当前位置: 仪器信息网 > 行业主题 > >

碳纤维复合原位微裂纹动力学分析

仪器信息网碳纤维复合原位微裂纹动力学分析专题为您提供2024年最新碳纤维复合原位微裂纹动力学分析价格报价、厂家品牌的相关信息, 包括碳纤维复合原位微裂纹动力学分析参数、型号等,不管是国产,还是进口品牌的碳纤维复合原位微裂纹动力学分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碳纤维复合原位微裂纹动力学分析相关的耗材配件、试剂标物,还有碳纤维复合原位微裂纹动力学分析相关的最新资讯、资料,以及碳纤维复合原位微裂纹动力学分析相关的解决方案。

碳纤维复合原位微裂纹动力学分析相关的资讯

  • 贝斯特商品化最新系统:碳纤维复合材料原位微裂纹动力学分析
    复合材料的微裂纹和断裂力学一直是困扰科研人员的难题, 对于类似金属材料的断裂力学研究已经有了丰硕的成果;但是复合材料的断裂力学机理和过程, 一直没有较好的测试技术和设备商品化, 贝斯特公司的研发人员通过多年的科研经验和创新的工作, 开发了碳纤维复合材料微裂纹动力学测试技术, 通过该技术可以在线原位扫描样品在外力作用下,内部裂纹的扩展机理和动力学;为科研人员提供一臂之力。 此系统主要由Nano系列动态试验机和原位扫面测试系统、多通道控制系统和专业软件组成。 涡流检测原理:通过感应磁场和微裂纹相关性测试碳纤维复合材料的裂纹动力学。 由于导电材料不均匀会导致磁导率、电导率不同,使涡流流通路径发生改变,导致涡流的大小、相位发生改变。如果被检测件存在缺陷(如表面裂纹),则会阻碍涡流流过,因涡流只能存在于导体材料中,故导致涡流流通路径的畸变,最终影响涡流磁场,使得涡流强度降低。 构造配置: 技术参数:* 400x400毫米扫描区域* 探针直径1 & 3 mm* 速度Up to 100 mm/s, 同步数据采集up to 5 kHz* 样品厚度 t 8 mm* 3-轴位置控制 X, Y旋转编码器; Z 激光位置反馈* 作为独立的完全集成 “工作站”测试系统控制器。独立的扫描应用* 单通道输出信号,整流直流(0-10V)* X, Y &与负载、行程、应变等信号的记录* 轴向和横向的合规性应用:
  • 贝斯特成功召开了2016 年先进的碳复合材料测试——使用在线损伤监测解释裂纹动力学技术交流会
    贝斯特成功召开了2016 年先进的碳复合材料测试——使用在线损伤监测解释裂纹动力学技术交流会。本次交流会在北京唯实酒店举行,旨在为复合材料科研工作者搭建的专业性技术交流平台。本次交流会将由贝斯特(中国)技术公司组办,为用户解读了国际碳复合材料微裂纹动力学检测技术最新技术。本次交流会关注现在最新的力学试验技术的发展,此技术解决了目前力学试验机无法在线测试微裂纹动力学的困境;会议由复合材料科学家R. Sunder博士主讲, 和各位同行交流了复合材料力学测试面临的挑战和解决方法。 R. Sunder博士履历1. 1978-1993,在国家航空航天实验室研究航空疲劳和机体残余强度(1978-1993);2. 1986-1988,镍基高温合金的性能,空军材料实验室,莱特帕特森空军基地,俄亥俄;3. 1992年创立了班加罗尔集成系统解决方案公司(BISS),领先的技术研发和制造商,为全球客户最先进的测试系统。2012年美国ITW集团收购了BISS公司,ITW为纽约证券交易所上市公司,全球财富200强企业。4. 1996至今,研究疲劳的阈值和变幅疲劳。5. ASTM(1985)和ASTM委员会E-8(疲劳与断裂)和D30(复合材料)的成员。超过50多篇同行评审的ASTM特殊技术出版物、国际疲劳杂志、工程材料和结构的疲劳与断裂的单一作者的论文。 参加技术交流的科研人员来自于:空中客车(天津)总装有限公司,北京科技大学,北京航天材料研究院,中国民航科学技术研究院, 中科院化学所、中科院理化技术研究所,北京航空航天大学,以及其它合作公司等。
  • 原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析
    原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析什么是抗冻蛋白?抗冻蛋白是一种能抑制冰晶生长的蛋白质或糖蛋白质.自二十世纪发现以来,研究对象先后从极区鱼类,昆虫,转移到植物材料上。抗冻蛋白是生活在寒冷区域的生物经过长期自然选择进化产生的一类用于防止生物体内结冰而导致生物体死亡的功能性蛋白质。对于抗冻蛋白抗冻机制的研究有助于揭开冰晶成核、生长和冰晶形貌调控的分子层面的机理。抗冻蛋白生长机制的模型抗冻蛋白吸附在冰晶表面,通过EAFC3效应抑制其生长.机制的模型为:一般晶体的生长垂直于晶体的表面,假如杂质分子吸附于冰生长通途的表面,那么需要在外加一推动力(冰点下降),促使冰在杂质间生长.由于曲率增大,使边缘的表面积也增加.因表面张力的影响,增加表面积将使体系的平衡状态发生改变,从而冰点降低。通过对抗冻植物抗冻活性的研究,认为抗冻植物形成了一种特殊的控制胞外冰晶形成的机制,即抗冻蛋白和冰核聚物质的协同作用.在植物体内,热滞效应并不明显,而冰重结晶抑制效应显著.吸附抑制学说是否适应于植物有待于进一步的证实.原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析原位变温低场核磁共振系统是指可以实现在线原位改变样品温度,并在设置温度下对样品进行原位测量的低场核磁共振系统。该系统可同时实现弛豫分析和磁共振成像功能。传统的低场核磁共振系统是常温测试系统,测试过程中样品的温度保持与实验室温度(环境温度)一致,检测到的数据与样品在室温下的特性相关。而原位变温低场核磁共振系统可对样品进行程序控温(高低温),并进行原位检测,可研究不同温度下样品的特性。可对样品进行冷冻过程、干燥过程、蒸煮过程、样品冰点、食品变性过程等相关研究。 原位变温低场核磁共振系统是在常规低场核磁共振系统上加配了变温探头、控温硬件以及控温软件。系统样机如下图:
  • 气固反应动力学分析方法与仪器研讨会召开
    仪器信息网讯 2011年3月25日上午,由中科院计财局条件装备处组办、中科院过程工程研究所承办的“气固反应动力学分析方法与仪器研讨会”在中科院过程工程研究所举行。会议邀请了煤炭、生物质、矿产资源、环境、石由加工、航天材料、多晶硅等涉及气固反应的重要领域的近20名国内专家学者参加,科技部、科学院、北京市科委和过程所的相关领导出席并致词或介绍了有关政策。此次研讨会的目的在于回顾气固反应动力学分析方法与仪器的发展,把握不同领域的需求,分析尚存问题并探讨解决办法,以期形成自主新型的反应动力学分析方法与分析仪,推动学科发展和分析水平升级,填补方法与仪器的空白。研讨会现场中科院过程工程研究所所长张锁江研究员  中科院过程工程研究所所长张锁江研究员在研讨会前的致词中对各位领导和专家的参会表示感谢和欢迎,并介绍了近年来中科院过程工程研究所在仪器研制、基本建设、人才引进等方面的工作进展。最后,张锁江研究员希望,在座的领导与专家能够对“微型流化床反应动力学分析仪”研制项目以及过程所其它方面的工作提出宝贵的意见。西安近代化学研究所胡荣祖教授报告题目:关于气固反应热分析动力学的几个问题  研讨会首先由《热分析动力学》著者、原西北大学教授胡荣祖先生,《应用化工动力学》译者、原太原理工大学教授郭汉贤先生作了专题报告。胡荣祖教授介绍了气固反应动力学的反应机理、关键参数以及半导体脉冲补偿式量热测试单元的结构原理,最后,胡荣祖教授重点向大家展示了自己多年的研究成果,如经验级数自催化分解反应动力学参数计算系统、含能材料感度估算系统以及自加速分解温度-热点火速度-绝热至爆时间计算系统等。太原理工大学煤化工研究所原所长郭汉贤教授(由过程所余剑博士代讲)报告题目:非催化气固反应动力学分析方法概述  郭汉贤教授的报告由中国科学院过程工程研究所的余剑博士代讲,报告对非催化气固反应化工动力学的研究进行了简要分析,指出:研究非催化气固反应动力学,需要有良好的反应设备和科学的数学模型,硬件、软件同时并举才能事半功倍。而动力学的研究具有层次性的特点,故热重装置和流化固定床反应装置缺一不可。中科院过程工程研究所许光文研究员报告题目:微型流化床反应分析方法、仪器及典型应用  上午,中科院过程工程研究所的许光文研究员还系统汇报了其团队自主研发微型流化床反应分析方法与仪器的过程和已经实现的典型应用。在报告中他介绍到:气固反应分析动力学是化学、化工、能源、材料、环境等众多领域的研发工作的起点,但是,现有的气固反应分析动力学方法几乎均采用非等温加热方法,无法在线供给反应试料,存在着难以测定非稳定物质及快速反应的动力学、受传热及扩散的影响严重等缺点。他团队研发的微型流化床反应动力学分析方法以分析仪(MFBRA:Micro Fluidized Bed Analysis)可克服这些缺陷,提供有效的等温微分反应分析方法和测试工具。微型流化床反应动力学分析仪(MFBRA)  MFBRA首次利用微型流化床作为反应器,构建了气固反应分析方法与分析仪。利用流化床反应器有效抑制了扩散影响,实现了对反应物快速的加热 通过集成微型流化床反应器和脉冲微量反应物进样,实现了流化床中气固反应的等温微分化,形成了定点温度下的气固反应动力学参数的等温微分测试方法与仪器,填补了快速升温条件下等温微分反应测试方法与仪器的空白,可望与热重分析仪器形成互补性科学工具,实现气固反应的等温微分、快速原位(升温)和低扩散影响等技术特点。  经过三年多的应用实践,MFBRA分析方法与各部件结构均得到了很大程度的优化,颗粒反应物供给时间0.1s,测量重复性误差3.0%。通过应用于石墨燃烧过程中的等温微分反应特性的分析测试,成功证实了MFBRA的等温微分特性 运用MFBRA首次成功测试了Ca(OH)2捕集CO2的动力学特性,展示了仪器拥有的原位反应特性;该仪器对生物质及煤热解等快速复杂反应显示了很好的适应性,剔提供揭示反应机理的有效基础数据;比较热重测试的CO还原CuO反应特性,MFBRA对该反应显现了明显了低扩散影响。  最后,许光文研究员提出了进一步研发基于微型流化床的气固反应分析方法与分析仪的计划:将通过集成质谱等分析仪和提高仪器自控及美观水平,希望MFBRA能成为国际先进水平的我国自主创新仪器,与程序升温脱附(TPD)设备、程序升温还原(TPR)设备、热重分析(TG)设备等并驾齐驱,成为国内外市场中的反应分析高端产品。北京市科委政策法规处李萍女士报告题目:北京市支持成果转化及产业化相关政策解读  会议也邀请了北京市科委政策法规与体制改革处的李萍女士通过专题报告,系统介绍北京市对科技创新与科技成果产业化的支持政策,重点解读了北京市支持自主创新与成果转化的12个重点政策,并现场回答了与会者问题。  基于上午的主题报告,研讨会的下午针对“气固反应动力学分析方法与仪器发展”、“自主分析方法与分析仪器及应用”、“不同行业领域对气固反应分析的需求特性”等主题,与会专家展开了积极的讨论与交流互动,各位专家结合自身的研究工作经历,提炼了各行业中在气固反应分析方面尚存的难题,希望的分析方法与测试工具,对中科院过程工程研究所研发的微型流化床等温微分反应分析方法与分析仪的功能扩展和解决尚存问题积极建言献策。  通过总结与会专家的讨论意见,许光文研究员总结了进一步发展等温微分反应分析方法、解决各行业尚存问题或满足各行业特定需求的技术方向。在近四个小时的讨论中,现场气氛十分热烈。  相关报道:  微型流化床反应动力学分析仪研制成功  “微型流化床反应分析方法与分析仪”鉴定会在京召开  先进能源关键技术与仪器装备亟需强化——访中科院过程工程研究所许光文研究员
  • 万测出席中国复合材料行业年会暨第五届碳纤维复合材料产业发展高峰论坛
    2023年11月17日-18日,中国复合材料行业年会暨第五届碳纤维复合材料产业发展论坛在上海成功举办。万测作为国内知名的材料力学测试解决方案供应商参加了本次论坛。 论坛期间,万测展示了微机控制电子万能试验机、电液伺服疲劳试验机、复合材料试验机、复合材料落锤冲击试验机等产品及解决方案,与现场嘉宾共同探讨了未来复合材料行业的发展趋势和挑战。 万测微机控制复合材料试验机主要用于复合材料的拉伸、弯曲、压缩、剪切、裂纹扩展等力学性能测试。具有应力、应变、位移三种闭环控制方式,可求出最大载荷、抗拉强度、弯曲强度、压缩强度、剪切强度、弹性模量、断裂延伸率、泊松比等参数。根据国家标准及ISO、JIS、ASTM、DIN等国际标准进行试验和提供数据。 作为国家级专精特新重点“小巨人”企业,万测一直以来都关注着复合材料的发展,承担着为国内复合材料发展做出贡献的责任和义务。为了更好地服务行业,万测将继续加大复合材料力学测试领域的研发投入,为广大用户带来更多专业的测试解决方案。未来,随着复合材料行业的持续发展和创新,万测将继续发挥其专业优势和技术实力,为我国复合材料行业的繁荣发展做出更大的贡献。
  • 微型流化床反应动力学分析仪研制成功
    近日,过程工程所许光文研究员主持的中科院重大科研装备研制项目“微型流化床反应动力学分析仪研制”通过验收。  化工、冶金、能源、材料、环境等领域涉及大量气固反应,通常通过热重分析仪测试其反应特性,推导反应动力学参数。但是,热重分析不能在线供给固体反应物,升温速度缓慢,受气体扩散影响严重。因此,许光文研究员于2006年提出利用微型流化床作为反应器的气固反应动力学测试思想,以克服上述热重分析方法的弊端,通过检测反应生成气的典型组成随反应时间的变化,测试任意温度下的气固反应速度,分析推导反应动力学。  在中国科学院仪器研制专项资金的支持下,许光文研究员的课题组通过与国产热重分析仪专业企业——北京恒久科学仪器公司合作,经过两年多的努力工作,成功研制了微型流化床反应动力学分析仪(MFBK: Micro Fluidized Bed Kinetic analyzer)的样机(见图),并实现与在线微型质谱检测仪的联用,经系统试验,获得了系列新型测试结果,展现出它的优点和应用潜力。  MFBK适用于颗粒物料参与及颗粒催化剂催化的所有气固反应,包括化工(化学品分解、氧化、还原、加氢) 冶金(矿石还原、焙烧) 能源(煤/生物质热解、燃烧、气化、碳化) 材料(发射药/炸药分解、爆炸) 环境(固废热解/燃烧/气化、废气吸收/氧化/吸附)。它有效克服了热重分析的升温速度慢、扩散影响大等弊端,通过在线颗粒反应物供给,实现了任意温度下气固(颗粒)反应速度的测试,并提供了分析反应参数、揭示反应机理,特别是适合于快速颗粒反应测试的功能。  MFBK作为一种新型固体(颗粒)反应测试仪器,具有快速升温、趋近颗粒反应本征、易于操作,结果准确,重复性好等优点。其良好的功能及其与质谱的匹配性,引起了美国AMETEK质谱分析仪制造公司的兴趣。双方为此签订了合作研发协议,研制偶联AMETEK在线质谱分析仪的集成化微型流化床反应分析仪器,北京科技大学于2009年4月订购了该仪器。
  • 【热门应用】WAVE基于GCI技术的分子相互作用动力学分析在药物开发中的应用
    Creoptix公司,光学生物传感器的领军企业,2022年加入马尔文帕纳科,拥有专利的光栅耦合干涉(GCI)技术,开创新一代动力学,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据具备先进的GCI技术的WAVE系列分子互作分析仪,究竟能为生物开发领域带来什么样的支持呢?他和传统的分子互作技术相比又有哪些差异和优势呢?本文将针对以上问题予以解答。1关于光栅耦合干涉技术(GCI)光栅耦合干涉技术(Grating-Coupled Interferometry, GCI)是一种近年发展起来的具有极高灵敏度的基于芯片的非标记生物传感器技术,它区别于依赖荧光和免疫等标记分子的传统分子间相互作用技术。通过一次GCI实验,用户可以快速、准确、可靠的获取一整套描述分子间相互作用的信息,包括并不限于结合有无、结合特异性、描述结合强弱的亲和力KD或键合常数KA、描述结合快慢与稳定性的动力学常数(结合速率常数ka与解离速率常数kd)、样品活性浓度、分子间结合机制以及理论热力学信息(范德霍夫焓变)等。GCI技术的商业化产品是Creoptix WAVE系列(2022年初被马尔文帕纳科收购作为旗下Label-Free分子互作分析平台的一员)。 GCI技术具有高灵敏度、分析物的分子量无下限以及捕获快速解离动力学等优势,改进了基于片段的小分子筛选和动力学分析,与无堵塞的流路集成芯片配合使用,加速了药物开发的过程。图1 光栅耦合干涉技术(GCI)示意图2弱相互作用也能得到很好的数据在基于片段的筛选中发现的弱结合物通常是根据亲和力而不是动力学进行排名的,因为它们的解离速率常数kd非常快,这是传统的SPR仪器无法解决的问题。然而,由于具有超快速的流路切换时间,Creoptix WAVE系统可以提供出色的分辨率,在高达10 s-1的解离速率下仍然能够可靠地确定动力学,提供了一个多功能的片段药物筛选和分析平台。使用4PCZ WAVE芯片固定淀粉样纤维蛋白(Amyloid Fibrils),小分子硫黄素(ThT,319 Da)以4种浓度(50 mM ~ 6.25 mM)注入,拟合后显示出10 s-1左右的解离速率常数。图2 淀粉样纤维蛋白与硫黄素的结合分析下图为在PCP WAVE芯片上捕获的6-mer寡核苷酸(1.7 kDa)与其互补的ssDNA结合的传感图,拟合后显示出10 s-1左右的解离速率常数。图3 寡核苷酸与其互补的ssDNA的结合分析3创新的waveRAPID技术加快药物发现的早期阶段对于更快地将新药送到患者手中至关重要。为了满足用户需求,Creoptix推出了测量动力学的新方法。在传统的动力学实验中,分析物以不断增加的浓度被注入,每次注射的持续时间一样。然而,Creoptix创新的waveRAPID (Repeated Analyte Pulses of Increasing Duration)技术通过以不同时长注入单一浓度的分析物,不断增加在芯片表面的脉冲时间来进行动力学分析,该方法免去了浓度梯度的稀释步骤,大大减少了人为稀释误差和实验前的准备时间。图4 waveRAPID与传统动力学的方法比较用waveRAPID和传统的多循环动力学测量小分子化合物FUR(分析物)与碳酸酐酶CAII(配体)的结合。使用WAVEcontrol软件的“Direct Kinetics”分析,两种方法都能提供高度一致的结果。图5 waveRAPID与传统动力学的数据比较使用waveRAPID技术,在18小时内完成了对90个小分子的动力学分析,图中显示的结果为筛选过的具有低统计学误差的速率常数,突出展示了三种不同结合强度的相互作用的传感图和拟合图。图6 小分子药物苗头化合物的waveRAPID动力学筛选结论Conclusion通过Creoptix WAVE所提供的亲和力和动力学信息能够表征药物结合的详细动力学机制,为开发具有高选择性的药物提供了理论基础,使得未来药物设计中的计算和实验更加合理化。提高通量是药物发现过程中经常提到的需求,使用waveRAPID技术大大缩短了总测量时间,在药物发现领域得到了广泛应用。参考文献[1] Kartal O, Andres F, Lai MP, et al. waveRAPID-A Robust Assay for High-Throughput Kinetic Screens with the Creoptix WAVEsystem. SLAS Discov. 2021 26(8): 995-1003.[2] FitzGerald EA, Butko MT, Boronat P, et al. Discovery of fragments inducing conformational effects in dynamic proteins using a second-harmonic generation biosensor. RSC Adv. 2021 11(13): 7527-7537.相关产品WAVE 分子相互作用分析仪WAVE分子相互作用分析仪拥有基于光栅耦合干涉技术(GCI)的光学生物传感器,且具有创新性的微流控技术,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。与传统动力学分子互作分析技术相比具有如下优势:无需配置浓度梯度样品10倍于传统分子互作技术分析速度超高灵敏度,捕获快速动力学微流控技术,不堵塞流路点击下载产品手册马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 马尔文帕纳科:创新GCI、ITC技术,打造动力学与热力学分析一体化分子互作平台
    近年来,分子互作分析仪市场涌现出很多新品牌、新产品参与市场竞争,技术多元化,“百花齐放”。目前国内外分子互作分析仪厂商已涌现近20余家,为帮助广大科研工作者了解前沿分子互作分析技术、增强业界相关人员之间的信息交流,同时也为用户提供更丰富的分子互作分析产品与技术解决方案,仪器信息网特别策划了《“百舸争流”,谁将成为下一代金标准?——分子互作技术与应用进展》专题。本期,我们特别邀请到马尔文帕纳科生命科学业务发展经理、微量热技术&分子互作技术产品经理韩佩韦谈一谈马尔文帕纳科的创新分子互作分析技术及他对该技术应用及市场的看法。仪器信息网:贵司在分子互作分析领域主推的仪器产品是什么?请您谈谈该产品的核心竞争力。韩佩韦:马尔文帕纳科公司不断致力于为基础科研与药物研发领域提供更先进的分析仪器和解决方案,在分子互作分析领域我们公司主推的产品是一种将动力学分析与热力学分析整合为一体的非标记分子互作平台,包括Creoptix WAVE系列分子相互作用仪和MicroCal PEAQ-ITC系列等温滴定量热仪等。众所周知,深入全面研究分子间相互作用需要借用多种原理互补的技术进行多角度分析,其中,动力学分析技术能够准确描述分子间的识别能力与结合的稳定性和半衰期,是一种实时、动态检测的手段;而热力学分析则深入探究分子互作的能量学本质,即分子间互作的机理,包括特异性相互作用驱动、疏水相互作用以及构象变化驱动。我们Creoptix WAVE分子相互作用仪拥有基于光栅耦合干涉技术(Grating-Coupled Interferometry,GCI)的光学生物传感器,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。另外,Creoptix WAVE产品采用了waveRAPID动力学检测方式和创新性微流控技术。不同于传统力学的检测方式,只需一个浓度的样品,无需稀释,能够更快地得到动力学数据(waveRAPID 比传统动力学检测约快10倍),解决了市面部分分子互作技术的低灵敏度、无法捕获快速动力学、表观亲和力偏离、流路易堵塞以及动力学分析中需要配制大量浓度梯度等问题。Creoptix WAVE 分子相互作用仪MicroCal PEAQ-ITC 是一款高灵敏度、低容量的等温滴定量热仪,可用于生物分子相互作用的无标记溶液内研究。它可以在单次实验中直接测量所有结合参数,并且可使用低至10μg容量的样品对无论是高亲和力还是低亲和力的结合剂进行分析。MicroCal PEAQ-ITC可用于多种应用,包括表征小分子、蛋白质、抗体、核酸、脂质和其他生物分子的分子间相互作用等。MicroCal PEAQ-ITC 等温滴定量热仪仪器信息网:请回顾一下贵公司分子互作分析仪技术的发展历程。韩佩韦:分子间相互作用的生物物理表征是研究分子互作的重要环节,马尔文帕纳科一直致力于帮助用户从不同角度阐述分子互作的机理和特征。其中,采用热力学代表技术的MicroCal ITC系列成立于1977年,是最早商业化的微量热技术品牌,在业界拥有众多粉丝,其先后多款经典产品如VP-ITC, ITC200以及PEAQ-ITC都有众多的用户群和文献支持;动力学代表技术Creoptix WAVE系列则成立于其他技术如SPR/BLI等相对成熟的时期,正是在发现了现有技术的某些局限和不足后,Creoptix开发并成功商业化了新一代动力学分析技术——光栅耦合干涉技术(Grating-Coupled Interferometry,GCI)。目前,MicroCal和Creoptix品牌都是马尔文帕纳科旗下分子互作分析的中坚力量,与MicroCal DSC和Light Scattering一起打造了从样品质量控制直至动力学与热力学全面分析的Label-Free分析平台。仪器信息网:贵公司分子互作分析仪的主要应用领域有哪些?韩佩韦:马尔文帕纳科旗下的非标记分子互作平台几乎应用于分子互作相关研究的各个领域:在药物研发领域包括药靶确认,片段药物、小分子药物、肽段和核酸药物的筛选、表征与优化,抗体药物筛选、表位分析、结构改造,制剂开发、稳定性、可比性和生物相似性研究等;诊断试剂开发与优化、生理条件下(如血清、血浆等复杂体系)测试等等;在基础科研中则包括癌症、神经科学、免疫科学、膜蛋白、环境科学等领域。目前,研究者应用我们的技术和产品组合来研究分子互作相关的定性与定量信息,包括有无结合、结合特异性和选择性、结合强弱、结合快慢与稳定性以及部分非生物和非水相体系,如超分子组装、有机溶剂环境等。比如在冠状病毒(COVID-19)疫苗研发过程中,Creoptix WAVE system为病毒蛋白和抗体的结合动力学研究提供了有力支持。WAVE system系统将高信号和高时间分辨率与ELISA(酶联免疫吸附测定)才能实现的样品稳定性结合起来。实时分析广泛的生物流体样品的相互作用,提供完整的动力学数据,包括亲和力和高精度的结合和解离常数。由于整个微流体都包含在外置的传感器芯片WAVEchip中,可将实验中交叉污染的风险降至最低。WAVE system可用于表征病毒样颗粒(VLPs)的动力学,为研发疫苗的诱导免疫反应提供一个有效的平台。一种单克隆抗体结合嵌入VLPs中的蛋白质仪器信息网:您如何看待当前分子互作分析仪市场及前景?未来看好哪些细分领域?韩佩韦:我未来更看好分子互作技术在医学临床分析、食品分析、细胞与基因治疗领域等领域的应用。我的个人观点是当今的分子互作分析市场百花争艳,百家争鸣。各种不同原理的技术和产品层出不穷,研究者可以更好的根据自己的需求和问题来找到适合的技术,这对于技术发展和研究者而言都无疑是件好事,无论是进口的还是国产的技术,每种技术都有其各自的优点和局限,能够解决自己问题的才是最好的。随着市场的竞争,我未来更看好分子互作技术在医学临床分析、食品分析、细胞与基因治疗领域等领域的应用。马尔文帕纳科 韩佩韦韩佩韦,中科院生物物理所生物物理学博士,马尔文帕纳科生命科学业务发展经理、微量热技术和分子互作技术产品经理。长期负责蛋白质稳定性以及分子间相互作用技术如DSC,ITC,SPR等的技术支持和市场拓展。在2014年加入马尔文帕纳科之前,多年任职于通用电气(中国)医疗集团生命科学部(现Cytiva),曾任技术经理、Biacore & MicroCal产品经理和Label-Free技术资深应用科学家等职位。韩佩韦博士长期活跃于生命科学领域和生物制药行业,组织和举办过相关的几百场技术交流会和培训班,并在多个大型会议上做分会技术报告,在分子相互作用领域和微量热应用领域具有丰富的经验。
  • 冷冻电镜发展进入全原子动力学分析阶段
    p  “这是《自然》杂志首次发表系统性、优于3.6埃分辨率水平实验研究超大复合蛋白质机器的动力学过程和原理的论文,标志冷冻电镜的发展开始进入全原子动力学分析的新阶段。”1月20日,北京大学教授毛有东告诉科技日报记者。/pp  本月,北京大学物理学院人工微结构和介观物理国家重点实验室、前沿交叉学科研究院定量生物学中心毛有东课题组在《自然》杂志上发表的论文表明,他们通过冷冻电子显微镜和机器学习技术的结合,解析了人源蛋白酶体26S在降解底物过程中的七种中间态构象的高分辨(2.8埃—3.6埃)精细原子结构,局部分辨率最高达到2.5埃。/pp  毛有东介绍,这些三维结构展现了惊人的时空连续性,生动呈现了原子水平的蛋白酶体和底物相互作用的动态过程,首次实现了对三磷酸腺苷酶六聚马达分子内三磷酸腺苷水解全周步进循环完整过程的原子水平观测和三维建模,发现三种不同的三磷酸腺苷水解协同反应模式,及其如何调控蛋白酶体复杂多样的功能。/pp  “论文解决了一系列长期悬而未决的重要科学问题,如三磷酸腺苷酶马达如何将化学能转化为机械能,进而实现了底物解折叠的协同动力学机制。”该论文的共同第一作者、原课题组博士后、现为中国科学院化学所研究员董原辰说。/pp  论文的共同第一作者、课题组博士生张书文说,这些研究结果为几十年来对蛋白酶体功能的研究提供了宝贵的第一手原子结构和动力学信息,对于理解生物体内蛋白质的降解过程和一系列负责物质输运的三磷酸腺苷酶马达分子的一般工作原理具有极为重要的科学意义。/p
  • 碳纤维复合材料的“试验员”
    引 言自进入21世纪以来,科学技术对材料提出了越来越高的要求,碳纤维复合材料(CFRP)因其重量轻、强度高、耐腐蚀性强、弹性优良等特点,广泛应用于航天航空、汽车、电子电器、体育器材等领域,促使碳纤维复合材料行业快速发展。一方面CFRP广泛使用助推产业结构优化升级,实现绿色发展;另一方面CFRP的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进!复合材料的应用场景 CFRP强度评估方法由各种ASTM标准规定。岛津试验机可以根据ASTM各种测试标准做出解决方案,例如符合“平面内剪切试验-双V形切口剪切法(ASTM D5379)的试验示例,以及符合各种标准的夹具。采用双V形切口试样进行平面内剪切试验,得到CFRP的平面内剪切强度、平面内剪切破坏应变和平面内剪切弹性模量。碳纤维复合材料的测试标准碳纤维复合材料(CFRP)目前主要应用于飞机与汽车制造业,其刚性是重要应用参考,岛津试验机可以根据JIS K 7074和JIS K7084标准提供静态三点弯曲试验和高速冲击试验方案,且能获得精确获得试验数据。碳纤维是碳纤维增强塑料(CFRP)的重要组成部分,碳纤维的力学性能(拉伸强度/弹性模量)对复合材料物理性能有重要影响,岛津试验机系统可以对碳纤维及其复合材料进行拉伸试验,也可以配合高速摄像机实现从高时间分辨率的角度研究碳纤维布的破坏过程的可视化观察。使用X射线CT系统可以对试样中纤维的取向和空隙进行无损观察。这使得在进行测试之前能够观察内部状态,从而获得测试结果与内部结构紧密相关的数据。 岛津试验机拥有一百多年的历史和丰富的产品线,不管是静态试验机还是动态试验机,可以满足各种客户的需求,且进行定制化的夹具设计。岛津公司提供了一系列用于分析、测试和检验评估的仪器和系统(从分析和测试预处理到数据分析),从而有助于解决从CFRP原材料开发到产品耐久性评估各个阶段的各种问题,为营造和谐绿色的发展做出贡献。
  • 843万!复旦大学高灵敏度药物代谢动力学分析系统和二次离子质谱仪采购项目
    一、项目基本情况1.项目编号:1069-234Z20234494(HW2023111501)项目名称:复旦大学高灵敏度药物代谢动力学分析系统预算金额:413.140000 万元(人民币)最高限价(如有):404.870000 万元(人民币)采购需求:包件号名称数量简要技术规格备注1高灵敏度药物代谢动力学分析系统1套本次采购高灵敏度药物代谢动力学分析系统一套,此系统由三重四级杆质谱仪及数据分析工作站和高效液相色谱仪和组成。★扫描速度≥18000amu/sec。预算金额:人民币413.14万元最高限价:人民币404.87万元合同履行期限:交货期:2024年3月31日前交付。合同履行期限:交货期:2024年3月31日前交付。本项目( 不接受 )联合体投标。2.项目编号:1069-234Z20234470(HW2023111401)项目名称:复旦大学二次离子质谱仪设备预算金额:430.000000 万元(人民币)最高限价(如有):421.000000 万元(人民币)采购需求:包件号名称数量简要技术规格备注1二次离子质谱仪设备1套应用于材料化学结构解析和组分分析。实现对金属元素的测定、氧化态和电子结构等信息表征,支持原位实时动态分析。预算金额:人民币430万元最高限价:人民币421万元合同履行期限:交货期:2024年12月30日前交付。 合同履行期限:交货期:2024年12月30日前交付。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月18日 至 2023年11月24日,每天上午8:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)方式:通过复旦大学采购与招标管理系统(网址为:https://czzx.fudan.edu.cn)点击“校外用户登录”在线获取招标文件,逾期不再办理。潜在投标人进入系统后可在“正在进行的项目”版块中查看项目并在线领购招标文件。未按规定在系统内合法获取招标文件的潜在投标人将不得参加投标。获取招标文件所需上传的材料:有效授权委托书及被授权人身份证。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:复旦大学     地址:中国上海邯郸路220号        联系方式:郭老师 ,021-65645530      2.采购代理机构信息名 称:上海中世建设咨询有限公司            地 址:中国上海市曹杨路528弄35号            联系方式:邢楠、黄梦如、陈豪,021-52555810            3.项目联系方式项目联系人:邢楠、黄梦如、陈豪电 话:  021-52555810
  • 一文了解材料热动力学概念
    pstrong1.热、动力学概述/strong/pp  自然界中发生的一切物理、化学和生物代谢反应,通常都伴随着热效应的变化,人们对热本质的认识经历了漫长曲折的探索历程。/pp  20世纪初,Planck、Poincare、Gibbs等科学家以宏观系统为研究对象,基于热力学第一、二定律,并定义了焓、熵、亥姆霍兹和吉布斯等函数,加上P、V、T等可以直接测定的客观性质,经过归纳与演绎推理,得到一系列热力学公式和结论,用来解决能量、相和反应平衡问题,这便是经典热力学的基本框架。经典热力学研究的对象是系统中的物质和能量的交换,它是不断逼近极限的科学,只讨论变化前后的平衡状态,不涉及物质内部粒子的微观结构。/pp  Boltzmann等人将量子力学与经典热力学相结合,形成了统计热力学。统计热力学属于从微观到宏观的方法,它从微观粒子的性质出发,通过求统计概率,定义出系统或粒子的配分函数,以此为桥梁建立起与宏观性质的联系。/pp  时间是热力学中非常重要的独立变量,怎样处理时间变量是区别不同层次热力学的标志,在物理学中利用熵增来描述时间的单向性。热力学研究可能性,动力学研究现实性,即变化速率和变化机理。动力学是反应进度与时间的函数关系,系统的行为状态和输出只取决于起始状态和随后的输入。/pp  自然界中发生的好多现象都是在非平衡态进行的不可逆过程,这就推动了热力学由平衡态向非平衡态发展。20世纪50年代,Prigogine I、Onsager L等人形成了非平衡态热力学(Non-equilibrium Thermodynamics),局域平衡假设是非平衡态热力学的中心假设。其中,Onsager L于1931年确立了唯象系数的倒易关系,Prigogine 在1945年提出了非平衡定态的最小熵增原理,适用于接近平衡状态的线性非平衡体系。对于远离平衡态的系统,以Progogine为首的布鲁塞尔学派经过多年的努力,建立了著名的耗散结构理论,后来通过云街、贝纳德对流实验等一些自组织现象(见图1)得以证实,耗散结构理论指出远离平衡的开放系统可以形成有序状态,打开了物理科学通向生命科学的窗口。br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201809/uepic/436c0be6-c410-4216-9391-914804187287.jpg" title="图1 一些自组织现象.png" alt="图1 一些自组织现象.png" width="400" height="313" border="0" vspace="0" style="width: 400px height: 313px "//pp style="text-align: center "strong图1 一些自组织现象/strong/pp  目前,热动力学不再仅仅是研究热现象基本规律的科学,它和系统理论、非线性科学、生命科学、宇宙起源等密切相关,其应用涉及物理学、化学、生物、工程技术,以及宇宙学和社会学科[1]。/ppstrong2.材料热力学的形成和发展/strong/pp  现代材料科学的进步和发展一直受到热力学的支撑和帮助,材料热力学是经典热力学与统计热力学理论在材料科学领域的应用,其形成和发展正是材料科学走向成熟的标志之一。/pp  从1876年Gibbs相律的出现,1899年H. Roozeboom把相律应用到多组元系统,1900年,Roberts-Austen构建了Fe-Fe3C相图的最初形式,为钢铁材料的研究提供了理论支撑 再到20世纪初,G. Tamman等通过实验建立了大量金属系相图,有力推地动了合金材料的开发 50年代初R. Kikuchi提出了关于熵描述的现代统计理论,为热力学理论和第一性原理结合起来创造了条件 60年代初M. Hillert等对于非平衡系统热力学的研究,导致了失稳分解领域的出现,丰富了材料组织形成规律的认识 70年代由L. Kaufman、M. Hillert等倡导的相图热力学计算(CALPHAD),使材料研究逐渐进入到根据实际需要进行材料设计的时代[2]。/pp  2011年6月,美国宣布了一项超过5亿美元的“先进制造业伙伴关系”计划,核心内容之一是“材料基因组计划(materials genome initiative, MGI)”,其目的是为新材料的发展提供必要的工具集,通过强大的计算分析减少对物理实验的依赖,加上实验与表征方面的进步,显著加快新材料投入市场的种类与速度,开发周期可从目前的10~20年缩短至2~3年,图2比较了传统材料设计与现代材料设计的流程。br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201809/uepic/1f972848-2ff1-4a22-9f2f-766750dfbfc7.jpg" title="图2 传统材料设计与现代材料设计流程对比.png" alt="图2 传统材料设计与现代材料设计流程对比.png" width="400" height="371" border="0" vspace="0" style="width: 400px height: 371px "//pp style="text-align: center "strong图2 传统材料设计与现代材料设计流程对比/strong/pp  材料热力学研究固态材料的熔化与凝固、固态相变、相平衡关系与成分、微观结构稳定性、相变的方向与驱动力等。为了描述各种不同类型物相的自由能、焓、熵等,曾提出过各种唯象的或统计的热力学模型,比如,理想溶体模型、正规溶体模型、亚正规溶体模型、准化学模型、原子缔和模型、中心原子模型、双亚点阵模型、集团变分模型(CVM)、Bragg-Williams近似、Bethe近似、Ising近似、Miedema近似等。扩散是动力学研究的主要内容,包括凝固过程中晶核的形成和长,以及在热处理过程中合金的均匀化、溶质原子的分布与再分配,可通过菲克第一、二定律推导。/pp  热力学计算的涵盖范围很广,分析和理解材料学问题的重要工具有:Gm-x图、相图、TTT曲线、CCT曲线等。其中,最成功的核心应用是相图计算。相图依据获得的方法可以分为三类:/pp  1、实验相图:利用实验手段(DSC、DTA、TG、X射线衍射、电子探针微区成分分析等),以二、三元系为主。/pp  2、理论相图,也称第一性原理计算相图,不需要任何参数,利用Ab initio method实现的理论计算相图,只在个别二元和三元体系材料设计方面有少量报道。/pp  3、计算相图,其核心是理论模型与热力学数据库的计算机耦合。目前国际上流行的软件多采用CALPHAD模式,包括Thermo-Calc、Pandat、FactSage、Mtdata、JMatPro等。CALPHAD模式中对溶体自由能的描述大部分采用亚正规溶体模型,流程如图3所示,它是根据体系中各相的特点,集热力学性质、相平衡数据、晶体结构等信息于一体,建立热力学模型和自由能表达式,然后基于多元多相平衡的热力学条件计算相图,最终获得体系的具有热力学自洽性的相图和描述各相热力学性质的优化参数。/pp style="text-align: center "  例如,王翠萍,刘兴军,大沼郁雄等人利用CALPHAD方法评估了Cu-Ni-Sn三元系各相的热力学参数,其计算结果与实验值吻合得很好,如图4所示,他们还计算了该三元系中bcc相的有序无序转变及fcc相的溶解度间隙,对利用析出强化以及Spinodal分解开发高强度和高导电性的新型Cu基合金的组织设计具有一定的指导意义[3]。br/strongimg src="https://img1.17img.cn/17img/images/201809/uepic/a0a89f13-1022-49a1-9fd6-5604b5b5b379.jpg" title="图3 CALPHAD方法流程图.png" alt="图3 CALPHAD方法流程图.png" width="400" height="401" border="0" vspace="0" style="width: 400px height: 401px "//strong/pp style="text-align: center "strong图3 CALPHAD方法流程图/strong/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/bae8d53e-6ea5-4648-881d-ddedb81a12f2.jpg" title="图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3].png" alt="图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3].png"/br/图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3]/strong/pp  动力学计算以热力学计算为基础,引入以时间为变量的扩散动力学模型和原子移动性数据库,通过大量的迭代运算,获得材料热力学状态随时间的变化关系。/ppstrong3.在材料各领域的应用/strong/pp  任何一个体系,热力学、动力学和物质结构三方面是密切联系的。金属材料的微观结构和热力学性质影响凝固和热处理过程中的生成相和微观组织演变。例如,对于Al-Cu系合金,溶质原子在固溶时过饱和析出,造成球对称畸变 在时效硬化时,首先形成G.P. Zone,接着溶质原子在低指数晶面上发生聚集、有序化,最终生成非共格θ(Al2Cu)平衡相。在凝固或均匀化过程中生成的相尺寸大于0.5μm时,受载时界面出现位错塞积,成为裂纹源 当尺寸介于0.005~0.05μm,并且呈细小弥散分布时,可阻碍再结晶和晶粒长大。当然,热、动力学理论目前已经渗透到了材料各个领域,成为一种有效的理论指导和必要的分析手段。/ppstrong(1)传统钢铁行业/strong/pp  钢铁研究总院作为国内最大的专业钢铁材料研发机构,是最早引入热力学计算方法和软件的单位之一,先后在节镍型不锈钢设计、V-N 微合金化技术、LNG 用 9 Ni 低温钢等方面都取得了丰硕的研究成果[4]。/ppstrong(2)金属基复合材料/strong/pp  范同祥、李建国、孙祖庆等人采用热力学、动力学模型,在复合材料增强相与基体界面反应控制、反应自生增强相种类选择、复合材料体系设计以及制备工艺等方面做了大量研究[5]。/ppstrong(3)纳米材料/strong/pp  2000年,美国亚利桑那州立大学的Chamberlin在研究铁磁体的临界行为时用到纳米热力学(Nanothermodynamics)一词,Giebultowica、Hill等人证明了纳米热力学在处理纳米体系的生长和物理化学性能时的巨大作用,中国科学院大连化学物理研究所的谭志诚团队在纳米材料低温热容方面也做了大量研究[6]。/ppstrong(4)形状记忆合金/strong/pp  Lidija GOMIDZELOVIC等人采用Muggianu模型并结合实验,使用Thermo-Calc软件计算了形状记忆合金Cu-Al-Zn在293K时的相图,并探讨了组织性能[7]。/pp  此外,在Mg基储氢材料、石墨烯界面及其吸附性能都有热力学计算机模拟的相关应用。/ppstrong4.热动力学的发展趋势/strong/pp  几乎没有一种实用材料的结构在热力学上是稳定的,扩散、相变、位错的产生和运动,以及材料的形变和断裂都涉及各种非平衡,这就需要在实际应用中将CALPHAD模式与其他理论相结合,使其更加逼真地模拟现实情形,比如:与第一性原理(First-Principles)、密度泛函理论(Density functional theory,DFT)、相场理论(Multiphase Field Method)相结合 与材料物理冶金模型相结合,对材料硬度、强度、延伸率等做出预测 引入晶胞和析出相的形核、长大、粗化模型,计算材料的CCT、TTT相变曲线、晶粒尺寸、形核率等物性参数。/pp  在未来,包括热力学和动力学在内的多尺度集成计算模拟配合专业数据库,实现材料设计阶段、模拟材料生产制备和服役的全流程,从而预测材料的组织演变和宏观性能,并在制备过程中对组织性能进行精确调控,是材料热、动力学发展的主要趋势[8,9]。/ppstrong参考文献/strong/pp[1]徐祖耀,材料热力学,高等教育出版社,2009/pp[2]戴占海,卢锦堂,孔纲. 相图计算的研究进展[J]. 材料研究导报,2006,4(20):94-97/pp[3]王翠萍,刘兴军,马云庆,大沼郁雄,貝沼亮介,石田清仁. Cu-Ni-Sn三元系相平衡的热力学计算[J]. 中国有色金属学报, 2005(11): 202-207./pp[4]董恩龙,朱莹光,潘涛. LNG用9Ni低温压力容器钢板的研制[C],全国低合金钢年会论文集. 北戴河:中国金属学会低合金钢分会,2008:741-749/pp[5]范同祥,张从发,张荻.金属基复合材料的热力学与动力学研究进展[J]. 中国材料进展, 2010, 29(04): 23-27/pp[6]姜俊颖,黄在银,米艳,李艳芬,袁爱群. 纳米材料热力学的研究现状及展望[J].化学进展,2010,22(06):1058-1067./pp[7]Lidija GOMIDZELOVIC, Emina POZEGA,Ana KOSTOV,Nikola VUKOVIC,Thermodynamics and characterization of shape memory Cu-Al-Zn Alloy [J].Transactions of Nonferrous Metals Society of China, 2015, 25(08): 2630-2636/pp[8]Liux J, Takaku Y, Ohnuma I, et al. Design of Pb-free solders in electronic packing by computational thermodynamics and kinetics [J]. Journal of Materials and Metallurgy, 2005, 4(2): 122-125/pp[9]Chen Q, Jeppsson J, Agren J. Analytical treatment of diffusion during precipitate growth in multicomponent systems [J]. Acta Materialia, 2008, 56:1890-1896br/br//p
  • 万测受邀参加2022年中国(第八届)碳纤维及复合材料技术创新与应用发展论坛
    7月22日,主题为“创新驱动发展,材料助力‘碳中和’”的中国(第八届)碳纤维及复合材料技术创新与应用发展论坛在常州市顺利召开,近500位来自知名院校、科研单位和碳纤维企业的学术专家、企业代表共聚一堂,围绕碳纤维及复合材料的产业应用研讨创新发展之路,为促进碳纤维及复合材料产业发展建言献策。万测作为知名的碳纤维及复合材料力学性能检测方案供应商,受邀出席了此次行业盛会。 据悉,此次论坛邀请到多位行业专家和企业代表进行主题报告,内容包括“‘双碳’格局之下,碳纤维市场的前景和主要驱动力、新动向、新活力”、“‘碳中和’背景下,炭炭复合材料行业在新能源、航空航天方面的研究现状及发展趋势”、“高模量碳纤维产业化进展”等最新发展干货,现场学习气氛浓厚,讨论热烈。 近年来,碳纤维及复合材料以其优异的理化性能已成为目前世界首选的高性能材料。碳纤维及复合材料是发展国防军工、航空航天、新能源及高科技产业的重要基础原材料,同时在汽车工业、轨道交通、机械、电子、建筑、化工、医疗、海洋开发、体育休闲等国民经济各个领域具有无可比拟的应用优势,世界各国均把发展高性能碳纤维产业放在极其重要的位置。 作为立足客户市场需求,深耕试验技术研发的国内试验机行业先锋企业,万测近年来也积极投入碳纤维及复合材料力学性能测试方案的研制工作,经过一段时间的全力研发和层层评审验证,我司在复合材料测试系统上取得了丰富的技术成果,可为碳纤维及复合材料的质量控制、研究应用和产品设计工作提供良好的数据支撑。此次受邀参加复合材料技术创新与应用发展论坛,万测也带来了丰富的碳纤维及复合材料的静态与动态力学测试整体解决方案,先进的产品技术和优秀的实践成果受到了与会嘉宾们的关注与肯定。 本次论坛为广大碳纤维及复合材料上下游产业链搭建了一个合作交流平台,汇报了前沿技术研究及创新技术应用等方面的新进展,促进了行业关键技术的融合与交流。通过本次活动,万测也了解到了碳纤维及复合材料行业的新发展及新工艺,这也为我司日后不断提升研发能力和开拓新领域带来了新思路。未来万测也会积极参加各种行业交流展览会,为中国复合材料技术的发展贡献自己的力量!
  • 中国化学会第七届全国热分析动力学与热动力学学术会议顺利闭幕
    pstrong仪器信息网讯/strong  2019年4月21日,由中国化学会主办、中国化学会第七届全国热分析动力学与热动力学学术会议中国化学会热力学与热分析专业委员会、合肥微尺度物质科学国家研究中心和中国科学技术大学理化科学实验中心联合承办的中国化学会第七届全国热分析动力学与热动力学学术会议于合肥顺利闭幕。21日上午的大会由桂林电子科技大学的孙立贤、河北师范大学的张建军、天津科技大学的邓天龙联合主持。在闭幕式上,颁发了“最佳张贴报告奖” 并发布2021年第八届全国热分析动力学与热动力学学术会议筹备的最新消息。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/b77b6d53-6fc5-4cf5-9718-398f495537a8.jpg" title="孙立贤_副本.jpg" alt="孙立贤_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"/  /pp style="text-align: center "桂林电子科技大学孙立贤/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/f0a1c4e0-09b9-4d96-b3ce-745c45ed36de.jpg" title="张建军_副本.jpg" alt="张建军_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"/  /pp style="text-align: center "河北师范大学张建军/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/90a6779e-fa06-42d5-bd4d-122190562706.jpg" title="邓天龙_副本.jpg" alt="邓天龙_副本.jpg" style="width: 400px height: 294px " width="400" vspace="0" height="294" border="0"/  /pp style="text-align: center "天津科技大学邓天龙/pp  中国科学院化学研究所院士韩布兴首先作了题为“绿色溶剂体系热力学、催化材料合成与化学反应中的溶剂效应”的主题报告。当前,70%以上的化学化工过程都会使用到溶剂,尤其是有机溶剂,但也同时面临着效率低、功能有限和环境污染等问题,因此无法满足当代化工可持续发展的要求,开发利用绿色溶剂是必然发展趋势。绿色溶剂应具有无毒、无害、便宜易得、容易循环利用和具有特定功能等特性。其中,具有代表性的绿色溶剂包括水、超临界流体、离子液体和生物质基溶剂等。韩布兴课题组目前的主要研究工作就是围绕超临界CO2、离子液体和水等绿色溶剂,通过化学热力学研究以及发展实验方法,实现绿色功能介质创制、催化材料合成等应用。报告中,韩布兴介绍了其目前的研究成果,包含超临界流体体系局域热力学模型、离子液体与超临界流体/离子液体乳液体系、超临界CO2中表面活性剂自组装及组装体催化功能、配合物催化剂稳定的CO2包水型微乳液光催化CO2还原、MOF稳定CO2/水乳液及MOF界面组装、超临界CO2/IL乳液制备有序介孔MOF纳米球、多孔金属制备及生物质基资源转换、离子液体/有机盐体系制备介孔无机盐、离子液体制备负载型纳米催化材料等。韩布兴课题组还尝试了用离子液体解决CO2反应中的热力学问题,实现了两相体系的甲酸合成 利用CO2形成碳酸解决动力学问题和用于纳米催化等,并介绍了溶剂效应在化学反应中的应用。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/c173d718-ce88-4413-bc02-5cf5159d12aa.jpg" title="韩布兴_副本.jpg" alt="韩布兴_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"//pp style="text-align: center "中国科学院化学研究所院士韩布兴/pp  武汉大学刘义作了题为“蛋白纤维化纳米抑制剂的设计及其作用机制”的主题报告。阿尔兹海默症近年来受到人们的普遍关注 研究表明,其与蛋白纤维化关系密切。目前,主要的蛋白纤维化抑制剂分为多肽类抑制剂、小分子抑制剂和新型纳米材料三种。新型纳米材料由于其稳定性强、比表面积大和表面易修饰的特点,受到广泛青睐。碳点是一类生物相容性很好的纳米材料,刘义通过设计一系列表面改性的碳点(如氧化改性),并以与阿尔兹海默症相关的胰岛素蛋白为研究对象,利用等温滴定量热、荧光光谱、圆二色谱和显微分析等仪器,证实了其对与疾病相关的HI蛋白的聚集和生长有抑制作用。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/b8ca13a8-ab38-466b-8635-f03976de0064.jpg" title="刘义_副本.jpg" alt="刘义_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"//pp style="text-align: center "武汉大学刘义/pp  桂林电子科技大学孙立贤作了题为“新型储能材料设计与热力学调控”的主题报告。我国对可再生能源的需求迫切,氢能源利用是支持可再生能源大规模应用的重要途经,但目前缺乏安全高效的氢储运技术,制约了氢能的发展。孙立贤介绍了其在可控形貌低维催化剂制备及配位氢化物储氢、金属与配体调变以及符合纳米化MOFs储氢等工作。此外,还分享了孙立贤课题组首次创建的国内储氢材料数据库基本情况。/pp  陕西师范大学的刘志宏作了题为“热化学在硼酸盐功能材料制备及其性能研究中的应用”的主题报告。报告主要介绍了硼酸盐微孔晶体材料的液-固相吸附热动力学、硼酸盐纳米阻燃材料应用的研究和多级孔硼酸盐材料制备及其吸附性能的研究等。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/8c4c8e97-1587-41d4-aae8-d3bbbb67608b.jpg" title="刘志宏_副本.jpg" alt="刘志宏_副本.jpg"//pp style="text-align: center "陕西师范大学刘志宏/pp  河北师范大学张建军作了题为“稀土超分子配合物的晶体结构、热分解反应动力学及热力学的研究“的主题报告。报告中,张建军主要阐释了稀土超分子配合物中第一系列配合物、第二系列配合物和第三系列配合物的热分解机理 并提出了简单反应处理的改进双等双步法,从而确定了活化能E、指前因子A以及其他热力学参数。/pp  中国科学技术大学丁延伟作了题为“仪器间差异对于热分析动力学结果影响的研究“的主题报告。报告中对影响热分析曲线的多种因素进行了分析讨论,其中包含样品量、制样方式、样品状态、样品前处理条件、温度控制程序、支架类型、仪器结构、实验气氛及流速、仪器状态、仪器间差异、人员差异等。丁延伟特别强调,要不定期进行仪器的校准,尤其在进行重要的实验前,最好一定要做仪器的校准。/pp  在报告中,对“仪器间差异”这一重要因素进行了深入、全面的分析和解读。理化科学实验中心先后与美国赛默飞、美国珀金埃尔默公司、美国TA公司等6家仪器厂商共建联合实验室,目前已经装备不同型号热分析仪器近30台。除了考察不同实验室中仪器对同一样品的测试差异之外,利用理化科学实验中心的优势,特别补充同一测试条件下、不同仪器对同一样品的测试差异分析。报告中以三家公司(匿名)的DSC数据说明了仪器间差异对最终测试结果的影响较大。通过比对了不同公司仪器、相同型号仪器、不同类型仪器的热重分析结果,丁延伟发现相同型号仪器对比差别不大,不同类型仪器对比差别较大。通过考察同一公司不同型号仪器之间的差异,发现数据结果并不吻合 丁延伟认为,不一定是仪器的质量问题,而是有可能是校准方法差异的问题。通过对比同一公司不同类型的仪器,测试结果也会产生差异,这可能是由于仪器结构的影响。报告还指出,即使是同一公司的同一产品,测得的结果也可能不同,这可能是由于仪器状态不同导致的。因此,校准方法、结构和仪器状态都可能对热分析动力学结果产生影响。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/4c89254e-800e-422a-82dc-54ab6200f331.jpg" title="丁延伟_副本.jpg" alt="丁延伟_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"//pp style="text-align: center "中国科学技术大学丁延伟/pp  大会闭幕式由张建军主持。闭幕式上颁发了“最佳张贴报告奖” 获奖名单由辽宁大学房大维宣布:山东农业大学的兰孝征、西北大学的陈湘、南京师范大学的刘浩、南京大学的谢科峰、北京理工大学的钟野、河南师范大学的邢肇碧、辽宁大学的宋宗仁、广西师范大学的陈志凤、中国科学院上海硅酸盐研究所的张赵文斌和北京理工大学的任杰。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/7d1e3620-9c8a-41fd-afec-4c28560cda4b.jpg" title="房大维_副本.jpg" alt="房大维_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"/ /pp style="text-align: center "辽宁大学房大维/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/fac4c8ae-f987-4091-8f1d-4c6662013f46.jpg" title="大会颁奖.jpg" alt="大会颁奖.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "颁奖现场/pp  随后,大会合作厂商、美国TA公司的经理王健女士发表了讲话 武汉大学刘义对大会进行了总结发言。最后,大会特别通告,2021年第八届热分析动力学与热动力学学术会议由陕西师范大学承办,并邀请下一届会议主办方代表刘志宏登台发言。诸多参会代表纷纷组团在即将关闭的大会主屏幕前合影留念,为本次大会圆满结束留下了最后的注脚。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/ad559fe0-de58-41b8-9275-132c4800061b.jpg" title="大会留影.jpg" alt="大会留影.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "组团合影留念/ppbr//p
  • 新型扫描隧道显微镜助力材料超快动力学研究
    扫描隧道显微镜 (STM) 基于量子隧穿效应能够以亚埃的纵向精度和真实原子分辨率对样品表面成像。无论是金属还是半导体,甚至到衬底上沉积的有机分子材料,均可直接可视化测量。然而,STM 的时间分辨率仅限于亚毫秒范围,不利于材料超快动力学的研究。 为了克服上述障碍,日本筑波大学的研究人员开发了一种新型 STM 系统,它采用基于激光的泵浦探针方法将时间分辨率从皮秒提高到数十飞秒(ACS Photonics,doi:10.1021/acsphotonics.2c00995)。该系统可以将极短时间尺度内发生的物理现象可视化,例如相变期间原子的重排或电子的快速激发。中红外电场驱动的扫描隧道显微镜系统示意图光泵浦探针法一般经常被用于一些超快现象测试。泵浦激光脉冲首先激发样品,然后经过一段时间延迟后,探测激光脉冲撞击样品并测量其透射率或反射率。测量的时间分辨率仅受激光脉冲持续时间的限制。研究人员将这种方法与电场驱动的 STM 相结合,后者使用载波包络相位控制的光源产生近场,从而在 STM 尖端和样品之间施加瞬时电场,从而捕捉到非平衡状态下的超快动力学现象。团队强调,他们的新型STM显微镜可广泛应用于包括太阳能电池或纳米级电子设备在内的各种各样的材料研究。该研究的主要负责人Hidemi Shigekawa 表示,在凝聚态物质中,动力学通常不是空间均匀的,而是受到原子缺陷等局部结构的强烈影响,这些结构可以在很短的时间内发生变化。在实验中,他们将经过一个近红外 (NIR) 波长范围和 8.1 fs 脉冲宽度的啁啾脉冲放大器后的光束分离,其中一束光束被转换为中红外 (MIR)。 NIR 光束通过一个光学延迟级,并与 MIR 光束以同轴排列,用于泵浦探针测量。它们被聚焦在容纳样品的超高真空室中的 STM 尖端顶点上。为了验证系统性能,研究人员使用 NIR 脉冲光作为激发,MIR 光作为探针进行了时间分辨 STM 测量。碲化钼作为被观察的样品,这是一种过渡金属二硫化物,它具有重要的非平衡动力学。实验结果显示,MIR 电场驱动显微镜(具有高于 30 fs 的增强时间分辨率)在 0 到 1 ps 的时间范围内成功可视化了样品中的光诱导超快非平衡动力学。观察结果与载波动力学相关的能带结构的变化一致。STM 系统还解析了具有原子分辨率的快照图像,可以跟随激发的影响。正如团队主要成员Yusuke Arashida 在新闻稿提到的那样,“虽然我们新型STM的放大倍数不以为奇,但却是在时间分辨率上的一重大进步”。
  • 中科院物理所|氧离子输运动力学的原位电镜研究取得进展
    p style="text-align: justify text-indent: 2em "近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究员白雪冬课题组利用像差矫正透射电子显微镜实时原子成像技术和分子动力学模拟方法,揭示了CeO在激活条件下氧原子各向异性扩散的原子机制。该工作以Visualizing Anisotropic Oxygen Diffusion in Ceria under Activated Conditions 为题发表在《物理评论快报》(Physical Review Letters)上。/pp style="text-align: justify text-indent: 2em "该研究利用像差校正电镜对CeO2纳米颗粒进行表征,实现了Ce原子和O原子直接原子分辨成像,同时发现透射电镜高能电子束传递给氧化铈中氧原子足够多的能量导致氧原子析出并伴随氧化铈产生萤石相CeO2和铁锰矿相Ce2O3的相转变(图1)。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/0eb98acd-9ef6-4be9-a733-b5c8381dabca.jpg" title="图1:CeO2结构演变的原子分辨TEM成像。.png" alt="图1:CeO2结构演变的原子分辨TEM成像。.png"//pp style="text-align: center "strong图1:CeO2结构演变的原子分辨TEM成像/strong/pp style="text-align: justify text-indent: 2em "利用电子束进行动态观察表征,同时作为诱导氧离子迁移的手段,捕获了反应中的氧原子和它的实时扩散路径(图2)。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/b0a3291d-134c-458c-b79f-9f8bb5785e8f.jpg" title="图2:O原子扩散与Ce原子重排过程的原位TEM成像以及分子动力学模拟.png" alt="图2:O原子扩散与Ce原子重排过程的原位TEM成像以及分子动力学模拟.png"//pp style="text-align: center "strong图2:O原子扩散与Ce原子重排过程的原位TEM成像以及分子动力学模拟/strong/pp style="text-align: justify text-indent: 2em "原位实时观察到氧化铈中氧原子扩散的优先路径,通过实验观测和分子动力学模拟,发现了萤石结构氧化铈中氧原子以 001 方向作为优先传输通道。结合第一性原理计算,揭示了其物理原因在于氧原子扩散过程中伴随的电子重新分布使局域库仑作用力发生改变,导致晶格扰动,氧原子扩散路径选择扰动能量最低的方向(图3)。!--001--/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/add1c0c8-118d-40ef-8cc3-3f1c93518814.jpg" title="图3:CeO2表面活性的原位TEM表征及氧原子输运动力学的分子动力学模拟.jpg" alt="图3:CeO2表面活性的原位TEM表征及氧原子输运动力学的分子动力学模拟.jpg"//pp style="text-align: center "strong图3:CeO2表面活性的原位TEM表征及氧原子输运动力学的分子动力学模拟/strong/pp style="text-align: justify text-indent: 2em "这种氧原子扩散过程中伴随的配位价态的变化也得到了原位电子能量损失谱分析结果的佐证(图4)。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/013a5cd5-05ec-41c9-91c0-71f9524f160e.jpg" title="图4:电子能量损失谱揭示中间化学键状态的变化.png" alt="图4:电子能量损失谱揭示中间化学键状态的变化.png"//pp style="text-align: center "strong图4:电子能量损失谱揭示中间化学键状态的变化/strong/pp style="text-align: justify text-indent: 2em "本研究揭示的萤石结构二氧化铈中氧原子各向异性传输机制对于其各向异性相关的性质和功能调控具有指导作用。/pp style="text-align: justify text-indent: 2em "上述工作得到中科院、科技部、国家自然科学基金委、北京自然科学基金委和中科院青促会的资助。表面室SF1组研究生朱亮和纳米室N04组研究生金鑫是该文章的共同第一作者。/pp style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/download/shtml/934197.shtml" target="_self"span style="color: rgb(0, 112, 192) "文章链接/span/a/p
  • 物理所发展原位透射电镜技术表征离子输运动力学过程
    离子输运是物理、化学和生命科学研究的一个基本过程,其性质对储能、催化和阻变存储等器件性能有重要的影响。在实验上高分辨表征离子输运过程和表界面电化学反应对揭示器件工作机理和开发新型器件具有重要的意义。中国科学院物理研究所/北京凝聚态物理国家实验室(筹)表面物理国家重点实验室多年来致力于原位透射电镜-扫描探针联合技术的开发与纳米表征研究。利用原位透射电镜(in-situ TEM)方法可以将纳米器件置入电镜内对器件工作的动态过程进行原位高分辨观测表征,研究器件的工作机理。最近,他们通过优化扫描探针的机械和电子学设计方案,改善仪器的性能,提高了观测的稳定性和分辨率,在离子输运动力学及其相关的阻变存储器机理研究方面取得新进展。  阻变存储器(RRAM)因其具有低功耗、高集成度、低写入电压、可3D集成等诸多优点,有潜力成为下一代非易失性存储器。它主要是利用某些薄膜材料在电激励的作用下会出现不同电阻状态(高、低阻态)的转变现象来进行数据的存储。RRAM器件一般具有&ldquo 金属&mdash 介质&mdash 金属&rdquo 的三明治结构。这种三明治结构的绝缘介质层可以是二元或者多元的金属氧化物,或者是硫属化合物,以及有机化合物等。根据在绝缘体层传导的离子不同,又常将RRAM分成阳离子型存储器与阴离子型存储器。离子传输引起导电物质迁移从而形成导电通道,这是被广泛接受的模型,但是对于离子输运和导电通道形成的动力学过程目前仍然缺少直接的实验证据。  在过去的几年里,研究人员利用原位透射电镜方法研究了金属氧化物和硫化物中氧离子、金属离子的电迁移和电极界面氧化还原反应过程,以及这些过程导致的阻变效应【JACS 132, 4197 (2010) ACS Nano 4, 2515 (2010) APL 99, 113506 (2011) JAP 111, 114506 (2012), etc.】,这些工作是阻变存储器机理研究的有益探索。最近,他们开展了Ag/SiO2/p-Si体系的阻变机理研究,在透射电镜内原位观测Ag纳米颗粒的生长、迁移的动力过程及其伴随的电致阻变效应。针对一个独立的SiO2中包埋的Ag颗粒进行观察,在电场下银颗粒逐渐收缩,沿电场前方有小颗粒析出并逐渐长大,同时刚生长的颗粒前方又开始有新的小颗粒析出。该颗粒充当&ldquo 中继站&rdquo 的作用,其后方的颗粒物质传递过来,同时又输送给前方颗粒使其逐渐长大,沿着电场方向依次进行,递推前移。其物理过程是,银颗粒表面在电场下产生极化,沿电场方向的两侧表面分别呈现正和负极性,即一个金属颗粒表现为双极性,当极化强度足够大时,在正负电极处发生氧化还原反应,即正极一侧氧化生成银离子,电场驱动其迁移,负极一侧又将传输过来的银离子还原。银离子在电化学势作用下发生迁移,并和氧化还原反应同时进行,形成了边消耗边生长的逐步移动过程。从能带的角度给出了离子输运动力学过程的物理图像,还进行了有限元方法模拟计算,指出这些银颗粒作为双极性电极需要满足的临界尺寸,与实验结果一致。这项研究应用自行研制的原位透射电镜仪器表征了固体介质中金属离子输运及其伴随的电化学传质过程,对深入理解离子型阻变存储器机理具有重要意义。该工作是由博士生田学增、副研究员许智、研究员王文龙和白雪冬等完成的,相关结果发表在近期的Advanced Materials 26, 3649 (2014)上。  这项工作得到了国家自然科学基金委、科技部和中科院的资助。 图1. 实验测试示意图和Ag颗粒电迁移过程的原位TEM图像,Scale bar: 10 nm  图2. 包埋在SiO2中的Ag颗粒及其双极性极化示意图  图3. 纳米Ag颗粒电化学传质过程的高分辨成像   图4. Ag离子输运及其伴随的电化学传质过程的物理模型
  • 利用自上而下质谱对蛋白质高阶结构和动力学进行时间分辨表征的微流控平台
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Microfluidic Platform for Time-Resolved Characterization of Protein Higher-Order Structures and Dynamics Using Top-Down Mass Spectrometry [1],文章的通讯作者是北京大学生物医学前沿创新中心的王冠博教授和中国科学院深圳先进技术研究院的门涌帆副研究员。  蛋白质的高阶结构和动力学特性对理解蛋白质的生物学功能和揭示其潜在机制至关重要。自顶向下质谱法(Top-down MS)在完整蛋白水平和肽段碎片水平都能获得结构信息。非变性Top-down MS可以分析蛋白质复合体的结构以及完成亚基鉴定和修饰分析。自顶向下氢/氘交换质谱(Top-down HDX MS)为构象或结合界面分析提供了高空间分辨率,并实现了构象特异性表征。微流控芯片可以为这些质谱工作流程的前端反应提供优越的平台。然而,目前大多数质谱微芯片装置是为Bottom-up或Top-down蛋白质组学设计的。本文中,作者提出了一种用于蛋白质高阶结构和动态Top-down MS分析的芯片设计策略。它适用于时间分辨的非变性质谱和HDX质谱,该设计旨在有效电离完整的蛋白质复合物,灵活控制多种反应物流动,并在较大的流速范围内精确控制反应时间在亚微升/分钟。本文通过对单克隆抗体、抗体-抗原复合物和共存蛋白构象等体系的分析来验证该装置的性能。  TDK-MS(Top-down and kinetic MS)芯片的结构如图1A所示,该方法可以有效电离完整的蛋白质,包括单克隆抗体(mAb)和抗体-抗原复合物(图1 B, C)。  图1. 完整蛋白质和蛋白质复合体在非变性条件下的高效电离  虽然分析蛋白质组合化学计量学和监测构象变化需要保持蛋白质高阶结构和非共价相互作用的完整性,然而为了推导结构信息或在串联MS中展开蛋白质以提高碎裂效率,往往需要不同程度的变性来产生亚复合体,因此变性剂的浓度和变性的时间对变性程度至关重要。本文中,作者采用交错人字微结构(Herringbone microstructure, HM)(图2A, B),并对其性能进行了评估(图2C−E)。如此高的混合效率为进一步微型化芯片混合模块提供了可能。在监测Mb的变性时,作者使用TDK-MS芯片和商用混合三通管平行混合holo-Mb溶液(5 μM)与乙腈(ACN),并比较它们在混合比例变化时的响应(图2F)。TDK-MS芯片在非变性和变性条件之间切换的快速响应通过NIST mAb的变性得到了证明,在向NIST mAb溶液中添加甲酸后,响应时间小于5分钟(图2G)。  图2. 高效混合和快速响应的流体控制  微芯片的灵活通道设计允许引入独立控制的溶液。例如,尽管酸和有机溶剂都能诱导变性,但这两种变性剂同时存在时,对变性途径的影响是不同的。Mb和Hb是血红素蛋白,其中血红素基团分别非共价连接在1条多肽链和4条非共价组装链上,因此这是研究共存复合体解离动力学和亚基构象变化的理想模型。将5 μM holo蛋白溶液与ACN和FA按一定的混合比例依次混合,可以通过解离产物的出现和蛋白质离子电荷态分布的变化来表征复杂的解离和蛋白质的展开。在固定ACN浓度下,随着FA浓度从0.01增加到0.3% (v/v),依次观察到的主要现象是血红素丢失、apo-Mb展开以及折叠的holo-Mb转化为展开的apo-Mb(图3A)。相比之下,在FA浓度恒定的情况下,当ACN从1增加到50%时,Mb主要表现为血红素损失,只有中等程度的apo-Mb展开,这可能是由于展开的部分迅速聚集(图3B)。  图3. (A)增加FA浓度,固定ACN浓度和(B)增加ACN浓度,固定FA浓度时获得的Mb和Hb的质谱图。  在HDX MS检测中,TDK-MS芯片提供了快速和有效的氘代及淬灭,精确控制HDX反应时间,并在2H-标记形式下高效电离完整蛋白质(图4)。  图4. 2H标记完整的(A)Mb、(B)Hb α亚基和(C)Hb β亚基在不同反应时间下的HDX质谱图  由于过大的流速不利于电离效率,并且有可能会增加堵塞或流动中断的风险,因此流速应保持在最佳范围内,这又限制了混合通道中HDX时间的可调节范围,从而影响了HDX动力学分析的灵活性。为了解决这一问题,作者设计了一个具有多个不同长度反应通道的混合模块,在不更换芯片的情况下,除了改变流速外,还可以通过通道切换在更大范围内调整反应时间。在原型芯片中,5个不同长度的通道可以在对蛋白质电离和流动稳定性都最优的流速下,产生从几秒到几分钟不等有效的HDX时间(图5)。  图5. Top-Down HDX MS 分析  本文中作者开发的策略将有利于生物大分子结构的精细分析,并有助于质谱微芯片的方法开发。
  • 第三届全国热分析动力学与热动力学学术会议(第二轮通知)
    中国化学会第三届全国热分析动力学与热动力学学术会议暨江苏省第三届热分析技术研讨会(第二轮通知)  The 3rd National Symposium on Thermal Analysis Kinetics and Thermokinetics of Chinese Chemical Society(3rd TAKT)& The 3rd National Symposium on Thermal Analysis of Jiangsu Province(3rd JTA)  受中国化学会的委托,由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办的“中国化学会第三届全国热分析动力学与热动力学学术会议(3rd TAKT)”将于2011年10月20-22日在江苏省南京市召开,会议期间同时召开“江苏省第三届热分析技术研讨会(3rd JTA)”。本次会议将就近两年来热分析、热分析动力学和热动力学在理论研究、新仪器设计与分析技术方面的进展以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。会议将邀请国内、外热分析、热分析动力学、热动力学研究领域内的著名专家领衔主讲,同时,会议期间还将展示一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。热忱邀请相关领域的科研、教学工作者和研究生踊跃投稿、与会参加研讨交流。  另外,为配合“国际化学年在中国”活动,会议期间,我们还将举办“国际先进热分析技术讲习班”,特邀请德国Rostock大学物理系、Thermochimica Acta副主编Christoph Schick教授,比利时天主教Lueven大学化学系、前欧洲热分析协会主席Vincent Mathot教授等人进行讲座,为会议参加者提供一个专业的培训学习和增长见闻的机会,同时也为热分析领域的研究骨干提供一个国际交流与合作的平台。讲习班开班授课时间为:2011年10月20日下午1:30。讲习班结束我们将颁发培训证书,并设立“Mettler-Toledo优秀学员奖”若干名,奖品为500G移动硬盘。  一、会议组织委员会  主 席:陈国祥,韩布兴,尉志武  副主席:赵厚民,张建军,魏少华,张明明,王昉  秘书长:汤伟  二、会议学术委员会  主 任 委员:韩布兴  副主任委员(以姓氏拼音为序):  陈启元,高胜利,刘义,沈伟国,孙立贤,王键吉,尉志武  委 员(以姓氏拼音为序):  安学勤,白同春,陈健,陈三平,成一,杜为红,杜勇,顾敏芬,关伟,胡文兵,李浩然,李小云,李武,刘洪来,刘育,陆昌伟,卢雁,孟祥光,孙建平,谭卫红,檀亦兵,王保怀,汪存信,王昉,吴昊,王金本,王琦,王晓东,王毅琳,杨家振,杨腊虎,郁清,袁钻如,张洪林,张建军,张建玲,张堃,朱立忠,张同来,赵凤起  三、大会主题:展现热分析动力学与热动力学以及热分析领域的主要研究成果。  大会专题学术报告题目及主讲人:  1、 热分析动力学和热动力学进展 西安近代化学研究所 胡荣祖 教授  2、 生命体系中的热动力学 武汉大学化学与分子科学学院 刘义 教授  3、 含能配合物的热动力学研究 西北大学化学与材料科学学院 高胜利 教授  4、 热分析动力学的研究与应用 南京理工大学化学化工学院 成一教授  5、 新型储氢材料的纳米限域及其热化学研究 中国科学院大连化学物理研究所航天催化与新材料研究室 孙立贤教授  6、 脂质体相平衡与药物释放 南京师范大学化学与材料科学学院 安学勤教授  7、 热分析在药物研究中的作用 中国食品药品检定研究院 杨腊虎教授  8、 一些复杂软物质的热分析研究 北京大学化学与分子工程学院 陈尔强教授  9、 聚合物结晶热分析的现状和挑战 南京大学化学化工学院 胡文兵教授  10、高速扫描高灵敏量热仪的研制与应用 南京大学化学化工学院 周东山教授  11、国内外知名仪器厂商热分析新产品、新技术及其应用报告  四、会议交流形式:出版大会论文集、大会特邀报告、专题报告与讨论、墙报展讲。  五、征文内容:A. 热分析动力学理论与研究进展 热分析动力学的仪器功能、实验方法和数据处理软件的开发等 热分析动力学在无机、有机、高分子、材料、生物等各个领域中的应用 B. 热动力学理论与研究进展 热动力学的仪器功能、实验方法和数据处理软件的开发等 热动力学在无机、有机、高分子、材料、生物等各个领域中的应用 C.热分析与量热学领域内的研究工作。D.其他  六、论文要求: 1、应征论文应未在国内外公开发行的学术刊物上发表过。2、应征论文详细摘要将装订成集。论文摘要格式要求如下:以中文或英文提供论文摘要2页。中文摘要内容包括:题目(三号黑体居中)、作者(四号仿宋居中)、作者单位(五号宋体居中,含城市名称,邮政编码和E-mail地址并用逗号分开)、关键词(自版芯左起顶格)、摘要(五号宋体)及主要参考文献(自版芯左起顶格)。英文摘要使用Times New Roman字体,字号、格式同中文摘要。会议论文以A4版面编排,上下页边距2.5 cm,左右页边距3.0 cm。论文摘要需在右上角注明论文类别字母(按征文范围:A、B、C、D)。论文电子版请发至TAKT2011 @126.com信箱,论文征集截稿日期:2011年9月1日。3、作者中如有学生,请在第一页左下角脚注处说明清楚。4、特别提示:大会论文特设“Mettler-Toledo优秀学生论文奖”,包括在职研究生,论文第一作者要求为学生。分设特等奖(奖品ipad),一等奖(奖品itouch),二等奖(500G移动硬盘),三等奖。  七、会议日期 : 2011年10月20-22日  八、会议地点:南京古南都饭店江南春厅(三楼)。(南京市广州路208号)  九、会议注册:650元/人(2011年8月30日前汇款),750元/人(现场注册)   学生:450元/人(2010年8月30日前汇款),550元/人(现场注册) 陪同:450元/人   论文审理费:60元/篇。讲习班: 200元/人  邮局汇款:南京市龙蟠路189号 江苏省分析测试协会 汤伟 收 (汇款附言中请注明“TAKT2011”)  银行汇款:汇款单位:江苏省分析测试协会 汇款帐号:320006610010149002047  开 户 行:江苏南京交行玄武支行  十、联系方式:  联系人:江苏省分析测试协会 汤伟(电话:025-85485940, 13912996398 传真:025-85404940)   南京师范大学 王昉(手机:13851614122)   河北师范大学 张建军(手机:15533995800)  Email:TAKT2011@126.com  中国化学会第十五届全国化学热力学和热分析专业委员会  江苏省分析测试协会  南京师范大学  河北师范大学  二○一一年四月十八日
  • 第三届全国热分析动力学与热动力学学术会议第一轮通知
    中国化学会第三届全国热分析动力学与热动力学学术会议暨江苏省第三届热分析技术研讨会 (第一轮通知)  The 3rd National Symposium on Thermal Analysis Kinetics and Thermokinetics of Chinese Chemical Society(3rd TAKT)& The 3rd National Symposium on Thermal Analysis of Jiangsu Province(3rd JTA)   受中国化学会的委托,由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办的“中国化学会第三届全国热分析动力学学术会议(3rd TAKT)”将于2011年10月20-22日在江苏省南京市召开,会议期间同时召开“江苏省第三届热分析技术研讨会(3rd JTA)”。本次会议将就近两年来热分析、热分析动力学和热动力学在理论研究、新仪器设计与分析技术方面的进展以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。本次会议将邀请国内、外热分析、热分析动力学、热动力学研究领域内的著名专家领衔主讲,同时,会议期间还将展示一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。热忱邀请相关领域的科研、教学的科学工作者和研究生踊跃投稿、与会参加研讨交流。  一、会议组织委员会  主 席:陈国祥,韩布兴,尉志武  副主席:赵厚民,张建军,魏少华,张明明,胡卫东,王昉  秘书长:汤伟  二、会议学术委员会  主 任 委员:韩布兴 (中国科学院化学研究所)  副主任委员(以姓氏拼音为序):  陈启元(中南大学) 高胜利(西北大学) 刘义 (武汉大学)  沈伟国(华东理工大学) 孙立贤(中国科学院大连化学物理研究所)  王键吉(河南师范大学) 尉志武(清华大学)  委 员(以姓氏拼音为序):  安学勤(华东理工大学),白同春(苏州大学),陈健(清华大学),陈三平(西北大学),成一(南京理工大学),杜为红(中国人民大学),杜勇(中南大学粉末冶金国家重点实验室),  顾敏芬(南京师范大学),关伟(辽宁大学),李浩然(浙江大学),刘义(武汉大学),李小云(南京工业大学),李武(中国科学院青海盐湖所),刘洪来(华东理工大学),刘义(武汉大学),刘育(南开大学),陆昌伟(中科院上海硅酸盐研究所),卢雁(河南师范大学),孟祥光(四川大学),孙建平(苏州大学),谭卫红(南京林化所),檀亦兵(江南大学食品学院),王保怀(北京大学),汪存信(武汉大学),王昉(南京师范大学),吴昊(扬州大学),王金本(中科院化学研究所),王琦(浙江大学),王晓东(中科院大连化学物理研究所),王毅琳(中国科学院化学研究所),杨家振(辽宁大学),杨腊虎(中国药品生物制品检定所),郁清(南京大学),袁钻如(南京大学),张洪林(曲阜师范大学),张建军(河北师范大学),张建玲(中国科学院化学研究所),张堃(中山大学),朱立忠(南化集团研究院物化检测中心),张同来(北京理工大学),赵凤起(西安近代化学研究所),祝昱(中国药科大学)  三、大会主题:展现热分析动力学与热动力学以及热分析领域的主要研究成果。  四、会议交流形式:出版大会论文集、大会特邀报告、专题报告与讨论、墙报展讲。  五、征文内容:A. 热分析动力学理论与研究进展 热分析动力学的仪器功能、实验方法和数据处理软件的开发等 热分析动力学在无机、有机、高分子、材料、生物等各个领域中的应用 B. 热动力学理论与研究进展 热动力学的仪器功能、实验方法和数据处理软件的开发等 热动力学在无机、有机、高分子、材料、生物等各个领域中的应用 C.热分析与量热学领域内的研究工作。D.其他  六、论文要求: 1、应征论文应未在国内外公开发行的学术刊物上发表过。2、应征论文详细摘要将装订成集。论文摘要格式要求如下:以中文或英文提供论文摘要2页。中文摘要内容包括:题目(三号黑体居中)、作者(四号仿宋居中)、作者单位(五号宋体居中,含城市名称,邮政编码和E-mail地址并用逗号分开)、关键词(自版芯左起顶格)、摘要(五号宋体)及主要参考文献(自版芯左起顶格)。英文摘要使用Times New Roman字体,字号、格式同中文摘要。会议论文以A4版面编排,上下页边距2.5 cm,左右页边距3.0 cm。论文摘要需在右上角注明论文类别字母(按征文范围:A、B、C、D)。论文电子版请发至TAKT2011 @126.com信箱,论文征集截稿日期:2011年9月1日。  七、会议日期、地点:会议将于2011年10月20-22日在江苏省南京市召开(具体地址与日程将在以后的通知中发布)。  八、会议注册:650元/人(2011年8月30日前汇款),750元/人(现场注册)   学生:450元/人(2010年8月30日前汇款),550元/人(现场注册) 陪同:350元/人   论文审理费:60元/篇。  九、联系方式:  联系人:江苏省分析测试协会 汤伟(电话:025-85485940, 13912996398 传真:025-85404940)   南京师范大学 王昉(手机:13851614122)   河北师范大学 张建军(手机:15533995800)  Email:TAKT2011@126.com  中国化学会第十五届全国化学热力学和热分析专业委员会  江苏省分析测试协会  南京师范大学  河北师范大学  二○一○年十一月八日  为了便于我们很好地组织此次会议,请抽空填写本会议回执。谢谢!  中国化学会第三届全国热分析动力学与热动力学学术会议暨江苏省第三届热分析技术研讨会议参会回执  我单位选派下列同志参加:单位名称 详细地址 联 系 人 手 机 电 话 传 真 姓 名性别职 务 手 机E-mail 参会总人数:( )人是否提交会议论文:是否拟做会议报告:提交会议论文总篇数:( )篇,拟做会议报告总数:( )个报告是否参加会后考察:参加( ) 不参加( ) 注:  *为了便于我们更好地组织此次会议,请抽空填写本会议回执并请于2011年1月15日前用电子邮件发到TAKT2011@126.com信箱,谢谢合作!
  • 南开大学团队:研制出世界首套超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统
    近日,南开大学物理科学学院超快电子显微镜实验室付学文教授团队成功研制并报道了国际首套超快扫描电子显微镜(SUEM)与超快阴极荧光(TRCL)多模态载流子动力学探测系统。该系统在飞秒超快电子模式下实现了空间分辨率优于10 nm,SUEM成像和TRCL探测的时间分辨率分别优于500 fs和4.5 ps,各项技术性能和参数指标达到国际领先水平。该团队利用该多模态载流子动力学探测系统在飞秒与纳米时空分辨尺度直接追踪了n型掺杂砷化镓(n-GaAs)半导体中的光生载流子的复杂动力学过程,结合SUEM成像和TRCL测量成功区分了其表面载流子和体相载流子的动力学行为,全面直观地给出了其光生载流子动力学的物理图像。该仪器系统的成功研制填补了我国在该技术领域的空白,为研究和解耦半导体中复杂的光生载流子动力学过程提供了一个强有力的高时空分辨测量平台,将为新型半导体材料与高性能光电功能器件的开发提供重要支撑。该研究近日以“A femtosecond electron-based versatile microscopy for visualizing carrier dynamics in semiconductors across spatiotemporal and energetic domains”(一种基于飞秒电子的可用于跨时空和能量维度可视化半导体载流子动力学的多功能显微镜)为题,发表于重要国际学术期刊《Advanced Science》。半导体光电材料与器件的功能和性能主要取决于其材料表/界面的载流子动力学过程,例如光伏与光电探测器件需要增强其界面光生载流子的分离与传输,抑制载流子的复合,而发光器件则要增强其界面载流子的辐射复合,抑制非辐射复合。这些载流子的动力学过程多发生在表/界面处,且动力学过程快至皮秒乃至飞秒量级,因此以超高的时间、空间以及能量分辨率测量半导体材料表/界面载流子不同类型的动力学过程对于现代半导体器件的研发及应用起着至关重要的作用,尤其是对于一些低维、高速、超灵敏的半导体光电器件。当前,研究半导体光生载流子动力学的时间分辨探测技术主要有瞬态吸收显微镜(TAM)及光谱、时间分辨近场扫描光学显微镜(NOSM)、时间分辨阴极荧光(TRPL)、时间分辨光发射电子显微镜(TR-PEEM)等。然而,光学衍射极限限制了这些技术的空间分辨率,并且激光较大的作用深度使得测得的动力学信号主要来自材料内部的平均载流子动力学信息,很大程度上掩盖了来自表面或界面载流子的贡献,且单一的探测手段难以同时给出载流子不同类型的动力学信息。因此,为了全面表征半导体材料的载流子动力学,特别是表/界面载流子的动力学,亟需发展一种在时空间和能量维度上同时具有超高分辨率并且兼具高表面敏感特性的超快探测手段。图1. 仪器系统的示意图和时空分辨性能表征。(a)超快扫描电镜与超快阴极荧光多模态载流子动力学探测系统的示意图。其中包含飞秒光学系统、扫描电镜系统、阴极荧光收集系统、条纹相机以及液氦低温台。图中左上角分别为金刚石微晶的扫描电镜图、阴极荧光强度分布图像、阴极荧光光谱以及n型GaAs在77 K下的条纹相机图像 (b)传统模式下锡球标样的SEM图 (c)和(d)不同放大倍数下锡球标样的飞秒脉冲电子图像,表明飞秒脉冲电子模式下良好的成像质量,其空间分辨率优于10 nm。(e)初始红外飞秒激光脉冲的脉宽;(f)超快扫描电子成像的时间分辨率测试,其仪器相应函数(IRF)大约为500 fs;(g)超快阴极荧光探测的时间分辨率测试,其IRF约为4.5 ps。随着超快电子显微镜技术的蓬勃发展,超快扫描电子显微镜(SUEM)和超快阴极荧光(TRCL)技术也迅速兴起,两者都同时兼具超短脉冲激光的超快时间分辨率和电子显微镜的超高空间分辨率。其中SUEM技术是基于泵浦-探测原理,用一束可见波段飞秒激光激发样品表面产生光生载流子,另一束同步的紫外飞秒激光激发扫描电子显微镜的光阴极产生飞秒脉冲电子进行扫描成像。由于扫描电子显微镜主要收集来自距离样品表面几个纳米范围内的二次电子信号,使得超快扫描电子显微镜技术具有表面敏感特性,能够直接对半导体材料表面或界面光生载流子(电子和空穴)的时空演化动力学进行成像。然而,该技术无法直接区分辐射复合与非辐射复合动力学过程。TRCL技术是用聚焦的飞秒脉冲电子束激发样品产生瞬态荧光,用条纹相机或时间相关单光子计数器对瞬态荧光进行测量,具有能量敏感特性,且信号绝大部分来源于材料体内,可直接反映载流子的辐射复合行为。因此,SUEM和TRCL在功能上形成良好的互补,将两者有机结合有望实现在超高的时空和能量分辨下全面解析半导体材料表/界面和体相载流子的动力学信息。鉴于此,付学文教授团队将飞秒激光、场发射扫描电子显微镜和瞬态荧光探测模块相结合,研制出了国际首套超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统(如图1示意图和图2实物图所示),实现了对半导体材料表/界面和体相载流子动力学过程的高时空分辨探测和解析。图2. 超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统实物照片。图3. 利用该系统对n型GaAs单晶表面的SUEM成像和TRCL测量结果。(a)n型砷化镓表面测量得到的随时间演化的SUEM图像;(b)从图(a)中光激发区域提取的二次电子强度演化及相应的载流子演化时间常数;(c)表面载流子的空间分布随时间的演化;(d)从297 K到77 K的变温时间积分CL光谱;(e)和(g)在图(a)的SUEM测试区域中分别探测得到的297 K和77 K下的条纹相机图像;(f)和(h)分别从(e)和(g)中提取的带边发射的衰减曲线及相应的荧光寿命。为展示SUEM成像与TRCL探测在超高时空和能量分辨率下直接可视化并解耦半导体中复杂激发态载流子动力学过程上的独特优势,该团队利用该自主研发的多模态实验装置研究了n型GaAs中的载流子动力学。如图3所示,SUEM图像表明由于表面能带弯曲效应,飞秒激光作用后表面光生载流子发生快速分离使空穴向表面富集。通过分析随时间变化的SUEM图像,提取出了光生载流子不同阶段的衰减时间常数;同时通过计算表面空穴分布的均方根位移,揭示了对应不同阶段表面空穴随时间的超扩散、局域化和亚扩散过程。通过进一步分析室温和液氦温度下测量的条纹相机图像中相应的非平衡载流子复合动力学过程和寿命,不但区分出了体相和表面载流子动力学过程的差异,还揭示了上述表面载流子的空间演变过程分别对应于能量空间热载流子冷却、缺陷捕获和带间/缺陷辅助辐射复合过程。该工作阐明了表面态和缺陷态对半导体表/界面载流子动力学的重要影响,展示了超快扫描电子显微镜和超快阴极荧光多模态动力学探测系统在超高时空尺度解耦半导体表/界面和体相载流子动力学中的独特优势。南开大学为该项工作的第一完成单位及通讯单位。南开大学物理科学学院博士生张亚卿和博士后陈祥为该论文共同第一作者,南开大学付学文教授为通讯作者。该研究得到了国家自然科学基金委、国家科技部、天津市科技局、中央高校基础研究经费等的大力支持。文章链接:https://doi.org/10.1002/advs.202400633
  • 中国化学会第八届全国热分析动力学与热动力学学术会议暨江苏省第九届热分析学术研讨会会议重启通知
    由中国化学会化学热力学和热分析专业委员会与江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、扬州大学和南京师范大学等单位承办的第八届全国热分析动力学与热动力学学术会议将于2022年10月28日-30日在江苏省扬州市召开,会议将采用线上和线下相结合的方式举办。本次会议将围绕热分析动力学和热动力学,就近年来相关理论研究、新仪器设计与分析技术方面的进展,以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术探讨和交流。会议将邀请国内从事热分析动力学和热动力学及相关领域的著名专家、中青年学者和仪器生产厂商参加学术交流和技术探讨。会议期间还将展示一批国内外最新热分析仪器及相关产品,提供最新技术和最新测试方法方面的资料。主办单位:中国化学会化学热力学与热分析专业委员会江苏省分析测试协会承办单位:江苏省分析测试协会热分析专业委员会扬州大学化学化工学院扬州大学测试中心南京师范大学分析测试中心江苏省大型科学仪器开放实验室江苏省材料学会扬州市化学化工学会江苏昊升抗体生物医药科技研究院有限公司陕西师范大学化学化工学院
  • 新型超强韧石墨烯材料有望替代碳纤维
    p style="text-indent: 2em "发表在最新一期美国《国家科学院学报》上的研究显示,北京航空航天大学程群峰教授课题组和美国得克萨斯大学达拉斯分校雷· 鲍曼团队受到天然珍珠母力学结构的启发,制备出微观结构类似于珍珠母的有序层状石墨烯结构。/pp style="text-indent: 2em "程群峰对新华社记者说,此前将石墨烯单片机械堆叠成较厚的宏观材料耗时费力。例如制备人头发厚度的石墨烯薄膜,需要堆叠15万层单片石墨烯,且片层间界面作用较弱,力学性能较差。/pp style="text-indent: 2em "珍珠母具有高强度、高韧性的力学性能,主要得益于内部规整的层状结构和离子键、共价键、氢键等丰富的界面作用。研究人员采用化学制备法而非机械堆叠制备出这种材料。他们借鉴了珍珠母的层状连接方式,通过在氧化石墨烯层间引入共价键、共轭键等不同键连的交联分子,将石墨烯纳米片牢固地“缝合”在一起,制造出强韧一体化的高导电石墨烯薄膜。/pp style="text-indent: 2em "程群峰说,这种薄膜材料的拉伸断裂强度是普通石墨烯薄膜的4.5倍,韧性是后者的7.9倍。/pp style="text-indent: 2em "研究人员介绍,传统碳纤维材料的制备条件需超过2500摄氏度,但新材料可在45摄氏度以下的室温进行制备,强度与碳纤维复合材料相当,成本更加低廉,易实现商业规模化制备。/pp style="text-indent: 2em "程群峰说,这种廉价、低温的高性能多功能石墨烯纳米复合材料在航空航天、汽车、柔性电子器件等领域具有广泛应用前景。/pp style="text-indent: 2em "论文通讯作者鲍曼说,薄膜有望最终取代飞机、汽车等设备使用的碳纤维复合材料。/p
  • 中国化学会第七届全国热分析动力学与热动力学学术会议于合肥开幕
    pstrong仪器信息网讯/strong  2019年4月20日,中国化学会第七届全国热分析动力学与热动力学学术会议于合肥开幕。本次会议由中国化学会主办,中国化学会热力学与热分析专业委员会、合肥微尺度物质科学国家研究中心和中国科学技术大学理化科学实验中心联合承办。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/4f08b216-cd0f-4748-a3eb-0af93ce157c6.jpg" title="huichang.jpg" alt="huichang.jpg" style="width: 600px height: 147px " width="600" vspace="0" height="147" border="0"//pp style="text-align: center "  大会现场/pp  本次会议的主旨是就近些年来热分析动力学和热动力学以及热分析与量热在理论研究、新仪器设计与分析技术方面的进展,以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。此次会议邀请到了来自清华大学、北京大学、南京大学、中国科学技术大学、西北工业大学、中科院研究所等多所知名高校及科研院所长期从事热分析动力学和热动力学的著名专家、中青年学者,以及珀金埃尔默、梅特勒-托利多、日立高新等多家仪器生产厂商,会议盛况空前,4百多位学者注册参会。仪器信息网作为报道媒体出席了本次会议。/pp  大会组委会主席、合肥微尺度科学国家实验室教授罗毅主持了本次开幕式。中国科学技术大学副校长罗喜胜和大会主席王键吉在开幕式上致辞。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/3bfb1960-feae-4474-a5f0-70a30ed6e48e.jpg" title="罗毅.jpg" alt="罗毅.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"//pp style="text-align: center "  中国科学技术大学教授罗毅主持会议/pp  罗喜胜首先作开幕致辞,从中国科学技术大学创新立项的办学理念,谈到办学60年的丰硕成果 同时强调了本次会议的基础性意义和战略性意义,并坚信热力学作为基础学科将对科学界做出巨大的贡献,希望通过本次会议促进学者之间的沟通和交流 并预祝大会圆满成功。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/30acd465-5a7c-4bf7-9722-e4ebbdb229c0.jpg" title="罗喜胜.jpg" alt="罗喜胜.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"/  /pp style="text-align: center "中国科学技术大学副校长罗喜胜致辞/pp  王键吉在开幕致辞中强调了热分析和热动力学在环境、能源、化学化工和生命科学等领域具有不可替代的重要意义。王键吉教授表示,本次大会有三个方面的重要意义:(1)有助于青年学者更好地相互交流 (2)有助于多学科之间的学科交叉互动 (3)希望在热力学研究方面,年轻学者后继有人。作为大会主席,王键吉教授感谢主办单位中国科学技术大学会务组的辛勤付出,感谢为大会做出贡献的老师、同学,并预祝大会召开圆满成功。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/08e905b2-27f1-448a-b4c0-e45f0b4cca18.jpg" title="王键吉.jpg" alt="王键吉.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"/  /pp style="text-align: center "大会主席王键吉致辞/pp  随后开始的大会报告环节,武汉大学教授刘义、大会主席王键吉、清华大学教授尉志武先后主持了会议。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/8b410aa4-9c55-41c7-a7d0-fde1b9d2edba.jpg" title="刘义.jpg" alt="刘义.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"//pp style="text-align: center "  武汉大学教授刘义/pp  中国化学会理事、中国化学会化学热力学专业委员会主任王键吉作题为“CO2响应离子液体的设计和性能调控”的主题报告。王键吉由溶剂/催化剂引出了成本、效率和环境问题,分别介绍了CO2响应离子液体的设计和性能调控的研究方向,即从功能化的离子液体转变成智能化的离子液体,从而实现多功能介质及材料的制备以及产物分离、催化剂和介质循环利用。接着,介绍了通过特定基团嫁接离子液体,实现低浓度CO2的捕集、可逆相分离、可逆相转移、可逆乳化和破乳、光电化学转化等应用。最后,王键吉展望了该研究在酸性气体的选择性吸收、CO2捕集/转化的耦合、离子液体相转移催化和CO2响应离子液体性能强化四个方面新的发展。/pp  清华大学化学系、生命有机磷重点实验室教授尉志武作题为“关于热分析动力学的思考与若干生物分子体系相变研究进展”的主题报告。报告中,主要谈到了DSC技术在蛋白质变性二态性问题、混合磷脂相变、离子液体杀菌机理和构筑不对称囊泡等研究中的应用。尉志武教授认为,热分析动力学和热动力学内容丰富、应用广泛,特别是在化学反应和物理变化机理研究方面有重要的应用 在做热动力学和热分析动力学时,定量分析一定要考虑对原始数据进行校正。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/df5e6910-bbae-41d2-b89b-18eece44918d.jpg" title="尉志武.jpg" alt="尉志武.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"/  /pp style="text-align: center "清华大学教授尉志武/pp  华南理工大学材料科学与工程学院教授张广照作题为“溶液中高分子的单链构象变化热力学”的主题报告。报告中主要介绍了热分析与热动力学在多种单链高分子构象变化中的应用,提出了通过外推法得到热力学平衡状态下高分子单链的相关参数的新方法。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/8c1765fe-aea8-475b-8228-aae8da2b5df8.jpg" title="张广照.jpg" alt="张广照.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"/  /pp style="text-align: center "华南理工大学教授张广照/pp  西北工业大学教授刘峰作题为“金属材料非平衡相变的热动力学协同效应与调控”的主题报告。报告中提出,传统研究缺乏对转变过程的研究,忽略了加工工艺的重要性,希望通过研究热动力学相关性,实现成分和工艺的定量化,并介绍了动力学模型在多种钢铁材料中的实际应用。刘峰还提出了大驱动力大能垒设计的概念,可以同先进高强钢相结合,用于设计纳米相变体系,发展出具有优良力学性能的双相双峰组织。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/261b0d7a-2f06-475c-b322-849f4d76bc4d.jpg" title="刘峰.jpg" alt="刘峰.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"//pp style="text-align: center "  西北工业大学教授刘峰/pp  西北大学教授陈三平作了题为“镝单分子磁体的磁弛豫动力学”的主题报告。高性能单分子磁体构筑要考虑金属离子的选择、单轴各向异性和晶体场的对称性 镧系金属离子具有磁矩大、奇数电子和强轴向性等特点 在此基础上,陈三平构建了D4d构型、D5h镝单分子磁体。陈三平还介绍了弱化面各向异性的Dy-I单核体系和Dy-X双核体系。最后,陈三平提出了构建热容和低温磁弛豫动力学关系的展望。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/c5ad46bc-4b58-44d3-bdbe-7bb658b2b5ec.jpg" title="陈三平.jpg" alt="陈三平.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"/  /pp style="text-align: center "西北大学教授陈三平/pp  南京大学教授胡文兵作题为“高分子结晶动力学的Flash DSC研究”的主题报告。目前,全球超过三分之二产量的合成高分子是可结晶的,高分子加工需要控制结晶,但加工成型的冷却速度通常比较快。传统DSC技术需要的样品量较多,且升降温速度不够快。因此,超快扫描芯片量热仪应运而生。超快DSC技术是研究动力学的有力工具,推动着高分子结晶学进入低温区域,并有助于帮助理解高分子化学结构与结晶动力学的关系。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/907f7dbb-0e27-40e0-9f37-ee03042a2010.jpg" title="胡文兵.jpg" alt="胡文兵.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"/  /pp style="text-align: center "南京大学教授胡文兵/pp  下午,大会分为热分析动力学方法、热分析动力学应用、热分析动力学应用与热分析、热动力学与热力学四个专题,开设了四个分会场。其中,热分析动力学方法分会场,作报告的专家有南京理工大学的成一教授、西安建筑科技大学的酒少武教授、南京师范大学的王昉教授以及邯郸学院的任宁教授等。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/c8009021-8440-4775-8044-ef43fd9ad66c.jpg" title="热分析动力学方法专题会场.jpg" alt="热分析动力学方法专题会场.jpg" style="width: 600px height: 336px " width="600" vspace="0" height="336" border="0"//pp style="text-align: center "  热分析动力学方法专题会场/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/df522974-aa72-4581-add4-71d885afbe80.jpg" title="热分析动力学应用专题会场.jpg" alt="热分析动力学应用专题会场.jpg" style="width: 600px height: 336px " width="600" vspace="0" height="336" border="0"//pp style="text-align: center "热分析动力学应用专题会场/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/721f5c24-3f68-4f0f-af25-8e3afa8fcd63.jpg" title="热分析动力学应用与热分析专题会场.jpg" alt="热分析动力学应用与热分析专题会场.jpg" style="width: 600px height: 336px " width="600" vspace="0" height="336" border="0"//pp style="text-align: center "热分析动力学应用与热分析专题会场/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/86184f2d-c57a-4d4b-98b1-25e8af0bb90b.jpg" title="热动力学与热力学专题会场.jpg" alt="热动力学与热力学专题会场.jpg" style="width: 600px height: 336px " width="600" vspace="0" height="336" border="0"//pp style="text-align: center "热动力学与热力学专题会场/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/f2f76146-9def-49ef-a46a-42674df93166.jpg" title="铂金埃尔默.jpg" alt="铂金埃尔默.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-美国铂金埃尔默公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/231d5013-a502-4cfb-836c-efb470ba0d08.jpg" title="梅特勒.jpg" alt="梅特勒.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-梅特勒-托利多/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/0243fa12-8bf7-4513-a5b6-7b7e15c17e49.jpg" title="耐驰.jpg" alt="耐驰.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-德国耐驰仪器制造有限公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/116cfd6a-f1aa-40b0-a710-8e6aaf969f89.jpg" title="TA仪器.jpg" alt="TA仪器.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-美国TA仪器公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/8e5e18cf-bf0a-4649-a0f8-8e823f144319.jpg" title="林赛斯.jpg" alt="林赛斯.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-德国林赛斯仪器公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/fb2af071-a5fb-4e2b-968d-4ed698e9d797.jpg" title="日立高新.jpg" alt="日立高新.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-日立高新技术(上海)国际贸易有限公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/27e4e2bb-4abc-4bf0-ba9b-6cc4b1e95c54.jpg" title="塞塔拉姆.jpg" alt="塞塔拉姆.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-法国塞塔拉姆仪器公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/7f27dcd8-af4d-4570-94b0-bda11b1a6d23.jpg" title="仰仪.jpg" alt="仰仪.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-杭州仰仪科技有限公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/fe1b89a3-ebf8-4f47-9e7b-51da980c5376.jpg" title="凯正.jpg" alt="凯正.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-上海凯正仪器有限公司/ppbr//p
  • 微结构敏感的增材合金超高周疲劳裂纹萌生/扩展新理论
    增材制造金属作为新一代“高设计自由度”材料,虽具有传统铸轧工艺无法比拟的优势,但其长期服役疲劳性能仍有不足。航空发动机、燃气轮机和高铁等关键零件,在服役过程中承受107~1010及以上的循环载荷,材料微结构敏感性显著增强,实验寿命分散性大,传统基于疲劳极限(107)的疲劳强度与寿命设计理论不再适用。因此研究增材制造金属材料的超高周疲劳(VHCF)失效机理,建立量化内部缺陷和微结构的超高周疲劳裂纹萌生/扩展理论框架具有重要的科学意义和工程应用价值。增材制造金属超高周疲劳裂纹通常萌生于内部缺陷,裂纹萌生阶段通常占总寿命的95%以上。对于内部裂纹尚无合适的原位观测手段捕捉纳米级的裂纹长度变化,同时由于缺陷尺寸与晶粒在同一数量级,材料的各向同性假设不再适用。在理论层面,现有循环内聚区模型难以处理低于应力强度因子阈值的损伤演化,同时塑性变形和损伤是历史相关的内变量,现有数值模拟方法无法处理超高周次的循环载荷数。本研究旨在发展考虑材料微结构的超高周裂纹萌生/扩展机理的力学模型及超高周次循环载荷下的数值加速等效方法。本研究建立了耦合的晶体塑性/循环内聚区模型,引入单元通信机制,建立裂纹萌生演化准则,提出适用于超高周疲劳载荷的加速算法,对增材制造铝合金疲劳裂纹萌生和扩展过程进行预测,并通过实验验证了该方法的有效性。主要成果如下:(1)捕捉到了超高周疲劳早期的裂纹萌生/扩展过程。揭示了增材制造铝合金的VHCF裂纹萌生/扩展机理,建立了1:1还原实验的缺陷、晶粒织构和载荷条件的有限元模型。图1 (a)早期裂纹捕捉,(b)由内部缺陷诱发的次生裂纹,(c)早期裂纹形貌,对应载荷循环数3.63×108,(d)有限元模型及边界条件,(e)内聚区单元网络,(f)缺陷附近的内聚区单元(2)构建了超高周疲劳裂纹萌生及扩展的理论框架。首次将裂纹萌生过程中实体单元计算得到的晶体滑移内变量作为损伤参量引入内聚区模型,建立裂纹萌生和扩展准则,提出了基于向前欧拉法和频率等效的加速算法,实现超高周疲劳裂纹萌生和扩展的全过程模拟,很好地模拟了裂纹萌生早期缺陷附近最大激活滑移系的演化。图2 裂纹萌生早期缺陷附近最大激活滑移系的演化(a) N=1×104, (b) N=5×105, (c) N=2.5×106, (d) N=4.5×106, (e) N=6.5×106, (f) N=8.5×106(3)验证了模型在超高周疲劳载荷下的有效性。计算结果表明由于裂纹表面的相互挤压,裂纹面附近产生大量高局部累积塑性区,有力地支撑了大数往复挤压模型(NCP)所预测的FGA细晶区形成机理。同时模型可以有效地计算裂纹闭合效应,预测的裂纹扩展速率与实验结果吻合很好。图3 模型验证:(a)KAM图, (b)计算结果, (c)裂纹扩展速率该研究成果近期以“A framework to simulate the crack initiation and propagation in very-high-cycle fatigue of an additively manufactured AlSi10Mg alloy”为题,发表在固体力学旗舰期刊Journal of the Mechanics and Physics of Solids 2023,175, 105293上(https://doi.org/10.1016/j.jmps.2023.105293),论文作者为中国科学院力学研究所孙经雨、钱桂安、洪友士等人。该项研究工作得到了国家自然科学基金(12002185,12272377,12072345,11932020)的资助。
  • 做世界一流的药代动力学研究平台——访药代动力学重点实验室王广基院士
    p span style="FONT-FAMILY: times new roman" 药代动力学在我国和世界上发展的很快,是创新药物研发中不可或缺的重要研究内容,甚至决定了药物开发的命运。药代动力学是一门多交叉学科,定量研究药物在体内的吸收、分布、代谢、排泄(ADME),也融合了药理学、药物分析、药剂学、中药学、细胞生物学、分子生物学、实验动物学等多门学科的相关知识。药代动力学的应用研究主要包括创新药物临床前的评价和申报、新药的临床药动学研究及评价、中药与生物大分子药物的药代动力学研究等。/span/ppspan style="FONT-FAMILY: times new roman"  中国工程院院士王广基所带领的江苏省药代动力学重点实验室的研究团队在国内的创新药物药代动力学、中药药代动力学和细胞药代动力学等方面取得了令人瞩目的成就。日前,仪器信息网编辑在中国药科大学药代动力学重点实验室采访了王广基院士。/span/ppspan style="FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: rgb(112,48,160)"strong  王广基所带领的药代动力学实验室在国内外取得了令人瞩目的成就/strong/span/ppspan style="FONT-FAMILY: times new roman"  王广基所带领的药代动力学实验室先后成为了江苏省药物代谢动力学重点实验室、国家科技部临床前药物代谢动力学技术平台建设牵头单位、国家中医药管理局“中药复方药代动力学方法重点研究室”, 天然药物活性组分与药效国家重点实验室核心单元;先后承担了包括国家“863”计划、“973”计划、“国家自然科学基金”重点项目、国家“重大新药创制”科技重大专项、“国家科技支撑计划”等重大研究项目30余项。在国内外核心期刊发表科研论文320余篇,申请发明专利30多项。/span/pp style="TEXT-ALIGN: center"img title="IMG_1417_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/0696db27-0b35-48a5-b151-d8e91f690cc0.jpg"//pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong王广基院士/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  王广基带领的药代动力学重点实验室是国内领先的药代动力学研究实验室,同时在该研究领域也是世界一流的。王广基对国内的药代动力学研究很有信心,他表示:“我国的药代动力学研究水平已经与发达国家接轨。”该实验室的很多研究成果都处于国际领先水平,据介绍该团队撰写了国际上第一篇细胞药代动力学研究综述,并发表于国际药代动力学权威杂志DMR,此文章属国际首次系统提出细胞PK/PD研究理论与技术方法,推动了药代动力学研究从“血浆”到“细胞”、从“宏观”到“微观”的突破。中药药代动力学研究的技术体系也得到了国内、国际上的广泛认可,如国际著名分析化学家Dr.Brack(德国)在Trends AC(国际化学分析顶级期刊)上将他们建立的“诊断离子桥联网络”策略评为复杂基质中未知成分分析的九大创新策略之一。/span/ppspan style="FONT-FAMILY: times new roman"  药代动力学的基础研究主要包括针对ADME环节的各种体内外模型的建立及优化,药物吸收/代谢机制、调控途径,PK/PD(药动/药效结合研究)模型及由此衍生出来的各类数学模型的建立及评价等。如何将药代动力学的研究理论与技术应用到创新药物研究中是王广基所带领团队一直在深入研究的内容。/span/ppspan style="FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: rgb(112,48,160)"strong  探索中药多成分药代动力学研究新技术,实现药代动力学研究从“单成分”向“多成分”的突破/strong/span/ppspan style="FONT-FAMILY: times new roman"  中药现代化的研究中,需要对中药的一锅汤进行系统研究,包括“汤”里面究竟有哪些成分、成分的比例和量是多少 人服用以后,有多少成分吸收进入体内、有哪些成分进入体内后发生转化、起效的成分是哪些等。/span/ppspan style="FONT-FAMILY: times new roman"  针对中药成分构成复杂、代谢多样、体内浓度低等难题,王广基及其团队创建了高效普适的中药复杂成分体内过程研究方法学体系。如:“诊断离子桥联网络”、“相对曝露法”、“物质组-代谢组关联网络”等策略。/span/ppspan style="FONT-FAMILY: times new roman"  王广基介绍说:“诊断离子桥联网络技术即采用多级质谱对复杂组分碎裂分析,得到各成分的多级碎片离子,根据碎片离子进行各组分的桥接,从而实现化合物的快速归属” 。这一技术使得复杂组分,尤其是完全未知的成分的鉴定具有重要意义。目前我们发表的有关该技术的论文在国际期刊上已被引用47次。此技术也被用于多种中药方剂及环境污染物的分析中。”质量亏损过滤技术很早就被提出,并一直被应用于单个西药成分的代谢物鉴定中。对于适用于中药多组分的质量亏损过滤技术,王广基说:“质量亏损过滤用于去除基质相关的大量的背景离子,缩小假阳性的数目,使得目标化合物从背景噪音脱颖而出。这一技术的应用使得中药复杂成分中同一类化合物可以快速同时被检出,分析效率大幅度提高。”/span/ppspan style="FONT-FAMILY: times new roman"  在突破核心技术难题的基础上,王广基带领团队探索中药整体效应,取得了很多成果。例如,在人参皂苷的抗抑郁作用研究方面,该团队发现人参皂苷难以透过血脑屏障,但可调节免疫细胞及内源性神经递质的代谢转运,阻断炎症因子向脑部的传递,发挥脑神经保护作用。/span/ppspan style="FONT-FAMILY: times new roman"  中药药代相关的研究成果获2009年国家科技进步二等奖、2012年江苏省科技进步一等奖 完成的“十一五”重大专项项目“中药复方药代动力学研究关键技术”获评全国第一。/span/ppspan style="FONT-FAMILY: times new roman"  对于药效明确、机制不明的中药,可以通过分析内源性小分子物质群的改变等代谢研究手段来考察其药物机制和作用效果。王广基以人参对血压双向的调节作用为例,介绍了有关中药药效和作用机制的研究内容。对于高血压而言,很多西药的降压作用很明显,降压效果很快体现,但是,一旦停药后血压又反弹回原有的水平。人参降压作用比较温和,但是降压作用持久,在停药后反弹速率显著低于西药。王广基说:“通过代谢组学的研究,检测体内的内源性小分子代谢物群,发现高血压与正常人体内的代谢组的分群区分很明显。这说明高血压患者体内的生理生化代谢等机体的功能状态发生了偏移,偏离了正常状态。而人参皂苷具有一定的”纠偏“作用,高血压患者给予人参以后,偏离正常状态的代谢组有向正常状态恢复的趋势。/span/ppspan style="FONT-FAMILY: times new roman"  /spanspan style="FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: rgb(112,48,160)"strong质谱技术是药代动力学研究的重要手段/strong/span/ppspan style="FONT-FAMILY: times new roman"  质谱技术、细胞与分子生物学模型、PK/PD模型等都是药代动力学研究的常规手段。质谱主要用于测定血液、尿液、组织等生物样品中的微量药物浓度、代谢物鉴定和内源性成分的分离分析。/span/ppspan style="FONT-FAMILY: times new roman"  该实验室质谱仪器非常多,其中大多数还是单级四极杆和三重四极杆质谱。王广基说:“定量分析是药物代谢研究的基础,也是我们做的最多的工作。我们目前的药物和代谢物的定量工作主要还是采用四极杆质谱分析。”/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_1361_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/17acd960-08dd-4f10-b7e2-3de02104dfd3.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong正在运行的岛津四极杆质谱仪/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  IT-TOF主要用于代谢物分析及其中药多组分的体内外物质基础的鉴定。王广基说:“2007年,我们开始将岛津LC-IT-TOF/MS(离子阱-飞行时间串联质谱)用于中药复杂未知成分定性和定量分析、中药体内复杂代谢产物分析与体内外物质关联网络分析等新领域。” 通过对中药复杂成分分析研究,王广基团队先后在Anal Chem,J Mass Spectrom, Talanta等国际化学分析领域权威期刊发表论文30余篇。“这些文章在国际上充分展示了LC-IT-TOF/MS在复杂未知成分定性分析中的卓越性能和广阔的应用前景。”王广基说。/span/ppspan style="FONT-FAMILY: times new roman"  王广基及其实验室的研究者曾多次在国内外学术会议上报告了相关研究成果,基于IT-TOF的研究成果已经产生了深远的影响。马来西亚、新加坡和国内的制药企业正在寻求与王广基带领的药代动力学重点实验室在IT-TOF应用中的合作。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_1382_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/c4879eec-d7a5-47a6-acbc-35382f3c351e.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong正在运行的岛津LCMS-IT-TOF/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  在参观实验室时,王广基告诉编者,实验室在使用MALDI-TOF进行生物大分子生物药物的药代动力学研究及基于质谱成像技术的组织分布研究。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_1380_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/266ad761-b4b7-4a09-b8a5-9e350479ac83.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong正在运行的岛津MALDI-TOF质谱/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  王广基认为质谱技术特别是液质联用技术对于药代动力学研究有着非常重要的意义。他说:“首先,对药物的动力学特征研究一般分为定性研究和定量研究两个方面,对于定性来说,随着各种杂交质谱技术的出现,液质联用可以给出多级碎裂信息和准确分子量,对于化合物及其代谢物的结构推断提供了强有力的工具。此外,定量研究更加需要质谱,由于生物样本中干扰大、药物浓度低,而质谱的专属性强、灵敏度高,目前,大部分药物的药代动力学研究都是用质谱完成的。”/span/ppspan style="FONT-FAMILY: times new roman"  编者看到该实验室岛津的仪器非常多,大部分质谱仪出自岛津。时逢岛津公司成立140周年,在编者问是否对岛津有何期待时,王广基代表中国药科大学祝愿岛津创新不止、扬帆起航,朝着更高的目标不断迈进,取得更加辉煌的成就!王广基说“岛津以科学技术向社会做贡献,愿其早日实现‘为了人类和地球的健康’之愿望!”/span/pp style="TEXT-ALIGN: center"img title="DSC_7100_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/7df496f6-f064-4d2a-b9e8-901a67b8a3c4.jpg"//pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong药代动力学实验室合影/strong/span/span/pp style="TEXT-ALIGN: right"span style="FONT-FAMILY: times new roman"采访编辑:郭浩楠/spanbr//p
  • 珀金埃尔默倾情参与第七届全国热分析动力学与热动力学学术会议
    4月19-21日,作为国内热分析领域的重要学术会议,2019中国化学会第七届全国热分析动力学与热动力学学术会议在安徽合肥隆重召开。会议云集了国内从事热分析研究的顶尖大咖和学术新秀400余位,在三天的时间里,众多的专家学者充分交流了各自的最新研究和成果,让每一位参会来宾感到收获颇丰。中国科学技术大学作为本次会议的东道主,又是中国顶尖的科研院校,为大家筹划了一次高规格的学术盛会。中科大理化实验中心副主任丁延伟老师,不仅是业内著名的专家,此次更是充当了好客的主人翁,为大家筹备了一次非常成功的大会。在本次会议上,不仅大会报告内容高屋建瓴,会议相关的一应准备工作也在丁老师事无巨细的安排下呈现出极高的水准。珀金埃尔默公司作为一家由科学家们组成的公司,数十年来坚持为更好地满足客户需求而创新。这次会议上,珀金埃尔默资深的热分析技术专家华诚博士受邀在会上做了题为《珀金埃尔默综合解决方案——物质剖析新方法》的报告。主要围绕新的方法论展开介绍。珀金埃尔默公司极具特色的高速DSC和逸出气体联用技术可用于物质结构的高效剖析。前者可用于分析微量颗粒的热力学数据,显微红外模块可用于微区化学成分表征,而热重相关的联用技术则可用于解析主成分的配方信息等。综上,珀金埃尔默公司提供的完整解决方案可从多维度剖析样品,还原真实结构成分信息。在此之外,借着大会的东风,珀金埃尔默还举办了一次热分析和联用技术交流会,让公司的科研成果能够对更多老师的日常工作和研究产生积极的帮助,为用户提供更佳的解决方案。本次交流会也受到了参会老师的欢迎和积极响应,让每一位作报告的珀金埃尔默技术专家备受鼓舞。会后,与会老师还实地参观了中科大的理化实验室,了解珀金埃尔默产品在中国顶尖科研院所的良好运行状况。除本次在大会做报告的华诚博士之外,珀金埃尔默公司还拥有数量众多的优秀科学家,长期与各大科研单位保持着紧密的学术交流和沟通,因此,这次的会议中,珀金埃尔默遇到了很多老用户。经过会议期间与参会学者的深入交流,我们又结识了不少新朋友。在学术交流之外,一年一聚的众多业内同仁总少不了寒暄一番。在主办方的精心筹办之下,珀金埃尔默有幸冠名了本次大会的欢迎晚宴。在晚宴上,珀金埃尔默公司DAS事业部分析技术销售总经理刘继涛博士致辞,感谢了大会主办方高水准的周到安排,并向每一位来宾表示敬意,愿珀金埃尔默公司能为热分析行业的研究人员提供更大的助力。席间,珀金埃尔默还为大家准备了抽奖环节,将会议气氛烘托到了高潮。眼见晚宴气氛热烈,宾主同欢,为使大家尽兴,珀金埃尔默亚太区市场部高级总监刘肖博士还现场追加了礼品,将好运送给更多的新老朋友。三天的会议转瞬即过,宾主尽欢而散。珀金埃尔默也带着与老师们交流得来的感悟满载而归。在接下去的科研投入中,我们将致力于解决从各位老师处反馈得来的问题和需求,持续地优化我们的产品与应用方案,始终追求与我们的用户并肩前行。
  • 利用维氏硬度压痕裂纹表征材料的断裂韧度
    可以利用维氏硬度压痕裂纹计算材料的断裂韧度,尤其适合表征硬脆材料的断裂性能。学者提出了很多半经验半定量的关系式。裂纹主要有巴氏(Palmqvist或径向)和中位(Median)裂纹两种形式,有些公式适用于特定的裂纹形式,有些公式对两种(Both)裂纹形式都适用。微米硬度实验设备简单,测试方便,分析直接,不仅在工程实践中有广泛应用,也是评估材料断裂韧度的有效工具。断裂韧度作为衡量材料抵抗裂纹扩展能力的力学性能指标通常用临界应力强度因子KⅠC表示,单位为MPam0.5。字母K为应力场强度因子,反映的是裂纹尖端区域应力场强弱;字母C指的是裂纹扩展的临界情况;下标罗马数字Ⅰ是指裂纹扩展形式为张开型,脆性材料的裂纹扩展类型为Ⅰ型。测量材料KⅠC的方法主要有:山形切口梁法(C. N. B)、单边预裂梁法(S. E. P. B)、表面弯曲裂纹法(S. C. F)、单边切口梁法(S. E. N. B)、单边V形切口梁法(S. E. V. N. B)、短V形切口杆法(S. R)、双扭法(D. T)、双悬臂梁法(D. C. B)、微米划痕法、纳米压痕法和维氏压痕法等。S. R、D. C. B和S. E. P. B法的测试试样难生产、成本高,难以广泛使用;S. E. N. B、S. E. V. N. B和C. N. B法加工试样缺口较困难;D. T法试件的几何尺寸会对测量值产生影响;S. C. F法必须要去除足够深度的表面层来消除残余应力场,才能保证KⅠC不被高估;微米划痕法需要考虑压头的磨损以确保测试结果的准确性;而压痕法具有制备试样简单、测试效率高、以及综合成本低等优点,已被广泛应用于表征陶瓷材料、硬质合金和玻璃材料的断裂韧度。虽然基于Griffith-Irwin平衡断裂力学的压痕法可以反映材料断裂的特征,有效表征材料的断裂韧度,但是使用压痕法确定KⅠC仍然存在不足,依然有争论,比如:诸多半经验半定量的公式在实际应用中受到裂纹模式(径向,中位,横向等)多样复杂的影响,计算的KⅠC结果不可靠;不适用于低泊松比的材料。如何根据不同的材料、不同的压头选择适合的公式和载荷,是当前利用压痕裂纹法表征材料断裂韧度亟需解决的问题。各种依据维氏硬度压痕裂纹长度计算断裂韧度的表达式列于表1,对于不同的裂纹模式有不同的表达式。裂纹主要有两种类型,见图1:一种是基于半椭圆型的中位裂纹(Median crack);另一种是基于半月状的巴氏裂纹(Palmqvist crack)或径向裂纹(Radial crack)。可以基于曲线拟合的方法得到同时适用于两种(Both)裂纹模式的表达式。典型硬脆材料的压痕裂纹见图2,需要测量压痕的接触半径a和裂纹长度c,可以计算得到l=c-a。维氏硬度HV可以由载荷F除以残余压痕面积AV得到:式中,AV考虑了压痕的倾斜表面(sin68°可以由压头形状获得),而不是压痕的投影面积;d (= 2a) 是压痕两个对角线长度的平均值;当F和d的单位分别是mN和μm时,维氏硬度的单位是GPa。值得注意的是工程上使用的维氏硬度没有单位,而且相关标准里面也没有单位,这不利于各种测试方法的比较,无法有效服务于科学研究。可见,即使维氏硬度如此基础、简单、成熟,仍然有待进一步发展。由于仪器化压入的兴起,压入硬度HIT是根据投影面积定义,并且努氏硬度HK也是根据投影面积计算,传统的维氏硬度HV可以通过投影面积转换成梅氏硬度(Meyer hardness)HMV(=2F/d2), 便于各种硬度之间的比较。表1中的维氏硬度HV也可以转换成HMV。表 1 利用维氏硬度HV计算材料的断裂韧度Kc[1]注: ϕ = 3, β2 = 0.059[15], Φ = -1.59-0.34ξ-2.02ξ2+11.23ξ3-24.97ξ4+16.32ξ5, ξ = lg(c/a). E是材料的弹性模量. Hv可以在每个载荷下多次测量取平均值,作为某一载荷下的Hv.图 1 维氏硬度压痕裂纹模式示意图图 2 典型硬脆材料的维氏硬度压痕裂纹[1, 15, 16]作者简介刘明,福州大学机械工程及自动化学院教授,全国钢标准化技术委员会力学及工艺性能试验方法分技术委员会金属材料微试样力学性能试验方法工作组(SAC/TC183/SC4/WG1)委员,ISO 14577系列国际标准制修订国内工作组成员。1985年出生于哈尔滨市,哈尔滨工业大学材料科学与工程学院本科、硕士,2012年12月获肯塔基大学(美国)材料科学与工程专业博士学位,法国巴黎高科矿业工程师学校材料研究所博士后,华盛顿州立大学(美国)博士后。2015年4月入职福州大学机械工程及自动化学院机械设计系力学教研室,获评福建省闽江学者特聘教授、福州大学旗山学者海外人才、福建省高层次境外引进C类人才,主要研究领域为微观力学及仪器化压入划入测试方法。作者邮箱:mingliu@fzu.edu.cn QQ:290716672 微信:hasanzhong参考文献[1] M. Liu, D. Hou, Y. Wang, G. Lakshminarayana, Micromechanical properties of Dy3+ ion-doped (Lu Y1-x)3Al5O12 (x = 0, 1/3, 1/2) single crystals by indentation and scratch tests, Ceramics International, 49 (2023) 4482-4504.[2] K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. Mater. Sci. Lett., 2 (1983) 221-223.[3] Z. Laiqi, H. Yongan, H. Lei, L. Jun-pin, Determination of empirical equation of fracture toughness for Mo5SiB2 alloy by indentation method, Trans. Mater. Heat Treat., 38 (2017) 178-183.[4] M. Laugier, New formula for indentation toughness in ceramics, J. Mater. Sci. Lett., 6 (1987) 355-356.[5] D. Shetty, I. Wright, P. Mincer, A. Clauer, Indentation fracture of WC-Co cermets, J. Mater. Sci., 20 (1985) 1873-1882.[6] B.R. Lawn, M. Swain, Microfracture beneath point indentations in brittle solids, J. Mater. Sci., 10 (1975) 113-122.[7] K. Tanaka, Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model, J. Mater. Sci., 22 (1987) 1501-1508.[8] B.R. Lawn, E.R. Fuller, Equilibrium penny-like cracks in indentation fracture, J. Mater. Sci., 10 (1975) 2016-2024.[9] A.G. EVans, E.A. Charles, Fracture toughness determinations by indentation, J. Am. Ceram. Soc., 59 (1976) 371-372.[10] K. Niihara, R. Morena, D. Hasselman, Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett., 1 (1982) 13-16.[11] G. Anstis, P. Chantikul, B.R. Lawn, D. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64 (1981) 533-538.[12] C. Terzioglu, Investigation of some physical properties of Gd added Bi-2223 superconductors, J. Alloys Compd., 509 (2011) 87-93.[13] J. Lankford, Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method, J. Mater. Sci. Lett., 1 (1982) 493-495.[14] J.E. Blendell, The origins of internal stresses in polycrystalline Al2O3 and their effects on mechanical properties, Massachusetts Institute of Technology, 1979, pp. 1-47.[15] M. Liu, Z. Xu, R. Fu, Micromechanical and microstructure characterization of BaO-Sm2O3–5TiO2 ceramic with addition of Al2O3, Ceramics International, 48 (2022) 992-1005.[16] 刘明, 侯冬杨, 高诚辉, 利用维氏和玻氏压头表征半导体材料断裂韧性, 力学学报, 53 (2021) 413-423.
  • 中国化学会第八届全国热分析动力学与热动力学学术会议暨江苏省第九届热分析学术研讨会会议重启第三轮通知
    由中国化学会化学热力学和热分析专业委员会与江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、扬州大学等单位承办的第八届全国热分析动力学与热动力学学术会议将于2022年10月28日-30日在江苏省扬州市召开。会议将采用线上/线下结合,线下为主的方式举办。主办单位:中国化学会化学热力学与热分析专业委员会江苏省分析测试协会承办单位:江苏省分析测试协会热分析专业委员会扬州大学化学化工学院协办单位:江苏省材料学会江苏省大型科学仪器开放实验室扬州市化学化工学会扬州大学测试中心南京师范大学分析测试中心陕西师范大学化学化工学院
  • 中国化学会第三届全国热分析动力学与热动力学学术会议(第三轮通知)
    “中国化学会第三届全国热分析动力学与热动力学学术会议(3rd TAKT)”将于2011年10月20-22日在江苏省南京市召开,会议期间同时召开“江苏省第三届热分析技术研讨会(3rdJTA)”。本届会议由由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办。  会议期间,我们将举办“国际先进热分析技术讲习班”。讲习班结束我们将颁发培训证书,并设立“梅特勒-托利多优秀学员奖”若干名,大会论文还特设“梅特勒-托利多优秀学生论文奖”,包括在职研究生,论文第一作者要求为学生。  热忱邀请相关领域的科研、教学工作者、研究生和仪器厂商参加研讨交流。  一、大会主题:展现热分析动力学与热动力学以及热分析领域的主要研究成果二、会议组织委员会主席:陈国祥,韩布兴,尉志武副主席:赵厚民,张建军,魏少华,张明明,王昉秘书长:汤伟三、会议学术委员会主任委员:韩布兴副主任委员(以姓氏拼音为序):陈启元,高胜利,刘义,沈伟国,孙立贤,王键吉,尉志武委员(以姓氏拼音为序):安学勤,白同春,陈健,陈三平,成一,杜为红,杜勇,顾敏芬,关伟,胡文兵,李浩然,李小云,李武,刘洪来,刘育,陆昌伟,卢雁,孟祥光,孙建平,谭卫红,檀亦兵,王保怀,汪存信,王昉,吴昊,王金本,王琦,王晓东,王毅琳,杨家振,杨腊虎,郁清,袁钻如,张洪林,张建军,张建玲,张堃,朱立忠,张同来,赵凤起四、会议日程:详见附件一。五、会议日期:2011年10月20-22日。  六、会议报到时间及地点:10月20日8:00—23:00,南京师范大学敬师楼大酒店一楼大厅(南京市宁海路122号)  注:报名参加《国际先进热分析技术讲习班》的代表请于10月20日中午12:00之前报到。  七、会议时间及地点(详见附件二):  1、2011年10月20日下午14:00-17:00《国际先进热分析技术讲习班》在南京师范大学南山专家楼1楼多媒体厅 2、2011年10月21日-22日学术会议在南京古南都饭店江南春厅(三楼)。(南京市广州路208号)。  八、会议注册:650元/人(2011年8月30日前汇款),750元/人(现场注册) 学生:450元/人(2010年8月30日前汇款),550元/人(现场注册) 陪同:450元/人 论文审理费:60元/篇。讲习班:200元/人邮局汇款:南京市龙蟠路189号江苏省分析测试协会汤伟收(汇款附言中请注明“TAKT2011”)银行汇款:汇款单位:江苏省分析测试协会 汇款帐号:320006610010149002047  开户行:江苏南京交行玄武支行九、联系方式:联系人:江苏省分析测试协会汤伟(电话:025-85485940,13912996398传真:025-85404940)   南京师范大学王昉(手机:13851614122) 河北师范大学张建军(手机:15533995800)Email:TAKT2011@126.com  江苏协会南京大学河北大学二○一一年九月十日 附件一:会议日程 时间日程安排月 日(星期四)8:00—22:00全天报到14:00—17:00国际先进热分析技术讲习班月 日(星期五) 07:00—08:00早餐08:00—08:40开幕式08:40—09:00合影留念大会报告1. 西安近代化学研究所胡荣祖教授热分析动力学和热动力学进展9:10—12:002. 清华大学尉志武教授蛋白质热变性的动力学问题思考 3. 武汉大学刘义教授生命体系中的热动力学 4. 西北大学高胜利教授含能配合物的热动力学研究 5.南京师范大学安学勤教授脂质体相平衡与药物释放12:00—13:30午餐、午休 1. 中国食品药品检定研究院杨腊虎教授热分析在药物研究中的作用大会报告2. 北京大学陈尔强教授一些复杂软物质的热分析研究13:40—17:303. 中国科学院大连化学物理研究所孙立贤教授新型储氢材料的纳米限域及其热化学研究 4. 中国科学院大连化学物理研究所王晓东研究员能源和环境催化研究中的吸附量热应用 5. 南京大学胡文兵教授聚合物结晶热分析的现状和挑战 6. 南京师范大学周宁琳教授热分析技术在生物材料中的应用 7. 河北师范大学郑君茹稀土2,3二氯苯甲酸与2,2'-联吡啶配合物的合成、晶体结构及热分析动力学 8. 南京理工大学成一教授热分析动力学的研究与应用18:00—20:00迎宾晚宴  注:大会还安排有热分析各大厂商的新产品、新技术介绍。  附件二:宾馆信息及路线  (会务组与两家酒店合作为参会代表提供舒适的住宿环境和优惠的价格)1、南京古南都饭店(五星级):地址:南京市广州路208号  标准双人间:520元/间/天,含双早餐 标准单人间:480元/间/天,含单早餐2、南京师范大学敬师楼大酒店(准三星,也称“南师大南山专家楼东楼”):  地址:南京市宁海路122号,距离南京古南都饭店50米。  标准双人间:228元/间/天,含双早餐 标准单人间:258元/间/天,含单早餐  到南京古南都饭店和南京师范大学敬师楼大酒店交通路线:南京市内可乘3W、6W、91W、109W、132W、152W、302W、318W到“随家仓”站下,即到。往东走是南京古南都饭店,往西走是敬师楼大酒店。  一、火车站 、火车站打出租车 元左右即可到达南京师范大学敬师楼大酒店。 、步行至“南京站”地铁站、乘坐地铁1号线(或 地铁1号线南延), 在 珠江路站 下车,步行至珠江路站,乘坐91路(或6,132), 在“ 随家仓”站 下车,即到南京古南都饭店,再往西走50米是敬师楼大酒店。 、步行100米至“南京车站”公交车站,乘坐318路,在 随家仓站 下车,即到。往东走是南京古南都饭店,往西走是敬师楼大酒店。二、南京长途汽车总站(中央门)步行460米至“玉桥市场”站,乘坐303路, 在广州路站 下车,步行320米至南京古南都饭店,再往西走50米是敬师楼大酒店。三、南京长途汽车东站  步行70米至长途东站,乘坐115路(或70,136,28,45), 在 板仓村站 下车,乘坐6路,在 “随家仓”站 下车,即到南京古南都饭店,再往西走50米是敬师楼大酒店。四、飞机场机场大巴 号线到国防园(21:00结束)乘坐132路(或91), 在随家仓站 下车,即到。往东走是南京古南都饭店,往西走是敬师楼大酒店。或者从国防园打出租到敬师楼大酒店,起步价就够。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制