当前位置: 仪器信息网 > 行业主题 > >

汽车气缸专用非接触三维测量系统

仪器信息网汽车气缸专用非接触三维测量系统专题为您提供2024年最新汽车气缸专用非接触三维测量系统价格报价、厂家品牌的相关信息, 包括汽车气缸专用非接触三维测量系统参数、型号等,不管是国产,还是进口品牌的汽车气缸专用非接触三维测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合汽车气缸专用非接触三维测量系统相关的耗材配件、试剂标物,还有汽车气缸专用非接触三维测量系统相关的最新资讯、资料,以及汽车气缸专用非接触三维测量系统相关的解决方案。

汽车气缸专用非接触三维测量系统相关的资讯

  • 布鲁克携ContourGT非接触式三维光学形貌仪参加第14届中国光博会
    布鲁克公司纳米表面仪器部携ContourGT非接触式三维光学形貌仪参加2012年第14届中国光博会布鲁克公司纳米表面仪器在本届光博会上展出最新的ContourGT非接触式三维光学形貌仪,具有优异的抗噪声特性,能实现定标性测量的重复性和再现性,拥有业界最高垂直分辨率,适用于对各种复杂精密元器件形状的高精度质量管理工作,精确测量表面形貌、台阶高度和表面粗糙度等。 作为表面观测和测量技术的全球领导者,布鲁克公司纳米表面仪器部提供世界上最完整的原子力显微镜、三维非接触式光学形貌仪和探针式表面轮廓仪系列产品。布鲁克公司纳米表面仪器部一直着眼于研发新的计量检测方法和工具,不断迎接挑战,致力于为客户解决各种技术难题,提供最完善的解决方案。此外,还可根据工业生产中的操作模式和操作习惯,精简仪器功能,针对生产中的特定应用需求,为客户量身打造相匹配的仪器设备,简化生产过程的操作流程,提高工作效率。布鲁克的表面测量仪器广泛用于大学、研究所,工业领域的LED行业、太阳能行业、触摸屏行业、半导体行业以及数据存储行业等,进行科学研究、产品开发、质量控制及失效分析,提供符合需求和预算的最佳解决方案。ContourGT 光学形貌仪广泛应用于触摸屏、高亮度LED、太阳能电池、模具、零部件测量等各种领域该系列包括基本型ContourGT-K0,桌上型ContourGT-K1,中端型号ContourGT-X3,以及旗舰型号ContourGT-X8和ContourGT-X8 PSS(该型号专为高亮度LED的质量保证/质量监控而设计)等。每一种型号为用户的不同需求提供解决方案,以满足在精密制造和特定行业的要求,如高亮度LED、触摸屏、太阳能电池、隐形眼镜、半导体、硬盘、汽车和骨科等NPFLEX 三维表面测量系统为大尺寸工件精密加工提供准确测量布鲁克的NPFLEX 三维表面测量系统为大样品表面提供了灵活的非接触式测量方案,可广泛用于医疗植入、航空航天、汽车或精密加工上的大型、异型工件的测量。 基于白光干涉原理,NPFLEX 为用户提供超过接触式方法所能达到的更大数据量、更高分辨率和更好的重复性,使它成为独立或者互补的测量方案。开放式的拱门设计克服了以往某些零件由于角度或取向造成的测量困难,可实现超过300度的测量空间。NPFLEX的超级灵活性、数据准确性和测试效率为精密加工行业提供了一种简单的方法,来实现其更苛刻的加工要求、更高效的加工工艺和更好的终端产品。 客户服务热线:400-890-5666 邮箱:sales.asia@bruker-nano.com
  • 布鲁克携ContourGT非接触式三维光学形貌仪参加第15届中国光博会
    布鲁克公司纳米表面仪器部携ContourGT非接触式三维光学形貌仪参加2013年第15届中国光博会布鲁克公司纳米表面仪器在本届光博会上展出最新的ContourGT非接触式三维光学形貌仪,具有优异的抗噪声特性,能实现定标性测量的重复性和再现性,拥有业界最高垂直分辨率,适用于对各种复杂精密元器件形状的高精度质量管理工作,精确测量表面形貌、台阶高度和表面粗糙度等。 客户服务热线:010- 5833 3252 邮箱:sales.asia@bruker-nano.com 作为表面观测和测量技术的全球领导者,布鲁克公司纳米表面仪器部提供世界上最完整的原子力显微镜、三维非接触式光学形貌仪和探针式表面轮廓仪系列产品。布鲁克公司纳米表面仪器部一直着眼于研发新的计量检测方法和工具,不断迎接挑战,致力于为客户解决各种技术难题,提供最完善的解决方案。此外,还可根据工业生产中的操作模式和操作习惯,精简仪器功能,针对生产中的特定应用需求,为客户量身打造相匹配的仪器设备,简化生产过程的操作流程,提高工作效率。布鲁克的表面测量仪器广泛用于大学、研究所,工业领域的LED行业、太阳能行业、触摸屏行业、半导体行业以及数据存储行业等,进行科学研究、产品开发、质量控制及失效分析,提供符合需求和预算的最佳解决方案。ContourGT 光学形貌仪广泛应用于触摸屏、高亮度LED、太阳能电池、模具、零部件测量等各种领域该系列包括基本型ContourGT-K0,桌上型ContourGT-K1,中端型号ContourGT-X3,以及旗舰型号ContourGT-X8和ContourGT-X8 PSS(该型号专为高亮度LED的质量保证/质量监控而设计)等。每一种型号为用户的不同需求提供解决方案,以满足在精密制造和特定行业的要求,如高亮度LED、触摸屏、太阳能电池、隐形眼镜、半导体、硬盘、汽车和骨科等NPFLEX 三维表面测量系统为大尺寸工件精密加工提供准确测量布鲁克的NPFLEX 三维表面测量系统为大样品表面提供了灵活的非接触式测量方案,可广泛用于医疗植入、航空航天、汽车或精密加工上的大型、异型工件的测量。 基于白光干涉原理,NPFLEX 为用户提供超过接触式方法所能达到的更大数据量、更高分辨率和更好的重复性,使它成为独立或者互补的测量方案。开放式的拱门设计克服了以往某些零件由于角度或取向造成的测量困难,可实现超过300度的测量空间。NPFLEX的超级灵活性、数据准确性和测试效率为精密加工行业提供了一种简单的方法,来实现其更苛刻的加工要求、更高效的加工工艺和更好的终端产品。 客户服务热线:010- 5833 3252 邮箱:sales.asia@bruker-nano.com
  • 眼视光镜片的加工和品控 - 车床加工/三维非接触测量/透氧性
    由于眼视光镜片需要在人眼中使用,质量控制尤为重要,高精度加工和检测是高质量的保证。 阿美特克旗下多品牌仪器皆可助力眼视光镜片的加工和品控。此次讲座将涵盖STERLING超精密车床在眼视光镜片制造与加工中的应用,TAYLOR HOBSON三维非接触测量技术助力眼视光镜片面形控制的提升,以及MOCON对隐形眼镜透氧性能的解析。 6月16日14:00-16:00,STERLING & TAYLOR HOBSON & MOCON的专家将为大家带来精彩的线上直播,期待您扫码报名参与~
  • 网络研讨会|涂魔师非接触无损测厚系统助力优化汽车车身涂装工艺
    汽车车身覆盖有几层不同功能的漆层,油漆材料以及喷涂工艺的质量在车辆的美观中起着关键作用。同时,汽车车身表面进行涂装工艺可以避免车身在日常使用中发生氧化、腐蚀、过早老化等问题,起到防护作用。因此,建立统一的喷涂工艺要求和不同涂层厚度的允许容差范围(允许容差范围=合格范围上限值-合格范围下限值)规范是至关重要的。此次网络研讨会,我们将向您展示涂魔师非接触无损测厚系统监测测量、控制和优化汽车车身喷涂工艺,涂魔师非接触无损测厚系统可用于测量固化后的总涂层厚度,也可以在湿膜的情况下得出干膜的涂层厚度。涂魔师非接触无损测厚仪非常适合汽车制造商以及汽车零部件生产商,可通过实时测量涂层厚度实现在生产早期测量涂层厚度,从而解决质量和生产问题,有效避免昂贵且复杂的返工工序。不仅能节省时间成本,也能减少废料和次品的产生,大大稳定了生产质量。马上发邮件到marketing@hjunkel.com,备注【9月2号涂魔师研讨会】进行报名登记,我们将在研讨会结束后给您发送资料和视频。或电话咨询报名。涂魔师非接触无损测厚系统介绍涂魔师非接触无损膜厚仪利用基材与涂层之间的储热特性,非接触无损精准测量金属基材上电泳漆涂层厚度。在涂层未烘干的湿膜状态下即可实时测出干膜厚度,为精确控制漆膜厚度提供可靠的数据支撑。在工件进入烘炉前就能快速监测真实膜厚,及时发现问题并调整设备参数使膜厚达到合格范围,大大缩短了工艺时间和降低返工率。涂魔师非接触无损测厚仪与传统测厚仪的对比传统金属底材测厚采用磁性/涡流法测厚仪、非金属底材测厚采用DIN EN ISO 2808标准提及到的楔形切割法、DIN 50950标准提及到的横切法或是在特定情况下使用ISO 2808标准的接触式超声波测量设备。上述测量方法有各种局限:而涂魔师非接触式实时测厚系统可以解决以上问题,该系统具有突出优势,能帮助企业高效保证产品质量,减少材料消耗,节省生产成本:传统测厚仪涂魔师非接触无损测厚仪需等待膜层干燥而使工序滞后,无法在喷涂/涂布后马上得知干膜厚度不限测试底材,木材、橡胶、塑料、玻璃、混凝土等底材均可高精度测出涂层膜厚受底材种类限制,精度差不限涂层种类,油漆、粉末涂料、粘胶剂、润滑油、胶水等都适用测试时需要与涂层接触,破坏涂层可测量各种颜色颜料的湿膜或干膜厚度无法测试曲面、弯角、小零件等复杂形状可适应各种不规则和外形复杂工件不能在生产线上直接实时测试实时在产线上监测膜厚涂魔师非接触测厚系统能在生产线前端高效检测湿膜厚度并帮助用户及时作出偏差调整,防止涂层厚度不合格导致汽车车身产生易老化腐蚀、易生锈等产品质量问题。翁开尔是瑞士涂魔师Coatmaster中国总代理,欢迎致电咨询涂魔师非接触无损测厚仪更多产品信息和技术应用。
  • ​国产三坐标测量机产业走访第2站派姆特:自主创新精密测量技术,构建一体化三维测量平台
    近年来,我国高端制造业蓬勃发展,对高精度测量设备的需求持续攀升,极大地推动了以三坐标测量机为代表的精密测量仪器市场的迅猛增长。众多国内外知名品牌竞相涌入这一赛道,同时,也催生了一批崭露头角的国产新兴力量。在国产替代需求日益增长的趋势下,中国三坐标测量机企业迎来了前所未有的发展机遇。为深入了解中国三坐标测量机产业的发展态势,仪器信息网成立25周年之际,特别策划了“万里行”系列走访活动。该活动深入中国三坐标测量机代表性企业,与行业专家共同开展实地走访,探寻产业发展的最新进展和亮点,为发展新阶段赋能。走访第2站,由上海大学李明教授,仪器信息网产业研究部主任武自伟、营销服务中心经理韩永风、测量仪器编辑牛亚伟等组成的走访项目组走进派姆特科技(苏州)有限公司 (以下简称“派姆特”),派姆特华东区区域经理胡书飞、总裁助理Susan接待了走访一行人员。——企业发展进展派姆特成立于2019年,在中国、德国、日本均设有研发中心,并在苏州、西安建立了制造基地。得益于公司成立前的技术积累,派姆特在成立第一年即实现了盈利,且此后每年的收入都实现了翻倍增长。短短五年间,派姆特的团队规模已从最初的约30人发展壮大至现在的150余人。派姆特办公楼派姆特的创始人邰大勇,曾在德国马尔精密量仪和美国法如科技公司任职。他亲眼目睹了我国尺寸精密测量仪器市场几乎一度被国外品牌垄断的状况,这促使他萌生了创立一个拥有自主知识产权、受人尊重的国产高端品牌的念头。随着当前国内对供应链安全要求的日益提升,国产化替代需求旺盛,派姆特迎来了快速发展并受到了资本的青睐。2023年6月,公司获得了由中科创星独家投资的千万元级天使轮融资;同年11月,又获得了深圳高新投的第二轮融资;时隔不到一年,2024年5月,派姆特再次获得了卓远资本的第三轮融资。——产品技术与布局派姆特深耕便携式关节臂,拥有多项专利技术。其关节臂测量机涵盖6轴测量臂、7轴测量臂以及激光扫描臂,完美适应接触式与非接触式测量的多样化需求。设备内置平衡机构,采用等臂长设计,操作灵活自如,测量无死角。测量范围覆盖1.5-4.5米,可在5-45℃的全温度范围之内进行测量,内置温度传感器有效补偿温度变化带来的误差,确保测量精度位居国内顶尖水平,广泛应用于汽车、航空航天、国防军工、轨道交通、工程机械、教育等行业。胡书飞介绍道,为了向客户提供更多的测量方案,派姆特不断拓宽测量技术边界,致力于三坐标测量机的核心系统研发,包括测头、控制器和软件。去年,公司推出了FUTURE系列和PRIME系列桥式机型,以及SPACE车间型三坐标测量机。FUTURE系列采用矩形梁结构、气路分离独立控制等目前三坐标测量机的高端技术,可与进口品牌中高端计量设备相媲美。SPACE系列则专为加工现场设计,能够与机器人、自动上下料系统、机床系统等实现联机,为工业客户带来效率与质量的提升。CAM3软件作为派姆特产品矩阵的核心,是公司战略布局的重要一环。大部分三维测量硬件均需与CAM3软件配合使用,以发挥最大效能。胡书飞呼吁政府加大对软件国产化的支持力度,以便派姆特能够借此东风,打造出更加综合性的CAM3软件,以此为核心和平台,推动公司向更广阔的市场进军。目前,派姆特软件团队已超过20人,CAM3软件在上汽集团等企业中得到成功应用。派姆特的便携式测量臂由两个碳素纤维钢固定臂长和六到七个角度编码器组成。该编码器由派姆特自主研发和生产,可作为独立产品供应市场。派姆特产品矩阵市场调研数据显示,2022年全球三维尺寸测量仪器市场规模已突破100亿美元大关,预计未来将持续保持直线上升的增长态势。为了把握这一市场机遇,派姆特致力于打造一个集多场景应用、多测量精度需求的一体化三维测量平台。公司新推出的圆度仪、圆柱圆度仪和轮廓仪产品刚刚亮相市场,未来还将进一步拓展产品线,布局光笔测量仪和激光跟踪仪产品,以满足更广泛的市场需求。合影留念
  • 三维扫描仪新品全球发布——思看科技NimbleTrack灵动式三维测量系统
    新品全球首发!思看科技NimbleTrack灵动式三维扫描系统!2024年4月9日,思看科技(SCANTECH) 正式发布NimbleTrack灵动式三维扫描系统。NimbleTrack集全无线、不贴点、双边缘计算、一体成型架构于一身,精准驾驭中小型场景动态三维测量,领跑工业计量“无线”新时代!灵动式三维扫描系统NimbleTrack,轻巧身型,自在随行,集全无线、多功能等超凡性能于一身,精准驾驭中小型测量场景,成就绝妙之作。其扫描仪和跟踪器深度集成高性能芯片与嵌入式电池模组,实现了全域无线测量和高速稳定的数据传输,开启工业计量智能无线新时代。整套系统巧妙融合了思看科技的自研生态圈,多种功能形态随心变幻,万般场景灵活应对,以极致技术成就极致性能。轻装上阵 即开即扫NimbleTrack超轻型机身,以极致细节重构性能想象,解锁性能美学的超然进化实力。跟踪器仅重2.2kg,身长57cm,恣意穿梭于各类场景,轻装上阵;扫描仪仅重1.3kg,单手掌控游刃有余,轻松完成长时间测量任务。标配一体式便携安全防护箱,兼顾轻型化与紧凑型,容纳万象,灵动出鞘,带上它,即开即扫,尽显轻盈畅快之感。一体成型 稳如堡垒扫描仪采用全新的碳纤维框架一体成型技术,兼备轻量化和高强度性能,在加工工艺上颠覆了传统组装式框架的装配技术,实现了超高结构稳定度和超强温度稳定性,使得一次校准即可长时间内保持良好的精度范围,让每一次扫描都尽在掌控。双内置电池 真正全无线全栈无线三维扫描系统,无线数据传输、零线缆供电,可满足无电、用电不便等应用场景,开启工业计量无线新时代。扫描仪隐藏式电池仓设计,优雅无束缚;跟踪器双循环电池仓设计,供电不间断,无线转站更顺畅。双边缘计算 性能狂飙扫描仪和跟踪器均搭载新一代高性能边缘计算模组,运算效率跃升至全新高度,解锁120 FPS高帧率流畅测量体验,每一帧都行云流水,驾驭自如。扫描时无需外接电源、贴点,与市面上现有的手持式三维扫描仪相比,整体扫描流程大幅简化,复杂场景更显从容,是当之无愧的效率担当。计量基因 精益求精 依托思看科技计量级产品成熟强大的系统架构和自研算法,最高精度可达0.025mm,在标准跟踪范围内,体积精度可达0.064 mm,精准有实力,还原肉眼可见的细微处。万般场景 挥洒自如NimbleTrack三维扫描系统小巧灵动,轻盈穿梭。面对狭小空间或视角遮挡处,扫描仪可无线单独使用,实现最高0.020 mm的高精度扫描。面对大范围测量场景,跟踪器即刻化身远距离红外标记点扫描利器,精准把控全局精度。智能边界检测模块可选配智能边界探测模块,利用高性能灰阶边缘算法,自动采集孔、槽、切边等特征的三维数据,快速获取高精度的尺寸和位置度信息。i-Probe500 跟踪式测量光笔面对隐藏点或基准孔等难以触达之处,可选配便携式测量光笔i-Probe,设备支持有线或无线传输,为精密测量提供全方位的数字化解决方案。多台跟踪器级联支持多台跟踪器级联工作,大幅扩展扫描范围,有效应对大型工件扫描场景。搭载自动化设备 搭载全新定制化三维扫描仪,为自动化解决方案量身定制装夹方式,使其更加适配各类型机器人;360度均匀分布的标记点岛结构,实现全方位精准跟踪,打造高效的自动化批量检测系统。拓展应用生态NimbleTrack是工业级三维扫描领域真正实现全无线测量的产品,凭借智能无线、不贴点、高精度、高便携性等优势,适用于各类应用场景,尤其是尺寸在40mm-2000mm之间的中小型工件,如汽车四门两盖、内饰座椅、压铸件以及新能源电池盒等。在航空飞行器检修和文物数字化等不适宜贴点的情况下,NimbleTrack表现出色。此外,它也非常适合于车间现场,特别是那些无法方便连接电源或电缆的环境,比如野外测量石油管道的腐蚀情况以及高空作业等。关于思看科技 思看科技是面向全球的三维视觉数字化综合解决方案提供商,主营业务为三维视觉数字化产品及系统的研发、生产和销售。公司深耕三维视觉数字化软硬件专业领域多年,产品主要覆盖工业级高精度和专业级高性价比两大差异化赛道,主要产品涵盖便携式3D视觉数字化产品、跟踪式3D视觉数字化产品、工业级自动化3D视觉检测系统和专业级彩色3D视觉数字化产品等。公司产品广泛应用于航空航天、汽车制造、工程机械、交通运输、3C电子、绿色能源等工业应用领域,以及教学科研、3D打印、艺术文博、医疗健康、公安司法、虚拟世界等万物数字化应用领域,致力于提供高精度、高便携和智能化的三维视觉数字化系统解决方案,打造三维视觉数字化民族品牌。
  • 加拿大CREAFORM Handyscan 700三维扫描仪应用于汽车车灯逆向研发
    加拿大CREAFORM Handyscan 700三维扫描仪应用于汽车车灯逆向研发时间:2019-01-03分享到腾讯微博新浪微博搜狐微博网易微博QQ空间随着控制、计算机和制造等相关技术的发展,出现了各种数字化技术和新方法(逆向工程)逆向工程是这样一个过程,在此过程的开始阶段将对产品的设计进行分析或使用实际部件或模型进行重建。 这在尝试从汽车部件原型中提取设计意图或对竞争产品进行基准测试时十分有价值。 这里的主要目标是创建符合原始件的功能性设计的 3D 模型(在此情况下,大多数是从人体工程学上进行建模)。 反向工程的关键步骤是精确且高效地采集座椅的外形(通常为不规则形状)并从结果扫描中提取信息,以便重建模型或模型的部件(提取设计的某些特定特征)。客户需求客户需要将汽车部件stl数据扫描下来,通过逆向工程以扫描的3D数据为参照反求出CAD图纸,然后利用CAD文件开模生产。测量难点 汽车部件形状各异,且尺寸大小不一,拍照式测量系统无法满足要求。 测量设备HandySCAN700&CATIA HandySCAN700的优势1)由于不存在测量力,因而适合于测量各种软的和薄的工件;2)数据采集速度快3)由于是非接触测量,可以对工件表面进行快速扫描测量;4)多数光学测头具有比较大的量程,在离工件表面很远的地方(如40mm~450mm)也可对工件进行测量,且测头的测量范围也较大(50mm-300mm)。这是一般接触式测头难以达到的;5)可以探测工件上一般机械测头难以探测到的部位。最大的优点就是工作距离大;6)三角法测头的测量精度大致在几十微米左右
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 结构复杂注塑件测量难题,天远高精度三维扫描轻松破解
    注塑是现代制造的重要工艺之一,为汽车制造、消费电子等众多行业提供各种复杂的注塑结构件、功能件及其特殊用途的精密件等。注塑具有生产效率高、原料浪费少、所需劳动力相对较少等优势,但是随着其结构逐渐复杂化,精度要求逐渐提高等,精密注塑件的测量环节也遇到了难题。传统测量难点:大部分精密注塑工件结构复杂→使用传统的手工测量手段,基本上很难获取准确的结果;→若使用三坐标方式,需要众多夹具,且在测量过程中,容易造成工件变形等。如何快速、准确、完整地完成结构复杂的注塑工件测量?高精度三维扫描是良好方式——通用性强、速度快、结果准确。#1高精度三维检测过程我们以这个注塑件为例☟工件特征:注塑件,为某一智能产品的内部组成部分,要求尺寸严格控制在误差范围内,否则将造成产品后续组装困难。检测过程:1)通过OKIO 5M高精度蓝光三维检测系统进行三维扫描,将工件放置在转台上,转动转台,进行三维扫描。(该工件结构较为复杂,在扫描时,每次转动幅度可以相对较小,获取完整数据。)OKIO 5M采用稳定可靠的高分辨率高速工业相机,有效改善镜头畸变带来的数据误差,准确获取工件边缘高质量数据。OKIO 5M最高精度可达0.005mm,且重复性精度稳定,同时获取的数据细节完整丰富,为后续的三维检测提供高质量的数据基础。2)导入Geomagic Control X检测软件,与原始设计数据相拟合,快速得到可视化偏差报告。材料厚度分析:绿色表示厚度正常,偏红色则表示材料太厚,偏蓝则表示材料不足。截面分析:准确把握工件变形趋势,颜色偏红则表示偏大,颜色偏蓝则表示偏小。宽度、长度、孔直径、孔间距等测量:在软件中快速得到测量数值,检测是否符合装配需求。#2高精度三维扫描核心优势1)通用性强,无论何种形状的工件,均可使用同一台设备进行检测,解决了检测工具繁多的困扰。2)速度快,体积范围在10*10*10cm的工件,扫描时间在3分钟以内,检测时间在2分钟以内(在完成软件首次路径编程后)。3)无损检测、结果准确,非接触式测量,测量过程中不会触碰工件,不会因工件受力形变产生测量偏差,同时,OKIO 5M精度水平达到计量级(最高0.005mm)且精度水平稳定,检测结果准确性得以保障。#3高精度三维扫描带来益处1)提升试模环节效率众所周知,注塑的设计、制造和试模的周期很长。特别是在试模环节,需要一次次调试,来找到最佳的生产工艺。高精度三维扫描可实现样品的快速三维检测,通过色谱图直观展示注塑工件的变形趋势及具体尺寸,助力工艺参数的快速修正,从而加快试模环节的进程。2)高效进行成品检测单个工件检测时间控制在几分钟之内,在小批量试产之后,可以实现全检,并可以在大批量生产时进行抽检。使用OKIO系列三维扫描仪配合自动转台,或者使用RobotScan(选用结构光扫描测头),均可高效完成生产过程中的三维尺寸检测。除此之外,还可以助力注塑工件的新品开发及进行生产模具的三维检测。❖随着高精度三维扫描技术的发展,其通过准确的非接触式测量方式解决了众多细分制造业领域的测量难题,除了注塑行业,天远也将不断为其他行业提供高质量的三维扫描服务,助力其产品尺寸的高效检测、非标零件的快速修复以及新产品的开发等。
  • 佰汇兴业将亮相AMTS2012 上海国际汽车制造技术与装备及材料展览会
    佰汇兴业汽车及内燃机检测设备将亮相AMTS2012 上海国际汽车制造技术与装备及材料展览会 AMTS2012上海国际汽车制造技术与装备及材料展览会将于2012年8月22日--2012年8月24日在上海新国际博览中心举行。佰汇兴业将携德国APL汽车测试服务于德国BMT汽车及发动机粗糙度及表面轮廓测量设备参加展览,展示最新的汽车粗糙度测量设备,展示欧洲最大的独立的检测服务商提供的汽车测试服务,以期更好地服务于中国汽车制造业及相关行业。 佰汇兴业将在此次会议上展出德国BMT精密测量仪器&mdash &mdash MiniProfiler 轮廓仪(灵活多变的多功能粗糙度测量仪)和CylScan气缸壁扫描仪(简单易用的珩磨结构测量仪)。德国BMT还为奔驰、宝马、大众、现代等公司提供各种表面测量的整体解决方案。 MiniProfiler 轮廓仪可用于:缸盖在线粗糙度测量、曲轴轴颈粗糙度测量、缸套在线粗糙度测量、三坐标测量系统、刹车盘粗糙度测量、连杆粗糙度测量、凹槽位置的粗糙度测量、凸轮轴各位置的粗糙度测量及特殊部位粗糙度测量等。我公司将在展会现场展示MiniProfiler 轮廓仪,并对MiniProfiler进行现场应用测量。 CylScan气缸壁扫描仪可对气缸壁进行360° 完全扫描。我公司技术人员将在展会现场对完整的气缸壁进行扫描测试。 德国APL公司是欧洲最大的中立的独立检测服务商,检测范围包括:润滑油、燃料油、发动机、汽车传动系统、混合动力、燃料电池、蓄电池、汽车整车及零部件、各项检测操作系统的研发等领域。还为多家汽车公司进行检测服务,包括:大众汽车用油检测、PSA用油检测、OPE用油检测、Porsche自检、MAN自检、奔驰发动机、奔驰整车性能测试。 欢迎各界人士莅临我公司展位参观咨询!
  • 涂料色彩测量解决方案在工业、汽车、建筑领域的应用
    涂料作为工业与民用领域不可或缺的材料,在工业生产、汽车制造、建筑施工等众多领域广泛运用,对物体表面起到保护、装饰、增强性能和延长使用寿命的关键作用。近些年来,全球经济的稳步前行与科技的日新月异,促使涂料行业市场规模不断扩大,呈现出持续上升的发展态势。与此同时,消费观念的转变与环保意识的增强,使得消费者对涂料产品在性能表现、环保特性、功能拓展等多个维度提出了更为严苛的要求。基于此,针对工业、汽车、建筑等不同应用领域的特性,量身打造具有针对性的解决方案,已成为涂料行业实现长远发展、突破创新的核心要点。在这样的形势下,针对不同行业的涂料色彩测量解决方案应运而生,为涂料行业的发展提供了有力支撑。一、工业油漆和涂料的解决方案对于工业涂料领域,精准的色彩测量是确保产品质量和性能的关键。由于工业涂料常用于机械制造、船舶、航空航天等对涂料性能要求极高的行业,需要能够适应复杂的使用环境和工况条件。通过先进的色彩测量技术,严格把控工业涂料的色彩参数,实现高性能、高稳定性的色彩配方,为工业生产中的设备和产品提供可靠的保护与装饰。爱色丽为此推出了一系列专业的色彩测量仪器。其中,Ci64 手持式积分球分光光度仪,能够灵活适应不同场景的色彩测量需求;MA - 5 QC 多角度分光光度仪可精准评估特殊效果油漆和涂料;MetaVue VS3200 非接触台式分光光度仪能对液态涂料进行准确测量;Ci7800 台式分光光度仪具备先进的测量功能和精准度;而针对卷钢涂料,ERX145 分光光度仪、GlossFlash 6060 在线光泽计以及 ESWin 闭环色彩控制软件的组合,可实现生产线上的色彩和光泽的实时监控与测量。这些仪器为工业涂料的色彩测量提供了全面且精确的解决方案,助力工业涂料达到高质量、高性能的标准,更好地满足工业领域的应用需求。二、汽车油漆和涂料的解决方案在汽车涂料方面,色彩的准确性和一致性至关重要。随着汽车市场对于个性化、多样化色彩的需求不断增加,以及对涂料品质和环保性能的要求日益提高,色彩测量解决方案能够助力汽车制造商和维修厂精准调配色彩,确保车身色彩从原厂漆到修补漆的完美匹配,同时满足汽车涂料在耐候性、耐腐蚀性和抗磨损性等方面的高标准。爱色丽为此提供了专业的色彩测量解决方案与相应仪器。其中,MA - 5 QC手持式多角度分光光度仪,通过五个标准测量角度,能够准确一致地评估效果涂料;MA - T12手持式多角度分光光度仪可以测量颜色、闪烁度和颗粒度,实现效果涂料的沟通与可视化;EFX QC软件能够跟踪效果涂料的色彩测量数据,评估质量并发现改进空间,提高整体盈利能力并减少浪费。这些解决方案与仪器相互配合,使得汽车涂料在色彩精准调配、性能品质把控等方面得到有效保障,助力汽车制造商和维修厂满足市场不断变化的需求与高标准,为消费者打造出色彩亮丽、性能卓越的汽车产品。三、建筑油漆和涂料的解决方案建筑油漆领域同样离不开高效的色彩测量解决方案。建筑的外观装饰和长期保护对于油漆的色彩和质量有着严格要求。从大型商业建筑到居民住宅,色彩测量技术可以帮助建筑油漆实现精准配色,满足建筑设计的多样化需求,并且在耐沾污性、耐候性和环保性能等方面达到理想效果,为建筑增添美观与持久的保护。爱色丽为此提供了全面且专业的解决方案。例如,Ci64 手持式分光光度仪,能精准、一致地再现每种涂料的色彩;MetaVue VS3200 非接触式台式色差仪可对粉末或液体着色剂进行准确的色彩数据测量;Color iQC 软件通过唯一代码实现对每个测量和着色剂的跟踪与追溯。而在配色方面,Ci7800 台式分光光度仪能够无缝沟通和协调色彩关键值与规格,Color iMatch 软件则可以优化初始色彩匹配,减少配色尝试的浪费,保证在指定的公差要求内实现理想的色彩效果。这些仪器与解决方案相互配合,使得建筑油漆在色彩测量、配色以及质量控制等方面都能够达到高质量标准,为各类建筑提供美观、耐用且环保的油漆涂层。在涂料行业不断发展与变革的当下,针对工业、汽车、建筑等不同领域的特点与需求,爱色丽的涂料色彩测量解决方案凭借专业的仪器设备和先进的技术手段,为各领域涂料的品质提升与创新发展提供了强大助力。相信在未来,随着科技的持续进步和市场需求的进一步演变,涂料色彩测量解决方案将不断优化升级,推动涂料行业攀向新的高峰,为人们的生活和各个产业领域创造更大的价值。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 广汽本田汽车有限公司采购一批三坐标测量设备
    广东省机电设备招标中心有限公司(以下简称“招标代理机构”)受广汽本田汽车有限公司(以下简称“招标人”)的委托,就广汽本田汽车有限公司【GKF能扩】WE领域三坐标测量设备导入 (招标编号:0692-226B033B0237/01)进行国内公开招标,现邀请有能力提供合格货物及服务的供应商参加本项目的电子投标。相关事宜通知如下:一、项目内容及需求:货物名称:【GKF能扩】WE领域三坐标测量设备导入数量:一批资金来源:自筹资金交货地点:广州市黄埔区开创大道 363 号交货期:详见用户需求书详细内容请参阅招标文件第二部分“用户需求书”的相关内容。二、合格投标人条件:1.投标人必须是具有独立承担民事责任能力的在中华人民共和国境内注册的法人或其他组织,有合法经营权,在法律上和财务上独立、合法运作并独立于招标人和招标代理机构的供货人。具有独立订立合同的权利;2.2017年1月至今,在主流汽车企业(指产能10万辆以上的乘用车主机厂)中直接独立承接(不含联合体投标)3项以上(含3项)双悬臂三坐标自动测量设备导入项目的设计、集成、安装、调试的业绩,且单个合同金额≥300万元人民币,并提供合同等相应业绩证明材料;3.本项目不接受三坐标自动测量设备代理商参加投标;4.投标人之间存在下列情况之一的,不得参加同一标段投标或者未划分标段的同一招标项目投标: ①两个及以上公司的法定代表人为同一人; ②集团公司与全资子公司或控股子公司的关系(包括直接控股和间接控股);5.投标人必须提交书面承诺(加盖公章),承诺不整体转包并严格遵守本项目仕样书中的分包声明;6.不接受联合体投标。三、购买招标文件我公司的招标项目信息(邀请招标除外)会在中国招标投标公共服务平台(http://www.cebpubservice.com/),广东省机电设备招标中心有限公司网(https://www.gdebidding.com/)同时提供,有兴趣的投标人可以登录查看。登录后,投标人可在广东省机电设备招标中心有限公司网上购买招标文件。本项目为电子投标,须使用专用投标客户端编制投标文件,须使用CA数字证书加密投标文件和投标;没有办理过CA数字证书的投标人须在投标截止时间前办理好,以免影响正常投标。四、购买招标文件时间2022-06-16 00:00:00起至2022-07-05 17:00:00期间(北京时间,办公时间内,法定节假日除外)。招标文件售价 500 元(人民币)。招标文件均按标段进行计价出售,投标人成功购标后,自行下载招标文件。招标文件一经售出不得退还。(注:我公司只开具对应金额增值税普通发票)购标支持银行转账或电子支付。采用银行转账方式的,请将购标款汇至以下账号:开户名:广东省机电设备招标中心有限公司开户银行:中国建设银行广东省分行营业室 帐号:44001863201053034613五、投标截止时间2022-07-06 14:00:00(北京时间)。投标人应于投标截止时间前在广东省机电设备招标中心有限公司电子招标交易平台完成电子投标文件的递交。六、开标方式:电子一步法。七、开标时间:同投标截止时间(北京时间)。八、投标人必须按招标文件规定的方式及金额提交投标保证金。 九、招标代理机构将不承担投标人准备投标文件和递交投标文件以及参加本次招标采购活动所发生的任何成本或费用。十、有关联系事项:1、招标人联系方式:招标人联系人:梁增顺联系地址:广州市黄埔区广本路1号 电子 邮箱:电话:13719430089 传真:2、招标代理机构联系方式:代理机构联系人:杜湃杰、梁智皓(有关招标项目商务技术等问题可致电项目联系人)电话:020-66341793 传真:/联系地址:广州市越秀区东风中路515号东照大厦5楼邮编:528400网址: 电子邮箱:137107187@qq.com3、招标中心有限公司统一客服热线电话:400-172-5858(有关电子投标的投标人注册、CA 办理事项的咨询)。供应商注册详见广东省机电设备招标中心有限公司网站“投标人自助”——“操作指南”的对应栏目。CA数字证书办理,请关注微信小程序“恒德易电子交易平台”办理。
  • 徕卡三维激光扫描仪助力冬奥雪车雪橇赛道毫米级测量
    2022年北京冬奥会赛程过半之际,我们见证了来自世界各地的运动员勇于挑战、超越自我;我们在场馆内外各个角落看到了志愿者、工作人员默默无闻、辛勤付出;在我们看不见的地方,还有更多人为冬奥奉献青春、保驾护航… … 接下来一起来了解徕卡RTC360与冬奥会结下的不解之缘。国家雪车雪橇中心是2022年北京冬奥会的比赛场地之一,它位于北京市延庆区西大庄科村,将举办冬奥会雪车、雪橇以及钢架雪车项目的比赛,是目前国内唯一一条符合冬奥会标准的雪车、雪橇赛道。由于外形仿如一条盘旋在山脉顶部的巨龙,于是北京冬奥组委也给它取了一个好听的名字—“雪游龙”。其全程长达1975米、垂直落差为121米、共有16个弯道。图片来源:张家口崇礼区人民政府官网国家雪车雪橇中心于2017年2月结束赛道选址工作,历时两年半的时间,于2019年11月完成主体工程的建设,它是北京市冬奥工程竞赛场馆中设计难度最高、施工难度最大的新建场馆,由于雪车、雪橇赛道拥有空间复杂双曲面结构,运动员最高速度可达到140km/h,离心力超过5G,比赛危险系数高,因此赛道的每一个角度、每一个曲面都需要精细到毫米级。在竣工测量工作中,北京市测绘院克服了一系列技术难题,采用徕卡RTC360三维激光扫描与极坐标测量相结合的方式进行数据采集,测绘数据达到精度指标要求,按期完成了竣工测量任务。图集1:徕卡RTC360现场扫描工作照图集2:雪车雪橇赛道点云全貌及局部点云截图北京市测绘院技术人员表示:“能够参与冬奥建设非常自豪,有一种使命感和荣誉感,由于赛道多为异形建筑,为能够圆满完成本次任务,创新采用徕卡RTC360三维激光扫描仪,一方面徕卡RTC360扫描精度高,以往外业串测这种异形建筑位置可能不准确,而使用扫描仪可以全面的掌握整个赛道信息,不会出现丢漏或数据不准确现象。另一方面徕卡RTC360作业效率非常高,整个赛道共采集320站,耗时2天半,正因为如此才能在短时间内完成赛道的竣工测量,徕卡RTC360在本项目的成功应用,为开展其他复杂异形建筑的竣工测量探索了技术路径。”屏幕前,我们看到一场场精彩赛事不断上演,本次与北京冬奥会“零距离接触”,徕卡RTC360用自己的方式——“精准如需”为冬奥建设贡献着力量。
  • 岛津推出《电子探针在汽车材料中的应用》数据集
    汽车行业是一个涉及多种材料的综合性产业,材料应用的多元化是其突出的特点,虽然钢铁材料仍占主导地位,更安全、更节能、更环保的发展趋势要求,使得汽车轻量化设计越来越受到重视,高强合金、轻金属和非金属材料的应用发展前景广阔。 轻量化是汽车的发展趋势,在更安全的前提下,资源友好和环境友好的可持续发展战略使命也对汽车材料的应用和发展提出了更高的挑战。世界各国都在努力改进和研发新的汽车材料,提高材料的比强度、降低构件的重量、减少制造的成本和耗能。 主要涉及以下几个关键性材料: 一、高强度钢和超高强度钢的开发:可用于车身车架、横纵梁等关键部位。世界各国和各大车企都在大力参与开发各种高强度钢板,如冷轧含磷板、双相钢(DP 钢)板以及目前最先进的相变诱发塑性钢(TRIP 钢)板等。 二、轻金属包括镁合金、铝合金和钛合金等的应用呈现出越来越广的趋势。 (1)铝合金:密度约是钢铁的三分之一,现已广泛用于汽车发动机、变速器、差速器壳体、铝轮毂、转向节及各种换热器等部位,是汽车上应用最多的轻质金属材料。而且随着铸锻焊、冲压等制造技术的发展,会有更多的部件采用铝合金制造。(2)镁合金:镁合金的密度仅相当于铝合金材料的 66%左右,但在比强度和刚度等机械性能要明显优于钢铁和铝合金,而且在成型效率和尺寸稳定性方面也有很大的优势。目前镁合金在汽车上一般可用于发动机气缸体、壳体、进气歧管、方向盘、转向器、轮毂等零部件。由于镁元素化学特性特别活波,工艺难以控制这在一定程度上限制了镁合金的应用。 (3)钛合金:具有密度小、质量轻、比强度高、耐腐蚀及高低温性能优异等特点,使之可以在一些恶劣的工作条件中保障汽车的性能。但由于钛合金原材料获取困难,加工成本较高。在汽车制造中,一般将高强耐热钛合金用来生产发动机配气系统、曲轴连杆机构和底盘零件,例如气门、气门弹簧、凸轮轴、连杆、涡轮转子和紧固件等。 三、非金属材料在整车占比也在不断扩大。 其中塑料占很大比例,塑料在汽车上的应用有密度低,成形性好,耐腐蚀,弹性形变可吸收冲击能量,除常规的热塑性和热固性塑料外,也包括塑料纤维增强的复合材料。另外,陶瓷、复合材料和功能材料在车用材料领域也占有重要地位。 岛津公司作为全球著名的分析仪器厂商,自 1875 年创业以来,始终坚持创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术。早在上世纪 60 年代岛津公司就开始研制和生产电子探针,独有的 52.5°高检出角及兼顾高灵敏度和高分辨率的全聚焦晶体,可在微米级的微小区域到最大 90×90mm 的广域范围中可进行精准分析。电子探针 EPMA(Electron Probe Micro Analyzer)是将聚焦电子束照射到样品,通过激发样品发出的电子信号进行细微结构的观察,通过检测指定区域内发出的元素特征 X 射线进行定性、定量及面分析等多种测试分析。 为了更好的服务于岛津电子探针 EPMA 客户,岛津公司分析中心也开展了汽车行业多种材料的测试分析工作。本文集即是对这一工作的阶段性总结,供相关工作者参考。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 6785万元 中航三维测量仪重大仪器专项获批
    日前,国家科学技术部发布了《科技部关于2013年度国家重大科学仪器设备开发专项项目立项的通知》,由中航工业科技与信息化部组织中航高科技发展有限公司(以下简称:中航高科)牵头承担的&ldquo 全视角高精度三维测量仪的开发和应用&rdquo 项目获得批复,这是中航工业首次获批国家级科学仪器开发和推广应用类项目。项目成功获批是中航工业基础技术板块践行&ldquo 科技立业&rdquo 与&ldquo 创新兴业&rdquo 发展方略、构建国际化开放协同科技创新体系的里程碑式进展。  该项目计划研究周期3年,总经费6785万元。中航高科作为项目牵头单位,以中航工业北控所为第一技术支撑单位,联合德国弗劳恩霍夫应用研究促进协会及哈尔滨工业大学、天津大学、北京交通大学、香港科技大学等高校,依托中航工业强度所、北京空间机电研究所、中国电科38所等应用单位,搭建产学研用一体的协同创新平台,开展仪器研制、工程化、产业化等工作。  据了解,国家重大科学仪器设备开发专项旨在提高我国科学仪器设备的自主研发和制造能力,支撑科技创新,服务经济建设和社会发展。&ldquo 全视角高精度三维测量仪的开发和应用&rdquo 项目针对航空航天、大型雷达等重要应用需求,旨在攻克超高速、高分辨率线阵列视觉传感器和核心测量算法,研发具有实时、非接触、多点同步等功能的大尺寸精密测量仪器,建立视觉三维测量仪器的研发基地、生产基地和系统集成验证中心,打破国外技术垄断和仪器封锁,服务于我国大型工业装备的研发和制造。  该项目前期经过了由国家科学技术部、中国航空工业集团公司以及第三方技术咨询、非技术内容评审、综合评议、预算评估和综合决策等多方面论证。中航工业科技与信息化部和中航高科高度重视,充分利用集团内外部资源,精心策划并组织专家审查把关,推动落实项目的立项论证工作。
  • 江苏省新能源汽车专用计量技术委员会落户无锡
    2022年11月7日,江苏省市场监督管理局发布《关于筹建江苏省计量专业技术委员会的通知》(苏市监计量函〔2022〕373号),由无锡市市场监督管理局申请,市局直属事业单位无锡市计量测试院担任秘书处的“江苏省新能源汽车专用计量技术委员会”正式获批筹建。目前,无锡市计量测试院已负责运行江苏省力值硬度计量专业技术委员会多年,新计量技术委员会的申筹成功使无锡成为全省唯一拥有两个省计量技术委员会秘书处的地级市。成立后的江苏省新能源汽车专用计量技术委员会将在新能源汽车专用计量领域内负责国家和地方计量技术规范的制定和宣贯,开展国家和省级计量比对,计量技术研究,提供计量咨询及服务,开展全国和省内计量交流及活动,以及在新能源汽车领域有关计量政策研究等工作。近年来,无锡市计量测试院主动适应新能源汽车及零部件产业新形势需求,利用无锡及周边现有的显著产业区域优势,积极与国内外科研院所开展合作,在新能源汽车及零部件产业计量测试技术前瞻性研究方面取得了初步成果,已建设了包括电池测试、电机测试、电缆在线测试、失效分析、微观形貌分析、车用传感器电学、温度、力学、光学性能分析等关键参数计量测试能力,开展新能源汽车及零部件相关领域的前期研究。江苏省新能源汽车专用计量技术委员会的成立,将通过健全和完善新能源汽车领域计量技术规范体系,为新能源汽车产品在研发设计、生产制造、产品测试及售后服务全生命周期内的量值一致、数据与结果准确可靠提供有效的计量保障,助力从传统汽车向新能源汽车产业的发展转型,进而提升江苏省在全国新能源汽车产业领域的话语权。无锡市市场监管局将积极推动江苏省新能源汽车专用计量技术委员会建设,着力解决省内新能源汽车整车及核心零部件计量测试领域关键参数量值测量及溯源能力,建立和完善新能源汽车及零部件产业的技术创新体系,紧跟产业需求开发现代测量技术方法,更好地为新能源汽车产业发展提供技术支撑和计量保障,为企业突破该领域“卡脖子”技术提供技术支撑。同时,聚集全省新能源汽车领域计量测试龙头企业和权威技术机构、专家,为建立前瞻性的产业技术标准、规范夯实基础,推动全省新能源汽车产业核心关键技术研发创新,助力全省、长三角乃至全国汽车产业加速驶入国际领先水平。截至目前,无锡市共依法设置法定计量检定机构3家,建设社会公用计量标准700余项。建成国家物联网感知装备产业计量测试中心等国家级计量产业服务平台2个、省级计量服务平台4个,拥有省级计量专业技术委员会2个,起草各类标准和技术规范40余项,有力支撑了产业高质量发展。
  • PSC发布非接触式亚微米分辨红外拉曼同步测量系统新品
    非接触式亚微米分辨红外拉曼同步测量系统 — —mIRage O-PTIR系统 产品简介:美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司)最新发布的一款应用广泛的亚微米级空间分辨率的非接触式亚微米分辨红外拉曼同步测量系统。基于独家专利的光热诱导共振(PTIR)技术,mIRage产品突破了传统红外的光学衍射极限,其空间分辨率高达500 nm,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 mIRageTM O-PTIR 光谱O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的极限。与传统FTIR不同,不依赖于残留的IR 辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。 mIRage工作原理:• 可调的脉冲式中红外激光汇聚于样品表面,并同时发射与红外激光共线性的532 nm的可见探测激光;• 当IR吸收引发样品材料表面的光热效应,并被可见的探测激光所检测到;• 反射后的可见探测激光返回探测器,IR信号被提取出来;• 通过额外地检测样品表面返回的拉曼信号,可以实现同时的拉曼测量。 O-PTIR克服了传统红外光谱的诸多不足:• 空间分辨率受限于红外光光波长,只有10-20 μm• 透射模式需要复杂的样品准备过程,且只限于薄片样品• 无传统ATR模式下的散射像差和接触污染 O-PTIR的优势之处在于: • 亚微米空间分辨的IR光谱和成像(~500 nm),且不依赖于IR波长• 与透射模式相媲美的反射模式下的图谱效果• 非接触测量模式——使用简单快捷,无交叉污染风险• 很少或无需样品制备过程 (无需薄片), 可测试厚样品• 可透射模式下观察液体样品• 可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,无荧光风险mIRage 技术参数 波谱范围模式探针激光样品台最小步长样品台X-Y移动范围IR (1850-800 cm-1)反射 532 nm 100 nm 110*75 mmIR (3600-2700 cm-1)透射Raman (3900-200 cm-1)反射 重要应用实例分析: 1、多层薄膜 高光谱成像: 1 sec/spectra. 1 scan/spectra样品区域尺寸:20 μm x 85 μm size. 1 μm spacing.图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布。 2、高分子膜缺陷左:尺寸为240 μm的两层薄层上缺陷的光学图像;右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰。 3、生命科学 左:70*70 μm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱 上左:水中上皮细胞的光学照片;上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 μm的脂肪包体;下:原理示意图:红外光谱测量使用透射模式,步长为0.5 μm。 4、医药领域 左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 μm * 40 μm右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 μm *40 μm 5、法医鉴定 左:800 nm纤维的光学照片右:纳米纤维不同区域的O-PTIR图谱 6、其他领域• 故障分析和缺陷• 微电子污染• 食品加工• 地质学• 考古和文物鉴定 部分用户及发表文章 [1] Ji-Xin Cheng et al., Sci. Adv.2016, 2, e1600521.[2] Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.创新点: mIRage O-PTIR (Optical Photothermal Infrared) 是基于独家专利的光热诱导共振(PTIR)技术,m其突破了传统红外的光学衍射极限,空间分辨率高达500 nm,可有效助力科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。非接触式亚微米分辨红外拉曼同步测量系统
  • 即刻预约 | 与行业领袖共话新能源汽车“三电”质量保证
    引领电动化、智能化、低碳化三场变革的新能源汽车,近年来在中国的发展可谓“一骑绝尘”,中国新能源汽车产销量连续九年位居全球第一。如何将新能源汽车产业提升为新质生产力的代表,成为产业链企业共同思考的问题。5月20日第25个“世界计量日”之际,“蔡司,‘质’敬明天” ZEISS Quality Innovation Days中国场线上峰会将以新能源汽车行业主题日开场。来自LG新能源、格劳博、斯柯达等知名企业及机构的行业领袖与技术专家将围绕新能源汽车的应用和趋势,以“三电”为主要话题,通过主题演讲、经验交流、技术分享探讨助力汽车行业高质量发展的质量解决方案。一键报名参会:https://www.instrument.com.cn/webinar/meetings/zeiss240520/贴合行业内生需求,助新能源汽车提“质”蔡司为新能源汽车提供一站式质量保证解决方案,覆盖动力电池、电驱动、控制器、底盘、车身、热管理和内外饰七大模块和氢燃料电池。在当天直播中,蔡司产品专家将详解针对新能源汽车关键零部件和重要行业趋势的质量控制解决方案。在新能源汽车的成本、安全、性能、续航里程和生命周期等诸多要素中,动力电池都起着举足轻重的作用。极片是电池电芯的基本组成部分,在生产中,电池电极片需要通过模切和分条形成对应尺寸,这个过程中的关键质量要求是符合切割尺寸,并且不出现褶皱、脱粉、毛刺等现象,否则将影响电池性能,增加内部短路的风险,可能导致严重的安全问题。蔡司数码显微镜毛刺检测解决方案有丰富的产品组合,可完成不同尺寸电极片的检测任务。所使用的光学数码显微镜最高分辨率可达0.7μm,兼顾大视场;在软件配合下,缺陷识别算法一致性高,检测重复性好,整个检测流程可自动完成,效率出色。在2024北京车展上,众多国内外车企都带来了配备空气悬架系统的新能源车型。在中国新能源汽车高速发展以及自主品牌高端化的双重推动下,曾经应用于豪华汽车品牌的空气悬挂系统迎来下探契机。制造商需要对空气悬挂系统的核心部件皮囊和总成进行无损检测,发现内部密封圈翻折错位和异物夹杂,还要把控上气装置密封焊接质量和皮囊固定后的质量状态和内部构件的装配关系。蔡司的工业CT可以对皮囊单件实现无损检测,从而检测尼龙的间距以及角度,判断内部尼龙是否断裂,也能对总成件的密封状态和装配进行无损检测。让三电检测“既能看得清,又能测得准”传统燃油车时代,汽车最重要的三大组成部分是发动机、底盘和变速箱。新能源汽车时代,衡量车辆性能的关键部件发生改变,对于电动车,电池、电机和电控组成的三电系统成为影响车辆性能的核心。三电系统的精度和缺陷控制是制造商共同的痛点,蔡司通过既能看得清,又能测得准的无损解决方案帮助制造商解决挑战。电池是电动车的“心脏”,关于动力电池的竞争是性能、安全性和成本的全面竞争。从电池的材料和结构研发,到原料加工、电极生产、电芯生产,再到模组组装,蔡司质量解决方案贯穿电池生产全过程,而不仅仅是抽检中。诸如工业显微镜分析电池材料和结构,X射线和CT设备发现电池单元和模块等密集部件中隐藏的缺陷,三坐标测量机和三维光学测量机保障电池托盘尺寸等。新能源汽车电机内部的扁铜线、叠片、定子、转子和驱动轴部件,有各自不同的质量关键点。制造商对产品检测的精度和无损要求日益提升,很多电机带有表面半透明涂层,要在不喷粉的前提下采集到涂层厚度;为避免实际装配后发现问题再破坏拆解的情况,密封和散热等配套产品要进行虚拟装配检测,等等。从光学和接触式组合测量、光学全尺寸线边测量、 光学尺寸检验到CT无损检测,蔡司质量解决方案产品线齐全且几乎所有设备都带有精度保证,满足客户对精度和清晰度的双重要求。蔡司工业质量解决方案新能源汽车行业全球负责人陈涛先生表示,蔡司以中国客户为出发,密切关注行业技术趋势发展,潜心研究客户研发与生产流程中的质量需求,成功开发了超过80个细分应用的解决方案,帮助客户提升质量与效率并降低成本,赋能中国客户从本土走向全球。目前全球领先的整车制造企业与“三电”(电池、电驱、电控)等客户中超过80%信任并选择了蔡司的解决方案。蔡司必将继续努力为全球汽车电动化和高质量转型贡献价值,与客户共创美好未来。扫描下方二维码,即可报名参与5月20日“蔡司,‘质’敬明天” 新能源汽车行业主题日。新能源汽车的蓬勃发展正重塑汽车产业链、供应链、价值链。蔡司期待与新能源汽车行业的管理者和质量、研发、生产等领域的专业人士线上相聚,共同推动中国新能源汽车产业发展成为新质生产力的中坚力量。
  • 航空叶片三坐标自动测量研究现状和发展趋势
    p  航空发动机叶片几何形状复杂、尺寸跨度大、加工精度要求高等特点决定其成为了航空发动机中加工制造的难点,同时也对航空发动机叶片加工质量检测精度和检测效率提出了更高要求。航空发动机叶片检测技术已逐步从定性检测到定量检测,从接触式检测到非接触式检测,从传统手工检测到自动数字化检测,从二维比对检测到多自由度组合检测,从单一规格大批量检测到多规格小批量检测。航空发动机叶片质量检测方法众多,如标准样板法、自动绘图测量法、光学投影测量、电感测量法、坐标测量法、激光测量法、机器视觉测量法等,其中,三坐标检测凭借通用性强、重复性好、稳定性强、检测精度高等优势在航空叶片制造企业中被广泛应用,但此种方法要求测量时处于恒温环境下且采样效率较低。本文将介绍和评析航空叶片三坐标自动测量研究现状和发展趋势,并基于三坐标测量机(Coordinate Measuring Machine,CMM)提出一种改进型航空叶片自动测量与控制系统。/pp style="text-align: left "strong  1 叶片三坐标自动测量研究现状/strong/pp  (1)基于CAD数模的自动测量/pp  基于CAD数模的三坐标测量是产品设计、加工、测量一体化进程中的重大突破。CMM的测量能力和可操作性在很大程度上取决于测量软件的功能,测量软件决定了CMM可采用的测量方式以及应用范围。目前很多叶片测量软件都具备基于CAD模型脱机编程功能,比如海克斯康PC-DMIS、蔡司Calypso等,并能读入多种文件格式,如IGES、DXF、STL及VDA等格式,也可以兼容UG、Pro/E或CATIA等CAD格式文件。/pp  CMM可实现基于CAD数模的叶片自动测量,待测点的分布和采集、测量路径优化及测量程序生成是自动测量中的关键问题。杨雪荣等结合ARCO CAD测量软件,实现了对基于CAD数模零件进行自动测量 周保珍等基于UG CAD提出了沿待测点矢量方向测量的方法,并给出了自动生成DMIS测量程序的方法步骤 刘勇等在前人的成果上基于UG CAD数模给出了叶片自动测量路径规划系统的操作流程 S.G.Zhang等基于CAD数模特征,在CMM平台上设计了一套检测过程规划原型系统,能极大减少判断探针方向的时间 Hui-Chin Chang等基于汽轮机叶片CAD数据库,系统通过简单三角函数计算在短时间内能自动生成无碰撞检测路径,并输出DMIS格式文件。/pp  在对三坐标测量系统进行研究总结后,测量程序生成方法主要有以下几种:/pp  ①脱机编程。此方法根据待测件的几何特征和公差要求,用DMIS语言手动编写测量程序,以指导CMM自动测量。但此方法对操作人员专业水平要求较高,编程所需时间长。/pp  ②自学习编程。此方法适合没有CAD数模和设计图纸的情形下,操作较为简单便捷,适合产品大批量测量。在手动测量一次后,三坐标测量软件系统会自动记录测头运动和操作并保存为测量程序,对相同批次的产品可实现自动重复测量。但此时测量软件需要与CMM联机才能完成程序的编制,CMM其他任务将会被占用。/pp  ③自动编程。此方法将CAD数模导入到CMM测量软件中,将工件坐标系(即测量坐标系)与理论坐标系进行对齐后,检测员基于CAD模型进行测量路径规划,测量软件系统按照GD& T设计要求,自动生成DMIS程序,动态虚拟模拟路径无误后自动保存。也可利用三维软件二次开发功能、C#编程语言或VB编程语言等工具,根据三维软件生成的测量前置文件(包含测量点信息和测头信息)开发格式转换程序,直接生成DMIS格式文件,大幅提高测量效率。/pp  在无图纸的情况下实现叶片的批量测量,可基于光学扫描仪完成叶片初始点云数据的采集,然后利用Geomagic Design Direct设计软件进行逆向建模,获取初始CAD模型,并导入PC-DMIS测量软件中,以引导CMM进行测量路径自动规划。基于CAD数模的交互自动编程较手工编程而言,效率更快、更清晰直观、方便验证,而且也便于对测量点进行采集和编辑。目前,基于CAD数模自动测量已被国内外先进的CMM测量软件普遍采用。/pp  (2)自动定位夹具/pp  目前,由于航空叶片形状复杂且规格繁多,检测时并没有与之兼容的通用定位夹具。国内很多航空叶片制造企业基于三坐标检测普遍都采用简单支撑固定的方式,以降低制造成本,而且每次只能对单个叶片进行测量,每次都需要对待测叶片进行装夹和粗定位,导致叶片检测效率极低。/pp  针对以上难点,不断开展叶片专用夹具研究,叶建友等提出了柔性相变材料夹具为叶片自动化测量提供保障。定位件和夹紧体位置灵活可调,一套柔性相变材料夹具能装夹一定尺寸范围内任意形状的零件。但该夹具存在准备周期长、刚性不足、手工操作繁琐等问题,同时,仍只能对单一叶片实现定位夹紧,在提升检测效率方面效果并不显著。容器里相变材料反复进行固液态两相变换,膨胀和收缩不可避免,势必影响到夹具的装夹精密度和稳定性。/pp  陈林等设计了一套叶片测量气动专用夹具,利用榫根底面、侧面及内径相面进行6点定位并对底平面实现磁力夹紧,有利于实现叶片测量自动化。该套夹具具有刚性强、定位精准、操作简单等特点,但对于具有轴颈型榫根或枞树型榫根的叶片无法实现固定支撑,且仍只能对单一叶片进行测量。/pp  通过研析现有文献和对叶片企业的实地调研,针对航空叶片夹具设计提出参考规则:①夹具在对工件进行装夹时,能保证工件位置的正确性 ②基于某一特征,夹具可对同一规格叶片进行多片装夹定位 ③夹紧操作不能损伤叶片 定位要可靠 夹具系统稳定性强,操作简便快速 ④使用三坐标测量机进行测量时,夹具必须保证探针对于待测叶片的空间可达性且不发生碰撞 ⑤夹具应避免使用吸铁等带有磁性的材料,避免工件或探针收到磁性作用而影响测量结果。/pp  (3)自动测量系统/pp  当前,国内很多叶片加工企业在检测环节没有实现模块化和系统化,特别是在信息共享和自动控制方面能力不足。具体表现在:①测量数据过度离散化,可追溯性较差 ②测量过程人机交互多,自动化程度低 ③工序质量控制能力弱,产品报废率高。/pp  在工业4.0智能制造的大背景下,海克斯康集团推出了自动化、智能化的测量系统。整个自动化测量系统分为几个物理单元:三坐标测量机、自动控制系统及管理软件、料架系统、零件识别系统、机器人系统、机器人外围系统及安全防护系统。通过信息系统把各单元串联起来,形成有效的集成单元,对测量信息高效管理,并对工序过程进行有效的数据反馈,明显提升生产效率。/pp  智能化作为自动化的高级应用,智能测量系统在工业4.0中扮演重要角色,雷尼绍公司推出搭载第二代REVO多传感器五轴测量系统的大型龙门式三坐标测量机有如下特点:①分辨率提高近20倍 ②可加载不同的测量模块 ③不仅可以测量大工件大尺寸,也可以测量大工件小尺寸 ④采用螺旋扫描,采集点的效率高。/pp  (4)叶片三坐标自动测量发展趋势/pp  三坐标测量技术的不断发展促进了测量行业的进步和变革,也对三坐标测量技术提出了更高要求。在航天航空领域,面向智能制造的高精度动态实时测量技术和飞机大尺寸数字化测量关键技术不断被讨论和研究,其中航空叶片三坐标测量技术的研究方向主要是:①自动化、智能化 ②实时监控、可视化 ③高速、高精度、高稳定性。/ppstrong  2 叶片自动测量夹具设计/strong/pp  (1)叶片检测现状/pp  以叶片的叶型测量过程为例,无锡某航空叶片企业的检测过程需要的人机交互操作较多,如待检叶片信息的输入,待检叶片的装夹及粗定位、抽调对应的测量程序、PDF文件名及保存路径的输入等,该企业现有检测流程如图1所示。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/212bc28d-9c34-4158-a4cf-746818aaacd4.jpg" title="1.jpg" style="width: 420px height: 298px " width="420" vspace="0" hspace="0" height="298" border="0"//pp style="text-align: center "  图1 现有叶型检测流程/pp  在检测过程中,若没有及时的人机交互,CMM就会停机等待操作指令。由于该检测流程仅面向单个叶片,检测效率极其低下,根本无法满足正常的叶片检测需求。/pp  针对上述实际问题有以下解决方案:①增加三坐标测量机以及检测人员数量 ②增强企业叶片数控加工系统的可靠性 ③引进全过程自动化在线控制检测系统 ④优化叶片现有三坐标测量机夹具。/pp  方案①中通过增加检测设备和人力投入显然不符合企业低成本的要求,在设备维护和人员管理上也会耗费巨大 方案②虽然可以改善叶片加工稳定性和精度,减少了叶片检测的任务量,但对于中小型企业来说,短期内很难突破关键技术瓶颈,对企业资金能力、技术能力、检测环境等都提出了更高要求,实施难度大 方案③为目前先进的自动化检测技术,可以实现100%检测并实现零废品率,一定程度上可以降低生产成本,但中小型企业生产规模小,一次性投入太大 方案④是建立在现有设备和人力不变的情况下,通过优化叶片检测夹具来实现叶片测量效率的提升,显然这个方案更加适用于中小型企业。通过对该企业CMM检测过程的实地调研,来找到最合适的解决方案。具体改进后的叶片叶型检测流程见图2。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/c306372c-5a40-443d-bdcd-097232cca3b8.jpg" title="2.jpg" style="width: 500px height: 467px " width="500" vspace="0" hspace="0" height="467" border="0"//pp style="text-align: center "  图2 改进后叶型检测流程/pp  通过电子扫描槍对该待检测叶片工序流转卡进行扫描获取叶片ID号,系统自动在产品工艺数据库中根据叶片ID号检索相关加工工序信息。选择检测对应工序名后,系统自动从该数据库中检索对应工序的测量程序文件地址,从FTP服务器下载测量程序到Calypso测量软件指定文件夹,并保留待检测叶片相关信息至指定文本文件作为该叶片自动保存地址。运行Calypso软件并调取对应测量程序,叶型测量完成后调取Blade Pro分析软件的同时运行自动保存应用程序,该应用程序捕捉到系统保存窗体的弹出并获取文本文件中保存地址和名称,实现测量报告的自动命名和保存。生成的PDF文件自动上传到FTP服务器,作为该企业的工艺资料储备。生成的TXT文件经过自动转换后导入MySQL工艺数据库,可实现测量数据的精确查询和SPC分析。对于在可控范围内的测量数据,在逆向工程中进行特征数据提取实现叶片三维建模,以指导无图纸工件进行CMM测量路径规划,并生成测量程序完成自动化测量。/pp  (2)自动测量夹具方案/pp  由于该企业三坐标测量机叶片专用夹具一次只能对单一叶片进行装夹定位,针对燕尾型榫根叶片叶型测量,提出一种多片自动测量专用夹具,该装置主要由夹具体、气缸、气缸座、基座、定位销钉、夹紧块、带有9个楔形块结构的矩形轴组成,单元结构如图3所示。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/fc8a2889-a955-437c-b2af-0bea51b52c36.jpg" title="3.jpg" style="width: 300px height: 180px " width="300" vspace="0" hspace="0" height="180" border="0"//pp style="text-align: center "  图3 夹具单元结构/pp  该夹具能实现9片叶片联装联测,由原本单个支撑工位线性地扩展成9个联测装夹工位。该工装夹具利用蔡司Calypso和PDFFactory配合连续测量,并最多保存9份检测报告,缓解企业CMM检测能力不足和效率低下的问题。/pp  采用两个定位销钉和一个紧固螺钉连接夹具体与基座 9个夹具体线性分布在基座上,保证间隔不干涉叶片装夹 矩形轴两端均采用滑动副,并带有9个楔形块,楔形块和夹紧块配合形成滑动副。/pp  夹具装夹方式是:夹具体楔形面和燕尾型榫根楔形面配合,模拟叶片装配状态,限制了榫根5个自由度 用定位销钉对榫根侧面进行定位,限制了榫根1个自由度 通过启动气缸推动矩形轴移动,从而使楔形块推动夹紧销钉向上移动,实现对9片叶片同步进行装夹。单个榫根装夹图如图4所示。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201803/insimg/4b836cd9-4fe9-4d79-92e2-9ea4889a0a04.jpg" title="4.png" style="width: 300px height: 213px " width="300" vspace="0" hspace="0" height="213" border="0"//pp style="text-align: center "  图4 单个榫根装夹/pp  以榫根楔形面的中分面(即通过发动机轮毂盘轴线的径向面)工件测量坐标系的XOZ平面,以给定值来确定XOY平面和YOZ平面,以此建立工件测量坐标系(见图5),且该坐标系与建立CAD数模的理论坐标系保持一致。/pp  在对9片叶片进行检测路径规划时,只需要在DMIS文件中在第一片叶片工件坐标系基础上连续偏置一个固定值即可得到其他叶片的工件坐标系。/pp  该夹具具有以下特点:①定位装置尺寸链短,对测量精度影响较小 ②多叶片可同步装夹和拆卸,实现批量测量 ③采用气动夹紧,实现自动夹紧测量。/pp  /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201803/insimg/bacf711e-9ee3-41e0-843f-949e80d69dc4.jpg" title="5.png" style="width: 310px height: 167px " width="310" vspace="0" hspace="0" height="167" border="0"//pp style="text-align: center "  图5 建立叶片工件坐标系/ppstrong  小结/strong/pp  本文对航空叶片自动化测量技术研究现状和发展趋势展开论述,总结了基于CAD数模的检测路径规划方法和DMIS文件生成方法和自动测量夹具设计基本准则,结合相应实例对叶片自动检测系统未来趋势做了总结阐述,并针对某航空叶片企业实际情况给出了相应解决方案,提出了改进型叶型测量夹具,极大提高了检测效率。/ppbr//p
  • 【邀请】第三届“汽车及零部件材料分析与测试评价技术”网络会议
    研讨会邀请研讨会简介:汽车由数以万计零部件组装而成,零部件是汽车发展的基础和重要组成部分,其性能优劣直接影响整车性能的优劣。我国是世界汽车产销大国,机动车污染日益严重,在国家倡导建设资源节约型、环境友好型社会的背景下,轻量化已成为汽车技术的发展方向,由此,轻量化材料的研究、应用及分析表征技术日益受到关注。与此同时,新能源汽车已经成为行业宠儿,国家政策的支持与技术的成熟,都促使新能源汽车行业迅猛发展,也向新能源汽车测试提出了更多的要求和挑战。在汽车产品层次,汽车产品全生命周期评价 (LCA),可以定量揭示汽车对生态环境的影响,为制定汽车相关的环境政策和我国汽车产业的可持续发展战略提供参考。基于此,仪器信息网将在前两届会议成功召开的基础上,于2021年3月16-17日组织召开第三届“汽车及零部件材料分析与测试评价技术”网络会议,并设置汽车零部件测试技术、 汽车新材料测试技术、新能源汽车测试技术、汽车全生命周期评价4个分会场。奥林巴斯演讲嘉宾简介:程业杰奥林巴斯工业内窥镜应用工程师现任奥林巴斯工业内窥镜应用工程师,一直从事内窥镜产品应用相关工作,重点关注汽车、风电、核电等行业,对内窥镜在各行业的应用有深入理解。演讲概要:工业内窥镜如何在汽车行业进行应用?汽车零部件作为汽车工业的基础,是支撑汽车工业持续健康发展的必要因素。一般汽车约由2万多个零部件组装而成,其中铁制零件占绝大多数。奥林巴斯的工业内窥镜在检查汽车零部件方面深受客户的好评。可用于检查传统汽车行业的零部件,诸如发动机部件:油嘴,气缸体,燃油喷射阀,凸轮轴,曲轴,气门等。传动系配件:变速器,传动轴等。另外也可以用于检查新能源汽车零部件:电动机水套,机电耦合器,燃料电池汽车氢气储罐等,在保证汽车零配件质量方面起了举足轻重的作用。奥林巴斯内窥镜具有多款不同型号的产品,可以为用户满足不同的零部件应用场景,并且其图像质量和易用性足以完成汽车零部件多种应用场景的检测。会议时间:03月16日 09:30 -- 03月17日 18:00报名地址:
  • Das-Nano发布石墨烯/二维材料电学性质非接触快速测量系统新品
    石墨烯/二维材料电学性质非接触快速测量系统西班牙Das Nano公司成立于2012年,是一家提供高安全级别打印设备,太赫兹无损检测设备以及个人身份安全验证设备的高科技公司。ONYX是其在全球范围内推出的第一款针对石墨烯、半导体薄膜和其他二维材料大面积太赫兹无损表征的测量设备。ONYX采用先进的脉冲太赫兹时域光谱专利技术,实现了从科研及到工业级的大面积石墨烯及二维材料的无损和高分辨,快速的电学性质测量,为石墨烯和二维材料科研和产业化研究提供了强大的支持。与传统四探针测量法相比,ONYX无损测量样品质量空间分布与拉曼,AFM,SEM相比,ONYX能够快速表征超大面积样品背景介绍太赫兹辐射( T射线)通常指的是频率在0. 1~10THz、波长在30μm-3mm之间的电磁波,其波段在微波和红外之间,属于远红外和亚毫米波范畴。该频段是宏观经典理论向微观量子理论的过度区,也是电子学向光子学的过渡区。在20世纪80年代中期以前,由于缺乏有效的产生方法和探测手段,科学家对于该波段电磁辐射性质的了解和研究非常有限,在相当长的一段时期,很少有人问津。电磁波谱中的这一波段(如下图) ,以至于形成远红外和亚毫米波空白区,也就是太赫兹空白区(THz gap)。太赫兹波段显著的特点是能够穿透大多数介电材料(如塑料、陶瓷、药品、绝缘体、纺织品或木材),这为无损检测(NDT)开辟了一个可能的新世界。同时,许多材料在太赫兹频率上呈现出可识别的频率指纹特性,使得太赫兹波段能够实现对许多材料的定性和定量研究。太赫兹波的这两个特性结合在一起,使其成为一种全新的材料研究手段。而且其光子能量低,不会引起电离,可以做到真正的无损检测。 ONYX工作原理 ONYX是全球第一套实现石墨烯、半导体薄膜和其他二维材料全面积无损表征的测量系统,能够满足测试面积从科研级(mm2)到晶元级(cm2)以及工业级(m2)的不同要求。与其他大面积样品的测量方法(如四探针法)相比,ONYX能够直观得到样品导电性能的空间分布。与拉曼、扫描电镜和透射电镜等微观方法相比,微米级的空间分辨率能够实现对大面积样品的快速表征。ONYX采用先进的脉冲太赫兹时域光谱THz-TDS技术,产生皮秒量级的短脉太赫兹冲辐射。穿透性极强的太赫兹辐射穿透进样品达到各个界面,均会产生一个小反射波可以被探测器捕获,获得太赫兹脉冲的电场强度的时域波形。对太赫兹时域波形进行傅里叶变换,就可以得到太赫兹脉冲的频谱。分别测量通过试样前后(或直接从试样激发的)太赫兹脉冲波形,并对其频谱进行分析和处理,就可获得被测样品介电常数,吸收吸收以及载流子浓度等物理信息。再利用步进电机完成其扫描成像,得到其二维的电学测量结果。ONYX主要参数及特点样品大小: 10x10mm-200x200mm 全面的电导率和电阻率分析样品100%全覆盖测量最高分辨率:50μm完全非接触无损无需样品制备载流子迁移率, 散射时间, 浓度分析 可定制样品测量面积(m2量级)超快测量速度: 12cm2/min软件功能丰富,界面友好全自动操作图1 太赫兹光谱范围及信噪比ONYX主要功能→ 直流电导率(σDC)→ 载流子迁移率, μdrift→ 直流电阻率, RDC→ 载流子浓度, Ns→ 载流子散射时间,τsc→ 表面均匀性ONYX应用方向石墨烯材料:→ 单层/多层石墨烯 → 石墨烯溶液→ 掺杂石墨烯→ 石墨烯粉末→ 氧化石墨烯→ SiC外延石墨烯其他二维材料: → PEDOT→ Carbon Nanotubes→ ITO→ NbC→ IZO→ ALD-ZnO石墨烯光伏薄膜材料半导体薄膜电子器件PEDOT钨纳米线GaN颗粒Ag 纳米线ONYX测试数据1. 10x10mm CVD制备的石墨烯在不同分辨率下的电导率结果 2.10 x10mm CVD制备的石墨烯不同电学参数测量结果 3.利用ONYX测量ALD沉积在硅基底上的TiN电导率测量结果 ONYX发表文章1. P Bogild et al. Mapping the electrical properties of large-area graphene. 2D Mater. 4 (2017) 042003.2. S Fernández et al. Advanced Graphene-Based Transparent Conductive Electrodes for Photovoltaic Applications. Micromachines 2019, 10, 402.3. David M. A. Mackenzie et al. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping. OPTICS EXPRESS 9220, Vol. 26, No. 7, 2 Apr 2018. 4. A Cultrera et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Scientific Reports , (2019) 9:10655.ONYX用户单位重要客户合作伙伴参与项目创新点:ONYX是第一款针对石墨烯、半导体薄膜和其他二维材料大面积太赫兹无损表征的测量设备,采用先进的脉冲太赫兹时域光谱专利技术。与传统四探针测量法相比,ONYX无损测量样品质量空间分布;与拉曼,AFM,SEM相比,ONYX能够快速表征超大面积样品石墨烯/二维材料电学性质非接触快速测量系统
  • 回放视频上线! 第六届“汽车质量控制与检测技术”网络会议成功召开
    2024年3月19-21日,由仪器信息网、中国汽车工程学会汽车材料分会联合主办的第六届“汽车质量控制与检测技术”网络会议成功召开。会议聚焦汽车生产质量控制中的检测难点,邀请产业界、学术界的20余位技术专家围绕汽车零部件失效分析、新能源汽车测试、汽车尺寸测量展开主题分享,共吸引1000余名行业用户报名参会。为帮助更多行业用户了解本次会议内容,本文特别整理了部分征得专家同意的报告回放。专场一:汽车零部件失效东风商用车技术中心工艺研究所专家总师 冯继军《汽车零部件疲劳失效分析》(观看回放) 机器零件在服役过程中是承受交变载荷工作的。在交变载荷的作用下,即使应力水平很低,但经过长时间的应力反复循环作用后,也会发生突然断裂,这种现象叫做疲劳断裂。疲劳失效是汽车零部件最主要的失效形式,导致的损失巨大。据某实验室统计,疲劳失效约占全部失效分析案例的70%左右。然而,疲劳失效是可以在设计、生产等过程中预防的。为帮助相关人员深入了解疲劳失效知识,预防和减少汽车零部件的疲劳失效,保障人们的生命财产安全,冯继军详细介绍了疲劳断裂的定义、特点、分类、原因及过程,并结合实际案例分享了汽车零部件疲劳失效的整个过程及预防措施。北京欧波同光学技术有限公司业务发展(BD)工程师 苏瑞雪《欧波同智能化汽车材料显微分析解决方案》(观看回放) 抚顺特殊钢股份有限公司高级专家/高级工程师 程丽杰《汽车钢典型缺陷的金相表征技术及与失效的关系》(观看回放) 缺陷分析的最终目的是认识金属缺陷的实质,掌握缺陷表征技术,并正确的运用检测方法和标准,评定其严重程度,评判其影响和危害。通过对缺陷的全面分析和评估,可以确定其对材料性能和安全性的潜在影响,从而制定相应的改进措施和预防措施,确保产品的质量和可靠性。程丽杰在报告中简述了汽车用钢典型缺陷的检验方法和标准,阐述其与失效的关联性和评判方法,并举例分享典型的缺陷分析方法。中车戚墅堰机车车辆工艺研究所股份有限公司高级工程师 李平平《机械零部件失效分析工程技术属性-AI智能助力企业数字化转型》(观看回放) 目前,金相分析面临经验依赖性强、人才梯队断代、检测效率低等问题,李平平及其团队基于迁移学习的深度卷积神经网络模型,发展了一种能够准确、自动、高效识别钢材微观组织的新方法。该方法使用算法对大量的金相图进行学习,建立预测模型,然后对新输入的金相图进行自动识别。报告详细介绍了这款AI智能金相分析系统与应用,并分享了“大道至简”的失效模式分析思路,以及“氢脆”失效模式分析系统性。北京奔驰汽车有限公司高级工程师 宋伟伟《汽车金属零部件涂层性能试验及评价》(观看回放) 车身涂层可以提高汽车耐腐蚀性能并延长其寿命,涂层外观、鲜映性、光泽和颜色是汽车质量的直观评价指标。在汽车生产制造中,涂层性能检测在喷漆质量监控和金属零部件考核中具有重要应用。宋伟伟基于个人试验经验,重点介绍了涂层环境加速和机械性能的测试方法及评价,尤其是试验的具体操作和细节。德国莱茵TÜV大中华区工业服务与信息安全项目经理 宫秀勉《汽车零部件失效分析的基本程序与应用》(观看回放) 本报告系统介绍了汽车零部件失效分析的基本程序与应用,并分享了实际案例。失效分析基本程序包括收集、归纳失效件背景资料——初步检查分析——检测、分析(包括非破坏性测试与破坏性测试)——失效原因——提出预防和改进措施——保存证据并归档相关文件。专场二:新能源汽车测试四川新能源汽车创新中心(欧阳明高院士工作站)实验室主任 李华锋《面向新一代动力电池(全固态电池)的原位表征与测试技术研究》(观看回放) 作为新一代动力电池——固态电池兼顾高能量与高安全,产业化仍面临着一系列的问题,需要从材料/界面/电极等各层面取得技术突破,新能源汽车产业的迅速发展急需对现有锂电池材料改进和突破。原位/工况表征技术可以实时监测电池反应过程中的电极材料的形貌、结构转变,氧化还原过程,固液界面形成,机械接触、枝晶生长、副反应的发生和锂离子传输特性等信息,对深入分析理解电池在实际工作中的化学反应、衰退机制和热失效机理等具有重要意义。捷欧路(北京)科贸有限公司应用工程师 朱明芬《专业的汽车生产环境检测系统-PCI系统的介绍》(观看回放) 北京新能源汽车股份有限公司高级经理 朱阳阳《锂离子电池充电策略的制定》(观看回放) 2023年新能源汽车持续增长,锂离子电池技术发展迅速,补能已替代里程焦虑成为重要的用户痛点。随着快充技术飞速发展,如何挖掘电芯的快充能力,并保证全生命周期安全可靠成为各家主机厂关心的问题。朱阳阳主要从快充趋势和快充策略制定分享其对快充的理解,受到锂离子电池供应商及汽车主机厂的广泛关注。仪景通光学科技(上海)有限公司高级产品经理 吴丹霞《Evident光学显微镜在新能源汽车产业的应用》(观看回放) 天津三英精密仪器股份有限公司应用工程师 康馨予《X射线三维CT技术在新能源汽车检测的应用》(观看回放) 仪景通光学科技(上海)有限公司产品经理 谈思涵《Evident X射线荧光分析仪在新能源汽车产中的应用》(观看回放) 梅特勒托利多科技(中国)有限公司细分市场专家 黄永康《原料及零部件质量控制与检测对汽车安全的影响》(观看回放)国联汽车动力电池研究院高级工程师 方升《三元电池过充燃烧特性及其安全边界研究》(观看回放) 报告系统地介绍了三元电池的燃烧特性研究,结果表明:(1)在开放空间中,泄爆阀正上方40 - 50cm的空间区域构成了射流火焰的核心燃烧区域。(2)残渣粉体表面硫元素的价态及反映石墨002晶面的X射线衍射角与峰值热释放率有关。以上研究结论为抑制火势蔓延、火灾事故析因等提供了一定的理论研究基础和应用依据。此外,基于电池过充过程中电压及温度变化特征,提出了一种电池安全边界划分及电池安全评价方法—电池过充相对安全状态(OCSS)。相关结论可用来监控和预测电池在充电时的安全状态,保障人们的财产和生命安全。招商局检测车辆技术研究院有限公司新能源环保事业部检测师 黄林波《新能源汽车充电性能测试解决方案及充电连接装置要点解读》(观看回放) 随着新能源汽车技术的快速发展,充电问题日益突出。车企研发设计成本高、用户充电困难等问题在一定程度上限制了新能源汽车的普及。本报告针对新能源汽车充电痛点,提出了一系列解决方案,并对充电连接装置标准实施情况及检测要点进行解读。中汽研软件测评(天津)有限公司高级工程师 张胜强《新能源汽车能量流测试分析》(观看回放) 整车能量流测试分析,主要研究整车能量的传递路径以及在传递过程中的传递效率和能耗情况,有助于了解整车及各系统的能耗和能量转化效率,有助于针对性地改进设计方案,从而提高能效水平。报告系统介绍了电动汽车能量流研究,主要包括交直流充电测试分析、续航测试分析以及机械阻力分解分析等。专场三:汽车尺寸测量合肥工业大学教授 卢荣胜《汽车关键零部件机器视觉在线检测技术》(观看回放) 本报告重点探讨了汽车关键零部件机器视觉在线检测技术,特别关注机器视觉三维测量与自动检测技术在汽车制造业中的应用。卢荣胜详细介绍了机器视觉三维测量与自动光学检测技术的基本原理、2D和3D成像技术,结构光扫描3D测量在车轮涂胶三维缺陷检测、载荷性能测试等方面的应用,汽车玻璃缺陷、面形和畸变等方面的自动光学检测技术,以及机器视觉在汽车发动机总成外观缺陷检测方面的应用。优尔鸿信检测技术(深圳)有限公司技术总监 肖华根《全自动化3D扫描在汽车尺寸测量中的应用》(观看回放) 尺寸测量的效率和品质控制是生产企业的“痛点”,检测设备的自动化和智能化、操作简易化成为行业中追逐的目标,然而测量方案的制定与实施、测量数据的分析与应用成为了“瓶颈”。本报告系统介绍了全自动3D扫描在汽车尺寸测量中的应用。
  • 2020 TCT 亚洲展,先临三维的新品+精品,你pick哪一个?
    2020 TCT Asia亚洲3D打印、增材制造展览会TCT ASIA(亚洲3D打印、增材制造展览会),承载了英国TCT品牌历史,致力于打造行业领先的增材制造、3D打印产品与技术的专业展览会。它于2015年进入中国市场,现在已成为亚洲市场主要的3D技术展会之一。2020年7月8-10日,作为TCT的“老朋友”,先临三维将携多款精品及新品亮相E6馆E11展位。从3D数字化产品到增材制造设备,先临三维不断专注于技术研发与创新,与产业伙伴建立战略合作,共同推进“3D数字化-智能设计-增材制造”系统解决方案在高端制造、齿科医疗、消费&教育等应用的真正落地,经过多年技术沉淀和数据积累的新品,将为企业和用户的应用解决方案带来新一轮的提升。◆先临三维全明星阵容◆新品7月8日-7月10日亮相EP-M450国内首发易加三维2016年,由北京易加三维科技有限公司为承担单位的“大尺寸粉末床选区激光熔化增材制造工艺与装备研发”项目,获得了国家重点研发计划“增材制造与激光制造专项”(2016YFB1100700)的经费支持。2019年10月,易加三维研究开发的多激光多振镜选区金属增材设备平台EP-M650完成首台交付,应用于航空航天、能源和轨道交通领域的高性能金属部件的直接制造,代表着“大尺寸粉末床选区激光熔化增材制造工艺与装备研发”这个国家项目历经三年之后取得了阶段性重要成果。2020年TCT,EP-M450做为重点研发计划的另一枚硕果,即将在展会现场正式发布。EP-M450采用金属粉末床熔化原理,选用500W IPG进口激光器,有单激光和双激光两种配置可选,可打印钛合金、铝合金、镍基高温合金、模具钢、不锈钢、钴铬钼等材料,适于航空航天、能源、轨道交通、模具等领域大尺寸、高精度、高性能零部件的直接制造。Autoscan Inspec国内首发先临三维AutoScan Inspec堪称精工之作,作为桌面三维检测系统,采用工业级蓝光3D扫描技术,配备双500万像素工业相机,拥有计量级的高精度和出色数据细节表现,其快速精准的三维扫描测量和全尺寸检测功能,可以满足用户对小尺寸精密工件的测量需求。用户一键即可获取高品质数据,可广泛应用于塑料零部件、叶轮叶片、小尺寸铸件等非接触测量、逆向设计、批量化检测及质量控制等工业场景。EinScan-HX国内首发先临三维EinScan HX,一款熠熠生辉的创新产品,预测将是此次展会中要火的那一个!EinScan HX配置了独门秘笈:蓝色X型激光和蓝色散斑双光源。扫描黑色、反光物体难?EinScan-HX告诉你那都不是事儿。它采用Hybrid混合光源扫描技术,具有计量级精度,尤其适于汽车、大型铸件、深色红木家具、模具的3D数字化测量。介绍的太少了?它的优点现在还不能说~~想了解更多独到之处吗?欢迎来先临三维展位现场体验!EinScan-H国内首发先临三维EinScan-H,配置了红外和白色散斑双光源,可敏锐捕捉中大尺寸物体的高品质彩色数据,并着重解决了黑色材质和毛发的数据获取难题。EinScan-H适用于人体、大型艺术品、家具等中大型物品的扫描,欢迎来到彩色世界。EinScan Pro 2X系列2020升级版先临三维如果要说受欢迎程度,EinScan Pro系列当之无愧是shining shining的闪亮之星。此次TCT展会将迎来全面升级的EinScan Pro 2X Plus 2020版本。新版本延续了高质量的扫描数据、高效的扫描体验、多功能的扫描模式等传统优点,同时大幅升级了手持精细扫描模式,为用户带来了更加细腻的数据细节。不止于此,新版本同时拓宽了扫描材质适应性,为用户带来更加简单、高效的高品质3D数据获取。精品7月8日-7月10日必看RobotScan E0505机器人智能三维检测系统天远三维RobotScan E0505天远创新机器人智能三维检测系统,成功将“一键式扫描”、“全尺寸检测”、“避免人为误差”、“人机协作”等优势完美融合。配合高清成像(扫描精度高达0.015mm)以及极速扫描(单幅扫描时间≤1.5秒)的产品性能优势,确保将高质量的数据完美呈现给每一位用户。FreeScan X7 Plus无线激光手持三维扫描仪天远三维FreeScan X7 Plus是一款真正便携的无线激光手持三维扫描仪。产品采用先进的无线技术,成功摆脱线缆的束缚。配备智能化AirMaster无线计算平台,成功实现对图像数据的全硬件计算,优化后的产品性能,带来出色的自由扫描体验。FreeScan Trak无线跟踪式激光扫描系统天远三维FreeScan Trak无线跟踪式激光扫描系统基于动态光学跟踪原理,系统可对扫描头进行跟踪定位并实时精确测量目标的三维形状,实现了无需贴点的高精度三维扫描,让操作人员节省了大量时间。它适用于各类静态和动态应用场景,主要包括航空航天、汽车、造船、能源等行业的大场景三维检测需求。期待与您相聚。我们将按照当地防疫部门要求,严格落实防疫措施,让您观展更安心!
  • 思看科技三维扫描仪配件新品——TrackProbe 跟踪式硬测系统发布!
    标题1:思看科技新品TrackProbe 跟踪式光笔测量系统正式发布!标题2:三维扫描仪丨思看科技TrackProbe 跟踪式光笔测量系统正式发布!2023年10月26日,思看科技(SCANTECH) 正式发布TrackProbe跟踪式光笔测量系统。TrackProbe跟踪式光笔测量系统,实力进阶,超越想象,以无畏探索之势,洞见测量边界,开启自由灵活的全新三维测量体验之旅。TrackProbe 跟踪式光笔测量系统,由手持式测量光笔i-Probe和新一代光学跟踪器i-Tracker 组成,专为计量级精度测量量身打造。整个系统凭借其高精度、高便携性和高易用性的特点,能轻松应对大范围、远距离及复杂严苛环境的测量需求。 面对生产车间现场,从夹具调装到基准划线测量、从小型零部件到大型工件如工程机械结构件尺寸检测,TrackProbe跟踪式光笔测量系统都能随时随地、无所拘束地开展高精度三维测量。 广泛可扩展的测量范围 搭配具有超远可视范围的跟踪器i-Tracker,i-Probe测量光笔标准工作距离为6m,单站最远测量距离可至10m,实现大型项目一站式高精度三维测量。性能强大 精密计量 凭借高精度的光学传感器技术和算法性能,能够精确地探测和测量被测对象的几何特征及形位公差。测量范围在49.0m³ 范围内,体积精度可达0.089mm;28.6m³ 范围内,体积精度可达0.067mm;10.4m³ 范围内,体积精度可达0.049mm。深度隐藏点测量 i-Probe长500mm(不含测针长度),结合先进的算法技术,即便遮挡部分靶点也能精准探测,轻松获取基准孔、隐藏点等关键部位的三维数据,大大拓展测量区域,测量更灵活,尤其适合汽车零件、航空部件等复杂内部结构、管道、孔洞以及异形工件等的测量。接续测量 轻松转站 在跟踪器可视范围内,光笔可以自由地从一个位置移动到另一个位置,跟踪器能够实时追踪光笔的位置和姿态,并将其映射到对应的坐标系统中,从而保证测量的连续性,无需重新追踪光笔。基于先进的软件和定位算法,i-Probe只需少量标记点即可实现轻松转站,大大提升了转站的便捷性,简化了测量流程,对于远距离、大尺寸工件数据获取优势显著。灵活便携 测量无束缚 手持探测光笔,无需固定安装,可以轻松被带至任何零部件位置,测量任意尺寸的物体。两种传输模式,按需选择。无线模式,摆脱传统硬测设备受机械结构或线缆的束缚,为现场测量提供更大的灵活性;面对特定使用场景,可选择有线模式,满足数据安全特殊要求。结合TViewer软件能自动统一扫描数据与硬测数据于同一坐标系,实现扫描测量和接触式测量之间无缝切换,测量过程更流畅。多元场景 稳定掌控 整机轻巧便携,性能稳定可靠,不易受震动、温度、湿度、光线等外部因素影响,结合动态测量功能,可以实时计算并校准位置偏差。在复杂车间现场或户外环境也能保持高精度动态跟踪测量,无论是复杂曲面、高精度零件或是大型结构件都能实现精准三维测量。关于思看科技 思看科技是面向全球的三维视觉数字化综合解决方案提供商,主营业务为三维视觉数字化产品及系统的研发、生产和销售。公司深耕三维视觉数字化软硬件专业领域多年,产品主要覆盖工业级高精度和专业级高性价比两大差异化赛道,主要产品涵盖便携式3D视觉数字化产品、跟踪式3D视觉数字化产品、工业级自动化3D视觉检测系统和专业级彩色3D视觉数字化产品等。公司产品广泛应用于航空航天、汽车制造、工程机械、交通运输、3C电子、绿色能源等工业应用领域,以及教学科研、3D打印、艺术文博、医疗健康、公安司法、虚拟世界等万物数字化应用领域,致力于提供高精度、高便携和智能化的三维视觉数字化系统解决方案,打造三维视觉数字化民族品牌。
  • 省时省力!微塑料全自动快速分析,非接触式亚微米红外拉曼同步光谱显微系统再度升级!
    随着大量塑料的使用和随意处置,微塑料几乎污染了整个地球,科学家也愈发关注对微塑料的研究。环境中微塑料的尺寸往往小于5μm,传统红外因受限于微米级别空间分辨率,以及不同尺寸颗粒变化的实际红外吸收峰相较于理想吸收峰散射严重等问题,很难对样品进行有效的定性和定量分析。美国PSC公司推出的非接触式亚微米红外拉曼同步光谱显微系统-mIRage,得益于其500 nm空间分辨率、不因颗粒尺寸变化而发生散射且无需接触测量等优势,有效解决了绝大多数环境微塑料样品光谱显微测试的问题。其显著的技术优势为:✔ 亚微米红外空间分辨率,比传统的FTIR/QCL红外显微提高~20倍;✔ 有效排除小尺寸样品散射伪影,极大提高样品测试范围,获得高质量红外拉曼分析图谱;✔ 非接触式,反射(远场)模式测量,对样品无污染,没有任何常见光谱失真。可快速匹配光谱商用数据库,获得样品种类结果;✔ 可升级亚微米同步红外+拉曼同步联用系统,在相同时间、条件、位置下获得相同空间分辨率的红外和拉曼光谱。非接触亚微米分辨红外拉曼同步测量系统—mIRage近日,PSC公司将mIRage系统全新升级,即将发布FeaturefindIR功能。FeaturefindIR创新性的实现了微塑料和其他颗粒快速、自动化的光谱测量和化学鉴定,显著提高了实验效率,并为应用中大量样品的测量提供了基础,包括但不限于微塑料,缺陷污染和细胞分析,以及许多其他样品类型。mIRage升级系列将原有优势进一步拓宽:☛ 测试从亚微米到毫米范围内微塑料样品;☛ 红外拉曼同步,测量大量的微塑料和颗粒;☛ 测试系统自动搜索和检测粒子;☛ 自动测量和定位化学ID。升级功能新品发布会为使研究者更好的了解这一升级功能,美国PSC公司将举办升级功能新品发布会,发布会将由产品管理和营销总监Mustafa Kansiz博士主持介绍。此次发布会将主要介绍“FeaturefindIR”软件自动化工具如何在mIRage上对更具有生物学意义的微塑料颗粒(从小于500 nm到大尺寸(mm))进行自动化、快速和准确的分析,规避传统FTIR/QCL和拉曼显微系统所见的明显缺陷,从而有效完成微塑料样品测试。同时,Mustafa Kansiz博士也将实时演示亚微米mIRage的featurefindIR功能,无论颗粒形状和大小如何,都将得到一致、无伪影的图谱,并使用交叉偏振可见光增强颗粒检测。敬请期待mIRage系统featurefindIR的详情发布!FeaturefindIR优势解析:【高效粒子数据收集】微塑料、颗粒和有机污染物有时很难在大量的一般污染物中发现。为了获得最大的灵活性,featurefindIR可以使用图像输入,以实现更准确和敏感的检测和定位。【自动测量和识别】一旦确定了颗粒的位置和大小,mIRage系统就会自动移动到所需测量位置,并执行快速、自动化的红外光谱测量。测量完成后,粒子信息汇总表将列出获得关键光谱的每个粒子的位置和特定尺寸。此表可以转移到featurefindIR μChemical ID报告中,也可以导出为CSV文件。【FeaturefindIR μChemical ID报告】FeaturefindIR μChemical ID报告将自动分析PTIR Studio文件中用户选择的所有光谱,并将它们与集成数据库中的参考光谱集相关联。对每个测量的频谱报告命中质量指数(HQI),如果HQI高于用户设置的阈值,还会报告最佳匹配化学ID。在测量光谱和参考光谱之间显示覆盖层,颜色编码可用于评估光谱数量的视觉支持,特定塑料类型被分配特定颜色作为视觉辅助。此外,可以通过选择每个结果来进行定量检查,以显示与OPTIR参考匹配接近的详细光谱叠加。FeaturefindIR为研究人员提供了一种快速测量大量相关微塑料的自动化方案。不但提供了维度方面的信息,同时可以通过专用的μChemical ID数据库确定它们的化学ID。所有数据都可以通过CSV导出,以便根据需要进行进一步分析。FeaturefindIR通过提供识别微塑料类型的不同方法(如单波长成像和荧光图像)来提高测量效率,提供了从亚微米到毫米大小的微塑料研究完整解决方案。
  • 天远三维携手大族机器人,打造国产机器人全自动三维检测系统
    4月1日,深圳,先临三维旗下子公司天远三维与大族机器人联合发布RobotScan UE机器人全自动三维检测系统,在全自动三维检测系统自主品牌的发展中迈出重要一步,降低国外品牌的技术掣肘。 RobotScan UE机器人全自动三维检测系统每项核心组件皆为国内自主研发,包括天远三维自主研发的高精度三维扫描仪、EINSENSE Q 3D数字化全尺寸检测软件以及大族机器人机械臂。该项系统方案可实现机器人全自动、标准化三维扫描并实时进行在线检测与报告传输,同时可根据实际检测场景,进行定制化开发,为国内自动化检测领域提供一项强大的自主品牌解决方案。 RobotScan UE机器人全自动三维检测系统研发背景 随着高精度三维扫描与检测技术的不断成熟发展,三维扫描高效、高精度的应用特征,逐渐为检测行业所认可。天远三维也不断深化三维扫描检测的场景应用,特别是在现代化工厂的检验领域。 传统方式下,以人工进行三维数据获取,扫描角度、过程难以实现标准化,虽然这并不影响后续的检测环节,但是在标准化的生产方式下,数据获取的“随意性”将隐藏部分的数据信息,从而产生数据噪音。随着大数据的发展,数据的真实性以及排躁性愈发重要,自动化扫描检测解决方案因时而生,天远三维在此领域内已进行大量研发创新。为了更好地实现标准化的三维扫描检测,天远三维与大族机器人合作,以机器代替人工,打造高效、标准化的全自动三维扫描检测系统。RobotScan UE机器人全自动三维检测系统优势特点 1.全自动、标准化三维扫描检测,适用现代化工业生产环境2.各核心组件均为国内自主研发,降低国外品牌的技术掣肘3.支持蓝色激光或蓝色结构光,可根据不同的检测场景选择不同光源4.检测软件通过德国PTB认证,数据处理高效可靠,支持定制化开发RobotScan UE机器人全自动三维检测系统首发展示RobotScan UE机器人全自动三维检测系统于2021深圳国际工业零件展览会SIMM(ITES)上进行首次亮相,众多观展人员也在4馆H45展位见证了RobotScan UE机器人全自动三维检测系统的高效、高精度以及标准化检测方式。 RobotScan UE 机器人全自动三维检测系统,搭载EINSENSE Q 工业级高精度检测内核,实现智能检测。 此项合作,是国内机器人和三维扫描领域重点企业的强强联合,大族机器人拥有多年的电机、伺服驱动和运动控制经验,掌握先进的智能机器人的核心关键技术;天远三维专注于高精度3D视觉检测技术,为国家白光三维测量系统行业标准的主要起草单位之一。此次合作,通过国内高新技术的集成,推进了机器人技术在现代工业场景自动化三维检测的应用深化,对于机器人技术普及和三维扫描检测的升级都具有重要意义。 天远三维简介 先临三维旗下子公司天远三维专注于高精度3D视觉检测技术,基于多年计量行业的实践经验与技术积累,研发了激光手持三维扫描检测、高精度三维检测扫描检测、无线跟踪式扫描检测以及多机联动3D视觉检测等一系列高精度3D视觉检测方案,并自主研发3D数字化检测软件,产品广泛应用于:汽车交通、航空航天、铸造模具、电力、军工等专业领域。 大族机器人简介 深圳市大族机器人有限公司,是由上市公司大族激光科技产业集团股份有限公司投资组建,在大族电机机器人研究院100多人的团队基础上孵化而成的国家级高新技术企业。公司总部位于深圳宝安区大族激光全球智能制造产业基地,并于德国、天津设有子公司,团队汇聚了来自世界各个国家的、顶尖的机器人行业专家,助力大族机器人成为世界领先的机器人行业标杆。
  • 热点资讯 | QD中国独家引进美国PSC公司非接触式亚微米分辨红外拉曼同步测量系统
    mIRage O-PTIR (Optical Photothermal Infrared) 光谱仪是由美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司) 新发布的一款应用广泛的亚微米空间分辨率的非接触式亚微米分辨红外拉曼同步测量系统。基于的光热诱导共振(PTIR)技术,mIRage产品突破了传统红外的光学衍射限,其空间分辨率高达500 nm,可有效助力科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。目前,大多数的红外光谱空间分辨率受限于红外光的衍射限,只有10-20 μm,且依赖于红外光波长,而mIRage O-PTIR凭借其有的技术克服了上述问题,将空间分辨率提升至500 nm;该仪器还采用可调的脉冲式中红外激光激发样品表面,产生光热诱导膨胀效应,并以可见光为“探针”探测样品聚焦区域的光学效应,可实现无接触式地快速简易测量,避免了传统全反射模式下的散射像差和交叉污染 mIRage在反射模式下所得谱图与透射模式下FTIR完全一致,大的简化了样品制备问题,无需制备薄片,直接测试较厚样品,大大提高测试效率;另外mIRage红外光谱仪可以选配透射模式,十分适用于液体样品和一些特殊混合样品,大的扩展了应用范围;值得注意的是mIRage还可与拉曼光谱联用,实现同时同地相同分辨率的IR和Raman测试,且无荧光风险,能够帮助研究者更快速全面的确定所分析样品的化学组成信息。mIRage红外光谱仪可以快速准确地对样品进行亚微米尺度的红外光谱和成像分析,被广泛应用于高分子、生命科学、医药合成、微电子器件有机缺陷分析、物证分析等,更多的应用领域还在不断开发中,期待与您的合作!mIRage技术参数波谱范围模式探针激光 样品台小步长 样品台X-Y移动范围 IR (1850-800 cm-1)反射532 nm 100 nm 110*75 mm IR (3600-2700 cm-1) 透射Raman (3900-200 cm-1) 反射 重要应用实例分析: 1. 高分子领域亚微米线IR扫包埋于树脂中的聚苯乙烯球 2. 生命科学领域红血细胞的IR和Raman图谱分析透射模式下水中活细胞的亚微米mIRage图谱和成像3. 医药领域药物/高分子混合物分析4. 缺陷分析薄膜缺陷探测5. 物证分析单根纳米纤维不同区域的mIRage图谱6. 其他应用工业应用科研应用• 医疗 • QA、QC质控分析 • 聚合物 • 文物鉴定 • 化工 • 有机污染 • 药学 • 陨石 • 微电子 • 缺陷分析 • 考古学• 纤维 • 石油勘探 • 犯罪侦查 • 土壤• 地质学 • 食品加工 • 纺织业 • 海洋科学 产品用户和发表文章目录[1] Ji-Xin Cheng et al., Sci. Adv. 2016, 2, e1600521.[2] Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.
  • 直播预告|第五届汽车检测技术网络会议之尺寸测量技术分会场
    在汽车的生产制造中,质量控制始终是重中之重。根据 J.D.Power 全世界汽车产品质量关键问题调查评估的报告显示:41%的汽车产品质量问题是由车身制造尺寸偏差所造成。因此,对车身制造尺寸偏差的研究及控制尤为重要。随着汽车行业的不断发展,对汽车的造型、装配、性能要求都在提高,汽车零部件的关键尺寸的把控越来越严格。零部件检测也由一两个关键尺寸的检测逐步增加到全尺寸的把控,这对检测的速度和精度都提出了更高的要求。传统的接触式测量技术在测量领域已经应用多年,技术成熟、应用广泛,是当今汽车行业车身及零部件测量的主流。而随着光电技术的发展,光学测量系统在精度、可靠性上有了显著提高,已经越来越广泛地应用在测量领域,并代表了当今测量技术的发展趋势,尤其在汽车车身尺寸检测领域,已经由传统的三坐标接触式测量逐渐向非接触式光学测量过渡。为进一步加强汽车零部件尺寸测量技术的交流,提升车身精度水平,推动我国汽车产业高质量发展,仪器信息网联合中国汽车工程学会汽车材料分会、国联汽车动力电池研究院于2023年3月15-17日举办第五届“汽车检测技术”网络会议,特设“汽车零部件尺寸测量技术”专场。点击图片直达会议页面 会议特邀天津大学、上海大学、北京工业大学专家学者与中车戚墅堰所高级工程师,分享最新的尺寸测量技术在汽车行业的应用进展。报告预告如下(  点击报名  )。上海大学 李明教授《汽车产业几何量数字化测量系统的构建》(点击报名)李明教授长期从事智能制造、几何精密测量、几何质量标准化等方面的教学和应用研究,坚持开展产学研合作,包括汽车制造、航空航天、军工轨交等行业。现任中国计量测试学会几何量专业委员会委员、全国产品几何技术规范标准化技术委员会委员、中国汽车工程学会尺寸工程专业委员会副主任。多次获省部级科技进步奖,已公开发表学术论文200余篇、拥有发明专利30余项、学术专著3本。本次会议,李明教授将分享汽车产业几何量数字化测量系统的构建,主要内容包括:(1)几何量数字测量的技术和标准体系; (2)影响几何量测量的因素分析和测量系统数字化验证 ;(3)几何量测量实验室认证中需要关注的问题。天津大学精密测试技术及仪器国家重点实验室 尹仕斌副研究员《高性能在位在线视觉测量技术及在汽车行业的应用》(点击报名)尹仕斌副研究员一直专注于工业制造过程中精密测量技术的研究工作,结合工业机器人技术、计算机视觉技术和精密测量理论,研究满足工业制造过程中的测量原理、方法及其工程应用技术,重点解决了汽车制造、高铁制造等行业领域内的测量难题,并获得了广泛应用。作为项目负责人和项目技术骨干成员先后参与了国家重点研发计划、国家仪器重大专项、国家自然科学基金项目等多个项目,先后发表了15篇学术论文,其中SCI论文10篇,EI论文5篇,授权发明专利35件。以高性能检测手段驱动工艺迭代、提升产品质量、满足多样化定制要求,已成为提升中国制造核心竞争力的迫切需求。基于图像传感的视觉检测方法具有信息量大、非接触等突出优势,但在制造现场环境中,受限于照明条件、电磁环境、空间结构的多样性和复杂性,视觉检测普遍存在可靠性低、实时性差、适应性弱的技术瓶颈,应用呈现零散、局部、辅助的特点,亟待突破核心技术,形成成套技术及产品体系,全面支撑先进制造工艺技术的升级转型。本次报告中,尹仕斌副研究员将分享高性能在位在线视觉测量技术及在汽车行业的应用。北京工业大学长江学者特聘教授 石照耀《电动汽车齿轮测试技术》(点击报名)石照耀教授为教育部长江学者特聘教授,国务院特殊津贴专家,全国机械工业科技创新领军人才,中国齿轮行业科技领军人物,北京市战略科技人才;国际标准化组织齿轮标准委员会(ISO/ TC60)委员,国际机构学与机械科学联合会(IFToMM)中国委员;中国仪器仪表学会机械量测试仪器分会理事长,中国计量测试学会常务理事,全国齿轮标准化技术委员会副主任委员。长期致力于精密测试技术和齿轮工程研究,在测试技术与仪器、精度理论与标准、微小齿轮与精密传动、精密机械和微小制造等方面,取得了一批创新成果,在重大装备上获得广泛应用,取得了良好的经济社会效益,推动了我国相关行业的发展。获国家科技进步奖二等奖2次、广东省科技进步奖一等奖1次、中国机械工业科学技术奖特等奖1次、一等奖2次、二等奖1次,2019年中国好设计金奖。电动汽车对齿轮传动噪声要求很严,其齿轮设计、制造呈现出新特点。同时,电动汽车齿轮测量正改变传统齿轮测量的内涵。本次报告中,石照耀教授在论述电动汽车齿轮特点及其对齿轮测量要求的基础上,将剖析电动汽车齿轮测量与测试的关系,介绍电动汽车齿轮测量的方法与手段,分析波度误差的价值,重点讲解基于齿轮测量的齿轮性能预报方法,包括傅里叶分析。中车戚墅堰机车车辆工艺研究所有限公司 郑小康部长/高级工程师《工业CT在汽车零部件尺寸测量中的应用》(点击报名)郑小康高工为中车技术专家,中国中车无损检测技术委员会委员;全国无损检测标准化技术委员会委员;机械工程学会无损检测分会委员。主要从事无损检测技术及装备研究,参与起草国家标准2项,主持起草铁道行业标准7项;编写《超声波检测技术及应用》等出版物5本。主持和作为核心团队成员参与无损检测相关科研项目30余项。获铁道科学技术奖4次,中国中车科学技术奖8次,常州市科学技术奖1次。工业CT检测是一种非破坏性的获取产品内部缺陷和结构三维信息的检测方法。它可应用于产品的整个生命周期,如研发、批产、失效分析等,通过逆向工程、壁厚分析、缺陷分析、尺寸测量来改进产品的设计和工艺,缩短研发周期。本次会议,郑小康高工将分享工业CT在汽车零部件尺寸测量中的应用。以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/automobile2023/
  • 严控PM2.5 《汽车排放限值及测量方法》拟出台
    全国范围内汽车保有量快速增加,其污染物排放也不断增加,对环境的影响日趋严重,给城市和区域空气质量带来巨大压力。汽车直接排放的颗粒物,以及排放的氮氧化物和碳氢化合物反应形成的二次颗粒物,均是环境空气中PM2.5 的组成部分;同时,氮氧化物和碳氢化合物也是形成臭氧的重要前体物。  近日环保部发布了公告,就《轻型汽车污染物排放限值及测量方法(中国第五阶段)》(二次征求意见稿)征求意见。该标准适用于新车型式核准、生产一致性检查和在用符合性检查,包括了轻型汽车大气污染物排放控制的各项要求,即排气、蒸发和曲轴箱污染物排放的限值及测量方法,同时,还规定了污染控制装置耐久性、车载诊断(OBD)系统的技术要求及测量方法。  该标准大气污染物控制项目包括:一氧化碳(CO)、碳氢化合物(THC)、非甲烷碳氢(NMHC)、氮氧化物(NOx)、颗粒物(PM),并需要测量颗粒物的粒子数量(PN)。  以下是环保部发布的公告全文:环境保护部办公厅函环办函[2013]46号关于征求《轻型汽车污染物排放限值及测量方法(中国第五阶段)》(二次征求意见稿)意见的函各相关单位:  为贯彻落实《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》,防治污染,保护人体健康,适应国家经济社会发展过程中环境保护工作的需要,我部决定制定国家环境保护标准《轻型汽车污染物排放限值及测量方法(中国第五阶段)》。标准草案曾于2011年3月公开征求意见。标准编制单位认真研究了各方提出的意见后对标准草案进行了修改和完善。为了广泛听取社会各界意见,我部决定再次对标准草案公开征求意见。  欢迎有关单位和各界人士于2013年2月18日前通过信函或电子邮件的方式将意见反馈给环境保护部科技标准司。  通信地址:北京市西直门内南小街115号  邮政编码:100035  电子邮件:biao.zhun@mep.gov.cn  联系电话:(010)66556214  联系人:雷晶  附件:1.征求意见单位名单  2.轻型汽车污染物排放限值及测量方法(中国第五阶段)(二次征求意见稿)  3.《轻型汽车污染物排放限值及测量方法(中国第五阶段)》编制说明(二次征求意见稿)  环境保护部办公厅  2013年1月14日  附件1  征求意见单位名单  发展改革委  工业和信息化部  公安部  住房城乡建设部  交通运输部  商务部  国家质量监督检验检疫总局  各省、自治区、直辖市环境保护厅(局)  新疆生产建设兵团环境保护局  辽河保护区管理局  中国环境科学研究院  中国环境监测总站  中日友好环境保护中心  中国环境科学学会  环境保护部对外合作中心  环境保护部南京环境科学研究所  环境保护部华南环境科学研究所  环境保护部环境规划院  环境保护部环境工程评估中心  中国环境保护产业协会  环境保护部机动车排污监控中心  中国汽车工业协会  中国汽车工程学会  中国内燃机工业协会  中国石油天然气集团公司  中国石油化工股份有限公司  中国海洋石油总公司  国家轿车质量监督检验中心(天津)  济南汽车检测中心  国家汽车质量监督检验中心(长春)  国家汽车质量监督检验中心(襄樊)  国家客车质量监督检验中心(重庆)  国家机动车产品质量监督检验中心(上海)  中国汽车工程研究院股份有限公司  清华大学  北京理工大学  武汉理工大学  中国兵器工业集团公司  中国重型汽车集团有限公司  华晨汽车集团控股有限公司  金杯汽车股份有限公司  北汽福田汽车股份有限公司  联合汽车电子有限公司  福特汽车(中国)有限公司  康明斯(中国)投资有限公司  铃木(中国)投资有限公司  沃尔沃(中国)投资有限公司  北京汽车研究所有限公司  中国第一汽车集团公司  东风汽车公司  上海汽车工业(集团)总公司  广州汽车工业集团有限公司  广州本田汽车有限公司  广州丰田汽车有限公司  东风日产乘用车有限公司  北京汽车工业控股有限责任公司  北京现代汽车有限公司  上海大众汽车有限公司  一汽大众汽车有限公司  上海通用汽车有限公司  东风本田汽车有限公司  奇瑞汽车股份有限公司  比亚迪汽车有限公司  浙江吉利汽车有限公司  哈飞汽车有限公司  长城汽车有限公司  重庆长安汽车股份有限公司  安徽江淮汽车集团有限公司  南京汽车集团有限公司  福建省汽车工业集团有限公司  东南(福建)汽车工业有限公司  天津一汽夏利汽车股份有限公司  天津一汽丰田汽车有限公司  沈阳华晨金杯汽车有限公司  柳州五菱汽车有限责任公司  上汽通用五菱汽车股份有限公司  江西昌河汽车股份有限公司  大众汽车(中国)投资有限公司  通用汽车(中国)投资有限公司  日产汽车(中国)投资有限公司  宝马(中国)汽车贸易有限公司  梅赛德斯-奔驰(中国)汽车销售有限公司  丰田汽车技术中心(中国)有限公司  本田技研工业(中国)投资有限公司  泛亚汽车技术中心有限公司  长安福特汽车有限公司  长安马自达汽车有限公司  长安铃木汽车有限公司  北京汽车股份有限公司  广汽长丰汽车股份有限公司  北京奔驰汽车有限公司  广汽菲亚特汽车有限公司  神龙汽车有限公司  南京菲亚特汽车有限公司  南京依维柯汽车有限公司  无锡威孚力达催化净化器有限责任公司  大陆汽车亚太管理(上海)有限公司  东京滤器(苏州)有限公司  优美科汽车催化剂(苏州)有限公司  北京德尔福万源发动机管理系统有限公司  博世(中国)投资有限公司  艾蓝腾新材料科技(上海)有限公司  天津索克汽车试验有限公司  庄信万丰(上海)化工有限公司  巴斯夫催化剂(上海)有限公司  安徽艾可蓝节能环保科技有限公司  奇耐联合纤维(上海)有限公司  埃贝赫排气技术(上海)有限公司  科特拉(无锡)汽车环保科技有限公司  苏州派格力减排系统有限公司  天津悦泰石化技术有限公司  四川中自尾气净化有限公司  浙江临海市邦得利汽车环保技术有限公司  无锡威孚力达催化净化器有限责任公司  华勤爱科环境技术有限公司  NGK(苏州)环保陶瓷有限公司  电装(中国)投资有限公司上海分公司  北京绿创环保集团  3M中国有限公司  南京依柯卡特环保汽车催化器有限公司  昆明贵研催化剂有限责任公司  佛吉亚排气控制技术开发(上海)有限公司  罗地亚(中国)投资有限公司  霍尼韦尔汽车零部件服务(上海)有限公司  康明斯排放处理系统(中国)有限公司  贵州黄帝车辆净化器有限公司  康宁(上海)有限公司  克康(上海)排气控制系统有限公司  上海天纳克研发中心  云南菲尔特环保科技有限公司  (部内征求机关各部门意见)
  • 蔡司测量技术为新能源汽车批量生产提供关键解决方案
    蔡司测量技术为新能源汽车批量生产提供关键解决方案蔡司与大众汽车正携手应对这些挑战大众汽车位于萨尔茨基特的零部件工厂为驱动电机APP 310生产重要部件。自今年起,这款驱动电机有望使新能源汽车惠及更广泛的消费者群体。发卡式定子体现了驱动电机的创新设计概念,但却为质量保证工作带来前所未有的全新挑战。为攻克这一难题,蔡司工业质量解决方案部门提供了测量解决方案。现在,驱动电机得以顺利地大规模批量生产。蔡司与大众汽车携手合作,以解决驱动电机质量保证领域所面临的挑战“最大扭矩可达310牛米最大功率为204马力,续航里程达550公里” - 以上数据均为大众汽车集团首款纯电动汽车VW ID.3的基本规格。大众汽车集团此次发布的VW ID.3紧凑型轿车是集团电动汽车系列推出的首款产品。大众汽车集团始终不遗余力地推广电动汽车技术,其他汽车制造商的力度均不及大众汽车。而大众集团制定的电动汽车的蓝图即将成为现实:在不远的将来,光是德国预计就有50万辆ID.3轿车从组装厂下线。集团将在电动汽车需求量较高的国家(例如中国)增设生产厂,产量进一步提升指日可待。APP 310驱动电机的主要部件是大众汽车模块化电驱动矩阵(MEB)平台的重要组成部分,由位于萨尔茨基特的大众汽车集团零部件公司生产。这些部件包括转子和定子。对于电机定子,大众汽车选择采用一种发卡创新型技术设计。这有助于使定子与内燃机保持相似的制造周期,除此之外,它还有其他优势:“发卡式发动机明显比标准驱动电机功率更高,而且明显更加轻盈。”萨尔茨基特零部件工厂发动机设计和测试部负责人Philip Kurz解释道。对此,Kurz表示:“发卡电机是众多制造商正在致力研究的一项技术,但毫无疑问,我们是第一个实现该技术大规模批量生产的制造商。”但质量保证作为生产难题中重要的难题,最初给工厂带来了挑战。在发动机制造过程中,通常采用传统的接触式或光学技术测量方法,但由于发卡的特殊性质,无法用传统测量方法对其进行测量。为此,在过去一年多来,蔡司一直与大众汽车密切合作并开发出满足大众汽车所有需求的测量解决方案,使汽车制造商能够如期实现电动汽车的大规模批量生产。来源:蔡司
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制