当前位置: 仪器信息网 > 行业主题 > >

磁尺

仪器信息网磁尺专题为您提供2024年最新磁尺价格报价、厂家品牌的相关信息, 包括磁尺参数、型号等,不管是国产,还是进口品牌的磁尺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁尺相关的耗材配件、试剂标物,还有磁尺相关的最新资讯、资料,以及磁尺相关的解决方案。

磁尺相关的资讯

  • 磁力显微镜的魅力—纳米尺寸分子磁通漩涡中心极性反转
    磁学是物理学古老的研究领域之一,也是具生命力的发展领域,利用电子自旋的研究来推进数据的存储、传输和计算等多方面的应用进展一直是科研工作者执着追求且不断探索的方向。 在众多研究过程中,电子自旋结构的成像与可控操作成为磁学领域研究的巨大挑战。与之相关的电子自旋现象包括斯格明子、刺猬状自旋结构、磁通漩涡等,其中,磁通漩涡电子自旋结构是研究多位磁学存储介质的一个重要现象。以往关于磁通漩涡中心性反转的研究工作都是针对微米尺度开展的,纳米尺度的磁通漩涡中心性反转工作目前仍需进一步探索和研究。 Elena P. 等人利用德国attocube公司的低温强磁场磁力显微镜—attoMFM在实验中清晰的观测到了25nm尺寸单个分子中磁通漩涡中心性反转现象。为了实现纳米尺寸单分子中磁性研究,Elena等人选取的纳米尺寸磁性分子为K0.22Ni[Cr-(CN)6]0.74体系。该体系分子尺寸可控制调整,且具有易于制备的特点。研究单分子纳米尺度的磁性,具备低噪音、高灵敏度、以及较高的空间分辨率等特征的磁性表征技术就显得为重要。德国attocube公司的低温磁力显微镜attoMFM可提供可变磁场的环境,是实现纳米磁性分子在低温下磁通漩涡性质表征与操控的有力设备。如下图实验数据,只需通过施加很小的外加磁场(600 Oe左右),单分子中的磁通漩涡就可实现中心性反转。在4.2 K的低温环境中,通过施加连续变化的外加磁场与attoMFM成像的实验数据分析,可观察到纳米单分子磁通漩涡磁性随着外加磁场发生清晰的中心性反转。attoMFM实验观测到纳米分子中磁通漩涡中心性反转 下图为具有纳米别高分辨率的磁力成像结果。图中清晰显示了分子的磁力分布情况。原本分子磁通漩涡中心性导致在垂直方向磁力分布可被外加微小磁场改变(下图中的白色部分表明,经过磁场施加针样品由排斥力转变为吸引力)。另外,作者也详细分析研究了不同尺寸单个分子中的磁通漩涡中心性反转机制。attoMFM直接观察到NP4单分子磁通漩涡中心性反转 作者预见,该次实验结果中纳米尺寸单分子的磁通漩涡中心性转换的特性可能为未来数据存储开创新篇章,数据的读写可以通过很小的磁场来操纵。 相关产品:低温强磁场原子力/磁力/扫描霍尔显微镜 - attoAFM/attoMFM/attoSHPM系统:http://www.instrument.com.cn/netshow/C159542.htmAttocube低温强磁场扫描近场光学显微镜:http://www.instrument.com.cn/netshow/C81740.htm
  • CHINA LAB,雷磁如约而至
    广州国际分析测试及实验室设备展览会暨技术研讨会(CHINA LAB 2018),3月28日在花城广州保利世贸博览馆隆重召开。CHINA LAB历经三十多年发展,已经成为国内颇具知名度和影响力的实验室范畴展会。本届展会以实验室仪器设备、试剂以及消耗品为核心,涉及实验室规划、设计、建造、运营、软件、管理、投资等内容,吸引逾千人次观众参观,上海仪电科仪作为国内科学仪器的领头企业之一,已连续多年参加CHINA LAB。雷磁作为上海仪电科仪的重要成员之一,不断技术创新,引领行业发展,以“品种多、款式新、质量好、价格优”在业界受到一致好评。本次在展会中雷磁再一次展出了众多新品,如L系列电化学分析仪系列,由于其独特的模块化设计和大尺寸操作界面,受到众多行业的新老客户青睐。除此之外,ZDJ-5B自动滴定仪系列、数字滴定器、浊度计系列、便携式水质分析仪系列、电化学传感系列等也同样受到热烈关注,参观客户纷纷惊叹于雷磁丰富的产品线和强大的研发能力。展会现场,咨询和商洽的老客户络绎不绝,交流行业的发展及客户的需求等问题,对雷磁近些年的发展均给予了充分的肯定。同时亦有很多新客户表达了希望合作和购买的意向,展台几度热闹非凡。
  • 仪器情报,科学家揭示在纳米尺度下提升核磁共振极化的100倍!
    【科学背景】动态核极化(DNP)是核磁共振(NMR)领域的重要进展,因其显著提升了核自旋极化和检测灵敏度,成为研究热点。然而,将高效DNP应用于纳米尺度仍面临诸多挑战。传统的NMR方法在纳米尺度下的信号检测受到低信噪比的限制,因为在小体积的纳米尺度样品中,自旋极化的统计波动远大于热极化。特别是,当涉及到单一生物分子、病毒颗粒及凝聚态系统等纳米尺度样品时,这种问题尤为突出。为了解决这些挑战,科学家们探索了将DNP与纳米尺度力检测磁共振结合的方法。有鉴于此,滑铁卢大学Sahand Tabatabaei、Raffi Budakian教授成功将脉冲DNP应用于纳米尺度力检测磁共振实验,实现了在6开尔文和0.33特斯拉条件下,质子自旋玻尔兹曼极化的100倍增强。这种增强不仅提升了纳米尺度样品的检测灵敏度,还使信号采集时间缩短了200倍,相较于依赖统计波动的传统方法,这一结果大大扩展了纳米尺度磁共振成像的实用性。这一突破性进展标志着力检测磁共振在纳米尺度成像中的实际应用迈出了重要一步。【科学亮点】1. 实验首次将动态核极化(DNP)应用于纳米尺度的力检测磁共振测量,成功实现了在纳米尺度糖滴中质子自旋的玻尔兹曼极化的100倍增强。 2. 实验通过将脉冲DNP与纳米尺度的力检测磁共振相结合,在6开尔文和0.33特斯拉的条件下进行测量,获得了显著的结果:&bull 极化增强:通过DNP技术,质子自旋的玻尔兹曼极化比传统方法提高了100倍。&bull 时间缩短:这种极化增强相当于将信号平均时间缩短了200倍,与依赖于检测统计波动的测量相比显著提高了检测效率。&bull 应用前景:这些结果大幅提升了力检测磁共振在纳米尺度成像中的实用能力,展示了DNP技术在研究纳米尺度核自旋集合体的潜力,如单个生物分子和病毒颗粒。【科学图文】 图 1. 纳米尺度自旋集合中热极化、统计极化和DNP增强分数极化的比较。图 2. 实验设置和极化剂。图 3. RANOVEL协议。图 4. 纳米尺度DNP。图 5. DNP增强极化与统计极化的SNR比较。【科学结论】本文的研究成果对动态核极化(DNP)和纳米尺度磁共振成像领域具有深远的科学启迪。通过将高效的脉冲DNP与纳米尺度力检测磁共振相结合,我们展示了在极低温度和磁场条件下,质子自旋的玻尔兹曼极化可以提高100倍。这一显著的极化增强不仅扩展了DNP的应用范围,还大幅度缩短了相较于传统统计波动测量所需的平均时间,提高了成像效率。这种提升相当于信号采集时间减少了200倍,标志着力检测磁共振在纳米尺度成像中的实际应用潜力得到了显著提升。这些结果证明了将DNP技术应用于纳米尺度自旋系统的可行性,并为未来在单分子、病毒颗粒及其他纳米尺度物质的研究中提供了新的技术手段。随着该技术的进一步发展,我们可以预见在生物医学研究、材料科学以及凝聚态物理等领域,将能够实现更高分辨率和更快速的核磁共振成像,为揭示纳米尺度下的复杂现象和机制提供强有力的工具。参考文献:Sahand Tabatabaei et al. ,Largeenhancement nanoscale dynamic nuclear polarization near a silicon nanowire surface.Sci. Adv.10,eado9059(2024).DOI:10.1126/sciadv.ado9059
  • 美科学家研发新型电子显微技术 可在原子尺度上测磁性
    美国能源部橡树岭国家实验室研究人员与瑞典乌普萨拉大学的同行合作,开发出一种新型电子显微技术,可在原子尺度上检测材料的磁性。研究人员称,这一技术或可为制造体积更小的磁性硬盘驱动器提供新思路。  在电子显微技术领域,光学镜头造成的像差是一个让人头疼的问题,像差的扭曲效果会使图像模糊,不利于观测。因此,在过去数十年,研究人员一直想方设法消除各种像差,以求得到更清晰的图像。但此次橡树岭国家实验室和乌普萨拉大学的研究人员却反其道而行之,他们不但没有设法完全消除像差,还有意添加了一种被称为四倍散光的像差,利用这种像差效果成功地从镧锰砷氧化材料中收集到了原子水平的磁信号。  研究人员称,这还是第一次有人利用电子显微镜的像差效果来检测材料的磁性。在原子尺度上检测材料的磁性特点具有重要意义,但目前使用的观测手段还不足以让他们在这么小的尺度上进行观测,新方法则赋予了他们一个全新的观测手段,使其有了研究材料的全新方式,具有重要价值。比如,利用这种方法可在原子尺度上弄清磁性硬盘驱动器的磁性特点,从而造出体积更小的硬盘驱动器。  研究人员还指出,这一新的电子显微技术是对现有技术,如X射线光谱和中子散射技术的有效补充。这些技术是目前研究磁性的标准技术,但其分辨率不够高,而新技术明显弥补了这一缺点。
  • 170万!东北师范大学环境学院中尺寸核磁共振成像分析仪采购项目
    1.项目编号:ZZ23441HW04310087;2.项目名称:东北师范大学环境学院中尺寸核磁共振成像分析仪采购;3.采购方式:竞争性磋商;4.预算金额:人民币170万元;5.采购需求:中尺寸核磁共振成像分析仪采购(详见第三章“磋商项目需求表”);6.合同履行期限(供货期):合同签订之日起90日内完成交付、安装及调试;7.本项目不接受联合体。竞争性磋商文件(货物)-东北师范大学环境学院中尺寸核磁共振成像分析仪采购定稿(1).pdf
  • AM:低温强磁场磁力显微镜助力化合物薄膜中纳米尺度非共线自旋结构研究取得重要进展
    近年来,磁性斯格明子受到了广泛的关注。这些拓扑保护的非共线磁性自旋结构纳米粒子稳定在反转对称破坏的磁性化合物中,是手性洛辛斯基-莫里亚相互作用(DMI)以及铁磁交换相互作用的结果。为广泛研究的自旋结构先是在单晶和外延薄膜中非中心对称B20化合物中观察到的类布洛赫斯格明子,其次是在超薄铁磁层和重金属层形成的薄膜异质结构中的斯格明子。对非共线自旋结构的观察很多都是利用从晶体中提取的薄片进行的。磁性纳米粒子,即反斯格明子和布洛赫斯格明子,已被发现同时存在于由具有二维对称的反四方赫斯勒化合物形成的单晶片层中。然而,制作四方赫斯勒化合物的薄膜以及在其中的自旋结构测量仍然具有挑战性。图1. 100K温度MFM成像研究35 nm厚Mn2RhSn薄膜中纳米磁性结构的演化 通过各种直接成像技术可以在真实空间中观察到斯格明子。近期,德国科学家Parkin等人使用低温强磁场磁力显微镜(MFM)成像来研究[001]取向的Mn2RhSn薄膜中的磁性结构。图1展示了在100K下随磁场增加而变化的典型MFM结果。为了进一步研究Mn2RhSn薄膜中观察到的纳米物体的稳定性,在矢量磁场存在下对35 nm厚的薄膜进行了MFM测量(图2)。图2 :200K温度下,35 nm厚Mn2RhSn薄膜中纳米粒子在矢量磁场中的稳定性科学家在很大的温度范围内(从2k到280K)和磁场的作用下观察磁性纳米物体,从研究结果可知,形成不同的椭圆和圆形的大小孤立粒子取决于场和温度(图3)。此外,借助于由MFM产生的局部磁场梯度,科学家还演示了这些纳米粒子的产生和湮灭(图4)。图3. 35 nm厚Mn2RhSn薄膜中, MFM研究不同温度下的纳米粒子, 图a-f分别是5K, 50K, 100K, 150K, 200K, 250K温度下MFM成像数据 图4. 基于MFM显微探针技术控制35 nm厚Mn2RhSn薄膜中纳米粒子的产生和湮灭综上所述,由磁控溅射形成的Mn2RhSn外延薄膜中存在磁性纳米粒子。类似于单晶薄片,这些纳米粒子在广泛的尺寸范围内以及在磁场和温度下都具有稳定性。然而,纳米粒子并没有形成明确定向的阵列,也没有任何证据发现螺旋自旋结构,这可能是薄膜中化学顺序均匀性较差导致的结果。然而,在外延薄膜中发现了沿垂直晶体方向的椭圆扭曲纳米粒子,这与在单晶片中观察到的椭圆布洛赫斯格明子一致。因此,这些测量结果为Mn2RhSn薄膜中非共线自旋结构的形成提供了强有力的证据。实验结果表明,在这些薄膜中,可以利用磁性的局部磁场来删除单个纳米物体,也可以写出纳米粒子的集合。 低温强磁场原子力/磁力显微镜attoAFM/MFM I主要技术特点:温度范围:1.8K ..300 K磁场范围:0...9T (取决于磁体, 可选12T,9T-3T矢量磁体等)工作模式:AFM(接触式与非接触式), MFM样品定位范围:5×5×4.8 mm3扫描范围: 50×50 μm2@300 K, 30×30 μm2@4 K 商业化探针可升PFM, ct-AFM, CFM,cryoRAMAN, atto3DR等功能 图5. 低温强磁场原子力磁力显微镜以及attoDRY2100低温恒温器 参考文献:[1]. Parkin et al, Nanoscale Noncollinear Spin Textures in Thin Films of a D2d Heusler Compound,Adv. Mater. 2021, 33, 2101323.
  • “钻石钥匙”开启单分子磁共振研究之门
    目前,由于磁共振技术能够准确、快速和无破坏地获取物质的组成和结构信息,已被广泛用于基础研究和医学应用等多个领域。  但是,当前通用的磁共振谱仪受制于探测方式,其研究对象通常为数十亿个分子,成像分辨率仅为毫米量级,无法观测到单个分子的独特信息。  近日,中国科学技术大学教授杜江峰领衔的研究团队将量子技术应用于单个蛋白分子研究,利用钻石中的一种特殊结构做探针,首次在在室温大气条件下,获得了世界上首张单蛋白质分子的磁共振谱。该成果使利用基于钻石的高分辨率纳米磁共振成像诊断成为可能。  该研究成果于3月6日发表在《科学》上,同期《科学》&ldquo 展望&rdquo 栏目专文报道评价&ldquo 此工作是通往活体细胞中单蛋白质分子实时成像的里程碑&rdquo 。  此前的研究显示,基于钻石的新型磁共振技术能将研究对象推进到单分子,成像分辨率提升至纳米级。但实现这一目标面临诸多挑战,主要是单分子信号太弱难以探测。  之后,杜江峰研究团队利用钻石中的氮&mdash 空位点缺陷作为量子探针(以下简称&ldquo 钻石探针&rdquo ),选取了细胞分裂中的一种重要蛋白为探测对象。首先将蛋白从细胞中分离并将标记物(氮氧自由基)固定在蛋白的特定位置,然后将此蛋白分子放置到钻石表面,此时标记物距离&ldquo 钻石探针&rdquo 约10纳米,会产生仅相当于地磁场十六分之一的极微弱的磁信号。&ldquo 钻石探针&rdquo 具有感知极弱磁信号的能力,在激光和微波操控下,它形成一个量子传感器,将单分子信号转化为光学信号而加以检测。  经过两年多的努力,最终他们成功地在室温大气条件下首次获取了单个蛋白质分子的磁共振谱,并通过对比不同磁场下的多组磁共振谱的特征,获取了此蛋白质分子的动力学性质。  随后,《科学》杂志将该工作选为当期亮点并配以专文报道,盛赞其&ldquo 实现了一个崇高的目标&rdquo &ldquo 能够有效克服以往测蛋白分子结构时需要提纯和长成单晶的困难,并且能够实现对单蛋白分子在细胞内的原位检测&hellip &hellip 是通往活体细胞中单蛋白质分子实时成像的里程碑&rdquo 。  此前,杜江峰组已成功探测到金刚石体内两个13C原子核自旋,并通过刻画其相互作用强度以原子尺度分辨率解析出了这两个同位素原子的空间取向,向单核自旋磁共振谱学和成像迈出了重要一步。  另外,杜江峰教授通过与德美研究组合作,检测到(5nm)3有机样品中质子信号,取得纳米尺度核磁共振技术的突破性进展。同期的《科学》&ldquo 展望&rdquo 栏目专文评论为&ldquo 基于钻石的纳米磁探针,将磁共振成像的可探测体积到单个蛋白质分子水平&rdquo 。  据了解,该研究不仅将磁共振技术的研究对象从数十亿个分子推进到单个分子,并且&ldquo 室温大气&rdquo 这一宽松的实验环境为该技术未来在生命科学等领域的广泛应用提供了必要条件,使得高分辨率的纳米磁共振成像及诊断成为可能。  &ldquo 这项技术最直接的用途是在不影响蛋白质性质的前提下检测其结构和动力学性质,直接在细胞膜上或细胞内研究蛋白质分子。&rdquo 杜江峰表示,这对生命科学研究来说有极大吸引力。  因此,该技术有望帮助人们从单分子的更深层次来探索生命和物质科学的机理,对于物理、生物、化学、材料等多个学科领域具有深远的意义。  据介绍,以此为基础,和扫描探针、高梯度磁场等技术结合,未来可将该技术应用于生命及材料领域的单分子成像、结构解析、动力学监测,甚至直接深入细胞内部进行微观磁共振研究。  该研究获得了国家自然科学基金项目的支持。
  • 华人科学家打造核磁共振界的“奔驰”
    在距离成都市中心二十多公里的高新西区,坐落着奥泰医疗系统有限公司,而它的创始人正是著名华人磁共振科学家、&ldquo 千人计划&rdquo 国家特聘专家邹学明博士。邹学明博士  这位蜚声中外的科学家,很&ldquo 儒雅&rdquo 又是个带团队做工作很执拗的人。正因如此,在成都创业近10年,他率领着团队,不仅在超导磁共振领域走出了一片天地,同时也让&ldquo 成都制造&rdquo 走向了世界市场。  留美20年磁共振领域&ldquo 牛人&rdquo   &ldquo 我出生在吉林,是地道的东北人,至今已在成都工作近10年了。&rdquo 作为磁共振专家,邹学明告诉记者,入行之后就没有一天不为它而忙。1983年,邹学明坐上波音747飞往美国。&ldquo 我清楚记得那天是9月5日。&rdquo 他回忆说,当时满脑子想的只有一个问题:能不能把博士学位扛回来。  麻省理工博士毕业的邹学明创办了美亚仪器公司,专业研发、制造和销售磁共振射频线圈。  2002年,通用电气收购美亚仪器公司,邹学明也由此担任通用医疗集团全球副总裁和磁共振事业部大中华区总经理。  落户蓉城&ldquo 成都造&rdquo 走出国门  &ldquo 我希望通过努力工作,让最尖端的磁共振整机设备打上&lsquo 中国制造&rsquo 的标志。&rdquo 怀揣着这个梦想的邹学明,辞去高管开始组建公司。选址时他的考评团队对多个考察地进行评分:&ldquo 结果是,成都得分最高!&rdquo   &ldquo 成都在激励政策、人文环境等方面都很有竞争力,四川政府和高新区政府对高科技创业重视,具备高效的工作机制,在服务上有很好的平台。&rdquo   邹学明告诉记者,当时团队对成都也很感兴趣,这是一种相融性。最后,他们在对成都高新区考察后的第21天就作出了决定:落户蓉城。  奥泰医疗随后取得了一系列成果,证明他的判断是对的。如今,奥泰医疗已经一跃成为全球第四大超导磁共振医疗设备供应商,2013年实现销售收入3.3亿元,带动13个亿的产值,预计到2015年将实现销售收入14亿元。  未来雄心打造核磁共振界的&ldquo 奔驰&rdquo   这些成就,也归功于公司近百人的研发团队:拥有国家&ldquo 千人计划&rdquo 人才2人、国家高端外国专家1人和四川省&ldquo 千人计划&rdquo 人才2人,知名高校硕士、博士研究生比例过半,其中海归博士加上欧美专家达到43人,这些专家在GE、西门子和飞利浦等全球知名公司的研发岗位平均拥有15年的工作经验。  在精英团队的协作下,着眼未来,邹学明坦言,&ldquo 我们在高新区内还有新的发展计划。希望能在多产品化方面把生产规模做得更大,打造有实力的品牌。如果把核磁共振系统比作汽车行业,我们现在的水平相当于已经能生产&lsquo 丰田&rsquo 级别的整车,下一步就是朝着&lsquo 奔驰&rsquo 迈进。&rdquo   人物名片  邹学明,著名华人磁共振科学家,现任奥泰医疗系统有限公司董事长。他先后获安永美国最佳企业家奖、美国俄亥俄州州长杰出奖、首届成都市十佳留学回国人员奖,以及&ldquo 千人计划&rdquo 国家特聘专家、&ldquo 百人计划&rdquo 省特聘专家等奖励和荣誉。
  • 仿生矿化:超高弛豫率磁共振对比剂诞生记
    日前,中国科学技术大学俞书宏院士团队与合肥工业大学陆杨教授团队、康斯坦茨大学研究团队合作,研制出了一种新型超高弛豫率磁共振对比剂。相关研究成果日前发表于《自然-通讯》。“相比目前临床在用的对比剂,新型对比剂在更低的剂量下,对细微小血管和组织的细节成像上更为清晰,有利于临床诊断。” 论文共同第一作者、合肥微尺度物质科学国家研究中心特聘副研究员(现为中国科学院杭州基础医学与肿瘤研究所特聘研究员)董良向《中国科学报》介绍。论文共同第一作者、中国科大附属第一医院影像科主任医师徐运军(左),论文共同第一作者、合肥微尺度物质科学国家研究中心特聘副研究员董良(右) 受访者供图奇思妙想:仿生矿化带来新思路“对比剂也称之为‘造影剂’,主要用于临床CT、磁共振成像和超声等增强检查中,使血管或者有血管供血的部位‘显影’,以便临床更容易发现病灶。”论文共同第一作者、中国科大附属第一医院影像科主任医师徐运军介绍,“一般来说,弛豫率越高,磁共振成像对比剂的对比增强效果越显著。” 目前临床在用的对比剂均为Gd(化学元素钆)基的小分子药物,但弛豫性能有限,同时还存在钆离子泄漏隐患;近年来,研究人员发展合成的钆基纳米晶展示出良好的应用前景,但其结晶性往往限制了钆离子与水配位的能力,材料的弛豫率也受限于此。同时,材料的制备往往需要高温高压,合成工艺条件苛刻,难以放大制备,工业生产转化受限。既然钆离子与水配位的能力会影响钆基对比剂的弛豫性能。如果直接提升钆基纳米材料本身的含水量,是否就可以增强钆离子与水分子的互动性,增加钆离子的利用率,进而提升弛豫性能。董良他们进行了大胆猜测。 “但这个新方案并不好实现”。董良解释说,纳米材料的制备过程往往会经历高温、离心等步骤,存在脱水、结晶等现象,最终产物不可能保有太多含水量。在自然界中,无定形碳酸钙广泛存在,并具有高含水的特性。团队受此启发,借助仿生矿化策略,在常温常压下制备出稳定的高含水材料——钆掺杂无定形碳酸钙。“没想到我们的突发奇想真变成了现实。” 董良坦承刚开始他们也很疑惑,这么简单的合成方法能实现对材料的高要求?但经过实验后,结果是肯定的,直接提升钆基纳米材料的含水量,可以为其弛豫性能带来增益。董良建议,化学材料科学的发展,需要建立在不断尝试的基础之上。8年坚守:只为更好满足临床需求事实上,这项研究从课题开始设计到最终发表论文持续了8年时间。董良说,“因为我们的初衷和目标是希望研究成果能从实验室最终走向临床。” 当他们真正一步一步做下来,发现要解决的问题从四面八方涌来。其中一个难点是要依据临床需求评估材料的多种安全性、体内稳定性、药物代谢以及可能存在的毒副作用等。“在相当长时间里,我们对制备工艺、材料表征、性能影响因素、含水量与弛豫率之间的确切关系,以及种类繁多的细胞实验和动物实验评估都做了反复的测试和验证。” 董良说,每一个数据都会经过数次或数十次测定予以确认,而这些都需要花费很长时间。“测试做到夜里是常有的事,有时候大家会边测试边根据结果进行讨论,甚至到了天亮才发现,但是大家都没有怨言。”徐运军回忆。他们没有着急用部分数据或不完整的科学论证去换取论文的发表,而是共同沉下心来将问题解决明白,将机理梳理清楚。董良说,“能碰到志同道合、愿意一起扎实做研究的伙伴是科研工作中的幸事。”改进升级:阶段成功还需解决更多问题最终研究证明,这种新型纳米对比剂的弛豫率约是目前临床使用对比剂(钆喷酸葡胺注射液)的12倍。与此同时,研究人员运用临床仪器设备,在大鼠、新西兰兔等多种实验动物上进行了成像对比。结果显示,新型纳米对比剂在更低的剂量下展现出更清晰、更优异的对比增强效果。“新型对比剂的设计和成像呈现俱佳,数据令人信服,对比剂在体外和体内的磁共振成像能力得到了充分的证明。这项工作为设计具有临床转化潜力的磁共振对比剂提供了新的见解。”一位论文审稿专家如是说。那么,这款新型纳米对比剂何时真正走向临床造福患者?董良认为,材料生产是第一道关。“我们在构建材料体系时,就设想过,如果这种对比剂可以达到转化水平,那么它的生产就不能成为其转化的瓶颈。”因此,在设计制备路线时,他们就把放大生产工艺、宏量合成稳定性、制备成本等作为了重要考量指标,并逐一解决了这些问题。董良介绍,目前在常温常压条件下,几分钟就可以生产出几升材料,为其临床应用转化提供了保障。“但真正用于临床还需要很长一段时间专业的预临床评估。” 徐运军说,比如,在已完成的初步评估中发现,材料在代谢过程中还是会碰到像绝大多数纳米材料普遍出现的肝富集问题。而这个难点也将是新型纳米对比剂最终能否真正造福患者的重要因素。董良说,“接下来,团队将进一步优化材料性能,在已有基础上进行改进升级,争取让第二代、第三代产品进入临床试验阶段。”
  • 低场核磁为煤炭开采与安全生产插上翅膀
    低场核磁为煤炭开采与安全生产插上翅膀[导读] 核磁共振作为一种先进的科学仪器,在煤矿开采和煤层气治理中发挥了怎样的作用?未来将如何发展?仪器信息网近日采访了中国矿业大学阚甲广副教授,以及翟成教授团队的孙勇博士。煤炭是重要的基础能源和工业原料,为保障我国经济社会快速健康发展做出了重要贡献。虽然当前新能源、可再生能源得到快速的发展,但相当长一段时间内煤炭仍是我国的主体能源。近年来随着淘汰落后产能工作的推进,大力推行煤炭资源的绿色开采、智能开采、深地开发和未来采矿成为发展的重要方向。核磁共振作为一种先进的科学仪器,在煤矿开采和煤层气治理中发挥了怎样的作用?未来将如何发展?仪器信息网近日采访了中国矿业大学阚甲广副教授,以及翟成教授团队的孙勇博士。低场核磁推动煤岩裂隙分布及浆液流动机理研究 阚甲广,中国矿业大学矿业工程学院副教授,自参加工作以来,一直专注于巷道围岩控制理论与技术研究工作,先后参与或负责完成了包括国家重点基础研究发展计划(973)项目、中国工程院重大咨询项目、“十一五”科技支撑计划项目、国家自然科学基金项目在内的40余项纵向与横向研究课题。研究成果获得教育部科学技术进步奖二等奖、中国煤炭工业科学技术奖二等奖等省部级奖励8项,发表sci/ei检索论文31篇,获得国家发明专利授权16项、实用新型专利授权9项,副主编出版教材2部。中国矿业大学阚甲广副教授采矿领域,裂隙分析、注浆加固一直以来是研究的热点和难点。为推动矿业工程科学裂隙分布及浆液流动细观机理性研究,凸显中国矿业大学矿业工程研究的特色与优势,中国矿业大学矿业工程学院于2018年12月引进了产自苏州纽迈分析仪器股份有限公司(简称:纽迈)的大口径核磁共振成像分析仪macromr12-150h-i,进行煤岩注浆的过程分析、浆料凝结过程等方面的研究。大口径核磁共振成像分析仪macromr12-150h-i 采访当天,第二届纽迈“服务万里行”活动正在中国矿业大学南湖校区火热开展。仪器信息网编辑来到阚甲广副教授的实验室,他正与纽迈的技术人员就仪器应用进行交流。之所以选择纽迈的核磁共振仪器,阚甲广副教授表示:“采矿行业许多研究方向都与岩体中流体的渗流过程密切相关,我们想利用核磁共振成像分析仪器搭配在线注浆设备,对岩石试样中流体的渗透规律进行实时在线监测。通过国内广泛调研,了解到纽迈仪器能够具备相关功能与实力,这是促使双方达成合作的主要原因。”据悉,中国矿业大学矿业工程学科入选了国家“双一流建设”名单。他表示:“深地开采、流态化开采是一流学科建设的重点任务,学院计划以一流学科建设为契机,建立一个设备齐全、技术先进、前景广阔的研究平台,核磁共振系统将为上述研究系统而服务。”作为国产分析仪器的一名新晋用户,阚甲广副教授希望国产分析仪器能加快核磁仪器装备的开发,进一步加大软件分析能力建设,为核磁共振设备在能源地矿领域的应用提供更为可靠的支持。低场核磁助力煤体孔裂隙分布评价方法建立 另一位受访者孙勇博士师从翟成教授,课题组近年来专注于煤层致裂增透方法的研究,方向主要包括脉动水力压裂、液氮循环低温冲击致裂、液态二氧化碳致裂以及煤体孔隙结构的表征。孙勇博士介绍,为提高低透气性煤层瓦斯抽采效率,课题组在水力压裂技术的基础上提出了脉动水力压裂增透技术,通过脉动水压力作用,在煤体裂隙尖端产生交变应力,使煤体产生疲劳损伤,以较低的压力形成较为丰富的裂隙网络,相对静压压裂,起裂压力降低35%以上,裂隙数量增加20%以上。中国矿业大学孙勇博士将液氮周期性的注入煤体:液氮常压下可达-196℃,与高温煤体间的巨大温差产生温度应力;孔裂隙水结冰产生高达200mpa的压力和9%的体积膨胀,形成冰楔作用使裂隙尖端扩展;周期性注入的造成的冻融作用也会使煤体产生疲劳损伤。这是翟成教授课题组开展的另一项研究——液氮循环低温冲击致裂。孙勇博士介绍:“液氮循环低温冲击致裂增透方法是一种新型的无水化致裂增透方法,适用于我国煤炭资源丰富但极度缺水的西北地区。该方法通过冷冲击作用、冰楔作用和冻融作用这三重作用,可使煤层内部形成交织贯通的孔裂隙渗流网络,显著提高煤层气抽采效率。”课题组第三个研究方向是液态二氧化碳致裂,即以液态二氧化碳作为压裂液,通过循环注入方式,使煤体在水-冰相变冻胀力、液态二氧化碳的气化膨胀力和化学酸化作用下,产生疲劳损伤,原始孔裂隙发育和衍生,形成相互交织贯通的立体裂隙网络,提高煤体的透气性。据介绍,该方法既可实现温室气体的有效封存,又能通过二氧化碳的高竞争吸附作用实现煤层瓦斯的驱替效果。此外,课题组还开展了静态破碎剂和传统封孔材料的研究。在翟成教授课题组所关注的研究方向里,核磁共振技术在液氮循环致裂和液态二氧化碳致裂中的应用较为成熟,主要用于煤体孔隙结构特征演化规律分析,课题组基于此也形成了一套煤体孔隙结构测试分析的科学方法,评价不同致裂方法对煤体孔渗特性的影响。中尺寸核磁共振成像分析仪mesomr23-060h-i 孙勇博士表示:“相比压汞、气体吸附等常规测孔技术,核磁共振能够实现对样品的无损分析,样品尺寸可达50mm×50mm,测量孔径范围覆盖2nm~1 mm,能在几分钟内给出孔隙度、孔径分布、束缚流体与自由流体的分布情况以及渗透率等丰富信息,便于研究的开展及论文的写作。”从研究生阶段起,孙勇就用核磁共振设备开展了煤体孔隙结构的分析测试。使用低场核磁设备5年有余,孙勇平时也会利用各类线上手段与纽迈的工程师进行有效沟通。他表示:“核磁共振测孔的理论已经非常成熟,纽迈给我们提供了稳定的设备,基本不需要维护,用起来非常的方便。另外我们还保持了良好的沟通,比如发现测的数据不对,纽迈工程师会远程协助我们解决问题,有新的成果或软件升级也会及时分享给我们。如此双向沟通使得产品在我们这用得更好,也让我们作为使用者的专业技有更快的提升。”2013年,课题组还与纽迈合作,作为任务负责人承担了科技部国家重大科学仪器设备开发专项-“高性能核磁共振弛豫分析仪的开发和应用”项目中的“基于核磁共振弛豫分析技术的煤岩体裂隙分布评价方法开发”子任务。该任务对比了核磁共振相比压汞和扫描电镜在煤岩体裂隙分布评价中的应用,项目验收时得出结果,核磁共振在煤样测试方面相比两种传统方法的确有优势。下一步,课题组还希望将核磁共振与ct等方法进行结合,进一步深化和拓展煤体孔隙结构分析的应用范围。[来源:仪器信息网]
  • 东华大学朱美芳院士、张耀鹏教授 Adv. Sci.:3D打印仿生高强度、多尺度、高精度的生物活性牙冠
    牙釉质是一种高度钙化的硬组织,具有紧密有序的羟基磷灰石(HAp)纳米晶体排列结构,以满足其所需的力学强度和韧性等性能。目前可通过生物矿化、无机模板合成等方法仿生天然牙釉质的独特结构。然而,上述方法只能在纳米尺度、微米尺度或以粗糙的宏观形状实现单个水平面HAp的有序排列。且天然牙釉质不仅有平行排列的外层结构,还有一定偏转角度的内层结构。更重要的是,其清晰的宏观结构(厚度大于1 cm,尺寸大于1 cm)也进一步增加了制备仿生牙釉质的难度。目前3D打印牙齿从最初的简单材料打印牙齿模型的阶段,到性能优化打印阶段,到进一步混合活性细胞、抗菌材料、生长因子等功能打印阶段,其打印精度和效果在不断地提高,但也并未复刻天然牙齿的各项性能,离临床应用还有较远的距离。 图1. 多尺度、高精度牙冠的3D打印 东华大学纤维材料改性国家重点实验室朱美芳院士、张耀鹏教授受到天然牙齿中牙釉质多阶段生长的启发,基于单分散的“超重力+”HAp基齿科修复树脂材料,采用挤出成型3D打印技术,开发了一种自下而上的逐步组装策略,利用剪切诱导构建了多尺度高度有序HAp结构的高精度仿生牙冠(图1),实现了天然牙的成分(HAp)、结构(紧密有序)以及性能(力学及再矿化)仿生。相关成果以题为3D Printed Strong Dental Crown with Multi-Scale Ordered Architecture, High-Precision, and Bioactivity发表在Advanced Science上,博士生赵梦露为第一作者,北京化工大学博士生杨丹蕾、范苏娜博士、姚响副教授和北京化工大学王洁欣教授为共同作者,张耀鹏教授和朱美芳院士为共同通讯作者。部分实验完成于上海光源BL19U2线站,北京化工大学合作制备“超重力+”羟基磷灰石。 图2. 基于高度有序HAp基复合树脂牙冠的3D打印流程示意图图3. 3D打印牙冠的个性化修复 本工作制备了单分散的“超重力+”HAp基齿科修复树脂材料,使HAp纳米棒均匀且稳定地分散在树脂基体中。根据不同配方浆料的流变学行为,通过理论计算选择了最适合剪切诱导有序的打印墨水配方。并基于此浆料的流变特性,通过计算流体力学设计了具有逐渐收缩通道的定制喷嘴,从而有利于浆料顺利的挤出和稳定的剪切(图1)。以HAp的纳米晶体结构作为基础(原子尺度),到单分散的纳米棒在打印过程中受到剪切诱导而沿着打印方向进行有序的排列(纳米尺度),进一步控制打印路径使其平行排列(微米尺度),在宏观上制备三维高度有序的树脂样品,最后根据牙冠的三维模型,打印出个性化修复的牙冠(图2)。其打印精度可达95%(图3)。由于中断了裂纹扩展,当使用最小直径260 µm的喷嘴进行打印时,取向程度最高,其弯曲强度最高可达138 MPa,压缩强度可达370 MPa,优于传统模具法制备的样品(图4)。其优异的再矿化活性减少了细菌聚集和继发龋齿的机会(图5)。此工作为制备具有独特结构和功能的仿生材料提供了新的思路。图4. HAp基复合树脂的力学性能及断面形貌图 图5. HAp基复合树脂的体外生物活性 此工作得到了国家重点研发计划(2016YFA0201702)及上海市优秀学术带头人项目(20XD1400100)等项目的资助。特别感谢岛津公司宁棉波工程师在Micro-CT测试中提供的帮助。 近年来,张耀鹏教授团队在3D打印仿生生物材料研究方向取得了一系列研究成果(Compos. Sci. Technol., 2021, 213, 108902 Cellulose, 2021, 28, 241-257 Carbohyd. Polym., 2019, 221, 146)。 原文链接:http://doi.org/10.1002/advs.202104001 高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn 本文转发自高分子科技公众号本文内容非商业广告,仅供专业人士参考。
  • 纽迈科技坚持不懈做好国产核磁共振品牌
    纽迈科技坚持不懈做好国产核磁共振品牌           ----记2015年4月10-12日南京国际教育装备与实验技术展览会  2015年4月10-12日,纽迈科技应邀参加第十二届南京国际教育装备及科教技术展览会。此展会是以“创建平台,创造价值”为宗旨,向观众展示各类现代科教技术装备、科学分析及实验室仪器、设备与材料、信息技术与设备等。为科研院所、高校、大中型实验室建设提供仪器设备咨询、交流、采购的平台,使参展者能及时了解当前科学仪器设备产品的技术水平和发展趋势,更好地为大中型实验室、科研机构及各种产业园区、学校教学等部门科研服务。    纽迈科技携带新技术—清醒小动物体成份分析技术亮相本次展会。纽迈科技于2015年正式推出核磁共振清醒小动物体成分分仪,该技术基于核磁共振原理,将不同弛豫快慢的体成分信号进行技术区分,从而实现对活体动物进行快速的身体成分(脂肪量、筋肉组织含量、自由水量以及全身水量)定量测量,可在动物清醒状态下快速测试。与其他方法比较,核磁共振体成分分析法测量速度快(仅需0.5-3.0min),不需要对实验动物进行麻醉或处死,测试过程对动物无任何伤害,可对同一动物进行持续性跟踪测试,为科学研究提供有力的分析数据。该方法已广泛用于肥胖、糖尿病、新陈代谢、营养学、肥胖机理、药物研发等相关领域。   展会上,不少观众对磁共振技术在实验室中的应用感到新奇,在多数观众的认知中,“核磁共振”是仅仅存在于医院中的,用于人体病变部位观察的器械,并且价格昂贵。针对这种现状,纽迈科技工作人员耐心为观众讲解低场核磁共振技术的应用领域及优势。  低场核磁共振设备与高场核磁共振设备及医学核磁共振设备相比,优势如下:设备操作简单、检测或成像速度快、对样品无损、设备占地面积小、维护费用低等。纽迈科技推出的场核磁共振产品已成功应用于农业食品、能源勘探、高分子材料、纺织工业、生命科学等行业领域。  短短3天的会议很快结束了,感谢新老客户的支持,正因为有你们的信任,纽迈才得以快速前行,不忘初心,放得始终,纽迈会一直与您同行̷̷下个路口,成都站,期待相见吧!联系人:强工 | 联系电话:15618037925 | 邮箱:w_qiang@niumag.com
  • 低场核磁为煤炭开采与安全生产插上翅膀
    p strong 仪器信息网讯 /strong煤炭是重要的基础能源和工业原料,为保障我国经济社会快速健康发展做出了重要贡献。虽然当前新能源、可再生能源得到快速的发展,但相当长一段时间内煤炭仍是我国的主体能源。近年来随着淘汰落后产能工作的推进,大力推行煤炭资源的绿色开采、智能开采、深地开发和未来采矿成为发展的重要方向。核磁共振作为一种先进的科学仪器,在煤矿开采和煤层气治理中发挥了怎样的作用?未来将如何发展?仪器信息网近日采访了中国矿业大学阚甲广副教授,以及翟成教授团队的孙勇博士。/pp style="margin-top: 15px margin-bottom: 15px "span style="color: rgb(255, 0, 0) "strong低场核磁推动煤岩裂隙分布及浆液流动机理研究/strong/span/pp  阚甲广,中国矿业大学矿业工程学院副教授,自参加工作以来,一直专注于巷道围岩控制理论与技术研究工作,先后参与或负责完成了包括国家重点基础研究发展计划(973)项目、中国工程院重大咨询项目、“十一五”科技支撑计划项目、国家自然科学基金项目在内的40余项纵向与横向研究课题。研究成果获得教育部科学技术进步奖二等奖、中国煤炭工业科学技术奖二等奖等省部级奖励8项,发表SCI/EI检索论文31篇,获得国家发明专利授权16项、实用新型专利授权9项,副主编出版教材2部。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/70a52d6a-d984-4cdf-acbf-24c0bb777ae2.jpg" title="1_副本.jpg" alt="1_副本.jpg"//pp style="text-align: center "strong中国矿业大学阚甲广副教授/strong/pp  采矿领域,裂隙分析、注浆加固一直以来是研究的热点和难点。为推动矿业工程科学裂隙分布及浆液流动细观机理性研究,凸显中国矿业大学矿业工程研究的特色与优势,中国矿业大学矿业工程学院于2018年12月引进了产自苏州纽迈分析仪器股份有限公司(简称:纽迈)的大口径核磁共振成像分析仪MacroMR12-150H-I,进行煤岩注浆的过程分析、浆料凝结过程等方面的研究。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/3c4709db-323d-450a-8f6c-b30c0bec1d65.jpg" title="2_副本.jpg" alt="2_副本.jpg"//pp style="text-align: center "strong大口径核磁共振成像分析仪MacroMR12-150H-I/strong/pp  采访当天,第二届纽迈“服务万里行”活动正在中国矿业大学南湖校区火热开展。仪器信息网编辑来到阚甲广副教授的实验室,他正与纽迈的技术人员就仪器应用进行交流。之所以选择纽迈的核磁共振仪器,阚甲广副教授表示:“采矿行业许多研究方向都与岩体中流体的渗流过程密切相关,我们想利用核磁共振成像分析仪器搭配在线注浆设备,对岩石试样中流体的渗透规律进行实时在线监测。通过国内广泛调研,了解到纽迈仪器能够具备相关功能与实力,这是促使双方达成合作的主要原因。”/pp  据悉,中国矿业大学矿业工程学科入选了国家“双一流建设”名单。他表示:“深地开采、流态化开采是一流学科建设的重点任务,学院计划以一流学科建设为契机,建立一个设备齐全、技术先进、前景广阔的研究平台,核磁共振系统将为上述研究系统而服务。”作为国产分析仪器的一名新晋用户,阚甲广副教授希望国产分析仪器能加快核磁仪器装备的开发,进一步加大软件分析能力建设,为核磁共振设备在能源地矿领域的应用提供更为可靠的支持。/pp style="margin-top: 15px margin-bottom: 15px "span style="color: rgb(255, 0, 0) "strong低场核磁助力煤体孔裂隙分布评价方法建立/strong/span/pp  另一位受访者孙勇博士师从翟成教授,课题组近年来专注于煤层致裂增透方法的研究,方向主要包括脉动水力压裂、液氮循环低温冲击致裂、液态二氧化碳致裂以及煤体孔隙结构的精准表征。孙勇博士介绍,为提高低透气性煤层瓦斯抽采效率,课题组在水力压裂技术的基础上提出了脉动水力压裂增透技术,通过脉动水压力作用,在煤体裂隙尖端产生交变应力,使煤体产生疲劳损伤,以较低的压力形成较为丰富的裂隙网络,相对静压压裂,起裂压力降低35%以上,裂隙数量增加20%以上。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/542c2acb-b7eb-4c82-85c3-0ff1075c004c.jpg" title="3_副本.jpg" alt="3_副本.jpg"//pp style="text-align: center "strong中国矿业大学孙勇博士/strong/pp  将液氮周期性的注入煤体:液氮常压下可达-196℃,与高温煤体间的巨大温差产生温度应力;孔裂隙水结冰产生高达200MPa的压力和9%的体积膨胀,形成冰楔作用使裂隙尖端扩展;周期性注入的造成的冻融作用也会使煤体产生疲劳损伤。这是翟成教授课题组开展的另一项研究——液氮循环低温冲击致裂。孙勇博士介绍:“液氮循环低温冲击致裂增透方法是一种新型的无水化致裂增透方法,适用于我国煤炭资源丰富但极度缺水的西北地区。该方法通过冷冲击作用、冰楔作用和冻融作用这三重作用,可使煤层内部形成交织贯通的孔裂隙渗流网络,显著提高煤层气抽采效率。”/pp  课题组第三个研究方向是液态二氧化碳致裂,即以液态二氧化碳作为压裂液,通过循环注入方式,使煤体在水-冰相变冻胀力、液态二氧化碳的气化膨胀力和化学酸化作用下,产生疲劳损伤,原始孔裂隙发育和衍生,形成相互交织贯通的立体裂隙网络,提高煤体的透气性。据介绍,该方法既可实现温室气体的有效封存,又能通过二氧化碳的高竞争吸附作用实现煤层瓦斯的驱替效果。/pp  此外,课题组还开展了静态破碎剂和传统封孔材料的研究。在翟成教授课题组所关注的研究方向里,核磁共振技术在液氮循环致裂和液态二氧化碳致裂中的应用较为成熟,主要用于煤体孔隙结构特征演化规律分析,课题组基于此也形成了一套煤体孔隙结构测试分析的科学方法,评价不同致裂方法对煤体孔渗特性的影响。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/80ab13a8-a577-449d-950f-ed52cf3e7d26.jpg" title="4_副本.jpg" alt="4_副本.jpg"//pp style="text-align: center "strong中尺寸核磁共振成像分析仪MesoMR23-060H-I/strong/pp  孙勇博士表示:“相比压汞、气体吸附等常规测孔技术,核磁共振能够实现对样品的无损分析,样品最大尺寸可达50mm× 50mm,测量孔径范围覆盖2nm~1 mm,能在几分钟内给出孔隙度、孔径分布、束缚流体与自由流体的分布情况以及渗透率等丰富信息,便于研究的开展及论文的写作。”/pp  从研究生阶段起,孙勇就用核磁共振设备开展了煤体孔隙结构的分析测试。使用低场核磁设备5年有余,孙勇平时也会利用各类线上手段与纽迈的工程师进行有效沟通。他表示:“核磁共振测孔的理论已经非常成熟,纽迈给我们提供了稳定的设备,基本不需要维护,用起来非常的方便。另外我们还保持了良好的沟通,比如发现测的数据不对,纽迈工程师会远程协助我们解决问题,有新的成果或软件升级也会及时分享给我们。如此双向沟通使得产品在我们这用得更好,也让我们作为使用者的专业技有更快的提升。”/pp  2013年,课题组还与纽迈合作,作为任务负责人承担了科技部国家重大科学仪器设备开发专项-“高性能核磁共振弛豫分析仪的开发和应用”项目中的“基于核磁共振弛豫分析技术的煤岩体裂隙分布评价方法开发”子任务。该任务对比了核磁共振相比压汞和扫描电镜在煤岩体裂隙分布评价中的应用,项目验收时得出结果,核磁共振在煤样测试方面相比两种传统方法的确有优势。下一步,课题组还希望将核磁共振与CT等方法进行结合,进一步深化和拓展煤体孔隙结构分析的应用范围。/p
  • 锂电池材料试验第二讲|锂离子电池隔膜穿刺试验
    近年来,随着锂离子电池产品的大量应用,锂电已日益成为我们日常最为便捷的动力来源,随之而来的锂电池安全问题也越来越受到大家的关注。锂电池的整体安全性由多种复杂的因素构成,而其中由于短路原因引起的热失控问题占到了相当的比例。锂电池的短路除了最常见的外部短路外,其内部隔膜的破损也是导致其内部发生短路的重要原因之一。在隔膜破损的种种诱因中,锂枝晶是众多分析和研究的众矢之的。锂电池在重复的充放电过程中,由于工艺、材料、过充、大电流充电、低温下充电等原因,金属锂会不可避免的析出,这些析出的锂会逐渐沉积形成锂枝晶,从而成为锂电池潜在的风险。锂枝晶有多种形态,其中树枝状的金属锂在生长、沉积的过程中,达到一定程度时会穿透隔膜,从而导致电池内部发生短路,这种短路往往会造成灾难性的后果。LLOYD材料力学试验机提供完整的锂电池隔膜力学性能测试,主要包括隔膜拉伸强度、延伸率、穿刺强度,剥离强度(涂层复合膜)等。同时LLOYD材料力学测试系统可以完成高精度的锂电池强制内短路测试,确保锂电池更加安全。 今天我们来介绍阿美特克锂电池材料试验解决方案第二讲——锂离子电池隔膜穿刺试验。锂离子电池隔膜穿刺试验锂离子电池隔膜的穿刺试验是评价隔膜抗穿刺强度的最主要方法。通过标准的探头以标准的速度穿透隔膜,捕捉穿透瞬间的最大载荷(N),除以隔膜的平均厚度(μm)即为穿刺强度(N/μm)。隔膜根据其成型工艺的不同,分为干法、湿法,而具体工艺上又有单向拉伸、双向同步拉伸,双向异步拉伸等,且根据其表面涂布材料的不同,每种膜表现出的抗穿刺性能会有很大的区别。如何能在快速的穿刺中更为准确的测算力值,精确地捕捉到穿刺瞬间的峰值,分辨出细微载荷量的变化,并保证一个较高的测试重复性是诸多隔膜厂家和用户面临的难点。在解决以上问题的同时,如何提高测试的效率是诸多厂家需要兼顾的问题。LLOYD气动穿刺治具LLOYD气动穿刺治具是专门为提高电池隔膜穿刺试验效率和稳定性开发的一款气动辅具。该治具采用稳压气缸升降,可快速、高效的固定隔膜,且保证均一、稳定的夹紧力;可定制前后隔膜入料或左右入料,符合人体工程学设计;同时入料方向可旋转,满足不同操作人员的使用习惯。试验人员放置好隔膜后,可通过手动或脚踏开关快速操作完成夹持或换位,夹持完毕后,只需按动手控盒的开始键即可快速开始试验,高效的完成5点或多点穿刺测试。LLOYD 10次穿刺试验叠加效果值得一提的是,LLOYD测试系统读数级的测试精度可更为准确的测量真实力值;高达8000Hz的数据采样率保证了真实峰值的捕捉,使测试结果无限接近于最高峰值;常规单柱机型最小分辨率可达0.00005N,能够有效的分辨出细微力值的变化和材料的区别;为材料科研和质量控制提供有力的保障。LLOYD 5点全自动穿刺测试系统在不断改善测试应用的同时,LLOYD 5点全自动穿刺系统的开发更为测试量巨大的用户提供了更为便捷、高效的测试手段。一次夹载后LLOYD系统可以自动完成5点全自动穿刺,并计算均值,更大程度的解放了用户的双手和操作时间,使一套高精度测试系统完成几倍的测试工作量,深受用户喜爱。LLOYD材料力学试验机LLOYD(劳埃德)测试系统源自英国,是美国AMETEK(阿美特克)集团旗下产品。LLOYD材料试验系统专注于轻工检测,以读数级精度,高达8000Hz的单通道数据采样率,最高2032mm/min的测试速度广泛应用于世界500强企业中。LLOYD材料测试系统可准确、便捷的完成材料拉伸,压缩,弯曲,穿刺,剥离,撕裂,摩擦,蠕变,松弛,低频疲劳等多种测试项目。丰富的治具方案可在保证数据准确性的同时为用户提供极大的操作便利性。同时,作为测控系统的核心,专业的Nexygen Plus 操作软件广受广大用户的认可。软件自带庞大的国际标准库,除了ASTM, DIN, EN, ISO, JIS等国际标准,用户也可便捷的自建标准文件。
  • 德州仪器推出电源模块全新磁性封装技术,将电源解决方案尺寸缩小一半
    中国上海(2024 年 7 月 31 日)– 德州仪器 (TI)(纳斯达克股票代码:TXN)推出六款新型电源模块,旨在提升功率密度、提高效率并降低 EMI。这些电源模块采用德州仪器专有的 MagPack 集成磁性封装技术,与市场上同类产品相比,尺寸缩小了多达 23%,支持工业、企业和通信应用的设计人员实现更高的性能水平。六款新器件中有三款(TPSM82866A、TPSM82866C 和 TPSM82816)是超小型 6A 电源模块,可以提供每平方毫米 1A 的电流输出能力。在更小的空间内提供更大的输出功率在电源设计中,尺寸至关重要。电源模块将电源芯片与变压器或电感器整合在单个封装模块内,因此可以简化电源设计,并节省宝贵的印刷电路板 (PCB) 布板空间。MagPack 封装技术采用德州仪器特有的 3D 封装成型工艺,可更大限度地减小电源模块的高度、宽度和深度,从而在更小的空间内提供更大的输出功率。该磁性封装技术采用一种以专有新型设计材料制成的集成功率电感器。通过采用该类电源模块,工程师可以更容易地获得高功率密度、低温、低EMI辐射、高转换效率的电源系统设计。一些分析师预测,截至 2030 年,数据中心的电力需求将增长 100%。电源模块所带来的上述性能优势在数据中心等应用中可以发挥重要的作用,提高电力使用效率。关于德州仪器 (TI)德州仪器是一家全球性的半导体公司,从事设计、制造和销售模拟和嵌入式处理芯片,用于工业、汽车、个人电子产品、通信设备和企业系统等市场。我们致力于通过半导体技术让电子产品更经济实用,让世界更美好。如今,每一代创新都建立在上一代创新的基础上,使我们的技术变得更可靠、更经济、更节能,从而实现半导体在电子产品领域的广泛应用。
  • 顺磁共振:电池研究方法中冉冉升起的新星——访华东师范大学胡炳文研究员
    近年来,磁共振技术已被广泛应用于包括锂/钠离子电池、燃料电池和超级电容器的电化学储能体系研究中,新能源汽车电源中的锂离子电池和有望作为规模化储能电池的钠离子电池更是大热的研究重点。然而不论哪种电池材料都面临着无法回避的“天花板”,如锂资源储量有限问题,成本问题,如何实现充电速度更快、能量密度更大等技术指标问题等… … 这些都需要科研人员的不懈努力和更精密准确的仪器加持。 日前,仪器信息网编辑特别采访了华东师范大学胡炳文研究员,请胡老师为大家介绍磁共振技术是如何助力电池领域科学研究的。 胡炳文,现任华东师范大学物理与电子科学学院研究员,上海市磁共振重点实验室副主任,国基优青项目获得者,紫江优秀青年学者,任《波谱学杂志》青年编委。主要研究领域为磁共振及其在电池领域中的应用,开发了SHANGHAI、SHA+、RFDF-XY8-4-1等固体核磁共振脉冲序列,开发了锂电池体系的in situ NMR、in situ EPR和in situ EPR Imaging方法。从NMR到电池 在应用中寻找突破仪器信息网:胡老师,首先请介绍一下您目前的研究方向以及为什么会选择这样的方向?胡炳文:目前我们课题组主要是用核磁共振(NMR)和顺磁共振(EPR)这两种磁共振技术作电池领域的研究,包括锂离子电池和钠离子电池两大类别。我在留法读博期间主攻核磁共振方法学的开发,回国后一开始并没有改变研究方向,开发了很多方法如SHANGHAI、SHA+等。但工作中逐渐面临一个问题:硕士生很难在短时间内学会核磁方法学并做出科研成绩。经过调研,我发现国内做“电池-核磁共振”的研究比较稀缺,于是慢慢就开始学做一些电池研究,从电解质到负极再到正极。我的导师JP爱聊天,视野宽。他多次告诉我,法国5个国家级核磁共振研究中心的研究方向都有独到的侧重点;中国这么大,国家级核磁共振研究中心布局少了一点,且多半在催化和生物方向上,应避开这些方向,做点别的方向。JP在40岁时大幅度改行,他也一直鼓励我大幅度改行,追求“独到的有侧重的新方向”。在接触电池领域一段时间后,我发现核磁共振技术远远不够,还需要顺磁共振技术的结果支撑。于是,课题组在2016年向布鲁克申请了一台 Demo仪器,后来又购买了布鲁克 E580 连续波/脉冲电子顺磁共振波谱仪,我们慢慢挖掘顺磁共振的优势,在不断的学习摸索中用顺磁共振技术来研究电池体系,最终就形成了核磁共振、顺磁共振与电池这样一种交叉融合的方向。仪器信息网:磁共振技术是什么时候应用到电池领域的?相较于其他的分析仪器,磁共振技术的特点在哪儿?胡炳文:当前,国内将磁共振技术应用到电池领域的课题组是不多的,我所了解到的大概有3-5个课题组。国际上,核磁共振进入到电池研究领域大概是在2000年左右,2010年我回国后就开始做相关研究。顺磁共振技术在电池领域的应用在很长一段时间内零零星星、不受重视,顺磁共振应用的真正起步是在2015年左右,相较于核磁共振技术是比较晚的,我们课题组在这方面基本是跟国际同步开始的,即2016年开始进入这个领域。相较于其他分析仪器,核磁共振跟顺磁共振在电池研究中有很多独到的地方。核磁共振是一个宏观的科学工具,能获得较全面的元素信息,而其他如TEM只能得到元素的局部信息,对全局缺乏理解。核磁共振主要研究Li、Na、O,对这些元素的区分度也比其他分析技术都要强。比如判断在NaLiMnO2电池中Li离子的位置,用核磁共振的方法可以最为直接地得出Li离子到底在钠层还是在其他某层。顺磁共振对元素价态的区分能力非常强。在对V的体系进行测试的时候,同步辐射技术是目前使用最多的,可以非常明显的观察到V4+、V5+的变化,但V3+的一点变化并不容易区分。可是,在顺磁共振图谱中却可以非常明显地辨别出V3+,这就是顺磁共振的“厉害之处”。仪器信息网:您感觉磁共振技术在电池能源领域的应用前景怎么样?胡炳文:应该说磁共振技术在电池领域的应用前景是非常光明的。核磁共振和顺磁共振技术提供的信息相互补充,可以呈现完整的电池材料信息。实际上,电池有一个独特的行为即“局部非晶化”,阳离子电池材料有一些地方是无序性的,这种无序的结构在其他大部分的技术中并不能得到很好的解释,而核磁共振跟顺磁共振却能很好地解释这个现象。另外,电池的内外结构是很不一样的,所以无论从相变的角度还是无序化的角度,磁共振技术都有其不可替代的作用。这里值得说明的是,使用磁共振,不排斥使用同步辐射、TEM等技术,技术之间可以得到互补的一些信息。不断挖掘 EPR或更具潜力 仪器信息网:您实验室目前有几台磁共振仪器,分别是什么时间购置的,哪一台是您当前科研的主力仪器?胡炳文:我们实验室的核磁仪器都是固体核磁谱仪,300MHz、400MHz各一台,600MHz谱仪两台,大概在2010-2014年购置的;顺磁共振谱仪是2018年开始购置的,目前顺磁共振是我们实验室的主力仪器。仪器信息网:您基于这台布鲁克 E580顺磁共振波谱仪开展了哪些研究工作,产出了哪些亮眼的成果? 胡炳文:我们刚刚发表在JPCL上的那篇文章,就是顺磁共振在NaCrO2体系中的独到应用,顺磁技术可以观察到其他技术不易观察到的Cr5+离子。使用充放电设备可以得知,低于3.7伏的时候,电池的稳定性非常好;高于3.7伏的话,很快就没有信号了。实际上,在高于3.7伏以后,Cr3+→Cr5+,而且Cr5+会溶解在电解液中,导致了性能的急剧衰减。而想要获取到这个信息,最直接、有效的工具的就是顺磁共振。结合顺磁共振成像工具,可以看到Cr离子所在的位置是在电解质里的隔膜上,这一结果直接展现了顺磁共振成像技术的极大潜力。图(a) NaCrO2体系在低于3.6V时的原位EPR图 图(b) NaCrO2体系在高于3.9V时的原位EPR图我再稍微透露一些即将发表的研究成果:原位顺磁共振是研究Li离子在铜片上沉积过程的有效分析手段,分辨率远高于磁共振成像(MRI),这点令我非常兴奋;另外,通过原位EPR观测锂空电池里O的变化,发现了氧化物(如Co3O4)对O2的独特作用,这有助于理解氧化物可以增强锂空电池循环性能的原因。仪器信息网:关于这台E580顺磁共振波谱仪,您的使用感受如何?当初是为什么选择了这台仪器? 胡炳文:总体来说,E580操作方便,性能强大,可以满足先进科研的需要,售后服务也比较好。对科研来说,仪器的可配置性是比较重要的事情,布鲁克也根据我的需求,配备了L-波段,X-波段和Q-波段以及成像系统。至于选择这台仪器的原因:一方面是我们从2016年开始就租用了布鲁克的E580 Demo机做相关研究工作,到现在也有5年时间了。另一方面我所需要的Q波段和成像系统,我了解到的其他品牌的波谱仪是没有的。锐意进取:不断突破的磁共振技术仪器信息网:您感觉当前磁共振技术的发展能否满足电池研究的需求?从科研的角度出发,您期待未来的磁共振仪器向哪个方向来发展?胡炳文:用一个词叫“削足适履”,就是条件有限,只能根据仪器的功能来做相关研究。目前的磁共振技术基本能满足电池研究,我最期待快速成像功能的发展,在灵敏度更高的同时,成像速度也能更快。现在成像速度是比较慢的,过去,电池充放电是24个小时,半个小时采集一张谱图是没问题的,但是现在电池充放电的时间可能只需要1个小时,就要求在几分钟的时间内呈现结果。所以如果想研究这种高速充放电的问题,就必须要有更快的成像技术与波谱技术。关于未来磁共振仪器的发展,实际上,我一直也在坚持完善仪器的相关工作。原本的硬件设计必然是一个通用的,而非专用在电池领域的仪器。我们根据现有的架构做一些局部的改动,逐渐再到独立设计一个更适用于电池研究的工具。这些工作相对来说进展可能会比较缓慢,但我始终在坚持,目标就是针对电池体系优化磁共振仪器及相关技术,保持我们在这个领域独有的优势。仪器信息网:目前国家正在大力发展新能源领域,电池行业也是非常热门,能跟我们分享一下您未来的工作计划吗?胡炳文:未来,希望通过核磁共振跟顺磁共振技术相结合,找到电池领域痛难点产生的根源。比如说我们现在用的阳离子无序正极材料,通过顺磁共振的研究,发现了内部锰离子的聚集是性能衰减的核心因素,在理解了它为什么性能会衰减之后,再去做一些改性的工作就比较得心应手了。虽然核磁共振技术应用相较成熟,但是我们课题组还在不断地挖掘更多的应用。顺磁共振应用的时间并不长,很多技术还没有应用起来,所以近几年,我更愿意花时间来研究顺磁共振技术,再应用到电池体系中。在全球范围来说,顺磁共振和顺磁共振成像技术的应用都是非常稀缺的,因此这也将是我未来的一个工作重点。
  • 纽迈申报核磁共振弛豫分析重大科学仪器专项
    2013年8月8日上午,科技部条财司吴学梯副司长及省厅、市局的领导来到纽迈科技开展考察工作。纽迈团队的核心成员同吴副司长一行分享了纽迈的成长历程、低场核磁共振仪器的开发经历及未来几年的发展规划,汇报了纽迈拟承担的重大科学仪器设备专项-高性能核磁共振弛豫分析仪的申报工作进展情况,并安排了现场实地参观。  吴副司长等领导对纽迈的仪器研发方向给予了充分的肯定,并对专项预算等工作提出了非常好的建议,鼓励纽迈在现有基础上再接再励,研发更好的国产核磁共振分析仪器,做好进一步的应用推广工作。
  • 核磁共振技术揭秘锂电池生产中使用的可再生能源
    简介锂离子电池可提供高性能的储能,让能量得以高效储存并按需输送,因而被广泛用作手机等便携式电子设备的充电电池1。此外,锂离子电池作为有效的储能装置所表现出的可靠功效,使其成为电动汽车的首选电池类型2。为实现全球减排目标并保护环境,电动汽车的产量显著增长,对锂电池的需求也随之激增。锂离子电池包括一个负极——石墨电极和一个正极——锂插层电极,两电极之间以合适的电解液隔开。在提供能量时,锂离子从负极通过电解液移动到正极,充电时则相反。为支持电动汽车的大规模投放,锂电池的产量大幅增长,对相应化学成分的需求随之激增。由于电池产量的扩大旨在降低交通运输领域的碳足迹,因此,锂离子电池生产过程中使用的原材料也需要以可持续的方式获得2。为此,下述最新研究探索了如何从生物质和农业废弃物中获得适用于生产锂离子电池的电解质,从而减少自然资源消耗。商用锂电池商用锂离子电池中的电解质通常是溶解于有机碳酸盐基溶剂中的六氟磷酸锂(LiPF6)。这些溶剂具有挥发性和易燃性,因而在恶劣条件下可能造成严重的化学危害,并可能引发火灾3。此外,LiPF6具有热不稳定性,约343K温度下,会在有机溶剂基电解液中分解,产生有毒和腐蚀性的氟化氢。因此,氟化氢可能与电池组件发生反应,从正极释放过渡金属,并腐蚀集电器。此过程产生的热量可能引发热失控,不仅对电池性能造成不利影响,还会对水和土壤造成污染,在回收过程中还可能危害人类健康4。鉴于目前,大量锂离子电池正在进入日常充放电循环,因此,有必要更换锂离子电池中存在的大量氟和易燃有机溶剂,以提高新一代电池的安全性和性能。为此,科研人员对许多新型锂盐进行了电池组件测试,但其中大多数在热应用和电化学应用中的表现非常不稳定5。然而,一些引入了芳基的锂盐表现出较高的热稳定性,并且易溶于有机溶剂或离子液体,因而在电池应用中具有很大潜力6。因此,离子液体正在成为锂离子电池电解液的潜在替代材料。离子液体电解质离子液体是指室温条件下的熔盐,其不易燃,并且具有较高的热稳定性和良好的离子导电性。因此,它们有望成为锂离子电池目前使用的挥发性有机溶剂基电解质的更安全替代材料7。经确定,在将用于锂离子电池的离子液体中,最有效的阳离子是四烷基铵、环状脂肪族季铵和咪唑啉7。近期,相关科研人员正在开展研究,试图使用可再生资源来制备这些无氟电解质8。例如,在最近的一项研究中,科研人员利用从大规模产生的生物质和农业废弃物中获得的阴离子,制得无氟电解质——使用木质纤维素生物质制得2-糠酸。人们希望,此工艺将有助于开发可再生的电池电解质。科研人员使用布鲁克Ascend Aeon WB 400波谱仪并通过核磁共振(NMR)波谱分析,获得了所制得的锂盐和电解质的结构表征,并使用布鲁克Avance III波谱仪,通过脉冲梯度场自旋回波核磁共振分析,获得NMR扩散和弛豫数值;然后,使用配有氘代硫酸三甘氨酸(DTGS)检测器和金刚石ATR附件的布鲁克IFS 80v波谱仪,获得样本的傅里叶变换衰减全反射红外光谱(ATR-FTIR)。科研人员发现,该电解质的分解温度高于568K,并且在较宽的温度范围内表现出可接受的离子电导率。脉冲梯度场核磁共振分析证实,锂离子与该电解质中的羧酸盐官能团发生强烈的相互作用,并且在整个研究温度范围内,扩散速度低于其他离子。此外,核磁共振波谱和傅立叶变换红外光谱也证实了锂离子与羧酸基团的相互作用。锂离子的迁移数量随锂盐浓度的增加而增加。线性扫描伏安法表明,在超过313K的温度条件下,锂离子会发生欠电位沉积和体积还原。这些数据证明,通过具有较高成本效益、良好环保性和可持续性的工艺来开发具有热稳定性和电化学稳定性的无氟电解质是可行的。我们希望,这项研究将帮助行业开始克服锂离子电池的安全性、可回收性、可获得性、可负担性和使用寿命方面的挑战。布鲁克独特的技术组合覆盖锂离子电池供应链和价值链中的各个环节,其中包括用于对本文所述的新型电解质配方进行分析的核磁共振波谱仪和傅立叶变换红外光谱仪。同时,布鲁克的技术还覆盖对锂金属在阳极材料上的沉积现象(称为锂镀层)的研究——该研究利用的关键技术是电子顺磁共振(EPR)2。此外,固体魔角旋转(MAS)核磁共振波谱仪被用于了解电池充放电过程中的离子迁移率。最后,灵敏度增强的低温冷却CP-MAS探头被用于识别和测量电池回收过程中产生的黑色物质中有价值的微量元素。在将循环经济概念应用于电池行业的过程中,磁共振分析辅助下的新型回收工艺也发挥了至关重要的作用。参考文献:1. Scrosati B, Garche J. Lithium Batteries: Status, Prospects and Future. J. Power Sources 2010, 195, 2419&minus 2430.2. Loftus PJ, Cohen AM, Long JCS, Jenkins JDA. Critical Review of Global Decarbonization Scenarios: What Do They Tell Us About Feasibility? Wiley Interdiscip. Rev. Clim. Change 2015, 6,93&minus 112.3. Wang Q, Ping P, Zhao X, et al. Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. J. Power Sources 2012, 208, 210&minus 224.4. Contestabile M, Panero S, Scrosati BA. Laboratory-Scale Lithium-Ion Battery Recycling Process. J. Power Sources 2001, 92, 65&minus 69.5. Barbarich TJ, Driscoll PF, Izquierdo S, et al. New Family of Lithium Salts for Highly Conductive Nonaqueous Electrolytes. Inorg. Chem. 2004, 43,7764&minus 7773.6. Armand M, Johansson P, Bukowska M, et al. Review-Development of Hü ckel Type Anions: From Molecular Modeling to Industrial Commercialization. A Success Story. J. Electrochem. Soc. 2020, 167,No. 070562.7. Appetecchi GB, Montanino M, Passerini S. Ionic Liquid-Based Electrolytes for High-Energy Lithium Batteries. In Ionic Liquids:Science and Applications Visser, A. E. Bridges, N. J. Rogers, R. D.,Eds. ACS Symposium Series 1117 Oxford University Press, Inc.,American Chemical Society: Washington DC, 2013 pp 67&minus 128.8. Khan IA, Gnezdilov OL, Filippov A, et al. Ion Transport and Electrochemical Properties of Fluorine-Free Lithium-Ion Battery Electrolytes Derived from Biomass. ACS Sustainable Chem. Eng. 2021. https://doi.org/10.1021/acssuschemeng.1c00939
  • QTRAP问世十五周年 SCIEX质谱In China For China
    p style="text-indent: 2em "strongspan style="text-indent: 2em "仪器信息网讯 /span/strongspan style="text-indent: 2em "“第三届全国质谱分析学术报告会”(CNMS2017)于12月9日-11日在厦门翔鹭国际大酒店成功召开。恰逢QTRAP问世十五周年,SCIEX携创新技术及产品盛情参会,并于会议期间举办主题研讨会与答谢晚宴等系列活动,全方位展示SCIEX四十年质谱里程,十五载QTRAP荣耀。/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/9516102d-7a1a-4282-b2c9-06307d9b8b2d.jpg" title="1.jpg"//pp style="text-align: center "span style="text-indent: 2em "strong研讨会现场/strong/span/pp style="text-indent: 2em "QTRAP作为SCIEX独有的串联四级杆及离子阱复合质谱系统,从最初的2000QTRAP问世以来,到随后的3000、3200、4000、4500、5500、6500,在药物发现、食品检测、环境监测、蛋白质定量分析等重要应用领域有广泛应用,在广大用户中赢得了良好的口碑。/pp style="text-indent: 2em "由于灵敏度高、专属性强、检测动态范围宽和抗污染能力突出等特点,QTRAP能对复杂样品环境中低丰度分析物进行定量分析;通过QTRAP额外的MS扫描功能,还能获得更为丰富的离子碎片信息,从而实现对样本更为精确的鉴定、表征。在组学分析,小分子确证、筛查中有广泛应用。SCIEX邀请多位专家学者作精彩报告,分享了QTRAP技术在蛋白质组学、代谢组学和兽药残留等热点研究领域的应用。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/45993afb-6c9a-4d91-a67b-22be9fd3a3e5.jpg" title="2.jpg"//pp style="text-align: center "strongspan style="text-indent: 2em "复旦大学教授 陆豪杰/span/strong/pp style="text-align: center "strongspan style="text-indent: 2em "报告题目 《蛋白质组标记定量方法比较》/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/c40d626b-74b3-4a4e-856f-7faf8ac88afc.jpg" title="3.jpg"//pp style="text-align: center "strong中国医学科学院药物研究所教授 贺玖明/strong/pp style="text-align: center "strong报告题目 《QTRAP技术在代谢组学和质谱成像中的应用》/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/a58fa818-3994-4a4d-80a9-fba69a185e29.jpg" title="4.jpg"//pp style="text-align: center "strong中国兽医药品监察所高级工程师 孙雷/strong/pp style="text-align: center "strong报告名称 《QTRAP在兽药残留确证检测和高通量筛查检测中的应用》/strong/ppbr//pp  9日当晚,SCIEX举办“QTRAP十五周年答谢晚宴”。中国化学会质谱分析专业委员会主任陈洪渊院士出席并致辞,SCIEX中国区总经理邵宏代表SCIEX中国团队对各位代表的光临表示热烈欢迎,感谢业内专家、学者对SCIEX公司在中国区业务的高速发展所给予的帮助与支持。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/1f4b8e96-830c-4c84-8f18-7c4a5b7a05b9.jpg" title="IMG_2420.jpg"//pp style="text-align: center "strongSCIEX中国区市场总监杨益主持晚宴/strong/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/c8a90374-103b-4044-84d8-dc03bfea481b.jpg" title="IMG_2434.jpg"//pp style="text-align: center "strong中国化学会质谱分析专业委员会主任陈洪渊院士致辞/strong/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/218b864d-53e3-43ad-b01e-83fffc4c5c59.jpg" title="IMG_2443.jpg"//pp style="text-align: center "strongSCIEX中国区总经理邵宏感谢用户的帮助与支持/strong/pp  邵宏在致辞中讲到,作为世界五百强丹纳赫集团的重要子公司,SCIEX有着超过40年的发展历史,SCIEX进入中国也已经有近20年的历史。/pp  在过去几年间,SCIEX先后推出了十余款质谱和液相色谱等新产品,不仅有三重四级杆质谱和精确质量数质谱等硬件新平台,公司还围绕这些平台提供专业处理软件、以及根据中国客户应用需求研发的方法包和数据库等分析工具,竭尽全力为广大分析工作者提供各种整体解决方案。/pp  40年间,SCIEX的业务范围也不断扩大。4年前SCIEX整合丹纳赫旗下贝克曼库尔特公司的毛细管电泳部门,近两年又先后相继收购了天津博纳艾杰尔公司、Phenomonex公司等。今年的11月,SCIEX宣布与浙江迪安诊断技术股份有限公司共同组建一家合资企业并落户在杭州,这是SCIEX在临床质谱市场发展的一个重要的里程碑,也为公司实现In China For China的整体战略又向前迈进了一大步。邵宏指出:“这样的发展速度是业界前所未有的,也是SCIEX公司历史上前所未有的。”/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/ae8b7303-33e9-4aa2-b097-654acfcc48cc.jpg" title="IMG_2472.jpg"//pp style="text-align: center "strong陈洪渊、邵宏共切SCIEX QTRAP十五周年庆祝蛋糕/strong/pp  除了追求业务的高速增长之外,SCIEX也一直践行着业内领导者所应承担的社会责任。SCIEX中国团队的愿景是“让质谱改变每个人的生活”。SCIEX希望以高科技的液相质谱产品,强大的应用技术支持能力及优质的售后服务为客户提供整体的解决方案,从而推动科学的发展,最终努力实现保护我们每个人的健康和安全,为推动人类的进步和社会的发展贡献一份力量。/pp  晚宴期间,SCIEX还为到场嘉宾播放特制视频,展示公司40年砥砺奋进的创新历程。/pscript src="https://p.bokecc.com/player?vid=C0C6349D90A7A3A99C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptpbr//p
  • 2018CIBF第十三届中国国际电池技术交流会开始了
    (和合作伙伴一起参展)中国化学与物理电源行业协会于2018年5月22日~24日举办规模空前的“第十三届中国国际电池技术交流会/展览会(CIBF2018)。 地点:深圳市福田中心区福华三路,深圳会展中心五楼梅花厅 CIBF2018国际技术交流会焦点与重点内容简介自CIBF2016举办以来,中国新能源汽车和锂离子电池有了一个飞跃发展,对于动力电池市场来说,2017年是继续高速增长的一年,又是行业巨变的一年:三元动力电池获得追捧。 在中国制造2025重点领域技术路线图中提出了新能源汽车动力电池的发展目标,2020年新型锂离子动力电池单体能量要达到300Wh/kg,2025年动力电池单体能量进一步达到400Wh/kg,系统的成本降到1元/Wh。 为实现上述目标,加强实施优化现有的高安全、高比能量的锂离子电池能量技术的同时,也正在加快对新型更高比特性的正负极等电池关键材料以及新型电池体系(包括全固态电池)的创新研究。此外,国内外也开始重视燃料电池电动车技术的发展与应用,而中国更是加大了对这类新能源汽车入市的补贴,以推进我国燃料电池等关键技术的突破。 本届会议演讲与现场讨论具体安排为8个专题分会:1市场与应用以及政府支持综合专题2下一代先进电池与材料研究进展3电动车与电池技术及应用新进展4动力电池技术及应用新进展5下一代锂离子电池新型材料研究进展6固态锂电池及其它先进电池研究进展7电池新方法、新技术8电池生产与应用
  • 日本岛津推出太阳能电池电极检测装置「SCI-8P」
    -快速检测微小电极 充实SCI系列产品线,  支持高可靠性太阳能电池生产 - 电极检测装置「SCI-8P」  近日,日本岛津制作所推出电极检测装置「SCI-8P」,该装置用于晶体硅型太阳能电池生产的电极印刷工艺中。  本产品配备卓越的高分辨率摄像系统,可用于微小电极的检测。并且,1台装置同时实现了电极检测和晶片外观检测,快速检测水平领先该行业。  【开发背景】  随着人们对绿色能源的关注度越来越高以及可再生能源购买制度的启动,太阳能电池的需要持续扩大。另一方面,太阳能电池的价格与质量竞争日趋激烈。为在提高生产效率的同时严格质量管理,用户要求目前在太阳能电池生产过程中主要以人工为主的检测尽快实现自动化。  本公司于今年3月推出了两款太阳能电池检测装置,分别是1台装置可同时检测微裂纹和晶片外观的复合检测装置「SCI-8SM」,行业内最小尺寸的外观检测装置「SCI-8S」,大获日本、中国大陆?台湾等国家与地区的用户的好评。此次推出的电极检测装置「SCI-8P」是SCI系列产品线的新成员,有助于提高产量和发电效率,支持高可靠性的太阳能电池生产。  关于岛津  岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。  目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心 覆盖全国30个省的销售代理商网络 60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。  岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。  更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 彼奥德电子即将参照CIBF 中国电池展
    2014年北京彼奥德电子受邀参加CIBF 2014中国电池展,中国国际电池技术交流会/展览会(CIBF)是由中国化学与物理电源行业协会主办的电池行业国际例会,每两年在中国举办一届,是国际电池行业规模最大的展览会。CIBF是中国电池行业第一个通过商标注册保护的国际会展。 彼奥德会携带MFA-140多功能比表面积孔径分析仪和国内全恒温装置真密度仪参加展会,MFA-140对电池材料:钴酸锂、锰酸锂、磷酸铁锂、三元材料、石墨化碳材料、无定形碳材料、氮化物、硅基材料、锡基材料、新型合金等都有较好的测试数据。
  • 色彩颜色测量利器—爱色丽Ci64手持式色差仪
    色彩颜色测量利器—爱色丽Ci64手持式色差仪在各种行业和应用中,色差仪都发挥着至关重要的作用。例如,在汽车制造、家居装饰、化妆品、包装和服装设计中,它们确保颜色在各种材料和生产批次中的一致性。此外,它们还在食品行业和医药行业中用于评估产品的颜色与其品质或成分的关系。色差仪是专门设计用来测定、描述和分析色彩的仪器,确保所测定的颜色与标准或期望的颜色相一致。该仪器在颜色质量控制和颜色管理中起到关键作用,为不同的生产和设计过程提供准确的颜色数据。在众多色差仪中,爱色丽Ci64手持式色差仪以其创新的技术和卓越的性能,成为了业界的佼佼者。本文将深入探讨爱色丽Ci64手持式色差仪与其他品牌的特别之处。一、Ci64手持式色差仪的外观设计爱色丽Ci64手持式色差仪独具的外观设计,不仅体现了先进的工程技术,更注重了人机工程学的原则,为用户提供了更加便捷、舒适的操作体验。其精密的光学系统,采用了多角度观察和照明条件控制技术,大幅提升了色彩测量的准确性和可靠性。在产品设计上的创新,使得爱色丽Ci64能够满足不同行业对色彩测量的高要求,为色彩质量控制提供了有力支持。二、Ci64手持式色差仪功能与优点爱色丽Ci64手持式色差仪一种高端的精密色彩测量设备,有着许多比其他行业色差仪要好的特点与优点,为色彩测量领域带来新的变化。首先,该仪器采用独有的SPECTRALON材质积分球,确保了仪器的稳固性和耐用性,降低了维修成本,同时也减少了老化对测量结果的影响。爱色丽Ci64与SP系列数据完全兼容,实现了数据的无缝传输与共享,提高了工作效率。此外,仅限于Ci64型号,支持嵌入图像和文字的工作流程,用户可以通过软件编辑工作模板,将图文指示的测量步骤下载到仪器中使用,有效减少了测量过程中的失误。爱色丽Ci64的卓越之处还在于能够同时测量包含镜面反射和排除镜面反射数据,支持SCI和SCE的数据测量,以及60度角的相对光泽度测量,使其在不同情景下都能提供精确的数据。仪器还支持内置NetProfiler网络校正,可以在现场对仪器进行网络校正,确保测量结果的稳定性和准确性,降低了仪器之间的差异。对于Ci64UV型号,它还具备UV校正功能,通过附加的紫外LED光源,满足了便携式仪器对含有荧光物质的测量需求。远程测量触发按键的引入,使样本测量更加便利。而USB和蓝牙通信的支持,使得仪器与电脑软件之间的连接更加便捷,实现了数据的快速传输和上下载。新设计的电池组支持外接电源直接供电,降低了电池的消耗,同时提供了更持久的使用时间。高分辨率的彩色大屏幕呈现更丰富和清晰的信息,方便用户查看和读取。人体工程学设计和触摸导航使仪器的手持更加平滑和舒适,操作更加便捷,简单易行。爱色丽还提供了多种可选夹具和配件,方便客户在不同应用场景中充分利用该仪器的功能。Ci64手持式色差仪的独特功能与优势在于其多元化的功能组合,卓越的性能表现,以及人性化的设计理念,为用户提供了高效、准确的色彩测量解决方案。无论在哪个领域,这款仪器都能发挥出色的作用,助力各行各业实现更高水平的色彩控制与管理。三、科技驱动的功能特点爱色丽Ci64手持式色差仪不仅仅是一款色差测量工具,更是一项科技驱动的综合解决方案。其强大的功能包括准确的色差测量、全面的色彩分析、详尽的色谱分布图等。无论是CIE、ISO等各种色彩标准和指标,Ci64手持式色差仪都能轻松满足。智能化的数据存储、导出和分享功能,进一步提高了工作效率,使色彩管理变得更加便捷和高效。随着科技的不断进步,色差测量技术也在不断演进。爱色丽Ci64手持式色差仪作为行业的领军者,将继续在技术创新方面保持领先地位。未来,它有望进一步拓展应用领域,为更多行业提供高质量的色彩解决方案,助力各行业实现更高水平的色彩管理和品质控制。四、关于爱色丽爱色丽(Xrite)隶属于美国财富500强企业丹纳赫公司,总部位于密歇根州大激流市,创建于1958年,是色彩趋势、科学和技术的全球领军企业。爱色丽提供一整套服务项目与解决方案,帮助品牌、制造商和供应商选择、定义并管理从设计灵感到最终产品的色彩。爱色丽协助客户对纺织品、纸制品、油墨、摄影、视频、金属、玻璃、塑料和木材的色彩标准进行交流和管理。爱色丽专精于预测色彩趋势,交流色彩规格,配制和测量色彩,为遍及消费品行业(从服装、鞋类、包装、电子产品、化妆品、家居用品、涂料、食品与饮料、建筑)的众多客户提供服务。
  • 锂云科技突破电池快速检测与分选技术,助力电池梯次利用行业革新
    随着电子设备和电动汽车的普及,锂电池的需求量迅猛增长。然而,伴随而来的大量报废电池问题也日益严峻。如何高效、安全、环保地处理这些报废电池,成为当前亟待解决的难题。面对这一挑战,锂云科技团队通过技术创新,成功开发出行业首创的电池机理孪生驱动的数字孪生运维模型,深度刻画电池机理、实现电池快速分选,为电池回收及梯次利用行业提供全新的解决方案。技术创新:高效精准的锂电池检测与分选技术 锂云科技团队开发的机理孪生驱动的退役电池快速检测技术,实现了检测效率提高20倍的突破。传统的满充满放方法不仅耗时,导致企业电费成本、厂房成本、人工成本等居高不下,而该团队的创新技术大幅缩短了检测时间,有效降低企业的成本,帮助企业大幅降本增效。同时,他们开发的高置性电芯一致性快速分选技术,使大规模退役电池筛选的一致性提高80%。通过先进的算法和检测手段,这项技术能够快速、准确地对退役电池进行检测和分类,大大缩短了检测时间,并有效降低了电池成组后的安全性隐患。团队精神:科研实力与环保热情的结合 锂云科技团队的成功离不开每一位成员的努力和奉献。团队负责人表示:“我们非常高兴能够取得这一重要突破,这是团队成员们长期以来刻苦钻研和不懈努力的结果。我们相信,这项技术将为解决锂电池回收和分选难题提供一种全新的思路和方法,强力助力该行业的发展!”未来展望:推动环保事业,助力可持续发展 锂云科技团队的创新成果在锂电池回收和分选领域具有广泛的应用前景。随着技术的不断完善和推广,这项技术将被广泛应用,为解决报废电池带来的环境和资源问题提供有效解决方案。通过这项技术的应用,不仅能减少资源浪费和环境污染,还能极大地提高锂电池回收和再利用的效率,推动我国绿色产业的升级。 锂云科技团队的努力和成就展示了技术创新在环保领域的重要性和巨大潜力。未来,随着更多创新技术的出现和应用,我们有理由相信,电池回收及梯次利用行业将迎来更加光明的未来!
  • 贝士德盛装参加2012CIBF中国国际电池展
    2012年6月20-22日,由中国化学与物理电源行业协会主办的&ldquo 第十届中国国际电池技术交流会/展览会(CIBF2012)在深圳会展中心举行。CIBF2012包括:展览会、技术交流会、信息发布会和经贸洽谈会。上百家展商集中展示了锂离子电池、锂聚合物电池、超级电容器等系列新型电池材料、电池设备、电池成品。作为锂离子电池材料检测环节的知名仪器制造商贝士德携众仪器参加了此次展览会。 CIBF是国内电池行业第一个通过商标注册保护的国际会展项目,并每两年在中国举办一届。CIBF2012展览会面积达到45000平方米,展位数量超过2000个,参展商800余家。将有来自50多个国家和地区的25000多名观众参观展览会。 展会上贝士德以特装共36平米的展位面积精彩亮相,贝士德以统一的着装、专业精干的形象和丰富的产品吸引了众多客户和参展商的目光和一致好评。 作为国内知名的比表面积测试仪器专业制造商,贝士德在此次展会上带来了针对电池材料专用的比表面测试仪器,有3H-2000A型全自动氮吸附比表面积测试仪,3H-2000BET-A全自动氮吸附比表面积测试仪,3H-2000PS系列比表面积及孔径分析仪,3H-2000TD系列真密度分析仪等仪器. 展会上,公司的销售工程师接待了众多国内外知名电池材料和电池制造商的客户。详细讲解仪器的性能与具体操作方法、以及贝士德公司在售后服务方面的情况一一向与会者介绍。贝士德公司的热情与周到的服务赢得了参观者的一致赞扬,作为拥有十项国家技术专利的著名比表面仪制造商来说,贝士德表示,在今后的研发过程中,更加的注重新理念、新设计、新观点来制造出更好的产品,来回馈新老客户对贝士德公司的关注与肯定。 此次展会成为了贝士德进一步增进和客户之间沟通的重要机会,贝士德与来自各个领域的客户进行了充分沟通,进一步加强了认识和信任,为以后的更紧密合作打下了坚实的基础。贝士德在展会中接触了多家来自日本、印度、韩国、台湾等国家和地区的电池材料厂家并达成了多项初步合作意向,进一步提升贝士德在新能源电池材料检测方面的产业的竞争力提供了新的契机和舞台。此次展会充分体现了贝士德&ldquo 专业,创新,诚信,科技,质量&rdquo 。充分展现了贝士德的实力和发展前景。 为期三天的展览会,贝士德公司接待了数百位参会者,为仪器的使用者与制造者的交流互动搭建了一座平台,亦为公司以后的工作收集了大量的宝贵建议。贝士德公司通过此次展览会,到达了展示产品,树立形象,扩大影响、取长补短的目的,展览活动取得了圆满成功。
  • 电弛新能源亮相CIBF 2024重庆国际电池技术交流展览会
    4月27日,重庆国际博览中心,第16届中国国际电池技术交流会/展览会盛大开幕。本次展会由中国化学与物理电源行业协会主办,以“链动全球赋能绿色驱动未来”为主,共计2200多家业内知名企业全方位、多维度参与展示全新技术成果,助推中国新能源产业高质量发展。作为此次展会参展商,电弛新能源携多款重磅产品亮相,展示在锂电池、氢能领域的测试技术产品,包括GPT-1000原位产气量测定仪、IPT-2000气体内压测测定仪、SFT-3000原位膨胀力测试仪、980Pro燃料电池测试系统、780电解水制氢测试系统、DSR数字型旋转圆盘电极等多款产品。近年来,我国新能源行业蓬勃发展。“新质生产力”引领绿色低碳发展。电池行业已然由高增长阶段迈入高质量发展阶段,人们更多地把目光投向电池的性能安全,从源头上开发更安全的电池产品。电弛新能源加大创新投入,基于电池原位产气量、内部气压、膨胀力等关键领域展开研究,研制了先进的电池测试设备,对于探索优化电池材料、结构,具有重要意义。在展会现场,电弛新能源以“专于电池,精于测试”为主题,带来的系列全新电池测试应用解决方案吸引了不少嘉宾的关注。“大家的热情超出我们的预期,对我们展示的最新电池测试技术产品兴趣浓厚,电弛新能源期待与业界朋友合作,一起助力中国电池产业发展”,电弛新能源代表感慨现场观众的热情,认真解答专业技术问题,介绍新产品特色功能。GPT-1000 原位产气量测定仪GPT-1000电池原位产气量测定仪可实现对锂/钠/半/全固态电池化成、过充、循环及存储等不同阶段产气情况的在线或离线监测。该系统提供一整套原位产气量与产气组分的在线测试解决方案。IPT-2000 原位气体内压测定仪IPT-2000原位气体内压测定仪采用先进的GSP气体采样接口设计,实现了对多种不同规格电芯的适配,满足大规模电芯测试的需求,进而为电芯产气分析、失效模式研究以及热失控安全性评估提供强有力的技术支持。SFT-3000 原位膨胀力测试仪SFT-3000原位膨胀力测试仪可在模拟真实的电池充放电工况下,对多种不同形态的电池进行膨胀尺寸和膨胀力的精确评估,助力电极材料的研发和电池膨胀机理的深入分析研究。近年来,我国氢燃料电池汽车产销量高速增长,氢燃料电池测试、电解水制氢等专业设备需求井喷,通过这些仪器设备,开发先进的氢能技术产品,有着重要意义。在本次展会上,电弛新能源展示了近年来在氢能技术研发成果,得到了与会专家、学者的关注。980Pro 燃电池测试系统980Pro燃料电池测试系统是专为PEM燃料电池膜电极(MEA)和电堆性能评估而设计的先进测试平台。可对燃料电池的性能和稳定性进行全面评估,已成功部署国内多所高校实验室。780 电解水制氢测试系统780电解水制氢测试系统兼容PEM与AEM技术应用的创新型电解水制氢测试系统。充分考虑了中国实验室的操作习惯。DSR 数字型旋转环盘电极在展台上,数字型旋转圆盘电极DSR凭借具有中国特色的“千山绿”设计吸引众多嘉宾围观,科技彰显人文,DSR凭借“数字化、更精准、‘狠’稳定”的技术优势,助力中国催化剂及氢能科研。目前,重庆国际电池技术交流会/展览会(CIBF2024)火热进行中,欢迎大家参观电弛新能源展会交流互动!
  • 耐驰公司致用户贺词
    敬爱的用户: 您好! 玉兔辞旧岁,龙腾迎新年。 我们心揣一片至真至纯的感恩,感谢您长期以来对耐驰的关注与支持,使得我们一直能领跑于热分析领域的前沿,更在2011年勇夺同行“桂冠”头衔。这片代表荣誉的光环是由您们的点滴信赖与厚爱编织而成。 耐驰诞生于1952年,德国的巴伐利亚州,是热分析领域最古老的品牌之一,对于品牌的历史我们都倍感骄傲。作为全球领先的热分析仪,耐驰一直在不断的探索与创新,先进的技术屡次摘得“R&D100”大奖。耐驰即为顶尖科技与经典热分析方法的完美演绎。它的每一件产品都体现了卓越的品质,秉持了德国制造,以人为本的信念。 如今,全国各地每天都有2000多名用户在使用耐驰的热分析仪器进行检测、工艺开发或科研工作,涉及的领域之广可以说无所不有。正是您们的选择让我们变得更为强大。因此,在您的背后一直站立着一支强有力的队伍,提供包括维修和应用支持等的配套服务。 此外,耐驰深知只有使客户的成功才是真正的成功。所以,耐驰为您想得更多。十五年来,无论你在何方,每年我们都把一份免费培训的承诺带到您的身边。 敬爱的用户,曾经的相见,铸就我们未来长久的友谊。衷心地祝愿您在新的一年中龙马精神,万事如意! 耐驰科学仪器商贸(上海)有限公司全体员工 敬上2011年1月21日
  • Acrichi发布Acrichi 全自动二次热脱附仪 ATD II-26新品
    全自动二次热脱附仪Acrichi Automatic Thermal Desorption 型号:Acrichi ATDⅡ-26 技术参数:Technical Parameters: 吸附管温度控制范围:室温-400℃,控温精度:±1℃六通阀进样系统温度及控制范围: 室温-220℃,控温精度:±1℃样品传输管温度及控制范围:室温-220℃,控温精度:±1℃聚焦管温度控制范围:室温-450℃,升温速率4000℃/min冷阱温度控制范围:-40℃-室温,采用电子制冷装置,控温精度:±1℃样品位:26位反吹流量:0~100ml/min(连续可调)制样流量:100ml/min样品解吸、吹扫、进样和反吹时间:0.0min~999.9min吸附管规格:直径:1/4英寸,长度:3.5英寸功率:800W电源:220V 50Hz仪器尺寸:605×350×520(mm)仪器重量:约30kg 仪器特点和主要功能:Features and functions: 全自动一键式启动,自动完成全部吸附管的脱附进样分析过程,无需人员值守。自动检漏和故障报警功能。稳定的伺服电机驱动可靠的硬件和软件控制系统。触摸屏控制,界面信息丰富、齐全,操作简单。方法参数设置、实时显示工作状态、运行时间。吸附管、进样阀、传输管、聚焦管(制冷、加热),五路均可单独控制温度。10种方法供编辑、存储和随时调用,按下运行键自动完成样品分析。同步启动气相色谱-质谱、数据处理工作站,也可用外来事件程序启动本装置。可以实现对吸附管的自动重复进样。六通阀进样方式,更少的死体积,保证了进样精度。六通阀与传输管线的连接点处于加热保温箱内,无传输冷点,保证了样品的完整性。本机自带标样制样的功能,可以更方便的通过热解析仪制作工作曲线。更低的制冷温度和更高的升温速率以保证得到窄的色谱峰形。电子流量显示功能。创新点:1、冷阱低温可达-40℃2、聚焦管升温速率大于4200℃/min3、同步启动气相色谱仪、色谱数据处理工作站和气质联用仪,并接受反控信号,保证样品不会被浪费。4、电子流量显示5、分流/不分流,一次解吸可以在分流不分流之间切换。Acrichi 全自动二次热脱附仪 ATD II-26
  • 可循环充电超万次锰氢气电池问世
    p style="text-indent: 2em "随着可再生能源开发利用规模的不断扩大及智能电网产业的迅速崛起,储能技术的重要性日益凸显。记者7日获悉,由美国斯坦福大学崔屹教授领衔的研究团队介绍了一种可循环充电1万次以上的锰氢气电池,可实现10年以上的稳定性能。该成果发表在《自然· 能源》上。/pp style="text-indent: 2em "据该成果的第一作者、美国斯坦福大学材料科学与工程学院的陈维博士介绍,他们发明的锰氢气电池使用高表面积的碳作为正极集流体,易溶于水的硫酸锰盐作为电解液,由催化剂控制的氢气作为负极。该电池从设计、充放电原理、测试方法和性能上都有别于以往任何水系电池。/pp style="text-indent: 2em "成果显示,锰氢气电池具有非常优异的电化学性能,比如稳定的放电电压1.3伏,高倍率的放电电流100mA/cm2,大于1万次的稳定循环,以及较高的质量能量密度139Wh/kg和体积能量密度210Wh/L。而且,该电池很容易放大用于大规模储能。/pp style="text-indent: 2em "大规模储能是实现可再生能源普及应用的核心技术。现有的大规模储能技术(如抽水储能、压缩空气储能)以及各种蓄能电池(如锂离子电池、钠硫电池、液流电池)等均存在不同的问题,远不能满足大规模储能廉价、安全、高能量密度和高稳定性的要求。崔屹表示:“锰氢气电池的发明将对大规模储能的格局产生重要影响,进一步缓解由传统化石能源带来的严重碳排放和空气污染。”/p
  • 德国新帕泰克3月19-21日将参加CIBF2021电池展
    2021年3月19-21日,第十四届中国国际电池技术交流会/展览会CIBF2021将在深圳会展中心举办。本届活动将以“行业展览+技术交流会+采购洽谈会”的形式进行。 德国新帕泰克将设展现场交流,展位号:1GB088。 一、电池材料粒度与粒形重要性 锂离子电池具有能量密度较高,循环寿命长等优点,已广泛应用于手机、笔记本电脑、新能源汽车等各个领域。 锂电池的电芯材料(简称“电池材料”)包括主材正极材料、负极材料、电解液、隔膜四大材料以及导电剂、粘结剂等其他辅材。 锂电池的充放电过程即锂离子在正负极间不断嵌入和脱嵌的过程。而在整个充放电过程中,电池材料对于电池的容量、充电速度、安全性等均有直接且重大的影响,是决定锂电池性能的关键。电池材料的粒度或粒形,是产品控制的重要参数之一。 二、不同阶段的粒度粒形表征方案 从原矿材料到电池制造与回收,德国新帕泰克从1nm-33,792&mu m之间为电池材料的粒度与粒形表征提供了全面的解决方案。 激光粒度分析仪HELOS系列 采用平行光路设计,同一台主机可搭载不同的分散模块,以适应不同材料状态和应用环境的需求。 动态图像分析仪QICPIC系列 延续模块化设计的理念,灵活适用于各种应用。粒度与粒形信息同时获得,对材料性能的表征更加全面。 纳米粒度分析仪NANOPHOX 创新采用光子交叉相关光谱法(PCCS),消除了多重散射信号对高浓度样品测试结果失真的影响,测试结果稳定可靠。 在线粒度分析仪MYTOS 在线粒度仪MYTOS采用了与实验室激光粒度仪HELOS&RODOS相同的核心技术,可以与实验室分析结果有很好的一致性。 搭配特定的管道取样器实现自动取样和检测,无需人工参与。粒度数据可随时被传输至中控系统,为实现自动化生产创造了条件。 三、现场交流 本次展会,德国新帕泰克将携激光衍射粒度仪HELOS|OASIS参展,并提供现场免费测样及方案咨询!诚挚欢迎您莅临1GB088号展位! 干湿二合一激光粒度仪 HELOS&OASIS
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制