当前位置: 仪器信息网 > 行业主题 > >

全自动超微量光催化活性评价系统

仪器信息网全自动超微量光催化活性评价系统专题为您提供2024年最新全自动超微量光催化活性评价系统价格报价、厂家品牌的相关信息, 包括全自动超微量光催化活性评价系统参数、型号等,不管是国产,还是进口品牌的全自动超微量光催化活性评价系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全自动超微量光催化活性评价系统相关的耗材配件、试剂标物,还有全自动超微量光催化活性评价系统相关的最新资讯、资料,以及全自动超微量光催化活性评价系统相关的解决方案。

全自动超微量光催化活性评价系统相关的论坛

  • 【分享】纳米二氧化钛的光催化特性

    一、 研究意义和目的 人类正面临着环境污染的巨大压力。污水中成分复杂,浓度亦不相同,利用光催化技术可将多种有机污染物完全矿化为二氧化碳、水及其他无机小分子或离子;将高毒性的CN-氧化为CNO-,CrO42-还原为Cr3+,来降低它们的毒性;还能将[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]体系中的氮氧化物分解并将有机污染物氧化。如何提高光催化反应的光量子产率,是光催化大规模应用面临的主要难题之一。晶粒尺寸减小到一定程度后,光能隙蓝移,对应于更高的氧化-还原电位,因而有更强的氧化-还原能力;另外晶粒尺寸减小后光生载流子迁移到晶粒表面的时间大大缩短,有效地减少了光生电子和光生空穴的体相复合。因此,制备高比表面积的超细二氧化钛纳米颗粒有望能显著地提高其光催化活性。 我们课题组的研究目标是利用价廉的含钛无机物为主要原料,制备锐钛矿相、金红石相、两相的混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和由介孔与二氧化钛纳米晶构筑的团聚体。利用苯酚的光催化氧化反应和铬酸根的光催化还原反应为模型,来考察不同结构的纳米二氧化钛的光催化活性。这些研究成果对光催化的基础研究、金红石相二氧化钛纳米晶的应用和高性能的光催化制备有重要的指导意义和借鉴作用。 1.不同结构纳米二氧化钛的制备与性能 以钛醇盐为前驱体,用沉淀法或溶胶-凝胶法都能制备出无定形或结晶度较差的锐钛矿相(anatase)二氧化钛。要获得金红石相(rutile)需经高温煅烧,大约在500t开始锐钛矿相?金红石相转变(具体温度与制备条件有关),要获得纯金红石相需在8000C左右煅烧2h。实际上,金红石相是常温下的稳定相,但在通常条件下难以合成。国内生产的钛醇盐主要是钛酸丁酯,含钛量不高且价格贵,文献中的数据表明,用钛醇盐为原料难以获得高比表面积(大于200m2/g)和超细尺寸的二氧化钛纳米晶(小于10nm)。而且,这种方法得到的粉体往往含有较多的有机物,这些有机物会降低二氧化钛的催化活性。因此,用醇盐得到的二氧化钛需用煅烧的方法来改善结晶度和除掉有机物。我们课题组找到了用廉价原料制备不同晶相的高性能二氧化钛纳米粉体的方法。高温条件下金红石相二氧化钛纳米晶的生长速度快,高温[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]反应(如氯化法)也难以获得金红石相二氧化钛纳米晶。二氧化钛纳米晶在液相介质中,很难分离和回收。文献曾报道用模板剂来合成介孔二氧化钛,但墙体二氧化钛是无定形的,且3500C煅烧介孔开始坍塌,尚不能完全烧掉模板剂。因此,这种介孔并不适合作光催化剂。 我们用四氯化钛为主要原料,通过控制水解条件可以得到锐钛矿相、金红石相以及混晶等多种结构的二氧化钛纳米晶、高比表面积的无定形二氧化钛和三维无序结构的介孔二氧化钛。图1和图2分别为它们的x射线衍射图(XRD)和透射电镜照片(TEM)。 纳米粉体有着更高的光催化活性,但在应用中面临的主要问题是它们难以分离和回收。为了解决这一难题,可将二氧化钛负载在分子筛或介孔材料上,Ying曾制备了二氧化钛介孔材料,但350℃煅烧后孔开始坍塌。这样低的煅烧温度尚不能烧掉孔内的模板剂剂,作为墙体的二氧化钛是非晶的,并不适合于用作光催化剂。我们通过溶胶-凝胶法制备了含少量二氧化硅的钛硅复合氧化物,利用二氧化硅网络阻止煅烧过程中二氧化钛的传质过程从而抑制品粒长大和相变。钛硅复合粉体中二氧化钛晶化后,用化学法洗去二氧化硅,可以得到高比表面积的介孔二氧化钛。与现有文献相比,这种介孔材料的突出特点是:①墙体为锐钛矿相,适合作光催化剂;留颗粒尺寸为10mm级,是一次粒径为1nm的锐钛矿相和介孔构筑的团聚体,既保留了纳米晶高比表面积的特点又可用过滤的方法来分离和回收;③可用光还原的方法在孔壁沉积出贵金属岛,来实现电子和空穴的分离和氧化过程和还原过程的分隔。我们知道铂的密度是锐钛矿相二氧化钛的5.6倍,使用过程中铂原子簇会从颗粒表面脱落。沉积在孔壁上的铂位于孔构筑的笼中,能延长负载珀的光催化剂的使用寿命。 2.发现了不同结构纳米二氧化钛的光催化活性中的一些新现象 苯酚是常见的有机污染物,汽提法不过是将有机污染物由一种介质转移到另一种介质,没有真正降解;利用光催化技术可将苯酚等污染物降解(为二氧化碳和水,实现完全矿化。铬(VI)有致癌作用,并且不易被吸附剂吸附,因而难以固定。利用光催化技术,可以把铬(VI) 还原为毒性较低的铬(Ⅲ),在中性或弱碱性介质中,铬(Ⅲ)可以转化为Cr(OH)3沉淀,能够从溶液中分离出来。选择这两种最常见的污染物来考察二氧化钛纳米晶的光催化活性,发现了一些新现象并得到了有重要意义的结果。 我们首次在国际上报道了超细锐钛矿相二氧化钛纳米晶在苯酚的光催化降解反应中对其深度矿化有更高的选择性。不往反应体系中通人氧气,利用搅拌时空气中的溶解氧来促进苯酚的光催化氧化,发现粒径为3.8nm的锐钛矿相二氧化钛对苯酚的深度矿化的选择性最高,而混晶和金红石相的超细纳米晶的选择性较低。这一发现表明用超细锐钛矿相二氧化钛纳米晶作为光催化剂时,生成的有机中间产物少,不会造成降解产物对水体的二次污染。图3为不通氧条件下,主要的几种二氧化钛纳米晶使苯酚深度矿化的选择性差异3.8nm(A) 6.8nm(A) 14.1nm(A) mixed-1 rdxexl-2 7.2nm(R)Photo0Zcatalysts不同晶相的纳米二氧化钛对苯酚深度矿化的选择性mixed-l=混晶,4.4nm(R)+5.9nm(A);mixed-2=混晶,14.2nm(R)+10.7mm(A).不论是否往反应体系中通人氧气,合成的混晶均表现出最高的催化活性。总有机碳(TOC)含量的结果表明,不通人氧气,用合成的混晶、6.8nm的锐钛矿和7.2nm的金红石相二氧化钛纳米晶作为光催化剂,反应4h后反应体系中TOC分别下降61.2%、50.5%和47.1%。通入氧气后,反应速率迅速提高,反应1.5h后,使用这三种催化剂后,反应体系中的TOC分别下降97.6%、84.5%、91.5%;作为对比,我们选择商品二氧化钛(锐钛矿相,比表面积等于9m2/g)进行光催化实验,同样条件下其TOC含量仅下降21.2%。由此可见纳米晶的高催化活性。紫外-可见光谱表明混晶的漫反射吸收谱不同于两相的机械混合物:它们在可见光区有一较弱的吸收带,高分辨电镜照片表明混晶中不同形貌的纳米颗粒在晶面尺度上形成毗连结构,这种晶面毗连形成了过渡能态,有利于提高其光催化活性。优化混晶中两相的比例、并设计和制备出更多不同相的毗连晶面的高活性光催化剂的工作正在进行之中。 铬酸根的降解反应中,锐钛矿相超细纳米品表现出很高的光催化活性,催化活性随着粒径的减小而大幅度提高。在酸性条件下,纳米晶显示更高的光催化活性,半小时铬酸根的除去率超过90%。从不同晶粒尺寸的锐钛矿相二氧化钛的UV-vis吸收谱来看,其尺寸效应不如金红石相二氧化钛明显。也就是说,锐钛矿相晶粒细化后,光能隙的蔬移并不明显。二氧化钛纳米晶中光生电子由晶粒内部迁移到晶粒表面所需的时间(t)可由下列公式来估算:t=r2/p2D (1)r为二氧化钛纳米晶的半径,D为载流子的扩散系数。电子的扩散系数(De)为2×10-2cm2/s,由此算得粒径为6.8nm、lOnm和lOOnm的二氧化钛中电子由晶粒内部迁移到晶粒表面所需的时间约为0.58ps(皮秒)、1.25ps和125ps。可见粒径细化后,光生电子迁移到晶粒表面所需的时间大大减少。这样可有效地减少了光生电子和光生空穴在体相内的复合,有更多的光生电子参加氧化-还原反应,因而有更高的光催化活性。因此,在铬酸根的光催化还原反应中,晶粒细化后,光生电子迁移到纳米晶表面的时间大大缩短,减少了光生载流子的体相复合是其光催化活性有显著尺寸效应的主要原因。 需要强调指出的是无论在苯酚的光氧化反应还是铬酸根的光还原反应中,介孔二氧化钛的光催化活性大大高于钛硅复合粉体,负载0.22 wt%的Pt后,光催化活性大幅度提高。

  • 【分享】光催化净化原理

    光催化材料是具有环境净化和自洁功能的半导体材料的总称。它在微量紫外线作用下,能产生强大的光氧化还原能力,催化分解附表的有机物和部分无机物。光催化技术的特点是能有效利用光能、易操作、无二次污染,在环境保护(废水废气净化、空气净化)、新能源开发、有机合成、自洁和抗菌材料生产等领域具有广阔的应用前景。 TiO2是公认的最有效光催化剂,它的显著优点是:能有效吸收太阳光谱中的弱紫外辐射部分;氧化还原性较强;在较大pH值范围内的稳定性强;无毒。但由于TiO2的禁带宽度为3.2eV,只能吸收波长小于387nm的紫外辐射,不能充分利用太阳能。另外,TiO2的光量子效率也有待进一步提高。有鉴于此,国内外已从多种途径对TiO2材料进行改性,包括TiO2表面贵金属淀积、金属离子掺杂、半导体光敏化和复合半导体的研制等。近来研究发现纳米级TiO2材料的催化效率高于一般半导体材料。纳米半导体粒子存在显著的量子尺寸效应,它们的光物理和光化学性质已成为目前最活跃的研究领域之一,其中纳米半导体粒子优异的光电催化活性倍受世人注目。与体相材料相比,纳米半导体量子阱中的热载流子冷却速度下降,量子效率提高;光生电子和空穴的氧化还原能力增强;振子强度反比于粒子体积而增大;室温下激子效应明显;纳米粒子比表面积大,具有强大的吸附有机物的能力,有利于催化反应。 纳米TiO2具有良好的半导体光催化氧化特性,是一种优良的降解VOCs(可挥发性有机化合物)的光催化剂。它的本质是在光电转换中进行氧化还原反应。根据半导体的电子结构,当其吸收一个能量不小于其带隙能(Eg)的光子时,电子(e-)会从充满的价带跃迁到空的导带,而在价带留下带正电的空穴(h+)。价带空穴具有强氧化性,而导带电子具有强还原性,它们可以直接与反应物作用,还可以与吸附在催化剂上的其他电子给体和受体反应。例如空穴可以使H2O氧化,电子使空气中的O2还原,生成H2O2,OH" 基团和HO2" ,这些基团的氧化能力都很强,能有效的将有机污染物氧化,最终将其分解为CO2、H2O、PO43-、SO42-、NO23-以及卤素离子等无机小分子,达到消除VOCs的目的。TiO2 +hv —— e - + h +e - + h + —— N +能量 (hv’入射光能量hv或热能)HO- +h+ —— OHH2O + h+ —— OH +H+O2 + e- —— O2-O2-+H2O —— OOH +OH-2OOH —— H2O2 +OH-OOH +H2O+ e- ——H2O2 +OH-H2O2 + e- —— OH+OH-

  • 实验室用全自动定制化催化剂筛选装置

    [size=18px][/size][size=18px][font=-apple-system-font, BlinkMacSystemFont, &][color=#333333]定制化的活性和选择性分析小巧装置[/color][/font][/size][size=18px]麦克仪器是世界领先的高性能材料表征技术供应商,其Micromeritics Flow反应器系列可帮助科学家开发和筛选催化剂,从而节省时间和资源。高度先进的模块化实验室筛选模型Micromeritics FR-50、FR-100和FR-200适用于多种反应,包括但不限于加氢裂化、加氢处理、异构化、加氢、加氢脱硫(HDS)、氧化、加氢脱氮(HDN)、重整(芳构化)、GTL(费托)和水蒸气重整。这些桌面式反应器也是生物燃料、甲烷活化和可持续反应等课题研究的理想之选,并将催化剂研究的商业相关条件带入实验室。 [/size][size=18px] [/size][size=18px]FR系列紧凑型设计节省了昂贵的实验室空间,并且可以选择安装在通风柜内。嵌入式温度和压力控制传感器以及可根据各种应用轻松定制的自动化程序确保了高度准确和可靠的反应研究。Micromeritics公司总裁兼首席执行官Terry Kelly表示“我们为实验室规模的反应堆建立了一个强大、安全和灵活的平台,因此我们的客户不必自己建造,他们可以专注于他们的研究。每种设计都着眼于未来,包括可与LC、GC、FTIR系统连接的选项;以及用于额外气体和液体进料或液化气(LLG)分离器的扩展选项。” [/size][size=18px] [/size][list][*][size=18px]FR-50:紧凑型自动催化剂测试装置。 [/size][*][size=18px]FR-100型:先进的模块化、自动化的催化活性和选择性实验室系统。 [/size][*][size=18px]FR-200型:可配置为串联或并联进行反应研究的双反应器系统 [/size][/list][size=18px] [/size][size=18px]Micromeritics在为工业和学术客户建造定制的催化剂筛选装置方面拥有丰富的经验,从量身定做的分析装置到完整的中试装置。有关Micromeritics Flow反应器系列的更多信息,请访问[url]https://www.micromeritics.com/flow-reactors[/url]。 [/size][size=18px] [/size][table][tr][td=1,1,173][size=18px][img=,193,223]http://img5.app17.com/EditImg/20200813/637329000692634283.png[/img][/size][/td][td=1,1,173][size=18px][img=,164,198]http://img5.app17.com/EditImg/20200813/637329001259539279.png[/img][/size][/td][td=1,1,182][size=18px][img=,180,174]http://img5.app17.com/EditImg/20200813/637329001394791516.png[/img][/size][/td][/tr][tr][td=1,1,173][size=18px]Micromeritics Flow Reactor FR-50[/size][/td][td=1,1,173][size=18px]Micromeritics Flow Reactor FR-100[/size][/td][td=1,1,181][size=18px]Micromeritics Flow Reactor FR-200 [/size][/td][/tr][/table][size=18px] [/size][size=18px][font=arial, helvetica, sans-serif]关于麦克仪器公司[/font][font=arial, helvetica, sans-serif]麦克仪器公司是专业提供表征颗粒,粉体和多孔材料的物理性能,化学活性和流动性的高性能设备的全球领先的生产商。我们的技术包括:比重密度法、吸附、动态化学吸附、颗粒大小和形状、压汞孔隙度测定、粉末流变学和催化剂活性测试。公司在美国、英国和西班牙设有研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。麦克仪器是创新性的公司,产品是著名的政府和学术机构的10,000多个实验室的首选仪器。我们拥有世界一流的科学家和积极响应的支持团队,通过将Micromeritics技术应用于客户的需求,帮助客户获得成功。更多信息,请访问: [/font][url=http://www.micromeritics.com.cn/][color=#0000ff][font=arial, helvetica, sans-serif]www.micromeritics.com.cn [/font][/color][/url][/size][size=16px][color=#021eaa][/color][/size]

  • 【资料】光催化转化氮氧化物的研究进展

    光催化转化氮氧化物的研究进展 马睿 谭欣 赵林 ( 天津大学环境学院, 天津 300072) 摘要:对光催化转化氮氧化物的研究进展进行了综述。首先介绍了氮氧化物的危害及传统处理方法的缺点以及光催化反应的机理 随后着重介绍了以 TiO2 为催化剂对 NOx 去除的研究进展, 并对其他用于分解氮氧化物新型光催化进行了介绍 最后对应用前景作出 展望。光催化转化氮氧化物的研究分为光催化氧化和光催化还原 2 种, 反应器则主要为固定床反应器和流化床反应器。N 原子的搀 杂、氧空穴的产生以及表面负载 Pt 均能有效地利用可见光, 炭( AC) 、沸石、氧化钙、ZrO2、高岭土等载体也可明显地提高光催化转化 氮氧化物的效率。此外, 植入过渡金属离子沸石, 也可有效地转化氮氧化物。 关键词 TiO2 氮氧化物 光催化 脱除 载体 可见光 进展 中图分类号 O43 文献标识码 A 文章编号 0517- 6611( 2007) 08- 02215- 03目前, 脱除 NOx 的技术措施主要有非催化法和催化还 原法两类[1]。非催化法主要包括湿式吸收法、固体吸附法、电 子束照射法等, 这些方法往往需要复杂的设备、较高的成 本, 且存在二次污染问题。选择性催化还原法是目前主流发 展方向, 但也存在二次污染及要求较高的反应温度等问题。 例如, 在 Ag/Al2O3 催化剂上选择性还原 NO 的最佳操作温 度是 500 ℃[2], 在 Ba/MgO 催化剂上选择性还原 NO 的最佳操 作温度是 700 ℃[3]等。光催化技术是近几年发展起来的一项 空气净化技术, 具有反应条件温和、能耗低、二次污染少等 优点[4], 笔者对光催化分解氮氧化物的研究进展进行了综述。1 光催化反应机理半导体材料存在能级分布, 当用能量大于半导体禁带 宽度的光照射半导体时, 光激发电子跃迁到导带, 形成导带 电子( e-) , 同时在价带留下空穴( h+) 。由于半导体能带的不 连续性, 电子和空穴的寿命较长, 它们能够在半导体本体和 表面运动, 与吸附在半导体催化剂粒子表面上的物质发生 氧化还原反应, 而将污染物分解掉。以 TiO2 为例, 它的禁带 宽度为 3.2 eV, 在波长小于 380 nm 光照下, TiO2 的价带电 子被激发到导带上, 产生高活性的电子- 空穴对。图 1 绘出 了受光源照射时半导体内载流子的变化。电子和空穴被光 激发后, 经历多个变化途径, 主要存在俘获和复合两个相互 竞争的过程。光致空穴具有很强的氧化性, 可夺取半导体颗 粒表面吸附的有机物或溶剂中的电子, 使原本不吸收光而 无法被光子直接氧化的物质, 通过光催化剂被活化氧化。光 致电子具有很强的还原性, 能使半导体表面的电子受体被 还原, 这两个过程均为光激活过程。同时迁移到体内和表面 的光致电子和空穴又存在复合的可能, 此为去激活过程, 对 光催化反应无效。空穴能够同吸附在催化剂粒子表面的OH-或 H2O 发生作用生成 HO?。HO?是一种活性很高的粒 子, 通常被认为是光催化反应体系中主要的氧化剂。光生电 子能够与 O2 发生作用生成 HO2?和 O2?-等活性氧类, 这些活 性氧自由基也能参与氧化还原反应。目前对 NOx 的光催化 反应的研究分为光催化氧化和催化分解 2 种。[img]http://ng1.17img.cn/bbsfiles/images/2009/03/200903201415_139711_1614854_3.gif[/img]

  • 系统气相与双通道电催化与热催化在线检测系统

    系统气相与双通道电催化与热催化在线检测系统

    新型肺炎期间,琢磨出双通道电催化与热催化在线检测系统,实验室以前都是一个反应器对应一台GC,现在省纪委二个反应器可以直接在一台GC上获得测试结果,还能够全自动化检测。。。如开发的双通道电化学CO2还原测试系统,如图1所示,可以在14min内获取2组样品的测试结果[img=,492,590]https://ng1.17img.cn/bbsfiles/images/2020/07/202007082158397466_1536_4231648_3.jpg!w492x590.jpg[/img]同时,也开发了全自动控制检测系统,如下图所示,需要合作的请联系。[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2020/07/202007082202289915_5731_4231648_3.png!w690x387.jpg[/img]

  • 【讨论】国内外光催化反应器的发展情况

    【讨论】国内外光催化反应器的发展情况

    随着我国社会经济的迅速发展,不可避免地伴随着大量废弃物排放,这导致了严重的环境污染和生态破坏。这些因素正危及我国居民生存安全。另外,调查表明环境污染问题也会影响到我国的可持续性发展。所以,保护与治理环境是构建环境友好、和谐社会和实现我国社会经济叮持续发展的重要任务。传统污染物处理方法不能彻底消除降解污染物,也容易造成二次污染,使用范围窄。仅适合特定的污染物,还伴随着能耗高,不适合大规模推广等缺陷。近些年来,利用光催化技术降解和消除污染物得到人们的广泛关注。光催化氧化技术是一种集高效节能、操作简便、反应条件温和、同时可减少二次污染等突出特点于一身的一项新的污染治理技术,而且从地球卜物质循环的角度来看,光催化技术可以将大量的有机污染物降解为CO2和H2O.从而被植物利用.形成了循环,如图l所示,可以说光催化技术正足人类所急需的一种技术。 http://ng1.17img.cn/bbsfiles/images/2012/06/201206281052_374718_2556116_3.jpg 光催化技术起源于20世纪70年代.自从日本学者Fujishima和Honda发现了利用TiO2单晶可将水光催化分解之后。世界范围内,便开始了光催化氧化技术在污水处理、空气净化、抗菌杀毒等方面的应用研究,于是光催化技术受到全世界的广泛关注。并得到了快速发展。如今人们对于光催化技术的研究主要分为对光催化剂的研究(如TiO2、ZnO)和对光催化反应条件的研究,其中。对反应条件的研究中,人们为了让光催化氧化反应能稳定和高效的进行,会设计出相应的反应器,用来为反应提供良好的平台,一个设计良好的反应器,将能大大提高反应体系的反应效率,从而达到高效、节能、稳定等目的。1 光催化反应器的设计依据 光催化反应器的设计主要目的是为了给光催化氧化反应提供高效和稳定的反应空间和环境。实现光催化过程对光的充分利用,从而提高反应效率。由于光催化反应需要有光子参与,光催化剂才能将光能转化成为化学反应所需的能量,来进行催化降解作用,因而在设计反应器的时候,最主要的两个理论依据就是光的传输理论和催化反应动力学理论。光的传输以及在光在反应器中的分布直接影响到催化剂对于光的吸收效率。充分均匀的催化剂分散可保证光在传输途中浪费少,这样催化剂对光的利用效率高,反之将会有较多催化剂由于得不到或者只接受到很少的光照而不能充分的进行光催化氧化反应。2 国内外光催化反应器的发展 早期的光催化研究大多是在一些很随意的反应条件下进行的。比如在液相光催化反应中,催化剂与污染物溶液混合时,一般的实验过程都是人工用玻璃棒进行搅拌。由于人为误差的因素难以避免,会对结果的准确性和再现性产生较大影响。为了满足对光催化反应器准确、稳定和高效的要求,反应器的设计也在不断的变化。一个设计较好的反应器,不仪可以提高光催化反应的效率,而且可以将其大规模化。可高效稳定的进行光催化作业,从而实现产业化。到目前为止,有一些类型的反应器已经用于诸如污水和空气处理的工业化应用。2.1流动床光催化反应器 流动床光催化反应器是将催化剂与待降解物质直接混合的一种反应器。一直以来,人们都在为满足不同的光催化反应要求,设计不同的反应器。应用最多的儿种类型的反应器包括椭圆型、底灯型和柱型,如图2所示。这几种反应器的特点是不仅效率较高,制作难度低。而且可以用于大多数的反应类型,可以同时满足液相和气相两种类型的光催化反应,因而得到了广泛的应用。http://ng1.17img.cn/bbsfiles/images/2012/06/201206281053_374721_2556116_3.jpg 椭圆型反应器(图2(a)所示)是将灯管和反应区分别放在椭圆的2个焦点上,这样可以很好的将灯管所发出的光集中在反应区内,减少了光的浪费,提高了整体的效率。虽然反应器中的反应区在椭圆型焦点上,但是这不表示灯管所发出的所有光线都能达到反应器,而且这种类型的反应器.光的传输路程较长,这样就增加了光在传输过程中的损失,并且反应区域内光的分布不均匀。底灯型反应器(图2(b)所示)是对椭圆型反应器的改进,它的光源位于抛物线的焦点上,但是光源的光线并不是聚焦在另一个焦点,而是从下往上射人反应区,光进入了反应区域后就不会再被反射回来。更大程度的利用了光源。柱型反应器是现在比较成熟的类型,一般可分为中灯外反应区(图2(c)所示)和中反应区外灯(图2(d)所示)2种。柱型反应器有着较高的光利用率和良好的对称性(可使光在反应区内均匀的分布,减少局部差异)。一些发达园家,这两种反应器已经用来处理污水,在这2种反应器中.光从光源发出来后,基本上都会通过反应区。特别是中灯外反应区这样的反应器.光的利用率几乎可以达到最大。在光源的光照强度合适的情况下,甚至可以不需要反射壁。都可以达到光的最大利用率。而且这种柱型的反应器制造难度小,成本低。适合大规模的生产和运用。因此现在的大多数针对反应器的研究,也是以柱型为模型来进行的。2.2 固定床光催化反应器 在近年来,人们将催化剂固定在一些载体表面来进行催化反应.即固定床反应器,这样避免了光催化剂的分离问题。固定床与传统的流动床的区别在于,催化剂不随液体或者气体一起流动.而是固定在玻璃或者其它介质表面,污染物流经其表面来进行反应。这样一来,人们就可能更精确的了解催化剂的性质,并易于控制催化反应的进行,也易于催化剂和反应物的分离。基于这种思路,人们设计了一些新型的光催化反应器,其中效果比较好的是平板型和喷泉型,如图3所示。http://ng1.17img.cn/bbsfiles/images/2012/06/201206281053_374722_2556116_3.jpg 平板型的反应器是将催化剂固定在平板上,在光照的条件下.将污染物液体或者气体缓慢的通过催化剂表面降解,属于层流型反应器。这种反应器的好处在于制造简单,待降解物经过催化剂的时候光照时间和光照强度基本一致,并很容易控制流动速度。当流速放慢的时候可提高反应物的降解程度。但是所需时问也就相应增加;当加快流速的时候虽然降解的程度不如流速慢的情况.但是所需时间较少。这种平板反应器可以根据不同的降解需求。调整流速,达到相应的效果。平板型的反应器还有另一个其他反应器不具备优点,由于催化剂是固定在平板上的。不会随着待降解物的流动而流动,也就省去了后续催化剂分离的步骤。但是也由于催化剂固定的原因,在降解一定时间后,催化剂的催化效率会降低,而更换催化剂比较困难,并且光的损失也比较严重。因为光源发出的光最多只有50%被利用.即使加装了反射壁.也会有大量的光损失掉。鉴于平板型反应器的造价低.易于控制的优点,很多实验室都运用平板反应器来进行一系列的光催化研究。 喷泉型反应器是近几年由Puma和Yueu等人提出的,此类反应器与平板型反应器大致相同,将催化剂固定在斜面上,在顶部固定光源,将待降解物斜面中心的喷嘴喷出,然后在重力作用下流经催化剂从而得到降解。此种反应器主要是用于研究催化剂的反应效率.由于结构相对比较复杂,所以应用也较少。还有很多种新型的反应器.比如球型反应器.这种反应器在理论上能达到非常高的光利用率,并且无论是光的分布。还是污染物的分布.还有催化剂的分布都能达到非常高的均匀性和稳定性.反应效率也是非常理想的,但是制作非常的困难.所以现在这种球型的反应器并不常见,是一种理想化的反应器。3 结语 随光催化技术的提高,光催化反应器也在被不断的改进和优化.越来越受到人们的重视.特别是光催化技术实现工业化后,反应器的设计需要进行系统的优化没计才能使光催化反应效率达到最优值,一个设计优良的反应器,不仅可以提高反应效率,还能减少对能源和原材料的浪费.提高经济效益。 http://ng1.17img.cn/bbsfiles/images/2012/06/201206291103_374928_2556116_3.jpg

  • 【我们不一YOUNG】+全自动样品萃取纯化系统的优势分析

    全自动样品萃取纯化系统是一款功能多、简单易用的自动样品前处理系统,全自动样品萃取纯化系统带来的优势:一. 提升效率和工作环境1.自动化操作消除了样品前处理流程中的瓶颈。2.更高的通量意味着降低了每个样品的分析成本。3.改善的数据质量意味着更少的样品需要重新提取和更快地得到更高质量的结果。4.娴熟的分析员可以被解放出来专注于其他工作,比如数据分析。5.安全安心:系统避免了在样品前处理过程中对样品或提取耗材的人为干预。6.系统对溶剂的有效率使用,意味着人员和环境更少地暴露在有害化学品中。7.移液吸头智能重复利用,降低了耗材成本。二. 改善数据质量1.您的样品每一次都是以完全相同的方法进行处理。2.消除了不同人员操作带来的变动,与手动操作的处理过程相比,提高了准确度和精确度。3.系统的设计使得交叉污染和假阳性的可能性降低。

  • 【分享】表面活性剂的全自动两相滴定

    表面活性剂的全自动两相滴定 日常生活中人们会接触到大量的表面活性剂:如肥皂,清洁剂和洗衣粉等等。因此相应的分析工作变得日益重要,尤其是对于优化生产过程及环境监控领域。采用梅特勒-托利多T50滴定仪、特殊的滴定杯及DP550或660光度电极,可以实现全自动两相滴定,测定结果准确度高重现性好。 滴定法是表面活性剂定量分析的标准方法。长久以来应用最为广泛的是经典的Epton两相滴定技术。目前该方法仍然是被ASTM,DIN,BSI等机构认可的标准方法。所谓Epton滴定法,即在水/氯仿体系中,如用阳离子表面活性剂作为滴定剂来测定阴离子表面活性剂的含量,通过检测有机相中混合指示剂的颜色变化来指示终点。该方法最大的缺点在于有必不可少的手工操作步骤,此外,终点指示在很大程度上取决于操作个人的技能和经验。但这已成为过去,梅特勒-托利多T50全自动滴定仪的出现使情况从此改变。事实上,采用该滴定仪和两相滴定功能及相应的光度电极DP550很容易就可实现样品系列的全自动分析。分析过程中,每次加入滴定剂后,剧烈搅拌样品,使滴定剂和被分析物充分反应并萃取至有机相中(氯仿),然后搅拌停止,开始分相。重复该过程至滴定剂过量,有机相中会出现明显的颜色变化。以下是采用电位滴定法测定钻井乳化液中SPS含量:• 0.004M海尔敏1622的滴定度测定Chyamine (mol/L)nSDS(mmol)滴定度RSD(%)0.004 40.020.96450.50• 钻井乳化液的SPS含量样品量(mL)n 结果平均值RSD0.25 – 8.006个系列,共38个样品5.3773% 1.41%• 钻井乳化液中SPS的检测极限SPS含量 结果表观值(mmol)真实值(mmol)真实浓度(%)nRSD(%)0.0012 0.00146.0417 615.6460.0024 0.00255.4907 63.1150.0049 0.00485.3079 72.3990.0098 0.00975.3351 61.5080.0147 0.01485.4037 71.5660.0245 0.02475.4270 70.9150.0391 0.03865.2999 5 0.456

  • 全自动六站化学吸附仪ChemiSorb HTP

    全自动六站化学吸附仪ChemiSorb HTP优化设计和高效利用催化剂需要彻底了解催化材料表面结构和表面化学特性。在设计生产阶段,以及后期使用阶段,化学吸附分析提供大量所需的信息来评估催化剂材料。ChemiSorb HTP是一个完全自动化高测试量化学吸附分析仪,可测定催化剂材料的金属分散度、活性金属表面积、活性粒子,表面酸度。仪器包含六个独立经营分析站。可同时运行,也可单独运行,节省时间以及实验室空间。分析测试量大,带有六个独立分析站最多可同时进行六个化学分析每个分析站带有独立的加热炉,设定范围:10℃到700℃石英样品反应器带溢流道设计,可用于各种尺寸的颗粒和粉体全自动分析无需人看守即可得到高分辨率吸附等温线分析站可同时运行,也可独立运行最多可同时连接多达12种不同的气体 Windows®操作界面

  • 全自动酶免分析系统的技术发展与现状

    酶联免疫吸附试验(ELISA/EIA,简称“酶免试验”)是一项现代医学临床检验基本的、常规的检测技术。尽管在90年代初期,由于以聚合酶链反应(PCR)技术为代表分子生物学水平技术的发明,人们纷纷预测,酶免试验将被更高灵敏度、数百万级信号放大的、病原体水平检测的核酸放大试验(NAT)所取代。但由于免疫临床标志物(抗原/抗体)具有无法替代的临床意义、以及酶免试验具有操作简便、技术可靠,特别是,90年代末期ELISA检测系统的灵敏度和特异性以及检测过程的自动化得到了显著提高与完善,因此,酶免试验再也没人怀疑将被淘汰,而成为传染病血清学标志物(如肝炎、艾滋、致畸病原Torch)、肿瘤标志物及内分泌等各种临床免疫指标检测的主导技术。 支持酶免试验技术的进步,酶标板检测仪器朝着二个方向快速发展。一方面,侧重酶免试验的光学检测系统——酶标仪,到90年代末已达到至臻完美状态;随着纳米技术微量加样的发展,酶标仪将很容易由检测传统的96微孔板,转化为检测384微孔板,甚至1536微孔板,达到更高的检测效率。另一方面,侧重酶免试验处理过程技术——酶标分析系统,到90年代末已充分发展;随着多任务软件,如O/S2,Unix及Windows NT等操作平台的完善,满足现代实验室GMP/GLP要求的全自动酶标分析系统,正在世界各种实验室普及。应当指出,在发达国家全自动酶标分析系统的进步,是由法规要求严格、酶免试验结果至关重要的血站实验室需求推动的。这是因为,不同于临床病人检测结果,仅是医生诊断的参考数据,血站血液筛查实验室的检验结果判定,将直接决定血液的安全性。 以日本为代表的“全面实验室自动化”(TLA)运动,对于全自动酶免分析系统产生了巨大的需求。在90年代初期,手工酶免试验操作曾经成为TLA的主要障碍。目前,由于全面实验室自动化具有标准化、高效率、高质量的自动化与网络化特征,正成为临床实验室发展的新趋势。 酶免试验自动化与网络化的时代已经到来,全面实验室自动化不再是一种模型。了解这些技术进步将有助于高效临床实验室的建设 根据美国临床病理学院(CAP)的调查报告,实验室误差(ERROR)产生原因的79%因素,是因为实验过程中样本处理不当造成的。 区别与其他临床检验技术针对于每一反应单元对应于一份标本,酶免试验的样本处理必须基于批量化操作——96孔酶标板。为保障正板内各孔标本孵育时间最小差异,必须采用8通道或12通道快速加样。因此全自动样本处理机是提高实验精度、提高实验效率和避免人为误差和差错的关键设备。 第一代多功能(Robotic)样本处理机,是由瑞士哈美顿(HAMILTON)公司开发于1985年上市的Microlab 2200。这是一台基于机械臂运动和具有管路系统的稀释分配器(Diluter)原理,采用8或12根固定距离的特弗隆探针,由单任务的BASIC程序控制的样本处理机。 随着酶免试验的普及,基于管路稀释分配器原理的样本处理机得到快速发展,先后有数家厂商开发了十余种样本处理机,以满足实验室液体处理需要。如瑞士哈美顿公司的Microlab 4000等。 1989年,哈美顿公司独树一帜,开发上市了以专利技术的可抛弃塑料活塞注射器(Micro-syringe)为原理的,无管路批量样本处理机Microlab AT,试图满足更快的加样(12针)、无污染地加样、主动抛弃可能失去精度的加样针、摒弃不可预测的管路污染与稀释等实验室需求。1997年,AT系列增加改进为Microlab AT plus 2型。这种原理的样本处理机,具有全面的标本质量系统、加样质量保障系统。是唯一获得美国FDA许可,用于血液筛查实验室的产品。在中国自1996年开始引进AT样本处理机,迄今为止已有150余名。 样本处理自动化的最新技术进步,是以瑞士哈美顿公司于2000年8月推出的,第五代斯达尔全自动随机式批量样本工作站(Microlab STARTM,Sequential Transfer Aliquoting Robot)为标志的,这是世界上第一台符合2003年实施的IVD标准的全自动样本处理工作站。其主要技术特征是: 采用专利的压缩导入-O形环扩张(CO-RE)核心技术,实现标准加样的智能化、自动化; 理想的加样体系——气动置换加样原理ADP的实现; 实现任意加样动作编程同时使用不同的加样头(抛弃型加样尖和永久型探针); 实时实现液体双传感(△C-△P)技术; 全方位液面传感应用,特别是解决了酶标板的液面监测世界难题; 活性洗涤工作站(Active Wash Station)进行平行洗涤加样针,是提高加样速度的关键; 模块化、无管路、独立加样通道系统4——16通道,用户可以根据工作量进行升级; 智能增强的容错纠错系统(Sophisticated Error Handling) 实现全过程控制(TPC),全部步骤都在监控下运行,每个步骤都形成记录文件(TRACE),甚至对加样体积质量进行校验、备份,实现全自动GMP/GLP。 最新一代哈美顿—斯达尔的典型应用为: *血站输出筛选实验室: ——ELISA实验  ——标本留样存档(Archiving)  ——血型正/反定型实验   ——转氨酶和梅毒凝集实验  ——NAT汇集实验  ——NAT试验无污染(RNAse/DNAse)加样 *医院检验实验室: ——样本处理中心(对病人标本分项处理(aliquot)生化/免疫/体液/血液/血凝) ——酶免实验室ELISA试验(标本、对照/标准、试剂的分配、稀释) *分子生物学与生物技术药物筛选 ——DNA纯化  ——PCR加样  ——DNA测序加样  ——克隆快速筛选分配   ——药物筛选自动分配  目前,酶免试验样本处理设备已开始在全国血站系统普及,其中哈美顿AT数量最多。样本处理机还是酶免自动化所需主动标本识别(Positive Sample ID)条码阅读的基本设备系统。此外,样本处理机还有下列重要意义。 *提高加标本速度与效率 *减少操作人员劳动强度 *使标本传染操作人员机会最小化 *通过减少人为失误和改善加样精确度与准确性来改善检测分析质量 *采用批量(batch)或随机(random access)进行多种组合与多种模式检测

  • Sepaths UP全自动固相萃取系统快速上样

    Sepaths UP全自动固相萃取系统快速上样

    Sepaths UP全自动固相萃取系统快速上样1、前言  Sepaths UP全自动柱膜通用固相萃取仪,兼顾了大小体积样品,主要用于样品的分离、纯化和浓缩,广泛应用于饮用水、地表水、地下水、食品、饮料等液体样品或固体半固体样品提取液中痕量有机物萃取和富集;整套系统可以同时自动完成6个相同或者不同样品的固相萃取柱的活化、样品过柱(过膜)、清洗、氮气干燥、浸泡、洗脱等操作,处理样品量大,自动化程度高;整套系统密封环保。操作简便,安全环保。Sepaths UP全自动柱膜通用固相萃取仪可以在上样快速的基础上同时保证较高的回收率和稳定性。http://ng1.17img.cn/bbsfiles/images/2017/10/2015092415282701_01_3024284_3.jpg  本文中通过对萃取水中多氯联苯的实验来突出Sepaths UP全自动柱膜通用固相萃取仪快速上样的特点。2、仪器  2.1 Sepaths UP全自动柱膜通用固相萃取仪(莱伯泰科有限公司,美国波士顿)  2.2 MultiVap-8八通道平行浓缩仪(莱伯泰科有限公司,美国波士顿)  2.3 Extrapid手动固相萃取系统(莱伯泰科有限公司,北京)  2.4天美 7890Ⅱ气相色谱仪3、试剂和材料  3.1 C18 固相萃取盘 47mm (J.T. Baker公司)  3.2 乙酸乙酯(色谱纯,Fischer公司)  3.3 甲醇(色谱纯,Fischer公司)  3.4 二氯甲烷(色谱纯,Fischer公司)  3.5 正己烷(色谱纯,Fischer公司)  3.6 标准液:ρ=500ng/mL,溶剂为甲醇(购买市售有证的标准储备液配制)。  3.7 去离子水(市售实验室的纯净水,要求在被检测化合物检出限内无干扰物)  3.8无水硫酸钠(Na2SO4):在450℃下加热4h,置于干燥器中冷却至室温,密封保存于干净的试剂瓶中。4、实验部分  4.1 样品制备    使用已洗净的1L玻璃样品瓶,装取去离子水1000mL,加1%甲醇进行样品改性,调节pH值到5,再加入100μL标准液充分摇匀。  4.2 样品溶液固相萃取方法见表1。表1 固相萃取步骤步骤溶剂浸泡时间干燥时间活化1乙酸乙酯10 mL90 sec90 sec活化2二氯甲烷10 mL90 sec90 sec活化3甲醇10 mL90 sec0 sec活化4水10 mL90 sec0 sec上样加标水1000 mL0 sec0 sec干燥萃取盘--60 sec洗脱样品瓶1乙酸乙酯10 mL150 sec60 sec洗脱样品瓶2二氯甲烷15 mL150 sec60 sec洗脱样品瓶3二氯甲烷15 mL150 sec120 sec  收集的洗脱液中含有水分,用一定量的无水硫酸钠进行脱水,置于浓缩仪上45℃氮吹浓缩至近干,用1 mL定容,进气相色谱分析。  4.3 仪器分析  气相色谱条件   色谱柱:石英毛细管柱,长30m,内径0.25mm,膜厚0.25μm,固定相为5%二苯基95% 二甲基聚硅氧烷。   升温程序:120℃,保持1分钟,20℃/min升至180℃,然后5℃/min升至280℃;   进样方式:不分流进样;进样量:1.0μm;进样口温度:270℃。5、结果与讨论  如图1所示, 1000mL水样通过Sepaths UP全自动柱膜通用固相萃取仪中萃取盘的时间为17min,表明上样速度快。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241705_567688_3024284_3.jpg图1 上样时间  如表2所示,加入1%甲醇改性后的水样,通过Sepaths UP全自动柱膜通用固相萃取仪固相萃取后样品回收率在84-105%,回收率均较高,并且RSD小于5%。表2 1%甲醇改性样品固相萃取样品回收率回收率(%)12[align=center

  • 全自动触屏氩气净化机与直读光谱仪的配套

    全自动触屏氩气净化机与直读光谱仪的配套

    [size=18px][font=宋体]成都亿安赛迪环保科技有限公司生产的[/font][font=宋体]全自动触摸屏氩气净化器,基于手动和半自动氩气净化器进一步创新和升级,将先进的技术、精妙的设计和强大的功能完美结合。[/font][font=宋体]流量高达4[/font][font='Times New Roman']NM[/font][sup][font='Times New Roman']3[/font][/sup][font='Times New Roman']/h[/font][font=楷体_GB2312],[/font][font=宋体][font=宋体]为高性能的[/font]OES、ICP和其他对性能以及稳定性有高要求的实验室应用提供最优的一体式独立的氩气净化解决方案。[/font][font=宋体]采用物理吸附和催化反应联用,具有使用寿命长,净化深度高,抗原料气瞬间波动能力强等优点[/font][/size]。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2022/03/202203181703280578_6880_1600363_3.jpg!w690x517.jpg[/img][img=,690,318]https://ng1.17img.cn/bbsfiles/images/2022/03/202203181708175363_4931_1600363_3.jpg!w690x318.jpg[/img][size=18px][b][u][font=宋体][font=宋体]全自动触屏氩气净化机特点[/font] [/font][/u][/b][font=Wingdings]l [/font][font=宋体]催化剂活性高,工作温度低,用瓶装纯氩经本机净化就能得到高纯氩,为用户降低成本。[/font][font=宋体] [/font][font=Wingdings]l [/font][font=宋体]双式结构,一组工作另一组再生备用,故能长期连续供气。[/font][font=宋体] [/font][font=Wingdings]l [/font][font=宋体]采用本机纯气吹扫的再生流程,再生不用氢,故不需专用机房,安全性好。[/font][font=宋体] [/font][font=Wingdings]l [/font][font=宋体]采用液晶触摸屏式,压力、温度等通过传感器在触摸屏实行在线检测,本系统的工作、再生周期可以根据用户的实际使用量进行调整,有利于节省气源。[/font][font=Wingdings]l [/font][font=宋体]工作、再生采有自动切换功能,无需手动操作,性能也更稳定可靠,避免用户误操作给系统带来的污染。[/font][font=Wingdings]l [/font][font=宋体][font=宋体]采用分级净化的原理,预先除去氩气中的活性杂质,如[/font]O2[font=宋体]等,再深度净化,大大延长了设备的使用寿命。 [/font][/font][font=宋体][font=Wingdings]l [/font]设备内置超温、超压、钢瓶欠压、阀门故障等报警系统[/font],[/size][font=宋体][size=18px]以确保设备的安全性和可靠性。[/size][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/03/202203181704329159_6196_1600363_3.jpg!w690x920.jpg[/img][img=,690,746]https://ng1.17img.cn/bbsfiles/images/2022/03/202203181707038454_3098_1600363_3.jpg!w690x746.jpg[/img][size=18px][b][u][font=宋体]应用[/font][font=宋体] [/font][/u][font=宋体] [/font][/b][font=Wingdings]l [/font][font=宋体]净化氩气,用于弧光/电火花光电发射光谱分析。[/font][font=Wingdings]l [/font][font=宋体]净化氩和氦运载气体用于气[/font][font=宋体]相[/font][font=宋体]色谱分析。[/font][font=Wingdings]l [/font][font=宋体]净化氩气或氦气用作惰性气体[/font][font=宋体]保护[/font][font=宋体]。[/font][font=Wingdings]l [/font][/size][font=宋体][size=18px]其余任何需要气体纯净度和可靠性的用途。[/size][img=,690,637]https://ng1.17img.cn/bbsfiles/images/2022/03/202203181702108710_507_1600363_3.jpg!w690x637.jpg[/img][img=,690,450]https://ng1.17img.cn/bbsfiles/images/2022/03/202203181706145558_3661_1600363_3.jpg!w690x450.jpg[/img][/font][/font]

  • 时间分辨荧光光谱测定不同氮化碳纳米结构的光催化性能研究

    时间分辨荧光光谱测定不同氮化碳纳米结构的光催化性能研究

    [align=center][b][font=黑体]时间分辨荧光光谱测定不同氮化碳纳米结构的光催化性能研究[/font][/b][/align][align=center][font=宋体]刘传德,束[/font][font=宋体]爽,魏[/font][font=宋体]巍[/font]*[/align][align=center][font=宋体]江苏大学[/font][font=宋体]分析测试中心[/font], [font=宋体]江苏[/font] [font=宋体]镇江[/font] 212013[/align][b][font=黑体]摘[/font][font=黑体]要[/font]: [/b][font=宋体]本文系统地研究了不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]纳米结构(块体[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和纳米线)光催化降解亚甲基蓝的活性及其在纳米尺度下的时间分辨荧光光谱。主要研究目的是阐明不同氮化碳纳米结构对光活性影响的因素。时间分辨荧光光谱表明,氮化碳纳米线形成了低的价导带和稳定的发光缺陷态,进而增长了其荧光寿命。研究进一步表明,氮化碳纳米线的界面发生的电子转移受氮化碳结构缺陷的影响。此外,光催化实验结果表明,与块体[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]相比所制备的纳米线具有更高的催化活性。[/font][b][font=黑体]关键词[/font]: [/b][font=宋体]氮化碳[/font][font=楷体_GB2312];[/font][font=宋体]纳米线;时间分辨荧光光谱;光催化活性[/font][align=center][b]Study on photocatalytic properties of different carbonnitride nanostructures determined by time-resolved fluorescence spectroscopy[/b][/align][align=center] LIU Chuan-de, SHU Shuang, WEI Wei *[/align][align=center]Analysis &Testing Center, Jiangsu University,Zhenjiang 212013, China[/align][b]Abstract:[/b]The time-resolved photoluminescence(PL) in the nanosecond time scale of different g-C[sub]3[/sub]N[sub]4[/sub]nanostructures (bulk g-C[sub]3[/sub]N[sub]4 [/sub]and nanowires) has beensystematically investigated in relation to their photocatalytic degradation ofMethylene blue (MB). The main aim of the study is to elucidate the origin ofthe effects in photoactivity produced by different g-C[sub]3[/sub]N[sub]4[/sub]nanostructures. Time-resolved PL analysis indicates carbon nitride nanowiresintroduce new stabilized luminescent defective trap states below the conductionband revealed by long-living PL components. While analysis indicates that theelectron transfer occurring at the carbon nitride nanowires interface is affectedby the defective structure of carbon nitride. Furthermore, the photocatalyticexperimental results indicated that the as-prepared nanowires showed enhancedactivities compared with bulk g-C[sub]3[/sub]N[sub]4[/sub].[b]Key words:[/b]carbon nitride nanowires time-resolvedphotoluminescence photocatalytic activity[font=宋体]石墨相氮化碳([/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体])是由[/font]N[font=宋体]桥连七嗪环([/font]C[sub]6[/sub]N[sub]7[/sub][font=宋体])结构单元构成的二维层状材料,它具有可见光响应、化学稳定性好、热稳定性高及成本低廉等突出优点[/font][sup][1, 2][/sup][font=宋体],在可见光催化水分解制氢[/font][sup][3][/sup][font=宋体]、二氧化碳还原[/font][sup][4][/sup][font=宋体]及环境治理[/font][sup][5][/sup][font=宋体]等领域得到了广泛应用,是近年备受研究人员关注的一种聚合物光催化材料。块体氮化碳([/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体])存在比表面积低、光生载流子易复合和光吸收有限等缺点[/font][sup][6][/sup][font=宋体],限制了石墨相氮化碳的实际应用前景。[/font][font=宋体]研究工作者通过调控[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的形貌来改善其催化活性[/font][sup][7][/sup][font=宋体],近年来,各种形态的纳米结构不断出现,已经报道的超薄纳米片、三维多孔等结构[/font][sup][3-5][/sup][font=宋体],此类结构都有这优异的特性,备受工作者青睐。[/font][font=宋体]时间分辨荧光光谱也叫瞬态荧光光谱,能够表征样品由基态受激发到激发态后,再由激发单重态回到基态辐射光子的过程,能够直接获得荧光衰减曲线,从而获得瞬态相关的物理机制,可以进一步研究光催化过程的光诱导电荷分离及其转移过程。[/font][font=宋体]我们利用高级稳态瞬态荧光测试系统,以可调谐皮秒激光器为激发光源,对制备的不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]纳米结构(块体[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和纳米线)进行荧光性能检测。考察不同形貌[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的瞬态寿命,辅以[/font]X[font=宋体]射线衍射仪、透射电子显微镜、傅里叶变换红外光谱仪和比表面分析仪器等相应的检测手段,研究不同结构[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的相应性能,从而总结时间分辨荧光光谱寿命对催化性能的影响。[/font][b]1[/b][font=宋体]实验[/font][b]1.1[/b][font=黑体]材料与仪器[/font][font=宋体]三聚氰胺、三聚氰酸、无水乙醇、乙腈、亚甲基蓝均为分析纯,购自国药集团化学试剂公司;实验用水采用二次蒸馏水。[/font]X[font=宋体]射线衍射分析仪[/font]([font=宋体]德国[/font]Bruker [font=宋体]公司,[/font]D8 Advance)[font=宋体],扫描电子显微镜[/font]([font=宋体]日本[/font]JEOL[font=宋体]公司,[/font]JSM-7001F)[font=宋体],透射电子显微镜[/font]([font=宋体]日本[/font]JEOL[font=宋体]公司,[/font]JEM-1200EX)[font=宋体],傅里叶红外光谱仪[/font]([font=宋体]美国赛默飞世尔科技有限公司,[/font]Nicolet 50)[font=宋体],紫外可见分光光度计[/font]([font=宋体]日本岛津公司,[/font]UV-2450)[font=宋体],全自动比表面和孔隙分析仪[/font]([font=宋体]美国康塔公司,[/font]NOVA4200E)[font=宋体]、高级稳态瞬态荧光测试系统[/font]([font=宋体]美国[/font]Photon Technology International[font=宋体]公司,[/font]QM4m)[font=宋体]。[/font][b]1.2[font=黑体]不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=黑体]纳米结构的制备[/font][/b][font=宋体]首先,称取等摩尔比的三聚氰胺和三聚氰酸,直接溶解于[/font]60 mL[font=宋体]的乙腈中,充分搅拌[/font]12h[font=宋体],待搅拌结束后,用乙腈清洗数遍后,在[/font]80[font=宋体]℃下干燥[/font]12h[font=宋体],获得白色粉末。将白色粉末分散于[/font]80 mL[font=宋体]的乙腈中,放入[/font]100mL[font=宋体]的内衬为聚四氟乙烯的不锈钢反应釜中,密封在[/font]180[font=宋体]℃下反应[/font]24h[font=宋体],反应结束后,离心洗涤多次,在[/font]80[font=宋体]℃下干燥[/font]12h[font=宋体]获得前驱体。将前驱体放入坩埚中于管式炉中在氮气保护[/font]500[font=宋体]℃下煅烧[/font]2h[font=宋体],待管式炉自然冷却至室温,取样品袋备用,标记为[/font]CNWs[font=宋体]。作为参比,根据之前的报道直接热解三聚氰胺获得样品,标记为[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][sup][3, 6][/sup][font=宋体]。[/font][b]1.3[font=黑体]光催化活性测试[/font][/b][font=宋体]取[/font]0.1g[font=宋体]催化剂加入到[/font]100mL 10 mg/L[font=宋体]亚甲基蓝溶液,暗反应[/font]30min[font=宋体]以保证吸附[/font]-[font=宋体]脱附达到平衡,然后打开光源([/font]350 W[font=宋体]氙灯)照射在每隔[/font]30min[font=宋体]取出约[/font]3mL[font=宋体]液体,离心分离,利用采用紫外可见分光光度计测定溶液的吸光度。亚甲基蓝溶液的脱色率用以下公式计算:[/font][font=宋体]降解率[img=,433,65]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091630259980_5308_5248244_3.png!w433x65.jpg[/img][/font][font=宋体]式中:[/font][i]C[sub]0[/sub][/i]—[font=宋体]原溶液中亚甲基蓝的初始质量浓度;[/font][i]C[sub]e[/sub][/i]—[font=宋体]亚甲基蓝溶液降解后的质量浓度;[/font][i]A[sub]0[/sub][/i]—[font=宋体]原溶液中亚甲基蓝的初始吸光度;[/font][i]A[sub]e[/sub][/i]—[font=宋体]亚甲基蓝溶液降解后的吸光度。[/font][b] 2 [/b][font=宋体]结果与分析[/font][b]2.1[font=黑体]不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=黑体]纳米结构的表征[/font][/b][align=center][img=,690,265]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091629425631_5031_5248244_3.png!w690x265.jpg[/img][/align][align=center][font=宋体]图[/font]1 [font=宋体]所制备的[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的[/font]XRD[font=宋体]谱图[/font](a)[font=宋体]和红外光谱图[/font](b)[/align][align=center] Fig. 1 XRD patterns (a) and FT-IR spectra (b)for the as-prepared samples: bulk g-C[sub]3[/sub]N[sub]4[/sub] and CNWs.[/align][b]2.1.1[/b][font=楷体_GB2312]样品的晶相分析[/font][font=宋体]图[/font]1(a)[font=宋体]为[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的[/font]XRD[font=宋体]谱图。在[/font]12.8[font=宋体]°和[/font] 27.3[font=宋体]°处出现石墨相氮化碳的特征衍射峰,与标准[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的晶面相相吻合[/font][font=宋体],分别对应于[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的[/font](100)[font=宋体]和[/font](002)[font=宋体]晶面,[/font][font=宋体]且未观测到其它特征峰,表明采用超分子自组装法能够制备[/font]g-C[sub]3[/sub]N[sub]4[/sub][sup] [6][/sup][font=宋体]。[/font]12.8[font=宋体]°处的衍射峰归属于[/font]melon[font=宋体]类物质的特征峰,由体系内缩聚的三嗪单元的有序排列引起;[/font]27.3[font=宋体]°处的衍射峰归属于典型层间堆积的共轭芳香体系,表明[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]具有类石墨的层状结构[/font][sup][4][/sup][font=宋体]。[/font][align=center][font=宋体][img=,690,297]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091630100029_8764_5248244_3.png!w690x297.jpg[/img]图[/font]2[font=宋体]所制备的[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]样品的[/font]TEM[font=宋体]图:[/font](a) bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font](b) CNWs[/align][align=center]Fig. 2 RepresentativeTEM micrographs of (a) bulk g-C[sub]3[/sub]N[sub]4[/sub] and (b) CNWs.[/align][font=宋体]此外,与[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]相比,[/font]CNWs[font=宋体]处于[/font]27.2[font=宋体]°处的峰出现偏移,说明该材料的晶面间距增大,表明层状结构被破坏,且强度变弱,说明采用超分子自组装法合成的[/font]CNWs[font=宋体]具有更高的缺陷率[/font][sup][8][/sup][font=宋体]。图[/font]1(b)[font=宋体]为[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的红外光谱图。[/font]CNWs[font=宋体]的红外吸收峰位与[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]基本一致,均表现出典型的[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]特征振动模型,说明两种纳米结构的[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]表观官能团结构相似,[/font]810 cm[sup]-1[/sup][font=宋体]处的吸收峰归属于三嗪结构单元典型的弯曲振动模式[/font][sup][4][/sup][font=宋体],[/font]890 cm[sup]-1[/sup][font=宋体]处的吸收峰归属于[/font]N-H[font=宋体]键的弯曲变形,[/font]1240~1640 cm[sup]-1[/sup][font=宋体]处的吸收峰是典型的芳香型碳氮杂环([/font]C–N(–C)–C [font=宋体]或[/font] C–NH–C[font=宋体])的伸缩振动峰[/font][sup][9][/sup][font=宋体]。同时,与[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]相比,[/font]CNWs[font=宋体]在[/font]3000 cm[sup]-1[/sup][font=宋体]处有更强的吸收峰([/font]N-H[font=宋体]的弯曲振动峰),表明[/font]CNWs[font=宋体]中有较多的氨基基团。[/font][b]2.1.2[/b][font=楷体_GB2312]样品的形貌分析[/font][font=宋体]图[/font]2[font=宋体]为[/font][font=宋体]所制备的[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]样品的[/font]TEM[font=宋体]图。由图可见,与直接热解三聚氰胺得到的层状堆叠结构的[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]相比,[/font]CNWs[font=宋体]形成了纳米线结构。这种特殊形貌的形成是因为非共价键(氢键和卤键)在超分子自组装过程中的引导作用[/font][sup][9][/sup][font=宋体],使得三聚氰胺和三聚氰酸分子出现定向排布,最终形成纳米线构型。[/font][b]2.1.3[/b][font=楷体_GB2312]样品的紫外光谱及比表面积分析[/font][align=center][font=宋体][img=,690,261]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091630395450_9441_5248244_3.png!w690x261.jpg[/img]图[/font]3[font=宋体]所制备的[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的[/font]Uv-vis[font=宋体]谱图[/font](a)[font=宋体]和氮气吸附[/font]/[font=宋体]脱附等温曲线[/font](b)[/align][align=center]Fig. 3 (a)Uv-vis diffuse reflectance spectra of bulk g-C[sub]3[/sub]N[sub]4[/sub] andCNWs (b) Nitrogen adsorption/desorption isotherm curves of bulk g-C[sub]3[/sub]N[sub]4[/sub]and CNWs[/align][font=宋体]光吸收性能是影响样品的光催化活性的重要因素。图[/font]3(a)[font=宋体]为[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的紫外可见漫反射光谱图。从图中可以发现,制备的[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的最大吸收边为[/font]465 nm[font=宋体],而具有纳米线形貌的[/font]CNWs[font=宋体]的最大吸收边发生了明显的红移,大大增强了其对可见光的响应。相比[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体],超分子自组装法制备的纳米线在光吸收能力上显著增强,提高了其对可见光的利用率。根据[/font]Tauc plot[font=宋体]公式计算[/font][sup][3][/sup][font=宋体],[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]禁带宽度为[/font]2.62 eV[font=宋体],而氮化碳纳米线的禁带宽度为[/font]1.52 eV[font=宋体],形成了较低的价导带,表明了光吸收性能得到了有效的改善,可能由于入射光在纳米线堆中多次反射后增大了光吸收的有效光程所致[/font][sup][10][/sup][font=宋体]。图[/font]3(b)[font=宋体]为[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的的[/font][font=宋体]氮气吸附[/font]/[font=宋体]脱附等温曲线。经吸附脱附等温线测试得分析[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]表现出典型的第Ⅳ类等温线特征,其比表面积为[/font]74.25 m[sup]2[/sup]g[sup]-1[/sup][font=宋体]和[/font]60.16 m[sup]2[/sup]g[sup]-1[/sup][font=宋体]。[/font]CNWs[font=宋体]在[/font]p/p[sub]0[/sub] = 0.8- 1.0 [font=宋体]质检出现滞后环,表明其内部结构介孔较多,且孔径较大,纳米线结构有利于分子的穿插和吸附,增强了反应分子的传质效率[/font][sup][5,11][/sup][font=宋体]。[/font][align=center][img=,690,269]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091630514303_7222_5248244_3.png!w690x269.jpg[/img][/align][align=center][font=宋体]图[/font]4 (a) bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的荧光光谱图[/font] (b)bulkg-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的时间分辨荧光光谱寿命图[/font][/align][align=center]Fig.4 (a) Photoluminescence spectra of bulk g-C[sub]3[/sub]N[sub]4 [/sub]and CNWs (b) Time-resolvedfluorescence decay spectra of bulk g-C[sub]3[/sub]N[sub]4 [/sub]and CNWs[/align][b]2.1.4 [/b][font=楷体_GB2312]样品的光学性质分析[/font][font=宋体]光致发光光谱中荧光强度越弱表明光生电子空穴复合作用越弱,光量子效率越高,说明光催化性能越好。荧光光谱的强度是反应半导体中光致电子空穴分离和复合效率的重要手段,其峰值强度越大往往代表着较低的电子空穴复合速率以及较高的光催化活性[/font][sup][3][/sup][font=宋体]。图[/font]4(a)[font=宋体]显示的是在[/font]350 nm[font=宋体]处激发的[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的荧光光谱图。[/font]bulkg-C[sub]3[/sub]N[sub]4[/sub][font=宋体]在[/font]469 nm[font=宋体]处有一个强度较高的发射峰,然而[/font]CNWs[font=宋体]的发射峰强度比[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的强度急剧下降,说明[/font]CNWs[font=宋体]拥有相对较低的电子空穴复合速率。从中推测[/font]CNWs[font=宋体]的纳米线结构形成有效的界面电子转移,从而大幅抑制光生载荷子的复合[/font][sup][8][/sup][font=宋体],实现[/font]TiO[sub]2[/sub][font=宋体]光催化活性的提高,这与上述[/font]Uv-vis[font=宋体]分析结果一致。[/font][font=宋体]为了进一步研究不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的光生载流子的光物理性质,采用时间分辨荧光光谱定量测定样品的荧光寿命,以高级稳态瞬态荧光测试系统可调谐皮秒激光器为激发光源,激发光波长为[/font]337 nm[font=宋体],检测荧光发射信号在样品荧光发射峰[/font]469 nm[font=宋体]位置。图[/font]4(b)[font=宋体]为[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的时间分辨荧光光谱寿命图。采用单指数衰减方程[/font][sup][4][/sup][font=宋体]来拟合相应的荧光衰减曲线,经拟合计算[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]的平均荧光寿命分别为[/font]2.36 ns[font=宋体]和[/font]3.29 ns[font=宋体]。可见,[/font]CNWs[font=宋体]的光生载流子复合率较低,可能与的二维线性结构和改变的电子能带有关[/font][sup][10][/sup][font=宋体]。时间分辨荧光光谱寿命进一步表明,[/font]CNWs[font=宋体]体系中的光生电子具有较长的荧光寿命。由此,利用二维纳米线结构,促进材料间的光生电荷快速迁移,使催化剂的光生电子与空穴能够有效分离与传输,并保持较强的氧化还原能力[/font][sup][11][/sup][font=宋体]。[/font][b]2.2[font=宋体]不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]纳米结构的光催化性能[/font][/b][font=宋体]图[/font]5 [font=宋体]为制备的不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]纳米结构样品随光照时间的变化降解亚甲基蓝([/font]MB[font=宋体])的降解率曲线及降解有机染料[/font]MB[font=宋体],对比两种不同形貌[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]的光催化活性。[/font]bulk g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]和[/font]CNWs[font=宋体]对[/font]MB[font=宋体]的降解率分别为[/font]71.08%[font=宋体]和[/font]98.52%[font=宋体],纳米线具有更大比表面积的纳米线结构有利于[/font]MB[font=宋体]吸附,提供了更多的反应位点;其二维结构促进了电荷转移传输,增大了光生载流子的转移效率和存活时间,使得催化效率得到了进一步提高[/font][sup][5, 8,12][/sup][font=宋体]。[/font][align=center][img=,690,272]https://ng1.17img.cn/bbsfiles/images/2023/10/202310091631019684_8928_5248244_3.png!w690x272.jpg[/img][/align][align=center][font=宋体]图[/font]5 [font=宋体]不同[/font]g-C[sub]3[/sub]N[sub]4[/sub][font=宋体]样品对亚甲基蓝的降解率[/font] (a) [font=宋体]和降解动力学曲线[/font] (b) [/align][align=center]Fig. 5 (a) Degradation of MB by differentsamples and (b) degradation kinetics curve of different samples.[/align][b] 3[font=宋体]结[/font][font=宋体]论[/font][/b][font=宋体]二维线性结构的氮化碳纳米线结构形成有效的界面电子转移,大幅抑制光生载荷子的复合,使得光催化活性明显高于块体氮化碳。借助时间分辨荧光光谱寿命研究了不同氮化碳的荧光性能,进一步证明了纳米线具有更长的荧光寿命,表明氮化碳纳米线的界面发生的电子转移受氮化碳结构缺陷的影响,提高了氮化碳的光催化性能。[/font][font=黑体]参考文献:[/font][1] Wang, Y., Wang, X., & Antonietti, M. (2012).Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: fromphotochemistry to multipurpose catalysis to sustainable chemistry. [i]AngewandteChemie International Edition[/i], [i]51[/i](1), 68-89.[2] Wang, X., Blechert, S., & Antonietti, M.(2012). Polymeric graphitic carbon nitride for heterogeneousphotocatalysis. [i]Acs Catalysis[/i], [i]2[/i](8), 1596-1606.[3] Cao, S., Low, J., Yu, J., & Jaroniec, M.(2015). Polymeric photocatalysts based on graphitic carbon nitride. [i]AdvancedMaterials[/i], [i]27[/i](13), 2150-2176.[4] Zhao, Z., Sun, Y., & Dong, F. (2015). Graphiticcarbon nitride based nanocomposites: a review. [i]Nanoscale[/i], [i]7[/i](1),15-37.[5] Zheng, Y., Lin, L., Wang, B., & Wang, X.(2015). Graphitic carbon nitride polymers toward sustainable photoredoxcatalysis. [i]Angewandte Chemie International Edition[/i], [i]54[/i](44),12868-12884.[6] Ma, T. Y., Cao, J. L., Jaroniec, M., & Qiao, S.Z. (2016). Interacting carbon nitride and titanium carbide nanosheets for high[font=宋体]-[/font]performance oxygen Evolution. [i]AngewandteChemie International Edition[/i], [i]55[/i](3), 1138-1142.[7] Xia, P., Zhu, B., Yu, J., Cao, S., & Jaroniec,M. (2017). Ultra-thin nanosheet assemblies of graphitic carbon nitride forenhanced photocatalytic CO[sub]2[/sub] reduction. [i]Journal of MaterialsChemistry A[/i], [i]5[/i](7), 3230-3238.[8] Cui, Q., Xu, J., Wang, X., Li, L., Antonietti, M.,& Shalom, M. (2016). Phenyl[font=宋体]-[/font]modified carbon nitride quantum dots with distinct photoluminescenceBehavior. [i]Angewandte Chemie International Edition[/i], [i]55[/i](11),3672-3676.[9] Zhou, C., Lai, C., Huang, D., Zeng, G., Zhang, C.,Cheng, M., ... & Wen, X. (2018). Highly porous carbon nitride bysupramolecular preassembly of monomers for photocatalytic removal ofsulfamethazine under visible light driven. [i]Applied Catalysis B:Environmental[/i], [i]220[/i], 202-210.[10] Niu, P., Qiao, M., Li, Y., Huang, L., & Zhai,T. (2018). Distinctive defects engineering in graphitic carbon nitride forgreatly extended visible light photocatalytic hydrogen evolution. [i]NanoEnergy[/i], [i]44[/i], 73-81.[11] Xia, P., Antonietti, M., Zhu, B., Heil, T., Yu,J., & Cao, S. (2019). Designing defective crystalline carbon nitride to enableselective CO[sub]2[/sub] photoreduction in the gas phase. [i]AdvancedFunctional Materials[/i], 1900093.[12] Zhang, G., Li, G., Heil, T., Zafeiratos, S., Lai,F., Savateev, A., ... & Wang, X. (2019). Tailoring the grain boundary chemistryof polymeric carbon nitride for enhanced solar hydrogen production and CO[sub]2[/sub]reduction. [i]Angewandte Chemie International Edition[/i], [i]131[/i](11),3471-3475.

  • 【分享】全自动微生物鉴定系统在临床微生物检验中的应用

    [size=4] 传统的微生物分离、鉴定方法操作繁杂,周期长,准确性差,灵敏度低,对实验室技术人员的专业技术、操作技能、工作经验要求极高,快速和准确获得细菌的鉴定及药敏结果是非常必要的。近年来随着计算机的发展及广泛应用,微生物鉴定的自动化技术近十几年得到了快速发展。先后出现了许多全自动细菌鉴定与药敏系统,比如VITEK 系统、MicroScan WaikAway系统、MicroScan AS-4 微生物分析仪、PHOENIXTM系统等。这些技术的应用,为医学微生物检验工作提供了一个简便、科学的细菌鉴定程序,大大提高了细菌鉴定的准确性,在很大程度上提高了工作效率,但同时也应注意一些问题,本文对几种常用的鉴定系统在临床微生物检验中的应用情况做一综述。[back=rgb(243, 40, 255)]1 全自动微生物鉴定系统的基本原理 [/back] 全自动微生物鉴定系统是基于生物信息编码(数码)鉴定细菌的新方法。数码鉴定是指通过数学的编码技术将细菌的生化反应模式转换成数学模式,给每种细菌的反应模式赋予一组数码,建立数据库或编成检索本。通过对未知菌进行有关生化试验并将生化反应结果转换成数字(编码),查阅检索本或数据库,得到细菌名称。其基本原理是计算并比较数据库内每个细菌条目对系统中每个生化反应出现的频率总和。 鉴定系统的工作原理因不同的仪器和系统而异。不同的细菌对底物的反应不同是生化反应鉴定细菌的基础,而试验结果的准确度取决于鉴定系统配套培养基的制备方法、培养物浓度、孵育条件和结果判定等。大多鉴定系统采用细菌分解底物后反应液中pH的变化,色原性或荧光原性底物的酶解,测定挥发或不挥发酸,或识别是否生长等方法来分析鉴定细菌。 药敏试验分析系统的基本原理是将抗生素微量稀释在条孔或条板中,加入菌悬液孵育后放入仪器或在仪器中直接孵育,通过测定细菌生长的浊度,或测定培养基中荧光指示剂的强度或荧光原性物质的水解,观察细菌的生长情况。在含有抗生素的培养基中,浊度的增加提示细菌生长,根据判断标准解释敏感或耐药。[/size]

  • 【国产好仪器讨论】之天津市先权工贸发展有限公司的全自动多用吸附仪(TP-5080)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C181578%2Ejpg&iwidth=200&iHeight=200 天津市先权工贸发展有限公司 的 全自动多用吸附仪(TP-5080)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 概述: TP-5080全自动多用吸附仪是集自动化、智能化、便携化为一体的催化剂动态分析仪,可以在加压(5 Mpa)、常压、正温(0oC至1000oC)、负温(-120oC至0oC)条件下通过程序升温还原(TPR)、程序升温氧化(TPO)、程序升温脱附(TPD)、氢气-氧气滴定(HOT)和程序升温表面反应(TPSR)等系列实验研究催化剂表面性质。该分析仪是全自动化操作仪器,可以完成微量连续流动法和脉冲法两大类反应,配有专用数据处理系统。与质谱、红外、色谱等连接后可以实现在线检测,定性定量反映催化剂在热状态下的动态信息。该分析仪广泛应用于矿藏成份分析,储氢、储氧材料的性能检测,以及物质对有机\无机气体、液体选择性吸附的研究,是各大院校及科研院所教学与研究的首选仪器。 技术优势: (1)全自动,装样后只需启动程序 (2)管路系统和阀门由零吸附、耐腐蚀、绝缘材料组成 (3)适合多种气体吸附质(H2、CO2、 CO、NH3、H2S、SO2等),液体吸附质(苯,甲苯,砒碇等)可以选配蒸发罐 (4)配备真空系统;连接质谱、色谱、红外等可同时得到质谱法、色谱法和化学法结果 (5)耗气量和耗电量分别是同类仪器的1/3、1/2 技术指标: (1)催化剂装样量:0-200 mg(适用于颗粒、粉体状催化剂) (2)程序升温速率:设计值0.5-90oC·min-1(九段程序升温具有独立的PID参数自整定,温度控制精度±0.2% FS) (3)吸附炉温度:室温-1100oC(1000oC以上短暂使用) (4)开机后仪器稳定所需时间:20min 请参阅各高校、研究所采用天津先权公司TP-5080全自动多用吸附仪发表的文章: (1)J.CATAL.2009(266),228-235. (IF=50787) (2)INT. J. HYDROGEN. ENERG. 2012(37), 14133-14142. (IF=3.548) 【了解更多此仪器设备的信息】

  • 全自动凯氏定氮仪是什么仪器

    全自动凯氏定氮仪是什么仪器

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/12/202312110951572628_6599_5604214_3.jpg!w690x690.jpg[/img]  全自动凯氏定氮仪是一种用于测定物质中氮含量的仪器。它具有自动化、精度高、操作简便等优点,是实验室中常用的仪器之一。  全自动凯氏定氮仪的工作原理是利用凯氏定氮法来测定样品中的氮含量。凯氏定氮法是一种经典的化学分析方法,它通过将样品与硫酸、催化剂一同加热,使样品中的有机氮转化为氨态氮,再通过蒸馏将氨态氮分离出来,最后用酸滴定法测定氨态氮的含量,从而计算出样品中的氮含量。  全自动凯氏定氮仪通常由加热系统、蒸馏系统、滴定系统和数据处理系统等组成。其中,加热系统用于将样品加热到反应所需温度 蒸馏系统用于将氨态氮从样品中蒸馏出来 滴定系统用于用酸滴定氨态氮的含量 数据处理系统用于处理实验数据,计算氮含量。  全自动凯氏定氮仪具有许多优点。首先,它能够自动化操作,降低了人工操作带来的误差 其次,它具有高精度和高灵敏度,可以准确地测定样品中的氮含量 第三,它操作简便,不需要繁琐的实验步骤 第四,全自动凯氏定氮仪具有环保特点,可以将废液自动排出,降低了对环境的污染。  总之,全自动凯氏定氮仪是一种高精度、自动化、操作简便的仪器,广泛应用于食品、药品、农业、环保等领域。通过使用全自动凯氏定氮仪,我们可以更准确地测定物质中的氮含量,为生产和生活提供有力的支持。  ?

  • 【求助】光催化反应注意事项

    那位大侠在做光催化,能否提供一些光催化实验所需注意的事项,比如反应器与光源的距离,搅拌速率,取样位置等等,拜托啦!!!![em09509]

  • 【求助】光催化还原产物定量分析

    各位老师好,我想请教一个问题:光催化还原CO2,尾气排放中有CO生成,液相产物有甲酸等。那么,在不知道进入气相色谱的气体量是多少的情况下,该如何定量分析CO有多少呢?或是哪位老师能给个测定气相产物的方法呢?先谢谢各位老师了

  • 水质样本的多指标全自动快速检测-仪器分析

    全自动分立式分析技术来源于目前广泛应用于临床检测的全自动生化分析仪。二十多年前,全自动生化分析技术在临床检测领域的出现,使临床检测从此告别了的手工、半自动的检测时代,迈入到自动化、标准化和信息化的新阶段。每小时多达数百乃至上千测试的分析系统相继出现在各医院的理化实验室,临床检验也由此建立起了越来越完善的实验室内和实验室间的质量控制系统。近年来,国家相关部门越来越重视对水质研究和检测工作,全国各地水质实验室的常规检测任务日益繁重,样本数量的快速增长,报告周期的逐步缩短,特别是应对水质突发事件时,亟需实验室在标准化、自动化和信息化的基础上提升快速、准确、低成本的批量检测能力。针对水质分析实验室的应用特点和检测要求,将临床全自动分析系统加以改进和重新设计研发的全自动分立式水质分析仪符合水质环境检测对样本多样性和灵活性的需求,同时完好地发挥了操作简单、检测通量高、运行成本低等优点。全自动分立式检测技术克服了通道型仪器(如流动注射分析仪)的限制和流通技术(如流通比色池分析仪)的诸多弊端,采用分立式反应和直读技术,将手动的比色法检测完全实现自动化,通过机械式移液针自动进行加样品、加试剂、搅拌、冲洗、孵育显色和比色检测,再通过校准曲线自动计算待测物质的浓度值。从样本加入到结果报告的完整控制和自动化运行无需人为介入,彻底消除了由手工操作造成的人为误差。全自动分立式水质分析仪可实现水质样本中不同指标的任选式并行检测,其开放性和灵活性更为实验室的科研工作提供了一个很好的分析检测平台。另外,该技术采用微升级反应体系,提高了检测速度,微量的样品和试剂消耗极大地降低了每个测试的检测成本。自动化分析流程中各个精密部件的灵活运行能够确保系统误差在可接受范围之内,大大提高了检测结果的准确性和重现性。目前,全自动分立式水质分析技术可广泛应用于饮用水、地表水、地下水、生活污水、工业废水和土壤浸出液的快速检测。

  • 【资料】室内微污染有机废气的纳米光催化处理

    摘 要 室内装修产生的污染严重影响人们的身体健康,纳米和光催化技术是国际上新出现并普遍认为是最有应用化前景的高新技术,介绍了应用TiO2 纳米光催化技术治理室内空气污染的方法,能在常温下高效、稳定地分解污染物,其处理效果明显,无二次污染,适合室内空气中有害污染物净化。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=94382]室内微污染有机废气的纳米光催化处理[/url]

  • 光催化产氢光强校准

    [color=#444444]请问一下,做光催化产氢性能实验之前,是不是要校准氙灯(300W)的光强?用什么仪器校准?在什么位置处校准?校准到什么程度才算是校准成功?请各位前辈帮忙解答一下,谢谢![/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制