当前位置: 仪器信息网 > 行业主题 > >

嘌呤

仪器信息网嘌呤专题为您提供2024年最新嘌呤价格报价、厂家品牌的相关信息, 包括嘌呤参数、型号等,不管是国产,还是进口品牌的嘌呤您都可以在这里找到。 除此之外,仪器信息网还免费为您整合嘌呤相关的耗材配件、试剂标物,还有嘌呤相关的最新资讯、资料,以及嘌呤相关的解决方案。

嘌呤相关的资讯

  • 哈医大通过色谱法建立食物嘌呤数据库
    哪些食物中含有嘌呤物质?每种食物中的嘌呤含量又是多少?今后,痛风的“原凶”——嘌呤物质,将首次得到准确、科学的“再现”,为痛风患者健康膳食提供指导依据。日前,一项规范测定常见食物中嘌呤含量的研究在哈尔滨医科大学进入研究阶段。科研人员将初步建立我国食物中嘌呤含量的数据资料,并补充到国家食物成分数据库中,为降低国内高尿酸血症和痛风病的患病率及症状减轻提供科学数据。  据了解,随着经济发展和人们膳食结构的改变,我国人群高尿酸血症和痛风的患病率呈直线上升趋势。有资料显示,我国20岁以上的人群约2.4%—5.7%存在血尿酸过高的情况,从而引起痛风的发病。而在对痛风患者的治疗中,医生发现,低嘌呤膳食是治疗该病的关键。  据哈医大公共卫生学院潘洪志副教授介绍,在我国食物成分表中,目前尚无食物中嘌呤含量的准确数据,临床及有关网站上公布的嘌呤含量数据普遍来源不清且彼此不一致,对嘌呤含量高低类别的划分标准也不尽相同,给广大痛风患者治疗时带来极大疑惑。  哈医大科研人员此次开展的嘌呤含量研究拟采用高效液相色谱法,通过现代科技手段,测定我国常见各类食品中的嘌呤含量,包括腺嘌呤、鸟嘌呤、次黄嘌呤、黄嘌呤等,并计算总嘌呤含量,提高嘌呤测定方法的准确度、精密度和重现性,获得准确的常用食物嘌呤含量数据。  测定结果评出后,将初步建立我国食物中嘌呤含量的数据资料,并补充到国家食物成分数据库中,以此作为痛风患者健康膳食指导的依据。专家表示,该项研究预计在今年内完成,它将为降低我国高尿酸血症和痛风病的患病率和减轻症状提供科学数据,对公共卫生具有重大意义。  嘌呤为有机化合物,在人体内嘌呤氧化会变成尿酸,而尿酸过高就会引起痛风。据了解,痛风是长期嘌呤代谢障碍、血尿酸增高引起组织损伤的一种疾病。其临床特点为高尿酸血症、急性关节炎反复发作、痛风石形成、关节畸形、肾实质性病变等。  痛风俗称“富贵病”。该病一般在男性身上发病,且会遗传。有痛风的病人发病时,除用药物治疗外,重要的是平时注意忌口,以限制饮食中嘌呤的含量。
  • 食品添加剂6-苄基腺嘌呤等检测国标通过评审
    近日,江门检验检疫局承担制定的“进出口食品添加剂6-苄基腺嘌呤的检测方法”和“进出口食品添加剂蔗糖聚丙烯醚的检测方法”两项国家标准顺利通过了国家认监委、国家标准委和中国检科院等部门的专家评审。  由于此前国内外均无相关标准,江门检验检疫局这两项国家标准的顺利通过评审为今后我国对进出口食品添加剂6-苄基腺嘌呤、蔗糖聚丙烯醚的检测提供了保证。这也是江门局首次承担国家标准的制定,填补了该局国家标准制修订工作的空白,为继续参与国家标准的制修订打下了良好的基础,标志着该局的科研能力迈上了一个新的台阶。
  • 上海市食品学会立项团体标准《豆制品中嘌呤的测定 高效液相色谱-串联质谱法》
    各有关单位:根据《上海市食品学会团体标准工作管理办法》的相关规定,由上海清美绿色食品(集团)有限公司牵头申报的《豆制品中嘌呤的测定 高效液相色谱-串联质谱法》团体标准,经审核,该标准符合立项条件,同意立项。请起草单位按照《上海市食品学会团体标准工作管理办法》有关要求,严格把控标准质量关,切实提高标准制定的质量和水平,增加标准的适用性和实效性,按期完成标准编制的相关工作。联系人:上海市食品学会 郭燕茹 021-54891268 18018674491邮箱:ssfs_office@163.com关于《豆制品中嘌呤的测定 高效液相色谱-串联质谱法》团体标准立项的通知.pdf
  • 上海市食品学会发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准征求意见稿
    各相关单位代表及专家:《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准已完成征求意见稿的编制,根据《团体标准管理规定》的要求,为保证标准的科学性、严谨性和可操作性,现在《全国团体标准信息平台》面向社会各界公开征求意见。请各相关单位代表及专家审阅标准文本,对本标准提出宝贵意见和建议,并于2023年5月27日前将《团体标准征求意见反馈表》(附件二) 以E-mail形式反馈给上海市食品学会。逾期未复函,将按无异议处理。此致! 附件一:《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》(征求意见稿)附件二:《团体标准征求意见反馈表》联系人:郭燕茹联系电话:18018674491电子邮箱:ssfs_office@163.com上海市食品学会2023年4月28日关于《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准征求意见函.pdf《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》(征求意见稿).pdf《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》征求意见反馈表.doc
  • 上海市食品学会批准发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准
    各会员单位、有关单位:根据《上海市食品学会团体标准工作管理办法》相关规定,现批准发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准(T/SSFS0007-2023),2023年7月18日发布,2023年8月1日实施,现予公告。附件一:关于批准发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准的公告上海市食品学会2023年7月25日上海市食品学会关于批准发布《豆制品中嘌呤的测定 超高效液相色谱-串联质谱法》团体标准的公告.pdf
  • 分析科学仪器助力!陨石中发现DNA的主要成分
    日本北海道大学的大场康弘(Yasuhiro Oba)和合作者研究发现,组成DNA和RNA必不可少的嘧啶碱基可能是由富碳陨石带来地球的。相关研究4月26日发表于《自然—通讯》。 组成DNA和RNA离不开两类化学成分,也称碱基。这两类化学成分是嘧啶和嘌呤,其中嘧啶包括胞嘧啶、尿嘧啶、胸腺嘧啶,嘌呤包括鸟嘌呤、腺嘌呤。 目前为止,只有嘌呤碱基和尿嘧啶在陨石中发现过。然而,研究人员在模拟星际介质——恒星之间的空间——条件的实验中发现了嘧啶,有人据此推测它们可能是通过陨石抵达地球的。 大场康弘和同事使用了专门针对碱基进行优化的小规模量化的先进分析技术,分析了3颗富碳陨石:默奇森陨石、默里陨石和塔吉什湖陨石。 除了之前在陨石中已检测到的化合物,如鸟嘌呤、腺嘌呤、尿嘧啶之外,他们还首次发现了达到十亿分比浓度的各种嘧啶碱基,如胞嘧啶和胸腺嘧啶。 这些化合物存在的浓度与模拟太阳系形成前条件的实验预测的差不多。 作者认为,研究结果表明,这类化合物可能是在星际介质中经由光化学反应产生的,随后又在太阳系形成的过程中融入了小行星。这些化合物最终通过陨石抵达地球,对于早期生命出现的遗传学功能可能起到了一定作用。
  • 撸串HPLC实验结果惊人!“毒性”竟这么大
    俗话说得好:没有什么事是一顿烧烤解决不了的,如果不行就两顿̷̷然而,你知道常吃烧烤竟然对身体伤害这么大吗?最近,专家用HPLC做了个实验,结果惊人!  哈尔滨医科大学研究团队近日做的一项“烧烤食物嘌呤含量”实验,给经常吃烧烤的人“提了个醒”。  实验结果发现,羊肉、大虾、生蚝、鸡翅等经过烧烤后,食物中嘌呤含量骤增一倍多以上,食用过量会加重身体负担,高尿酸血症患者则可能诱发痛风。  网上一直在传:吃烧烤如同吸烟,吃1个烤鸡腿近似吸60支香烟的“毒性”̷̷这个虽未被验证,但下边的实验却让人吓一跳。  烧烤实验是这样做的  实验过程  实验团队从超市挑选了几种常见的烧烤食材及酒水和调味品,在实验室内先将这些食物冷藏,分别取一定数量的样品进行搅碎或混匀,加入高氯酸溶液等处理,然后采用高效液相色谱仪对样品滤液进行分析比对,测得每种食物中的嘌呤含量数据。  实验数据  常用食材烧烤前后嘌呤含量(毫克/100克)  同时,实验测得主要的“烧烤搭档”每百克中嘌呤含量分别为:啤酒7毫克、白酒2毫克、鸡精518毫克、酱油(海鲜)58毫克、酱油(普通)28毫克、味精0毫克。  实验结论  食材经过烧烤,水分和脂肪含量减少,嘌呤含量一般会增加,尤其是海鲜、肉类及菌菇类,本身嘌呤含量就比较高,烧烤后嘌呤翻倍,有的甚至增加几倍以上。烧烤过程中添加的调味品也会“助长”食物的嘌呤含量。  此外,哈医大研究团队还曾从路边烧烤区采集空气样本中提取PM2.5颗粒物,检测发现,烧烤油烟颗粒物的成分里含有苯并芘和多环芳烃等强致癌物。  由于露天明火烧烤,会从炭中释放出这种致癌物质,它能吸附在空气中的PM2.5上通过呼吸道进入人体,也会附着到食物表面进入消化道,增加患癌症的风险。  这样吃烧烤才更安全  如果忍不住想吃烧烤,专家给出了下面几点建议:  1、因为嘌呤具有良好的水溶性,所以先将烧烤食材用清水多洗两遍,海鲜、肉类等尽量用水浸泡一会   2、提前腌制,最好不要放鸡精和海鲜酱油,烤制过程中应避免再多放佐料   3、烧烤流出的汁液中也有高含量的嘌呤,吃之前用吸油纸擦一下   4、中途加炭应避免燃烧不充分,别边烤边反复刷油、浇水,这样做产生大量烟含苯并芘等   5、烤肉时先用烤肉酱浸泡或涂抹,可以保护肉块不会骤然受到高温而烤焦   6、搭配吃些绿叶菜和新鲜水果,能大大降低致癌物的毒性。
  • Neuron | 李毓龙实验室开发新型GRAB荧光探针用于检测胞外ATP的时空动态变化
    三磷酸腺苷(ATP)、二磷酸腺苷(ADP)、腺苷(Adenosine,Ado)等嘌呤类分子细胞内外广泛存在。胞内的嘌呤类分子主要负责调控细胞能量代谢等过程;而胞外的嘌呤类分子则作为信号分子(被称为“嘌呤类递质”),通过作用在其相应受体调节呼吸调控、味觉感受、睡眠等生理活动;嘌呤类递质及其受体还参与调节癫痫、疼痛、炎症反应、脑外伤和缺血等病理状态。此外,嘌呤能信号失调还与抑郁、精神分裂症等精神类疾病密切相关。迄今,解密嘌呤能信号传递功能的一大技术瓶颈是缺乏灵敏、特异且非侵入性的工具,以高时空分辨率地报告嘌呤类递质的动态变化。 2021年12月22日,北京大学李毓龙实验室在Neuron杂志在线发表了题为A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo的研究论文,报道了新型基因编码的ATP探针GRABATP1.0的开发和在体外及活体动物的应用。李毓龙实验室自2018年以来,先后开发了针对乙酰胆碱、多巴胺、去甲肾上腺素、腺苷、五羟色胺、内源大麻素等神经递质或调质的荧光探针,此次发表的GRABATP1.0是其又一力作,进一步扩展了GRAB系列荧光探针家族。 在这一工作中,李毓龙实验室运用其先前设计的GRAB探针策略(GPCR Activation-Based sensor),基于人源ATP受体P2Y1和循环重排的绿色荧光蛋白cpEGFP开发了ATP探针GRABATP1.0(简称为ATP1.0)。在体外培养的HEK293T细胞、原代神经元及星形胶质细胞中,ATP1.0探针均表现出优异的细胞膜定位。神经元表达的ATP1.0对外源加入的ATP及ADP有~780%的信号响应、~80 nM的亲和力(EC50),及高度的分子特异性。此外,ATP1.0能够在亚秒级别响应胞外ATP浓度的变化。ATP1.0探针能否用来检测内源释放的ATP呢?作者从原代培养的海马细胞入手,发现ATP1.0能够检测到机械刺激及低渗透压刺激引发的ATP释放,药理学实验及突变型探针实验进一步验证了ATP1.0检测信号的特异性。有意思的是,在不给予额外刺激时,ATP1.0也能灵敏地记录到直径约为30微米的自发性ATP释放事件,表明ATP的释放具有化学分子特异和空间特异性。 ATP1.0探针能否在活体动物加以运用呢?过去的研究发现,当细胞受到损伤时,胞内毫摩尔级别的ATP被释放胞外,作为“危险信号”被周围的胶质细胞感受,从而激活小胶质细胞释放趋化因子等,产生免疫反应。胶质细胞上表达的嘌呤类受体在小胶质细胞激活、迁移及分泌信号因子过程中发挥重要作用。那么,在这一过程中,信号分子ATP的传播和小胶质细胞的迁移是如何动态并变化的?作者将ATP1.0探针表达在斑马鱼中,通过激光照射引发局部损伤时发现ATP的释放呈现“波状”传播;通过将绿色ATP1.0探针表达在红色荧光蛋白标记小胶质细胞的转基因斑马鱼中,能够直观地检测到随着ATP信号的传播小胶质细胞的迁移过程(图1上)。 图1:ATP1.0报告斑马鱼受到局部损伤时及小鼠发生免疫反应时大脑中的胞外ATP信号 当大脑处于疾病状态时,ATP的释放又会呈现什么样的变化?如上所述,嘌呤能信号在免疫中扮演着重要角色。为了检测免疫反应过程中大脑中ATP信号的变化,作者通过腹腔注射脂多糖(Lipopolysaccharide,LPS)的方式引发小鼠的系统性免疫反应,同时通过AAV病毒介导的方法将ATP1.0表达在小鼠的大脑皮层,并借助双光子成像记录ATP的信号。有意思的是,LPS注射后,小鼠大脑皮层呈现出强烈、但空间特异的ATP信号上升现象。除了开发高灵敏的ATP1.0探针外,作者还开发了反应动力学更快及亲和力更低的ATP探针ATP1.0-L。在神经元中表达的ATP1.0-L对胞外的ATP的亲和力(EC50)约为32 μM。当在原代培养的海马细胞及活体的斑马鱼中表达,ATP1.0-L均能检测到更加局部的ATP信号。 综上所述,在这项工作中作者开发了新型遗传编码的ATP荧光探针,实现了对胞外ATP的高时空分辨率的记录。在此之前,李毓龙课题组在2020年还开发了另外一种嘌呤类递质腺苷的GRAB荧光探针,并助力中国科学院脑科学与智能技术卓越创新中心徐敏团队在睡眠调控中的研究。相信一系列新型成像工具的开发,将助力科学家更加深入地研究嘌呤能信号传递在生理和病理条件下的功能和调控机理。
  • 精准基因编辑时代到来!华人科学家重排原子精准编辑基因!
    p  当我们在谈论生命时,我们谈论的都是化学分子。DNA也好,蛋白质也罢,正是这些生物大分子发生的原子重排,才催生出无数生化反应,为地球带来生命。/pp style="text-align: center "img title="001.JPEG" src="http://img1.17img.cn/17img/images/201710/insimg/c0bbe2b5-3415-4594-bc51-72b794f474de.jpg"//pp style="text-align: center "strong  本研究的主要负责人David Liu教授(图片来源:Broad研究所)/strong/pp  今日,Broad研究所的华人学者David Liu教授公布了一项了不起的研究!他的团队开发了一种“碱基编辑器”,能在细胞内用简单的化学反应,使DNA的一种碱基进行原子重排,让它变成另一种碱基。与CRISPR-Cas9等流行的基因编辑手段不同,这种技术无需使DNA断裂,就能完成基因的精准编辑。这项研究发表在了顶尖学术期刊《自然》上。/pp style="text-align: center "img title="002.JPEG" src="http://img1.17img.cn/17img/images/201710/insimg/25395cd0-f659-4486-b95c-07cbee1c729a.jpg"//pp style="text-align: center " strong 将近一半的致病变异来源于C-G组合到A-T组合的改变(图片来源:《自然》)/strong/pp  要看懂这项研究,我们先来看看DNA本身。我们知道,DNA的双螺旋结构由4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)组成。它们A和T配对,C和G配对,就像字母一样,编写了人类的遗传信息。然而由于化学结构的问题,C这个字母不大稳定,容易出现自发的脱氨突变,把原本的好好的C-G组合,变成A-T组合。据估计,每天人类的每个细胞里都会出现100-500次这样的突变。而人类已知的致病单碱基变异,高达一半属于这种突变。/pp style="text-align: center "img title="003.JPEG" src="http://img1.17img.cn/17img/images/201710/insimg/3079c9ad-aff8-4c2e-b7ab-54dc17de1cbe.jpg"//pp style="text-align: center "strong  合适的脱氨反应能将腺嘌呤转变为结构类似于鸟嘌呤的肌苷(图片来源:《自然》)/strong/pp  换句话说,如果我们能定点修复这些基因突变,把A-T变回C-G,就有望从根源上纠正人类的许多遗传疾病。这正是Liu教授团队的研究思路。在实验室中,他们观察到了一个很有意思的现象——腺嘌呤(A)在出现脱氨反应后,会变成一种叫做肌苷的分子,而它与鸟嘌呤(G)的结构非常接近,也能成功骗过细胞里的DNA聚合酶。简单的几轮DNA复制后,A-T组合就能变回C-G。/pp  但科学家们遇到一个棘手的问题——自然界中并没有能够在DNA中催化腺嘌呤进行脱氨反应的酶。/pp  如果没有现成的道路,那就开辟一条!在人体中,科学家们发现了一种叫做TadA的酶,它能催化转运RNA上的腺嘌呤(A),使它脱氨。尽管催化的对象不同,但Liu教授的团队认为它有足够的应用潜力。于是,利用演化的力量,科学家们对TadA进行了改造。他们将编码TadA的基因引入大肠杆菌内,并寄希望于这种酶能在大肠杆菌快速的繁衍中,突变出催化DNA腺嘌呤的能力。/pp style="text-align: center "img title="004.JPEG" src="http://img1.17img.cn/17img/images/201710/insimg/77d2e2cb-4181-4432-b16c-f701f36c851b.jpg"//pp style="text-align: center " strong 本研究中,碱基编辑器的作用机理(图片来源:《自然》)/strong/pp  同时,科学家们也想到,DNA上的腺嘌呤特别多,总不能把他们全都转化为鸟嘌呤吧。因此,特异性地对某个碱基进行催化,是这套系统迈入实际应用的关键。Liu教授想到了自己的实验室邻居张锋教授,这名华人学者以CRISPR基因编辑技术而闻名于世。如果我们借助CRISPR-Cas9系统的精准,但不让它切开双链DNA,或许就能定点对腺嘌呤进行原子重排,让它变成另一种碱基。为此,科学家们在筛选TadA酶的过程中,也同样引入了一套切不动DNA的特殊CRISPR-Cas9系统,用于精准定位。/pp  功夫不负有心人!这套系统虽然极为复杂,但在经历了漫长的7代筛选后,Liu教授团队终于开发出了一款全新的“碱基编辑器”,其核心正是能有效针对DNA的TadA酶。无论是在细菌里,还是在人类细胞中,这款编辑器都能顺利发挥作用。在人类细胞里,它的编辑效率超过了50%!/pp style="text-align: center "img title="005.JPEG" src="http://img1.17img.cn/17img/images/201710/insimg/e1500d56-ca99-4809-932c-2bd6c898751f.jpg"//pp style="text-align: center " strong 这套系统能有效用于人类细胞(图片来源:《自然》)/strong/pp  尽管这套系统利用了CRISPR-Cas9系统,但科学家们在这篇论文里指出,他们开发的技术与CRISPR-Cas9系统各有千秋。在矫正单碱基突变方面,它比CRISPR-Cas9系统更为有效,也更“干净”。它几乎没有引起任何随机插入和删除等突变,在全基因组里的脱靶效应也要好于CRISPR-Cas9技术。要知道,这可是人们对CRISPR-Cas9技术安全性的最大担忧之一。/pp  先前,研究人员们也同样开发了编辑其他碱基的方法。目前,Liu教授的团队已经有了把C变成T,把A变成G,把T变成C,以及把G变成A的工具。诚然,这些工具目前距离人类临床应用还有不小的距离。但要知道,它只涉及碱基的原子重排,无需让DNA双链断裂,从而降低了基因治疗过程中的风险。此外,许多遗传病都是单基因突变,用这些工具进行治疗也显得更为有的放矢。/pp  我们感谢Liu教授的团队为我们带来如此令人兴奋的基因编辑新工具。毫无疑问,基因编辑的时代已经到来,你准备好迎接冲击了吗?/pp  参考资料:[1] Programmable base editing of AT to GC in genomic DNA without DNA cleavage/pp /p
  • 食品添加剂检测方法两项国标通过评审
    “进出口食品添加剂6-苄基腺嘌呤的检测方法”等两项国家标准通过专家评审 近日,江门检验检疫局承担制定的“进出口食品添加剂6-苄基腺嘌呤的检测方法”和“进出口食品添加剂蔗糖聚丙烯醚的检测方法”两项国家标准顺利通过了国家认监委、国家标准委和中国检科院等部门的专家评审。 由于此前国内外均无相关标准,江门检验检疫局这两项国家标准的顺利通过评审为今后我国对进出口食品添加剂6-苄基腺嘌呤、蔗糖聚丙烯醚的检测提供了保证。
  • 福建省首创3项农产品质量安全检测团体标准
    近日,由福建省农科院农业质量标准与检测技术研究所主持制定的3项团体标准发布。它们分别是《果蔬中多菌灵、苯菌灵和噻菌灵的快速检测 拉曼光谱法》《水产品中恩诺沙星和环丙沙星的快速检测 拉曼光谱法》《豆芽中6-苄氨基嘌呤、6-糠氨基嘌呤、N6-异戊烯腺嘌呤的快速检测 拉曼光谱法》。这3项标准均作为全国首创技术。 以往,农产品质量安全检测存在耗时长,假阳性、假阴性概率高等瓶颈。利用拉曼光谱法进行快检,10分钟内即可获得一个样本的可靠结果,从而在保证农产品新鲜度下完成质量安全检测。该技术适用于各种果蔬中相关农药残留项目、水产品中相关兽药残留项目的快速检测。
  • 单克隆抗体制备的基本原理与过程
    单克隆抗体制备的原理:B淋巴细胞在抗原的刺激下,能够分化、增殖形成具有针对这种抗原分泌特异性抗体的能力、B细胞的这种能力和量是有限的,不可能持续分化增殖下去,因此产生免疫球蛋白的能力也是极其微小的、将这种B细胞与非分泌型的骨髓瘤细胞融合形成杂交瘤细胞,再进一步克隆化,这种克隆化的杂交瘤细胞是既具有瘤的无限生长的能力,又具有产生特异性抗体的B淋巴细胞的能力,将这种克隆化的杂交瘤细胞进行培养或注入小鼠体内即可获得大量的高效价、单一的特异性抗体.这种技术即称为单克隆抗体技术。单克隆抗体制备的过程:免疫动物免疫动物是用目的抗原免疫小鼠,使小鼠产生致敏B淋巴细胞的 过程。 一般选用6-8周龄雌性BALB/c小鼠,按照预先制定的免疫方案进行免疫注射。 抗原通过血液循环或淋巴循环进入外周免疫器官,刺激相应B淋巴细胞克隆,使其活化、增殖,并分化成为致敏B淋巴细胞。细胞融合采用二氧化碳气体处死小鼠,无菌操作取出脾脏,在平皿内挤压研磨,制备脾细胞悬液。 将准备好的同系骨髓瘤细胞与小鼠脾细胞按一定比例混合,并加入促融合剂聚乙二醇。在聚乙二醇作用下,各种淋巴细胞可与骨髓瘤细胞发生融合,形成杂交瘤细胞。选择性培养选择性培养的目的是筛选融合的杂交瘤细胞,一般采用HAT选择性培养基。在HAT培养基中,未融合的骨髓瘤细胞因缺乏次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,不能利用补救途径合成DNA而死亡。 未融合的淋巴细胞虽具有次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,但其本身不能在体外长期存活也逐渐死亡。 只有融合的杂交瘤细胞由于从脾细胞获得了次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,并具有骨髓瘤细胞能无限增殖的特性,因此能在HAT培养基中存活和增殖。杂交瘤阳性克隆的筛选与克隆化在HAT培养基中生长的杂交瘤细胞,只有少数是分泌预定特异性单克隆抗体的细胞,因此,必须进行筛选和克隆化。通常采用有限稀释法进行杂交瘤细胞的克隆化培养。采用灵敏、快速、特异的免疫学方法,筛选出能产生所需单克隆抗体的阳性杂交瘤细胞,并进行克隆扩增。经过全面鉴定其所分泌单克隆抗体的免疫球蛋白类型、亚类、特异性、亲和力、识别抗原的表位及其分子量后,及时进行冻存。单克隆抗体的大量制备单克隆抗体的大量制备主要采用动物体内诱生法和体外培养法。(1)体内诱生法 取BALB/c小鼠,首先腹腔注射0.5ml液体石蜡或降植烷进行预处理。1-2周后,腹腔内接种杂交瘤细胞。杂交瘤细胞在小鼠腹腔内增殖,并产生和分泌单克隆抗体。约1-2周,可见小鼠腹部膨大。用注射器抽取腹水,即可获得大量单克隆抗体。(2)体外培养法 将杂交瘤细胞置于培养瓶中进行培养。在培养过程中,杂交瘤细胞产生并分泌单克隆抗体,收集培养上清液,离心去除细胞及其碎片,即可获得所需要的单克隆抗体。但这种方法产生的抗体量有限。各种新型培养技术和装置不断出现,大大提高了抗体的生产量。单克隆抗体制备的意义:用于以下各种生命科学实验并具有医用价值(1)沉淀反应:Precipitation reaction(2)凝集实验:haemaglutination(3)放射免疫学方法检测免疫复合物(4) 流式细胞仪:用于细胞的分型和细胞分离.(5)ELISA 等免疫学检测(6)BIAcore biosensor:检测Ab-Ag或与蛋白的亲和力 .(7)免疫印记(western blotting)(8) 免疫沉淀:(9) 亲和层析:分离蛋白质(10) 磁珠分离细胞(11)临床疾病的诊断和治疗;
  • 我国科学家揭示特殊DNA的合成机制
    脱氧核糖核酸(DNA)是生命体的遗传物质,决定生物的特征和多样性。生命的遗传信息存储在由腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T)四种碱基组成的DNA序列中。1977年前苏联科学家在感染蓝细菌的一株噬菌体中发现由2,6-二氨基嘌呤(Z)、G、C、T组成的DNA,该类特殊DNA中的Z完全取代了正常的A,且Z与T配对形成更稳定的三个氢键,极大地改变了DNA的物理化学特征。长期以来,特殊DNA的合成机制及存在的普遍性和生理意义一直是未解之谜。  国家重点研发计划“合成生物学”重点专项“新天然与人工产物的定向挖掘和高效合成的平台技术”项目在该特殊DNA的合成机制研究上取得重大进展。天津大学研究团队联合上海科技大学、美国伊利诺伊大学等研究团队,解析了该特殊DNA的合成机制,其中包括关键酶参与的2,6-二氨基嘌呤脱氧核糖核苷酸(dZTP)的生成和脱氧腺苷三磷酸(dATP)的消除,并发现这种特殊DNA遍布全球,大量能感染细菌的噬菌体都含有这种DNA。该研究还发现该特殊DNA可以规避识别位点中含有A的限制性内切酶的切割,因此含有该种特殊DNA的噬菌体可以逃避宿主的免疫防御从而具有进化优势。  该项重大发现对生命起源、物种进化、系统生物学的研究具有重要理论意义,在超级耐药菌感染的治疗、绿色无抗生素畜牧饲料和食品保存技术开发、新型纳米材料制备、DNA信息存贮等领域具有潜在应用价值。该研究成果近期发表在《Science》杂志上。   论文链接:https://science.sciencemag.org/content/372/6541/512.full  注:此研究成果摘自《Science》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • 北京7批次食品抽检不合格 小龙虾、清江鱼检出禁用药品
    中国经济网北京4月26日讯 近日北京市市场监督管理局发布《关于2021年食品安全监督抽检信息的公告》,公告显示,本次抽检4类食品450批次样品,不合格样品7批次。其中北京味妙餐饮管理有限公司、北京老城京味斋洋桥餐饮有限公司、北京非抠不可餐饮管理有限公司等3家公司食品样品被检出禁用药品。不合格样品情况如下:北京天合源餐饮有限公司经营的牛蛙,恩诺沙星不符合食品安全国家标准。北京徐文军艳荣商贸有限公司经营的韭菜,腐霉利不符合食品安全国家标准。北京味妙餐饮管理有限公司第三分公司经营的清江鱼,五氯酚酸钠(以五氯酚计)不符合国家相关规定。北京老城京味斋洋桥餐饮有限公司经营的胖豆芽,6-苄基腺嘌呤(6-BA)不符合国家相关规定。标称保定永兴庄清真食品有限公司生产,北京瑞宝源餐饮服务有限公司经营的羊肉,磺胺类(总量)不符合食品安全国家标准。北京非抠不可餐饮管理有限公司经营的小龙虾,呋喃西林代谢物不符合国家相关规定。标称蜀海(北京)食品有限公司生产,北京四季优选信息技术有限公司清河中街店经营的7FRESH主厨沙拉,单核细胞增生李斯特氏菌不符合产品明示标准。据了解,五氯酚酸钠属于有机氯农药,可用作除草剂和杀菌剂,易溶于水,容易进入水和土壤中,经环境累积,进入饲料用植物中,通过食物链进入动物内。《食品动物中禁止使用的药品及其他化合物清单》(农业农村部公告第250号)中规定,食品动物中禁止使用五氯酚酸钠。6-苄基腺嘌呤(6-BA)是植物生长调节剂。主要用于防止落花落果、抑制豆类生根,并能调节植物株内激素的平衡。但由于其对人体有一定积累毒性,《国家食品药品监督管理总局、农业部、国家卫生和计划生育委员会关于豆芽生产过程中禁止使用6-苄基腺嘌呤等物质的公告》(2015年第11号)规定豆芽生产经营过程中禁止使用6-苄基腺嘌呤。硝基呋喃类药物属抗生素,曾广泛应用于畜禽及水产养殖业,治疗由大肠杆菌或沙门氏菌所引起的肠炎、疥疮、赤鳍病、溃疡病等。由于硝基呋喃类代谢产物对人体有较大危害,《兽药地方标准废止目录》(农业部公告第560号)规定呋喃西林为禁止使用的药物,在动物性食品中不得检出。在农业农村部2020年1月6日发布的第250号公告中,也将呋喃西林列为禁止使用的药品。北京市市场监督管理局表示,针对在食品安全监督抽检中发现的不合格食品,相关食品生产经营者已依法采取措施控制风险,已要求属地市场监管部门依法调查处理,涉及外省市的已通报当地市场监管部门。来源:中国经济网推荐阅读【分析】2020年水产品质量安全抽检-兽药残留维德维康洛美沙星、氧氟沙星等7种产品 顺利通过2020年水产品中药物残留快检产品现场验证
  • Illumina透露半导体测序仪的更多细节
    2016年度的基因组生物学技术进展大会(AGBT)于上周在美国奥兰多举行。Illumina的CEO Jay Flatley在大会上宣布了其半导体测序平台,即Firefly计划的更多细节。  Flatley表示,Firefly将打开新的市场,因为它是如此简单。最终目标是制成这样一种设备,输入的是原始样本,而输出的是报告。尽管Illumina还没有实现,但Firefly无疑是朝着那个方向迈进了一步。  正如Illumina之前提到的,Firefly是基于它在2008年收购Avantome时获得的CMOS技术。Illumina一直在开发Avantome的技术,但从未商业化,因为这项技术离不开emulsion PCR。然而,Illumina希望将边合成边测序技术(SBS)与半导体芯片相融合。  Firefly设备本质上是一个带有纳米孔的CMOS传感器。纳米孔嵌入光电二极管中,让DNA沉积。簇生成和测序都在CMOS芯片上直接发生。由于CMOS是个单通道的设备,Flatley表示,研究人员必须弄清楚如何开发单通道的边合成边测序技术。  Firefly将采用一种新的编码技术。对于Illumina HiSeq测序仪采用的四通道技术,每个核苷酸被一种单独的荧光染料标记,并在四个不同的光学通道中检测。而之后推出的NextSeq则采用了一种双通道技术。这种技术使用两种荧光染料,其中鸟嘌呤总是暗的,腺嘌呤和胞嘧啶用单个染料标记,而胸腺嘧啶用两个染料标记。  在单通道技术中,胸腺嘧啶将有一个永久的荧光标记。腺嘌呤将有相同的荧光标记,但这种染料是可以去除的。鸟嘌呤将永远是暗的。另外,胞嘧啶一开始是暗的,但之后会加上荧光标记。  Flatley随后演示了这个方案如何读取DNA。在四个核苷酸的第一幅图像中,A和T同时被标记并可以检测。之后,在第二幅图像中,A的染料切除,并添加到C上。这样,第二幅图像中只有C和T发荧光。通过综合两幅图像的信息,所有四种碱基很容易被区分。在内部测试中,Illumina已经证明了99%的原始读取准确性和2x150 bp读长,与HiSeq X的表现相当。  这个平台将包含两个模块,总体积达1立方英尺。一个模块将用于文库制备,能够在3.5小时内平行制备8个文库,且无人值守。文库制备卡盒将利用Illumina NeoPrep所使用的数字微流体技术。用户只需加入样品和引物。这个设备将带来8个单独的文库,或合并成一个文库,用于测序。  制备好的文库随后上样到测序卡盒中,其中包含CMOS芯片。测序大约需要3.5-13小时,具体取决于应用,随后结果可上传到BaseSpace云计算环境,进行数据分析。这个系统将由iPad驱动,因此可无线监控。  Firefly有望在2017年下半年商业化,售价低于3万美元,而每个样品的耗材成本约为100美元。Flatley表示,Firefly的产量达到1 Gb,使其特别适合靶向研究、耐药性监控以及个人基因组测序等应用。
  • 3项全国首创农产品质量安全拉曼光谱快速检测团体标准发布
    日前,《果蔬中多菌灵、苯菌灵和噻菌灵的快速检测 拉曼光谱法》(T/FJBS 007-2023)、《水产品中恩诺沙星和环丙沙星的快速检测 拉曼光谱法》(T/FJBR 008-20233)、《豆芽中6-苄氨基嘌呤、6-糠氨基嘌呤、N6-异戊烯腺嘌呤的快速检测 拉曼光谱法》(T/FJBR 006-2023)3项团体标准在全国团体标准信息平台发布,为全国首创。据介绍,这3项标准结合长期以来农产品检测的相关经验,符合技术先进、经济合理、安全可靠、切实可行的制标原则,打破了检测耗时长、假阳性(或阴性)概率高等农产品质量安全快速检测的瓶颈。检测一个样品10分钟之内可获取可靠结果,所用设备轻便、价格不高、操作简单,实现保证农产品新鲜度下的质量安全检测,适用于各种果蔬中相关农药残留项目、水产品中相关兽药残留项目的快速检测。据了解,这3项团体标准均由福建省农科院农业质量标准与检测技术研究所科研人员主持制定,联合厦门瑞德利校准检测技术有限公司、厦门市普识纳米科技有限公司、厦门市质量技术评审服务中心、三明市检验检测中心、一品一码检测(福建)有限公司、厦门泓益检测有限公司、厦门市翰均科检测科技有限公司、厦门大学环境与生态学院共同编制,由福建省标准化与认证认可协会归口立项发布。这3项标准的制定与实施,可实现在超市、批发市场、企业、监管现场等场合实时监测农产品质量安全,为社会、政府部门开展质量监管提供准确、快速、简便的技术标准与技术依据,具有重要的应用前景。
  • DNA碱基家族或许迎来第六名成员
    西班牙科学家在最新出版的《细胞》杂志上撰文指出,或许存在着第六种碱基&mdash &mdash 甲基腺嘌呤(mA),其主要作用是确定表观基因组的性质,并因此在细胞的生命过程中发挥重要作用。  脱氧核糖核酸(DNA)是遗传物质的主要组成成分,一般认为,它由A(腺嘌呤)、C(胞嘧啶)、G(鸟嘌呤)和T(胸腺嘧啶)四种碱基结合而成,这些碱基组合成数千种可能的排序,从而提供了遗传多样性,使得活体生物呈现出多种多样的面貌和功能。  上世纪80年代初,由这四种&ldquo 经典&rdquo DNA碱基组成的家族中迎来了第五名成员:甲基胞嘧啶(mC),其源于胞嘧啶。mC的出现引发了科学家们极大的关注,并获得了广泛的研究。上世纪90年代后期,mC被广泛看成是表观遗传机制的主要原因:它能够根据每个组织的生理需要,打开或关闭基因。而且,随着研究的进一步深入,科学家们现在知道,作为一种重要的表观遗传修饰,mC参与基因表达调控、X-染色体失活、基因组印记、转座子的长期沉默和癌症的发生。  据每日科学网4日报道,西班牙Bellvitge生物医学研究所表观遗传学和癌症生物学计划负责人、巴塞罗那大学遗传学教授曼奈· 埃特雷在《细胞》杂志上发表文章,描述了第六种碱基&mdash &mdash mA存在的可能性,他认为,这种碱基也帮助确定表观基因组,并因此在细胞生命过程中发挥着重要作用。  埃特雷在论文中表示:&ldquo 早在数年前,我们就知道,在我们生物学上的远亲&mdash &mdash 细菌的基因组内就存在mA,主要作用保护其免受其他生物体遗传物质的入侵,但当时科学家们认为,这一现象只出现在原始细胞内。&rdquo   埃特雷继续解释说:&ldquo 现在《细胞》杂志发表的三篇论文表明,藻类、蠕虫以及苍蝇都拥有mA,这些生物的细胞像人体细胞一样都是真核细胞,说明人体细胞内也可能拥有第六种碱基。研究表明,mA的主要功能是调控某些基因的表达,因此,构成了一种新的表观遗传标记。在我们所描述的这些基因组内,mA的浓度都很低,但随着拥有高灵敏度分析方法的发展,使得这项研究成为了可能。除此之外,mA可能也在干细胞和发育初期发挥重要作用。&rdquo   研究人员表示,他们接下来打算对相关数据进行确认,以厘清是否包括人在内的哺乳动物也拥有这第六种碱基以及其作用究竟是什么。
  • “蛋白质动态学新技术”成功解析蛋白复合体结构
    近日,中国科学院武汉物理与数学研究所研究员唐淳课题组利用基于973重大科学研究计划“蛋白质动态学研究的新技术新方法”建立的研究技术,协助华中农业大学教授殷平课题组首次解析了N6腺嘌呤甲基转移酶METTL3-METTL14蛋白复合体结构,该研究成果发表于《自然》杂志。  该工作揭示了RNA N6腺嘌呤甲基化修饰过程中的结构基础,是表观遗传学领域的一项重大突破。唐淳、武汉物数所副研究员龚洲和博士后刘主参与该项目,利用课题组发展的新技术新方法,通过结合小角X光散射与计算机模拟的手段,为该蛋白复合体的结构解析提供了研究方法上的帮助。  经过近3年的努力,唐淳课题组发展、建立了包括核磁共振波谱、小角X光散射、化学交联质谱分析、单分子荧光检测和成像等技术在内的多种生物物理化学手段,并开发相应的整合计算方法,用于蛋白质动态结构及其转换过程的研究。课题组除了完成自身的科研项目外,积极开展广泛的合作与交流,与国内外同行共享研究技术和方法。目前,得益于“蛋白质动态学研究的新技术新方法”项目的实施,课题组已助力多个重要蛋白质结构的解析,取得了一系列的研究成果,研究成果发表于《自然—化学生物学》、eLife 等国际一流杂志。
  • 海南大学新检测技术将有效预警海洋核污染物
    海南大学南海海洋资源利用国家重点实验室王宁和袁益辉研究团队提出利用DNA结构实现超灵敏和高选择性锶离子检测的方法,可快速有效实现海洋放射性污染物监测,助力核电产业绿色可持续高质量发展。相关成果近日发表在国际学术期刊《自然可持续发展》上。  随着核能的广泛应用,防治放射性核污染成为人们关注的话题。作为235U的裂变产物,90Sr是最常见的放射性核污染元素之一。其化学性质与钙相似,易在环境与生物体内富集,对人体的辐射可引起骨癌、白血病等疾病,此外,因其半衰期长达29年,具有长期危害性,是人类不可忽视的一大隐患。然而,由于锶离子缺乏特征能量射线,使用现有技术无法快速、全面且精准地进行锶元素检测,如何精准检测一直是个行业难题。  鉴于此,王宁和袁益辉研究团队提出了一种以鸟嘌呤-四联体DNA(脱氧核糖核酸)结构实现超灵敏和高选择性检测Sr2+离子的方法。该团队通过利用荧光染料硫黄素T触发DNA折叠,形成鸟嘌呤-四联体DNA结构,并利用Sr2+与该DNA结构的高结合亲和力,取代结构中的荧光染料硫黄素T,从而导致荧光强度衰减。  此项研究提供了一种快速高选择性核污染检测技术的方法,首次实现低至2.11纳摩的检测限,具有超高灵敏度、高选择性、广泛适用性和高可靠性。
  • 毒豆芽检测色谱耗材选择指南
    豆芽常检有毒有害成分:2,4-D(2,4-二氯苯氧乙酸)、4-氯苯氧乙酸钠、6-苄基腺嘌呤、尿素、恩诺沙星、亚硝酸盐与硝酸盐、亚硫酸盐、赤霉素 据中新网沈阳4月18日报道,沈阳市公安局皇姑分局端掉6个黄豆芽黑加工点,查获掺入非食品添加剂豆芽25余吨,主要送往饭店做水煮鱼和水煮肉片底料。经检测,豆芽中含有亚硝酸钠、尿素、恩诺沙星、6-苄基腺嘌呤激素,其中,人食用含亚硝酸钠的食品会致癌,恩诺沙星是动物专用药,禁止在食品中添加。我司现根据DB33/625.2-2007《无公害豆芽质量安全要求》和《DB11/T 379-2006》豆芽中4-氯本氧乙酸钠、6-苄基腺嘌呤、2,4-滴、赤霉素、福美双的测定方法汇总出其中所需要色谱耗材供大家参考和选择。 下载pdf: 毒豆芽检测色谱耗材选择指南.pdf粮食和蔬菜中2,4-滴残留量的测定(GB/T 5009.175-2003) 试样中2,4-滴用有机溶剂提取,用三氟化硼丁醇溶液将2,4-滴衍生成2,4-滴丁酯,液液萃取,柱层析净化除去干扰物质,以气相色谱电子捕获检测器测定,依据色谱峰保留时间定性,外标法面积定量。上述带*号产品选择的说明:a.在订购2,4标准品(CDCT-C11940000)后是进行甲酯还是丁酯衍生化? 国标方法中是采用14%三氟化硼丁醇溶液(CFFC-X0034-1SET)进行丁酯化,北京地方标准方法上采用的是14%三氟化硼甲醇溶液(CFEQ-4-110056-0250)进行甲酯化后检验,从经济的角度和购买的方便性上考虑,我们推荐使用甲酯化的方法,当然,您也可以根据方法需要选择丁酯化方法。b. 是否还需要购买2,4-D甲酯标准品(CDCT-C11945000)或者2,4-D丁酯标准品(CDCT-C11941000)? 若您选择甲酯化方法,2,4-D经14%三氟化硼甲醇溶液(CFEQ-4-110056-0250)衍生化为2,4-D甲酯,您可选择购买2,4-D甲酯标准品(CDCT-C11945000); 若你选择丁酯化方法,2,4-D经10-20%三氟化硼丁醇溶液(CFFC-X0034-1SET)衍生为2,4-D丁酯,您可选择购买2,4-D丁酯标准品(CDCT-C11941000)。 选择2,4-D甲酯标准品或者2,4-D丁酯标准品有助于判断2,4-D甲酯或者2,4-D丁酯气相色谱出峰保留时间和计算2,4-D甲酯或者丁酯衍生化过程转化率。 2,4-D甲酯标准品和2,4-D丁酯标准品都是备选产品,可根据您需要选择购买或者不购买。豆芽中4-氯苯氧乙酸钠的测定(DB11/T 379&mdash 2006) 试样中的4-氯苯氧乙酸钠用稀碱提取后,在酸性条件下用固相萃取柱将样品中的4-氯苯氧乙酸吸附,使其与基体干扰物分离,再用甲醇洗脱并用高效液相色谱法测定,以保留时间定性,外标法峰面积定量。 豆芽中6-苄基腺嘌呤的测定(DB11/T 379&mdash 2006) 豆芽中残留的6-苄基腺嘌呤经酸化甲醇提取后,高效液相色谱法测定,以保留时间定性,外标法峰面积定量。豆芽菜中尿素测定参考《豆芽菜中尿素测定的异常现象分析及方法改进》 正常的绿豆芽在生芽过程中,应不添加任何物质,但其生长过程缓慢、周期长,为加速生长周期,人为的加入尿素促进其生长,使芽变粗变长,但也使豆芽中尿素残留增加,对人体健康构成危害。 检测原理:尿素和亚硝酸钠在酸性溶液中生成二氧化碳和氨的气体,当加入格里斯千试剂时,掺有尿素的样品呈现黄色外观,正常的样品呈现紫红色。注意事项:a.浓硫酸加入量 由于样品的取样量少,少量的浓硫酸即可达到所需的强酸性,因此,建议将浓硫酸的加入量改为0.5ml,为原方法用量的一半;b.亚硝酸钠加入量,当溶液中亚硝酸盐含量高时,与显色剂作用,可呈现黄色,是因为产生的偶氮色素被过量的亚硝酸氧化褪色适当的稀释后方可产生正常紫红色。因为样品中尿素的含量相对较低,它只能与少量的亚硝酸钠作用,当加入过量的亚硝酸钠时,剩余的亚硝酸钠就会将产生的偶氮色素氧化,使之褪色而产生黄色,造成假阳性,故亚硝酸钠的添加量非常关键。当亚硝酸钠的用量减少一半时,但显色效果不明显,当减少到1/4用量时,颜色反应非常灵敏,空白及阴性对照管呈紫红色,阳性管呈黄色,根据尿素的有无样品呈现出不同的颜色。 除产品描述外,上述内容均摘自宋晶瑶、赵玉梅、王琳《豆芽菜中尿素测定的异常现象分析及方法改进》   毒豆芽中恩诺沙星检参考:GB/T 21312-2007 动物源性食品中14中喹诺酮药物残留检测方法 液相色谱-质谱/质谱法 方法提要:用0.1mol/LEDTA-Mcllvaine缓冲液(pH4.0)提取样品中的喹诺酮类抗生素,经过滤和离心后,上清液经HLB固相萃取柱净化,高效液相色谱-质谱/质谱测定,用阴性样品基质加标法定量。 GB 5009.33-2010 食品中亚硝酸盐与硝酸盐的测定第一法 离子色谱法 试样经沉淀蛋白质、除去脂肪后,采用相应的方法提取和净化,以氢氧化钾溶液为淋洗液,阴离子交换柱分离,电导检测器检测。以保留时间定性,外标法定量。第二法 分光光度法 亚硝酸盐采用盐酸萘乙二胺法测定,硝酸盐采用镉柱还原法测定。试样经沉淀蛋白质、除去脂肪后,在弱酸条件下亚硝酸盐与对氨基苯磺酸重氮化后,再与盐酸萘乙二胺偶合形成紫红色染料,外标法测得亚硝酸盐含量。采用镉柱将硝酸盐还原成亚硝酸盐,测得亚硝酸盐总量,由此总量减去亚硝酸盐含量,即得试样中硝酸盐含量。 GB/T 5009.34-2003食品中亚硫酸盐的测定第一法 盐酸副玫瑰苯胺法 亚硫酸盐与四氯汞钠反应生成稳定的络合物,再与甲醛及盐酸副玫瑰苯胺作用生成紫红色络合物,与标准系列比较定量。SN 0350-95 出口水果中赤霉素残留量检验方法 以丙酮提取样品中赤霉素,然后用乙酸乙酯提取,再用缓冲溶液凡提取后,在薄层层析板上除去干扰物质,最后用荧光分光光度法测定。了解更多检测方法请进入上海安谱公司网站: www.anpel.com.cn
  • 山东这9批次不合格食品检出农兽药残留超标问题,看看你买过吗?
    4月3日,山东省市场监督管理局发布2023年第8期(总第404期)通告,检出不合格食品15批次,其中,有9批次食品检出农兽药残留问题。   抽检信息显示,不合格产品分别为东明汇益客商贸有限公司销售的鲤鱼(淡水鱼),地西泮不符合食品安全国家标准规定;罗庄区桂霞蔬菜配送店销售的辣椒(青椒),噻虫胺和噻虫嗪不符合食品安全国家标准规定;城阳区薛金鹏蔬菜批发部销售的韭菜,腐霉利不符合食品安全国家标准规定;济宁经济开发区马集镇北美联华商贸马集加盟店销售的芒果,吡唑醚菌酯不符合食品安全国家标准规定;单县方坤工业品有限责任公司环亚商城府东店销售的豆角,甲氨基阿维菌素苯甲酸盐不符合食品安全国家标准规定;博兴县博昌办事处佑鲜生副食店销售的韭菜,腐霉利不符合食品安全国家标准规定;银座集团济南长清购物广场有限公司销售的生姜,噻虫胺和噻虫嗪不符合食品安全国家标准规定;青岛家得乐商贸有限公司销售的黄豆芽,4-氯苯氧乙酸钠(以4-氯苯氧乙酸计)和6-苄基腺嘌呤(6-BA)不符合食品安全国家标准规定;博山区保国蔬菜水果店销售的香蕉,吡虫啉不符合食品安全国家标准规定。   噻虫胺属新烟碱类杀虫剂,具有内吸性、触杀和胃毒作用,对姜蛆、蚜虫、斑潜蝇等有较好防效。少量的残留不会引起人体急性中毒,但长期食用噻虫胺超标的食品,对人体健康可能有一定影响。《食品安全国家标准 食品中农药最大残留限量》(GB 2763—2021)中规定,噻虫胺在根茎类蔬菜中的最大残留限量值为0.2mg/kg,在茄果类蔬菜(番茄除外)中的最大残留限量值为0.05mg/kg。   噻虫嗪是烟碱类杀虫剂,具有胃毒、触杀和内吸作用,对蚜虫、蛴螬等有较好防效。少量的残留不会引起人体急性中毒,但长期食用噻虫嗪超标的食品,对人体健康可能有一定影响。《食品安全国家标准 食品中农药最大残留限量》(GB 2763—2021)中规定,噻虫嗪在根茎类蔬菜(芜菁除外)中的最大残留限量值为0.3mg/kg,在辣椒中的最大残留限量值为1mg/kg。   甲氨基阿维菌素苯甲酸盐是一种大环内酯类杀虫剂,具有触杀、胃毒和组织渗透作用。少量的残留不会引起人体急性中毒,但长期食用甲氨基阿维菌素苯甲酸盐超标的食品,可能对人体健康有一定影响。《食品安全国家标准 食品中农药最大残留限量》(GB 2763—2021)中规定,甲氨基阿维菌素苯甲酸盐在豆类蔬菜(菜豆、菜用大豆除外)中的最大残留限量值为0.015mg/kg。   地西泮为苯二氮卓类镇静催眠药,临床上具有抗焦虑、镇静催眠、抗惊厥、抗癫痫及中枢性肌肉松弛作用。长期食用地西泮残留超标的食品,对人体健康可能有一定影响。《食品安全国家标准 食品中兽药最大残留限量》(GB 31650—2019)中规定,地西泮为允许作治疗用,但不得在动物性食品中检出的兽药。   吡唑醚菌酯为杀菌剂,属于甲氧基氨基甲酸酯类,通过抑制菌株的呼吸作用,进而达到杀菌的效果。少量的残留不会引起人体急性中毒,但长期食用吡唑醚菌酯超标的食品,对人体健康可能有一定影响。《食品安全国家标准 食品中农药最大残留限量》(GB 2763—2021)中规定,吡唑醚菌酯在杧果中的最大残留限量值为0.05mg/kg。   腐霉利是一种广谱内吸性的高效杀菌剂,对低温高湿条件下发生的灰霉病、菌核病有显著效果,但菌株容易对其产生抗性。少量的残留不会引起人体急性中毒,但长期食用腐霉利超标的食品,对人体健康可能有一定影响。《食品安全国家标准 食品中农药最大残留限量》(GB 2763—2021)中规定,腐霉利在韭菜中的最大残留限量值为0.2mg/kg。   4-氯苯氧乙酸钠(以4-氯苯氧乙酸计)又称防落素、保果灵,是一种植物生长调节剂。主要用于防止落花落果、抑制豆类生根等。根据原国家食品药品监督管理总局、农业部、国家卫生和计划生育委员会2015年第11号《关于豆芽生产过程中禁止使用6-苄基腺嘌呤等物质的公告》规定,4-氯苯氧乙酸钠作为低毒农药登记管理并限定了使用范围,豆芽生产不在可使用范围之列,目前在豆芽生产过程中使用上述物质的安全性尚无结论。但为确保豆芽食用安全,豆芽生产过程中不得使用上述物质。   6-苄基腺嘌呤是一种生长调节剂,可以促进细胞分裂,加快豆芽生长。根据原国家食品药品监督管理总局、农业部、国家卫生和计划生育委员会2015年第11号《关于豆芽生产过程中禁止使用6-苄基腺嘌呤等物质的公告》规定,6-苄基腺嘌呤作为低毒农药登记管理并限定了使用范围,豆芽生产不在可使用范围之列,目前在豆芽生产过程中使用上述物质的安全性尚无结论。但为确保豆芽食用安全,豆芽生产过程中不得使用上述物质。   吡虫啉属内吸性杀虫剂,具有触杀和胃毒作用。少量的残留不会引起人体急性中毒,但长期食用吡虫啉超标的食品,可能对人体健康有一定影响。《食品安全国家标准 食品中农药最大残留限量》(GB 2763—2021)中规定,吡虫啉在香蕉中的最大残留限量值为0.05mg/kg。   对上述抽检中发现的不合格产品,当地市场监管部门已责令生产经营者查清产品流向,召回、下架不合格产品,控制风险,并分析原因进行整改,涉及的不合格产品已按要求开展核查处置工作。 部分不合格产品信息(来源:山东省市场监督管理局)
  • 重磅成果:再帕尔阿不力孜、贺玖明研究团队利用空间代谢组学技术绘制大鼠脑代谢网络图
    2021年4月,中国医学科学院药物研究所天然药物活性物质与功能国家重点实验室再帕尔阿不力孜、贺玖明团队在分析化学一区《Analytical Chemistry》期刊发表封面文章,题为“Mapping metabolic networks in the brain by using ambient mass spectrometry imaging and metabolomics”的研究成果,采用自主研发的质谱成像空间代谢组学技术,全面绘制了大鼠脑代谢网络,深入解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化。  封面文章  研究背景  大脑是结构最复杂的器官之一,主要功能与其微区的分子相互作用密切相关。大脑的小分子调节机制对理解中枢神经功能、精神疾病机理和药物研发有很大的帮助。动物的认知过程和行为控制均依赖于脑部强大的中枢神经网络——神经连接体。科学家进行了很多研究,但是对脑部小分子网络的研究仍有不足。  分子成像技术是研究大脑中DNA、RNA、蛋白质和代谢产物的强大工具。质谱成像技术(MSI)是一种检测大脑中蛋白质、代谢物和脂质物质的高灵敏度和高通量分子成像技术,在肿瘤边缘诊断、肿瘤生物标志物发现、药物分布和机理阐述等领域有广泛的应用。  本文作者开发了一种基于敞开式空气动力辅助解吸电喷雾离子化质谱成像(AFADESI-MSI)技术的代谢网络映射方法,对大鼠脑不同极性的小分子代谢物(m/z 50-500 Da)进行微区分布研究,不仅鉴定出脑部几乎所有重要的代谢物,还绘制了包含神经递质、嘌呤,有机酸,多胺,胆碱、碳水化合物和脂类等20条通路的代谢网络,并使用这种代谢网络映射质谱成像方法解析了东莨菪碱致大鼠记忆功能障碍模型脑的代谢变化,为中枢神经系统疾病的治疗提供新的信息和见解。研究思路  研究方法  1.样本准备  Sprague-Dawley大鼠模型腹腔注射东莨菪碱后被杀死(处理组,3只),对照组大鼠(3只)也用同样方法杀死。获取大鼠整个大脑,在低温下将大脑切成连续的矢状切片(暴露出海马和纹状体),用于Nissl 染色、H&E染色和质谱成像检测。  2.空间代谢组实验  使用AFADESI-MSI分析,代谢物质量数范围50-500 Da,质谱分辨率70,000。  3.数据处理和代谢网络分析  原始数据经过转化,再使用自建MassImager软件获取成像结果 在获取差异代谢物的高分辨率质谱信息后,使用Metaboanalys在线数据挖掘软件以褐家鼠(rattus norvegicus)为参考完成代谢物高通量定性,并输出代谢网络信息。大脑中复杂网络可视化使用Cyctoscope软件完成。  4.统计分析  两组大脑样本选择相同的微区,并将组织学和特征离子图像叠加进行确认。数据处理结果使用t检验(n = 3)进一步验证。大脑微区包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑。  研究结果  1.AFADESI-MSI用于大脑中极性代谢物的定位  如图1所示,将大鼠大脑连续矢状切面通过ESI探针对逐个像素进行扫描,并将解吸的代谢物离子传输到高分辨率质量分析仪进行分析。图1E是大鼠脑部某个像素点的一个代表性质谱图,在该图中可以观察到数千个代谢物的峰。AFADESI-MSI图像还表明脑部不同功能性区域中代谢物浓度的变化。图1A-D显示了代表性代谢产物图像,在松果体、纹状体、海马、胼胝体和嗅球等亚区域具有特定分布。这些异质代谢分布与大鼠脑的功能和结构复杂性高度一致。  实验结果表明,AFADESI-MSI的空间分辨率小于100μm,代谢物质量最大差异为0.001Da,同一物质的检测动态范围高达1000倍。如图1所示,通过AFADESI-MSI可在大鼠脑部检测到一些呈特征性分布有代表性的极性代谢物,其强度范围从0到104甚至到106。  图1 (A-E)使用AFADESI-MSI获得的用于构建大鼠大脑代谢网络图的代表性极性内源性代谢物   (F)AFADESI-MSI数据采集过程   2.在大鼠脑绘制特定区域分布的极性代谢物图谱  使用AFADESI-MSI在正离子和负离子模式下分别获得298个和372个微区轮廓清晰的代谢物离子图像。使用精确分子量并结合同位素丰度,通过人类代谢组数据库(HMDB)对离子图像进行识别,鉴定出多种内源极性代谢物,包括氨基酸、核苷酸或核苷、碳水化合物、脂肪酸和神经递质等。  中枢神经系统(CNS)的特定功能和特定解剖区域相关。例如,乙酰胆碱在大脑皮层中高度表达 γ-氨基丁酸是一种抑制性神经递质,其在大脑皮层的信号强度较低,在中脑、嗅球和下丘脑中的浓度较高 多巴胺在纹状体含量较高 组胺(一种兴奋性神经递质)主要分布于丘脑和下丘脑。松果体在睡眠和光周期调节中起着重要的作用,并且由于其体积小容易被忽视。在松果体区域中,作者检测到106种极性代谢物,例如吲哚乙醛、吲哚、5' -甲硫基腺苷和褪黑激素,它们在该微结构的表达最高。褪黑激素由松果体分泌,起到调节昼夜节律的作用。质谱成像结果表明褪黑激素只能在松果体检测到。褪黑激素的上游代谢物血清素(5-HT)在松果体中也有特定的分布。此外一些未知的代谢物也仅在大鼠大脑的某个很小但特定的区域中。以上结果表明,AFADESI-MSI方法可以直接检测极性代谢产物,并具有高特异性,能呈现其在大脑微区分布的图像。  3.在大鼠脑中绘制微区代谢网络图  要了解大脑的结构区域发生的复杂代谢过程,不仅应准确表征代谢物,还要研究其相关性。从大鼠脑微区中提取代谢谱进行代谢网络重建。从15个微区提取的MSI数据进行峰挑选和峰对齐(图1F),包括松果体、中脑导水管、脑桥、梨状皮质、延髓、丘脑、纹状体、海马、胼胝体、嗅球、大脑皮层、小脑皮层、穹窿、小脑延髓和丘脑,然后使用基于KEGG数据库的Metaboanalyst软件进行代谢网络分析。共找到20条KEGG代谢通路,包含126个具有微区信息的代谢物,图2显示了涉及丙氨酸-天冬氨酸和谷氨酸代谢、花生四烯酸代谢、精氨酸和脯氨酸代谢、肌酸途径、GABA能突触、葡萄糖代谢、谷胱甘肽代谢、甘油磷脂代谢、甘氨酸-丝氨酸和苏氨酸的代谢、组氨酸代谢、赖氨酸代谢、苯丙氨酸代谢、多胺代谢途径、嘌呤代谢、嘧啶代谢和TCA循环、色氨酸代谢、酪氨酸代谢、缬氨酸-亮氨酸和异亮氨酸代谢和类固醇激素合成途径。质谱成像方法提供了一种直接获取代谢网络信息的途径,以系统地深入了解大脑的代谢活动。  图2 通过AFADESI-MSI和Metaboanalyst获得的大鼠脑中的代谢网络  图3A展示了嘌呤代谢的分布和代谢途径,共包含17个核苷酸及相关代谢产物,饼图代表了某种代谢物在不同大脑微区的相对含量和分布,图3A中显示出不同代谢物的不同局部特征。例如腺嘌呤核糖核苷酸(AMP)和鸟苷酸(GMP)在大脑皮层和松果体中高表达,但在胼胝体和穹窿中含量较低。图3B显示了大脑不同区域的AMP分布,AMP在大脑皮层和松果体中含量很高,而在胼胝体和穹窿中含量较低。这些结果表明,大脑中代谢物分布呈现出功能性区域的差异性。这些空间和代谢途径的上游-下游转换过程为大脑局部代谢活动提供丰富信息。也证明质谱成像方法能够提供直接获取代谢网络信息的方法。  图3 (A)通过AFADESI-MSI获得的大鼠脑中嘌呤代谢途径和相关代谢产物分布   (B)腺嘌呤核糖核苷酸(AMP)在大鼠脑不同区域的分布   4.神经递质的代谢网络解析  神经递质在大脑不同区域具有极为复杂的代谢调节网络,使这些区域的中枢神经能够从事复杂的活动。作者分析了关键神经递质的代谢调控网络,分别为多巴胺、γ-氨基丁酸、腺苷、组胺、乙酰胆碱、5-羟色胺、谷氨酸和谷氨酰胺。图4A显示了神经递质以及相关代谢产物在大鼠脑的分布特征,它们联系非常紧密(图4B),这些神经元彼此相互作用并形成复杂的调节网络。  图4 |(A)大鼠脑中神经递质及其相关代谢产物的分布   (B)神经递质调节和代谢网络   5.从大鼠脑的代谢网络映射中发掘空间变化  东莨菪碱治疗的大鼠是一种学习和记忆障碍模型,通常用于研究抗遗忘药疗效。本文作者使用AFADESI-MSI分析了对照组和东莨菪碱治疗的大鼠矢状脑切片,将发现的代谢物全面映射代谢网络,并通过代谢组学分析发现空间代谢变化。不仅可以对药物准确定量,还可以检测代谢网络相关的数百种内源性代谢物在大脑特定区域的分布。图5显示了代谢网络中检测到的各种代谢物,以及在不同大脑微区代谢物的明显改变。如图5A所示,找到三种代谢物(N-甲酰基尿氨酸、L-色氨酸和5-羟色氨酸),属于色氨酸代谢途径,意味着东莨菪碱会干扰色氨酸的代谢过程。作者分析了东莨菪碱治疗组大鼠脑的十个微区,发现脑桥中有16种表达异常的代谢产物,而在大脑皮层中发现了7种。表明在东莨菪碱治疗下,脑桥和大脑皮层可能是受影响最严重的区域。  图5 东莨菪碱模型大脑中极性代谢网络的变化  图6显示了其中几种异常表达的代谢产物的分布,例如腺嘌呤在小脑皮层被下调 组胺在中脑导水管中下调 桥脑中的磷酸乙醇胺、大脑皮层中的2-氧戊二酸、纹状体中的多巴胺、胼胝体中的抗坏血酸、下丘脑中的谷胱甘肽、小脑皮层中的L-天冬氨酸和L-天冬氨酸也有所变化,这些代谢物的质谱成像结果(图6A-H)和相对定量结果(图6I1-18)进一步表明,大脑中药物作用后代谢物的多样性和区域特异性。这些代谢物不分区分析、含量进行全脑平均后,代谢物的微区含量差异很容易被削减。在空间上的代谢变化表明,在东莨菪碱治疗后,大鼠脑微区的代谢网络发生紊乱。但是代谢物和代谢酶是代谢网络的关键因素,基于空间分辨的代谢组学信息为发现酶或基因异常提供了线索,但若要完成完整的代谢网络分析必须进一步验证蛋白质和基因表达水平。  图6 在东莨菪碱治疗后大鼠模型的脑部质谱成像结果和代谢产物的统计结果  研究结论  本文作者开发了一种空间分辨代谢网络作图方法,通过无需衍生化、特定标记或复杂样品预处理的高通量AFADESI-MSI方法和代谢组学策略,在具有复杂结构化脑组织中发现代谢分子变化。能检测出多种极性内源性代谢物,并绘制相关代谢网络,提供组织微区分布的图谱。还将多种功能性小分子(例如核苷酸、多胺、肌酸、神经酰胺代谢物)含量分布可视化。这些代谢物构成大鼠脑关键代谢网络,为理解大鼠脑的作用机制和功能探索提供新的见解。在本文中,该方法被用于东莨菪碱处理的大鼠模型脑部的代谢研究。结合微区统计数据,该方法可以绘制代谢网络图、发现某些途径代谢产物的明显失调,而且还能描绘与神经疾病直接相关微区中发生的代谢变化。
  • 农业部就《食品中195种农药最大残留限量》征求意见
    农农(农药)[2011]第20号  根据《食品安全法》及相关规定,我司组织拟订了《食品中2,4-滴等195种农药最大残留限量》和《豁免残留限量农药名单》等2项食品安全国家标准征求意见稿。现公开征求意见,请于2011年8月15日前将意见反馈我部农药检定所。  联 系 人:单炜力  电  话:010-59194253  传  真:010-59194107  电子邮箱:nyclbz@agri.gov.cn  农业部种植业管理司附录:《食品中2,4-滴等195种农药最大残留限量》附表: 豁免制订食品中最大残留限量标准的农药名单序号农药(中文)农药(英文)1矿物油petroleum oil2石硫合剂lime sulfur3硫磺sulfur4硅藻土silicon dioxide5苏云金杆菌bacillus thuringiensis(Bt)6荧光假单胞杆菌pseudomonas fluorescens7枯草芽孢杆菌brevibacterium8蜡质芽孢杆菌bacillus cereus9地衣芽孢杆菌bacillus licheniformis10短稳杆菌empedobacter brevis11多粘类芽孢杆菌paenibacillus polymyza12放射土壤杆菌agrobacterium radibacter13木霉菌trichodermasp14白僵菌beauveria15淡紫拟青霉菌paecilomyces lilacinus16厚孢轮枝菌verticillium chlamydosporium 17耳霉菌conidioblous thromboides18绿僵菌metarhizium anisopliae var acridum19寡雄腐霉菌pythium oligadrum20菜青虫颗粒体病毒pierisrapae granulosis virus(PrGV)21茶尺蠖核型多角体病毒ectropis oblqua hypulina nuclear polyhedrosis virus(EONPV)22松毛虫质型多角体病毒dendrolimus punctatus cytoplasmic polyhedrosis virus(DpCPV)23甜菜夜蛾核型多角体病毒spodoptera litura nuclear polyhedrosis virus(SpltNPV)24粘虫颗粒体病毒pseudaletia unipuncta granulosis virus(PuGV)25小菜蛾颗粒体病毒plutella xylostella granulosis virus (PxGV)26斜纹夜蛾核型多角体病毒spodoptera litura nucleopolyhedrovirus (SINPV)27棉铃虫核型多角体病毒helicoverpa armigera nuclear polyhedrosis virus(HaNPV)28苜蓿银纹夜蛾核型多角体病毒autographa californica nuclear polyhedrosis virus(AcNPV)29三十烷醇triacontanol30赤霉酸gibberellic acid31地中海实蝇引诱剂trimedlure32聚半乳糖醛酸酶polygalacturonase33烯腺嘌呤enadenine34苄氨基嘌呤6-benzylamino-purine35羟烯腺嘌呤oxyenadenine36超敏蛋白Harpin protein37S-诱抗素S-Abscisic Acid38香菇多糖fungous proteoglycan39几丁聚糖chltosan40葡聚烯糖pujuxitang41氨基寡糖素oligosaccharins
  • 分子植物卓越中心等发现新型植物RNA低温感受器
    低温胁迫是限制植物分布的主要环境因素之一,感知低温信号是植物适应寒冷环境的基础。植物在低温中呈现出生长减缓、开花延迟等表型以适应低温环境。鉴定植物的冷感受器是解析植物低温感知分子机制的关键。   10月20日,中国科学院分子植物科学卓越创新中心/CAS-JIC植物和微生物科学联合研究中心研究员杨小飞研究组、东北师范大学教授张铧坤研究组,以及英国约翰英纳斯中心(John Innes Centre,JIC) 研究员丁一倞研究组合作,在《自然-通讯》(Nature Communications)上,发表了题为RNA G-quadruplex structure contributes to cold adaptation in plants的论文。   温度依赖的大分子结构变化决定生物大分子发挥细胞温度计的功能,如蛋白质、核糖核酸等。为寻找与温度感知有关的RNA结构域特征,科研团队对1000种植物转录组项目(1KP)的RNA序列开展研究。该研究对其中的906种陆生植物与环境因素的相关性分析表明,生长在低温地区的植物RNA中普遍富含鸟嘌呤(Guanine)。鸟嘌呤(G-rich)序列在体外可以折叠为特殊的鸟嘌呤四链体(RNA G-quadruplex,RG4)结构,耐寒植物中具有更多的RG4结构,暗示富含G-rich序列与植物的耐寒性有关。   为探究RG4折叠与冷响应间的关系,科研人员对模式植物拟南芥进行低温处理,并利用此前开发的RG4检测方法SHALiPE-seq对体内RG4折叠进行定量检测。结果表明,低温处理显著诱导植物体内RG4结构的折叠,证明植物RG4具有感知低温的能力。研究系统分析了拟南芥的mRNA降解组数据,发现包含有冷诱导RG4的mRNA降解速率明显降低,暗示RG4或抑制了mRNA的降解。为验证RG4结构在mRNA降解中的作用,科研团队挑选了一个受低温显著诱导的RG4基因,命名为CORG1。通过碱基替换将G突变为A,可将包含RG4结构的野生型wtRG4-CORG1突变为不能形成RG4结构mutRG4-CORG1基因。进一步研究发现,mutRG4-CORG1在冷胁迫中的降解速率显著高于wtRG4-CORG1的降解速率,证明低温诱导的RG4结构形成抑制mRNA的降解。同时,低温对mutRG4-CORG1的转基因植物的生长抑制也明显弱于wtRG4-CORG1的拟南芥,表明RG4结构突变降低植物对低温响应的敏感性。   综上所述,冷处理诱导植物mRNA的RG4折叠,进一步选择性抑制mRNA的降解从而减缓植物在低温环境下的生长速度。转录组中RG4结构的选择性富集帮助陆生植物感知低温信号,促进植物对寒冷环境的适应性进化。该研究迄今为止首次发现RG4结构抑制mRNA的降解,阐明了RG4结构的全新分子调节功能,且RG4结构是植物中发现的第一个RNA低温感受器。美国哈佛大学和耶鲁大学研究人员对动物细胞的同期研究工作表明,多种胁迫因素(如低温、饥饿)促进3’UTR的RNA结构折叠,并提高mRNA的稳定性(https://www.biorxiv.org/content/10.1101/2022.03.03.482884v1)。这些研究暗示环境依赖的RNA结构折叠作为胁迫感受器,在自然界广泛存在。   研究工作得到国家自然科学基金、英国生物技术与生物科学研究委员会基金和欧洲研究委员会基金等的支持。耐寒植物中的RG4富集提高了植物对寒冷环境的感知能力
  • 浅谈小核酸的固相合成
    近年来由于核酸修饰和递送载体的突破,带来了变革性疗法的创新浪潮,其中被认为是继小分子药物、抗体药物之后第三代创新药物核酸药物迎来了爆发式增长,其优势在于广泛的可成药靶点、特异性强、安全性高、效果持久、开发成功率高和制造成本低等。寡核苷酸药物,即小核酸药物,是由十几个到几十个核苷酸串联组成的短链核酸,目前小核酸药物主要包括 RNAi 药物和 ASO 药物,作用于pre-mRNA或mRNA,通过干预靶标基因表达实现疾病治疗目的。目前小核酸药物大多通过亚磷酰胺三酯合成法进行合成。化学合成按照3'-5'的方向进行。常用的固相载体为可控微孔玻璃珠(CPG)或者聚苯乙烯微珠(PS beads),固相载体通过linker与初始核苷酸核糖的3'-OH共价结合,而核糖的2'-OH用诸如叔丁基二甲基硅基(TBDMS)的保护试剂进行保护,或是核糖的2端有甲氧基、F代、甲氧乙基等修饰,5'-OH则用双甲氧基三苯甲基(DMT)保护。此外,由于腺嘌呤、鸟嘌呤和胞嘧啶存在伯氨基团,也需要用酰基试剂(例如苯甲酰基)进行保护。固相合成每个循环主要包括四个步骤:脱保护、偶联、氧化和加帽。第一步 脱保护(Detritylation)使用溶解在二氯甲烷/甲苯中的二氯乙酸(DCA)或三氯乙酸(TCA)移除核糖5端的DMT基团,暴露5'-OH,以供下一步偶联。脱保护时间取决于流速和柱子尺寸,反应时间不够/脱保护剂酸性太弱会产生n-1杂质(与完整长度为n的寡核苷酸相比仅相差一个核苷酸);反应时间太长/脱保护剂酸性太强则导致序列中脱嘌呤的产生。反应完成后,用乙腈洗涤去除残留的脱保护剂,此步骤中乙腈含水量一般小于20ppm,乙腈需要使用较高流速去冲洗合成柱,脱保护试剂冲洗不干净导致n+杂质的产生。第二步 偶联(Coupling)合成目标的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3端被活化,5端羟基仍然被DMT保护,与溶液中游离的5端羟基发生偶联反应。为了保证较高的总产率,每个循环中都需要有较高的偶联效率。n-1杂质是偶联中最常见的杂质,它们是偶联效率低于100%的结果。与FLP相比,更高分子量的杂质(例如n+1)也存在于偶联步骤中,n+杂质的形成归因于活化剂四氮唑的弱酸性能移除一部分亚磷酰胺溶液中的DMT基团。第三步 氧化(Oxidation)偶联反应后新加上的核苷酸通过亚磷酯键(三价磷)与固相载体上的寡核苷酸链相连。亚磷酯键不稳定,易被酸、碱水解,在下一个循环的脱保护酸性环境中不稳定,因此需要被氧化成稳定的五价的磷。磷酸二酯键中的2-氰乙基保护基团可以使其在后续合成中更稳定。常用碘溶液将亚磷酰转化为磷酸三酯,得到稳定的寡核苷酸。此外通过将一个硫原子转移到P(三价)上也可以将其转化为P(五价),从而形成硫代磷酸酯键。氧化剂与固相载体的接触时间通常为1-4分钟。第四步 加帽(Capping)由于不可能达到100%的偶联效率,仍存在脱保护后没有反应的5'-OH活性基团(一般少于2%),如果不加处理,那这些基团在下一个循环中仍能发生偶联,产生n-1杂质。通常使用两种试剂(通常使用醋酸酐和N-甲基咪唑的混合液作为加帽试剂)来酰化5'-OH。经过以上四个步骤,一个核苷酸碱基被连接到固相载体的核苷酸上,再以酸脱去它的5'-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。核酸合成系统就是将上述一系列化学合成过程进行自动化,精准化可控制的设备。仪器主要由柱塞系统泵、试剂阀、单体阀、试剂循环阀、紫外检测器、电导率、惰性气体控制盒、压力监测器、合成柱及软件控制系统等多个部分组成。大规模寡核苷酸合成系统采用流穿合成技术,泵精度高,规模广泛,滞留体积低,适用于不同规模和类型的寡核苷酸。其以灵活简便的方式创建和转移方法,为工艺开发和优化提供支持,同时系统先进的数据处理能力和分析工具可高效监测和控制合成。英赛斯大规模核酸合成系统
  • 欧盟廉价快速DNA基因组测序与解码技术获得突破
    欧盟第七研发框架计划(FP7)提供220万欧元资助,总研发投入290万欧元,由欧盟6个成员国及联系国塞尔维亚(总协调)、德国、英国、爱尔兰、瑞士和以色列跨学科科研人员组成的欧洲NANODNASEQUANCING研发团队。历时3年多的研发创新活动终于修成正果,即廉价快速的DNA基因组测序与解码技术获得重大突破。新技术每分钟可测序100万个碱基对,意味着人类个体约30亿DNA碱基对,完成DNA测序与解码仅需数小时。  NANODNASEQUANCING研发团队廉价快速的DNA基因组测序与解码技术,基于单个分子的电学特性,跳过了耗时费力又容易出错的DNA复制和化学反应步骤。研发团队在研究中发现,四大基本核苷酸碱基(Nucleotide Bases):腺嘌呤(Adenine)、鸟嘌呤(Guanine)、胞核嘧啶(Cytosine)和胸腺嘧啶(Thymine),在2伏特电压下均显示出导电性。根据此原理,研发团队设计开发出全新的紧凑型便携式DNA检测装置,促使DNA核苷酸碱基通过具有纳米结构侧电极(Side-Electrodes)的微细纳米孔(Tiny Nanopores)。试片充电后核苷酸碱基将自然形成DNA链排序。关键技术突破在于解决了离子阻塞电流和横穿电流通过纳米孔的DNA测序两大技术难关,并申请了单分子电学特性与DNA测序亚纳米结栅器件(Sub-Nanometre Junction-Gate Device)发明专利。  研发团队总协调人、塞尔维亚贝尔格莱德(Belgrade)物理研究所的塞黑奇(ZIKIC)教授称,廉价快速的人类DNA基因组测序与解码技术突破,应该成为科学史上的革命性事件。其开发应用前景如何评价均不过分,将为人类开启动植物个性化研究的全新路径。例如,医生可根据病患自身独特的DNA结构,早期诊断和治疗相关疾病。
  • 我国科学家研发出检测DNA中第五种碱基的新技术
    DNA的基本元素包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)和脱氧尿嘧啶(dU),然而目前还无法从单碱基分辨率水平上检测dU,严重影响了对dU功能的理解。近期,我国科学家研发出在单碱基分辨率水平上精准检测dU的新技术,研究成果发表在《Journal of the American Chemical Society》期刊,标题为“UdgX-Mediated Uracil Sequencing at Single-Nucleotide Resolution”。  该方法被命名为Ucaps-seq法(UdgX cross-linking and polymerase stalling sequencing)。研究人员利用从耻垢分枝杆菌中发现的新型糖苷酶UdgX,特异性地识别和切除DNA中的dU,形成的缺口与对应的核糖形成共价键,从而将其捕获。由于DNA高保真聚合酶碰到UdgX标记的dU缺口能原地“停车”,研究人员利用的DNA高保真聚合酶这一特性进一步确认了dU的位置。最后,结合高通量测序技术将“停车”信号放大,从而在单碱基水平上精准定位dU在DNA乃至基因组上的位置。  Ucaps-seq法是国际上第一个酶法检测DNA中的dU碱基的技术,灵敏性好、特异性强、分辨率高,将大大推进核酸序列检测、遗传密码破译和人类对核酸的认知。  注:此研究成果摘自《Journal of the American Chemical Society》期刊原文章,文章内容不代表本网站观点和立场,仅供参考。   论文链接:https://pubs.acs.org/doi/10.1021/jacs.1c11269
  • 太原食安委毒豆芽整治因无检测能力“形同虚设”
    3月12日,太原市食品安全委员会在全市范围内展开为期3个月的豆芽质量安全专项整治行动。记者4月15日采访得知,一个月里,12315(消费者投诉举报电话)和12331(食品药品投诉电话)没有接到一起群众关于问题豆芽的投诉,因为群众根本不知道自己买到的是不是问题豆芽。  当记者带着疑似问题豆芽拨通举报电话,被客服人员告知需自己到工商、食药监局、山西省检验检疫技术中心进行检测取证,但这几个部门均无法给出定论,疑似问题豆芽就这样因为检测难,逃脱了被举报的命运。  市民不知何为&ldquo 毒豆芽&rdquo 购买豆芽全凭感觉  &ldquo 您知道什么样的豆芽是问题豆芽吗?&rdquo 4月11日时许,正值早市高峰期,记者来到省城康乐街菜市场,向正在买菜的市民提出了这个问题,得到的答案大都是&ldquo 不知道&rdquo 。  在菜市场入口处的一家菜摊,一名约40多岁的阿姨正在挑选豆芽。记者问她选择豆芽的标准是什么,阿姨说:&ldquo 这家的豆芽又长又细,而且还有根尾巴。我觉得这样的豆芽就是新鲜的,应该不会有问题。&rdquo   记者随后走访了该市场的其余4家豆芽摊位,发现这里出售的主要是黄豆豆芽和绿豆豆芽。黄豆豆芽售价均为2.5元一斤,绿豆豆芽售价均为2元一斤。  有3家菜摊的摊主告诉记者,他们出售的豆芽是从河西批发市场批发的。只有一家摊主称豆芽是自己发的。  记者观察到,虽然豆芽的价格统一,但每家出售的豆芽粗细长短都有着明显的区别。各家摊主都称,自家的豆芽很新鲜、很安全,至于为何粗细长短不同,是因为&ldquo 发豆芽的时间长短不一&rdquo 导致的。  记者采访了解到,市民对于如何挑选豆芽标准不一,大多数人不知道问题豆芽有什么特征,只是凭感觉来购买。  一位市民对&ldquo 又细又长的豆芽是新鲜豆芽&rdquo 的说法并不赞同,她认为那样的豆芽是催熟的。还有的市民认为,&ldquo 粗短带弯&rdquo 的豆芽才是好豆芽&hellip &hellip   记者投诉疑似问题豆芽客服称需自己检测  3月12日,太原市食品安全委员会在全市范围内开展为期3个月的豆芽质量安全专项整治行动,全面整治豆芽生发、销售环节,依法打击豆芽生发过程中使用非食用物质和滥用食品添加剂的违法犯罪行为。  按照《豆芽卫生标准》《食品添加剂使用卫生标准》等,重点检查豆芽中是否含有亚硝酸钠、尿素、恩诺沙星、6-苄基腺嘌呤激素等食品禁止使用的添加剂。对于抽检发现使用上述添加物的,要及时送当地公安部门依法查处。并鼓励群众发现问题豆芽后,拨打12315、12331进行举报。  记者以消费者的身份拨通了消费者投诉举报电话12315,称买到了粗短且有些发黄的豆芽,怀疑是问题豆芽。客服人员表示,是否问题豆芽需要该辖区的工商所来鉴别,若情况属实,他们才受理投诉。  那么,如何鉴别豆芽是否有问题?记者采访了迎泽区工商所的一位工作人员,对方解释说:&ldquo 我们这里是无法鉴别问题豆芽的,需要联系太原市食药监局,如果真的检测出豆芽有问题,我们会做出进一步处理。&rdquo   记者接着拨通了食品药品投诉电话12331,称自己买到了疑似问题豆芽。客服人员表示,不能简单地凭描述就判断豆芽有问题。记者紧接着询问如何辨别问题豆芽,有无标准可供参考。  记者了解到,在打击问题豆芽行动开展的这一个月里,12315和12331均未接到群众投诉问题豆芽的举报电话。  省城仅一家单位能检测但目前不承揽业务  4月14日,记者带着分别在7家摊位购买的豆芽样品来到太原市食品药品监督管理局,询问如何检测问题豆芽。工作人员闫滨表示,目前市食药监局无法用实验来证实豆芽是否有问题,只能凭一些简单的方法来初步判断。而且现在也没有全国性的统一检测标准,即使检测出来,也没有标准作为参照。  哪个部门能检测豆芽是否含有禁止使用的添加剂呢?市食药监局综合协调处处长刘红保告诉记者,目前太原市只有山西省进出口检验检疫技术中心可以检测出豆芽是否有问题,且只能检测豆芽是否含有尿素和6-苄基腺嘌呤激素这两项,但需要举报人自己带样品去检测。  据记者了解,仅检测豆芽中是否含有6-苄基腺嘌呤激素这一项就需要花费上千元。太原市食品安全委员会相关负责人告诉记者,打击问题豆芽行动开始前,他们在万柏林区发现了3家制作疑似&ldquo 毒豆芽&rdquo 的小作坊。工作人员带着豆芽样品在省进出口检验检疫技术中心做了检测,测出含有6-苄基腺嘌呤激素,取缔了这3家豆芽作坊。这一检测过程持续了半个月,花费近7000元。  记者随后致电山西省进出口检验检疫技术中心,询问是否可以检测问题豆芽,接电话的工作人员表示,要请示领导。半小时后,记者再次拨通电话,工作人员回复:&ldquo 单位现在任务比较重,不承揽问题豆芽的检测业务。&rdquo 记者举报疑似问题豆芽的路就这样被堵上了。 晨报记者 赵云涛  编后语  豆芽虽小问题很大  面对日益严峻的食品安全问题,相关部门行动起来了,这是件好事。可豆芽质量安全专项整治行动开展一个月,没接到一起群众投诉举报。难道是老百姓对食品安全问题不在乎?还是太原市场上没有问题豆芽?应该都不是。  豆芽虽小,但只要牵涉到食品安全,问题就大了。我们的记者带着疑似问题豆芽走访了多个部门,始终无法判定豆芽是否有问题。没有证据就没办法举报,但去哪里找证据?我们陷入了死循环。退一步,即便山西省进出口检验检疫技术中心承揽个人申请的豆芽检测业务,又有多少人愿意为了检测2.5元一斤的豆芽而付出上千元的检测费呢?  现在,政策有了,行动也有了,但在离消费者最近的一环,豆芽质量安全专项整治行动被卡住了。所以,请再多走一步,给我们开一条从政策到行动的顺畅通道。
  • 葛瑛团队成果|通过平行代谢物提取和高分辨率质谱对人体心脏组织进行全面的代谢组学分析
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章:Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry[1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  心脏收缩需要持续的能量供应。作为一种“代谢杂食动物”,心脏利用多种代谢底物,如脂肪酸、碳水化合物、脂质和氨基酸等,来满足其高能量需求。然而,由于代谢物在极性尺度上具有广泛的覆盖范围,这使得它的提取和检测变得困难。因此,迫切需要对心脏的代谢产物进行全面的组学分析。本研究结合了平行代谢物提取和互补高分辨质谱检测的方法,对人类心脏进行了系统性代谢学分析。作者首先用六种提取方法获得了健康供体心脏组织的代谢物,包括三种单相提取,两次双相提取和一次三相提取,可以充分覆盖不同极性范围的代谢物。其中,单相的提取溶剂分别是100% 甲醇、80% MeOH 和乙腈/异丙醇/水(3:3:2),双相使用了Matyash和Bligh & Dyer法去萃取极性和非极性相,而三相则是进一步将非极性相分离成极性和中性脂质相,极性物质依然保留在水相中。紧接着,作者使用了两种互补的质谱平台进行代谢物检测:超高分辨傅里叶变换离子回旋共振质谱的直接进样(DI-FTICR)和高分辨率液相色谱四极杆飞行时间串联质谱(LC-Q-TOF-MS/MS)。总的实验流程如图1所示。这里总共鉴定到了1340种心脏代谢物,它们具有广泛的极性范围。本工作强调了平行提取和互补质谱检测技术在人类心脏代谢组研究中的重要性,其可作为帮助选择适当的提取和MS方法以研究特定类别代谢物的指南。    图1. 平行代谢物提取和高分辨率质谱检测的实验流程图。  为了捕获不同极性的代谢物,作者使用了六种提取方法获得了心脏组织的代谢物。单相法具有操作简便和通量较高的特点,但提取效率仍待提高。相对于单相法,多相提取可以覆盖更广泛极性范围的代谢物,但也需要注意一些代谢物可能在多相中分布,这会给检测和定量带来困难。比如,脂肪酰基链较短的酰基肉碱主要在极性相中存在,而较长链(C10)的酰基肉碱主要在非极性相中存在。DI-FTICR评估了六种提取方法的重现性,结果发现乙腈/异丙醇/水(3:3:2)在单相法中的重现性最好,两种双相法的重现性类似,但低相的Pearson相关性较低,说明了代谢物在跨相运动中有一定潜在困难。研究也发现不同提取方法均具有各自的提取特征,尤其在三相法中可以观察到更多的特征,它在极性相、极性脂质相和非极性脂质相中分别观察到了2275、541 和 443 个独特的SmartFormula注释。图2展示了六种方法通过DI-FTICR得到的代谢物SmartFormula注释,其中最大的三个交叉区域分别是六种方法共享、三相法特有和乙腈/异丙醇/水(3:3:2)特有的,分别有1287个、1010和703个,且发现多相提取的重叠度会更高。虽然在三相提取中可以获得更多的代谢特征,但该方法的重现性也最低。故对于发现代谢组学实验,Matyash提取法会更具优势,因为它可以鉴定到较多的已知代谢物,且重现性会更好。图2. 六种提取方法间代谢物SmartFormula注释的重叠情况(DI-FTICR)。  借助DI-FTICR平台,总共鉴定到9644个代谢特征,其中可以7156和1107个可以分配到SmartFormula注释和准确质量数。DI-FTICR在代谢物检测和鉴定方面具有强大优势,它可以给出准确的同位素分布,如图3B~3D所示。但需要注意的是,由于缺乏前端色谱分离,DI-FTICR对于异构体的分离检测能力有限,以及缺乏高通量的MS/MS分析。因此,作者利用LC-Q-TOF-MS/MS补齐了DI-FTICR检测平台的缺点。在LC-Q-TOF-MS/MS分析中,总共鉴定到21428个代谢特征,其中285个可通过比对二级谱图数据库来匹配确定。图4是鉴定到的代谢物和脂质。尽管与图3B~3C的酰基链组成相同,但在图4B~4C中可以通过观察酰基链的碎裂谱图得到脂质的酰基链信息。这说明LC-Q-TOF-MS/MS平台在获取更详细的酰基链信息方面的优势,但对于双键定位以及 sn1 和 sn2 定位等信息,还需要额外的实验去确定(如:衍生化和离子淌度)。此外,仪器参数设置也会影响到二级匹配评分。总的来说,相对单一的质谱检测平台,使用DI-FTICR MS和LC-Q-TOF-MS/MS平台可以增加心脏代谢组的覆盖范围。图3.使用LC-Q-TOF-MS/MS鉴定代谢物。(A)代表性的MS 谱图(100% MeOH),标注了SmartFormula注释和准确质量数,叠加实验质谱图(黑色)与理论质谱图(红色)以比较同位素分布 (C~D)FAHFA(40:5)、DG(32:0)和N-palmitoyl glutamic acid。图4.使用LC-Q-TOF-MS/MS鉴定代谢物,比较实验串联质谱图(黑色)与数据库质谱图(红色)。(A~D)N-acetyl-β-glucosaminylamine、DG(16:0_16:0)、FAHFA(18:1_22:4)和TG(18:1_18:1_18:2)。  使用多种提取和检测方法,本研究总共鉴定到了1340种心脏代谢物。每种提取方法都贡献了唯一检测到的代谢物。相较于提取效果最好的单一方法,平行提取可以检测到额外的350种代谢物。单相法可以鉴定到更多与二级谱图相匹配的代谢物,而多相法可以得到更多具有准确质量数的代谢物(图5A)。如图5B所示,三相法富集到的代谢物种类最多,包含甘油磷酸乙醇胺(PE)、脂肪酸和偶联物、三酰基甘油、脂肪酸酯和其他代谢物。此外,Matyash法可以鉴定到更多的氨基酸、甘油磷酸甘油和甘油磷酸丝氨酸,B&D法可以鉴定到更多的甘油磷酸胆碱(PC)、和磷磷脂,而100% MeOH鉴定最多的则是甘油磷酸盐。图5.已鉴定的人类心脏代谢物汇总。(A)各种提取方法中的准确质量注释、MS/MS注释和唯一检测到的代谢物 (B)各种提取方法中前10的代谢物种类。  最后,作者进一步表征了所有代谢物的化合物分类和通路富集,如图6所示。实验观察到很多代谢物归属于脂质和类脂分子,其中主要是PC、PE和脂肪酸,而非脂质化合物主要是有机酸及其衍生物(图6A)。通路分析也检测到了与心脏代谢过程相关的重要通路,包括嘌呤代谢和甘油磷脂代谢,如图6B所示。这里以嘌呤代谢(与多种心脏病变相关)为例,展示了平行提取在提高代谢物覆盖率方面的优势。在嘌呤代谢过程中,只有IDP仅在单一提取方法中观察到,而许多代谢物均在所有六种提取方法中都被检测到(图6C)。值得注意的是,B&D提取法在该过程中观察到了最多的代谢物,而100% MeOH富集的最少。上述结果为选择适当的用于分析人类心脏代谢物的提取方法提供了重要见解。图6.已鉴定的人类心脏代谢物的化合物分类和通路富集。(A)化合物分类 (B)所有已鉴定代谢物的通路分析汇总,每个圆圈的颜色和大小分别基于p值和通路影响值(红色表示影响大,黄色则相反) (C)嘌呤代谢过程,颜色表示鉴定代谢物的提取方法。  总的来说,本研究利用六种平行代谢物提取的方法和两种基于质谱检测平台,对人类心脏进行了全面的代谢组学分析,总共鉴定到1340种心脏代谢物,这代表了迄今为止对人类心脏代谢组学的最深度覆盖。研究发现三相法最适合脂质的提取,它获得的极性代谢物的数量与Matyash法相似,但其实验重现性也最低。因此,提取方法的选择应当取决于感兴趣的待分析物。但对于非靶向研究,作者建议使用Matyash提取法,以实现代谢组覆盖率和重现性的最佳平衡。尽管本研究目前还存在一定的局限性,比如,平行提取样品量较大和分析时间较长,但其为选择适当的提取和质谱检测平台去分析不同类型的心脏代谢物提供了宝贵经验,有助于人类心脏代谢组学的全面分析。  撰稿:陈昌明编辑:李惠琳文章引用:Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry
  • 实验室中首次“撞”出构建生命的四种基本碱基
    大约40亿年前,地球上开始出现早期生命。目前较为流行的一种理论认为,是陨石或小行星等地外天体的撞击触发了关键的化学反应,从而产生了一些与生命有关的物质。现在,捷克科学院的研究人员在实验室中重演了这一过程:他们利用激光轰击黏土和化学物质汤,模拟一颗高速小行星撞击地球时的能量,最终生成了构建生命的至关重要的基本组件&mdash &mdash 形成RNA必需的4种碱基。  研究人员在发表于美国《国家科学院学报》上的论文中称:&ldquo 这些发现表明,地球生命的出现并非意外,而是原始地球及其周围环境条件的直接结果。&rdquo   实验并未证明地球生命就是由此诞生的,因为从这四种碱基到生命的出现,中间还有很多必不可少的神秘步骤,但这可能是这一过程的一个起点。  论文领导作者、捷克科学院海依罗夫斯基物理化学研究所的斯瓦托普卢克· 思维斯说,科学家们此前已经能够用其他方法制造这些RNA碱基,比如使用化学混合物和高压,但这是首次通过实验来检验&ldquo 撞击产生的能量可触发关键化学反应&rdquo 的理论。  据物理学家组织网12月9日(北京时间)报道,研究人员用一个长约152米的激光器产生的无形激光束,轰击名为甲酰胺的化学物质汤,这种液体据认为存在于我们的原始星球上。该激光的功率非常高,在不到十亿分之一秒时间内的输出相当于几个核电站,产生的能量高达十亿千瓦,甲酰胺样本的温度瞬间升高至4200摄氏度以上,从而发生了一系列化学反应。研究人员在最终产品中,发现了RNA的四种碱基&mdash &mdash A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)和U(尿嘧啶),其中前三种也是DNA的碱基。  专家对这项实验的重要性看法不一。美国佛罗里达州应用分子进化基金会的杰出生物化学家史蒂夫· 本纳说,这项研究意义重大,因为它生成了早期地球上可能存在的原始材料。但英国医学研究委员会分子生物实验室的约翰· 萨瑟兰认为,产生的碱基量太少了,没有什么价值。  总编辑圈点  科学家们一般相信,生命起源可以追溯到天外来客,如宇宙射线和小行星。虽然已有很多办法在实验室里制造出了生命的&ldquo 零件&rdquo ,但我们对于生命的发生史只能猜想,不能实证。除非我们找到一颗适合的行星,制造高能量的撞击,再等上几亿年,看看有没有生命诞生。假如有那本事,地球人早就移民过去了。研究生命的诞生史好像没什么用,但自己的身世来历,人类哪能不关心呢!