当前位置: 仪器信息网 > 行业主题 > >

微扫描式高灵敏高分辨率热红外相机

仪器信息网微扫描式高灵敏高分辨率热红外相机专题为您提供2024年最新微扫描式高灵敏高分辨率热红外相机价格报价、厂家品牌的相关信息, 包括微扫描式高灵敏高分辨率热红外相机参数、型号等,不管是国产,还是进口品牌的微扫描式高灵敏高分辨率热红外相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微扫描式高灵敏高分辨率热红外相机相关的耗材配件、试剂标物,还有微扫描式高灵敏高分辨率热红外相机相关的最新资讯、资料,以及微扫描式高灵敏高分辨率热红外相机相关的解决方案。

微扫描式高灵敏高分辨率热红外相机相关的资讯

  • 超灵敏海森结构光超高分辨率显微镜研发成功
    p  中科院膜生物学国家重点实验室联合华中科技大学发明了一种超灵敏结构光超高分辨率显微镜-----海森结构光显微镜 (Hessian SIM),实现了活细胞超快长时程超高分辨率成像,能辨清囊泡融合孔道和线粒体内嵴动态。在每秒钟得到188张超高分辨率图像时,海森结构光显微镜的空间分辨率可以达到85纳米,能够分辨单根头发的1/600到1/800大小结构,而所需要的光照度小于常用的共聚焦显微镜光照度三个数量级。同时,该显微镜也实现了细胞“能量工厂”线粒体的超快超分辨成像,首次在活细胞中解析线粒体融合、分裂时内嵴的活动,及线粒体内嵴自身的重组装过程,并能够观察内质网与线粒体发生相互作用时的动态变化。/pp  与获得2014年Nobel化学奖的受激辐射损耗超高分辨率显微镜(STED)相比,其具有极高的时间分辨率、极低的光毒性,在活细胞超高分辨率成像方面优势显著。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/235ade60-4b77-42b8-bfd2-21c083b4ea5d.jpg" title="640-2.jpeg"//pp  海森结构光显微镜解析囊泡融合孔道形成全过程。上图:实际的动态过程解析;下图:由实验结果得到的囊泡融合的四个中间态。/pp  灵敏海森结构光超高分辨率显微镜的成功验证,一方面基于新偏振旋转玻片阵列、高精度的时序控制程序以及高数值孔径物镜等硬件的自主研制;另一方面是重构算法的创新,首次提出将生物样本在多维时空上连续,而噪声是完全随机分布的先验知识用于构建海森矩阵,指导超高分辨率荧光图像的重建。/pp  超灵敏海森结构光显微镜适用于各种细胞、不同探针的荧光成像。可以说,所有应用点扫描共聚焦显微镜的场景都可以使用海森结构光显微镜,因而具有广泛的应用前景。/pp  此项研究成果以题为“Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy” 以全文形式于近日在线发表于《Nature Biotechnology》 上。/pp  论文链接:https://www.nature.com/articles/nbt.4115/ppbr//p
  • 北大教授研发出超灵敏结构光超高分辨率显微镜
    p  北京大学陈良怡团队联合华中科技大学谭山团队发明了一种超灵敏结构光超高分辨率显微镜 -- 海森结构光显微镜 (Hessian SIM)。此项成果近日以全文形式在线发表于Nature Biotechnology (影响因子41.67),论文题目为“Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy”。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/9733f7f5-ffa5-4262-9ca6-a6f439e01233.jpg" title="1.png"//pp style="text-align: center "图1:海森结构光显微镜解析囊泡融合孔道形成全过程。上图:实际的动态过程解析;下图:由实验结果得到的囊泡融合的四个中间态。/pp  在每秒钟得到188张超高分辨率图像时,海森结构光显微镜的空间分辨率可以达到85纳米,能够分辨单根头发的1/600到1/800大小结构,而所需要的光照度小于常用的共聚焦显微镜光照度三个数量级。由于极低的光漂白以及光毒性,实现了100 Hz超高分辨率成像下连续采样10分钟得到18万张超高分辨率图像,或者是在1 Hz超高分辨率成像下连续1小时超高分辨率成像基本无光漂白。/pp  与获得2014年Nobel化学奖的受激辐射损耗超高分辨率显微镜(STED)相比,海森结构光显微成像以极高的时间分辨率、极低的光毒性在活细胞超高分辨率成像方面占显著优势。例如,在观察细胞内囊泡与细胞质膜融合释放神经递质和激素过程中,海森结构光显微镜与STED显微镜(分辨率60纳米,每秒5幅左右; 巫凌钢实验室2018年3月Cell上线的文章)都可以观察到囊泡融合形成的孔道;但是,海森结构光显微镜还解析出囊泡融合时四个不同中间态,包括囊泡打开3纳米小孔、囊泡塌陷、融合孔道维持和最后的囊泡与细胞质膜完全融合的过程,真正可视化膜孔道形成的全过程(图1)。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/a8d935d2-2f07-4d3a-bfc4-18cf43e9c1ae.jpg" title="2.png"//pp style="text-align: center "图2、海森结构光显微镜显微镜下观察到COS-7细胞中的内质网和线粒体相互作用的动态过程,蓝色的线粒体用MitoTracker Green标记,可以清楚辨识内嵴结构;品红色的是用SEC61-mCherry标记内质网结构。/pp  此项突破一方面是基于硬件自主设计的新偏振旋转玻片阵列、高精度的时序控制程序以及高数值孔径物镜的应用;另一方面是创新的重构算法,借鉴了人眼区分信号和噪声的机制,首次提出将生物样本在多维时空上连续、而噪声是完全随机分布的先验知识用于构建海森矩阵,指导超高分辨率荧光图像的重建。/pp  超灵敏海森结构光显微镜是目前活细胞成像时间最长、时间分辨率最高的超高分辨率显微镜,适用于各种细胞、不同探针的荧光成像 – 可以说,所有应用扫描共聚焦显微镜的场景都可以使用海森结构光显微镜,因而具有广泛的应用前景。/pp  该论文的第一作者为北京大学黄小帅、华中科技大学范骏超和北京大学李柳菊,通讯作者为北京大学陈良怡、华中科技大学谭山。工作得到了国家自然科学基金委重大仪器研制基金、重大研究计划专项、科技部国家重点研发计划基金、重点基础研究发展计划和北京市自然科学基金委重点项目的资助。陈良怡、黄小帅等主创成员参与了早先发表于Nature Methods的高分辨率微型化双光子显微镜的研制,荣获2017年中国十大科学进展等荣誉。未来,他们将进一步实现微型化海森结构光的显微在体成像。/p
  • WidePIX光子计数X射线探测器-高探测效率、高分辨率工业相机
    通过开发一系列X射线光子计数型HPC探测器,来自捷克的ADVACAM团队积累了大量科研及工业领域的应用经验。探索的脚步从未停止,通过不断开发新的成像解决方案,ADVACAM探测器的能力得到不断提升。例如,WidePIX系列探测器就很好的展现了团队的创新能力。新一代的widepix探测器可广泛用于各行各业,包括矿物分析、临床前医学测试、安检、食品检测、艺术品检测等。WidePIX F:世界上最快的高分辨率工业相机基于光子计数技术,WidePIX F光谱相机拥有颠覆性的X射线成像技术,是目前处于世界领先级别的高性能工业相机。它进一步优化、提升了快速移动物体的扫描能力,是进行矿物分析,矿石分选到食品检测,临床前医学,安检或任何带有传送带系统应用的理想工具。分辨率:55微米-比目前采矿作业中常规使用的系统高20倍。探测速度:高达5米/秒 -食品检查的标准速度约为20厘米/秒,这意味着在同样的时间内,WidePIX F可以比常规方案多扫描25倍的材料。颜色/材料灵敏度:提高灵敏度对于矿石分选至关重要,请参考以下应用。MinningWidePIX可直接观察到矿石的内部结构并区分有价值的矿石和废石。使用WidePIX高分辨成像探测器,矿石通常呈现出微粒或脉络状的典型结构。由于该探测器具有多光谱高灵敏度的特性,可以通过图像中采集到的不同颜色来区分各类矿石。欧洲X-MINE项目Advacam为欧洲采矿项目X-MINE定制光子计数型X射线探测器WidePIX 1X30的结果表明,WidePIX探测器甚至可以分选铜矿石,这是传统的成像系统无法实现的。MedicineWidePIX L探测器还可用于非侵入式医学成像。例如,我们可以制作活体小老鼠的实时X射线影像,观察心跳,所有行为不会对小动物造成任何伤害。Others超快WidePIX探测器,可以在设备保持高速运行的同时(例如发动机,涡轮机等),对快速移动的物体进行X射线检测。Advacam可提供不同规格尺寸的光子计数型X射线探测器,其产品线包括WidePIX系列、MiniPIX系列及AdvaPIX系列,除标准尺寸外也可根据需求定制。相关产品阅读:最新到货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!Advacam新品|Widepix 2(1)x10-MPX3探测器:双读出网口,170帧/sADVACAM再添新成员,MiniPIX TPIX3即将面世!ADVACAM辐射检测相机 -应用于粒子追迹Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。目前Advacam已将其探测器应用到了多个项目中。相关应用案例:探寻宇宙奥秘的脚步从未停歇,ADVACAM参与研发项目合辑 关于Advacam公司最新合作项目:搭载Minipix探测器,可搜寻辐射的辐射探测无人机使用Widepix 1x5 MPX3 CdTe探测器进行X射线谱学成像Minipix探测器用于NASA未来项目辐射剂量监测
  • 1570万!高分辨率场发射扫描电镜、转盘共聚焦显微镜等采购项目
    1.项目编号:440001-2023-16757项目名称:惠州学院高分辨率场发射扫描电镜(场发射电子扫描探针微分析仪)科研仪器设备购置项目采购方式:公开招标预算金额:5,600,000.00元采购需求:合同包1(高分辨率场发射扫描电镜(场发射电子扫描探针微分析仪)):合同包预算金额:5,600,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他分析仪器高分辨率场发射扫描电镜(场发射电子扫描探针微分析仪)1(台)详见采购文件5,600,000.00-本合同包不接受联合体投标合同履行期限:交货时间在合同签订后6个月内。2.项目编号:HW20230022/ HBT-15123011-230415项目名称:华中科技大学转盘共聚焦显微镜采购项目预算金额:400.0000000 万元(人民币)最高限价(如有):400.0000000 万元(人民币)采购需求:华中科技大学拟采购转盘共聚焦显微镜一套,采购清单如下,具体要求见本项目招标文件第三章内容。序号货物名称是否接受进口产品单位数量简要技术要求1转盘式共聚焦显微镜是套1双相机光路,可以同步双色双相机成像合同履行期限:交货期:自合同签订之日起90天内。质保期:自验收合格之日起3年。本项目( 不接受 )联合体投标。3.项目编号:HW20230029/HBT-15123012-230416项目名称:华中科技大学近红外上转化共聚焦显微镜采购项目预算金额:430.0000000 万元(人民币)最高限价(如有):430.0000000 万元(人民币)采购需求:华中科技大学拟采购近红外上转化共聚焦显微镜一套,采购清单如下,具体要求见本项目招标文件第三章内容。序号货物名称是否接受进口产品单位数量简要技术要求1近红外上转化共聚焦显微镜是套1不少于六个独立的荧光检测器,一个透射DIC检测通器,所有通道可实时扫描、同时叠加合同履行期限:交货期:自合同签订之日起6个月内。质保期:自验收合格之日起整机质保3年。本项目( 不接受 )联合体投标。4.项目编号:SDSHZB2023-243项目名称:山东大学超声波扫描显微镜采购项目采购方式:竞争性磋商预算金额:180.0000000 万元(人民币)最高限价(如有):180.0000000 万元(人民币)采购需求:超声波扫描显微镜,亟需购置,具体内容详见磋商文件。合同履行期限:详见磋商文件本项目( 不接受 )联合体投标。技术要求.pdf惠州学院高分辨率场发射扫描电镜(场发射电子扫描探针微分析仪)科研仪器设备购置项目招标文件(2023050501) (1).zip
  • 岛津高分辨率扫描探针显微镜SPM-8000FM 新品发布
    ——首款可分析固液界面结构的扫描探针显微镜 岛津高分辨率扫描探针显微镜SPM-8000FM 日本岛津制作所于2014年1月6日推出了最新型号扫描探针显微镜——高分辨率扫描探针显微镜SPM-8000FM,不同于现有扫描探针显微镜/原子力显微镜多采用调幅(AM)方式,而采用更高灵敏度、更高稳定性的调频(FM)方式,因此称为高分辨率HR-SPM(High Resolution Scanning Probe Microscope)扫描探针显微镜。并突破了FM方式只能在真空环境中观察这一瓶颈,成为首款可在大气溶液环境下进行原子级的结构观察和物性测定的扫描探针显微镜,并达到真空环境中超高分辨率水平。 SPM-8000FM可在大气˙溶液环境下分析薄膜、结晶、半导体、有机材料等多种样品。首次实现了在固体和液体的临界面(固液界面)进行水化、溶剂化的观察,因此也可以作为固液界面结构的观察分析仪器。例如,可实现锂离子电池中电解液和电极界面发生的结构变化,或者脂类等生物分子溶液中的结构观察等研究,为电子设备、纳米材料、催化剂、生物材料等纳米技术领域的研发工作带来新手段。 在尖端纳米技术领域的研发过程中,不仅要在真空环境中,更需要在实际使用环境中进行原子级的结构观察和物性测定,准确把握样品特性。岛津制作所与京都大学等科研机构共同研发的SPM-8000FM高分辨率扫描探针显微镜充分满足了纳米研究人员的理想。据悉,该款仪器将于3月展开在中国市场的销售应用服务工作。 SPM-8000FM特点1. 突破超高真空瓶颈,实现大气˙溶液中的超高分辨率观察由于SPM检测悬臂位移的光学杠杆检测系统的固有噪音水平较高,所以只能在真空中完成超高分辨率观察。岛津高分辨率扫描探针显微镜SPM-8000FM通过提高光学杠杆检测系统的效率、降低激光干扰等技术研发,将现有光杠杆检测系统的噪音水平降低95%,开创了SPM在大气˙溶液中的超高分辨率观察。因此,利用SPM-8000FM可以清晰的观察到大气中酞菁铅晶体薄膜的分子排列结构、水中氯化钠(NaCl)的原子结构等。还可以进行有机分子在溶液中特定反应的功能性评价、反应评价,所以在有机元件的开发领域将发挥巨大作用。 2. 不再局限于表面观察,实现了固液界面的局部三维结构的观察分析目前已知固液界面会在溶质与水(溶媒)的相互作用下形成复杂的层状结构,称之为水化溶剂化层,可对固液界面的化学反应、电荷移动、润滑、热传导等产生很大的影响。但是水化溶剂化层非常薄,在临界面的垂直方向上呈现不均一的结构,所以水化溶剂化层的显微观察迄今为止都是一个难题。SPM-8000FM利用超高灵敏度的力检测系统实现了水化溶剂化结构的观察分析。通过采用新的扫描方式,首次实现了三维结构的解析。不仅可以观察电极、聚合物在界面活性剂、生物界面等溶液中的表面形态,还可以进行固液界面结构的观察分析。
  • 华东师大实现超灵敏、高分辨、大视场的中红外单光子三维成像
    华东师大精密光谱科学与技术国家重点实验室曾和平教授与黄坤研究员团队在中红外三维成像领域取得进展,发展了宽视场、超灵敏、高分辨的中红外上转换三维成像技术,获得了单光子成像灵敏度与飞秒光学门控精度,可为芯片无损检测、远程红外遥感和生物医学诊断等重要应用提供有力支撑,相关成果以“Mid-infrared single-photon 3D imaging”为题于2023年6月9日在线发表于Light: Science & Applications。华东师大为论文的第一完成单位,博士研究生方迦南为论文第一作者,曾和平教授和黄坤研究员为共同通讯作者。激光三维成像技术具有成像分辨率高、测量距离远、探测信息丰富等优点而被广泛应用于自动驾驶、卫星遥感、工业生产检测等众多领域。特别是,中红外波段位于分子指纹光谱区,涵盖多种官能团吸收峰,能够对三维目标进行化学特异性识别,在无损伤物质材料鉴定、无标记生物组织成像,以及非入侵医学病理诊断等领域备受关注。此外,该波段包含多个大气透射窗口,且相较于近红外光有更好穿透烟尘、雾霾的能力,在形貌测绘与遥感识别等方面具有独特优势。长期以来,如何实现趋近单光子水平的探测灵敏度都是中红外三维成像领域的国际研究热点,对于促进其在低光通量、光子稀疏的微光探测场景下的应用具有积极意义。然而,单光子水平的激光三维成像长期以来仅局限在可见光/近红外波段,主要制约因素在于中红外波段缺乏高探测灵敏度与高时间分辨率的光子探测与成像器件。近年来,随着红外器件工艺精进与新材料涌现,中红外探测器性能得到了长足发展,但依然面临着增强灵敏度、提升响应带宽、扩大像素规模、提高工作温度等亟待解决的难题。中红外三维测量可以采用光学相干层析、光热成像、光声成像等技术方案来实现,但往往需要逐点扫描,无法单次获取高性噪比的大面阵成像。因此,实现大视场、高分辨的中红外单光子三维成像仍颇具挑战。图3:中红外单光子三维成像装置图为此,华东师大研究团队发展了基于高精度非线性光学取样的中红外上转换测控技术,实现了超灵敏、高分辨、大视场的中红外三维成像,展示了单光子探测灵敏度、飞秒门控时间精度以及百万像素宽画幅。具体而言,研究人员采用非线性光学和频过程将信号波长高效转换至可见光波段,利用高性能硅基相机即可实现红外成像,从而规避了现有红外焦平面阵列灵敏度不足的技术瓶颈。同时,该上转换成像系统采用同步脉冲泵浦方案,可将背景噪声限制在极窄时间窗口内,结合精密频谱滤波可以有效提升探测信噪比,进而实现单光子水平的成像灵敏度。此外,研究人员沿用课题组此前发展的非线性广角成像技术[Nature Commun. 13, 1077 (2022)],通过单次曝光即可获得大视场成像,免除了逐点机械扫描过程,大幅提升了成像速度。图4:中红外三维立体成像,被测信号强度约为1光子/像素/秒进一步,研究人员采用超快光学符合门控技术,精确测量中红外信号的相对飞行时间,从而得到被测物体表面的形貌信息。该时间飞行成像系统的时间分辨能力取决于光学脉冲宽度,可以达到飞秒水平的时间标记精度,通过高速延时扫描与宽场全幅采集,对被测场景进行快速时域切片,进而反演出目标界面的反射率、透射率以及材料的吸收率、折射率、色散量等丰富信息。图4展示了多角度中红外照明下三维数据信息融合重构出的被测目标立体形貌,其中被测信号强度约为1光子/像素/秒。图5:时空关联去噪算法,信号和噪声水平分别约为0.05和1000光子/像素/秒 在稀疏光子场景中,有效信号往往被淹没在严重的背景噪声中,仅从强度信息通常难以识别被测目标。为此,如何有效地区分信号和噪声光成为单光子成像的关键难点。为模拟极低照度、高噪声场景,该研究团队将红外信号衰减至0.05光子/像素/秒,对应的信噪比低至1:20000。如图5a-c所示,传统强度峰值识别算法并不能有效甄别信号。在主动成像中,成像系统接收的信号光子在时-空域上具有一定的连续性,而背景噪声光子则会随机分布在整个时间轴与空间像素点上。 基于该特性,研究人员发展了精确、高效和鲁棒的点云去噪算法,通过关联增强空间相邻像素与相邻时间帧的强度,有效提取与甄别信号光子,进而实现高背景噪声下的中红外单光子三维成像(图5d-i)。 所发展的中红外三维成像技术具备高灵敏与高分辨的独特优势,结合该波段优越的抗散射干扰能力,对于复杂环境下的红外场景恢复具有重要意义,可以发展出中红外散射成像与中红外非视域成像。此外,通过调谐中红外信号波长,可以实现四维高光谱成像,可为材料检测、无损探伤、生物成像等创新应用提供有力支撑。 近年来,曾和平教授与黄坤研究员课题组在红外单光子测控方面开展了系列创新研究,先后发展了中红外非线性广角成像 [Nature Commun. 13, 1077 (2022)],中红外单光子单像素成像[Nature Commun. 14, 1073 (2023)],以及高帧频中红外单光子光谱 [Laser Photonics Rev. 2300149 (2023)]等。相关工作得到了科技部、基金委、上海市、重庆市与华东师大的资助。
  • 支持大型重型样品纳米级观察!日立高新新品发布:高分辨率肖特基场发射扫描电镜
    仪器信息网讯 5月28日,株式会社日立高新技术(以下简称“日立高新技术”)发布“SU3900SE”、“SU3800SE”系列高分辨率肖特基场发射扫描电子显微镜,可在纳米水平上对大型重型样品进行高精度和高效的观察。高分辨率肖特基场发射扫描电镜 SU3900SE(左) ,SU3800SE(右)该系列最大可观察样品重量达到5 kg。此外,通过搭载日立高新技术SEM系列中最大级别的样品台,可以对直径300mm、高度130mm的大型样品进行观察,从而减少切割样品等加工工序,有助于提高整个过程的效率。并且,新产品在可以进行大型重型样品观察的同时,还兼具样品台5轴(左右、前后、上下、倾斜、旋转)移动。此外,还具有相机导航功能,可以将一系列单独拍摄的图像拼接在一起,从而观察样品全貌,支持观察大型样品时的视野搜索(在测量开始时确定当前测量位置),有助于提高操作性。产品开发背景SEM是用于观察材料表面微观结构的仪器,广泛用于纳米技术和生物技术等多个领域的研发、制造和质量控制。特别是,高分辨率肖特基场发射扫描电镜 (FE-SEM) 可在更高倍率进行观察,在微粒观察、微小异物观察以及元素分析方面的需求不断增加。当观察大型和重型样品时,如钢铁等工业材料及汽车相关零部件,可观察的试样尺寸和重量有限制。在观察前需要进行切割等样品处理,从而增加了观察工作的负担。另外,近年来,SEM更多的应用在控制微观结构,以提高各种材料的功能和性能,以及分析异物和缺陷以提高产品质量。因此,还需要通过进一步提高可操作性来减轻用户的负担,例如提高获取大量数据的效率,以及简化大范围观察时的视野搜索等。主要特点(1)大型重型样品的广域观测由于样品台可以观察到大型重型样品,日立高新技术的大型SEM实现了对直径300 mm、高130 mm、重量5 kg样品的观察。此外,产品既可搭载大型重型样品又具备5轴移动的功能。(2)使用光学相机图像进行简单的大范围移动使用光学相机导航系统可覆盖整个样品台的移动范围,轻松确定样品位置。此外,光学相机图像也可以随样品台而旋转,从而轻松移动样品位置,并在 SEM 图像中顺利观察到样品位置。(3)获取大量数据时减轻用户负担配备可选功能“EM Flow Creator”,可视需要组合倍率和样品台位置等条件设置、焦距及对比度等调整功能,创建一系列观察菜单。通过执行创建的菜单,可进行自动观察,有助于减轻用户的操作负担,并在连续图像采集过程中节省人力。关于SU3900SE/SU3800SESU3900SESU3800SE最大样品尺寸Φ300mmΦ200mm最大可观察范围Φ229mmΦ130mm最大可搭载重量5kg2kg最大可搭载高度130mm80mm今后,日立高新技术将继续完善其“解析、分析”的核心技术,致力于打造解决客户问题的解决方案平台和专用设备,为解决环境问题、强韧、安全和安心等社会问题和客户课题做出贡献。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助客户实现其目标,共创美好未来。
  • “高分辨率CCD遥感相机”项目荣获国防科技一等奖
    12月30日,2011年国防科技工业工作会议在京召开,中央军委委员、总装备部部长常万全,工业和信息化部党组书记、部长苗圩出席会议并作讲话。工业和信息化部副部长、国防科工局局长陈求发作工作报告。会议表彰了2010年在国防科学技术中做出突出贡献的先进单位和个人。中科院西安光学精密机械研究所“高分辨率CCD遥感相机”项目荣获国防科学技术一等奖。  高分辨率遥感相机是遥感卫星的主载荷,主要用于获取目标的高分辨率、高清晰图像,为资源勘察、环境监测、城市规划、防震减灾和空间科学试验服务。西安光机所科研人员坚持自主创新,潜心攻关、奋勇拼搏,突破了长焦距非球面光学系统及相机对空间环境的适应性、CCD高分辨率推扫成像和高速、实时、低噪声视频信号处理等关键技术,终于研制成功星载长焦距高分辨率CCD遥感相机,填补了国内空白。相关获得的图像清晰、层次丰富、像质优良。它是我国卫星遥感有效载荷研发的重大突破,对增强我国的经济实力、科技实力和综合国力具有重大意义。
  • B&WTEK高分辨率、高灵敏度SpectraRad辐照度光谱仪
    达泰克(B&WTEK Inc.)和柯尼卡美能达公司(Konica Minolta Sensing Americas)合作推出新一代低成本、高分辨率和高灵敏度的SpectraRad辐照度光谱仪。SpectraRad是采用了TE致冷CCD光谱仪和独有透射式余弦校正部件的辐照度光谱仪系统,系统经NIST溯源的标准灯进行照度校正,采用USB2.0/1.1数据传输,配备BWSpec专用光源检测软件,提供CIE1931标准中的光学检测指标,是LED、照明光源及各类太阳能模拟器等特殊光源检测的理想选择。更多有关SpectraRad的信息,请访问http://www.bwtek.cn/product.asp?ID=59&SortID=5或http://www.bwtek.com/product/colormeasurement/spectrarad.html 美国必达泰克公司(B&W TEK)是一家主营光电产品的高科技公司,成立于1997年,位于美国特拉华(Delaware)州纽瓦克(Newark)市。本公司集开发、研制、生产于一体,在CCD、PDA、InGaAs等阵列光谱仪以及拉曼、荧光等光谱系统、高功率半导体激光器等方面均处于世界领先水平,其中便携式拉曼光谱仪全球销量超过8000台。 必达泰克在分子光谱仪器特别是近红外、拉曼光谱仪等中高端领域拥有强大的技术实力,仪器各项指标先进,售后及技术服务完善,在广大客户群中拥有优秀的声誉。必达泰克公司的各型CCD/PDA微型光谱仪、便携式拉曼光谱仪以及激光共聚焦显微拉曼光谱仪广泛应用到LED测试、制备色谱、在线污染气体检测、水质分析、宝玉石文物鉴定等多个领域。值得一提的是,必达泰克公司(B&W TEK)率先在中国市场推出高灵敏度非致冷薄型背照式CCD阵列光谱仪等多款高性价比产品。作为必达泰克公司在中国的全资子公司,必达泰克光电科技致力于为中国客户提供一流的仪器,一流的服务。
  • 做中国显微技术领跑者 向超高分辨率成像迈进!——“创新100”访广州市明美光电技术有限公司
    广州市明美光电技术有限公司创立于2003年,创始人张春旺曾就职于某国际知名显微镜企业,对于光学显微镜的技术和销售都有深刻的了解。怀揣让中国科学仪器自主化的理想,成立了明美光电,“明美”寓意科技让明天更美好。公司创立之初,主要生产显微镜相机和相关配件,这也是业内对明美光电的主要印象。如今,明美光电已是国家高新技术企业,专注于显微成像产品的研发、生产和销售,致力为显微领域的自动化、智能化、国产化贡献力量,曾获国家创新基金扶持,被认定为广东省显微成像工程技术研究中心。明美光电以成为中国显微成像行业领跑者为愿景,强调差异化竞争,聚焦在荧光成像为主的中高端范围。2009年以来,明美光电在国家资助支持下开始攻坚LED荧光显微镜,并在2010-2015年间连续获得高新技术企业认证,陆续推出旗下多款研究级荧光显微镜。本期“创新100 ”特别对话明美光电,带大家了解这家“潜心躬耕十余载,立志光大国产‘器’”的创新光学显微镜企业。张春旺 总经理 广州市明美光电技术有限公司仪器信息网:公司主推的产品及型号是什么,产品/技术可应用于哪些领域,有哪些典型用户,解决了什么样的实际问题? 张春旺:明美光电聚焦在中高端的荧光显微镜领域,解决细胞生物学等生命科学研究以及FISH荧光原位杂交癌症检测等医疗领域的需要,同时还有应用于高校、疾控、养殖、金相、工业等领域的产品。比如:电动荧光显微镜MF53-N/MF43-N、研究级荧光显微镜MZX81/MF52-N,具有成像质量高、扩展性能强、简单易用的优势;还有数字切片扫描系统,既是研究级荧光显微镜,也是高速自动化切片扫描仪,一机两用,性能强大。数字切片扫描系统在显微镜配套的相机和光源领域,显微镜四大品牌的高端产品依然强势,但受限于成本,很多实验室还会选择一些中低端产品,使用效果或受到一定影响。明美光电的MSH12/MSX11/MSX2/MS60/MC50-S多款高性能CMOS显微镜相机,覆盖高像素和高灵敏度等不同应用需求,让客户以更低成本实现了理想的成像效果。如同田忌赛马,国产“上等马”对进口“中等马”,便可更胜一筹。MG-120/MG-100/MG-200多款LED显微镜光源,可以搭配徕卡DM2500等四大品牌显微镜,除了寿命可达传统汞灯等热光源的数十倍,还能做到即开即用、无需校准,可极大降低实验人员等待光源预热的几十分钟耗时,并显著降低实验室维护荧光显微镜带来的人力成本,对于客户来说极大提升了效率。四通道光源MG-120无论是荧光显微镜,还是相机和光源,明美光电在国内都有很多典型用户。华中科技大学同济医学院生殖健康研究所章慧平教授课题组所发表的论文“Cardiac developmental toxicity and transcriptome analyses of zebrafish(Danio rerio) embryos exposed to Mancozeb”,揭示了代森锌锰(MZ)暴露诱导斑马鱼心脏发育损伤的分子机制,该研究需要用到荧光体视显微镜看斑马鱼和荧光正置显微镜看斑马鱼切片,如果选择进口品牌,预算仅能够购买一台设备,而选择明美光电则可以两台设备备齐。最终课题组使用了明美光电的研究级正置荧光显微镜MF43-N和研究级荧光体视显微镜MZX81,并对明美光电LED荧光显微镜的易用性和荧光效果表示十分满意。此外,北京大学、清华大学、中国科学技术大学、中南大学、中国疾控病毒防控所、广药白云山制药总厂、南京航天科技研究所等都是明美光电的用户。仪器信息网:与国内外同类型产品相比,您认为公司的主要竞争优势有哪些,增长点在哪里?张春旺:明美光电的主要优势在于荧光成像领域,包括LED荧光显微镜、电动荧光显微镜、荧光光源、荧光附件和高灵敏度相机。明美光电已有非常深厚的积累,因而在产品适配度、方案整合度和使用体验等方面更有优势。比如数显荧光模块,我们已经做到了一个模块有三色甚至四色通道,模块自带屏幕显示波段和光强,自带切换机构和无级调节机构,无需外接控制箱和光源灯箱,而许多同行只能做到一个模块单色或者双色,甚至有些像传统荧光光源一样要外接控制箱。此外,明美光电还在电动化、智能化整合上进行创新,已有纳米级高精度XYZ三轴电动荧光显微镜和具备切片自动扫描功能的数字切片扫描系统,性能可比肩进口品牌,且具有更强的价格优势。除了产品实力,明美光电还具有企业实力。作为一家国家高新技术企业,公司连续11年获守合同重信用企业认证,已通过ISO9001管理体系认证,拥有近百个专利、软著,被认定为广东省显微成像工程技术研究中心。在全国20多个城市均设有服务网点,派驻专业工程师为客户提供完善服务,服务信得过。2021年,国家明确要求医院等机构在一定条件下须采购国产显微镜,这说明国产替代进口的进程已经拉开帷幕,未来还将加速,这对国产企业来说是重大的增长点和利好。未来,明美光电将继续强化LED荧光成像方面的优势,推出更加自动化、智能化的产品,以满足更多客户高端的荧光成像需求。如超高分辨率的成像,以往用户主要购买进口的共聚焦显微镜,未来或替换为明美光电新研发的新型超高分辨率荧光成像产品!仪器信息网:请介绍贵公司当前规模,研发人员和研发投入各有多少,与哪些单位之间有合作?张春旺:明美光电当前全职员工近百人,其中约1/4是研发人员,每年研发投入占年利润的30%以上,以MG-100等LED荧光光源产品类目为例,总研发投入已经达到百万级别。此外,我们还与华南师范大学、暨南大学等单位保持紧密合作,是华南师范大学光学工程合作的硕士联合培养基地、广州医科大学生物工程实习基地,联合研发新型超高分辨率显微镜等产品,目前已有成功的工程样机可以进行超高分辨率观察,产品还在完善中。仪器信息网:贵公司下一步在市场和产品方面有何具体计划?张春旺:明美光电将继续集中力量发展LED荧光相关的产品,同时关注细胞生物学相关领域的进展。前者我们有四通道光源MG-120和液冷光源MG-200,效率、寿命和智能化比以往的宽光谱多通道LED荧光光源MG-100有显著提升,且可以高效接入光纤。后者我们近年推出了如活细胞成像仪MCS11、细胞工厂显微镜MI52-CF和多层细胞工厂成像仪MCF400等针对活细胞成像和新型细胞工厂培养皿的产品。目前还有更紧凑而强大的相关产品正在研发中。仪器信息网:如何看待国产科学仪器的发展前景,未来还有哪些机会值得关注?张春旺:随着国家对自主化创新的要求越来越高,国产仪器将会更大范围取代进口仪器,显微镜看似小众,可是应用到很多领域,做好国产显微镜其实是一个艰难的提升过程,我们希望大家一起努力。仪器信息网:企业当前面临的最大困难或挑战是什么,希望借助“创新100”获得怎样的资源或帮助?张春旺:创新需要大量的资金投入、人员的持续努力和企业的厚积薄发。一个LED荧光光源,看似简单,却是明美光电投入数百万资金、花费几十年研发积累打造的。一个内部结构的小细节,看似不起眼,却是我们调研很多用户、理论分析和实践经验总结的成果。现在市场上有很多明美光电的模仿者,参考我们的设计做方案,又不理解内部细节由来,擅自修改并自以为是完善,结果产品出现问题,不仅影响他们自己的品牌,还可能让客户对国产仪器产品产生总体性质疑,对明美光电也是一种伤害。所以我们需要站出来、喊出来,让大家知道,明美光电不只是做显微镜相机,还在LED荧光显微镜领域做了非常多工作,不仅有自己的研究级荧光显微镜,还有帮助客户升级成荧光显微镜的各种产品和方案。我们希望通过“创新100”让客户了解我们的努力,并且收获更高质量的产品和更良好的体验,建立对国产仪器更强的信心。
  • 明美1250万像素高分辨率相机助力小鼠贴壁细胞观察
    近日,为了提高医院医疗水平,进一步规划和凝练医疗方向,深州市人民医院对小鼠细胞的观察效果提出了更高的要求。明美专业工程师经过详细的沟通了解,针对博士的特殊需求,为其推荐了明美生物倒置显微镜mi52搭配研究级1250万高像素显微数码相机msx2的组合方案,并免费提供专业的样机演示服务,展现了明美在显微成像领域的专业素养。此次项目中,博士需要观察的是小鼠细胞中的贴壁细胞,这种细胞在培养过程中,必须有可以贴附的支持物表面,其依靠自身分泌或培养基中的贴附因子才能在该表面生长增殖,因此,对观察使用的显微成像产品要求极高。通过明美专业工程师的多次沟通,以及产品推荐使用,最终选定使用明美生物倒置显微镜mi52搭配研究级显微数码相机msx2来进行观察研究。msx2是明美最新研发的1250万高像素科研级数字相机,采用1英寸大靶面高性能的成像芯片,设计usb3.0数据传输接口,具有高分辨率、颜色还原准确和高灵敏度的特点,其优秀的色彩表现,是液基细胞分析、免疫组化、骨髓细胞分析等对颜色要求高的病理诊断的理想工具。此外在明暗场、相衬、偏光、dic、荧光成像等领域同样表现出色。下图为使用明美生物倒置显微镜mi52与研究级显微数码相机msx2、ms60进行观察: 下图为明美生物倒置显微镜mi52与研究级显微数码相机ms60镜头下的小鼠细胞图片: 下图为明美生物倒置显微镜mi52与研究级显微数码相机msx2镜头下的小鼠细胞图片: 使用机型:明美生物倒置显微镜mi52 研究级显微数码相机msx2。
  • 199万!华中科技大学超高分辨率激光扫描共聚焦显微镜采购项目
    项目编号:HW20220426、ZCZB-2209-ZH165项目名称:华中科技大学采购超高分辨率激光扫描共聚焦显微镜项目采购方式:竞争性磋商 预算金额:199万元序号货物名称是否接受进口产品单位数量是否为核心产品1超高分辨率激光扫描共聚焦显微镜是套1是指标要求全固体激光器:405nm,功率≥50mW488nm,功率≥20mW561nm,功率≥20mW640nm,功率≥20mW开放式和一体化的激光耦合器,通过单独一根宽光谱、高透过率光纤导出,近紫外到红光区域一体化色差校正,无须调节光纤中心。所有激光谱线均由AOTF控制,可实现连续调节激光强度、高速激光谱线切换、具有快速光闸控制功能,可进行局部的R0I成像、FRAP等实验应用;激光强度调节范围:0.01%-100%,最小调节步进精度0.01%,后期可升级激光器最大可升级9根激光器。附件一华中科技大学采购超高分辨率激光扫描共聚焦显微镜项目采购需求书.docx
  • 冬季用电高峰期,高分辨率的FLIR T1040保障电力设备的稳定运行!
    大雪时节北方有“千里冰封,万里雪飘”的自然景观随着各地降温降雪的开始制暖用电负荷将明显增多并且降温、降雪可能还引起电力设施出现凝露、受潮现象为了保障电力设备的安全运行无论环境多么恶劣电力工人们也要对输变配电设备巡检维护那么该如何让巡检工作更安全便捷一些呢?红外检测:预防性维护有效手段红外热像仪是一种非接触式无损检测工具,因此其成为巡检计划中必备的检测维修工具。众所周知,设备发生故障之前会逐渐变热,这意味着对配电线路进行定期红外热像检测,将有助于全面了解潜在的问题。红外热像仪是电力设备预防性维护的一种有效手段,但如何让检测结果更准确、检测过程更流畅,就需要选对热像仪!今天,小菲就来给大家推荐一款超高分辨率的高级红外热像仪——FLIR T1040,电力公司巡检的得力助手!FLIR T1040:“高、精、尖”电力设备的巡检,除了大型设备的整体扫描,还有细小部件的针对性检查,为了电力工人们避免爬上爬下的风险,超高分辨率的FLIR T1040可以满足电力巡检过程中的多种需求。FLIR T1040配有1024x768像素的非制冷红外探测器,其灵敏度是非制冷传感器行业标准的2倍,所生成的图像质量非常出众。搭配尖端技术——UltraMax高清图像增强技术和FLIR MSX多波段动态成像专利技术(专利号:201380073584.9),能生成最高达310万像素的明亮清晰的热图像。因此,FLIR T1040可以帮助电力公司精准定位故障点,看清电力设备的各个细节。无惧寒冷环境,用户操作友好FLIR T1040的存储温度范围为–40至+70°C,这样即使在寒冷恶劣的环境中,也无需担心拍摄图像的丢失。此外,T1040配备的FLIR OSX红外镜头系统还具有连续自动对焦功能,即使从较远距离处也能获得良好的测量值,因此任何时候都能让您的检测更轻松、随心、便捷。FLIR T1040拥有专家为用户量身定制的创新功能与用户界面,外观精致, 用户界面反应灵敏, 一键即时报告生成,可快速分享图像和测量结果,有效简化了工作流程, 令电力巡检工作事半功倍。 进入冬季后,气候环境逐步降温全国很多地方没有集中供暖因此电暖气、空调、电热毯等设备的使用将导致用电量的急剧增加电力巡检的过程中FLIR T1040高级红外热像仪能帮你在安全距离内看清细节精准定位故障点
  • 400万!天津大学资产处极高分辨率场发射扫描电镜采购项目
    项目编号:0682-2242022J0003项目名称:天津大学资产处极高分辨率场发射扫描电镜采购项目预算金额:400.0000000 万元(人民币)最高限价(如有):400.0000000 万元(人民币)采购需求:序号产品名称数量简要技术规格备注1极高分辨率场发射扫描电镜1套电子显微镜由于其高分辨率和多功能性广泛应用于材料科学、化工、地质和其他固体科学以及生命科学在内的所有科学领域,是研究物质微观结构不可缺少的重要工具。本项目预采购的设备应综合考虑各学院已有的同类设备,取长补短,发挥校级分析测试平台的课题涉及面广,综合要求高等特点,有针对性的选择仪器的配置和功能,尽最大可能满足学校科研教学需求,为学校双一流建设做出应有的贡献。合同履行期限:签订合同180天内交货,同时签订合同270天内完成安装调试并具备验收条件等(受不可抗力影响除外)。本项目( 不接受 )联合体投标。
  • 400万!天津大学资产处极高分辨率场发射扫描电镜采购项目
    项目编号:TDZC2022J0017项目名称:天津大学资产处极高分辨率场发射扫描电镜采购项目预算金额:400.0000000 万元(人民币)最高限价(如有):400.0000000 万元(人民币)采购需求:序号产品名称数量简要技术规格备注1极高分辨率场发射扫描电镜1套电子显微镜由于其高分辨率和多功能性广泛应用于材料科学、化工、地质和其他固体科学以及生命科学在内的所有科学领域,是研究物质微观结构不可缺少的重要工具。本项目预采购的设备应综合考虑各学院已有的同类设备,取长补短,发挥校级分析测试平台的课题涉及面广,综合要求高等特点,有针对性的选择仪器的配置和功能,尽最大可能满足学校科研教学需求,为学校双一流建设做出应有的贡献。合同履行期限:签订合同180天内交货,同时签订合同270天内完成安装调试并具备验收条件等(受不可抗力影响除外)。本项目( 不接受 )联合体投标。
  • 港东科技:自主研发高分辨率长焦拉曼光谱仪
    目前,基于超快激光的非线性拉曼光谱技术已经越来越成熟了;而且,随着纳米科技的迅猛发展,使得基于纳米结构的表面增强拉曼光谱(SERS)和针尖增强拉曼光谱(TERS)在超高灵敏度检测方面取得了长足的进步,推动拉曼光谱成为迄今很少的、可达到单分子检测水平的技术。  “港东科技”自二十世纪九十年代初就开始研发“拉曼光谱”系列产品。自主研发、生产、制造的LRS-2型和LRS-3型激光拉曼光谱仪以结构简单、便于调整和测量、灵敏度高、稳定性好等特点分别在1998年和2000年世界银行贷款发展项目中二度中标。该仪器现已大量应用于科研院所、高等院校的物理实验室和化学实验室,作为测量和教学拉曼光谱和荧光光谱的实验仪器。LRS-2/3激光拉曼光谱仪  仪器特点:  自动记录拉曼、荧光光谱   高分辨率,低杂散光单色系统   高灵敏度、低噪音单光子计数器做接收系统   大功率半导体激光器作为激发光源   配有稳定性好、精度高的外光路系统   多种附件可选,适用于液体、固体样品的分析   配有用于减小瑞利散射的陷波滤波器。  2008年,港东科技自主研发的,同时也是国内首款LRS-5型微区激光拉曼光谱仪(将具有自主知识产权的高分辨激光共焦显微镜作为收集拉曼散射光系统,长焦长高分辨平场成像输出的单色器,结合自行研制的计算机软件编程等相关实验技术相整合,构建具有自主知识产权的新型高分辨的激光共聚焦显微光谱探测联用设备-激光共焦拉曼光谱仪)研制成功。  这是一项将拉曼光谱分析技术与显微分析技术结合起来的应用技术。微区激光拉曼可将激发光的光斑聚焦到微米量级,从而可以在不受周围环境干扰的情况下,精确获得所检测样品的有关化学成分、晶体结构、分子相互作用以及分子取向等各种拉曼光谱信息。  我们对激光共焦拉曼显微镜的装置设计与技术参数,几何尺寸与配置,显微镜的白光成像照明系统和偏振调光图像处理技术进行了细致的研讨与实际效果的理论计算,为该显微镜的结构定型、技术指标奠定了基础。最终研制成功具有自主知识产权的高性能激光共聚焦拉曼显微镜系统。LRS-5 微区激光拉曼光谱仪  仪器特点:  操作简单,友好的人机对话界面   高分辨率、高稳定性和低杂散光的非对称800mm焦距平场光谱仪系统   接受系统采用具有高灵敏度、低噪音的面阵CCD接收器   外光路系统采用显微镜作为激光会聚和拉曼光收集系统,具有很高的效率和稳定性   配有用于减小瑞利散射的陷波滤波器。  2012年至2016年,“港东科技”作为国内唯一一家研发、生产高分辨率长焦拉曼的企业受邀参加了由北京理工大学牵头,协同中国科学院物理研究所共同研发的“激光差动共焦成像与检测仪器研发及其应用研究”项目,该项目属于“国家重大科学仪器开发和应用专项”。在该项目中我司主要承担“拉曼光谱成像探测系统”的研发任务。普通激光束的直径通常为1.7mm左右,而显微激光拉曼光谱可以对被分析对象表面及其以下部分(透明或半透明材料)进行分层扫描,以获得较大范围内的信息,能够进行微区(小于0.2µm)分析,很好地满足了对复合材料中不同组元结构分析的要求。  对于“拉曼光谱”在未来的发展,那就必须先从“拉曼光谱”与它的姊妹谱——红外光谱的比较说起。  相似之处:“拉曼光谱”与“红外光谱”一样,都能提供分子振动频率的信息,对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。  不同之处:  1.红外光谱的入射光及检测光都是红外光,而拉曼光谱的入射光和散射光大多是可见光。拉曼效应为散射过程,拉曼光谱为散射光谱,红外光谱对应的是与某一吸收频率能量相等的(红外)光子被分子吸收,因而红外光谱是吸收光谱。  2.从分子结构性质变化的角度看,拉曼散射过程来源于分子的诱导偶极矩,与分子极化率的变化相关。通常非极性分子及基团的振动导致分子变形,引起极化率的变化,是拉曼活性的。红外吸收过程与分子永久偶极矩的变化相关,一般极性分子及基团的振动引起偶极矩的变化,故通常是红外活性的。  3.红外光谱制样复杂,拉曼光谱勿需制样,可直接测试水溶液。  姊妹谱的联系:  1、凡有对称中心的分子,若有拉曼活性,则红外是非活性的 若红外活性,则拉曼是非活性的。  2、凡无对称中心的分子,大多数的分子,红外和拉曼都活性。  3、少数分子的振动,既非拉曼活性,又非红外活性。(如:乙烯分子的扭曲振动,在红外和拉曼光谱中均观察不到该振动的谱带。  综上所述,拉曼光谱相对于红外光谱,其优势之一体现在用拉曼研究水溶液中比较方便,而生命科学的许多研究往往需要的水溶液环境。共振拉曼、表面增强拉曼和非线性拉曼光谱以及它们的联用将成为生命科学前沿领域具有重要价值的研究方法,因为21世纪是生命科学的世纪(如:临床医疗、癌症的检测与诊断等),我们以为也是纳米技术和激光技术的世纪,因此我们觉得拉曼光谱的发展和应用是大有可为的。  但就目前来讲,“拉曼光谱”还存在一定的不足,例如:  1、拉曼散射面积   2、不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响   3、荧光散射的干扰   4、在进行分析时,常出现曲线的非线性的问题   5、任何一个物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生一定的影响。  当然我们也相信,随着相关技术领域的不断进步和提高,这些问题在不远的将来都能得到完善的解决。届时“拉曼光谱”的应用领域也将更为广泛。  “拉曼光谱”揭示了丰富的化学键信息,检测对象从单质到化合物,从纯净物到混合物,从无机物到有机物,从固体到液体甚至到气体。随着技术的进一步发展,便携式拉曼光谱仪的发展趋势将呈现多样化。更加小型化、智能化、应用更加细分(分析化学、安全检查、生物医药、机场安检、爆炸物分析等),将成为发展的主流,而性能却不会随着小型化而缩水。同时,随着应用领域的扩大,适应恶劣的工作环境(高温、高压)也将是发展方向之一。而价格合理化将是便携式拉曼光谱仪发展的终极目标。(内容来源:港东科技)
  • 超高分辨率让“不可能”变为“可能”!
    超高分辨率让“不可能”变为“可能”!史晓磊Isotope Abundance同位素丰度,是指自然界中存在的某一元素的各种同位素的相对含量(以原子百分计)。如1H的同位素丰度为99.985%,2H为0.015%。可用于追踪物质的运行和变化规律,借助同位素原子以研究有机反应历程的方法,称之为同位素示踪法。因其所引用的同位素标记化合物的化学量是极微量的,不会对体内生理过程产生影响,获得的分析结果符合生理条件,在代谢组学研究中被广泛应用。想在不受13C干扰的条件下去测量低丰度的2H示踪以用于代谢研究,是几乎不可能的,由于来自四极杆质谱的M+1质量同位素13C丰度很高,约为 18%,严重干扰了测定2H的标记示踪[1]。但实际上,2H(0.015%)的低自然丰度使得示踪剂剂量在理论上小于0.5%是可能的[2],这需要极高分辨率的质谱才能实现完全的基线分离,而Orbitrap Exploris GC 240出现之后,凭借其240000的超高分辨率,让以往在代谢研究中不可能实现的难题变为可能。今天为大家分享一篇美国德克萨斯大学西南医学中心的研究人员利用Orbitrap Exploris GC 240分析棕榈酸中的2H同位素示踪剂的应用。图1.棕榈酸酯C16H31O2的质量同位素分布摘要新生脂肪生成(De novo lipogenesis, DNL)是由碳水化合物等非脂质营养物质合成的脂肪酸,是长期储存热量和维持细胞膜的主要营养物质[3]。监测DNL在细胞器、细胞、组织活检、小鼠模型和人类等环境中的功能,将有助于发现新的分子生理学和许多不同疾病的潜在干预措施。DNL通量通常通过氘水(2H2O)给药后2H掺入脂肪酸来测量。本文利用GC-Orbitrap解析2H和13C脂肪酸质同位素,允许DNL定量使用较低的2H2O剂量和较短的实验周期。NewOrbitrap Exploris™ GC 240科研利器,引领潮流图2. 稳定同位素2H2O是测定DNL的基础 图3.EI模式下的棕榈酸甲酯的质谱图图4.NCI模式下的棕榈酸五氟苯酯质谱图 通过比较棕榈酸甲酯在EI模式和五氟溴代苯衍生棕榈酸酯在NCI模式下的质谱图,NCI测定五氟苯酯产生了未破碎的棕榈酸盐离子(C16H31O2,精确分子量为255.2324),比EI检测甲酯的效率和灵敏度高1000倍(见图3和图4)。 图5. 采用不同条件验证2H在棕榈酸中的示踪标记 针对不同AGC(自动增益控制)目标的靶向选择离子监测(Target-SIM)(2*104, 2*105和3*106),2H1和13C1的M + 1两种方法都能很好地分辨。而但全扫描数据为易受离子损失,特别是在AGC目标值高的情况下,容易产生空间电荷效应。同时,准确度高(94-107%),精度高(变异系数10%)[5-6],Target-SIM在定量时是更为合适的采集模式。 图6.模拟人体水富集到0.3% 2H2O时棕榈酸质量富集作为DNL的函数研究棕榈酸酯13C1和2H1 (M + 1)质量位移需要用165,000的最小分辨率进行分辨,以往用傅立叶变换离子回旋共振质谱法(FT-ICR-MS)可以实现,但扫描时间长,并需要超导磁体[7],不易实现。当GC-Orbitrap商业化之后,成为很多代谢组学实验室进行分辨13C和2H的首选。为了确定这种方法是否比单位分辨率的质谱更有优势,模拟了超高分辨率的质谱0-10%的DNL分数范围和0.3%的体内水富集。结果证明,GC-Orbitrap为检测极低前体和产物富集的DNL提供了主要的理论优势。 图7. 在其他脂肪酸中也可以检测到2H富集 结论 本文介绍了一种HR-Orbitrap-GC-MS方法,该方法解决了其他同位素的2H质谱富集,来研究DNL生成。在棕榈酸中直接检测2H质量同位素可防止在低富集时与13C自然丰度的卷积,实验证明,DNL可以在1小时内检测完成,且2H2O的剂量比以前更低[8]。Orbitrap Exploris GC 240因其超高的24万分辨率解决了代谢组学研究中一直以来的难题,成为代谢组学研究中不可或缺的利器。 参考文献:1. Brunengraber, H., Kelleher, J. K. & Des Rosiers, C. Applications of mass isotopomer analysis to nutritional research. Annu. Rev. Nutr. 17, 559 (1997). 2. Diraison, F., Pachiaudi, C. & Beylot, M. In vivo measurement of plasma cholesterol and fatty acid synthesis with deuterated water: 3. Wallace, M. & Metallo, C. M. Tracing insights into de novo lipogenesis in liver and adipose tissues. Semin Cell Dev Biol, https://doi.org/10.1016/j.semcdb.2020.02.012 (2020). 4. Murphy, E. J. Stable isotope methods for the in vivo measurement of lipogenesis and triglyceride metabolism. J. Anim. Sci. 84, E94–E104 (2006). 5. Su, X., Lu, W. & Rabinowitz, J. D. Metabolite spectral accuracy on orbitraps.Anal. Chem. 89, 5940–5948 (2017). 6. Fernandez, C. A., Des Rosiers, C., Previs, S. F., David, F. & Brunengraber, H.Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom. 31, 255–262 (1996). determination of the average number of deuterium atoms incorporated. Metabolism 45,817–821 (1996). 7. Herath, K. B. et al. Determination of low levels of 2H-labeling using highresolution mass spectrometry: application in studies of lipid flux and beyond.Rapid Commun. Mass Spectrom. 28, 239–244 (2014). 8. Previs, S. F. et al. Using [(2)H]water to quantify the contribution of de novo palmitate synthesis in plasma: enabling back-to-back studies. Am. J. Physiol.Endocrinol. Metab. 315, E63–E71 (2018).
  • 适用于单细胞内单分子动态观测的层状光超高分辨率扫描荧光显微系统的研究
    成果名称适用于单细胞内单分子动态观测的层状光超高分辨率扫描荧光显微系统的研究单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:超分辨技术是利用随机光学重构等方法,突破光学衍射极限的一种新型显微技术,它使得我们有机会在单分子水平上观察亚细胞结构。但是传统意义的超分辨技术是基于全内反射照明的,这就使得我们可观测的样品厚度远小于细胞厚度,从而无法对细胞深处,如细胞核内的分子进行实时观测。层状光扫描技术是利用高斯光束的性质,通过光线的单方向汇聚产生亚微米级的层状光,从而可以对组织样品进行3D扫描。层状光荧光扫描显微系统有着成像速度快,光致漂白与光毒性效应小等优势,非常适合于组织及真核细胞的观测,但它的分辨率会受到衍射极限的限制。生命科学学院孙育杰课题组将这两种技术进行了优势互补,发展了新型集成芯片技术,研发出了一种适用于单细胞内单分子动态观测的新型显微系统。在基金的资助下,通过相关设备的购置和材料的加工,有力地推动了项目组相关工作的开展,其主要工作包括:(1)层状光-荧光扫描系统的实现;(2)适用于单细胞层状光成像的新型细胞芯片技术的研究;(3)单分子超高分辨率荧光技术的实现;(4)超高分辨率一层状光荧光扫描复合光路的实现。通过以上工作的开展,单分子超高分辨率荧光显微系统的样机搭建已经完成,顺利通过了第四期项目的验收。这项工作获得了国家自然科学基金委重大项目的后续支持,项目名称为&ldquo 细胞中活性分子实时动态变化与相互作用的荧光探针研究&rdquo 。应用前景:该研究成果在细胞生物学,特别是干细胞定向分化、胚胎早期发育、胞内运输等生物过程的研究领域中有着重要的应用前景。
  • 耶拿推出最高分辨率的ICP光谱
    仪器信息网讯 2013年10月25日,德国耶拿公司在北京展览馆举行了&ldquo 高分辨ICP-OES新品发布会&rdquo ,推出目前市场同类产品中最高分辨率的ICP-OES新品&mdash &mdash PQ9000。发布会现场德国耶拿公司在BCEIA 2013上展示的ICP-OES新品&mdash &mdash PQ9000(左一:德国耶拿公司CEO Berka,左二:德国耶拿中国区总经理赵泰)  在新品发布会上,仪器信息网(以下简称:instrument)编辑也就相关问题采访了德国耶拿中国区总经理赵泰。  Instrument:多年来,耶拿公司一直以原子吸收的著名厂家而知名,尤其是2004年推出的划时代的连续光源原子吸收,目前中国的ICP市场已被许多品牌领先占据,德国耶拿公司为什么选择当前推出ICP-OES?  赵泰:大家都知道ICP-OES产品经过多年的发展,在化学分析领域有着非常重要的地位,但是ICP的应用技术还是存在很多难以克服的问题,给我们的分析工作带来很大的障碍。  比如,发射光谱的主要缺陷是发射谱线多、光谱干扰严重,很多分析问题都是源于此,所以对ICP-OES分辨率的要求就非常高,理想目标是分辨率达到发射谱线的自然宽度(1-3pm),而目前市场上ICP-OES都未达到这一目标。  还有ICP-OES很难直接测量高盐,痕量类样品,所以也限制了ICP的分析范围。另外,随着技术的进步大家对仪器研发要求越来越高,大家心目中理想的仪器,不仅性能要好,使用成本也要低。  为了能克服不足,满足当前分析的需求,德国耶拿公司就一直在研发这样的ICP-OES。德国耶拿公司在光学仪器制造行业有非常丰富的经验,已经有160多年的发展历史和经验,具有得天独厚的优势,所以在光谱领域一直以来都能推出品质非凡的产品。耶拿新品ICP-OES PQ9000也是在传承历史,经过多年的研发,针对目前的ICP-OES产品的不足之处,为了满足当前分析需求,为分析者&ldquo 量身定做&rdquo 的,所以选择当前隆重推出。  Instrument:耶拿推出的ICP-OES新品与市场上同类产品相比的在技术方面有哪些新的突破,仪器性能有何显著提高?给分析工作带来哪些优越?  赵泰:首先,借助耶拿特有的光学技术优势,加上设计独特的分光系统,PQ9000的光谱分辨率能达到3pm,达到了相当于发射谱线自然宽度的理想目标,在目前市场上同类产品中是最高分辨率的ICP-OES。用户可以轻松应对很多难分析的、光谱干扰严重的样品。光学性能上也有很大的突破,保证了分析的稳定性和准确性。  第二,PQ9000采用了先进的垂直矩管、双向观测设计方式,消除了高盐和基体的影响,不仅能满足各类样品(有机,高盐)的分析,也能满足不同浓度(µ g/L~%)的同时测量,保证了灵敏度和检测限。另外PQ9000采用冷锥加氩气反吹消除尾焰,无自吸,无空气,降低背景 持续氩气对光室和检测器的吹扫,消除空气和水分等对紫外光的吸收,从而使得PQ9000的检出限比常规降低2~10倍,灵敏度达到µ g/L级。从短波到长波,常用元素的检测限都大幅提高。从而解决了&ldquo 复杂基质&rdquo ,&ldquo 痕量分析&rdquo 的难题。  第三,采用高性能的新一代CCD检测器,产生高量子效率和紫外超高灵敏度,可以自动选择最佳积分时间,同时记录元素线与其直接光谱环境,自动扣除背景,检测器只需致冷到零下6到10度即可稳定工作,大大缩短了预热时间(5分钟),能做到真正的即开即用。  第四,耶拿本着创新的理念,PQ9000在其他部分的设计上也充分体现。比如新颖独特的尾焰消除技术,采用最先进的气路设计,即吹扫和冷却用氩气又巡回到等离子体使用,没有额外消耗,大大地降低了氩气的消耗   另外,组合式炬管,体积小,氩气消耗少,从而最大程度降低氩气的消耗。整个外观设计也很精巧,是世界上体积最小的高分辨率ICP-OES。  Instrument:耶拿新品ICP-OES主要在哪些应用领域推出?如何能获得用户的认可?  赵泰:PQ9000在技术上的创新突破,打破了目前ICP-OES的分析局限,带来分析工作带来更多的自由空间。各种样品中低含量、微量和痕量的金属元素以及部分非金属元素的定性和定量分析 尤其适合分析样品量大,检测结果要求高的用户 可广泛应用于石油化工、农业,质检、环保、钢铁、科研、卫生等行业。凡是追求更好分析性能的用户都能认可该技术。  Instrument:您是如何看待原子吸收与ICP-OES未来发展的关系?ICP-OES的推出对原子吸收业务发展有何影响?耶拿如何制定发展规划?战略目标是?  赵泰:原子吸收和ICP-OES技术都是目前无机分析的主力军,两者一直是即有交叉又有互补的关系,应用上各有所长。  ICP-OES的推出对原子吸收业务发展不会有太大影响,只是一些以往必须用石墨炉原子吸收分析的痕量元素现在有更多可能在高分辨率ICP-OES上完成,有更多分析任务可以全部依靠高分辨率ICP-OES完成,而不必分到两种仪器上才能全部满足分析任务的要求。但很多以往特别适合用原子吸收分析项目,如分析元素种类少,或仅靠火焰原子吸收就能完成的分析仍应采用原子吸收更为合适或更加经济。  PQ9000高分辨率ICP-OES的推出,使耶拿公司的原子光谱仪器家族又增加了新的成员,能满足更多的分析需求,可以为更多的用户提供更多的服务,也为信赖耶拿品质的用户提供更大的合作空间。这也加进一步强了耶拿公司在无机分析领域的技术领先地位和市场影响力。耶拿公司将继续不遗余力的做好售后服务和技术支持,借助此超高分辨率ICP-OES的先进性能为用户解决更多的分析难题,增强实验室分析能力,更加简便、有效的完成高质量的分析任务。  耶拿公司的战略目标是不断创新,用更多先进技术巩固和加强光谱技术领先者的市场地位。  Instrument:谈谈新品ICP-OES PQ9000的市场定位和预期?  赵泰:PQ9000高分辨率ICP-OES的市场定位与其它众多耶拿产品一样,仍然是瞄准高端市场,以技术优势和非凡品质赢得广泛用户的信赖。可以预期,期盼有更好、更强分析性能力装备的用户一定会欢迎这一新品,而耶拿公司的PQ9000绝不会让这样懂行的专业用户失望,将再次为德国耶拿赢得光彩夺目的品牌声誉!  Instrument:2013年,在全球经济依然不景气的情况下,耶拿面对市场变化,取得了怎样的销售业绩?在耶拿中国的业绩情况?  赵泰:2013年,德国耶拿一如继往的取得了骄人的业绩,除日本市场外,全球市场继续有较快增长,尤其生命科学业务,有近2位数的增长。  耶拿中国的业绩继续领先全球,业务总量仍然保持2位数的增长速度,对总增长约推高2个百分点的生命科学业务更是增长了近80%!撰稿人:刘丰秋
  • 低至亚微米分辨!高分辨、高灵敏度X射线CCD/sCMOS相机
    根据 X 射线能量转换为相应电荷的方式不同,X 射线相机可以分为间接和直接探测两类。目前基于光子计数的像素化 X 射线直接探测器, 得益于其高探测效率、零噪声、高帧率、能量窗口筛选能力,低点扩散等特点,使得其在 X 射线衍射,散射,关联光谱等弱光或有时间分辨要求的应用得到广泛的应用,在 X 射线能谱成像领域带来了质的飞跃,目前商业化的医用能谱 CT 已经面世。此项技术的发展充分践行科学技术造福人类的终极目的,从基础研究及应用,到科学装置,随之是实验室及商业化医学应用。但是目前光子计数的像素化 X 射线直接探测器的最小像素尺寸为 55μm*55μm,其不能满足 X 射线微纳 CT、显微成像,计量学等应用方向对于更小像素的需求。因此,目前高分辨 X 射线间接探测相机在如上领域具有不可替代的作用。1X 射线间接探测相机基本原理及类型X 射线间接探测相机基本结构是高能的 X 射线打在闪烁体上,随之转为可见光,部分可将光通过光学耦合器件耦合到后端的 CCD 或 CMOS 传感器上。光学耦合器件包含两种:透镜和光锥或光学面板。 透镜组耦合 光锥耦合主要性能差异-透镜组耦合VS光锥耦合光锥耦合 X 射线相机的的光传输效率是透镜耦合的 4 倍。主要是因为光锥的耦合效率高;透镜耦合 X 射线相机的空间分辨率可以低至亚微米水平,但是光锥不行,是因为光锥的光纤尺寸为几个微米。2捷克 RITE 公司的低至亚微米分辨的高性能X射线 CCD/sCMOS 相机捷克 RITE 公司主要提供透镜耦合(fiber coupled,LC)和光锥耦合(fiber coupled,FC)两种高分辨间接探测X射线相机。进一步根据传感器不同,可分为电荷耦合(CCD)和互补型金属氧化物(CMOS)两种版本。探测器采用一体化结构,小巧紧凑,结实坚固,易操作易集成,从原材料的采购,到生产及成品测试都经过严格的把关,不仅性能优越而且坚固耐用。适用于微米及亚微米的 X 射线显微成像、X 射线显微 CT、X 射线计量学等应用。3XSight&trade LC 透镜耦合高分辨 X 射线相机主要特点多个镜头可简单切换,实测空间分辨率500nm-7µ m; 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声; 一体化设计,易于安装和操作,无需水冷,USB 传输,软件友好。可提供真空版本,光谱范围可扩展到 EUV 能段。XSight&trade LC 真空版-EUV 可更换镜头单元规格参数参数Xsight Micron LC X-rayCCD CameraXsight Micron LC X-raysCMOS Camera芯片类型CCDsCMOS像素数3300x25002048x2048视场Model LC 02700.90 mm (H) x 0.68 mm (V)Model LC 02700.67 mm (H) x 0.67 mm (V)Model LC 05401.8 mm (H) x 1.36 mm (V)Model LC 05401.33 mm (H) x 1.33 mm (V)Model LC 10803.60 mm (H) x 2.70 mm (V)Model LC 10802.66 mm (H) x 2.66 mm (V)Model LC 21607.2 mm (H) x 5.4 mm (V)Model LC 21605.32 mm (H) x 5.32 mm (V)Model LC 432014.40 mm (H) x 10.80 mm (V)Model LC 432010.64 mm (H) x 10.64 mm (V)有效像素尺寸及空间分辨率(JIMA RT RC-02(center area, 8 keV))Model LC 0270 0.275μm / 0.4 μmModel LC 0270 0.325μm / 0.5 μmModel LC 0540 0.55μm /0.6 μmModel LC 0540 0.65μm /0.8 μmModel LC 1080 1.1μm / 1.5 μmModel LC 1080 1.3μm / 1.5 μmModel LC 2160 2.2μm / 3.0 μmModel LC 2160 2.6μm / 3.0 μmModel LC 4320 4.4μm / 7.0 μmModel LC 4320 5.2μm / 7.0 μm能量范围5-30 KeV(真空版可到EUV波段>50eV)5-30 KeV(真空版可到EUV波段>50eV)读出噪声7.5e- RMS1.4e- RMS暗电流0.001e-/pix/s@-30℃0.14e-/pix/s@0℃(风冷)0.04e-/pix/s@-10℃(水冷)帧率-3 fps-40 fps动态范围2800:121400:1XSight&trade LC 透镜耦合高分辨 X 射线相机搭建在理学 nano 3D X 射线显微系统中:应用示例蜱虫0.4 micron resolution蚂蚁头部图像 taken by a 0.27 um pixel array4XSight&trade FC -光锥耦合、高灵敏度 X 射线相机二维(2D)X 射线 XSight&trade FC 系列相机,由薄荧光屏,光锥和相机组成。与透镜耦合版本相比,光纤耦合探测器的的灵敏度大约高 20 倍。也分为 CCD 和 sCMOS 版本。可应用于 X 射线显微镜,X 射线形貌术,X 射线光学调整和计量学、X 射线成像等应用。 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声。机身底部配 M6(CCD版)/ ¼ " 20 UNC(sCMOS版)标准螺纹,易于集成。一体化机型,易于安装和操作,无需水冷,USB(CCD)/Camera Link Full (sCMOS) 传输,软件友好。XSight&trade FC 5400CCD 相机XSight&trade FC 2160CCD 相机XSight&trade µ RapidsCMOS相机规格参数参数Xsight Micron FCCCD CameraFC5400Xsight Micron FCCCD CameraFC2160Xsight μRapid Camera芯片类型全帧CCD全帧CCDsCMOS像素数3326 x 25043326 x 25042048 x 2048视场18mm x 13.5mm7.2mm x 5.4mm13.3mm x 13.3mm实测空间分辨率16μm@8KeV8μm@8KeV20μm@8KeV能量范围5-30KeV5-30KeV5-30KeV读出噪声10e-RMS7.5e- RMS1.5(e- rms,fast scan)1.4(e- rms,slow scan)暗电流0.02e-/pix/s@-30℃0.02e-/pix/s@-30℃0.5e-/pix/s@5℃ 帧率 1 fps 1fps100(fps@full resolution,fast scan)35(fps@full resolution,slow scan)动态范围3100:1(70dB)3100:1(70dB)20000:1(fast scan)21430:1(slow scan)XSight&trade FC -光锥耦合、高灵敏度 X 射线相机搭载在理学 XRTMicron 射线形貌成像系统中用于单晶材料的无损检测:应用示例:木槿叶(8 keV,视场18.0 mm (H) x 13.5 mm (V))老鼠爪子 CT 渲染视频(由 SLS - PSI 的 TOMCAT 光束线提供)关于RITERigaku Corporation 于 2008 年在捷克首都布拉格成立了 Rigaku Innovative Technologies Europe s.r.o. (下简称“RITE”),配有多个专业的 X 射线实验室,作为日本理学在欧洲的 X 射线光学镜片设计、开发和制造中心。 尽管理学在 2008 年才成立 RITE,但是 RITE 前身却在业内有着超过 50 年的发展历史。团队创始成员来自捷克科学院和捷克理工大学,参与了多项(原)捷克斯洛伐克空间探测项目,是目前捷克 X 射线光学领域的领先研究学者。凭借自身在 X 射线、极紫外光学领域多年的积累,除了承担母公司理学的研发 (R&D) 任务以外,RITE 秉承着开放合作的理念,也直接向全球的工业客户、实验室科研用户提供标准或定制型 EUV/X-RAY 光学镜片和高分辨 X 射线相机等。北京众星联恒科技有限公司作为捷克 RITE 公司中国区授权总代理商,为中国客户提供 RITE 所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的 EUV、X 射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。了解RITE光学复制技术:以创新为先导,聚焦EUV极紫外/X射线光学器件的研发- 捷克RITE
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(一)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,我们将分三期陆续介绍。本期介绍第一部分。1. 背景介绍成像技术是推动生命科学几乎所有学科基础研究的核心平台。在神经科学领域,近几十年来,共聚焦显微镜技术已成为分析神经组织的标准荧光成像技术。激光扫描共聚焦显微镜对固定的神经元样本进行观察,在扫描水平上提供了三维和多色图像并使单个细胞达到树突结构的分辨率。作为补充,电子显微镜(EM)用于获取神经元和亚区室超微结构的信息,并用于大脑的连通性分析。EM非常适合于神经元突触和囊泡、细胞器和膜构象的结构分析。然而,由于靶向特异性标记方法的局限性,基于EM的复杂样品中蛋白质和特定电子密度特征的识别受到限制。为了进一步理解神经元功能,包括双光子显微镜在内的几种活体视频显微镜应用的发展使神经元细胞培养的活细胞成像、器官型切片培养和动物模型的活体成像成为可能。同时,新的荧光染料、功能探针和荧光蛋白以及光遗传学方法和光驱动(如笼状化合物)不仅可以表征神经元,还可以操纵神经元及其从单分子水平到整个神经系统的相互作用。然而,荧光显微图像中可见细节的水平,即图像分辨率,仍然受到衍射极限的限制。一个多世纪以来,由λ/2NA定义的阿贝衍射极限(λ为波长,NA为显微镜物镜的数值孔径)决定了光学显微镜的分辨率极限,限制了两个位置小于200纳米的细节分辨。在过去的二十年中,超分辨显微镜(SRM)已经发展成为一种非常有效的亚细胞水平荧光成像和分辨细胞器结构的研究手段。SRM现在可以提供远低于常规光学显微镜衍射极限的空间分辨率,从而能够深入了解神经元细胞和组织中蛋白质的空间结构和相互作用。本文综述了超分辨显微镜和荧光标记方法及其在神经科学中的成功应用。我们将首先详细介绍各种SRM方法的基本原理、新的功能型荧光探针和标记技术。接着,我们将回顾SRM如何有助于我们理解神经元亚细胞结构和功能以及神经元−胶质细胞相互作用。此外,我们将概述超分辨率成像方法如何帮助研究自身免疫和神经退行性疾病的病理生理学。最后,我们将介绍这些新的成像方法是如何应用于神经精神疾病相关的人类样本的分析。由于该领域持续快速发展,我们最多只能代表一份中期报告。进一步的创新和新的显微镜方法的发展将使人们对神经系统功能有更详细的了解。 2. 神经科学中的超分辨率成像方法2.1. 光学衍射极限及其对神经科学的影响人类大脑包含超过800亿个神经元,每个神经元由数千个突触连接。因此,它构成了复杂神经元网络。这些网络的主要组成部分,例如突触神经末梢,显示的空间维度接近于光学衍射极限分辨率∼200 nm。释放递质的突触活性区(突触前细胞基质的特化区)的直径通常约为300±150 nm。突触小泡作为递质运输和释放的关键元件,其尺寸平均小10倍,直径为40−50nm。这些递质被释放到宽度为20-50nm的突触间隙中−再结合突触后受体。由于衍射极限的尺寸限制,胞吐机制和跨突触信号在传统的光学显微镜下基本上是无法观测到的,因此需要用提高10倍分辨率的方法进一步研究。(图1)。图1. 兴奋性突触结构组成。左图为兴奋性突触的油画示意图,右图为左图的灰度图像,其中浅紫色圆圈为衍射极限光斑;玫红色圆圈为兴奋性突触囊泡,约40-50nm;绿色为突触后膜AMPA受体,尺寸小于10nm;黄色部分为突触间隙,约20-30nm。 此外,大量参与突触信号传导的不同的分子,位于极小的突触内,造成很高的分子分布密度,这对微观研究具有挑战性。例如,对于较小的突触,兴奋性突触可以包含数百个小泡,对于大型苔藓纤维束突触,可以包含数千个小泡,每个小泡包含多达1万到10万个递质分子。在这些囊泡中,约有10±5个与释放部位对接,释放的递质平均与0−20 个NMDA受体和0−200个AMPA受体结合,而这些突触后受体又被320±130个突触后PSD-95密度蛋白分子环绕。由于加速电子的波长要短得多,因此EM是唯一能够解析突触纳米级结构的方法。然而,虽然传统的EM产生的电子密度图像具有极好的超微结构分辨率,但需要进行固定和靶向特异性标记的制样方法在很大程度上限制了蛋白质识别和神经元追踪。荧光显微镜可以很容易地对蛋白质进行选择性标记,但是受制于可见光的衍射(400−700 nm)使生成的图像无法实现对纳米结构的分析。 2.2.绕开光学衍射极限的光学显微镜方法 20世纪后期,人们开发了新的策略,通过利用物理或化学手段来区分不同荧光团的发射或减少同一时间荧光分子的数量,以尽量绕过衍射极限。减少荧光团的点扩散函数(PSF)的重叠可以通过生成光图案在集合级别以确定性方式进行,或者通过减少同一时间荧光团的数量在单分子水平上以随机方式进行。在下文中,我们将从确定性集合方法开始介绍,该方法将激光扫描共聚焦显微镜(CLSM)的有效空间分辨率推到理论极限。2.2.1. 确定性集合超高分辨率成像方法(Deterministic Ensemble SR-Imaging Methods) CLSM用针孔探测器阵列替换单点探测器,空间分辨率可以提高√2倍。CLSM测量每个扫描位置探测器每个点的荧光信号。在应用适当的算法后,生成分辨率提升的图像。这些所谓的像素重分配方法包括图像扫描显微镜(ISM)、重扫描共聚焦(RSC)、光学光子重分配(OPRA)、AiryScan和即时结构照明显微镜(iSIM)。对于信号检测,使用了诸如CCD相机、光电倍增管阵列、单光子雪崩二极管阵列和六角光纤束等探测器阵列。结构照明显微镜(SIM)在光路中插入光栅,产生与样品干涉的相干光束,生成横向和轴向方向不同的新照明图案。然后可以使用傅里叶变换提取这种新照明图案的信息,从而在所有三维空间中实现空间频率分解和分辨率倍增。SIM对样品制备的要求最低,并且可使用所有常规荧光探针,这些探针具有最低的光稳定性,并且可以很容易地扩展到多色成像。然而,当记录三维或长时间成像时,强烈建议使用光稳定性更高的荧光团。此外,SIM使用更低的激发强度,因此是活细胞SR实验的理想选择。为了获得更高的分辨率,引入了通过图案化饱和或荧光激发或图案化耗损光开关染料的非线性SIM(NL-SIM)。然而对染料开关特性的苛刻要求限制了NL-SIM在常规生命科学实验中的适用性。非线性SIM单位时间内还需要采集更多的图像,因此实际上仅限于2D成像。另一方面,掠入射(GI)-SIM显示了高达每秒266帧的快速超分辨率成像以及100nm分辨率,揭示前所未有的细胞器动力学细节。结构照明的局限性在于其对波长的普遍依赖性、与其他SR成像技术相比的低分辨率以及对系统稳定校准的需要。最后,后处理需要进行先验质量检查以避免伪影,例如由于高背景信号或不充分标记产生的低对比度图像导致的人工蜂窝图案。通过受激发射耗损(STED)显微镜进行超分辨率成像是一种实现更高空间分辨率的成像方法。这里,高斯分布的激发激光束被中空的甜甜圈样的耗损激光束覆盖,使扫描点外围的荧光团返回基态,这导致纳米级焦点区的直径与耗损光束的强度成反比,耗损光束的强度直接转换为STED显微镜的分辨能力:上图公式中λ为波长,n为折射率,α为物镜的收集角,ISTED为STED光束的照射强度,IS为饱和强度。因此,可以通过改变损耗激光强度来调整分辨率,可定制设计分辨率达30−80nm 的显微镜。STED显微成像可通过连续或脉冲激光激发、门控检测。带有脉冲激光的STED显微镜会降低激发能量,从而减少实时成像中的光毒性效应。STED显微镜中的时间门控检测可以去除荧光团光子到达时间前的空间信息,并且可以在较低的平均功率下工作。商品化STED能提供用户友好的高分辨率成像,无需进一步的数据后处理。活体成像,例如活体树突棘动态成像已经很成熟,但快速动态成像仅限于小帧尺寸,因为它仍然是点扫描方法,高激光强度可能会导致光损伤。STED通过应用自适应照明方式Dymin和rescue技术,可以明显减少光损伤。在Dymin STED中,在共聚焦模式下扫描时确定最低可能的STED光束强度。根据样品的标记密度,这将使STED光束强度降低20到100倍。Rescue STED同样通过减少STED激光开放的区域,从而比普通STED减少光漂白接近8倍。STED的另一个限制是对荧光团光稳定性的依赖,因为在高激光强度下会发生明显的光漂白。这影响了动力学的研究和三维图像的获取。值得注意的是,最近通过使用荧光团标记的寡核苷酸(瞬时结合到连接靶蛋白结合探针的互补寡核苷酸)或非结合荧光团来进行细胞STED成像,从而绕过了STED光漂白问题。这两种方法中,基于DNA互补标记的STED成像和超分辨率阴影成像SUSHI分别通过荧光团标记的寡核苷酸和高浓度的非结合和自由扩散的荧光团不断交换来防止光漂白。SUSHI的方法已经成功地用于活体脑片中细胞外间隙和神经肽的结构解析及其动力学的STED成像。如果使用具有毫秒或更长寿命的两种稳定状态的可逆切换荧光团来代替标准荧光团,则STED强度可以显著降低。可逆饱和切换光学线性荧光转换方法(RESOLFT)已通过可逆可切换荧光蛋白(reFPs)实现,并成功应用于活体海马脑片树突棘的超分辨率成像。2.2.2. 随机单分子SR成像方法(Stochastic Single-Molecule SR-Imaging Methods)上述的确定性方法是通过改变激发模式或相位掩膜来暂时控制荧光发射达到超分辨成像,而基于单分子的定位SR显微镜则是随机地在时间上分离单个荧光团的发射。单分子定位显微镜(SMLM)基于单个荧光团的随机激活,使用配备高灵敏相机(EMCCD或sCMOS)的宽场荧光显微镜进行单分子检测,以及精确的位置测定。通过将理想PSF与实际测量的光子分布拟合来进行分子定位。只要信号来自单个发射区,且单个发射区之间的距离大于显微镜能分辨的最小距离,则通过收集更多光子和最小化噪声,定位的标准误差可以任意小。激活和定位过程重复多次,所有定位最终用于重建超分辨率图像。为了确保在成像的任何时候,只有稀疏的小荧光团以其活性荧光形式存在(开启状态),使用了光开关、光转换、光激活或自发闪烁的荧光团。由于定位精度和最终图像分辨率取决于每次检测到的光子数量,通常采用明亮且稳定的荧光团与1 kW/cm2的辐照强度相结合的方式。根据所使用的荧光团不同,SMLM可达到10−50 nm横向分辨率。光激活荧光蛋白(FPs),自2006年以来已用于光激活定位显微镜(PALM),例如在405 nm的激光照射下可从关闭状态不可逆地转换为打开状态的PA-GFP和PA-mCherry 以及可通过适当波长的激光照射从一种波长状态不可逆地转移到另一种波长状态的光转换FPs,例如MEO。此外,还成功地应用了诸如Dronpa之类的光开关FPs,其在不同激发波长的激光照射下可在非荧光和荧光状态之间可逆地切换。对于活细胞应用,使用荧光蛋白的PALM是首选方法。因为在理想情况下,每个感兴趣的蛋白质都可以用荧光蛋白进行计量标记。然而,荧光蛋白比有机染料表现出更低的光稳定性和光子计数,从而降低了定位精度,并且通常需要更长的采集时间。此外,对于PALM成像而言,融合蛋白通常会过度表达,这可能会导致不真实图像,而用转基因变体替代显示野生型表达和功能的自身蛋白仍然具有挑战性。对于细胞内源性蛋白质的标记,通常使用有机染料的免疫标记。SMLM适用的有机染料必须是光开关、光激活或自发闪烁的,以实现单个染料发射的时间分离,但化学计量标记要困难得多。有机染料通常表现出较高的光子计数和光稳定性,从而使定位精度达到5−10nm。花菁染料Cy5和Alexa Fluor 647可以在荧光开启状态(其典型寿命为10 ms)和非荧光关闭状态(寿命为几秒,利用光开关缓冲液,缓冲液包括PBS,10−100mM硫醇,如ß-巯基乙缅(MEA),酶促氧清除剂,可以有/没有激活染料)之间可逆切换,为随机光学重建显微镜(STORM)和直接型STORM(dSTORM)的发展铺平了道路。近年来,应用于(d)STORM的染料已大大扩展,除了菁染料外,还包括罗丹明和恶嗪染料。有趣的是,最近的研究表明,即使是多个标记的抗体在光开关缓冲液中也呈现出类似于单发射的表现,因此适用于dSTORM实验。光活化染料的作用与光活化荧光蛋白相似。也就是说,它们在被光照射或自发激活之前处于非荧光状态。罗丹明衍生物PA-JF549和PA-JF646以及桥环菁染料Cy5B是已成功用于SMLM的光活化染料。此外,在没有光开关缓冲液的水溶液中,硅罗丹明HMSiR等自发闪烁染料也能应用于SMLM。最近,通过图案化照明方式实现更高的定位精度,单个荧光发射区的定位得到了改进。定位精度取决于信号的大小和强度,可以通过测量的PSF标准偏差的平方除以收集的光子数来估计。然而,包括拟合性能、标记密度、标记误差和显微镜漂移在内的其它参数决定了高定位精度是否可以转化为低于10 nm的空间分辨率。此外,到目前为止,因为SMLM方法成像需要昂贵的仪器和成像者具备广泛的专业知识,这在一定程度上阻碍了其广泛应用。2.2.3. SMLM-点累计纳米成像技术(PAINT,Point Accumulation for Imaging Nanoscale Topography)第一代SMLM技术依赖于荧光团的光开关和光激活,其分辨率需要有效地利用荧光团发出的光子数,而PAINT(point accumulation for imaging nanoscale topography)方法使用活的,与目标区域结构短瞬结合的染料。在成像过程中,被漂白的荧光团可以被成像介质中充足的新鲜荧光团不断置换替补。由于游离染料在采集单个图像帧期间在多个像素上快速扩散,因此它们仅显示为模糊背景且不能准确定位,而结合染料显示为PSF且能准确定位。因此PAINT的第一种方法是将荧光染料(如尼罗红)与细胞膜进行非特异性结合,然后进行光漂白和新的结合。此外,基于蛋白质片段的探针被用于单分子定位标记。在最近的一个研究中,将这种方法与传统的基于phalloidin的肌动蛋白标记方法进行了比较。通过引入通用PAINT(uPAINT)使Ni-Tris-NTA与转基因蛋白质上表达的His-Tags更特异结合,并可用于突触间隙成像。uPAINT也可以应用于其它标记方法,如免疫标记(内源性蛋白抗体、纳米抗体如绿色荧光蛋白)或受体配体结合。为了提高PAINT的适用性和特异性,引入DNA-PAINT方法。它使用长度小于10个核苷酸的短的可控的寡核苷酸链(成像链)瞬时标记其靶结合互补寡核苷酸链(对接链)。成像链与对接链的瞬时结合产生明显的闪烁。因此,荧光团开-关状态之间的切换与其光物理性质不直接关联。DNA-PAINT首先在DNA折纸(DNA-origami)上得到验证。DNA折纸是一种自组装的DNA结构(具有已知的大小),通过侧链和荧光团进行结合,并通过宽场显微镜观察。总的来说,DNA-PAINT是一种易于实现的SR成像标记方法,无需特定光物理特性的荧光团。因为探针可以在一轮结合后,从成像介质中置换补充荧光团,从而避免了光漂白。DNA-PAINT的缺点是图像获取时间长,这是由成像链与对接链的结合和解离速率决定的,以及荧光成像链的纳摩尔浓度引起的背景信号。尽管通过使用优化的DNA序列和缓冲条件,以及使用串联的周期性DNA结构域或通过短肽的卷曲螺旋相互作用(称为“Peptide-PAINT”),可以加快采集速度,但还是要利用全内反射荧光(TIRF)(仅限于对靠近盖玻片结构进行成像的特点),才能更好地减少成像链的背景信号。另一方面,基于DNA的探针提供了序列成像复用的明显优势,如Exchange PAINT中所述,已成功用于小鼠视网膜切片中多个结构的成像(图2)。Exchange PAINT的概念也被推广到dSTORM、STED、SIM和更传统的衍射限制的宽场和共聚焦荧光显微镜。最近,通过一种称为PRISM(probe-based imaging for sequential multiplexing)的基于DNA-PAINT的成像方法,实现了高达10个神经元蛋白质的分辨率约为20nm的多通道成像。该方法使用了低亲和力成像探针,该探针与突触、肌动蛋白和微管一抗上的对接链结合。图2 原代神经元中多个神经元靶点的多标Exchange-PAINT成像。(A)DNA-PAINT顺序成像的四种突触蛋白的超分辨图像:圆圈表示漂移校正的基准点;(B)为(A)中不带*的感兴趣区域的高放大倍率图和超分辨图像。(C)为(A)中带*的感兴趣区域的超分辨结果及单通道图像。2.2.4. 定量SMLM如果每个目标分子都可以单独标记和定位的话,与所有其他超分辨率成像技术相比,SMLM还可以提供有关分子分布和分子绝对数的单分子信息。然而,内源性蛋白质的定量免疫标记仍然是一个挑战,并且多标记抗体的不同定位数目也会使数据解释复杂化。另一方面,达到内源性表达水平比较困难,另外FPs蛋白成熟缓慢也同样会令定量化困难。然而,可以通过设计专门的对照实验估计拷贝数,并提取出有关生物目标结构分子的真实信息。借助合适的算法,SMLM可以提供有关拷贝数、聚类、共定位和复杂化学计量的数据,用于定量模型的生成和模拟。此外,还可以通过将突触结构信息与其功能关联来实现量化,例如膜片钳神经元的生物细胞素标记。例如,通过对链霉亲和素标记后膜片钳神经元进行STORM成像,结合CB1受体的免疫标记,然后在GABA能的海马轴突终端内定量,研究了内源性大麻素信号。本研究发现,与树突投射型中间神经元相比,胞周投射型中间神经元具有更高的CB1受体密度和更复杂的活动区。通过免疫标记和dSTORM研究了黑腹果蝇神经肌肉连接处内源性Bruchpilot(Brp)分子的数量。利用抗体滴定实验,确定了野生型神经肌肉连接处活性区细胞基质中Brp蛋白的数量为137个,其中四分之三以约15个七聚体簇状排列结合从相同组织样本记录的电生理数据,研究Brp如何组织控制活动区功能。利用DNA纳米结构作为校准,每个活性区Brp蛋白的数量估计通过定量DNA-PAINT(qPAINT)实验证实。此外,定量dSTORM实验表明,每个活性区Brp蛋白的数量和分布受突触标记蛋白-1的影响,这说明突触活性区递质释放的复杂性。在最近的一项研究中,使用Alexa Fluor 532和Alexa Fluor 647免疫标记的双色dSTORM已用于小鼠小脑平行纤维活性区中代谢型谷氨酸受体4(mGluR4)的定量研究(图3)。该研究还使用抗体滴定实验估计每个活性区平均包含约35个mGluR4分子,并排列在小纳米结构中。此外,mGluR4通常在munc-18-1和CaV2.1通道附近被发现,这支持了mGluR4与这些蛋白质相互作用以调节突触传递的观点。图3小鼠脑片中代谢型mGluR4受体定位定量双色dSTORM。上图:mGluR4和Bassoon免疫染色的小脑冠状切片的dSTORM图像,作为活性区参考。与宽场显微镜结果的比较。(A)DBSCAN聚类算法定义了近距离的En face活性区表面积(灰色)和mGluR4信号(品红)。(B)活性区大小的频率分布直方图(C)mGluR4信号到突触和突触外区域的映射。(D)通过Ripley H函数分析评估Bassoon和mGluR4的聚集分布。与随机分布的分子(蓝色、灰色)进行比较。虚线表示Ripley分析的最大值。这些研究显示了定量SMLM在神经科学研究中的潜力。可以预见,定量SMLM的进一步发展将为突触前和突触后蛋白质的功能关系,及其组织和结构的研究提供更有价值的信息。2.2.5. 组织三维(3D)SMLM虽然SMLM方法实现了仅几纳米的非常高的水平定位精度,但它需要特殊的方法来打破图像平面上方和下方PSF的对称性,来实现高轴向定位精度。实现高轴向定位精度的两种方法是PSF重塑和多焦面检测,通常用于在3D中精确定位荧光团。在SMLM中最常用的方法是通过在成像路径中插入单个柱面透镜从而不对称地扭曲PSF,利用光学像散原理来实现三维定位。基于像散方法的3D dSTORM技术还可以与光谱拆分相结合,对COS-7细胞中的网格蛋白表面小窝成像。像散引起的畸变程度由荧光团的轴向位置决定,因此可用于轴向位置计算。例如,3D散光SMLM已用于确定抑制性突触后密度区gephyrin蛋白和受体复合物的分布和拷贝数,或突触前活动区和突触后密度区各种成分的空间关系。采用双物镜像散成像方案,通过3D SMLM研究组织中肌动蛋白、血影蛋白和其他相关蛋白的结构,发现这些蛋白在轴突中形成190nm的周期性环状结构。替代方法包括使用相位掩模、变形镜实现双螺旋、四足或鞍点PSF重塑,和双焦面成像方法实现更大的轴向范围,并已成功应用于不同的应用中。为了在2D和3D中定位单个荧光发射区,已经开发了不同的算法和软件工具。在最近的一次综述中,列出了不同3D SMLM方法获得的水平和轴向分辨率,以供比较。然而,到目前为止,大多数SMLM研究都是在培养细胞上进行的。培养细胞具有相对简单的样品制备和成像要求,例如焦平面上下荧光分子的背景信号较低或没有。而脑片更具挑战性,因为它们在焦平面上下表现出高密度的神经元结构和潜在的高荧光背景,由此产生的低信噪比对于成像来说是一个障碍,会直接影响单分子定位的精度和准确性。此外,脑片必须具有足够的渗透性,以实现有效的免疫标记,而不损害组织结构。除了超微结构保存外,对几十微米厚的脑片进行均匀标记也仍然是一个挑战。因此,最初的尝试是将组织切成薄片,以便于标记。然而,将多个切片进行三维重建也仍然具有挑战性。为了保存好抗原表位,在切割成超薄切片进行SMLM成像之前,需要对组织进行解剖、固定以及免疫标记、后固定、脱水并包埋在环氧树脂中。而且,3D SMLM只能对靠近盖玻片的脑片的一个轴向平面进行成像。如果背景信号和散射太强,也可以使用组织透明化方法和基于光片的照明方法进行SR成像。另一个导致较厚脑片的3D成像不可靠的原因是光学畸变引起的单个荧光团PSF变形和模糊。通常应用自适应光学恢复PSF,使各神经元能够更精确地成像。为了进一步提高基于自适应光学的SR成像的性能,需要将其与自适应PSF重塑相结合。例如,在30μm厚的阿尔茨海默病小鼠模型脑片中,通过同步校正样品引起的畸变并且生成一致的PSF,可以重建纤维淀粉样蛋白斑块的精细细节。荧光团的3D位置也可通过PSF内产生的自干涉精确确定,并已成功用于轴向深达50μm的 SMLM。 3.膨胀样品显微成像技术(EXM)2015年,Ed Boyden及其同事描述了另一种绕过荧光显微镜分辨率极限的创新策略,称为膨胀样品显微成像技术(ExM)。ExM的原理是将蛋白质连接到带电荷的聚丙烯酰胺凝胶中,然后使用蛋白酶进行轻微的机械破坏,然后让其在水中膨胀,从而实现样品的物理放大。最初的方法是将三功能连接体交联到凝胶基质上,将标签信息转移到凝胶上。图4 结合ExM和晶格光片显微镜(LLSM)可观察大量神经元分子组装细节。左上图:概图;右上部位:海马CA1锥体神经元的投射;右下部位:神经元胞体;中下部位:小鼠大脑,通过Thy1 EYFP信号和突触蛋白免疫组织染色进行皮质树突棘成像;左下部位:果蝇投射神经元(PN)束的多样性。左上部位:果蝇中枢复合体PN的神经元追踪。中心部位:果蝇多巴胺能神经元的全脑成像。下图:成年果蝇大脑所有33个脑区的多巴胺能神经元相关Brp信号(体积密度)定量图(nc82抗体免疫染色,绿色曲线=与多巴胺能神经元相关的nc82斑点百分比)。右上图:沿着皮质层I至VI(顶部,最小强度投影)的初级躯体感觉皮层中的Homer 1点密度和25μm×50μm×50μm跨皮质的Homer 1点累积数量。请注意,在第二层/第三层和第五层中,Homer 1的密度较高。三功能连接体含有甲基丙烯酰基团、荧光标记和寡核苷酸,它与连到蛋白质标记的抗体的互补寡核苷酸杂交。将免疫染色的细胞或组织包埋在单体溶液中后,添加含有丙烯酸钠(凝胶高吸水性树脂)的共聚单体丙烯酰胺和交联剂N,N′-亚甲基双(丙烯酰胺)。这些单体组分和位于目标上的甲基丙烯基在高温下聚合,使用四甲基乙二胺(TEMED)作为催化剂,过硫酸铵(APS)作为聚合引发剂。荧光标签通过锚定在凝胶中的特定位置而在空间中固定,并且其位置可以在蛋白酶的化学预处理和水中透析后延伸构象进行物理膨胀。最初使用ExM产生了一个100倍的体积膨胀和目标分子间的4−5倍距离的线性增加。使用常规共聚焦显微镜对其成像,SRM横向分辨率可达到70 nm,轴向分辨率可达200 nm。在随后的几年中,通过使用交联分子如MA-NHS和acryloyl-X将蛋白质锚定到凝胶基质上,开发了改进proExM方法,使用常规荧光团就可保留蛋白质表位。为了避免自由基起始剂对荧光团的影响,设计了新的方法如蛋白质组放大分析(MAP),与SDS结合热介导变性,实现膨胀凝胶的后标记。此外,通过引入三功能连接体,它们能够在聚合、消化和变性后存活,并能够将目标分子和官能团直接共价锚定到水凝胶中,以实现膜和细胞骨架的SR成像。有研究显示,一些荧光团与激动剂发生反应。例如,因为菁染料在样品制备过程中几乎消失,因此不适合用于ExM标记,而其他荧光团如Alexa Fluor 488、CF和Atto染料在ExM处理流程后仍然能发射足够的光子。此外,生物素−亲和素信号放大和交换反应信号放大免疫染色技术(Immuno-SABER)可以有效提高信噪比和对大量目标蛋白进行成像。最近的研究表明,可以通过优化Ultra(U-ExM)的流程保留中心粒的超微结构细节。U-ExM启发于MAP方法,该方法允许膨胀并使用低甲醛和丙烯酰胺浓度交联蛋白质(保留样品的超微结构细节)后进行标记。U-ExM已经成功地用于揭示以前只有电镜才能获得的中心粒的超微结构细节。通过使用不同的单体和引发剂组合,Truckenbrodt及其同事设计了一个对常规培养细胞甚至神经元进行10倍体积膨胀的方案,即通过二次凝胶进行迭代ExM制样,多次嵌入不同的单体(而这些单体又可以通过使用高摩尔氢氧化钠去除)从而达到高达53倍的膨胀系数。应用此方法,可以从突触后支架蛋白中清晰看到位于突触间隙内的膨胀13倍的蛋白,例如神经递质受体GluR1和GABAARα1/α2。如今,ExM已成功用于培养细胞、原代神经元和组织中的蛋白质、RNA、真菌、病理标本和细菌的超分辨率成像。4倍膨胀的ExM已经与晶格光片显微镜相结合,以60×60×90 nm的分辨率对整个果蝇大脑中多种蛋白质之间的纳米级结构进行成像(图4)。为了进一步提高分辨率,ExM已成功地与SRM方法相结合。例如,ExM与SIM相结合到达20nm的空间分辨率,观察果蝇中的联会复合体和小鼠精母细胞。在细胞培养样品中进行多表位标记后,与传统荧光显微镜相比,使用STED结合ExM可使分辨率提高30倍。此外,使用NHS染料对所有蛋白进行标记,然后进行迭代ExM,可以对高蛋白密度的结构或细胞器(如线粒体),实现与EM相比具有更高对比度的超微结构细节。为了在分子尺度上进行成像,ExM与SMLM方法(如dSTORM)相结合是一个理想的选择。然而在含有硫醇和盐的传统光转换缓冲液中,会发生荷电氢凝胶收缩。可通过使用低离子强度缓冲液或加入中性溶液使凝胶稳定以避免收缩。另一种策略是使用自发闪烁的荧光团(如HMSiR)在水中进行SMLM。通过Ex-dSTORM实现分子分辨率的关键是膨胀后标记,这增加了表位可及性,从而提高了标记效率并减少了标记错误。Ex-dSTORM超分辨成像已成功应用于原代细胞和神经元中微管和中心粒结构的解析。
  • FEI公司将为美国TEAM计划建造世界上最高分辨率的电子显微镜
    能源部TEAM 计划目标于直接观察0.5 埃尺度 [2004 年11 月29 日] FEI 公司(NASDAQ:FEIC)宣布,联合承担TEAM 计划的几家实验室,已选择FEI 公司作为建造世界上最高分辨率(扫描)透射电子显微镜的研发合作伙伴。TEAM 计划是由美国能源部基础能源科学司投资数千万美元资助的显微学项目。该项目将促成一台新型显微镜的诞生。这台能在前所未有的0.5 埃分辨率下直接观察和分析纳米结构的显微镜,必将创造卓越的新科学良机。0.5 埃大约是碳原子尺寸的三分之一,也是原子尺度研究的一个关键尺寸。 在此项独一无二的计划中,电子显微学领域颇有建树的五家主要实验室(阿贡国家实验室,Brookhaven 国家实验室,劳伦斯伯克力国家实验室,橡树岭国家实验室,Frederick Seitz 材料研究室)通力合作,并筛选出FEI 公司为研发伙伴。每家实验室分别在这项雄心勃勃的使命中担当不同的角色,以期实现(甚至在三维空间)直接观察原子尺度的有序度、电子结构、单体纳米结构的动态。提议中的电子显微镜,自成一小型材料科学实验室,可进行实时的分析和特征描述,以促进独特的多学科交叉研究。 像差矫正电子显微技术将是TEAM 显微镜的核心。为达到0.5 埃分辨率而需要的更密集、更明亮的电子束,也会导致更强的样品信息、更高的图像衬度、更灵敏的分析本领以及史无前例的空间分辨率。成功开发新型像差矫正器将展现最基本的原子世界景观。矫正器的设计和开发,将与CEOS 公司(FEI 公司在尖端矫正器技术上的协作单位)合作完成。 “TEAM 协作团体考察了FEI 公司,以及公司的发展规划和在尖端电子光学上的历史记录,得出结论该公司是促成这项热望中的计划成功的最佳伙伴。”TEAM 科学总监暨伯克力国家电镜中心主任Uli Dahmen 指出:“FEI 公司全新的矫正器专用平台,因为能满足像差矫正仪器严格的稳定性要求,是TEAM 显微镜的最可行的出发点。有FEI 公司作为合作伙伴,我们有信心实现TEAM 计划的挑战性目标。” “我们对被有威望和有国际声誉的TEAM 计划选中而感到自豪,” FEI 公司董事长、总裁兼执行总监Vahé Sarkissian 说:“这将给我们机会以提升我们的电子光学才能,保持在高分辨成像和分析领域的世界领先地位,保持纳米技术时代的重要设备厂商地位。FEI 公司承诺:通过与TEAM计划等的合作,与CEOS 公司的联系,我们将竭尽全力完成任务。” “我们十分自豪,TEAM 计划首肯了我们常规推广的、用于超高分辨率的300 千伏(扫描)透射专用矫正电镜。” FEI 公司(扫描)透射电镜事业部副总裁George Scholes 说。“几年来我们致力于开发具有前所未闻的可靠性和不可比拟的重复性的系统。在此过程中,我们认真听取了TEAM伙伴和其它(扫描)透射电镜科学泰斗的建议。”他补充道:“我们深感激动,将要出台的新矫正器专用平台就已被TEAM 选中。我们坚信,我们的努力将重建纳米尺度研究、发现、开发的准则。” 科研人员和工业界用户的最大收益之一,是新平台所提供的极为重要的变通性,以适应于今后的部件升级发展。将来FEI 公司和TEAM 计划所做的(扫描)透射电镜技术革新,能在这一系统上进行翻新改造。 “成功制做了200 千伏透射和扫描透射电镜的球差矫正器之后,我们很高兴被选中为TEAM计划300 千伏球差/色差矫正器的开发伙伴。” 位于德国海德堡的CEOS 公司的创办人之一Max Haider 博士说:“我们自信我们今天在FEI 公司超稳定平台上所做的工作,必将为科学家们提供新的装备,以迎接前沿开发和研究的挑战。” 关于FEI 公司: FEI 公司服务于纳米技术的装备,以聚焦离子束和电子束技术为特色,提供最高分辨率小于1 埃的3D 特征描述、分析及修改功能。公司在北美和欧洲拥有研究开发中心,在全球四十多个国家经营销售和提供维修服务。FEI 公司将纳米尺度呈献给研究人员和生产厂商,协助将本世纪一些最杰出的理念变成现实。更多的信息可在FEI 公司网页上找到:http://www.feicompany.com 关于TEAM 计划: 能源部电子束微特征描述中心提议,引导开发尖端像差矫正电子显微镜,提供必要的基础设施,使该设备能广泛地被科学界用户利用。五家在电子显微学卓有成绩的单位阿贡、Brookhaven、橡树岭、劳伦斯伯克力国家实验室、Frederick Seitz 材料研究室,将联手在国家电镜中心(运作于劳伦斯伯克力国家实验室)建造第一台TEAM电镜。更多信息,请访问: http://ncem.lbl.gov/team3.htm 和http://www.anl.gov/Media_Center/News/2004/MSD041112.html 关于CEOS公司: CEOS公司(Corrected Electron Optical Systems或矫正电子光学系统)是带电粒子透镜像差矫正器的代表。由M. Haider博士和J. Zach博士八年前在德国海德堡成立的公司,专门从事高尖端电子光学部件的研究和开发。更多信息见: http://www.ceos-gmbh.de 此新闻发布具有瞻前性的陈述,对预期产品的论述。影响到这些超前性陈述的可能因素包括(并不局限于项目的改变和取消):FEI 公司、供应商或项目伙伴在实现项目预期计划上的技术能力局限性;执行中产生的延迟因素或与预期结果相异的结论;意料之外的技术需求;主要供应商或项目伙伴破产。欲了解这些或其它有可能造成与预期目标不符的因素,请参阅10-K 和10-Q 表格,以及美国证券交易委员会的文件。FEI 公司将不予进一步陈述。 中文版译注: 1. TEAM为Transmission Electron Aberration-corrected Microscope 的字头缩写,意为透射电子像差矫正显微镜。 2. (扫描)透射电子显微镜的英文原文是scanning/transmission electron microscope 或(S)TEM,意为带有或不带有扫描透射功能的透射电子显微镜。 3. 任何中文版疑义,以英文版为准。
  • 科技创新: 超高分辨率显微镜行业春林初盛
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。 我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’” 专题,并向国产光学显微镜企业广泛征稿(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为宁波力显智能科技有限公司供稿,公司主要产品为INVIEW iSTORM超高分辨率显微镜,其采用的STORM技术是目前国内鲜少有的超分辨技术类型。撰稿人:宁波力显智能科技有限公司副总经理张猛博士人类的历史,也是一部工具的历史。人类发展的历程就是关于如何对世界了解的更多,将人类生活变的更好更先进的历程。从旧石器时代,原始人拿起第一块石头当作工具开始,就开启了用工具进行未知世界探索和创造性改变的历程。从古至今,人类都是工具发明和使用的种族,新工具的问世也反哺人类的成长和进步,让人类一次次突破原有认知边界看到更多的未知,解决更多的问题,取得更多的成就。显微镜,正是一项帮助人类认识微观世界从而改变世界的革命性工具,也是人类探索微观世界不可缺少的工具。显微镜问世之前,人类仅可用感官来把握世界,所能认识到最小世界就是“目所能及”的常规世界,人的肉眼仅能分辨约0.1毫米尺度的物体,因而相关科学的发展缓慢。当罗伯特胡克使用显微镜观察到软木塞上的“小室”,并将其命名为细胞时,可能还没有意识到他这次实践将为人类开启微观世界的大门。人类对未知领域无限的好奇心是推动科学技术前进的动力之一,为了解析关乎生命基本结构,回答有关物质与生命等基本问题,为此人类不断开发出更为精密、分辨率更高的显微镜来探寻这些问题的答案。经过400多年的发展,近几年国际上出现了超高分辨率显微镜这一工具,一经面世就引起了众多科学家的关注和极大兴趣。那么什么是超高分辨率显微镜,为什么它能让科学家如此感兴趣呢?我们一起往下看。超高分辨率显微镜的诞生,是生命科学史上的一座里程碑简单的讲,超高分辨率显微技术是通过应用一系列物理原理、化学机制和算法“突破”了光学衍射极限,把光学显微镜的分辨率提高了几十倍,使得人类能在200nm以下以前所未有的视角观察生物微观世界的技术,具有超高分辨成像技术和实现超高分辨率成像能力的显微镜就是“超高分辨率显微镜”。那么什么是光学衍射极限呢?所谓光学衍射极限,是1873年德国科学家恩斯特阿贝提出的,由于光是一种电磁波,存在衍射,一个被观测的点经过光学系统成像后,不可能得到理想的点,而是一个衍射像,每个物点就像一个弥散的斑,如果这两个点靠得很近(小于可见光波长大约一半,约200nm),弥散斑就叠加在一起,看到的就只能是一团模糊的图像,也就无法清晰观测到衍射极限以下物体的微观空间结构。并且光学衍射极限此前长期被认为是限制光学显微镜技术通向更微观的“拦路虎”和“绊脚石”,甚至被科学界一度认为是无法突破或绕开的。直到2000年,几位世界知名科学家先后发明了几种不同技术路线的的超高分辨率显微技术。其中,Stefan Hell、Eric Betzig和W.E. Moerner三位科学家就是因其在超高分辨率显微成像技术领域的突出贡献,获得了2014年诺贝尔化学奖。至此,人类才得以突破光学衍射极限这一横亘在前、不可逾越的“大山”,实现了200nm以下超高分辨率显微成像,以光学的方法观测到纳米尺度世界的真实样貌。超高分辨率显微镜可用来研究分子定位与空间分布、分子相互作用、分子复合物的构成,并可实现分子的计数。除具有200nm以下卓越分辨率性能外,对生命样品结构也可进行精准成像定位,还具备对活体细胞进行微观观察的可能性,对于生物、生命科学、医药、医学等的领域都有着重要意义,因此吸引了全球科学家的持续研究和关注。通常来说,超高分辨率显微镜主要有两大类技术策略,一类是通过特定模式照明对分子受激荧光差异化调制实现超高分辨率成像。代表产品有受激发射光耗损显微镜(Stimulated Emission Depletion, STED)和结构光照明显微镜(Structured Illumination Microscopy, SIM)。另一类,是利用荧光分子的“开关”特性,使其随机闪烁,从而能够对单个分子分别记录,实现超高分辨率成像。随机光学重构显微镜(Stochastic Optical Reconstruction Microscopy, STORM)就是这类技术路线的代表。第一大类中,STED及其衍生都是利用“甜甜圈”状的空心光束来修饰位于中间激发光的点扩散函数(Point Spread Function, PSF),从而达到直接超分辨成像的目的。而SIM则是利用了结构光照明,以获得包含样本的结构信息的干涉图案“摩尔条纹”,加上后期的图像重构,达到超分辨成像的目的。第二大类中,STORM是利用了荧光染料分子“光控开关”(photo-switchable)性质,达到在一个衍射极限空间内(200~300 nm)随机“点亮”单个荧光分子并进行高精度定位的目的。既然叫超高分辨率显微镜,最为重要的就是对空间分辨率的提升。其实无论哪一类技术,理论上空间分辨率都是可以实现无穷小,但是受限于样本、荧光染料特性、标记密度、激发光效率等原因,实际拍摄中能实现的空间分辨率是几十纳米。从遍地洋货到国货崛起众所周知,高端显微镜市场被“洋货”所长期垄断,不仅在国外如此,在中国也是如此,国货“芳踪难觅”,这对于我们这样一个大国来说可算是“一言难尽”。当然,也有令人感到振奋的信息,那就是在超高分辨率显微镜这个细分领域,除了“洋货”最近也已见到了国货产品的身影。宁波力显智能科技有限公司(INVIEW)的超高分辨率显微镜产品INVIEW iSTORM就是一款国产超高分辨率显微产品。宁波力显智能科技有限公司是专业从事超高分辨率显微技术和产品研发的科技企业,依托复旦大学的自动控制、新一代信息技术及香港科技大学的生物、光学、图像处理等的技术,拥有光学、生物、自控、机械、信息技术等多领域交叉学科技术团队,将2014年诺贝尔化学奖得奖技术产业化,推出了INVIEW iSTORM超高分辨率显微产品,以帮助人类以前所未有的视角观察微观世界,突破极限,见所未见。INVIEW iSTORM超高分辨率显微镜产品采用dSTORM技术路线,具有20nm超高分辨率、2-3通道同时成像、界面友好、简单易用、系统稳定性好、环境适应性高等的特点。技术先进,20nm超高分辨率,3D成像采用STORM随机光学重构技术,加入柱面镜设计,在XY轴分辨率达20nm、Z轴分辨率达50nm,具备3D成像功能。多通道同时成像光路设计,稳定性高采用专有的多通道同时成像的光路设计,提供稳定的光路。自主开发的成像分光光路,可保证通道间的光学路径相对独立,使得样品发出的荧光最大效率地被探测器接收,最大限度降低通道间的串扰。并配合以最佳染料方案和最佳成像缓冲液配方,以多通道同时成像的方式,在几秒到十几分钟的时间范围内实现20nm的超高分辨率成像。物理样品锁定设计,锁定精度1nm采用纳米级实时动态锁定技术,以实时物理补偿方式纠正样品漂移,无需预热,即开即用,操作简便,免受如气流、温度变化、噪音、机械振动等的环对样品位置的影响,在高楼层、嘈杂、震动、常温常态的环境下也能稳定成像,因而具有高效、简便、对环境适应性好的特性,友好易用。 “傻瓜式”操作,易学易用软件集成了多种成像算法,并在采集数据时实时呈现超高分辨图像重构结果和详细参数,“所见即所需”,操作流程化,简单易用。具有拍摄过程简单易用、参数优化实时透明、超分辨图像实时重构、自动化用户数据管理、图像数据后分析功能等五大特点。此外,经过优化的样本制备方案更易于实验人员的掌握和实际操作。即便是技术新手,经过简单的技术讲解,2个小时以内就可操控系统并获得理想的超分辨率成像结果。以上,INVIEW iSTORM超高分辨率显微产品所具备的综合特点和优势,使得它能够帮助到更多科学家进行衍射极限尺度以下的生物分子组织与相互作用等的尖端科学研究。另外,值得一提的是,INVIEW iSTORM产品还以优异的光路、较低强度的照明、多通道同时成像所支持的较短成像时间等的综合性能,结合合适的荧光探针及根据探针特性调整的探测器拍照频率等,实现活细胞的超高分辨率成像,这将更大程度上帮助到科学家在生物学基本问题与机制上的科学研究。随着人类对自然的认识向更加微观的时空尺度,传统的科研手段已经不能完全胜任,没有高端科研仪器,要想做出重大原始创新科研成果很困难。力显智能科技将继续立足于超高分辨率显微镜技术研究及产品开发,不断推出新技术、新品,从而推动高端显微技术在中国的产业化和应用,努力为我国生命科学、医学、药学等领域的科学研究提供强大助力。INVIEW iSTORM超高分辨率显微产品超高分辨率显微技术的未来可期作为一种新兴荧光显微成像技术,超高分辨率显微成像正受到科学家们的广泛关注,实验室中不断产生着振奋人心的数据。围绕着超高分辨率核心,主要研究方向为不断提高显微镜成像性能,使其分辨率更高,成像速度更快,成像深度更深,视野范围更大,及更低的光毒性光漂白。而我们也可以清晰的看到,由于不同的超高分辨率成像技术提升分辨率的技术路径差异,很难有“面面俱到”的技术可以满足差异化样品的全部成像需求,“精准成像”,也就是针对不同的样品特点,而选择最适合这类样品的显微成像技术,是进行生命科学等领域研究的最优解,这也促使生物,光学,算法,图像处理等领域的研究人员不断深入跨学科合作,共同探索生命的奥秘。即便有了更快、更高、更深、范围更大,更低光毒性光漂白的超高分辨率显微镜,扩展应用仍有诸多挑战。细胞内有成千上万的转录本,有数以万计的蛋白分子。超高分辨率显微镜能否用来实现组学水平的多分子检测?能够找到或开发出足够多样的荧光染料以匹配更多分子吗?或者能找到奇方妙法可以实现多重、多轮检测吗? 能否开发出新型的荧光染料,使其具有更高的光子预算,更好的光稳定性、光激活、光开关以及转换速率等特性;研制更快更灵敏的光子探测器、输出功率更高的激光器;更稳定、高效、智能的光学系统;更加高效的算法以及不同超高技术路线的联合应用;开发组学水平的多重检测方法等等,正有许多的科学家、研究者们正在进行着有益的尝试。相信未来超高分辨率技术应可应用于实现细胞内的原位测序、原位转录组与蛋白质组分析,并最终获得全景的、多组学、全时空细胞全部分子组织及相互作用图像,真正实现分子生物学与细胞生物学的新融合,让人类有更全面、更精细的视角来理解生命的基本分子组织及其运行的基本机制!超高分辨率技术和产品应用前景巨大,未来可期,令人振奋!
  • 小菲课堂|看透OGI成像仪的奥秘,高分辨率并不一定适合你......
    像素并不一定越高越好在几乎所有类型的成像产品中,一个很重要的因素就是分辨率。很多人觉得,分辨率越高,成像效果越好,但在某些石油和天然气成像应用场合,选择并不是黑白分明,非此即彼。在选择光学气体成像(OGI)热像仪时,选择较低分辨率成像仪可能实现的性能更佳,效果更好。今天,小菲就来告诉你这是为什么!规格并不说明全部问题石油和天然气运营商使用的许多设备都是在仅关注规格的情况下购买的,其中分辨率被认为是最重要的规格之一(即便不是最重要的)。虽然这种购买方法效率高,极具成本效益,但也很危险,因为FLIR OGI热成像仪的用户可能更关注那些在具体应用环境中对设备性能并不重要的规格。所谓的高规格就是:在字面上看起来很吸引人的规格,而功能则完全不同。功能取决于具体的环境,最主要的是应用领域和预算。分辨率是本次讨论的核心。供应商可能会声称“我们的成像仪分辨率为X,而我们的竞争产品成像仪分辨率则较低。分辨率越高越好,所以我们的产品更具吸引力。” 这种说法是有道理的,它很容易理解,而且几乎被普遍接受。此外,在选择红外(IR)成像仪(非OGI)时,分辨率历来是需要考虑的重要规格。但更高的分辨率并不总是正确的选择。选择成像仪的重要参数OGI成像仪在红外波段工作。因此,很容易陷入过于简单化的选择,因为在大多数红外应用中,为成像仪增加像素会使其表现“更好”,因为您会获得更小的光斑大小比(可测量面积)以获得更精确的测量,并改善图像质量(通过更高分辨率)。但是,有效的光学气体成像(OGI)取决于红外分辨率和气体灵敏度。灵敏度是通过噪音等效浓度长度(NECL)来衡量的,该标准衡量热像仪经过一段特定长度的路径能检测到的在热像仪固有机器噪音之上的气体量大小。想要更好地理解这两个特性如何相互作用,以下几个因素是关键,当然它们本身就是购买成像仪时的重要考量参数:★ 像素大小★ 像素间距★ 热灵敏度★ 气体吸收性1像素大小对于OGI来说,分辨率和NECL不是线性的。事实上,它们是反向关系。如前所述,在非OGI红外成像仪应用中,分辨率越高,成像仪的辐射测量诊断能力越强(即通过解读到达成像仪的红外信号强度,测量目标的表面温度)。随着像素变小,而要测量的对象保持相同的大小,您就会在待测目标上获得更多像素,提高测量的准确性。在同一个管线中,考虑温度测量与OGI:在图1中可以看出,当分辨率较高/像素较小时,单个像素中出现更多的“白色”。如果您对该像素(即颜色)的所有区域进行平均,像素中的白色越多,温度(强度)读数就越准确。这是一个高分辨率具有优势的情况。在OGI应用中,一般希望有更高的分辨率,以寻求更大的泄漏定义(允许标识出更多泄漏细节)或试图定义小的泄漏点。NO.2像素间距相反,在气体检测中,用户通常不关心像素与视野中物体相比的“大小”。气体检测更关心的是到达一个像素的能量数值;您会希望有尽可能多的能量到达该像素。当您向焦平面阵列(FPA)添加更多分辨率(更多像素)时,每个像素的大小(以微米为单位测量,称为“像素间距”,或从一个像素中心到下一个像素中心的空间)通常会变小,以使整个检测器的大小更小。这减少了每个像素所能收集的“能量”数值,使成像仪不太灵敏。一般来说,这两个参数表现相反(如分辨率上升,灵敏度下降)。因此,对于OGI来说,较大像素间距更为理想,因为相比之下它的单个像素能捕获更多的能量。例如,在FLIR制冷型OGI成像仪中,FLIR GFx320成像仪的像素间距为30µm,而FLIR GF620成像仪的像素间距为15µm,使得GFx320比GF620(15mK与20mK)略微敏感。就NECL而言,GF620检测到的甲烷NECL大约是GFx320检测到的两倍。虽然GF620的灵敏度仍然足以满足灵敏度水平的最严格要求,但并不是所有高分辨率OGI成像仪均属于此类情况。就“小泄漏”而言,GF620的高分辨率(640×480与320×240相比;见图2)可以提供一些优势。首先,您可以更清楚地看到泄漏的定义,并有可能了解泄漏的更多细节。您可以将此更高的分辨率因素与成像仪的数字缩放功能相结合,以查看到更清晰的图像,进而查看到更小的泄漏点。NO.3热灵敏度热灵敏度或噪音等效温差(NETD)描述了使用成像仪所能看到的最小温差。这个数字越低,表示红外系统的热灵敏度越好,这一测量通常是在30°C的工业标准温度下进行的。如果要测量的目标通常表现出很大的温度差异,可能不需要低NETD的成像仪。然而,对于更细微的应用,如检测湿度问题,建议提高灵敏度。在许多情况下,OGI只关注“是否有气体存在/泄漏?” 使得NETD的重要性没有像素间距大。NO.4气体吸收性在红外成像仪的光谱范围内,如果气体不吸收能量(无论是否过滤),成像仪都将无法看到气体。换句话说,如果要成像的气体不吸收成像仪光谱范围内的能量,那么红外成像仪的分辨率将不会影响成像仪看到气体的能力。此外,FLIR获得专利的高灵敏度模式(HSM)得到了更多像素的支持,这可能有助于检测较小的泄漏。这一基本的OGI属性因气体的不同而不同。吸收率可以用气体的响应系数(RF)来描述;数值越高,气体的成像效果越好。例如,对于制冷型成像仪而言,丙烷的RF值比甲烷高(约为三倍),因为在使用FLIR OGI红外成像仪观察碳氢化合物和VOCs泄漏时,丙烷在过滤红外光谱区域吸收更多的能量,如(图3)。OGI成像仪的意义虽然高分辨率成像可能不是所有OGI应用中最重要的因素,但它在其他方面可能非常有益。不论是出于常规维护还是遵从法规之目的,负责泄漏检测和维修(LDAR)或负责健康和安全监察(HSE)的员工,可能会经常被要求使用OGI成像仪来寻找需要维修的气体泄漏。利用FLIR成像仪,这些用户能够找到微小的泄漏点,并对已发现的泄漏点进行定性,同时在整个过程中保证人员安全。无论您的分辨率和NECL需求如何,FLIR都可提供相对应的OGI成像仪,以满足需求,包括专门用于检测碳氢化合物和VOCs气体的GFx320、GF320、GF300、G300a和GF620。你在忍受哪种气体泄漏的困扰?想知道你最适合哪款FLIR OGI热像仪?拥有OGI热像仪该如何充分利用?
  • 专家小谈|常用商业化超高分辨率显微镜概览(含图)
    p style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "使用显微镜,是为了实现人力所不能及的事情。显微镜一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。为了看到更精细的生命体精细结构,研究人员对显微镜技术更高分辨率的追求从未停止。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "早在19世纪初,John Herschel和George Airy分别提出,点光源通过理想透镜成像时,由于衍射而在焦点处形成的光斑。这种中央明亮、周围有一组较弱的明暗相间同心环状条纹的光斑,在第一暗环以内的的中央亮斑称作艾里斑,在数学中通常用点扩散函数PSF来表示sup[1,2]/sup。如图所示,当两点之间的距离大于埃里斑时,才能被解析出来,可以被解析的最小距离即为分辨率。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "德国物理学家Ernst Abbe在此基础上提出了分辨率的解析方程Angular Resolusion,可以用来描述人眼、相机、物镜等一系列成像设备的解析能力。他将这个假说应用的物镜上第一次提出了物镜的数值孔径(NA)的概念,并在1873年提出了决定物镜分辨率的方程sup[3]/sup。1896年,Lord Rayleigh对这个方程做了z轴的测算sup[4]/sup。具体如下:/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "其中d代表分辨率,表示可以解析的两点之间最小距离;λ代表入射光波长;NA即为数值孔径,由光的最大入射夹角决定。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " img style="max-width: 100% max-height: 100% width: 450px height: 314px " src="https://img1.17img.cn/17img/images/202007/uepic/f54bf352-44d0-429f-b2b1-df42d4702fbf.jpg" title="图片1.png" alt="图片1.png" width="450" height="314" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图1:(a)埃里斑示意图,中央明亮、周围有一组较弱的明暗相间同心环状条纹的光斑。(b)可以解析的两个相邻埃里斑。(c)无法解析的两个相邻埃里斑。(图片来源于网络)/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "因此,20世纪的显微镜生产商们主要通过提高物镜的数值孔径来提高物镜的分辨率。span style="text-indent: 2em "但是,由于衍射的存在数值孔径的提高是有极限的,衍射极限限制了系统的分辨率。/span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="color: rgb(192, 0, 0) "strong极限是用来打破的/strong/span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "几十年以来,研究者们采取了不同策略进一步了提高显微镜的分辨率。 有一些尽在衍射极限之外适度地提高了分辨率,比如共聚焦成像时采用更小的针孔大小、借助于反卷积或者神经网络算法sup[5,6]/sup、4Pi显微镜sup[7]/sup和结构光照明显微镜技术sup[8]/sup等等,这些技术不需要特殊制样,分辨率提升一般在2倍左右(100-150nm)。除此之外,还有另外两种被称为Nanoscopy的超高显微技术:一类是采用受激辐射或其他方法对发射光PSF进行擦除的确定性超高分辨率显微镜,如STED、GSD、RESOLFT和SSIM等sup[9,10]/sup;另一类是基于荧光分子随机定位的超分辨技术,使得相邻的荧光分子在不同时间发光,从而将它们分辨开来,如STORM、PALM、PAINT、dSTORM等等sup[11,12]/sup。这两类技术都可以将显微镜的成像分辨率推进到100nm以内,相较于荧光分子定位技术而言,第一类技术对生物制样要求相对容易,因此在常规生物实验室研究中应用更加广泛。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="color: rgb(192, 0, 0) "strong常用商业化超高显微技术/strong/span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "随着技术的发展,硬件和软件都更趋于稳定,超高分辨显微技术也有了越来越多的商业化产品。由于成像技术和成像需求的多元化,根据成像需求和样品特点来选择合适的超高分辨率显微镜技术对用户来说相当重要。在此,我们针对几类常见超高分辨显微镜技术在生命科学领域中应用做简要介绍。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "strong(1)反卷积计算技术/strong/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "这是一类最早走进生物学应用的超高分辨率技术,它主要基于图像计算。只要有光线传播就存在卷积现象,在光学成像过程中也是如此。一般来说显微镜成像中的信号模糊主要受卷积和噪音两方面因素影响。因此,采用适合的采样方式和去卷积算法可以很大程度上提高图像的分辨率和信噪比。这类技术对物镜的品质要求较高,需要物镜的PSF参数达到可以计算的标准才能有比较好的效果;另外,传统的去卷积技术也对成像的像素点密度有所要求,需要参考Nyquist定律来判断采样频率是否达到需求。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center " /pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/f50ef5b2-747b-4812-a935-f525916de89f.jpg" title="图2.png" alt="图2.png"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图2. (a)PSF在成像过程中的影响。(b)荧光显微镜图片去卷积前(右)和后(左)/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "(图像来源于网站)/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "目前市场上此类产品主要分为两类,一类是反卷积显微镜,另一类是单独的反卷积软件。一般来说,反卷积显微镜是基于宽场荧光显微镜设计的自动化成像系统,综合考虑了特定物镜的PSF、采样频率和相对应的反卷积算法,因此成像速度快、操作简单。而单独的去卷积软件需要用户了解该图像处理方法对样品、物镜和采样方式的要求,并匹配合适的分析方法。虽然操作有一定的门槛,但是这类软件针对的显微镜种类较多,从荧光显微镜到共聚焦乃至超高分辨率显微镜都有相应的算法,一般成像技术都可以通过去卷积算法进一步提高分辨率。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "strong(2)基于共聚焦的超高技术/strong/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "针孔(Phinhole)是激光共聚焦显微镜成像中的必要组件,在共聚焦成像中通过针孔来去掉焦平面以外的杂散光,从而实现层扫的效果。而针孔的大小除了影响层扫的厚度之外还影响成像的分辨率。当针孔缩小时,层扫厚度变薄、xy和z轴分辨率提高(PSF减小)、可检测的信号减少。我们可以使用较小的针孔大小(0.5AU)和去卷积技术结合得到分辨率和信噪比较高的图像。span style="text-align: center text-indent: 0em " /span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 550px height: 473px " src="https://img1.17img.cn/17img/images/202007/uepic/6ba2022e-1146-4803-bb6b-fd8a05e3dd23.jpg" title="图片2.png" alt="图片2.png" width="550" height="473" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图3. 共聚焦侧向分辨率与针孔大小的关系。在针孔小于1AU的情况下,针孔越小分辨率越高。(图片来源于网络)/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "由于上述方法在实际使用时会大大降低光效率,无法对较弱信号实现超高分辨率成像。近几年来,基于这种分辨率提高方式也有两类商业化产品推出,一是基于阵列检测器的Airyscan技术,它利用带有32 个同心排列的检测元件一次性采集1.25 AU的信号。单个检测元件可以检测0.2AU左右的信号,在针孔变小和点结构光运算的基础上,成像分辨率和灵敏度都得到了明显地提高。另一种是基于转盘共聚焦的超高成像技术,以yokogawa的为例,这种技术并通过光学变倍达到针孔信号扩束的效果并采用点结构光运算,提高分辨率。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/b38871c2-288c-4a52-9dfb-268d2f546adf.jpg" title="图片3.png" alt="图片3.png"//ppbr//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center text-indent: 0em "图4. (a)Airyscan检测器示意图[13]。(b)Sora转盘共聚焦示意图。br/(右图来源于网络)/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "这两种技术总体上来说分辨率相当,在120-150nm左右,去卷积处理后都可以进一步改善图像分辨率和信噪比;相较而言,Airyscan对弱信号更加灵敏,而基于Sora等技术的成像速度更快。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "strong(3)基于结构光照明的超高技术/strong/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "1995年,早在SIM的概念提出之前,Guerra便通过光栅旋转的方式得到了更高分辨率的图像,随后的研究发现通过类似照明手段和傅立叶变换的方法可以收集到观察区域外的频域信号从而能够重构出更高分辨率的图像。这种光学成像技术近年来发展迅速,目前已经有更多的照明方式和相应算法出现,而这种成像方式也融合到多种成像技术中用以提高成像的效果,可以提高荧光显微镜、全内反射显微镜、光片显微镜等成像技术的分辨率。span style="text-align: center text-indent: 0em " /span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 550px height: 257px " src="https://img1.17img.cn/17img/images/202007/uepic/7109771f-658b-4344-8c6b-c0cd3f924fea.jpg" title="图片4.png" alt="图片4.png" width="550" height="257" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图5. 光栅式结构光照明荧光显微镜技术重构示意图。(a)宽场荧光显微镜成像结果。(b)结构光照明成像结果,箭头部分指的是高频信息。(c)经过获取不同格栅位置的图像计算得出七个不同组分的高频信息。(d)将七组分拟合得到包含高频信息的高分辨率图像。(图像来源于网络)/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "目前商用的SIM技术主要集中在荧光显微镜和全内反射显微镜,分辨率为100-120nm之间,对样品折射率和样品厚度有一定的要求,广泛应用于活细胞成像中。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "strong(4)基于受激辐射损耗的超高技术/strong/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "除了前面提到的缩小针孔之外,使用受激辐射的方法将埃里斑变小也可以进一步地提高分辨率,这种方法也被称为受激发射损耗(STimulated Emission Depletion,STED)显微镜。受激辐射,即处于激发态的发光原子在恰好是原子两能级能量差的外来辐射场的作用下,发出与外来光子的频率、位相、传播方向以及偏振状态全相同的光子的现象。由于这种现象造成原荧光发射波段信号被擦除的效果,甜甜圈形状的同心圆受激辐射光使得荧光光斑变小,从而进一步得提高了分辨率。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 550px height: 179px " src="https://img1.17img.cn/17img/images/202007/uepic/a73facd6-7365-4a21-850a-29e376cf2f9a.jpg" title="图片5.png" alt="图片5.png" width="550" height="179" border="0" vspace="0"/span style="text-indent: 0em " /span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: center "图6. STED成像方式示意图。(a)STED成像中用于激发光的光斑。(b)STED成像中用于受激辐射的光斑。(c)实际成像过程中的光斑。(图像来源于网络)/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "十几年以来,这种成像技术发展迅速,cwSTED、gated STED、3d STED、MINFLUX等技术的出现,使得STED成像光漂白更小、3D成像效果更好也更加易用。相较于Airyscan和Sora技术,STED样品的优化对于成像效果影响明显。结合去卷积算法,一般生物组织样品的分辨率可以达到40-60nm。但是,STED样品经常需要对荧光探针和制样方法进行优化,尤其在进行多通道成像和Z-stack成像时。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="color: rgb(192, 0, 0) "strong结语/strong/span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "结合平时的应用,针对生物组织样品成像中常见的几种商业化超高分辨率技术做了简要综述。超高分辨率技术发展迅速、种类繁多,每一种超高成像技术都有明显的优势和短板,因此针对不同的应用目的做出相应的选择对于用户而言非常重要[14]。希望此次分享,能够为其他用户提供参考。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "strongspan style="font-size: 14px font-family: 宋体, SimSun "参考文献:/span/strong/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[1] Herschel, J. F. W. (1828). Treatises on physical astronomy, light and sound contributed to the Encyclopaedia metropolitana. R. Griffin./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[2] Airy, G. B. (1835). On the diffraction of an object-glass with circular aperture. TCaPS, 5, 283./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[3] Abbe, E. (1873). Beiträ ge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv fü r mikroskopische Anatomie, 9(1), 413-468./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[4] Rayleigh, L. (1896). L. Theoretical considerations respecting the separation of gases by diffusion and similar processes. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(259), 493-498./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[5] McNally, J. G., Karpova, T., Cooper, J., & Conchello, J. A. (1999). Three-dimensional imaging by deconvolution microscopy. Methods, 19(3), 373-385./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[6] Wang, H., Rivenson, Y., Jin, Y., Wei, Z., Gao, R., Gü nayd?n, H., ... & Ozcan, A. (2019). Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nature methods, 16(1), 103-110./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[7] Egner, A., Verrier, S., Goroshkov, A., Sö ling, H. D., & Hell, S. W. (2004). 4Pi-microscopy of the Golgi apparatus in live mammalian cells. Journal of structural biology, 147(1), 70-76./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[8] Gustafsson, M. G. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of microscopy, 198(2), 82-87./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[9] Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R., & Hell, S. W. (2006). STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440(7086), 935-939./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[10] Xue, Y., & So, P. T. (2018). Three-dimensional super-resolution high-throughput imaging by structured illumination STED microscopy. Optics express, 26(16), 20920-20928./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[11] Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature methods, 3(10), 793-796./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[12] Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., ... & Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793), 1642-1645./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[13] Huff, J. (2015). The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nature methods, 12(12), i-ii./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "span style="font-size: 14px font-family: 宋体, SimSun "[14] Schermelleh, L., Ferrand, A., Huser, T., Eggeling, C., Sauer, M., Biehlmaier, O., & Drummen, G. P. (2019). Super-resolution microscopy demystified. Nature cell biology, 21(1), 72-84./span/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 0em text-align: right "作者:李晓明 上海科技大学生命科学分子影像平台/ppbr//p
  • 发布超高分辨率显微镜新品
    微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。   微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。   通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。   定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。创新点:微球透镜(SMAL)成像技术,突破传统光学显微镜光学衍射分辨率极限(200nm),将用户带入全新的显微镜时代。  微球成像专利技术提高了光的功率,横向分辨率可达50nm,SMAL物镜可放大到400x。  通过SMAL成像技术,用户能够得到超高分辨率图像并保留光学显微镜所有优势——快速、简单、无损、完整、真实颜色。我们致力于为所有人能获得超高分辨率图像,无需昂贵的设备和严格的使用环境也无需大量的样品,只需光源、透镜和相机。  定制软件算法将高分辨率的微球图像拼接在一起,机械台会将样品移动到镜头下方。使用户能够快速的得到全彩色和超高分辨率的大区域样品图像。
  • 全球超高分辨率傅立叶变换红外光谱仪助力大气污染监测
    为了更好地了解全球气候变化,特别是温室气体(CO2、CH4、N2O、HF、CO、H2O和HDO)在大气和生物圈之间的交换,总碳柱观测网(TCCON)、大气成分变化观测网(NDACC)等研究机构相继成立。这些都是由地基傅立叶变换红外光谱仪(以及其他仪器)组成的网络,它们将太阳作为光源,来记录近红外或中红外光谱范围大气谱。所接收到的高精度数据可以作为重要的地面真实数据,作为对像美国宇航局(NASA)等的卫星测量数据的补充。对于大气污染物的分析,太阳作为红外光源,太阳光经过整个大气层一直到光谱仪的整个光路上不同组分的浓度进行了测量。对于这类场发射测量,需要用到超高分辨率傅立叶变换红外光谱仪。布鲁克IFS 125HR傅立叶变换红外光谱仪凭借准确的仪器谱线函数、出色的波长精度和世界上最高的光谱分辨率,成为该应用和相关研究机构的黄金标准。布鲁克IFS 125HR超高分辨光谱仪采用了令人瞩目的干涉仪设计,可确保光束在长达11米的极长光程差中的完整性。于是,IFS125HR光谱仪全球网络被用于监测全球范围内的大气变化,其中,部分安装在山峰上的观测中心,例如,著名的瑞士少女峰(NDACC);或安装在坐落于美国俄克拉荷马州Lamont的SGP ARM站点设备服务中心(TCCON)。下方图片提供了安装有IFS 125HR光谱仪的全球TCCON观测站点位置,这也凸显了布鲁克在大气污染监测方面做出的重要贡献。注:TCCON: total carbon column observing networkNDACC: network for the detection of atmospheric composition changeSGP: Southern Great PlainsARM: Atmospheric Radiation MeasurementThe Southern Great Plains (SGP) atmospheric observatory was the first field measurement site established by the Atmospheric Radiation Measurement (ARM) user facility. This observatory is the world’s largest and most extensive climate research facility.
  • 1148万!杭州师范大学超高分辨率场发射扫描电子显微镜等一批设备采购项目
    一、项目基本情况 1.项目编号:HZNU-2023312 项目名称:杭州师范大学2023年超高分辨率场发射扫描电子显微镜等一批设备 预算金额(元):6480000 最高限价(元):5000000,1000000,480000 采购需求: 标项一 标项名称: 超高分辨率场发射扫描电子显微镜 数量: 1 预算金额(元): 5000000 简要规格描述或项目基本概况介绍、用途:用于各种生物样品及材料样品的微观形貌进行观察、分析和记录,能观察各种固态样品表面形貌的二次电子像、背反射电子像等,具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注:允许进口 标项二 标项名称: 便携式光合荧光测量系统 数量: 1 预算金额(元): 1000000 简要规格描述或项目基本概况介绍、用途:用于实时测量植物光合速率、呼吸速率、蒸腾速率、最大羧化速率、表观量子效率等植物光合固碳指标,兼具光合气体交换、脉冲调制式叶绿素荧光、快速叶绿素荧光诱导动力学曲线多种功能,系统可实现对多个环境变量如光照、温度、饱和水汽压差、二氧化碳浓度的准确控制,具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求 备注:允许进口 标项三 标项名称: 荧光定量PCR 数量: 1 预算金额(元): 480000 简要规格描述或项目基本概况介绍、用途:用于核酸定量、基因表达水平分析、基因突变检测、GMO检测及产物特异性分析等多种研究领域,具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求 备注:允许进口 合同履约期限:标项 1,自合同签订之日起,365个日历日内供货到位。 标项 2、3,自合同签订之日起,90个日历日内供货到位 本项目(是)接受联合体投标。 2.项目编号:HZNU-2023310 项目名称:杭州师范大学2023年质谱流式细胞仪 预算金额(元):5000000 最高限价(元):5000000 采购需求: 标项名称: 杭州师范大学2023年质谱流式细胞仪 数量: 1 预算金额(元): 5000000 简要规格描述或项目基本概况介绍、用途:质谱流式细胞仪,应用于细胞生物学、分子生物学、免疫学、血液学、药物研发、临床诊断等方面的研究,可以对单个细胞同时进行50个参数分析,实现对骨髓、外周血等复杂细胞群体的免疫表型、信号通路、细胞功能等方面进行全面、精细、深入的研究分析,具体以招标文件第三部分采购需求为准,供应商可点击本公告下方“浏览采购文件”查看采购需求。 备注:允许进口 合同履约期限:标项 1,自合同签订之日起,180日历天内供货到位。 本项目(是)接受联合体投标。二、获取招标文件 时间:/至2023年07月13日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外) 地点(网址):政采云平台(https://www.zcygov.cn/) 方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件) 售价(元):0 三、对本次采购提出询问、质疑、投诉,请按以下方式联系 1.采购人信息 名 称:杭州师范大学 地 址:余杭区仓前街道余杭塘路2318号 传 真: 项目联系人(询问):田老师 项目联系方式(询问):0571-28867509 质疑联系人:周老师 质疑联系方式:18857298499 2.采购代理机构信息 名 称:浙江省国际技术设备招标有限公司 地 址:杭州市凤起路334号同方财富大厦14层 传 真:0571-85860230 项目联系人(询问):杨建 杨晴 项目联系方式(询问):0571-85860251、0571-85860257 质疑联系人:孙荣 质疑联系方式:0571-85860270        3.同级政府采购监督管理部门 名 称:杭州市财政局政府采购监管处 /浙江省政府采购行政裁决服务中心(杭州) 地 址:杭州市上城区四季青街道新业路市民之家G03办公室 传 真: 联 系 人:朱女士/王女士 监督投诉电话:0571-85252453
  • 一鸣惊人!耶拿高分辨率ICP亮相全国稀土分析大会
    2015年8月5日,第十五届全国稀土分析化学学术研讨会在有“稀土之都”之称的内蒙古包头市举办。本次会议由中国稀土学会理化检验专业委员会和中国稀土行业协会检测与标准分会主办,包头稀土研究院与国家稀土产品质量监督检验中心承办。来自全国各地的稀土研究单位、生产企业悉数到场,约150位稀土领域的技术负责人参加了会议。 第15届全国稀土分析化学学术研讨会在包头“稀土国际大酒店”召开 作为全球知名的元素分析整体解决方案供应商,德国耶拿公司鼎力支持了本次会议,作为大会主会场赞助商,耶拿公司的产品专家程良策女士为听众分享了高分辨率ICP-OES PQ9000和最新ICP-MS在稀土分析中的独特应用,获得与会专家学者的高度关注。 稀土元素分析中,由于发射谱线多、谱线集中,常见谱线重叠干扰严重的现象,这对ICP-OES提出了更高的要求,尤其是高分辨率、高灵敏度等。而德国耶拿公司PQ9000型号ICP-OES完美地满足了这些要求,可谓稀土分析的一柄利器。 耶拿公司程良策女士分享高分辨率ICP-OES和最新ICP-MS在稀土分析中的独特应用 高分辨率:PQ9000独有0.003nm光学分辨率,是目前市场上分辨率最高的ICP,能显著提高信背比并改善BEC(背景相当浓度)。同时,PQ9000采用原装的卡尔蔡司光学系统,保证了160-900nm波长连续全覆盖和优于0.0004nm的波长准确度。 双向观测:此外,PQ 9000高分辨率ICP采用创新巧妙的先进设计:垂直矩管、双向观测。垂直矩管的设计可防止水平矩管易产生的盐分、碳粒的凝结和水滴的产生,能提高有机样品和高盐样品的稳定性;而采用的顶部轴向和侧面侧向的双向观测设计,能满足不同浓度(μg/L~%)的同时测量,保证其灵敏度和检测限;而独特的智能测量,同时具备全浓度覆盖、无需分组测量、无需稀释等优势,做到同一样品同时采用轴向、侧向、轴向Plus、侧向Plus这4种观测方式测量,能满足各个元素浓度范围不同的测定要求。另外,通过轴向观测,能捕获最高光强度,同时采用冷锥加氩气反吹消除尾焰,氩气对光室和检测器的持续吹扫还能消除空气和水分等对紫外光的吸收。 除了上述的显著特点外,PQ 9000还具有先进的实时自我诊断系统(SCS)和人性化、智能化、系统化的分析软件,同时设计上也依据高效节省的理念,满足省时——开机即测(5分钟);省气——无需提前和延时吹扫,所有吹扫气体和冷却气体都将引入等离子气充分利用;省事——高浓盐、有机样、高低浓度一次完成测定 省地——体积最小的ICP台式机。 耶拿公司作为晚宴的冠名赞助商表达对与会听众的诚挚欢迎。 未来,耶拿将与稀土行业各界人士通力合作,共同解决行业难题,推动稀土行业快速发展。
  • 青岛能源所等提出一种高分辨率高灵敏度的微生物组测序技术
    微生物组(又称菌群)测序在生态健康诊断、生态过程监控、生物资源挖掘、合成生物学研究等领域广泛应用。针对目前菌群测序方法学领域面临的痛点与难点,中国科学院青岛生物能源与过程研究所所单细胞中心和中国海洋大学提出一种高物种分辨率、高灵敏性,并可同时鉴定所有原核与真核微生物、不惧样品降解或污染的低成本微生物组测序技术2bRAD-M。  在微生物组研究中,解析微生物群落的物种构成主要依赖于两种高通量手段:扩增子测序(16S/18S/ITS)和鸟枪法宏基因组测序(WMS)。目前这两种主流手段都面临着关键瓶颈。扩增子测序存在扩增偏好性、脱靶扩增、物种分辨率低等问题,且通常无法同时检测细菌、古菌与真菌。鸟枪法测序虽然一定程度上解决了上述问题,但对样本DNA质和量的要求高,故通常难以分析痕量、高度降解或污染严重的样品,且测序成本相对很高。   据此,青岛能源所单细胞中心博士孙政、黄适等提出了名为2bRAD-M的“简化宏基因组测序技术”,有效克服了上述扩增子测序和鸟枪法测序的核心缺陷,可服务于人体与环境中痕量、高度降解或污染严重之菌群样品的高效解析。  IIB型限制性内切酶是一种能够识别双链DNA分子中的某种特定核苷酸序列,在识别位点上游和下游的特定距离进行切割,形成等长短片段(20—33 bp)的核酸内切酶。作为一种基于IIB型限制性内切酶特性的测序技术,2bRAD目前已经被应用于包括人体、模式动物、海洋动物等上百个单一物种的基因组研究。但一个菌群通常由成百上千个真菌、细菌和古菌物种组成,比分析单一物种复杂得多。  2bRAD-M技术的原理是:处理菌群总DNA样本,对IIB酶切片段进行扩增和测序,然后以各种微生物基因组序列上的理论酶切位点为参造,来推断菌群结构。为验证该技术,科研人员通过模拟酶切数据研究了不同来源、相似度或复杂程度以及不同实验方法学对菌群定性和定量分析的影响,并解决了高重复性短片段DNA干扰序列匹配的问题;通过利用人工和自然菌群样本,验证了2bRAD-M的敏感性、重复性、分辨率、准确度和偏好性等,进而挖掘了该方法用于各种实际菌群样品之测序的潜力和局限性。  具体来说,研究证明该技术能够有效处理低生物量菌群样本。例如,针对总DNA仅为1 pg、长度仅有50 bp的高度片段化或99%被宿主DNA污染的人工菌群DNA样本,2bRAD-M均能得到种水平、高度准确、同时涵盖细菌、古菌和真菌的菌群结构的定性与定量分析结果。针对皮肤,肠道和环境等实际样本,2bRAD-M同样表现出色。针对临床最常见、但菌群DNA极为微量且高度降解或污染的福尔马林固定石蜡包埋(FFPE)样本,仅用极微量的FFPE切片样本(3 cm × 2 μm),2bRAD-M就能捕捉到潜在可服务宫颈癌诊断的微生物物种标识物。这些发现对于肿瘤微生物组、免疫组织微生物组等基础医学研究与临床实践,具有方法学意义。  相关成果发表在基因组学领域期刊Genome Biology上。研究得到国家自然科学基金、国家重点研发计划、中国博士后科学基金、山东省人才工程等支持。 论文链接高效分析痕量降解微生物组的2bRAD-M技术。IIB型限制性内切酶就如同二郎神手中的三尖两刃戟,在微生物DNA上寻找核心识别位点并同时切割其两侧翼序列(对应“三尖两刃”),从而产生大量等长短标签,通过扩增、测序及相关算法计算,可对痕量、高度降解、严重污染的菌群样本进行种水平的细菌、古菌和真菌鉴定。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制