当前位置: 仪器信息网 > 行业主题 > >

钼酸

仪器信息网钼酸专题为您提供2024年最新钼酸价格报价、厂家品牌的相关信息, 包括钼酸参数、型号等,不管是国产,还是进口品牌的钼酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合钼酸相关的耗材配件、试剂标物,还有钼酸相关的最新资讯、资料,以及钼酸相关的解决方案。

钼酸相关的方案

  • 对水质 总磷的测定 钼酸铵分光光度法 绘制标准曲线
    GB 11893-89 水质 总磷的测定 钼酸铵分光光度法总磷:在中性条件下用过硫酸钾(或硝酸一高氯酸)使试样消解,将所含磷全部氧化位正磷酸盐。在酸性介质中,正磷酸与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。
  • 原子荧光光谱法测定钼酸铵中痕量铅
    铅是一种有毒有害的微量元素,它被人体吸收后很难排出体外,积累到一定量会造成铅中毒,出现神经衰弱和中毒性多发神经炎等症状,给身体健康带来严重危害。钼酸铵作为一种重要的化工原料,其产品标准对不同牌号产品的铅含量做了具体要求。因此为了减少铅对人体健康的危害,获得合格产品,必须控制好产品中的铅含量,准确测定铅含量就尤为重要。国标规定采用石墨炉原子吸收光谱法测定钼酸铵中的铅,此方法的分析范围较窄、测定速度慢、仪器价格昂贵,不适合日常生产任务批量检测。目前,新方法、新仪器、新技术不断出现,原子荧光光谱法作为一种较新的理化检测方法日益受到重视,其具有线性范围宽、基体干扰小、检出限低、仪器价格便宜、耗时短等特点,更适合公司生产样品的检测,因此本文主要探究了采用原子荧光测定钼酸铵中痕量铅的方法。
  • 砷钼酸比色法测定植物还原糖含量
    C=O)的糖,能将其它物质还原而其本身被氧化。(1) 还原糖在碱性条件及有酒石酸钾钠存在下加热,可以定量地还原二价铜离子为一价铜离子,产生砖红色的氧化亚铜沉淀,其本身被氧化。具体反应如下:(2)氧化亚铜在酸性条件下,可将钼酸铵还原,还原型的钼酸铵再与砷酸氢二钠起作用,生成一种蓝色复合砷钼蓝,其颜色深浅在一定范围内与还原糖的含量(即被还原的Cu2O 量)成正比,用标准葡萄糖与砷钼酸作用,比色后做标准,就可测得样品还原糖含量。
  • 污水中总磷的钼酸铵分光光度法的实操应用
    生活污水中磷的来源,主要是人体排泄物、食品残渣和含磷的洗涤剂。 磷对水体富营养化的影响远大于氮的影响。水体中磷的浓度会引起水体富营养化。检测总磷是检测水体富氧化的重要指标。用美析可见分光光度V-1500PC来检测磷,做到方法简便,准确度高,稳定性好,检出限是0.01mg/L 。
  • 紫菜中磷含量的应用方案(分光法)
    食物中的有机物经酸氧化,使磷在酸性条件下与钼酸铵结合生成磷钼酸铵。此化合物被对苯二酚、亚硫酸钠还原成蓝色化合物——钼蓝。用美析UV-1300紫外分光光度计在波长为660nm处测定钼蓝的吸收光值,以定量分析磷含量。
  • X-8助力完成钼酸铵分光光度法总磷测定实验
    在水质指标中,总磷是指水样经消解后将各种形态的磷转变成正磷酸盐后测定的结果,以每升水样含磷毫克数计量,是污水中常测的一种污染物指标。为避免因磷的富集导致水体富营养化,很多行业对水污染物中的总磷都有相关的要求。
  • 锅炉水中微量硅含量检测方案(紫外分光光度计)
    在(27+5) ℃下,硅酸根与钼酸盐反应生成硅钼黄(硅钼杂多酚) 。硅钼黄被 1-氨基-2-萘酚-4-磺酸还原成硅钼蓝,用分光光度计法测定。
  • Folin-酚试剂法(Lowry法)测定蛋白质含量
    蛋白质含有两个以上的肽键(—CO—NH),因此有双缩脲反应,在碱性溶液中,能与CU2+ 形成络合物。Folin-酚试剂反应是在双缩脲反应的基础上,引进Folin试剂(磷钼酸-钨酸试剂),蛋白质-铜络合物能还原磷钼酸-磷钨酸试剂,生成蓝色物质。在一定条件下,蓝色强度与蛋白质的量成正比例。
  • 硅酸根分析仪在火电厂水处理中的应用
    在酸性介质中,硅酸根与钼酸铵生成硅钼黄,用抗坏血酸将其还原成硅钼蓝络合物,此蓝色的深浅与硅酸根含量成正比。通过光度法测定其吸光度,计算出硅酸根含量。测定时,试样经过滤器过滤后,由试样泵吸人仪器流路,当测定开始后,光度检测器测定试样吸光度值作为基线值,试剂泵启动注人一定量的钼酸铵和硫酸,硅酸根在M1中生成硅钼杂多酸,流人M2与柠檬酸混合酸混合,再与抗坏血酸混合,进入M3反应管中生成硅钼蓝。有色物流经流通池,测定吸光度峰值。它与基线值的差,与试样中硅酸根浓度呈线性关系。有色物流经流通池后,用试样清洗管路,完成测定。
  • 药剂中总磷含量的测定应用方案
    在酸性溶液中,用过硫酸钾作分解剂,将聚磷酸盐和有机膦转化为正磷酸盐,正磷酸盐与钼酸盐反应生成黄色的磷钼杂多酸,再用抗坏血酸还原成磷钼蓝,于710nm最大吸收波长处分光光度法测定。
  • 药剂中总磷含量的测定
    在酸性溶液中,用过硫酸钾作分解剂,将聚磷酸盐和有机膦转化为正磷酸盐,正磷酸盐与钼酸盐反应生成黄色的磷钼杂多酸,再用抗坏血酸还原成磷钼蓝,于710nm最大吸收波长处分光光度法测定。
  • 测定饲料中单宁的方案(分光光度法)
    用丙酮溶液提取饲料中单宁类化合物,经过滤后,取滤液加钨酸钠-磷钼酸混合溶液和碳酸钠溶液,显色后,以试剂为空白对照,用分光光度计于760 nm波长处测定吸光度值,用单宁酸作标准曲线测定饲料中单宁含量。
  • 耐火材料中二氧化硅的测定方案(钼蓝光度法)
    试样用碳酸钠-硼酸混合熔剂熔融,稀盐酸浸取。在约0.2 mol/L盐酸介质中,单硅酸与钼酸铵形成硅钼杂多酸,加入乙二酸-硫酸混合酸,消除磷、砷的干扰,然后用硫酸亚铁铵将其还原为硅钼蓝,于美析V-1300分光光度计波长810 nm或处,测其吸光度。
  • 钼中铋量的测定方案(原子荧光光谱法)
    试料以硝酸、盐酸分解。在盐酸介质中,用硼氢化钠与铋作用生成氢化物,将氢化物导人原子化器,以空心阴极灯为光源,在原子荧光光谱仪上测定铋的荧光强度,在一.定范围内,荧光强度与被测元素的含量成正比。加入钼基体可消除干扰。本部分适用于钼粉、钼条、三氧化钼、钼酸铵中铋量的测定。测定范围 0. 0001%~0.0050%。
  • 南京传滴:自动电位滴定法测定羟基亚乙基二膦酸的活性组分含量
    摘要 本文探讨了用自动电位滴定法测定羟基亚乙基二膦酸的活性组分含量的可行性,实验表明该方法操作简便、分析速度快,有良好的精密度和准确度。与磷钼酸喹啉沉淀法、磷钼兰分光光度法无显著性差异,可比性很好。关键词 羟基亚乙基二膦酸 自动电位滴定法测定
  • 瑞士万通:柱后衍生及紫外可见检测器法选择测定饮水中溴酸盐 – 符合美国EPA326.0方法.
    临床试验证明,溴酸盐在饮用水中的含量超过0.05ppb有可能引发癌症。所以,发达国家对饮用水中溴酸盐的测定有严格的要求。本应用方法是基于美国EPA326.0方法所设计的柱后衍生及紫外可见检测器法选择测定饮水中溴酸盐的先进方法。 原本方法使用碱性洗脱液和含有碘化钾和钼酸铵的柱后反应试剂。 在酸性介质中和钼酸根(六价钼)的催化影响下,碘被溴酸盐氧化成三碘化物( Lambda = 352nm). 由于在酸性环境中的碘不稳定,柱后反应试剂必须在分析通道中用阴离子抑制法(与氢离子交换钾离子)或在反应前加酸来达到酸化。本应用方法采用高浓度的酸性洗脱液, 使分析通道中的酸化避免使用添加额外的设备。本应用方法证明,利用瑞士万通MIC研究级离子色谱仪可以使溴酸盐的检测下限低至0.052 ppb ( 以峰面积计) 和 0.060 ppb (以峰高度计) 。回收率在97.9% ( 0.05ug/L ) 到 99.7% ( 2.5ug/L ) 之间。详细报告请参见附件(PDF格式,可下载)
  • 锅炉水中测定二氧化硅的应用方案
    在一定酸度条件下,水样中的活性硅与钼酸铵显色剂生成黄色硅钼杂多酸(硅钼黄),用硫酸亚铁铵溶液作还原剂,将黄色硅钼杂多酸还原为硅钼蓝,此蓝色色度与水样中活性硅有关,磷酸盐的干扰加入草酸溶液作掩蔽剂加以消除,使用美析V-1100可见分光光度计在波长815nm处,5cm比色皿,比色测定其吸光度,借此测定二氧化硅的含量。
  • 石墨炉原子吸收光谱法测定日用陶瓷中铅、镉、钴的溶出量
    本文提出了石墨炉原子吸收光谱法测定日用陶瓷中铅、镉、钴溶出量的分析方法。日用陶瓷样品经4%醋酸溶液浸泡过夜,取浸泡液测试,以磷酸二氢铵-钼酸铵为基体改进剂,直接进样石墨炉原子吸收光谱法测定。在选定的最优测试条件下,铅、镉、钴分别在质量浓度为5~80μ g• L-1,5~80μ g• L-1及5~60 μ g• L-1范围内呈线性关系,相关系数均大于0.998,方法的检出限分别为0.65,0.55和0.45 μ g• L-1。样品加标回收率为96.8%~104.8%,相对标准偏差小于2.4 %。该方法具有灵敏度高和准确度高等优点,适合于日用陶瓷中铅、镉、钴溶出量的同时测定。
  • BTB-1040硅酸根分析仪在水质检测中的应用
    BTB-1040硅酸根分析仪(结构如图1),它主要是采用硅钼蓝光度法的原理",在国内外一些标准的硅的分析方面,均采用该种分析方法[2-4]。具体来讲就是在酸性介质中,在一定的温度条件下,使样品中的硅与钼酸盐试剂反应生成黄色的硅钼杂多酸化合物,为提高灵敏度,用还原剂把形成的化合物还原成为蓝色的硅钼蓝杂多酸化合物,这种蓝色的化合物对特征光的吸收与原始水样中的硅酸根离子的浓度成比例。BTB-1040硅酸根分析仪就是根据这个原理开发出来的专门测量硅酸根离子含量的专用仪器。
  • 石墨炉原子吸收光谱法测定日用陶瓷中钴的溶出量
    本文提出了石墨炉原子吸收光谱法测定日用陶瓷中铅、镉、钴溶出量的分析方法。日用陶瓷样品经4%醋酸溶液浸泡过夜,取浸泡液测试,以磷酸二氢铵-钼酸铵为基体改进剂,直接进样石墨炉原子吸收光谱法测定。在选定的最优测试条件下,铅、镉、钴分别在质量浓度为5~80μ g• L-1,5~80μ g• L-1及5~60 μ g• L-1范围内呈线性关系,相关系数均大于0.998,方法的检出限分别为0.65,0.55和0.45 μ g• L-1。样品加标回收率为96.8%~104.8%,相对标准偏差小于2.4 %。该方法具有灵敏度高和准确度高等优点,适合于日用陶瓷中铅、镉、钴溶出量的同时测定。
  • 石墨炉原子吸收光谱法测定日用陶瓷中铅的溶出量
    本文提出了石墨炉原子吸收光谱法测定日用陶瓷中铅、镉、钴溶出量的分析方法。日用陶瓷样品经4%醋酸溶液浸泡过夜,取浸泡液测试,以磷酸二氢铵-钼酸铵为基体改进剂,直接进样石墨炉原子吸收光谱法测定。在选定的最优测试条件下,铅、镉、钴分别在质量浓度为5~80μ g• L-1,5~80μ g• L-1及5~60 μ g• L-1范围内呈线性关系,相关系数均大于0.998,方法的检出限分别为0.65,0.55和0.45 μ g• L-1。样品加标回收率为96.8%~104.8%,相对标准偏差小于2.4 %。该方法具有灵敏度高和准确度高等优点,适合于日用陶瓷中铅、镉、钴溶出量的同时测定。
  • 离子色谱-柱后衍生紫外检测化妆品中溴酸盐的含量
    测试条件仪器:ICS 2000系统;VWD紫外检测器;PC-10柱后衍生装置;375 μ L衍生反应管;TCC柱温箱;分析柱:IonPac AS23,250× 4 mm;保护柱:IonPac AG23,50× 4 mm;柱温:30 ℃;淋洗液:4.5 mmol/L Na2CO3+0.8 mmol/L NaHCO3;流速:1.00 mL/min;衍生试剂:0.26 mol/L 碘化钾+43 μ mol/L 钼酸铵;流速:0.40 mL/min;衍生反应温度:80 ℃;抑制器:AMMS 300 4 mm,外接0.3 mol/L硫酸溶液抑制;定量环:200 μ L;检测方式:紫外-可见检测器检测,检测波长为352 nm。
  • 淀粉磷酸酯中磷的含量测定
    淀粉磷酸酯中磷的含量测定方法较多,有重量法、原子吸收法、容量法、分光光度法、电位滴定法等。其中,重量法、容量法和分光光度法较常用。(-)样品准备在测定前需要将淀粉磷酸酯中的游离磷洗涤除去。低取代度的在室温水中不膨胀的样品可用蒸馏水进行洗涤;对在室温水由膨胀性大的试样(高取代度的),可用2.5%~3.0%NaCl 溶液洗涤,或用7:3 甲醇溶液或乙醇溶液进行洗涤。洗涤后烘干待用。(二)测定步骤1.重量法适用于试样中总磷及高取代度试样的结合磷的直接测定。首先取淀粉磷酸酯样品适量,灼烧后将残余灰分溶于稀酸中,使其转变成正磷酸盐。如量较大,可让它形成[Mg(NH4)PO4]沉淀,然后过滤,燃烧除去滤纸,恒重称量。最后通过换算得出磷的含量:式中m1——灼烧后残渣质量(g) m——称样质量(g) 也可让它们形成其他沉淀,如磷钼酸铵沉淀[(NH4)PO412MoO36H2O]。2.原子吸收(石墨炉)法用含 Ni [以 1%Ni(NO3)2 的溶液加入]的 4mol/L HCI 将颗粒状或糊状淀粉水解,其目的是使炭化过程中磷保持稳定。然后加入磷(以NaH2PO4 形式)的标准溶液混匀后过滤,并用石墨炉原子吸收法分析滤液。用Ar 作清洗气体,温度90℃,加热50s 使之干燥,升温至1400℃炭化30s,2700℃原子化2.5s,在
  • 天津兰力科:三乙醇胺-多酸分子基化合物的合成表征及性质研究
    本论文以三乙醇胺-多酸分子基化合物为体系,研究该类有机-无机杂化化合物的合成条件及规律,探索三乙醇胺与不同的多阴离子的作用方式。在水溶液中合成了6种有机-无机杂化的多酸分子基化合物,通过X射线单晶衍射确定了化合物的结构,利用XRD、IR、NMR、TG-DTA等测试手段对其进行了表征,对化合物光致变色性质、热稳定性和电化学进行了初步研究。1.在强酸性条件下合成并表征了以质子化的三乙醇胺为反荷离子的同多和杂多金属氧酸盐:Na2(NH(CH2CH2OH)3)5[HMo36O112(H2O)16]?67H2O(1)[(CH2CH2OH)3NH]2HPMo12O40?16H2O(2)[(CH2CH2OH)3NH]6P2Mo18O62?30H2O(3)通过调控化合物(2)的水溶液的pH值,在弱酸性条件下使三乙醇胺去质子化,合成了化合物[(CH2CH2OH)3N]4Na2HPMo12O40?22H2O(4)。2.通过水溶液中的自组装过程,以三乙醇胺为有机成分对高核同多钼酸盐进行功能化,合成并表征了一种有机-无机杂化化合物:Na2[NH(CH2CH2OH)3]4≈72H2O(5)该化合物是已报道的第二例关于的有机-无机杂化化合物,也是首次将有机配体和高核同多酸以共价键连接起来。3.以三乙醇胺为“包裹试剂”合成新型的Dawson结构多钼钒酸盐:[NH(CH2CH2OH)3]6V2Mo18O62ca.3H2O(6)利用质子化的三乙醇胺将多阴离子建筑块包裹起来,达到既限制其快速聚集又能稳定得到的多酸阴离子的目的。化合物6具有未预测到的2:18的V/Mo比,这是首次将非主族元素引入到钼系Dawson结构的杂原子位置。该化合物的合成不仅加深了对Dawson结构的认识,也为未来更多的理论和实验工作奠定了一定的基础。
  • 便携式水质多参数检测仪需要自己标定曲线吗
    曲线管理该仪器为计量类仪器,使用人员可在必要时按照本章的方法,对仪器进行校准和标定。仪器校准和标定的过程是用标准溶液确定一个正确、合理的曲线值,然后替代原有曲线值的过程。从而确保仪器测量结果的准确度和真实性。仪器在出厂时,对部分曲线及曲线值已经进行了设置(参考值),用户可直接使用。当测定结果出现偏差时,就必须对原曲线值重新进行标定。通常出现以下几种情况时,建议重新对仪器进行校准和标定:当仪器的检测结果出现偏差时;更换仪器操作人员时;实验过程中的条件发生改变时;用标准溶液对仪器检验有误差超过标准规定时。以下过程是对仪器校准和标定的具体方法,操作时请严格按照流程进行4.1标准溶液的配制 仪器的校准和标定必须要使用标准溶液。标准溶液可选用国家标准物质中心发行的质控样品。如果条件有限, 用户也可按下述方法自行配制或从厂家购买。《HJ/T 399-2007 水质 化学需氧量的测定 快速消解分光光度法》、《HJ 535-2009 水质 氨氮的测定 纳氏试剂分光光度法》、《HJ 11893-1989 水质 总磷的测定 钼酸铵分光光度法》中方法进行配制。[注意] 配制的标准溶液准确度和不确定度,主要取决于配制过程中各个环节的误差。4.1.1COD 标准溶液配制 将邻苯二甲酸氢钾在105~110 ℃下干燥至恒重后,称取0.4251g邻苯二甲酸氢钾溶于纯水中,转移此溶液于500 mL容量瓶中,用纯水稀释至标线,摇匀。此溶液在2~8 ℃下贮存,可稳定保存一个月。该该溶液的理论COD 值为1000mg/L。4.1.2氨氮标准溶液配制 准确称取经100℃烘干过的氯化铵(NH4Cl)0.3819 g 溶于水中,移入1000mL容量瓶中用无氨水稀释至标线摇匀。此溶液浓度为100 mg/L。4.1.3总磷标准溶液配制 准确称取在110℃下烘干2小时后在干燥器中放冷却的磷酸二氢钾(KH2PO4) 0.2197 ±0.001g,用少许蒸馏水溶解后,加入5mL硫酸,然后将该溶液定溶在1000mL容量瓶中并混匀。此标准溶液含50.0mg/L的磷。该溶液可在玻璃瓶中可贮存至少六个月。4.2曲线值标定 4.2.1 预制项目(比色管)曲线值校准 以COD高量程为例1)标准溶液预处理:标准溶液预处理过程详见各试剂说明书;2)将预处理完成后的预制管标准溶液置于比色架上;3)选择COD(高量程),进入检测界面
  • 南京传滴:FJA-1工作站与分光光度计联用测定土壤中磷
    一、 土壤全磷的测定1. 分析意义及方法选择土壤全磷含量即磷的总贮量,大部分以迟效态存在,土壤有效磷与全磷含量并不相关,全磷含量高时并不显示磷素供应充足,而土壤全磷量低于某一水平(P2O5在0.05—0.10%以下)时,则往往意味着磷素供应不足。土壤全磷测定,首先要求把土壤中无机磷全部溶解,同时把有机磷氧化成无机磷,使均成正磷酸盐进入溶液,然后对溶液中磷进行定量测定。所以土壤中全磷的分析一般分为样品分解和溶液中磷的测定两步。土壤全磷样品分解方法较多,一般分为碱熔和酸溶两大类,碱熔又有Na2CO3和NaOH两种,Na2CO3融熔温度高(920℃)分解完全,是全磷分解的经典标准方法,可以作为仲裁方法,但融熔时需用铂坩埚,一般不适于常规分析,NaOH融熔法分解亦较完全,接近Na2CO3法,不需很高的温度(720℃),可在银或镍质坩埚中融熔,所得溶液可同时测定全磷和全钾。酸溶法也有H2SO4—HClO4法和HF—HClO4法,H2SO4—HClO4法对钙质上分解率较高,对酸性土分解不易完全,分解率在97%左右,HF—HClO4法亦称酸的全分解法,可在铂或聚四氟乙烯坩埚中进行,其特点是溶液中引入其他盐类元素较少,溶液组成分简单,适于全磷全钾及其他元素的系统分析。以上分解方法各有利弊,可根据要求及条件选用。溶液中磷的测定方法也较多,一般有重量法,容量法和比色法,随着仪器分析发展,目前一般多用比色法,比色法又有钼黄法和钼蓝法,钒钼黄法适应浓度高范围广,灵敏度较低,多用于植物、肥料等含磷较高的样品分析。钼蓝法根据还原剂不同又可分为氯化亚锡还原、抗坏血酸还原及1、2、4有机酸还原法等。氯化亚锡还原法虽然灵敏度较高,但对显色酸度、温度、时间等要求都较严格,1、2、4酸法也很少有人应用,现在多采用钼酸铵酒石酸锑钾抗坏血酸法测定磷,简称钼锑抗比色法。为了与土壤全钾前处理相一致这里介绍的是,用HF—HClO4酸溶、钼锑抗显色,应用FJA-1型常规分析仪器工作站与分光光度计联用,比色法测定土壤全磷。2. 方法要点在高温条件下,土壤中含磷矿物及有机磷化合物,经HF和HClO4分解,然后用过量的酸溶解,溶液中磷酸盐在适宜的条件下,经钼锑抗显色成磷钼蓝,用分光光度计比色,由溶液的透光度计算磷的含量。这里采用一流动比色皿代替721型或722型等分光光度计的比色槽,使显色后的溶液在流经流动比色皿中进行比色FJA-1型工作站采入透光度读数后,自动计算并打印出样品含磷百分数。这样不但减轻繁杂的比色手续,大大提高分析速度(比原手工分析提高十多倍),又避免由于各比色管之间的差异以及人工划曲线查曲线带来的分析误差,提高了分析精度,也可避免因操作不慎溶液溅洒污染比色计。 3 试剂及仪器设备(略)4分析过程(1)样品前处理称取通过100号筛孔土壤0.2克左右,放入聚四氟乙稀(或铂坩埚)坩埚中,加少量蒸馏水润湿土样,加3mL HClO4试剂,再加HF5mL,在电炉上低温消化,至HClO4大量发烟时取下稍冷,如溶液没有变清可补加HF5mL继续消化,直至溶液清亮,将HCLO4蒸干,再沿坩埚壁加1mLHClO4蒸干以赶去HF,整个消化过程在通风橱中进行,最后用1:1HCl 1mL溶解残渣并用蒸馏水洗入50mL容量瓶中,定容摇匀(此溶液也可以供测全钾用)。吸取清液5mL于50mL容量瓶中,加蒸馏水至30mL左右,加二硝基酚指示剂1滴,用氢氧化钠溶液及稀H2SO4反复调节至溶液显微黄色,加入5mL钼锑抗显色剂定容摇匀,同样方法做含P0.1、0.2、0.3、0.4、0.5、0.6mg/L标准系列溶液。(2)FJA-1型工作站与分光光度计联用的操作(略)5 结果与讨论根据实验结果表明,本法具有较高的测定精度和较好的重现性,在溶液含P 0.3mg/L时本法测定变异系数为0.57,小于手工法的3.76。从表2中也可看出,两种方法测定结果在允许误差(0.005%)范围以内。完全适用于土壤全磷的常规分析。由于采用二次多项式拟合标准曲线,在一定范围内避免了由于化学或物理因素造成的误差。二 土壤有效磷的测定: 和全磷一样,分为提取和测定两步,提取剂的选择根据土壤性质而定,现在一般多用0.5 mol/L NaHCO3法,它特别适用于石灰性土壤,也可用于中性及酸性水稻土。对于强酸性土壤,也有用0.03 mol/L NH4F—0.025M HCl提取法及0.025 mol/L H2SO4—0.05 mol/L HCL提取法的,不同提取剂各有特点,提取量也不相同,对各自测定结果的评价和应用也不同。只有用同一方法在相同条件下测定的结果才有相对比较的意义。
  • FJA-1工作站与分光光度计联用测定土壤中磷
    一、 土壤全磷的测定1. 分析意义及方法选择土壤全磷含量即磷的总贮量,大部分以迟效态存在,土壤有效磷与全磷含量并不相关,全磷含量高时并不显示磷素供应充足,而土壤全磷量低于某一水平(P2O5在0.05—0.10%以下)时,则往往意味着磷素供应不足。土壤全磷测定,首先要求把土壤中无机磷全部溶解,同时把有机磷氧化成无机磷,使均成正磷酸盐进入溶液,然后对溶液中磷进行定量测定。所以土壤中全磷的分析一般分为样品分解和溶液中磷的测定两步。土壤全磷样品分解方法较多,一般分为碱熔和酸溶两大类,碱熔又有Na2CO3和NaOH两种,Na2CO3融熔温度高(920℃)分解完全,是全磷分解的经典标准方法,可以作为仲裁方法,但融熔时需用铂坩埚,一般不适于常规分析,NaOH融熔法分解亦较完全,接近Na2CO3法,不需很高的温度(720℃),可在银或镍质坩埚中融熔,所得溶液可同时测定全磷和全钾。酸溶法也有H2SO4—HClO4法和HF—HClO4法,H2SO4—HClO4法对钙质上分解率较高,对酸性土分解不易完全,分解率在97%左右,HF—HClO4法亦称酸的全分解法,可在铂或聚四氟乙烯坩埚中进行,其特点是溶液中引入其他盐类元素较少,溶液组成分简单,适于全磷全钾及其他元素的系统分析。以上分解方法各有利弊,可根据要求及条件选用。溶液中磷的测定方法也较多,一般有重量法,容量法和比色法,随着仪器分析发展,目前一般多用比色法,比色法又有钼黄法和钼蓝法,钒钼黄法适应浓度高范围广,灵敏度较低,多用于植物、肥料等含磷较高的样品分析。钼蓝法根据还原剂不同又可分为氯化亚锡还原、抗坏血酸还原及1、2、4有机酸还原法等。氯化亚锡还原法虽然灵敏度较高,但对显色酸度、温度、时间等要求都较严格,1、2、4酸法也很少有人应用,现在多采用钼酸铵酒石酸锑钾抗坏血酸法测定磷,简称钼锑抗比色法。为了与土壤全钾前处理相一致这里介绍的是,用HF—HClO4酸溶、钼锑抗显色,应用FJA-1型常规分析仪器工作站与分光光度计联用,比色法测定土壤全磷。2. 方法要点在高温条件下,土壤中含磷矿物及有机磷化合物,经HF和HClO4分解,然后用过量的酸溶解,溶液中磷酸盐在适宜的条件下,经钼锑抗显色成磷钼蓝,用分光光度计比色,由溶液的透光度计算磷的含量。这里采用一流动比色皿代替721型或722型等分光光度计的比色槽,使显色后的溶液在流经流动比色皿中进行比色FJA-1型工作站采入透光度读数后,自动计算并打印出样品含磷百分数。这样不但减轻繁杂的比色手续,大大提高分析速度(比原手工分析提高十多倍),又避免由于各比色管之间的差异以及人工划曲线查曲线带来的分析误差,提高了分析精度,也可避免因操作不慎溶液溅洒污染比色计。 3 试剂及仪器设备(略)4分析过程(1)样品前处理称取通过100号筛孔土壤0.2克左右,放入聚四氟乙稀(或铂坩埚)坩埚中,加少量蒸馏水润湿土样,加3mL HClO4试剂,再加HF5mL,在电炉上低温消化,至HClO4大量发烟时取下稍冷,如溶液没有变清可补加HF5mL继续消化,直至溶液清亮,将HCLO4蒸干,再沿坩埚壁加1mLHClO4蒸干以赶去HF,整个消化过程在通风橱中进行,最后用1:1HCl 1mL溶解残渣并用蒸馏水洗入50mL容量瓶中,定容摇匀(此溶液也可以供测全钾用)。吸取清液5mL于50mL容量瓶中,加蒸馏水至30mL左右,加二硝基酚指示剂1滴,用氢氧化钠溶液及稀H2SO4反复调节至溶液显微黄色,加入5mL钼锑抗显色剂定容摇匀,同样方法做含P0.1、0.2、0.3、0.4、0.5、0.6mg/L标准系列溶液。(2)FJA-1型工作站与分光光度计联用的操作(略)5 结果与讨论根据实验结果表明,本法具有较高的测定精度和较好的重现性,在溶液含P 0.3mg/L时本法测定变异系数为0.57,小于手工法的3.76。从表2中也可看出,两种方法测定结果在允许误差(0.005%)范围以内。完全适用于土壤全磷的常规分析。由于采用二次多项式拟合标准曲线,在一定范围内避免了由于化学或物理因素造成的误差。二 土壤有效磷的测定: 和全磷一样,分为提取和测定两步,提取剂的选择根据土壤性质而定,现在一般多用0.5 mol/L NaHCO3法,它特别适用于石灰性土壤,也可用于中性及酸性水稻土。对于强酸性土壤,也有用0.03 mol/L NH4F—0.025M HCl提取法及0.025 mol/L H2SO4—0.05 mol/L HCL提取法的,不同提取剂各有特点,提取量也不相同,对各自测定结果的评价和应用也不同。只有用同一方法在相同条件下测定的结果才有相对比较的意义。