当前位置: 仪器信息网 > 行业主题 > >

氖气

仪器信息网氖气专题为您提供2024年最新氖气价格报价、厂家品牌的相关信息, 包括氖气参数、型号等,不管是国产,还是进口品牌的氖气您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氖气相关的耗材配件、试剂标物,还有氖气相关的最新资讯、资料,以及氖气相关的解决方案。

氖气相关的资讯

  • 俄军登陆乌克兰,半导体材料供应告急,或加重全球“缺芯”危机
    俄乌局势升温,2月21日晚,俄罗斯总统普京下令,俄军进入乌克兰东部的顿巴斯维持和平,同时普京也承认乌克兰东部2个分离共和国是独立实体。当地时间24日,乌克兰最高拉达(议会)通过乌克兰全境进入战时状态的决定。半导体市场趋势研究公司台湾TrendForce表示,如果乌克兰和俄罗斯发生冲突,半导体制造成本可能会上升,并转嫁到半导体价格上。据了解,乌克兰是半导体原材料气体的主要来源,如氖气、氩气、氪气和氙气,其中氖气约占市场70%的气体供应。 专家表示,如果乌克兰和俄罗斯之间发生全面冲突,可能会影响乌克兰的原材料天然气供应。 然而,由于半导体工厂和原材料气体供应商确保了一定的库存,并有可能从其他地区接收供应,因此,即使乌克兰的原材料和天然气供应中断,半导体生产线在短期内也不会停止,但担心供应量会减少,从而导致价格上涨,这可能会推高晶圆的制造成本。2015年俄罗斯并吞克里米亚半岛之际,氖气价格曾飙升10倍以上,达到每立方公尺3500美元,而在半导体曝光制程中,需要透过混合氖、氟、氩等特殊气体才能进行,特别是在DUV曝光激发激光所需的惰性气体混合物中含有氖气,且很难被替代,且氖气占比高达95%以上。需要氖气的半导体光刻工艺广泛使用,从 180nm 工艺到 300mm 晶圆的 1Xnm 工艺,主要在 200mm 晶圆上。 TrendForce表示,在全球代工产能中,180-1Xnm工艺约占75%,除台积电和三星采用先进的EUV曝光工艺外,大多数晶圆厂的180-1Xnm工艺的销售额比例超过90%。 此外,自2020年以来,大多数半导体类别的制造工艺,如PMIC和Wi-Fi、RFIC、MCU等,都使用180-1Xnm工艺。 此外,在内存方面,在DRAM的情况下,虽然每家公司都逐渐转向使用EUV的尖端工艺,但超过90%的总产能仍然使用DUV曝光,NAND的所有过程都通过DUV曝光进行。
  • 俄乌危机恐冲击半导体关键原材料供应,中国厂商有望受惠
    眼下,俄罗斯与乌克兰之间的紧张局势不断升级,美国、加拿大等国家纷纷撤出本国外交人员并呼吁在乌公民回国。美国国务卿布林肯表示,俄罗斯入侵乌克兰的威胁很大,且迫在眉睫。 考虑到乌克兰、俄罗斯是全球半导体制造用特种气体生产大国,美国白宫此前便警告,芯片业应为俄罗斯断供做好准备。今日(2月13日),国金证券也发布半导体材料行业研报,称乌俄关系紧张、地缘政治风险有可能影响半导体材料的供应。 根据国金证券的分析,美国、欧洲的8英寸、12英寸晶圆厂受到影响的概率较大,中国大陆/台湾、韩国、日本等非相关国家和地区,由于半导体气体和材料的获取渠道畅通,反而有机会受惠于短期内市场份额的提升。 或影响电源管理芯片、功率半导体等终端产品 国金证券提到的材料特指光刻气和钯金属。 据了解,不同的光刻气和电压可产生不同波长的光,经过聚合、滤波处理后便形成光刻机的光源,这直接决定了光刻机的分辨率范围。 光刻气大部分为稀有气体及氟之间的混合气,常见光刻气包含氩/氟/氖混合气、氪/氖混合气、氩/氖混合气、氩/氙/氖混合气等等,对配比精度与纯度的极高要求直接导致了光刻气的技术难度升高。 在光刻气市场上,乌克兰可谓举足轻重。资料显示,乌克兰供应的氖气约占全球70%,并且供应全球约40%氪气,和30%的氙气。其中,氖气和氪气都可用于KrF镭射,该工艺主要用于8寸晶圆250~130nm成熟制程。 目前,250~130nm制程产品包括电源管理芯片(PMIC)、微机电系统(MEMS)及MOSFET组件、IGBT等功率半导体组件。在目前全球缺芯仍未缓解的背景之下,这必然将进一步加剧缺芯问题。 而另一热议材料“钯”是航空航天、核能、汽车制造中的关键材料,在半导体中多用在后道封装环节。世界上只有俄罗斯和南非等少数国家出产。据美国电子材料市场调查公司Techcet,美国35%的钯来自俄罗斯。 美国政府已经着手制定应急方案 机构并非危言耸听,根据美国贸易委员会(ITC)的数据,在2014年克里米亚半岛局势紧张的时期,氖气价格一度上涨了600%。事实上,部分特种气体的价格已经开始上涨。目前根据百川盈孚价格跟踪数据,我国氖气(含量99.99%)价格已从2021年10月份的400元/立方米上涨到目前超过1600元/立方米。 有外媒爆料,消息人士称,美国白宫警告芯片行业,防俄罗斯以限制关键原材料供应的方式,报复美国可能采取的制裁行动。白宫国家安全委员会成员最近几天一直在与芯片行业人士接触,了解俄罗斯和乌克兰芯片制造材料的供应情况,并敦促他们寻找其他来源。 而芯片和电子制造供应商集团SEMI负责全球公共政策的副总裁Joe Pasetti,已经向成员发送了一封电子邮件,要求评估芯片制造重要原材料的供应风险。 中国厂商有机会受惠 国金半导体团队分析师认为,后续如果有相关氖气、氪气和氙气的供应风险,下游晶圆厂的寻求替代供应商需要半年以上时间验证,会面临新的短料风险。 根据国金证券的分析,美国、欧洲的8英寸/12英寸晶圆厂受到影响的概率较大,中国大陆/台湾、韩国、日本等非相关国家和地区,由于半导体气体和材料的获取渠道畅通,反而有机会受惠于短期内市场份额的提升。 进一步地,国内华特气体,凯美特气可供应光刻气体,华特气体供应光刻用的氪氖混合气、氟氖混合气等气体;凯美特气供应相关稀有气体,氖、氪、氙及混合气体等,如果乌克兰氖气、氪气等供应受阻,国内华特气体、凯美特气有望受益。 国内康强电子供应半导体封装电镀丝;上游高纯钯的供应商主要有贵研铂业、中金环境等公司,但其产品主要用于汽车尾气催化剂、再生资源材料等方面。
  • 2022半导体产业大事记
    2022年,新冠疫情、俄乌战争、通货膨胀、美元加息、逆全球化、半导体下行周期共振下,让这个超过5500亿美元的半导体市场面临着严峻挑战。根据世界半导体贸易组织 (WSTS) 的最新预估,今年全球半导体市场营收增幅或放缓至4.4%,并预计2023年,全球半导体市场将同比下降2.5%,达6230亿美元,降幅创下历史冰点——这意味着,明年芯片行业仍处于下行周期当中。SEMI在SEMICON Japan 2022上发布的《2022年度总半导体设备预测报告》指出,原设备制造商的半导体制造设备全球总销售额预计将在2022年创下1085亿美元的新高,连续三年创纪录,较2021创下的1025亿美元行业纪录增长5.9%。预计明年全球半导体制造设备市场总额将收缩至912亿美元,2024年将在前端和后端市场的推动下反弹。在辞旧迎新之际,仪器信息网特别整理了2022年半导体行业大事记,以飨读者!俄乌冲突导致氖气“断供”,电子气价格狂飙在芯片生产过程中,一部分看似不起眼的惰性气体不可或缺,其中包括氖气。俄罗斯和乌克兰均为氖气生产国。据市场调研公司TrendForce提供的数据,乌克兰供应全球将近70%的高纯氖气。2月24日,俄罗斯总统普京发表电视讲话,决定在顿巴斯地区发起特别军事行动。随着俄乌冲突升级,芯片生产所需的氖气、钯等多种原材料的国际供应被扰乱,进而导致全球芯片短缺状况进一步加剧。3月14日,由于俄乌关系持续紧张,乌克兰两家主要氖气供应商已经停止运营,全球约45%-54%的半导体级氖气由乌克兰Ingas和Cryoin两家公司供应。此后全球氖气价格进一步上涨。2022年10月6日,俄罗斯卫星通讯社宣称马里乌波尔氖气工厂计划恢复生产。半导体掀起反腐风暴,多位“大基金”高管落马2021年11月,大基金管理人“华芯投资”原副总裁高松涛被查。2022年7月17日,据中央纪监委驻国家开发银行纪检监察组消息,国家开发银行国开发展基金管理部原副主任、国家大基金管理公司原总裁路军涉嫌严重违纪违法,目前已正在接受中央纪委国家监委驻国家开发银行纪检监察组纪律审查和吉林省监委监察调查。2022年7月上旬,紫光集团前董事长赵伟国被有关部门从北京家中带走。据传,赵伟国身涉调查或与其个人所控公司和原紫光集团旗下公司之间利益输送相关,比如设备采购、装修工程等未经公开招投标的问题。2022年7月29日,财新报道指出,国家芯片大基金深圳子基金合伙人王文忠被查。2022年7月30日,中央纪委国家监委驻工业和信息化部纪检监察组、北京市监察委员会正式发布公告称,大基金总经理丁文武涉嫌严重违纪违法,经中央纪委国家监委指定管辖,目前正接受中央纪委国家监委驻工业和信息化部纪检监察组纪律审查、北京市监委监察调查。在此之前,丁文武曾任工信部电子信息司司长。丁文武的被查,是芯片行业人事动荡系列事件的高潮点。2022年8月9日,大基金管理人华芯投资三位管理层被查。拜登签署《芯片和科学法案》8月9日,美国总统拜登9日在白宫签署《芯片和科学法案》。该法案对美本土芯片产业提供巨额补贴,并要求任何接受美方补贴的公司必须在美国本土制造芯片。美国商务部公布的《科学与芯片法案》细节显示,其中包括超过520亿美元的半导体制造和研究资金,拜登政府已将其列为美国与北京竞争的当务之急。随后,华盛顿不断推动更严格的对华出口法规,涵盖了制造14纳米及以下芯片所需设备。相关举措意欲使中国半导体制造企业更难发展先进制程,中国半导体产业链进入“华为时刻”。美国挑起的这次芯片战争,限制了中国企业获取先进半导体设备的能力,推动并加剧了全球半导体产业供应链的分裂与混乱,为全球芯片产业链供应链带来严重冲击。半导体设备作为主要“卡脖子环节”迎来国产替代的黄金窗口期,国内半导体设备需求将助推国产替代进程。美国BIS对中国半导体发布新限制美国商务部7号发布了针对先进芯片和芯片制造设备对华出口新限制。美国高级政府官员表示,这些规则将要求美国芯片制造商获得商务部的许可,才能对华出口某些用于先进人工智能计算和超级计算的芯片。美国政府此前已经出台了对华芯片及设备的出口限制,最新举措将限制扩大到阻止使用美国技术的外国芯片的对华出口。除了对芯片和芯片设备出口的限制外,美国商务部正在增加对为部分中国芯片制造设施提供支持的美国公民、永久居民和公司的限制,并扩大对已列入美国商务部出口黑名单的28家中国超算实体的限制。10月13日晚21点,美国商务部工业和安全局(BIS)就其上周五对中国半导体的管理规则进行公开简报,题为“实施额外的出口管制:某些先进计算和半导体制造项目;超级计算机和半导体最终用途;实体清单修改”。欧盟公布《芯片法案》,将投入超430亿欧元2月8日,欧盟委员会公布了备受关注的欧盟芯片法案,计划投资超过430亿欧元(约合490 亿美元、3127亿元人民币)用于支持芯片生产、试点项目和新一代芯片工厂等,以提升欧盟在全球的芯片生产份额。具体来看,欧盟芯片法案计划投资的资金中,110亿欧元将用于加强现有的研究、开发和创新,以确保部署先进的半导体工具以及用于原型设计、测试的生产线等。此外,还将建立“芯片基金”,用于帮助初创企业获取融资;另设半导体股权投资基金,支持大中小企业市场扩张。芯片法案的目标是,到2030年将欧盟的芯片产能从目前占全球的10%提高到20%。台积电等晶圆代工厂赴美建厂2022年11月,台积电首批300名骨干员工的家属登上美国客机,直飞凤凰城芯片工厂的配套住宅区。两周后的12月初,又有大批精密设备运过去。台积电将在美国亚利桑那州设立3纳米先进制程的晶圆厂,投资规模约120亿美元,接近2020年拍板的5纳米工厂。台积电12月6日在美国亚利桑那州凤凰城新厂举行首批机台设备到厂活动,包括美国总统拜登在内的重要人物出席。台积电这次在美国开厂也被认为是美国有意在芯片制造领域“去台化”。此外,美国还邀请三星、英特尔、德州仪器、联电等公司在美建厂。美国拉拢组建Chip4联盟2022年3月,美国政府提议组建“芯片四方联盟” (Chip 4联盟) ,意图拉拢日本、韩国和中国台湾地区组成所谓的半导体“CHIP4(芯片四方联盟)”,以抑制中国大陆的半导体发展。2022年4月,美国商务部BIS发布美欧技术和贸易委员会(TTC) 供应工作公告,要求确保半导体关键供应链在盟国尤其是日韩的可靠性,重塑盟友导向的供应链。12月中旬,日本和荷兰已原则上同意加入美国的行列,加强对向中国出口先进芯片制造设备的限制。
  • 新版《高纯氖》国家标准预计在年底发布
    由武汉钢铁(集团)公司作为第一起草人修订的《高纯氖》国家标准,日前获国家气体标准化委员会全票通过。这一标准填补了《高纯氖》国家标准空白。  随着市场对氖气纯度要求越来越高,现有版本《纯氖》国家标准已不能满足用户要求。2010年国家气标委委托武汉钢铁(集团)公司作为第一起草人,负责对《高纯氖》国家标准的修订。武钢氧气公司与北京首钢氧气厂、上海华爱色谱分析等企业组成起草小组,对国际、国内纯氖和高纯氖产品生产情况进行深入调研和分析,开展大量的验证性工作,对氖气体积系数K值进行精确计算,为《高纯氖》国家标准的修订奠定了理论基础。  据悉,《高纯氖》国家标准正在上报国家标准委备案,预计年底在全国发布实施。
  • 岛津应用:MICROPACKED-ST柱的分离对比
    与TCD和FID等通用检测器相比,介质阻挡放电离子化检测器(BID)能够以高灵敏度检测除氦气和氖气以外的大多数化合物。在同时分析无机气体和低碳氢化合物时,还可以使用检测器BID和色谱柱MICROPACKED-ST进行高灵敏度的同步分析。目前介绍了使用MICROPACKED-ST的分析实例,最近新发售了1.0m、3.0m色谱柱,应用范围扩大。本应用新闻将针对使用1.0m、2.0m、3.0m不同长度的MICROPACKED-ST,进行分离的实例展开介绍。 了解详情,敬请点击《MICROPACKED-ST柱的分离对比》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 不认识质谱四太子?你可能学了“假”化学!
    二十一世纪,对于质谱大师们而言,是一个值得庆贺的时代。但是对于一百多年以前的研究人员和学者而言,这项分析技术的诞生足以让他们感到振奋不已。  在质谱技术刚刚出现的十几年里,有四位科学家做出了重大贡献,他们四人一时之间霸占着质谱领域发展的头版位置,这四位“质谱太子”被这种新技术不断激励,年复一年的刷新着数据的准确率和分辨率。  正是威廉维恩(Wilhelm Wien)发现了正电荷粒子射线在强大磁场作用下会发生偏转,从此质谱技术向人类敞开了大门。维恩测量了正电粒子束在磁场作用下的偏移,并得出阳极射线由带正电的粒子组成,并且它们不比电子重的结论。大约20年后维恩所使用的方法在形成了质谱学,实现了对多种原子及其同位素质量的精确测量,以及对原子核反应所释放能量的计算。  约瑟夫约翰汤姆森(J.J. Thomson)捕获到了感光板上偏移射线的抛物线图。《英国皇家学会学报A》在1913年经同意后再版发布了约瑟夫约翰汤姆森的研究,名为:Bakerian Lecture: rays of positive electricity。  在威廉维恩发现磁场对正电粒子的偏移作用后,约瑟夫约翰汤姆森(J.J. Thomson)发现沿x轴移动并以适当角度撞击平面的正电粒子在y轴平行电磁力的作用下会发生偏移。而质荷比的不同决定了射线偏移情况的不同,并导致其撞击到平面上位置的不同。  射线撞击到平面上的轨迹为一条抛物线,为了捕获到这些信息,汤姆森试图让射线降落到感光板(一块涂有硫化锌的小玻璃片)上。他对粒子同时施加一个电场和磁场,并调节电场和磁场直至造成的粒子的偏转互相抵消,让粒子仍作直线运动。  这样,从电场和磁场的强度比值就能算出粒子运动速度。而一旦确定速度后,单靠磁偏转或电偏转就可以测出粒子的电荷与质量的比值。汤姆森用这种方法来测定“微粒”电荷与质量之比值。  汤姆森还得到另外一个关键发现:在最纯净的氖气体中存在两种带电粒子的抛物线,一个对应的原子重量为20,另一个是22。依据当时的技术他还无法做出解释,但不久后他的发现被认为是有史以来第一次暗示稳定元素存在同位素的可能。  约瑟夫约翰汤姆森自己也承认即使他的诸多科学发现具有重大意义,但是他所使用的技术是非常有限的。实际上,一些射线撞击到射线管内壁上会产生“金属灰尘”,因此射线管需要经常清理,而且感光板上的抛物线的强度有时候不足以得到准确的测量结果。  弗朗西斯阿斯顿(Francis Aston)为了提高抛物线信号的强度,毅然决然的自愿接受实验挑战。他设计了一种仪器,可以将射线汇聚到一起,这种射线可以撞击焦平面的一个具体点位。阿斯顿设计的仪器有两条平行缝隙,在两块电磁充电板的作用下,这两条缝隙可以汇集射线,以此来模拟光学透镜的聚焦效果。  这就是质谱仪的雏形。这台仪器不仅拥有更好的测量强度和准确度,而且和汤姆森的仪器相比,阿斯顿的仪器分辨率也更大。阿斯顿使用自己的摄谱仪解决了之前关于氖气悬而未决的问题,成为历史上第一个证明稳定元素存在同位素的科学家。  弗朗西斯阿斯顿在剑桥大学的实验中。1922年诺贝尔化学奖给予他发现同位素的贡献。  在质谱仪诞生的第一段里程碑中,另外一个值得我们注意的就是在美国芝加哥大学亚瑟登普斯特(Arthur Dempster)为质谱技术的发展做出的重要贡献。  登普斯特的摄谱仪其实指的是一台磁扇形分析器(magnetic sector analyzer),这是一种使用超强磁场将离子束偏转角度控制在180° 范围内的磁分析仪器。这台仪器可以将一定质荷比的光束集中穿过一道狭窄的缝隙。  这种仪器免去了使用感光板所带来的不便,可以使用静电计对离子束进行实时的检测。登普斯特也开创了使用电子轰击法产生正离子的先河。  登普斯特的这两项发明在业内引起来极大的反响,从他开始,质谱仪才有了名正言顺的身份,他发明的仪器也成为后来商用仪器的原型。  在测定元素同位素丰度和质量方面,邓普斯特和阿斯顿也做出了重要的工作。他们发现铀原子分裂时会释放巨大的能量,在第二次世界大战即将爆发之际,他们打算使用裂解高纯度铀的方法制造威力强大的武器——原子弹。  在十九世纪四十年代,阿尔弗莱德O. C.尼尔(Alfred Otto Carl Nier)首次使用质谱仪制备出了纯净的铀235和铀238,并确定铀235与慢中子的裂变有关。其实这项分离铀235的实验就是所谓的“曼哈顿计划”。
  • 半导体未来再添变数
    俄乌战争延烧,加上中国疫情升温,冲击全球经济发展前景,研调机构已纷纷调降汽车及智能手机等产品销售预估,将为半导体产业景气增添变数。俄罗斯入侵乌克兰,至今已超过1 个月,对于全球经济产业造成多重影响,一方面在当地的生产销售锐减或停摆,据统计已有172 家跨国企业退出俄罗斯,有195 家企业暂停俄国业务,有31 家企业缩减业务。另一方面原物料短缺、价格扬升,生产成本大涨,能源和粮食价格高涨,连带加剧全球通膨问题,消费者紧缩荷包,进而影响需求降温。乌克兰2 大氖气供应商Ingas 和Cryoin,供应全球约45% 至54% 的半导体级氖气,2 家公司已暂停营运,短期晶圆厂仍备有安全库存,暂无断料危机,若战事持续蔓延,恐将直接影响半导体生产,格外受到关注。中国近来疫情急遽升温,包括苏州、深圳等地曾陆续封城,对当地工厂营运与货运产生影响,上海单日新增确诊人数逾2000 人,相关防疫措施备受瞩目。标普估计,俄乌战争加剧了全球供应链的中断,可能导致今年全球轻型汽车销量下降2%。集邦科技也将今年智能手机总产量自原先的13.8 亿支,调降至13.66 亿支,不排除持续下修全年总产量。动态随机存取记忆体(DRAM)厂南亚科先前即提醒,今年市况审慎乐观,不过应留意地缘政治风险及通膨问题可能影响需求。IC 设计业者表示,原本对今年营运展望乐观,但俄乌战争及中国大陆疫情为景气添增变数,实际表现如何须进一步观察供应链运作及消费者需求而定。ICinsights:半导体市场将在2024年碰壁行业研究公司ICinsights预测,半导体世界持续强劲的销售增长可能会在2024年碰壁。  ICInsights预计2022年和2023年半导体收入将持续增长,之后一年将出现市场调整。  “根据目前预计,2024年将是市场的下一个周期性低迷期,2025-2026年将恢复增长”,ICinsights市场研究副总裁BrianMatas告诉TheRegister。  半导体行业的波动性很大,在上升周期中,芯片需求超过供应——正如我们现在所看到的——随后是下降周期,导致供过于求。  公司调整制造以制造更多需求量大的芯片,但这最终导致市场上的半导体数量超过其需求。工厂减产或重新调整产能,直到清理掉多余的芯片库存,然后重新设置市场进入另一个增长周期。  疫情期间芯片行业措手不及,芯片需求暴涨;在家工作推动了对个人设备的需求,并且升级了数据中心以处理基于云的通信和协作平台。这恰逢汽车电气化,这推动了对传感器和廉价芯片(如电源管理集成电路)的需求。  半导体领域已经出现裂痕,随着新工厂的上线,28nm制造节点明年可能面临供过于求的局面。  ICInsights估计,2022年半导体销售额将达到创纪录的6806亿美元,比2021年增长11%。与2020年相比2019年25%的增长,这是一个更现实的增长幅度。  ICInsights表示,从2020年到2022年的三年增长将是该行业自1993年至1995年以来的首次实现连续两位数增长。1990年代的连胜受到PC出货量和DVD播放器等电子产品的推动。该分析机构预计,到2026年,复合增长率将达到7.1%,而2024年是下降的一年。  ICInsights预测,2021-2026l年,光、传感器、分立器件(OSD器件)的总复合年增长率预计将以8.0%的健康速度增长,IC总销售额预计将以略低于6.9%的速度增长。预计主要半导体产品类别的复合年增长率从传感器/执行器的12.3%到分立器件的3.1%不等。  传感器/执行器市场(预计2022年为243亿美元)是半导体市场中最小的主要产品领域,占销售额的不到4%。然而,在整个预测期内,汽车、手机以及便携式和可穿戴系统(例如,智能手表和健身/活动追踪器)的传感器销售预计将显着增加。此外,更多系统正在使用多个传感器和传感器融合软件进行多维测量,以支持更高的机器智能以及识别运动、了解位置和监控周围环境变化的能力。  预计逻辑IC市场将在主要IC类别中发布最强的复合年增长率。逻辑IC市场近年来表现非常出色,汽车专用逻辑和工业专用逻辑器件成为该领域整体增长的强劲动力。  “云计算、人工智能、机器学习、机器人技术、汽车电子、工业控制和自动化将成为增长动力,即使智能手机和个人计算平台等成熟市场进一步发展,”Matas评论道。  从长远来看,对半导体的需求只会上升,尽管在此过程中管理起起落落会使判断需求和投资变得棘手。虽然预测是一门不完美的艺术,但2023/4年对于该行业来说似乎是艰难的一年。
  • 592万!苏州市药品检验检测研究中心激光粒度仪等采购项目
    1、项目编号:SZWK2022-G-031号2、项目名称:激光粒度仪等3、预算金额及最高限价:标段号采购内容数量预算金额(元)最高限价(元)1激光粒度仪等1批1995000.001995000.002高效液相色谱仪等1批2005000.002005000.003药包材密封性检测仪等1批1925000.001925000.004、采购需求:第一标段:包含激光粒度仪等,光源采用高稳定氦-氖气体激光器,波长为633纳米;同时配有辅助小颗粒测量的短波长(470nm)蓝光辅光源,提升对亚微米、纳米级粒子的检测分辨率和灵敏度。雾化吸入制剂体外测试仪符合FDA/EMA/CFDA,中国2020版药典0111。第二标段:包含高效液相色谱仪等,具有数据安全性:符合cGMP/GLP和21 CFR Part 11法规的要求,具有电子记录,电子签名之功能,具有分配用户使用权限之功能。全自动核酸分析系统:无需混合样本,仪器完成一次样本吸取操作,即可同时至少平行分析处理12个样本,或:具有不少于12根毛细管检测通道。第三标段:包含药包材密封性检测仪等,仪器内置自选功能,内置高灵敏度温度、湿度、压差传感器,需有3Q验证文件包。库伦法水分仪:配置自动添加卡氏试剂,自动排废液装置,避免操作人员接触试剂。5、合同履行期限:(1)质保期要求:除特殊规定外,其余设备免费质保≥1年。(2)交货期:签订合同后90天内送至指定地点并安装调试完成。(3)验收标准:采购方按采购文件要求、国家及行业标准进行质量验收。6、本项目不接受联合体投标。7、本项目部分接受进口产品投标。8、本项目非专门面向中小企业,投标人所属行业为工业。
  • 如何选购激光粒度仪
    激光粒度仪主要由光学检测系统,分散进样系统及控制分析软件组成,而光学检测系统又包括光源,光路及检测器等关键部分。在选择激光粒度仪时要特别注意以下几点:  1、 光源  光源主要有氦氖气体激光器和半导体固体激光器两种 氦氖激光器具有线宽窄,单色性极好,而半导体激光器具有体积小,供电电压低,使用寿命较长,当颗粒较小时,根据瑞利散射理论,选用短波长的激光器更能提高小颗粒检测时的信号强度及信噪比。  2、 在光路配置上,需要考虑稳固的光学平台,自动对光功能,无需更换透镜就可以测量宽的粒径范围 如果需干法测量,粒径测量范围下限是否能达到0.1微米而同时上限可达1000微米以上。  3、 检测器是激光粒度仪的最关键部件之一,选择时不能只考虑检测器中检测单元的数量,还要看检测器的几何形状,排列方式,检测单元的面积及其真正的物理检测角度。   4、样品分散进样系统是保证样品正确分散和进样的重要附件,湿法分散进样器需要有内置超声和搅拌及足够力量的循环泵干法分散进样器需要有振动进样功能,样品池是否容易拆卸清洁也非常重要。  5、 软件是用于仪器控制和数据分析的,数据采集速度越快越好。如果颗粒粒径小于几十微米,在软件中需要有折射率和吸收率的数据库并能补充输入这些光学参数获得更为准确的结果。  6、 激光粒度仪测量的准确度和重现性或精度等指标,应该是针对标准样品,只在仪器样本上简单地标上0.5%或更小而不指明针对性,势必会误导  本文摘取自马尔文仪器有限公司资深工程师秦和义发表文章的部分内容  如果您觉得选购因素过多而无从下手,推荐您来激光粒度仪专场,包含马尔文、丹东百特、新帕泰克、麦奇克等近40家厂商的百余台主流产品。仪器信息为保证质量均经过人工严格审核,便捷导购,安心之选。  仪器信息网搜索:激光粒度仪 http://www.instrument.com.cn/zc/partical.asp
  • 傲领百年 ┃ 祝贺雪迪龙全资子公司比利时傲领(Orthodyne S.A.)成立100周年!
    今年是雪迪龙全资子公司比利时傲领公司(Orthodyne S.A.)成立100周年之际,历经百年风雨,注定成就非凡。发展历程 左右滑动,查看更多 Orthodyne公司坐落于比利时阿勒尔市,主要生产经营工业和实验室色谱分析系统、连续分析仪及各类工业气体检测器等,并向客户提供全套过程分析解决方案及售后服务。其产品可广泛应用于半导体工业、气体分离、食品饮料、医学及制药、航天、电子及冶金等应用领域。Orthodyne公司的客户主要是工业气体生产商和分销商,如跨国公司Linde、Air Liquide、Air Products等,并有少部分客户来自冶金、航天、电子等领域以及科研实验室。这些客户主要分布在欧洲及亚洲,少量在非洲,近年来在美国的业务也得到了发展。Orthodyne公司拥有由分布在全球的数十家分销商组成的销售网络。Orthodyne公司在中国上海(2008年)、美国德州(2021年)分别设有全资子公司。在半导体电子气体领域,Orthodyne公司的在线色谱仪系列产品可应用于监测氮气(N2)、氧气(O2)、氩气(Ar)、氦气(He)、氢气(H2)等电子级气体中 ppb 级杂质气体,并具备完整的半导体行业过程分析解决方案能力,已积累了丰富的项目经验,其最终用户包括台积电、三星、英特尔、英飞凌等国际知名半导体厂商,也包括中芯国际、长江存储、合肥长鑫等国内头部半导体厂商。电子气体电子气体被称为电子工业的“血液”,是超大规模集成电路、平板显示器件、太阳能电池等电子工业生产不可或缺的原材料,用于薄膜沉积、刻蚀、掺杂、钝化、清洗,或用作载气、保护气氛等,电子气体的纯度对芯片质量有重大影响。近日,雪迪龙牵头参与科技部等部委的相关研发专项,涉及半导体领域在线分析仪及其核心部件,致力于提升半导体领域过程分析仪器的国产化水平。未来,雪迪龙将继续投入,持续完善半导体行业过程气体分析解决方案,提高半导体设备产业链自主可控能力。傲领产品介绍ORTHOPure HDID-ppt-ppb-ppm1HDID/HE系列利用氦离子化检测器测量氦气(He)、氩气(Ar)、氢气(H2)、氮气(N2)、氧气(O2)、二氧化碳(CO2)、氪气(Kr)或氙气(Xe)中的痕量杂质气体,包括氖气(Ne)、氢气(H2)、氩气(Ar)、氧气(O2)、氮气(N2)、氪气(Kr)、甲烷(CH4)、一氧化碳(CO)、二氧化碳(CO2)、氙气(Xe)等。 DID/Ar-ppb-ppm2DID/AR系列利用氩离子化检测器测量氩气(Ar)中微量杂质气体,包括氢(H2)、氧气(O2)、氮气(N2)、甲烷(CH4)、一氧化碳(CO)、二氧化碳(CO2)等。ORTHOPure FID-ppt-ppb-ppm3FID系列利用火焰离子检测器测量氦气(He)、氩气(Ar)、氢气(H2)、氮气(N2)、氧气(O2)、二氧化碳(CO2)或空气中杂质气体,包括甲烷(CH4)、一氧化碳(CO)、二氧化碳(CO2)、非甲烷碳氢化合物(NMHC)等。
  • 全球半导体行业越来越卷,进入全面过剩状态
    行业消息显示,2022年-2026年,包括格罗方德、英飞凌、英特尔、铠侠、美光、三星电子、SK海力士、中芯国际、德州仪器、台积电等在内的芯片厂商,预计都将增加12英寸晶圆厂的产能,这些公司计划的82座新工厂或生产线,将在2023年至2026年间投入运营。据KnometaResearch数据显示,截至2022年底,全球有167家半导体工厂加工12英寸晶圆,包括CMOS图像传感器和功率分立器件等非IC产品。2023年新投产的12英寸厂而据国际半导体产业协会的数据预测,全球12英寸晶圆厂的产能,在2026年将创下新高,预计月产能将达到960万片晶圆。根据Knometa2023年全球晶圆产能研究估计,到2027年,预计将有超过230座12英寸晶圆厂投入运营。中国目前已建成的晶圆厂有44家,包括25座12英寸晶圆厂、4座6英寸晶圆厂、15座8英寸晶圆厂及产线,另外还有22家晶圆厂在建,包括15座12英寸晶圆厂、8座8英寸晶圆厂。其中2024年中国12英寸晶圆厂55家,运营和在建产线超过135条,以单条产线的月产能一般为6万片,中国整体月产能释放后约为810万片;其中每家以一条12英寸晶圆厂算(有多家企业运营3~5条),总共有超过55条12英寸产线,总月产能约为330万片。2023年市场预估中国12英寸晶圆月产能总计约113.9万片,占总产能的约15%。国际半导体产业协会(SEMI)公布2024年全球晶圆厂预测报告显示,继2023年以5.5%增长率至每月2960万片晶圆之后,全球半导体产能预计2024年将增长6.4%,突破每月3000万片大关。今年初市场预测2024年全球有42个晶圆厂项目开始量产。中国2024年晶圆产能将以13%的增长率居全球之冠。全年新投产18座新晶圆厂,产能增长率将从2023年的12%增至2024年的13%,每月产能将从760万片增长至860万片。台湾地区的半导体产业链也将受惠,预计其产能将维持在全球第二的位置,2023年和2024年的年增长率分别为5.6%、4.2%,每月产能由540万片增长至570万片,预计自2024年起将有5座新晶圆厂投产。2023年到2027年,全球晶圆代工成熟制程(28nm以上)和先进制程(16nm以下)的产能比重将维持在7∶3。中国半导体产业和政府投资的重点继续放在成熟技术上,推动12英寸300mm前端晶圆厂产能,全球份额占比从2022年的22%增加到2026年的25%,达到每月240万片晶圆,远低于现规划总量的330万片。另据一家英国的市场调查咨询公司的数据显示,2020年,中国运营和规划的晶圆产能达到了恐怖的5000万片,超出市场需求的10倍,注册半导体企业约4万家。不过到2023年底,中国还剩下正常运营的半导体企业仅剩万余家,接近3万多家半导体注册企业在三年间消失,除了疫情的原因外,很多项目都因资金、人员、设备没法到位,中途退出。整个2023年,全球晶圆代工厂的总体产能利用率,或在70%左右,也就是说有30%左右的产能是空置的。预计2024年全球纯晶圆代工厂出货量约3211万片(含6~12吋全部产能),同比增长约9.5%。新技术的大量投入,也降低了成熟制程的能源消耗,据DeloitteUS统计,2024年,晶圆厂的能源消耗强度将降至206瓦时/美元,比2020年下降了14%,而可再生能源的使用比例将达到28%,是2020年的两倍。半导体发展五十多年,历史上存在明显周期性。半导体周期的主要特点是平均每5年一个周期,每10年一个大低谷。在一个完整周期内,市场先会进入上升周期——需求爆发、缺货涨价、投资扩产。但在产能逐渐释放后,市场又会进入衰退周期——需求萎缩、产能过剩、价格下跌。半导体周期会综合考虑半导体景气度的五大指标——B/B(订货/发货率)、芯片生产线产能利用率、固定资产的投入、平均销售价格和库存水平。创新周期指的是历史上几次新兴市场产生的增长周期,如1984年PC兴起、2020年互联网基础设施发展、2010年智能手机当道。但在大增长过后,市场回归理性,终端需求在第二年要么下降,要么放缓。与此同时,创新周期还有一些规律可循:往年几次周期中,主要是存储技术拉动大盘子增长,在经济衰退期,DRAM(内存)和Flash(闪存)这些存储产品也更容易出现过剩和价格下跌。先进制程比主流制程情况更复杂,包括交货时间从52周~70周不等的味之素积膜(ABF)基板,与DUV(深紫外)和EUV(极紫外)光刻机有关的氖气供应等。
  • 岛津:融合创新等离子体技术 引领色谱科技未来
    仪器信息网讯 2013年2月,岛津公司推出了高灵敏度气相色谱系统Tracera。Tracera一经推出就受到了业内的关注,在5月15日召开的CISILE2013上,仪器信息网就Tracera的研发背景、特点及应用等采访了岛津分析仪器事业部市场部温焕斌。高灵敏度气相色谱系统Tracera  Tracera是基于岛津GC-2010 Plus平台构建,最大的创新在于融合全新开发的介质阻挡放电等离子体检测器(BID)。据温焕斌介绍,“传统情况下,进行气体分析时,常常需要配置FID和TCD等多个检测器的系统气相,仪器结构复杂,分析灵敏度有限 在分析液体样品时,又常常需要根据不同的化合物更换不同的检测器,很多物质,如甲酸、甲醛、水等,我们无法用FID分析,这个时候会用到TCD,但是TCD又存在灵敏度不够的问题。还有痕量含卤素化合物,在FID上响应也很小,这又得换ECD检测器进行分析,总之,这些因素都会影响我们实验效果和效率。正是基于此背景,岛津开发了BID检测器技术,BID可同时分析无机气体和有机气体,也可分析液体样品,且灵敏度高于FID和TCD,对于以往需要同时使用FID和TCD的复杂分析而言,单独BID检测器就可以满足要求。BID检测器是岛津与大阪大学Katsuhisa Kitano博士的合作研究成果,5年前大阪大学开发了微型等离子体技术,然后岛津将其商品化,并结合岛津的气相色谱系统推出。目前,BID检测器已获得3项美国专利,还有4项专利在审批中。”  BID检测器主要具有以下三大特点:  (1)高灵敏度。BID检测器能够产生具有极高光子能量的氦等离子体。氦等离子体能够使样品成分离子化,从而实现高灵敏度分析。此系统比TCD的灵敏度高100倍以上,比FID的灵敏度高2倍以上,可以满足0.1ppm含量水平上所有类型痕量成分的分析需求。  (2)高通用性。单检测器解决方案轻松应对复杂分析需求。BID检测器可以满足除氦气和氖气之外所有有机和无机化合物的分析要求,比如,FID检测器对含C-H键化合物响应良好,是烃类化合物分析的理想选择。但FID检测器对羰基碳(C=O)化合物无响应,因此不能分析甲酸和甲醛。另外,FID对含有羟基(-OH)、醛基(-CHO)、卤素(F、Cl等)等化合物响应不好。相比较而言,BID检测器可以极大提高上述化合物的灵敏度,且灵敏度较为均一。  (3)高稳定性。 BID检测器的一个重要特点就是介质阻挡放电。使用低频电源从绝缘介质外部电极上放电,产生接近室温的低温氦等离子体,且和电极无任何接触,因此电极不用处于高温环境中,避免了“溅射”损伤,不会发生电极老化现象。  除了这三个特点外,BID检测器只使用氦气,无需氢火焰,因此对于限用FID检测器的实验室来说,BID检测器可以放心应用,非常安全。岛津公司在CISILE 2013的展台  目前,市场上也有其他供应商提供同类型产品,谈及BID检测器的优势及区别,温焕斌说,“BID检测器采用了很多岛津独创的技术:首先,BID等离子体产生部位使用交流放电,而其他同类产品大多采用直流放电,相对来讲交流放电产生等离子体的稳定性更好。第二,BID采用了介质阻挡放电技术,此耐用式结构设计使BID检测器可以长期保持稳定分析状态,完全不需要仪器维护或消耗品更换。第三,从结构上讲,BID采用了优化的双吹扫流路设计,化合物从吹扫流路2流出,不会到达等离子体发生室,因此不会污染检测器池。这种设计最大限度降低了流路对检测器响应的影响。”  关于市场定位,温焕斌表示,“BID属于高灵敏度通用型检测器,主要还是应用于痕量、微量分析,可以弥补使用FID或TCD时的很多不足,对于常规的分析实验来说,如果能简单的使用FID或者TCD完成,那一般来说还是推荐使用常规检测器。但是如果常规检测器不能满足要求,或者需要联合使用FID和TCD等,操作非常复杂时,我们推荐用户选择BID检测器,此时只要选择合适的色谱柱后,就可以使用BID一个检测器完成,它可以带给分析工作者不一样的分析体验。目前,BID是作为岛津气相色谱标准检测器,既可以整机配置销售,也可以后追加配置。所有GC-2010 Plus的现有用户都可以追加配置BID检测器。”  “过去,BID这种类型的检测器一直被认为比较娇贵,吹扫时间长,而且成本较高。如今,BID的推出可能会使这类型检测器与用户的距离更近,而且和同类产品相比,BID检测器稳定的时间更短,因此用户体验比较好,更易于这种类型检测器的普及。”温焕斌说。(撰稿:杨娟)
  • 被誉为“黄金气体”,氦气有什么了不起?
    空气可能是我们最熟悉,也被认为是最廉价的东西。但在地球大气层中,有一种气体却被誉为“黄金气体”,在地球大气层中所占的比例只有几百万分之一,这就是氦气。但实际上,氦气深藏于地壳深处,一旦被开采出来,就会像氦气球一样飘散到天空,进入宇宙空间。目前人类主要的氦气来源就是开采石油和天然气中产生的副产品。氦气,英文名为Helium,化学元素符号为He,是种无色无味、低密度、不可燃的惰性气体。它的沸点是零下268.9摄氏度,与人类所说的绝对零度只有一点点距离,所以氦气在低温领域有巨大的应用价值,被广泛应用于军工、石化、制冷、医疗、半导体、管道检漏、超导实验、金属制造、深海潜水、高精度焊接、光电子产品生产等高科技领域。东京大学物性研究所里面的氦气储存罐图据《日刊工业新闻》在光电子产品领域,搭配氖气的氦氖混合气体是用作原子气体激光发生器的主要工作物质。氦氖激光器(Helium-Neon gas laser)是首先发明的气体激光器,也是目前应用领域很广的一种激光器。氦氖激光器的激光管内的气体在一定高的电压及电流(在电场作用下气体放电)下,管中的电子就会由负极以高速向正极运动。在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞,产生了激光输出须具备的基本条件。He-Ne气体在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种波长激光,除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。通过反射镜的反射率设计,只输出一种632.8nm的激光。内腔式激光器结构图除了宝石晶体激光器,氦氖激光器在光束质量方面则是各种激光器中的翘楚。由于它能输出优质的连续运转可见光,光束方向性和单色性好,光束发散角小,非常接近完美的高斯分布。氦氖激光线宽窄干涉性能优良、稳定性高在诸多激光器中是首屈一指的,这已经是光学界的共识。而且具有结构简单、工作性质稳定、使用寿命比较长等优点,在全息照相、测量、精密计量等方面得到广泛应用,是高精度光学应用领域采用最多的激光器。以其为重要光学元件组成的光学测量仪器——氦氖激光粒度分析仪也成为高性能激光粒度仪的代表。LS-609激光粒度分析仪采用进口He-Ne气体激光光源,光学质量更好,更加稳定可靠,预热时间短,使用寿命更长测量范围:0.1~1000μm珠海欧美克仪器一直采用氦氖激光器作为主光源激光器,大多数仪器均采用JDSU品牌进口产品,不仅光学质量更好,输出单模偏振激光偏振比达500:1以上,光束中TEM00模占比达95%以上,而且更加稳定可靠,5分钟预热即可达到测试稳定性要求,测试周期内功率波动小于0.5%,大大提高了系统对有效信号的分辨能力。同时该He-Ne激光管的硬封装(hard seal)工艺使得工作气体不会散逸,完美的解决了早期He-Ne激光管气体散逸导致的平均寿命较短问题,进而适合于要求更为苛刻的应用。Topsizer Plus激光粒度分析仪采用以长寿命、低噪声、高稳定性著称的进口氦氖激光器及配套电源测量范围:0.01~3600μm(湿法,取决于样品),0.1~3600(干法,取决于样品)Topsizer Plus激光粒度分析仪欧美克仪器于2019年推出的一款高端粒度分析仪器。该仪器引入了先进的光学设计,采用以长寿命、低噪声、高稳定性著称的JDSU品牌进口氦氖激光器及配套激光电源,使激光衍射法的测试范围达0.01~3600um,具有量程宽、重复性好、分辨力高、真实测试性能强等优点,代表了当前国产激光粒度仪的前沿技术水平。Topsizer Plus通过进一步提升光学设计、硬件和反演算法,拓展了其测试范围、自动化水平以及实际测试性能,应用遍及锂离子电池、制药、水文、精细化工、机械、建材、能源、医药等现代工业的各个领域。Topsizer系列产品保证了测试结果和分析能力与国内外、行业上下游黄金标准保持一致,这不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可避免粒径检测不准带来的经济损失和风险,无论在研发、过程控制还是质量控制上,都能够为用户带来真正的价值。参考资料:1. 百度文库,《氦-氖激光器简介》
  • “六大工厂,奇特之旅”大连大特超级品牌日携豪华大礼来袭
    工业气体被喻为工业“血液”,随着中国经济快速发展,工业气体作为国民经济基础工业要素之一,在国民经济中重要地位和作用日益凸显。国家提出“中国制造2025”战略规划和供给侧改革,企业转型升级为产业发展提供政策利好。据有关统计预测未来五年工业气体行业以每年11%速度递增,到2025年达到2000亿市场规模。工业上,把常温常压下呈气态的产品统称为工业气体产品,包括氢气、氧气、氮气、氦气、氖气、氪气、氩气、氙气、氯气、一氧化碳等。根据国家统计局制定的《国民经济行业分类与代码》,中国把工业气体行业归入其他基础化学原料制造(国统局代码C2619)。工业气体主要产品可以分为三类:空气(或大气)气体、合成(或加工)气体及特种气体。其中,特种气体门类繁多,通常可区分为电子气体、标准气、环保气、医用气、焊接气、杀菌气等。虽然特种气体产量最小,但具有最大的增长潜力。特种气体兴起于60年代中期,作为基础化工材料,主要运用于大型石油化工、半导体器件、光导纤维、激光、医学科学、临床诊断、医药消毒、水果催熟、食品保鲜等领域。随着新产品技术的发展,其应用范围也越来越广泛。自80年代开始,我国的气体工业迅速发展,各类纯气体、高纯气体、特种气体、混合气体、标准气体、电子工业用气体等相继问世,其品种数目已与国外发达国家水平相近。气体工业是国民经济基础工业之一,它涉及到国民经济的各个领域、涉及到人民的日常生活,牵动着高科技的发展。作为特种气体的一种,标准气体分二元、三元和多元标准气体,属于气体标准物质。标准物质是浓度均匀的,良好稳定和量值准确的测定标准,它们具有复现,保存和传递量值的基本作用,在物理,化学,生物与工程测量领域中用于校准测量仪器和测量过程,评价测量方法的准确度和检测实验室的检测能力,确定材料或产品的特性量值,进行量值仲裁等。标准气体的种类繁多,按照应用领域大致可分为,石油化工标准气体、仪器仪表校准气、可燃气体报警标准气、环氧乙烷杀菌气、电力工业标准气、检漏示踪标准气、环境监测标准气体、电子标准气体、车辆尾气检测标准气、检验检疫标准气体、燃气具测试标准气体、VOC测定标准气体、低浓度活性组分标准气、医疗医用标准气体、激光标准气、电光源标准气。大连大特气体有限公司作为国内气体市场的主要供应商之一,始终专注于特种气体产品的研发及生产,产品广泛应用于高校,科研院所,能源化工,冶金,电子,医疗等行业。2020年11月公司被工业与信息化部评定为国家级专精特新“小巨人”企业。近年来,大连大特也涉足电子气体市场领域。大连大特董事长曹作斌表示,“目前包括大特在内的国内企业已经开始研发和攻克一些电子气体。”据介绍,目前大特已有混合气体产品进入某半导体公司的12寸线并投入使用,还有一些产品正在试用中。作为国内气体市场的主要供应商之一,大连大特联合仪器信息网将于7月7日举办“匠心大特,卓越品质”超级品牌日活动。在超级品牌日中,为您展示各个园区的独特风采,并开启一场“六大工厂,奇特之旅”。独特的奖品吸引你的前来!三重好礼1. 直播间抽送大特特产。2. 豪华大礼:大连、广东、成都工厂任选一参观+周边游,全程酒店机票食宿全包。3. 报名前200,出席当天活动,且信息完整有效者,经由核实后,将由仪器信息网赠送10元话费。会议日程7月7日内容报告人14:00--14:02开场主持人14:02--14:05大连大特气体有限公司领导致辞14:05--14:10“六大工厂 奇特之旅” 六大分公司工厂展示14:05--14:10典型用户产品使用分享大特用户14:10--14:40标准气的使用曲庆,大连大特总工程师14:40--14:45第一轮抽奖14:45--15:15标准物质浓度的使用和设计李福芬,大连大特质量总监15:15-15:25答疑15:25--15:30第二轮抽奖 幸运观众工厂参观+周边游立即报名扫描下方二维码或点击下方图片立即报名关于大特大连大特气体有限公司成立于1992年,坐落于辽东半岛南端,有着“北方明珠”美誉的大连市。公司致力于特种气体的研发、生产与销售,经过二十余年的发展,相继成立了包头、独山子、上海、成都、山西等多家子公司,形成了覆盖全国特种气体生产和销售网络。其规模在中国标准气体生产企业中首屈一指。集团公司标准气体生产量余15万瓶/年,高纯气生产量超过20万瓶/年。公司于2020年11月被国家工信部认证为国家级专精特新小巨人企业。大连大特的标准气体国内销售量第一,一直是同行业的先行者与引领者,还是中石化、中石油、中海油、国家能源集团实验室用高纯气体和标准气体长期合作伙伴。目前大连大特已参与制定及修订了1项国际标准,29项国家及行业气体标准,拥有标准物质证书118项,是国内特种气体行业的主要研发力量之一。对环保、尾气排放、石化行业的标准气体需求实现了全覆盖。
  • 欧美克携新品隆重亮相IPB 2021 首谈中国颗粒测试市场
    2021年7月28-30日,第十九届上海国际粉体加工/散料输送展览会(IPB 2021)在上海世博展览馆成功召开。珠海欧美克仪器有限公司携Topsizer激光粒度仪、LS-609型激光粒度仪、NS-90 纳米粒度仪三大王牌产品,以及今年最新面市的TD-02粉体振实密度测试仪隆重亮相,为广大粉体客户提供颗粒表征解决方案。仪器信息网特别采访了欧美克市场部经理王焘,探究中国颗粒表征技术的发展态势与欧美克的“致胜法宝”。珠海欧美克仪器有限公司市场部经理王焘Topsizer激光粒度分析仪Topsizer干湿法两用激光粒度仪采用红蓝双光源设计,弥补了常规设计散射光角度的盲区,提高了对纳米级颗粒及少量大颗粒的分辨力。该仪器可提供多款高性能进样装置以满足不同样品的检测需求,配置符合GMP要求的分析软件,可帮助用户实现分级管理和数据追溯等功能。借助思百吉集团强大的研发实力和全球化的供应链体系,Topsizer激光粒度仪在生物制药和新能源电池领域有着广泛应用。LS-609型激光粒度仪LS-609为一款全自动湿法激光粒度仪,采用进口氦氖气体激光光源,保证了仪器测试的稳定性和分辨能力;结合现代化的智能测量控制分析软件和全自动进样测量系统,使得粒度测试流程更加简洁高效,在粉末冶金、非金属矿、涂料和陶瓷行业广受用户欢迎。NS-90纳米粒度仪NS-90纳米粒度仪的问世是为了满足国内不断增长的纳米材料领域检测需求。该仪器采用与激光粒度仪不同的动态光散射法原理,配备高效率的的雪崩式光电二极管(APD)检测器,在检测和分辨难度较高的1纳米及以下粒径样品的测量中,均能提供真实有效的测试数据,深受精细化工行业及高校科研院所的青睐。TD-02粉体振实密度测试仪TD-02粉体振实密度测试仪则是欧美克今年最新面市的粉体特性测试仪,主要用于测量粉体的振实密度,即粉体被机械轻叩紧实后的密度数值。该仪器参照中国、美国药典测试要求设计研发,并含盖相应国标中的各项指标,可实现单管、双管和三管同时测量,以满足不同用户的粉体密度测试需求,适用于精细化工、生物制药和粉末冶金等行业。王焘谈到,颗粒表征技术与材料的发展息息相关。展望未来,“十四五”规划明确聚焦新能源、新材料等战略性新兴产业,构筑产业体系新支柱;未来五年,新能源、新材料将成为国家重点关注和投入的领域,该举措也将势必推动颗粒表征技术的进一步发展。在国内颗粒测试领域,激光法和图像法粒度仪经过几十年的发展,已形成成熟的技术体系和市场需求;近年来随着新材料、新能源、生物医药等行业与纳米技术的兴起和发展,对纳米颗粒尺寸表征的需求不断涌现,纳米粒度仪市场迎来良好发展机遇;与此同时,工业自动化在经过多年的摸索期后呈现出蓬勃发展的态势,相应的在线粒度仪需求应运而生,但目前市场上的在线粒度仪和用户的自动化产线契合度仍需进一步提升,否则将影响其需求的释放。2020年,受新冠疫情影响,中国颗粒测试仪器市场跌宕起伏。2021年,随着全球防疫常态化及货币政策的支持,全球贸易同步复苏;中国作为世界上唯一拥有粉体加工全产业链的国家,在上半年呈现出比全球经济更加喜人的增长态势。欧美克在此期间,一直通过远程在线或线下交流的方式为国内外用户提供及时、优良的服务,用户口碑持续升级,从而为欧美克近两年业绩的迅速增长提供了有力支撑。然而,由于制造成本的提高和出口的受限,我国下半年经济增长存在一定不确定性;但受全球疫情催化,生物医药产业迎来重大发展机遇,加之席卷全球的新能源汽车制造浪潮,势必会给生物医药、电池材料行业带来持续强劲的推动力;欧美克也将持续关注布局这两大热门赛道。此外,面对日趋同质化的市场竞争,欧美克将一如既往地秉承集团的诚信经营理念,坚持以“诚信”、“尽责”、“卓越”为核心内容的“赢之有道”核心价值观和行为准则,结合集团先进的研发管理理念与强大的技术支持,以客户为中心,始终将提供优质的粒度检测产品与服务放在首位,这就是欧美克近30年的“致胜法宝”。欧美克IPB 2021参会团队合影
  • 揭秘X-射线光电子能谱仪的应用
    随着对高性能材料需求的不断增长,表面工程也显得越来越重要。材料的表面是材料与外部环境以及与其它材料相互作用的位置,因此需要了解材料层表面处或界面处的物理和化学相互作用,才能解决与现代材料相关的问题。表面将影响材料的诸多方面,如腐蚀速率、催化活性、粘合性、表面润湿性、接触势垒和失效机理。表面改性可改变或改进材料性能和特性,使用表面分析能够了解材料的表面化学和研究表面工程的效果。从不粘锅涂层到薄膜电子学和生物活性表面,XPS成为表面材料表征的标准工具之一。XPS介绍XPS主要用于化学、材料、能源、机械等领域,可测试粉末、块状、纤维、薄膜等样品。其分析内容包括表面元素组成及化学态元素定性半定量分析、表面元素深度分析、表面元素分布分析等。例如用于钢铁表面钝化工艺评估,聚合物心脏支架表面药物元素的深度剖析,有机光电发光二级管(OLEDS)深度表征等。01XPS 原理用单色化射线照射样品,使样品中原子或分子的电子受激发射,然后测量这些电子的能量分布,通过与已知元素的原子或离子的不同壳层的电子的能量相比较,就可以确定未知样品表层中原子或离子的组成和状态。02仪器条件表面测试深度:金属:0.5-2nm,无机:1-3nm;有机:3-10nm元素测试范围:Li—U%元素检出限制:≥0.1at03样品要求1) 粉末:需要干燥,研磨均匀细腻;制样方法两种,胶带法需要样品20-30mg,压片法需要样品2g;块状:标清楚正反面,长宽高一般小于5*5*3mm;薄膜:标清楚正反面,注意保护好样品表面,长宽高一般小于5*5*3mm;2) 样品通常用自封袋送样,这样实际上并不好,容易出现污染,可以用离心管或者锡箔纸;3) 超高样品:需要切薄;4) 液体:最好涂敷在Si片上干燥后送样,注意有基底干扰,需要测试空白样;5) 磁性样品:有些机器无法测(磁透镜),一定注明是否有磁性;6) 空气敏感样品:手套箱制样;7) 生物细胞类:冷冻干燥后或在冷冻条件下测试;8) 样品禁忌:样品必须充分干燥,不接受低熔点或易分解的样品;磁性样品要消磁后测试;样品中不能含有卤素,易挥发性物质案例分析01 表面元素定性半定量测试每种元素都有各自的特征谱线,具有指纹特性,从而用于定性分析;通过灵敏度因子法计算峰面积,可以获得定量信息,然而元素灵敏度因子受很多因素影响,因此XPS测试结果为半定量结果;结合XPS分析软件可以轻松完成上述分析。案例:太阳能电池板小颗粒异物元素分析。由于样品很少(仅肉眼可见),EDS测试不能区分其中微量元素是锆或磷。后续采用XPS测试后,确认样品在EDS的出峰是磷元素而不含锆元素。02 价态分析(无机及金属材料)由于结合能反映元素的指纹信息,当原子周围的化学环境发生变化,元素内层电子结合能会随之变化。因此可根据结合能变化推测元素的化学结合状态,即元素及化学态的定性分析。03 有机官能团分析(有机材料)对客户关注有机官能团及其对应的元素,进行可能存在的官能团进行客观分析。值得注意的是,样品的有机官能团信息需由客户提供。案例:样品为石墨烯负载钼粉末,通过XPS对其中可能存在的有机物官能团团信息进行分析。04 深度剖析(纳米级膜厚度测试)通过Ar+枪对样品进行轰击,边轰击边测试,可以分析出元素成分在不同深度下的结果,并得到元素成分、价态随着深度变化的规律。05 UPS-XPS+UV(能带间隙分析)紫外光电子能谱 (UPS) 的操作原理同 XPS 一样,唯一的区别是 UPS 使用几十 eV 的电离辐射来诱导光电效应,而 XPS 则使用高于 1 keV 的光子。在实验室中,使用气体放电灯来生成紫外光子。气体放电灯通常填充氦气,但也可使用其它气体填充,如氩气和氖气。氦气发射的光子能量为 21.2 eV (He I) 和 40.8 eV (He II)。由于使用了更低能量的光子,UPS 不能获取大多数核心能级的光电发射,因此谱采集仅限于价带区域。使用 UPS 能进行两种类型的实验:价带采集和电子逸出功测量。案例:样品为半导体热压多晶发光材料,想通过XPS及相关性能测试样品的能带间隙大小,从而来表征半导体材料的性能:06 成像(元素XPS二维成像)XPS 不但能用于识别表面的点或微小特征区,还能用于样品表面成像。这对了解表面的化学状态分布很有帮助,可用于发现污染的限值以及检测超薄膜涂层的厚度变化情况。
  • 高纯气体分析是色谱分析技术皇冠上一颗“明珠”
    “100家国产仪器厂商”专题:访上海华爱色谱分析技术有限公司  为推动中国国产仪器的发展,了解中国国产仪器厂商的实际情况,促进自主创新,向广大用户介绍一批有特点的优秀国产仪器生产厂商,仪器信息网自2009年1月1日开始,启动“百家国产仪器厂商访问计划”。日前,仪器信息网工作人员走访参观了气相色谱分析整体解决方案(特别是气体分析的应用研究)供应商——上海华爱色谱分析技术有限公司(以下简称“华爱色谱”),华爱色谱公司总经理方华先生、市场部经理李聪先生热情接待了仪器信息网到访人员。  专注于行业专用的气相色谱仪,侧重于高纯气体的分析方法研究和开发  方华总经理介绍说:“华爱色谱公司于2004年注册成立,目前侧重于高纯气体分析方法的研究,专注于行业专用气相色谱仪的开发,是国内第一家专业从事气相色谱分析方法研究和开发的企业。”上海华爱色谱分析技术有限公司方华总经理  华爱色谱致力于产品的创新,拥有多项国家专利技术,并有多个产品荣获上海市高新技术成果转化认证、上海市重点新产品等称号,部分产品已经获得上海市创新资金和国家创新基金立项扶持;尤其,作为全国气体标准化技术委员会优秀委员单位,华爱色谱先后负责起草了多项国家标准工作。  “公司的产品涵盖了实验室色谱、便携式色谱等整个气体行业所需10余款色谱分析产品,如适用于高纯和超纯气体分析的GC-9560-HG氦离子化气相色谱仪,以及GC-9560-HC高灵敏度热导气相色谱仪、GC-9560-HZ氧化锆气相色谱仪、GC-9560-HQ天然气分析专用色谱仪、GC-9560-HD变压器油专用色谱仪等,开发的分析方法已经覆盖香料、酿造、农药、环保、冶金、石化、化工等行业,截止目前已开发40多套色谱工作站系统,均可加入‘个性化’管理系统、相关行业标准等。”华爱色谱公司研发与测试车间掠影  “3-3-3模式”,华爱色谱公司成功研发出GC-9560-HG氦离子色谱仪,积极抢占高纯气体分析高端市场  方华总经理谈到,“高纯气体的分析市场,一直是国外仪器的‘领地’;但从2008年开始客户听到更多的可能就是华爱的‘氦离子色谱仪’;我们的GC-9560-HG氦离子色谱仪研制过程可以用‘3-3-3模式’来概括:3位资深工程师,用了3年时间,投入300万才研制成功。”  高纯气体中微量杂质的分析一直是色谱分析的难点,华爱的高纯气体分析系统,很好地完成了气体中微量杂质(特别是ppb级杂质)的分析工作。“也有个别厂家简单认为买一个氦离子检测器装在色谱仪上就可以分析高纯气体了,而我们认为,高纯气体分析是色谱分析技术皇冠上的‘明珠’:和高纯气体的分析比较,其他领域的色谱分析方法,如石化上的模拟蒸馏、碳分布、炼厂气、汽油中的氧化物和芳烃等分析,不过都是入门级的水平。” 华爱色谱公司的GC-9560-HG氦离子色谱仪  华爱色谱公司的GC-9560-HG氦离子色谱仪的技术研发过程:  2006年研发了四阀五柱分离系统、常温下的氧氩分离技术,完成了对高纯氮的分析;  2007年研发了无阀流量控制技术、自动压力校正技术、氢气的钯管分离技术、氧吸附与还原技术,完成了对高纯氧、高纯氢的分析;  2008年研发了多柱箱温控技术、样品除空吹扫技术,完成了对高纯氩的分析;  2009年完成了氦离子检测器的改性,实现了对氖气的分析,掌握了载气99.999999%纯化技术,完成了对高纯氦的分析。  “和国外同类仪器比较,我们的GC-9560-HG氦离子色谱仪在价格和售后上的优势是显而易见的;2009年实现几十台销量 目前,全球最大的气体公司林德、国内气体研究的权威单位光明化工研究院等都已经成为我们的仪器用户。”知名气体公司AP访问华爱色谱公司  “争取18个月内建立起所有高纯气体的检测规范;占领国内高纯气体领域50%市场”  方华总经理谈到:“在完成了所有通用高纯气体的解决方案后,2010年我们将工作重点转移到电子气体等特种气体的分析上来 第一季度已解决氟气转换技术、硅烷真空取样系统、六氟化硫中痕量杂质分析的多次切割技术,争取18个月内建立起所有高纯气体的检测规范。另外,由华爱色谱主持的国家标准《气体分析 氦离子气相色谱法》也将于今年颁布。”  “2010年华爱预计完成3000万元销售额,将占领国内高纯气体领域50%市场 同时,完成对所有气体检测器的开发,如氩离子检测器、氧化锆检测器、离子迁移检测器、气体密度天平检测器等。”合影留念(方华总经理,左3)  关于华爱色谱公司的中长期发展规划,方华总经理表示:“便携式色谱仪和在线色谱仪,终将和实验室色谱仪‘三分天下’,而这两个领域也是华爱‘看好’的市场;今年公司将加大对于便携式色谱仪的研发力度,并为在线色谱仪做好技术储备。”  附录1:上海华爱色谱分析技术有限公司  http://www.huaaisepu.com/index.asp  http://huaai.instrument.com.cn  附录2:华爱色谱公司重大事件  2004年03月24日:上海华爱色谱分析技术有限公司注册成立。  2006年11月01日:荣获《单柱分析电力用油气相色谱仪》专利证书(专利号: ZL2005 20042753.5)  2006年12月06日:荣获《一种在高温高压下可以进行在线分析的气相色谱仪》 专利证书(专利号:ZL2005 2 0044846.1)  2007年01月03日:荣获《一种用于汽车尾气分析气相色谱仪》专利证书(专利号:ZL2005 20044945.X)  2007年02月28日:荣获《自清洗型热解析装置》专利证书(专利号:ZL2005 20044576.4)  2007年04月04日:荣获《用于气体全分析的气相色谱仪》专利证书(专利号:ZL2005 2 0044845.7)  2008年05月08日:全面通过ISO9001:2000国际质量管理体系认证  2008年11月:新产品GC-9760变压器油专用微型色谱仪,荣获上海市高新技术成果转化认证  2008年12月:公司入围上海市第二届最具活力企业评选,被评为上海市最具活力高科技企业  2009年04月:GC-9760变压器油专用微型色谱仪,荣获上海市重点新产品证书  2009年06月:为表彰公司在国家标准起草工作的突出贡献,全国气体标准化技术委员会授予我公司优秀委员单位称号  2009年08月:新产品GC-9560-HG氦离子化气相色谱仪,荣获上海市高新技术成果转化A级项目证书  2009年11月:GC-9560-HD变压器油专用色谱仪,荣获上海市高新技术成果转化认证  2009年12月09日:荣获《一种氦离子化检测器》专利证书(专利号:ZL2009 20073624.0)  2009年12月29日:荣获高新技术企业证书(编号:GR200931000979)  2010年04月09日:新产品GC-9560-HG氦离子化气相色谱仪,荣获“2009年度科学仪器优秀新产品”奖  2010年04月14日: GC-9560-HG氦离子化气相色谱仪,荣获“上海市重点新产品”  2010年04月15日:公司总经理方华出任气标委“第一届气体分析分技术委员会委员”
  • 辉光放电光谱仪:方便快速的镀层分析手段
    研究镀层特性,有哪些常用的分析技术?  如今,大多数材料不是多层结构,如薄膜光伏电池、LED、硬盘、锂电池电极、镀层玻璃等就是表面经过特殊处理或是为改善材料性能或耐腐蚀能力采用了先进镀层。为了很好地研究和评价这些功能性镀层特性,有多种表面分析工具应运而生,如我们熟知的X射线光电子能谱XPS、二次离子质谱SIMS、扫描电镜SEM、透射电镜TEM、椭圆偏振光谱、俄歇能谱AES等。  为什么辉光放电光谱技术受青睐?  辉光放电光谱仪作为一种新型的表面分析技术,虽然近年来才崭露头角,但已受到了越来越多的关注。与上述表面分析技术相比,辉光放电光谱仪在深度剖析材料的表面和深度时具有不可替代的独特优势,它的分析速度快、操作简单、无需超高真空部件,并且维护成本低。  辉光放电光谱仪最初起源于钢铁行业,主要被用于镀锌钢板及钢铁表面钝化膜等的测定,但随着辉光放电光谱技术的逐步完善,仪器的性能也得以提升,可分析的材料越来越广泛。  其性能的提升表现在两方面:一方面随着深度分辨率的不断提升,辉光放电光谱技术已可以逐渐满足薄膜的测试需求。现在,辉光放电光谱仪的深度分辨率可达亚纳米级别,可测试的镀层厚度从几纳米到150微米,某些特殊材料可以达到200微米。  另一方面是辉光源的性能改善,以前辉光放电光谱仪主要用于钢铁行业的测试,测试的镀层样品几乎都是导体,DC直流的辉光源即可满足该类测试,但随着功能性镀层的不断发展,越来越多的非导体、半导体镀层出现,这使得射频辉光源的独特优势不断凸显。射频辉光源既可以测试导体也可以测试非导体样品,无需更换任何部件和测试方法,使用方便。如果需要测试热敏材料或是为抑制元素热扩散则需选用脉冲射频辉光源。脉冲模式下,功率不是持续性的作用到样品上,可以很好地抑制不期望的元素扩散或是造成热敏样品的损坏,确保测试结果的真实准确。  辉光放电光谱的工作原理  辉光放电腔室内充满低压氩气,当施加在放电两极的电压达到一定值,超过激发氩气所需的能量即可形成辉光放电,放电气体离解为正电荷离子和自由电子。在电场的作用下,正电荷离子加速轰击到(阴极)样品表面,产生阴极溅射。在放电区域内,溅射的元素原子与电子相互碰撞被激化而发光。辉光放电源的结构示意图,样品作为辉光放电源的阴极  整个过程是动态的,氩气离子持续轰击样品表面并溅射出样品粒子,样品粒子持续进入等离子体进行激化发光,不断有新的层在被溅射,从而获得镀层元素含量随时间的变化曲线。  辉光放电等离子体有双重作用,一是剥蚀样品表面颗粒 二是激发剥蚀下来的样品颗粒。在空间和时间上分离剥蚀和激发对于辉光放电操作非常重要。剥蚀发生在样品表面,激发发生在等离子体中,这样的设计可以很好地抑制基体效应。  氩气是辉光放电最常用的气体,价格也相对便宜。氩气可以激发除氟元素外所有的元素,如需测试氟元素或是氩元素时需采用氖气作为激发气体。有时也会使用混合气体,如Ar+He非常适合于分析玻璃,Ar+H2可提高硅元素的检出,Ar+O2会应用到某些特殊的领域。  光谱仪的主要功能是通过收集和分光检测来自等离子体的光以实现连续不断监控样品成分的变化。光谱仪的探测器必须能够快速响应,实时高动态的观测所有元素随深度的变化。辉光放电光谱仪中多色仪是仪器的重要组成部分,是实现高动态同步深度剖析的保障。而光栅是光谱仪的核心,光栅的好坏决定了光谱仪的性能,如光谱分辨率、灵敏度、光谱仪工作范围、杂散光抑制等。辉光放电是一种较弱的信号,光通量的大小对仪器的整体性能有至关重要的影响。  如何进行定量分析?  和其他光谱仪一样,通过辉光放电光谱仪做定量分析也需要建立标准曲线。不同的是,辉光放电光谱仪的标准曲线不仅是建立信号强度和元素浓度之间的关系,还会建立时间和镀层深度间的关系。  下图是涂镀在铁合金上的TiN/Ti2N复合镀层材料的元素深度剖析,直接测试所得的信号强度(V)vs时间(s)的数据经过标准曲线计算后可获得浓度vs深度的信息,可清晰的读取各深度元素的浓度。  想建立标准曲线就会涉及到标准样品,传统钢铁领域已经有非常成熟的方法及大量的标准样品可供选择。然而一些先进材料和新物质,很难找到标准样品做常规定量分析。HORIBA研发的辉光放电光谱仪针对这类样品开发了一种定量分析方法,称为Layer Mode,该方法可以使用一个与分析样品相类似的参比样品建立简单的标准曲线,实现对待测样品的半定量分析。  辉光放电光谱的主要应用  除了传统应用领域钢铁行业,辉光放电光谱仪现在主要应用于半导体、太阳能光伏、锂电池、硬盘等的镀层分析。下面就这些新型应用阐述一下辉光放电光谱仪的独特优势。  1. 半导体-LED芯片  如上图所示,LED芯片通常是生长在蓝宝石基底上的多镀层结构,其量子阱活性镀层非常薄(仅有几纳米),而且还包埋在GaN层下。这种结构也增加了分析的难度。典型的表面技术如SIMS和XPS可以非常好表征这个活性镀层,但是在分析过程中要想剥蚀掉上表面的GaN层到达活性镀层需要耗费几个小时,分析速度慢,时效性差。  辉光放电光谱仪的整个分析过程仅需几十秒即可获得LED芯片镀层中各元素随深度的分布曲线,可快速反馈工艺生产过程中遇到的问题。  2、太阳能光伏电池  太阳能电池中各成分的梯度以及界面对于光电转换效率来说至关重要,辉光放电光谱仪可以快速表征这些成分随深度的分布,并通过这些信息优化产品结构,提高效率。分析速度快、操作简单、非常适用于实验室或工厂大量分析样品。  3、锂电池  锂离子电池的正极材料是氧化钴锂,负极是碳。  锂离子电池的工作原理就是指其充放电原理。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。  同理,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回到正极。回到正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。  辉光放电光谱仪可以通过测试正负电极上各种元素随深度的分布来判定其质量及使用寿命等。  辉光放电光谱仪除独立表征样品外,还可以和其他分析手段相结合多方位全面的进行表征。如辉光放电光谱仪可以与XPS、SEM、TEM、拉曼和椭偏等技术共同分析。  总体来说,辉光放电光谱仪是一种非常方便快速的镀层分析手段。它的出现极大地解决了工艺生产中质量监控、条件优化等问题,此外还开拓了新的表征方向。  关于HORIBA 脉冲射频辉光放电光谱仪  HORIBA研发的脉冲射频辉光放电光谱仪是一款用于镀层材料研究、过程加工和控制的理想分析工具。脉冲射频辉光放电光谱仪可对薄/厚膜、导体或非导体提供超快速元素深度剖析,并且对所有的元素都有高的灵敏度。  脉冲射频辉光放电光谱仪结合了脉冲射频供电的辉光放电源和高灵敏度的发射光谱仪。前者具有很高的深度分辨率,可对样品分析区域进行一层层剥蚀 后者可实时监测所有感兴趣元素。  (本文由HORIBA 科学仪器事业部提供)
  • 动态光散射技术入门及仪器采购指南
    作者:马尔文仪器公司纳米颗粒及分子鉴定产品营销经理 Stephen Ball  动态光散射(DLS)是一项用于蛋白质、胶体和分散体的极具价值的粒度测量技术,其应用范围可轻松扩展到1 nm以下。本文中,马尔文仪器公司产品营销经理Stephen Ball将向您介绍DLS的工作原理,并就购买光散射系统时的关注事项为您并提供一些专业建议。  通过观察散射光,可以测定粒子分散体系或分子溶液的特性,如粒度、分子量和zeta电位。光散射系统充分挖掘利用这些特性之间关联,并在近几十年间经过不断完善,目前已经能为常规实验室应用提供高度自动化的检测。利用光散射仪器的检测快速而高效,可用来表征分散体系、胶体和蛋白质。  理论上,光散射仪器中使用的各种技术看起来可能很相似,但它们的功能和检测结果却在实际应用中千差万别,从而对仪器的寿命期价值产生显著影响。光散射系统中的组件和设计的差异也会导致数据质量及仪器适用范围产生很大的差异。例如,某些光散射系统可通过测量蛋白质电泳迁移率对蛋白质电荷以及粒度进行测定,从而成为生物制药应用中高效的选择方案。  撰写本文的目的在于为考虑采用动态光散射DLS技术的读者提供一个入门指南。本文将考察DLS的主要用途、应用领域,尤其会侧重系统设计中对于特定性能的重要性,从而为那些正为自身需求而关注DLS技术的用户提供背景信息和理论支持。  了解基本知识  当我们要开始对一种新的分析技术进行评估时,第一个重要步骤就是要了解它的基本工作原理。DLS的优势之一是它操作非常简单,而这直接源于它的测量原理。  由于热能,溶剂分子不断运动,和悬浮的颗粒物产生碰撞,使得分散体或溶液中的小颗粒做无规则的布朗运动。可以通过观测散射光随时间的波动性得到颗粒布朗运动的速度,这种技术被称为光子相关光谱法(PCS)或准弹性光散射法(QELS),但现在通常称作动态光散射法(DLS)。  斯托克斯 - 爱因斯坦方程定义了颗粒布朗运动速度与颗粒大小之间的关系:    其中,D = 扩散速度, k = 波尔兹曼常数,T = 绝对温度,h = 粘度,DH = 流体力学直径  上述关系式清楚地表示了在样品温度和连续相粘度已知的情况下,如何根据扩散速度测定粒径。尽管必须是控制检测温度,但很多商用仪器还是会对温度进行测量 而对于许多分散剂,尤其是水而言,粘度是已知的。在很多情况下,DLS实验所需的补充信息也仅仅是粘度测量。  DLS的优势  DLS固有的操作简便性意味着操作者无需具备很强的专业知识就能得到详尽而有用的数据,这个优点在最新的高度自动化系统中表现得尤为明显&mdash &mdash 一般分析只需要几秒钟的时间,并且分散剂的选择余地比较大,不管是水性还是非水性的,只要它们呈透明状并且不太粘稠,就都可以使用。这种测试方法所需的样品量也很小,最少时只需要几微升即可,这一点对于涉及宝贵的样品的早期研究而言是极具吸引力的。  实际上,DLS法在测量0.1 nm ~ 10 µ m范围的粒径时十分出色。它在测量小颗粒方面的能力尤为突出,对于绝大多数待测体系提供2nm及以上的准确、可重复的数据。从理论上讲,检测低密度分子的粒径仅仅受到仪器灵敏度的限制,但对致密颗粒而言,沉降是可能导致分析不准确的一个潜在问题。例如,对于密度为10g/ml的颗粒,最大检测粒径通常会限制在大约100nm以内。  无论是稀释样品还是混浊样品都可以用DLS法来进行测量,可分析的浓度范围最低可至0.1ppm,最高可达40%w/v。不过,由于样品浓度会大大影响其外观尺寸,因此当粒子含量较高时对样品的制备需要加倍小心。  上述适用的粒径和浓度范围以及该测量技术的高重现性(粒径20nm时可达到+/- 0.1nm),使得DLS这种测量方法具有广泛的适用性。比如,它特别适合检测平均粒径的细微变化,这种变化可能会反映出胶体样品的稳定性 它也可以测得少量聚集体的出现。上述这些现象很有可能是某种样本解体的前兆,当用于药物的蛋白质研究时,这类情况的出现有可能对药物性能产生不利甚至有害的影响。  DLS法的局限性  DLS方法的大多数局限性可以或已经通过对实验操作过程进行改进,或对DLS技术进行改进来加以克服 但在区分仪器类型,尤其是对于那些要求异常苛刻的应用而言,它的局限性仍然值得我们加以关注。一般来说,DLS使用过程中遇到的大多数问题是出于以下原因:  &diams 存在较大的颗粒  超出仪器最高量程范围的颗粒应该事先被过滤掉。或者,如果大颗粒的存在量极少也可以通过软件进行处理。  &diams 沉淀  这种现象在较为致密的颗粒中尤其比较容易出现。提高分散液密度是比较有效的抑制方法(比如在系统中加入蔗糖),但这种方法仅适用于密度不高于1.05 g/ml的样品体系。  &diams 分辨率较低  DLS不属于高分辨率的技术。当样品的粒度分布排列十分密集,且存在三种以上的粒度分布差异时,DLS 将无法对多重分散样品进行精确表征。在这种情况下,建议最好在测量之前对样品进行分离 而在测量方法上,则需要将DLS与制备技术如凝胶渗透法或尺寸排除色谱法(GPC / SEC)和(或)流场分离技术(FFF)联合使用。  &diams 多重光散射  多重散射是指从一个颗粒发出的散射光在到达探测器之前又会被其它粒子再次散射,在较致密的样品中,这种现象会使粒径计算的精确度受到影响。背散射检测器以大于90° 的角度进行测量,大大抑制了这一现象,从而扩大了该技术的测量范围。  &diams 分散剂的选择  虽然大多数分散剂都适用于DLS,但如果分散剂粘度大于100mPa.s,往往会影响测量的可靠性,另外分散剂对光的吸收也会对检测产生干扰。比如有色样品的散射光强度可能会有所降低。一种可行的解决方案是根据系统的灵敏度,采用不同的激光波长进行分析或对样品进行稀释。样品中的荧光也会对信噪比造成影响,但可以通过使用窄带滤波器来解决,以排除荧光杂散光的影响。  界定DLS检测仪的特性  上述的讨论是在对DLS仪器的界定特征进行检验的背景下展开的。对于任何分析技术,灵敏度都是最基本的要素,对于DLS系统,这方面的性能是由光学硬件和相应的设置来确定的。稀释度较高时,具有优越光学设置的系统能对较小的颗粒进行可靠测量,但对于在这些功能方面要求不高的应用而言,替代方案可能会更为经济。光学设置的主要元件包括:  &diams 激光源  具有低噪特性的稳定激光源最为合适,如某些氦氖气体激光器。也可以使用某些特定的固态激光器,但价格要贵得多 低成本的固态激光器使测量结果的精度和可重现性受到极大影响。  &diams 光学设置  光学设置的核心是进行测量的散射角。测量角固定于90o 时,可使系统简便而经济高效,为许多应用(见图1)提供合适的灵敏度级别。这类系统已得到广泛使用。  当实验需要灵敏度更高,或样品浓度更高时,最好选择较大的测量角度。例如马尔文仪器公司Zetasizer Nano系列激光粒度仪,采用非侵入式背散射检测器 (NIBS),将测量角度调到175o(参见图1),扩大了颗粒粒度与浓度的测量范围。由于入射光无需通过整个样品,因此显著减少了多重散射引起的测量不准确性,同样也排除了大灰尘颗粒的影响。  在上述两种类型的设置中采用了光纤光学收集组件,其提供的信噪比优于传统的相应部件,从而大大提高了数据质量。  &diams 检测器  检测器有两种类型:一种是便宜、灵敏度较低的光电倍增管PMT,另一种是较昂贵的、性能更好的雪崩光电二极管检测器(APD)。后者宣称效率高达65%,远远优于替代产品PMT4-20%的效率,从而使数据收集最大化,测量速度更快、质量更高。  要获得精确的DLS测量,另一项基本要求是必须对温度进行很好的控制。如同分散剂粘度一样,颗粒的布朗运动也直接和温度相关,因此温度控制较差造成的影响非常严重。例如,在环境温度下对水性体系进行测量,1oC的温度误差将导致2.4%的检测结果偏差,超过ISO13321 [1] 标准规定的+/-2% 或更新的 ISO 22412[2] 标准规定的范围。对于使用的各类比色皿,DLS仪器温度控制的合理目标是 +/-0.2oC。  比起在检测仪外部连接水浴装置,内置温度控制器在使用上更加方便,在测量精度、稳定性和重现性方面也更加可取。此外,具有高性能控制系统的仪器,既能进行快速的系统预热,又能迅速调整温度,从而对温度变化所产生的影响(如蛋白质热不稳定性)进行研究。   日常使用  当选择仪器时,评估整体性能特点尤为重要。然而,如果每天使用一个不太符合操作要求的系统所造成的不便会令人非常烦恼,甚至不想再去用它。因此,当需要在最终几个备选仪器之间进行选择时,以下几个问题是值得考虑一番的:  &diams 我最重要的需求是什么:速度还是准确性?  &diams 我的样品粒径的范围?  &diams 我要测量的样品属于什么类型,比如是否有毒?或者具有特别强的腐蚀性?  &diams 今后仪器的操作者是专家还是新手?他们具备多少关于光散射的专业知识?  速度与准确性  DLS测量通常成批进行,样品通常不同、且体积较小。测量时间一般按照能达到要求的重复性水平设置,但一般不大会超过几分钟。不过,分析效率可能因样品制备和系统清洗要求而有所不同,不同系统的使用方便性也会有较大的差异。如果DLS系统被用作 GPC/SEC 检测器,系统将设置为流体工作模式。由于样品流经仪器,为达到必要的精度,测量必须在短短几秒钟之内完成。  具有良好测试速度和准确性的仪器通常都价格较高,但考虑使用寿命期的成本更为重要。考虑到因不能满足重复性标准而进行反复实验所花费的时间和成本,以及因仪器装备不能满足常规实验室使用要求而造成的分析效率下降等因素,更昂贵一些的系统也许更能体现物有所值。  适用于各种样品类型的比色皿  大多数光散射系统在批量样品分析期间使用各种比色皿池或比色皿来盛放样品。它们通常是塑料(通常是聚苯乙烯)、玻璃或石英材质的,但大小各不相同。样品的最小用量取决于光学设置,通常为2-3 ml。不过,如果不考虑任何样品回收要求,也有一些系统测量只需要2µ l的样品用量。  一次性塑料比色皿无需清洗,消除了交叉污染的风险,特别适用于盛放有毒材料 有些比色皿只有50 &mu L大小。采用比色皿可以避免产生&lsquo 非比色皿&rsquo 系统(即把样品直接放在玻璃片上进行测量)因清洗不彻底而导致测量不准确的问题。石英比色皿具有更佳的测量质量,尤其是用于低浓度或小粒径样品时,这是因为石英材料具有优异的光学特性和抗划伤性。  减轻分析负担  光散射通常只是许多研究人员在实验室中常规使用的多种技术之一。仪器操作者可能不是光散射方面的专家,因而仪器操作的简便性是很有帮助的。  一些DLS系统在数据收集过程中即对数据进行评估,剔除因大颗粒存在而被污染的结果。这类些系统有助于提高样品制备的速度和容许范围。粒径大于10微米的颗粒主要发生向前散射,因此含背散射检测器的仪器对这些颗粒的存在不太敏感。测量浓度范围宽的系统尽可能降低了样品稀释的需求,进一步提高了测量效率。  大多数现代化测量系统在数据采集过程中都无需操作员干预,从而减少了分析师的工作量,并提高测量的可重复性。但是有些比较复杂的样本可能需要采用特殊方法进行测量,因此应在标准操作程序(SOPs) 中包含这些特殊方法,从而确保应用的标准化。  虽然自动测量现在已很普遍,但在内置数据分析支持程度方面,不同仪器之间的差异很大。如果是给非专业人员使用的光散射测量系统,那么含有内置数据分析和专家意见的先进软件将极富价值,就好像在电话另一端有一位可靠的、活生生的专家一样。  总结  DLS是一项比较成熟的技术,可为各种类型的样品进行粒径和分子尺寸测量。因此,在选择仪器时,必须将系统能力与用户要求紧密联系起来,使两者相匹配。光散射系统在测量粒径的同时,还可以测量分子量、蛋白质电荷和Zeta电位,甚至还能具有微流变学测量功能。  不同系统之间的灵敏度有很大差别,如同在高浓度下也能进行测量一样,也可对各种大小的颗粒或分子进行有效的测量。与那些90o 度探测器相比,背散射仪器具有很实际的优势。  除了性能以外,还有其它因素也会影响仪器使用寿命期内的价值,包括易于清洁 能获得的支持以及友好的用户软件界面。无论是什么规格的仪器,最好的建议是在购买前进行测试,看看你能否轻松得到有用的数据。DLS问世已经多年,因此不论你的用途是什么,你都可以期望拥有一套有使用针对性的、富有成效并且易于操作的测量系统。  结束  参考文献:  [1] ISO 13321 (1996) 粒度分析 - 光子相关光谱。  [2] ISO 22412 (2008) 粒度分析 - 动态光散射  [3] GPC / SEC静态光散射技术说明,(马尔文仪器公司白皮书)。下载网址:www.malvern.com/slsforgpc  [4] www.malvern.com/aurora  图片  图1:DLS系统的关键组件包括(1)激光器,(2)测量单元,(3)检测器,(4)衰减器,(5)相关器和(6)数据处理PC。探测器可置于90° 或更大的角度,例如这里所显示的NIBS检测器设置在175° 。  图2:在悬浮液稳定性研究中采用Zeta电位对粒子之间斥力进行量化  laser:激光器  attenuator:衰减器  detector:检测器  digital signal processor 数字信号处理器  correlator:相关器  Electrical double layer:双电层  Stern layer:严密电位层  Diffuse layer:扩散层  Negatively charged particle:带负电荷的颗粒  Slipping plane:滑动面  Surface potential:表面电位  Zeta potential:Zeta电位  Distance from particle surface:到颗粒表面的距离