的市场需求将支撑2024年出口增长的预期。
  • 俄罗斯芯片进口大跌20%
    7月23日消息,根据美国商务部的说法,今年以来,俄罗斯通过各种渠道进口的高性能处理器等被禁售的芯片,出货量锐减了20%。这是美国政府首次公开此类数据。美国商务部称,今年1-5月,俄罗斯通过中国大陆进口的芯片减少了19%,从中国香港进口的芯片减少了28%。另据美国非盈利安全公司C4ADS的数据,2023年8-12月,从中国香港转运到俄罗斯的货物总价值近20亿美元,其中7.5亿美元都是先进微电子产品。Intel、NVIDIA、德州仪器等美国芯片巨头都承诺断绝与俄罗斯的交易,但是很多产品依然通过各种渠道流向俄罗斯,包括最新的i9-14900K、RTX 4090等等。比如莫斯科一家名为Lotos的公司,就设法搞到了价值279万美元的NVIDIA产品,Vectrawave得到了两笔价值100万美元的芯片。
  • 上海汽车芯片检测认证公共实验室落地嘉定,打造中国汽车芯片的“检测认证一体化中心”
    为更好地承载上海集成电路“北翼”功能定位,加快推进汽车芯片公共性研发平台、汽车芯片第三方检测认证机构等建设,日前,上海汽车芯片检测认证公共实验室揭牌启用,这也是国内各机动车检测平台中率先开展建设车规级芯片检测认证的公共实验室。汽车芯片检测认证公共实验室由上海机动车检测认证技术研究中心有限公司承建,可提供芯片功能及可靠性、功能安全、信息安全、失效分析等汽车芯片检测服务。在上海汽检的汽车芯片检测实验室里,多台设备正在24小时不间断地运行。芯片检测研究实验室主管工程师刘力介绍:“我们当前开展的是车规级芯片的功率循环测试,根据相关的模型推算,在实验室内部完成一周左右的测试时间,可以很好地模拟芯片装车10年间的应用表现。”汽车芯片耐久测试目前,上海汽车芯片检测认证公共实验室已经建成针对车规级认证标准AEC-Q100的全套测试能力,拥有十万级无尘净化间、ATE等集成电路自动测试系统、超声扫描显微镜等实验检测设备。如何给芯片做体检?在超声扫描显微镜下,正常芯片上产生的白色斑驳就相当于我们人体的“病灶”。芯片检测研究实验室主任助理张瑜一边演示一边向记者介绍:“我们现在看到的这张图片,是通过超声波扫描显微镜拍摄的。通过这个测试,我们可以锁定芯片哪个区域发生了损坏,这是属于芯片的一个无损测试方式。就好比我们进行体检过程中的第一步,先锁定这个芯片的病灶在哪个位置。”汽车芯片超声波影像随着汽车“三智”不断发展,全球汽车芯片市场不断扩大。嘉定作为汽车生产制造的前沿阵地,对于汽车芯片的需求旺盛。“从行业公布的数据来看,新能源车单车从2012年平均使用567颗汽车芯片增长至2022年平均使用1459颗。长期来看,芯片对于汽车的重要性会不断提升。”张瑜说,“目前,上海汽检已投入4000万元以上的资金,建成2个高水平的汽车芯片实验室,将通过打造中国特有的汽车芯片标准体系,建立一个系统化、自主可控的汽车芯片可靠性评估技术规范和检验检测认证服务体系。”汽车芯片功能检测上海汽检方面表示,目前实验室已服务包括泛亚汽车、上汽英飞凌等5家以上企业,进行了10款左右芯片产品的检测验证。未来,实验室将继续深耕检测技术研究,建立完整的车规级审核评价能力和一站式审核评价服务平台,与上下游产业伙伴共同赋能国产芯片,推动国产半导体产业的高速发展。下阶段,汽车芯片检测认证公共实验室将通过建设六大平台:集成电路测试服务平台、第三代半导体测试服务平台、汽车专用传感器芯片测试服务平台、多芯片模组测试服务平台、汽车被动组件测试服务平台和芯片失效分析服务平台,为芯片企业和汽车企业提供从研发到验证到失效分析溯源的完整服务能力,并实现芯片性能测试、芯片测试技术及设备开发、标准研究、芯片可靠性和一致性评估、混响室等芯片集成验证,推动长三角汽车芯片检测能力互联互通,测试资源共享。
  • 欧盟公布《芯片法案》,将投入超430亿欧元用于支持芯片生产、试点项目和初创企业
    当地时间2月8日,欧盟委员会公布了备受关注的欧盟芯片法案,计划投资超过430亿欧元(约合490 亿美元、3127亿元人民币)用于支持芯片生产、试点项目和新一代芯片工厂等,以提升欧盟在全球的芯片生产份额。欧盟委员会主席乌苏拉冯德莱恩对此表示,欧盟当前过于依赖海外供应商,“疫情暴露了欧洲供应链的脆弱性。汽车和其他商品的生产均受到了芯片短缺的打击。芯片是全球技术竞赛的核心,当然也是我们现代经济的基石。”具体来看,欧盟芯片法案计划投资的资金中,110亿欧元将用于加强现有的研究、开发和创新,以确保部署先进的半导体工具以及用于原型设计、测试的生产线等。此外,还将建立“芯片基金”,用于帮助初创企业获取融资;另设半导体股权投资基金,支持大中小企业市场扩张。芯片法案的目标是,到2030年将欧盟的芯片产能从目前占全球的10%提高到20%。冯德莱恩表示,芯片法案可以改变欧盟的全球竞争力。在短期内,它将使欧盟能够预测并避免供应链中断,从而提高对未来危机的抵御能力;从中期看,它将有助于帮助欧盟成为芯片战略市场的领军者。记者注意到,不久前,美国在1月25日公布的《2022年美国竞争法案》中也包括了520亿美元的芯片投资,其金额略高于欧盟芯片法案计划投资的资金。  有分析人士认为,美国、欧盟加大对芯片产业的投资是对当前全球市场“缺芯”现状的反应。美国商务部近期公布的一项针对全球半导体供应链主要企业有关数据的分析结果显示,全球半导体供应链仍然脆弱,芯片供应短缺状况仍将持续至少6个月。
  • 美国芯片禁令变本加厉:英伟达、英特尔或供应受限 国产AI芯片逆风前行
    美国当地时间10月17日,美国商务部工业和安全局(BIS)发布了针对芯片的出口禁令新规,对于中国半导体的制裁进一步升级。从新规名称可以看到,此次限制的核心对象是先进计算半导体、半导体制造设备和超级计算机项目。而此次新规事实上是美国对2022年10月7日发布的规则进行修改更新的版本,更加严格地限制了中国购买重要的高端芯片。美东时间17日英伟达收跌4.68%,英特尔收跌1.37%。“围追截堵”AI高算力芯片21世纪经济报道记者查询官网披露的文件了解到,最新的禁令主要包括三个规则,同时,BIS网站上还同步发布了一份新规解答说明。其一是先进的计算芯片规则,此次在2022年10月7日规则的基础上进行了两项更新,首先是调整了决定先进计算芯片是否受到限制的参数;其次是采取新的措施来应对规避控制的风险,对另外40多个国家出口的产品实施了额外的许可证要求。在具体的参数方面,最新的禁令删除了“互连带宽”作为识别受限芯片的参数,还设置了一个新的“性能密度阈值”来作为参数。同时,在条例细则中,还特别提到了要修订参数,从而对“AI training(人工智能训练)”芯片进行管控,以及限制芯片用于训练大型军民两用的AI基础模型。芯片业内人士向21世纪经济报道记者表示,这意味着不论英伟达还是英特尔、AMD,按照算力性能密度的要求,新产品可能基本没有办法对华供应。此前,英伟达A100及H100两款型号被限制出口中国后,为中国专供的“阉割版”A800和H800就是为了符合规定。英特尔同样也针对中国市场,推出了AI芯片Gaudi2,如今看来,企业们又要在新一轮出口禁令下再进行调整应对。10月17日晚间,英伟达方面向媒体回应称:“我们遵守所有适用的法规,同时努力提供支持不同行业的数千种应用产品。鉴于全球对我们产品的需求,我们预计(新规)短期内不会对我们的财务业绩产生实质性的影响。”第二个规则是关于扩大半导体制造设备的出口管控,包括强化对美国人才的限制,还增加了需要申请半导体制造设备许可证的国家数量,从中国扩大到美国能够长臂管辖到的21个国家。这也意味着,更多国家的半导体设备公司将受到限制,在全球半导体设备巨头的排行榜中,主要由美国、荷兰和日本的公司占领。其中,荷兰承包了全球四分之一以上的半导体设备,ASML就是芯片光刻技术的领导者。对于最新的美国出口管制条例,10月18日,ASML方面向21世纪经济报道记者表示:“鉴于新规的篇幅和复杂性,ASML需要仔细评估潜在的影响。就我们的业务而言,根据目前收到的信息,我们认为适用该新规的涉及先进芯片制造的中国晶圆厂数量有限。”谈及业绩的影响,ASML分析道:“从中长期角度来看,这些出口管制措施可能会影响到我们不同的机台销售量在各区域间的配比,但我们预计这些措施不会对公司2023年的财务情况以及我们在2022年11月投资者日公布的2025年和2030年的长期展望产生重大影响。”同时,ASML将向美国政府进一步澄清这些新规的适用范围,并且持续遵守经营所在国家/地区所有适用的法律和法规,包括出口管制法规。第三个规则是把更多公司列入到“实体清单”,增加了两家中国实体及其子公司(共计13家参与先进计算芯片开发的实体),为这些公司制造芯片就需要BIS的许可。对此,在10月17日晚间,多家公司火速发布声明进行回应。壁仞科技在声明中表示:“公司对美国商务部此举表示强烈反对,将向美方有关政府部门积极申诉,并呼吁美国政府重新进行审视。”同时,壁仞科技还指出,公司严格遵守相关国家和地区的法律、法规,并在此基础上始终合法依规经营,目前正在评估此事件可能对公司造成的影响,做好应对工作,并将与各方面积极沟通。另一家GPU公司摩尔线程也同样对列入“实体清单”一事表示“强烈抗议”,其声明称:“摩尔线程自成立以来严格遵守相关国家和地区的法律、法规,始终秉持合法、合规的企业文化和管理理念,建立了完善的出口管制合规管理体系和工作流程指引。公司正在与各方积极沟通,对于该事项的影响正在评估。”国产AI芯片逆风前行与此同时,在制裁升级和算力紧缺的背景下,国内的AI企业、GPU企业正努力前行。国际数据公司(IDC)发布的《中国半年度加速计算市场(2023上半年)跟踪》报告显示,受供应链、政治等因素影响,中国市场面临的算力缺口给国内的芯片发展带来新的机遇。中国本土的AI芯片厂商发展正处于快速增长的阶段。2023年上半年,中国加速芯片的市场规模超过50万张。从技术角度看,GPU卡占有90%的市场份额;从品牌角度看,中国本土AI芯片品牌出货超过5万张,占比整个市场10%左右的份额。目前英伟达的GPU在AI训练领域占据主要份额,英特尔、AMD正在抢夺市场。从国内企业看,巨头中华为、阿里、百度、腾讯都已经有自研AI芯片,有的对外销售、有的自用。比如华为的昇腾系列,已经支持了国内过半的AI大模型训练;百度旗下的昆仑芯片,瞄准的是云端AI通用芯片;阿里已经推出高性能推理AI芯片含光系列;腾讯自研的AI推理芯片紫霄,已经量产并在腾讯会议等业务上落地。AI相关的芯片企业中,既有上市的寒武纪、景嘉微、海光信息,也有芯动科技、燧原、瀚博、沐曦、壁仞、摩尔线程、天数智芯等老牌和新创企业。包含GPU在内的高算力AI芯片主要用于高性能服务器中,需求还在不断增长。IDC报告指出,2023年上半年加速服务器市场规模达到31亿美元,同比2022年上半年增长54%。其中GPU服务器依然是主导地位,占据92%的市场份额,达到30亿美元。同时NPU、ASIC和FPGA等非GPU加速服务器以同比17%的增速占有了8%的市场份额,达到2亿美元。2023年上半年,从厂商销售额角度看,浪潮、新华三、宁畅位居前三,占据了70%以上的市场份额;从行业角度看,互联网依然是最大的采购行业,占整体加速服务器市场超过一半的份额,此外金融、电信和政府行业均有超过一倍以上的增长。IDC中国AI基础架构分析师杜昀龙认为,目前我国本土芯片厂商的技术水平与国际先进水平对比还相对落后,生态的建设同样不够完善。芯片领域的供需关系也在逐渐发生变化,许多企业由原来的“国际采购”,转向“本地采购”或者“自研自用”,为我国本土芯片企业的发展创造了有利条件。应持续优化芯片产业发展环境,不断促进设计、封装等环节的发展,对流片制造环节实现攻坚,构建健全完整的产业链,突破行业应用、芯片研发、系统开发、高校研究之间的壁垒,形成跨企业、跨领域、跨行业的合作,进而推进芯片行业全维度发展。
  • 蛋白质芯片技术的主要创始人之一朱衡教授 在线讲解“蛋白质芯片技术”
    HuProtTM人类蛋白质组芯片,涵盖~20,000个人重组蛋白质,是迄今为止通量最高的人类蛋白质组芯片,为蛋白质组学研究提供了强大的工具。该芯片已经在各个蛋白质组学和其他生命科学研究领域得到广泛的应用,如癌症及自身免疫疾病的生物标志物的发现、蛋白-蛋白相互作用研究、翻译后修饰、酶学研究等。 作为蛋白质芯片技术的鼻祖和人类蛋白质组芯片的开发者,朱衡教授已在该领域发表近100篇研究论文,被引用次数累计近10,000次,单篇被引次数2,000次。 朱衡教授现为美国约翰霍普金斯大学医学院药理系终身教授,是世界上蛋白质芯片技术的主要创始人之一(详见论文 Science,2001, 293: 2101-2105), 也是HuProtTM人蛋白质组芯片的开发者,在蛋白质芯片技术和应用领域有着举足轻重的地位。朱衡教授目前主要的研究领域是利用蛋白质芯片技术研究疾病相关蛋白的细胞信号转导/网络及其它延伸领域。朱衡教授在美国作为项目负责人现主持美国国立卫生研究院(NIH) R01课题多项,2007年获得美国 Smith Welcome Trust 杰出科学家奖,在Cell、Nature、PNAS 等国际顶尖杂志发表了近100篇研究论文。 仪器信息网 网络讲堂 特邀 朱衡教授将于2015年4月17日 10:00 通过网络会议形式在线讲解&ldquo 蛋白质芯片技术&rdquo 。本次网络会议中朱衡教授将围绕人类蛋白质组芯片的开发过程、技术要点和应用前景展开讲述,并深入探讨如何利用蛋白质组芯片来进行蛋白质组学的研究。 本次会议采取在线自助报名形式,通过资格审核的用户可免费参会。报名地址如下: http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1397
  • 聚焦器官芯片|Revvity & Emulate器官芯片高内涵成像应用手册正式发布
    作者:Revvity & Emulate器官芯片(Organ-On-a-Chip, OOC)是一种多通道3D微流控细胞培养芯片,可以模拟器官或生物体组织层面的行为、机械力和生理反应,是可以重现人体重要生理特征的人工微组织模型,是重要的体外生物研究新工具。该模型由于其极高的生理相关性,被主要应用在高通量药物筛选、药效评估、药物的吸收代谢、药物毒理、药物递送、药物相互作用、疾病生理微环境模拟、疾病基础机制、细胞间相互作用等研究中,更有望减少药物开发中对动物的需求。全球器官芯片的佼佼者Emulate一直致力于开发高度模拟人体生理特征的器官芯片技术和不同类型的创新应用,以全面了解疾病发生规律和帮助评估药物的真实反应,改善人类健康。其芯片可忠实再现原生组织的复杂三维结构和组织内部复杂的功能交互,而这些精妙的生物学过程均可采用多种成像分析手段进行精准监测和表征。有助于更深入理解复杂细胞学机理和互作,并获得精准定量信息。因而器官芯片不仅为体外表型筛选提供了一个完整丰富的迷你生物平台,更可以结合多标记,多靶点,多参数的高内涵分析筛选技术,实现高通量的表型分析工作,极大缩短药物发现试验周期,增加了预测的准确性。在此,瑞孚迪(Revvity)高内涵联合Emulate器官芯片,针对器官芯片的高通量成像及分析技术联合推出了器官芯片高内涵成像应用手册。该手册涵盖了:“高内涵成像助力器官芯片中的免疫细胞招募“及”利用Emulate肝芯片进行高通量大规模盲法毒性预测研究”两个经典案例介绍,同时为大家总了Emulate器官芯片高内涵成像的工作流。
  • Illumina芯片家族将添新成员
    Illumina打造非洲人种GWAS“芯片”  2016年10月中旬,Illumina公司宣布正在为非洲人类遗传与健康(H3Africa)计划打造一款GWAS芯片。芯片将包括250万针对非洲人口的变异位点。H3Africa计划是美国国家卫生研究所与、洲社会人类遗传学和威康信托基金会的合作项目。  “目前H3Africa计划已经完成了对来自整个非洲大陆3000例非洲人的外显子组和全基因组测序,把变异位点提交给了Illumina,用于打造GWAS芯片。”Illumina的高级市场开发经理朱莉柯林斯说。“我们正在努力进行芯片的是设计打造,希望2017年年初开始发货。“  这款芯片有助于研究非洲人口基因多样性和环境变化带来的基因响应,将打开非洲大陆上非传染性的疾病研究的新局面。  高通量生物芯片技术是Illumina公司成长的第一个里程碑,自2005年推出第一款芯片之后,Illumina不断创新,以经济、高通量及可扩展的芯片解决方案以满足日益增长的各种需求。人类Hapmap的数据,80%以上都来自于Illumina的高通量芯片平台。除了人类基因组研究芯片还有动物、植物基因组研究芯片、转录组和表观遗传组芯片可供定制。  2016年度,Illumina的芯片业务表现优于预期,Q3收入增长超过35%。芯片订单受到DTC市场和农业客户的“强劲兴趣”两方面驱动。微阵列订单增长90%,其中Global Screening Array单项订单达200万美元。
  • 天津生物芯片公司食品中病原生物芯片检测试剂盒亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,天津生物芯片技术有限责任公司的食品中病原生物芯片检测试剂盒亮相国家“十一五”重大科技成就展。食品中病原生物芯片检测试剂盒  图中包括能够同时检测食品中沙门氏菌、致病性大肠杆菌等八种致病菌的基因芯片试剂盒,同时检测甲肝病毒、戊肝病毒等 五种食源性病毒的基因芯片试剂盒。该产品具有完全的自主知识产权,实现了样品中多指标的快速并行检测,食源性致病菌检测时间由4-8天缩短到20hr内,食源性病毒检测时间由1-2天缩短到10-12hr。  关于天津生物芯片技术有限责任公司:  天津生物芯片技术有限责任公司成立于2003年9月,坐落于天津经济技术开发区,注册资金一亿元人民币,总建筑面积4800平方米,其中实验室面积3800平方米,按照国际通行标准建立了完整的公共实验室体系,包括基因组学、功能基因组学、生物信息学和生物芯片4大研究平台,主要从事微生物检测芯片的研发、基因组学和功能基因组学研究。根据客户需要,公司可提供针对不同检测现场、不同检测对象、不同通量、不同类型实验室的微生物检测整体解决方案:包括样品前处理,免疫学检测、分子生物学检测、数据分析等多个方面,相继开发了诊断血清、免疫磁珠、分子生物学检测试剂盒三大类85种产品。
  • 芯片进口额远超原油 中国芯待发力
    中国每年进口芯片的金额远超原油进口,全球芯片约六成市场在中国,年进口额约2000亿美元。关注半导体行业的人对这一数据并不陌生。  从公众知晓度很高的计算机、智能手机到广泛应用的空调、彩电,几乎每一件日常使用到的电子产品都离不开芯片。格力电器股份有限公司副总裁陈伟才说,“打个比方说,我们的家电产业是头大象,但却被国外的小小芯片牵着鼻子走”。据厂家介绍,一颗MCU进口价格一般为15元,每年中国家电行业芯片市场规模达200亿元,而MCU芯片的整体市场规模约1400亿元。  根据市场研究机构IC Insights数据,2016年,全球半导体市场规模约3600亿美元。最新的前20排名中,美国有8家半导体厂入榜,日本、欧洲与中国台湾地区各有3家,韩国有两家挤进榜单,新加坡有一家上榜。中国大陆仍没有一家企业上榜。  整体来看,前20大厂仅有5家营收增长幅度达到两位数。除了台积电外,还有第9名东芝增长16%、第11名联发科增长29%、第14名苹果增长17%、第16名Nvidia增长35%。  数据显示,英特尔仍然稳居榜首,三星与台积电分列二、三位。若将台积电、格罗方德(GlobalFoundries)与联电等三大纯晶圆代工厂排除,AMD、海思与夏普依序将可名列第18、19与20名。  在这20家半导体企业中,有9家营收超过100亿美元。2016年前20大门槛为45亿美元左右,前20大名单与2015年基本相同,并未有新公司上榜。  半导体行业已经是一个高度分工协作的产业,在设计、制造和封装等环节中,IC设计企业仍领跑榜单。在前20大半导体企业中,有5家纯IC设计企业(包括高通、博通、联发科、苹果、英伟达)。  如果不计算纯代工企业,该名单中的17大半导体企业额的销售额占全球半导体总销售额的68%,与10年前相比,提升了10个百分点,可见该行业有“强者愈强”的趋势
  • 天数智芯“硅中介层及调整方法、芯片及封装方法”专利公布
    天眼查显示,上海天数智芯半导体有限公司“硅中介层及调整方法、芯片及封装方法”专利公布,申请公布日为2024年7月23日,申请公布号为CN118378588A。背景技术2.5D(2.5-Dimension,2.5维)封装技术会使用硅中介层,将晶粒设置在硅中介层上,硅中介层设置于基底上,晶粒通过硅中介层中互连线、金属层、硅通孔等与基底连接。然而,硅中介层为一种类三维结构,其内部的不同结构之间会形成等效电路,等效电路可能会影响信号的传输,使得信号的损耗增大。目前,硅中介层所导致的信号损耗通常被忽略,而随着硅中介层尺寸的缩小和性能的提升,硅中介层已经严重影响芯片中信号的正常传输,因此,亟需降低硅中介层所产生的信号损耗。发明内容本申请实施例提供一种硅中介层及调整方法、芯片及封装方法,涉及芯片封装领域。硅中介层调整方法包括:获取包括硅中介层设计文件;所述硅中介层设计文件中包括预设第一金属层、预设第二金属层和预设电介质及各自的配置参数,所述预设第一金属层用于信号传输,所述预设第二金属层与所述预设第一金属层相对设置;所述预设第一金属层与预设第二金属层的相对的表面通过所述预设电介质隔开;调整目标参数以降低所述预设第一金属层、所述预设第二金属层之间形成的寄生电容的容值,得到目标硅中介层设计文件。通过降低寄生电容容值,降低信号通过金属层时的损耗。
  • 国内首条多材料光子芯片生产线明年建成
    计算速度比电子芯片快约1000倍,功耗却更低——光子芯片,成为当下各国争相布局的前沿产业。随着芯片技术升级迭代,光子芯片有望成为新一代信息领域的底层技术支撑,正催生一大批新应用、新产业,拥有巨大的市场前景。记者从中关村前沿科技企业中科鑫通获悉,国内首条“多材料、跨尺寸”的光子芯片生产线预计将于2023年在京建成,填补我国在光子芯片晶圆代工领域的空白。芯片产业向“光”而行通俗地说,在传统的电子芯片中,数据传输的载体是电子,而在光芯片中,数据传输的载体变成了光子。相较于电子芯片,光子芯片具有高速并行、低功耗的优势,其运算速度及传输速率是电子芯片的1000倍,而功耗仅为电子芯片的九万分之一。1965年,英特尔联合创始人戈登摩尔提出摩尔定律,预测每隔18到24个月,芯片的晶体管密度就会增加一倍。摩尔定律此后不仅成为计算机处理器的制造准则,某种程度上也被看作科技行业发展的预言。然而,以硅为基础的电子芯片发展了几十年后,承载能力已经逼近物理理论的极限。光子芯片的出现,被看作突破摩尔定律的重要途径之一。一位芯片行业资深从业者介绍,当电子通过晶体管等传统集成电路元件时,会遇到阻力并产生热量。随着设计者不断将更多元件添加到芯片之中,产生的热量自然会升高。电子这一特性甚至成为了微型芯片性能提升的障碍,同时也是计算机能耗高的主要原因。相较之下,光子芯片不存在电阻问题,因此其产生的热量更少、能耗更低、计算速度也更快。全球权威IT咨询公司Gartner预测,到2025年全球光芯片市场规模有望达561亿美元(折合人民币约4041.16亿元)。中国工程院院士、清华大学教授罗毅此前在接受媒体采访时说,我国光电子芯片研究正和国际先进水平“并跑”。值得注意的是,在制造工艺上,光子芯片对结构的要求不像电子芯片那样严苛。“光子芯片不会像电子芯片那样必须使用极紫外光刻机(EUV)等极高端的光刻机,使用我国已经相对成熟的原材料和设备就能生产。”有二十余年芯片从业经验的中科鑫通微电子技术(北京)有限公司总裁隋军说。多材料生产线有望填补空白正因为光子芯片的诸多优势,芯片由“电”到“光”的转换,被视为国产芯片实现突破的重要技术路线之一。北京市第十三次党代会报告中提到,“围绕光电子、生命科学、低碳技术等领域前瞻布局未来产业”。在中科鑫通展厅,记者见到了不同大小的光子芯片晶圆。“加工后的晶圆经过切割等一系列工序后,就变成一颗颗芯片。”隋军说,与用来制作电子芯片的硅晶圆不同,光子芯片晶圆的衬底虽然也是硅,但是在衬底上还覆盖着一层氮化硅或薄膜铌酸锂等特殊光电材料。在创办中科鑫通前,隋军已深刻体会到国内企业在集成电路方面仍处于补短板的阶段。“在电子芯片领域,即便用同样的设备和材料,不同芯片代工厂生产出的芯片性能指标却大不相同,为什么?壁垒就在于工艺。”他说,目前的光子芯片产业发展中依然没有摆脱在设计和应用领域规模较大,而在设备、制造、封测等基础领域实力弱小的局面。至今,我国尚没有一家专业的光子芯片代工企业,国内光子芯片行业尚未形成成熟的设计、代工、封测产业链。隋军透露,中科鑫通目前正筹备建设国内首条“多材料、跨尺寸”光子芯片生产线,将于2023年建设完成,能满足通信、数据中心、激光雷达、微波光子、医疗检测等领域的市场需求。该生产线建成后,将填补我国在光子芯片晶圆代工领域的空白,有望加速国产光子芯片替代的规模化进程。光子芯片应用未来可期芯片除了应用于通信、供电、温度湿度感应,还能进行病毒检测。一个月前,在中关村前沿大赛集成电路领域决赛的舞台上,隋军在现场展示的生物光子芯片项目打开了不少人对芯片的想象空间。在光子芯片光波导上涂敷对病毒敏感的试剂,就能分析出病毒生物分子的类型以及含量。生物检测只是光子芯片的诸多应用场景之一。近年来,光子芯片的应用场景早已不局限于通信领域,广义上的光子芯片在工业、消费电子、汽车、国防等领域均有非常广泛的应用。例如在人工智能领域,光子芯片可应用于自动驾驶、语音识别、图像识别、医疗诊断、虚拟现实等。此外,现在的云计算和数据中心,已经大量采用了基于光子芯片的光收发模块,随着数据中心对于算力的需求与日俱增,光子芯片也有望发挥更大的作用。“未来两三年,我们将充分利用已有科研成果,在诸如病毒快速检测、激光雷达、量子计算机、大容量数据通信等领域提供切实可靠的国产核心芯片与方案支撑,加速国内量子信息、人工智能以及6G等前沿领域的实用化与规模化发展。”隋军说。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制