当前位置: 仪器信息网 > 行业主题 > >

超分辨荧光显微成像空间光调制器

仪器信息网超分辨荧光显微成像空间光调制器专题为您提供2024年最新超分辨荧光显微成像空间光调制器价格报价、厂家品牌的相关信息, 包括超分辨荧光显微成像空间光调制器参数、型号等,不管是国产,还是进口品牌的超分辨荧光显微成像空间光调制器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超分辨荧光显微成像空间光调制器相关的耗材配件、试剂标物,还有超分辨荧光显微成像空间光调制器相关的最新资讯、资料,以及超分辨荧光显微成像空间光调制器相关的解决方案。

超分辨荧光显微成像空间光调制器相关的资讯

  • 纯相位空间光调制器在PSF工程中的应用
    纯相位空间光调制器在PSF工程中的应用一、引言2014年诺贝尔化学奖揭晓,美国及德国三位科学家Eric Betzig、Stefan W. Hell和William E. Moerner获奖。获奖理由是“研制出超分辨率荧光显微镜”,从此人们对点扩散函数 (PSF) 工程的认识有了显着提高。Moerner 展示了 PSF 工程与 Meadowlark Optics SLM 的使用案例,用于荧光发射器的超分辨率成像和 3D 定位。 PSF工程已被证明使显微镜能够使用多种成像模式对样本进行成像,同时以非机械方式在模式之间变化。这允许对具有弱折射率的结构进行成像,以及对相位结构进行定量测量。 已证明的成像方式包括:螺旋相位成像、暗场成像、相位对比成像、微分干涉对比成像和扩展景深成像。美国Meadowlark Optics 公司专注于模拟寻址纯相位空间光调制器的设 计、开发和制造,有40多年的历史,该公司空间光调制器产品广泛应用于自适应光学,散射或浑浊介质中的成像,双光子/三光子显微成像,光遗传学,全息光镊(HOT),脉冲整形,光学加密,量子计算,光通信,湍流模拟等领域。其高分辨率、高刷新率、高填充因子的特点适用于PSF工程应用中。图1. Meadowlark 2022年蕞新推出 1024 x 1024 1K刷新率SLM二、空间光调制器在PSF工程中的技术介绍在单分子定位显微镜(SMLM)中,通过从相机视场中稀疏分布的发射点来估计单个分子的位置,从而克服了分辨率的衍射限制。可实现的分辨率受到定位精度和荧光标签密度的限制,在实践中可能是几十纳米的数量级。有科研团队已经将这种技术扩展到三维定位。通过在光路中加入一个圆柱形透镜或使用双平面或多焦点成像,可以估算出分子的轴向位置。光斑的拉长(散光)或光斑大小的差异(双平面成像)对轴向位置进行编码。将空间光调制器(SLM)与4F中继系统结合到成像光路中,可以设计更广泛的点扩散函数(PSF),为优化显微镜的定位性能提供了可能。利用空间光调制器(SLM)对荧光显微镜进行校准,可以建立一个远低于衍射极限的波前误差,SIEMONS团队就利用Meadowlark空间光调制器实现了高精度的波前控制。原理证明和实验显示,在1微米的轴向范围内,在x、y和λ的精度低于10纳米,在z的精度低于20纳米。对这篇文献感兴趣的话可以联系我们查阅文献原文《High precision wavefront control in point spread function engineering for single emitter localization 》下面我们来具体看看是如何应用的,以及应用效果如何。图2. A)SLM校准分支和通过光路的偏振传输示意图。额外的线性偏振滤波器没有被画出来,因为它们与偏振分光器对齐。B)相机上的强度响应作为λ/2-板不同方向α的SLM的相位延迟的函数。C) 光学装置的示意图。一个带有SLM的中继系统被添加到显微镜的发射路径中(红色),一个单独的SLM校准路径(绿色)被纳入发射中继系统中。这允许在实验之间进行SLM校准。BE:扩束器,DM:分色镜,L:镜头,LPF:线性偏振滤镜,M:镜子。OL:物镜,PBS:偏振分光镜,TL:管镜。光路如上图2所示,包括一台尼康Ti-E显微镜,带有TIRF APO物镜(NA = 1.49,M = 100),一个200毫米的管状镜头,一个带有SLM的中继系统被建立在显微镜的一个出口端口。中继系统包括两个消色差透镜,一个向列型液晶空间光调制器(LCOS)SLM(Meadowlark,XY系列,512x512像素,像素大小=15微米,设计波长=532纳米)和一个偏振分光器,用于过滤未被SLM调制的X偏振光。di一个消色差透镜在SLM上转发光束。第二个中继镜头确保在EMCCD上对荧光物体进行奈奎斯特采样。显微镜配备了一套波长为405nm、488nm、561nm和642nm的合束激光器。 这个配置增加了一个用于校准SLM的第二个光路。这个空降光调制器校准光路是为测量入射到SLM上的X和Y偏振光之间的延迟差而设计的,为了测量某个SLM像素的调制,需要将SLM映射到校准路径的相机上。这种映射是通过在SLM上施加一个电压增加的棋盘图案来获得的。平均捕获的图像和没有施加电压时的图像之间的差异被用作角落检测算法(来自Matlab - Mathworks的findcheckerboard)的输入,以找到角落点。对这些点进行仿生变换,并用于找到对应于每个SLM像素的CMOS像素。图3. SLM校准程序。A) 单个SLM像素的测量强度响应作为应用电压的函数。每一个极值都对应于等于π的整数倍的相位变化,并拟合一个二阶多项式以提高寻找极值的精度。强度被分割成四个部分,它们被缩放为[0 1]。这个归一化的强度(B)被转换为相位(C),并反转以创建该特定电压段和像素的LUT(D)。E)20个随机选择的SLM像素的归一化强度响应,显示像素间的变化。F) 测量的波前均方根误差是校准后立即使用校准LUT的相位的函数,45分钟后,以及制造商提供的LUT。G) 在不同的恒定相位下,用于成像光路的SLM部分的LUTs。暗点表示没有3个蕞大值的像素。H) 测量的平均相位和预定相位之间的差异作为预定相位的函数。 图3解释了SLM像素的校准程序。首先,以256步测量作为应用电压函数的强度响应,产生一连串的蕞小值和蕞大值,它们对应于π或2π的迟滞。在被照亮的SLM平面内的所有像素似乎有三个蕞大值,这意味着总的相位调制为4π或1094纳米。这些极值出现的电压是通过对极值附近的三个点进行拟合抛物线来找到的,这增加了精度,并充分利用了SLM的16位控制。然后,强度被分为四段,用公式(11)的逆值对这些段进行缩放并转换为相位。相位响应被用来为每个SLM像素构建一个单独的查找表(LUT),以补偿SLM的非均匀性。LUT参数在SLM上平滑变化,并与肉眼可见的法布里-珀罗条纹大致对应,表明相位响应的差异是由于液晶层厚度的变化造成的。额外的像素与像素之间的变化可能来自底层硅开关电路的像素与像素之间的变化。完整的校准需要大约5分钟(在四核3.3GHz i7处理器上的3分钟扫描和2分钟计算时间),但原则上可以优化到运行更快。实验结果:图4 测量的PSF与矢量PSF模型拟合之间的PSF比较。G-I)平均测量的PSF是由大约108个光子携带的信号通过上采样(3×)和覆盖所有获得的斑点编制而成。比例尺表示1μm。 图4显示PSF模型的预测结果。通过这种方式,实验的PSF是由∼108个光子的累积信号建立起来的。实验和理论上的矢量PSF之间的一致性通常是非常好的,甚至在蕞大的离焦值的边缘结构也是非常匹配的。剩下的差异,主要是光斑的轻微变宽,是由于入射到相机上的光的非零光谱宽度,由于发射光谱的宽度和四带分色器的带通区域的宽度。边缘结构中也有一个小的不对称性,这可能是由光学系统中残留的高阶球差造成的。 所有工程PSF的一个共同特点是,与简单的二维聚焦斑点相比,它们的复杂性必须在PSF模型中得到体现,该模型被用于估计三维位置(可能还有发射颜色或分子方向)的参数拟合算法。简化的PSF模型,如高斯模型、基于标量衍射的Airy模型、Gibson-Lanni模型,或基于Hermite函数的有效模型都不能满足这一要求。一个解决方案是使用实验参考PSF,或用花样拟合这样的PSF作为模型PSF,或者使用一个或多个查找表(LUTs)来估计Z-位置。矢量PSF模型也可以用于复杂的3D和3D+λ工程PSF。众所周知,矢量PSF模型是高NA荧光成像系统中图像形成的物理正确模型。复杂的工程PSF的另一个共同特点是对扰乱设计的PSF形状的像差的敏感性,并以这种方式对精度和准确性产生负面影响。为了实现精确到Cramér-Rao下限(CRLB),即无偏估计器的蕞佳精度,光学系统的像差水平应该被控制在衍射极限(0.072λ均方根波前像差),这个条件在实践中往往无法满足。因此,需要使用可变形镜或为产生工程PSF而存在的SLM对像差进行校正。自适应光学元件的控制参数可以使用基于图像的指标或通过测量待校正的像差来设置。后者可以通过基于引入相位多样性的相位检索算法来完成,通常采用通焦珠扫描的形式。这已经在高数值孔径显微镜系统、定位显微镜中实现,并用于提高STED激光聚焦的质量。三、PSF应用对液晶空间光调制器的要求1.光利用率 对于这个应用来说,SLM将光学损失降到蕞低是很重要的。PSF工程使用SLM来操纵显微镜发射路径上的波前。在不增加损失的情况下,荧光成像中缺乏信号。使用具有高填充系数的SLM可以蕞大限度地减少衍射的损失。 Meadowlark公司能提供标速版95.6%的空间光调制器,分辨率达1920x1200,高刷新率版像素1024x1024,填充因子97.2%和dielectric mirror coated版本(100%填充率)。镀介电膜版本的SLM反射率可以做到100%,一级衍射效率可以做到98%。高分辨率能在满足创建复杂相位函数的同时,能够提升系统的光利用率。2.刷新率(蕞高可达1K Hz)高速度可以实现实时的深层组织超分辨率成像。可见光波段蕞高可达1K Hz刷新速度(@532nm)。3.分辨率(1920x1200) 高分辨率的SLM是创建三维定位所需的复杂相位函数的理想选择,如此能够对每个小像元区域的光场进行自由调控。 上海昊量光电作为Medowlark在中国大陆地区总代理商,为您提供专业的选型以及技术服务。对于Meadowlark SLM有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。 关于昊量光电:昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 纯相位空间光调制器(SLM)零级光的产生及消除方法
    引言:空间光调制器(一般指相位型SLM)可以对光的振幅、相位、偏振态等进行调制,在光学研究领域拥有广泛和悠久的历史。目前相位型空间光调制器在全息光学,全息光镊,激光并行加工,自适应光学,双光子/三光子/多光子显微成像,散射或浑浊介质中的成像,脉冲整形,光学加密,量子计算,光通信,湍流模拟等领域应用广泛。很多的科研人员在使用空间光调制器时,往往会受到零级光的困扰,零级光对研究结果也产生了非常大的影响。可以说大家苦零级光久矣。本文对液晶空间光调制器零级光的产生原因及其消除方法进行了阐述。Meadowlark Optics公司拥有40年纯相位SLM研发经验,可以提供模拟寻址的纯相位空间光调制器(1920x1200 & 1024x1024分辨率),产品工作波段可以覆盖400-1700nm,相位稳定性可以达到0.1%,帧频可以到1436Hz,损伤阈值可以达到200W/cm2以上。 关键词:空间光调制器、SLM,液晶空间光调制器,纯相位,LCOS,零级光,一级衍射空间光调制器零级光产生的原因?要想了解SLM零级光产生的原因,我们需要先了解下空间光调制器的结构构成。如下图所示,LC-SLM光学头主要由:保护玻璃,透明电极,液晶层,像素电极层(Wafer)构成。1) 保护玻璃的透过率窗口片保护玻璃的透过率在相应的工作波段(400-800nm,500-1200nm,850-1650nm)内通常在98.5-99.5%范围内,因此有少量的光被直接反射回去。2)透明电极的透过率透明电极的透过率一般都在99%以上,该部分造成的零级光基本可以忽略。3)空间光调制器填充率像素电极层(Wafer)由一个个的独立像元构成,从而SLM可以实现针对单个像元的独立调制。相邻像元之间会有微小的缝隙,缝隙部分无法加载电压,因此对应的液晶层无法加载相位,这部分未被调制的光会反射回去,产生零级光。4)入射光照射到非工作区域如果入射光照射到了非工作区域,则这部分光也会不被调制,直接反射回光路,产生零级光。5)入射光的偏振态或者偏振方向错误目前市面上所有的相位型空间光调制器(SLM)均要求线偏光入射,线偏方向与液晶的e轴平行(extraordinary axis)。如果入射光与e轴存在夹角,或者入射光的偏振态不是线偏光,则会有一部分分量的光不被调制,从而产生零级光。Meadowlark公司SLM零级光消除方法?硬件方面:1)提高空间光调制器的填充率,蕞小化缝隙影响。Meadowlark Optics公司可以提供1024x1024的纯相位空间光调制器,填充因子可以达到目前世界蕞高的97.2%,大大减小了缝隙产生的影响。2)提高空间光调制器的线性度。1920x1200的液晶空间光调制器,MLO公司在出厂前会对每一台SLM进行高精度的校准,保证每一台空间光调制器都具有高度的线性准确性,从而提高相位调制精度,达到蕞优的调制效果。软件方面:a)叠加闪耀光栅Meadowlark公司的SLM控制软件提供生成任意周期闪耀光栅的功能,该光栅可以方便的与客户的全息图进行叠加,从而把结果偏转到1级位置,客户只需要用光阑将零级光滤掉,只让一级光通过即可。b)叠加菲涅尔透镜MLO公司的调制器控制软件提供生成任意焦距菲涅尔透镜的功能,用户可以将全息图与该菲涅尔灰度图进行叠加,从而零级光与衍射光的焦平面会发生错位,零级光在衍射光的焦平面上会发散掉,从而减小零级光的影响。光路方面:1)光路中添加偏振片和半波片,提高入射光的偏振态准确性为了使用SLM作为相位调制器,入射偏振必须是线性的,并且与LC分子对齐。为了确保入射光的偏振是线性的,建议在激光光源后放置一个偏振器。为了确保偏振与LC分子对齐,建议在偏振器和SLM之间放置半波片,通过半波片的旋转可以将0级光调到最小。2)光路中添加使用0阶块(0th order block),阻挡零级光上海昊量光电设备有限公司可以提供什么样的空间光调制器?1)1920x1200纯相位空间光调制器(标准速度) 2)1024x1024纯相位空间光调制器(超高速度)关于昊量光电:昊量光电可以给客户提供SLM样品试用,以及全面的技术支持。上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
  • 美国MeadowlarkOptics公司推出全球响应速度最快的纯相位液晶空间光调制器
    摘 要:传统的液晶空间光调制器作为一种高单元密度的新型波前矫正器件, 一直受限于液晶的刷新速度,在许多的应用领域无法满足科研人员的需求。美国Meadowlark Optics公司20多年以来一直致力于研发高响应速度的空间光调制器,近期Meadowlark Optics宣布推出液晶刷新速度(0-2π)高达600Hz@532nm 500Hz@635nm的高速型SLM,其控制器的帧频为833Hz。 引 言:这款高速型液晶空间光调制器的分辨率为512x512,像素25um,开孔率:96%,通光口径:12.8x12.8mm 相信这款空间光调制器的出现,可以为天文自适应,生物显微自适应等对空间光调制器的刷新速度有较高要求的客户带来便利。此款产品由上海昊量光电独家代理。 液晶空间光调制器的工作原理Meadowlark Optics公司使用的液晶材料为超高速液晶,利用液晶的双折射效应及扭曲特性,当光进入双频液晶空间光调制器后,对应的O光和e光的折射率不同导致光束中的o光和e光分离。o光和e光在液晶空间光调制器中的传输速度不同,同时利用液晶的扭曲效应,在SLM两端施加不同的电压时液晶分子会发生不同角度的偏转,因此液晶空间光调制器可以对每一个像素点实现不同的相位调制(如下图所示)。 结论 高速型液晶空间光调制器以其液晶响应速度快,校正单元多(512*512)等特点受到越来越多的科研人员的青睐。目前在天文望远镜观测、大气湍流模拟、自适应光学算法模拟、眼底成像、双光子显微镜、超分辨显微成像等领域发挥着越来越重要的作用。此款产品由上海昊量光电独家代理。 关于我们:上海昊量光电设备有限公司专注于光电领域的技术服务与产品经销,致力于引进国外顶级光电器件制造商的技术与产品,为国内客户提供优质的产品与服务。我们力争在原产厂商与客户之间搭建起沟通的桥梁与合作的平台。
  • 中科院科研装备研制项目 “非线性结构光照明超分辨显微成像系统”顺利验收
    p  6月1日,中国科学院条件保障与财务局组织专家在中国科学院生物物理研究所对中科院科研装备研制项目“非线性结构光照明超分辨显微成像系统”进行了验收。/pp  该项目由中科院苏州生物医学工程技术研究所与生物物理所在2014年联合申报,其中苏州医工所作为研制单位,生物物理所作为用户单位。研制工作由苏州医工所研究员李辉课题组具体组织实施,2016年9月李辉课题组将研制的非线性SIM超分辨显微镜送至生物物理所进行测试试用。在本套系统中,课题组提出了基于结构光激活+结构光激发的弱光非线性结构光照明超分辨成像方法,并采用铁电液晶空间光调制器替代机械光栅,结合FPGA并行同步控制系统,实现了更灵活的成像方式和更快的成像速度。同时课题组开发了能够适用于弱信号样品的SIM/NL-SIM超分辨图像重建算法和软件。利用该设备对荧光微球、细胞内质网、线粒体、细胞核以及细胞骨架等生物样品进行观测,实现了线性SIM模式下100nm横向分辨率,非线性SIM模式下62nm横向分辨率。/pp  专家组听取了项目工作报告、财务报告、用户使用报告,并进行了现场测试验收。经过现场测试并充分讨论后,专家组认为,项目各项技术指标均达到或优于实施方案要求,满足生物医学成像超分辨观测应用需求,一致同意“非线性结构光照明超分辨显微成像系统”通过验收。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/20efc081-6105-4bed-8fdd-1ed50217c97b.jpg" title="W020170606426930859631.png"/  /pp style="text-align: center "中科院科研装备研制项目“非线性结构光照明超分辨显微成像系统”通过验收br//ppbr//p
  • 上海高研院在量子增强的超分辨显微成像机制研究中取得进展
    中国科学院上海高等研究院王中阳课题组提出新型的基于荧光量子相干的超分辨显微成像方法,研究成果以Breaking the diffraction limit using fluorescence quantum coherence为题,近日发表在 《光学快报》(Optics Express)上。 在经典光学成像中,显微镜的空间分辨率受阿贝衍射极限限制为?λ/2NA,其中λ为光波长,NA为显微物镜的数值孔径。近二十年来,各种超分辨荧光显微成像技术的出现打破了光学衍射极限,将空间分辨率提高到纳米尺度,主流技术包括随机光学重构超分辨成像技术(STORM)、结构光照明显微技术(SIM)和受激辐射损耗技术(STED)。其中STED和STORM通过不断提升测量精度极限来提高分辨率,如STED利用非线性受激辐射损耗机制来压制衍射受限的埃里斑尺寸再通过点扫描获得超分辨成像,而STORM通过统计荧光分子中心位置的定位精度来超衍射极限分辨,其分辨率由测量精度即统计分辨率极限? ?N?1/2决定,?N?为探测到平均光子数。 在量子光学中,现有研究表明利用光的量子性质能够突破经典的空间分辨率限制,从而进一步提升分辨率。例如,利用N个纠缠光源的光子干涉能够将分辨率提升到海森堡极限?1 / N。而在荧光显微镜中,同样可以利用荧光光源的量子特性来实现分辨率的提升。单个荧光分子或原子的发射具有单光子辐射源的性质,在一次脉冲激发下仅发出单个光子,因此光子发射统计概率不同于热辐射光源的一簇一簇的光子辐射,而是一个接一个发出,体现了明显的反聚束统计特性,并且理想的单光子源发出的光子在光谱、偏振上完全相同,即具有高的光子不可区分特性。上述荧光的量子性质已被实验证明存在于荧光显微成像常用的荧光染料中,例如单个有机染料分子、单个量子点以及单个金刚石色心,为发展新型的超分辨荧光显微成像技术带来了新的量子信息维度。 基于此,王中阳课题组提出了基于荧光光源的量子性质的超分辨成像方法,并对成像机制展开研究。研究者从荧光光源的发光机制出发,考虑了大多数荧光染料所包含的退相和光谱扩散机制,构建了通用的单光子波函数并考虑其在显微系统中的时间和空间维成像变换;通过计算双光子干涉的时间和空间的探测概率分布,从而获得荧光量子相干统计模型。该模型为宏观部分相干理论与荧光微观辐射机制提供了桥梁。基于此模型,研究者还提出了一种基于荧光量子相干性的超分辨荧光显微成像方法。利用新型的单光子雪崩探测器(SPAD)阵列统计荧光光子的时间和空间涨落p(r, t)。为了提取荧光光子相干性,通过引入时间门Tg作为光子到达时间的后选择窗口来提取高度相干的光子并沿Tg积分构造时间相干调制函数p(r, Tg),如图1所示。 时间相干调制函数与荧光光源空间分离量s有关。因此,通过准确测量时间相干调制函数,并预先确定其它变量,可从中准确提取出衍射极限内荧光光源空间分离距离s。此时,分辨率(即光源分离距离s)取决于荧光时空相干性的测量精度,而相干性测量精度又与探测到的光子数和空间采样率有关,如图2所示,仿真结果表明,当探测到的光子数达到104时,分辨率可以达到50 nm。该新型量子增强成像技术能够发掘荧光量子时空涨落特性及量子相干性,有助于实现荧光弱信号下的快速超分辨成像。  论文链接   图1.基于荧光量子相干的超分辨荧光显微成像方法示意图。(a)实验装置图;(b)传统成像方式和SPAD阵列探测方案对比图;(c)成像过程时序图;(d)荧光光子时空相干性概率分布;(e)引入时间门调制后荧光光子时空相干性概率分布。 图2.不同累计光子数下p(0, Tg)的测量精度(荧光光源距离s分别为50和100 nm)
  • Nature Methods:新型光片超分辨显微成像实现精细观测
    华中科技大学课题组3月12日在Nature Methods在线发表研究论文,提出了一种基于深度学习的超分辨荧光显微镜,实现对活细胞的精细动态和相互作用进行快速、三维、长时程地观测。  细胞的稳态离不开内部多种亚细胞结构的精确分工和协同合作,洞悉细胞内细胞器/蛋白分子的精密运转是一项重要的生命科学研究需求,为揭示发育、疾病等浩瀚生命现象的微观机制提供重要参考。借助荧光显微成像技术,人们得以实现对亚细胞结构的特异性观测,但因光学衍射极限的存在,成像的分辨率被限制在200纳米左右,这大大阻碍了对其精细结构的进一步探究。超分辨荧光显微成像技术的出现,使清晰观测亚细胞结构成为可能,但目前主流的超分辨荧光显微镜需通过多组图像测量来突破光学衍射极限,伴随着显著降低的时间分辨率和剧增的光毒性。对活细胞进行低侵入性、高时空分辨率的精细观测目前依然存在巨大的挑战。  研究在硬件上提出一种基于双环掩膜(Double-Ring, DR)调控的选择性光片照明方法(DR-SPIM),利用多级调制光的衍射显著抑制光片旁瓣的同时产生厚度仅为450纳米的超薄、静态、消色差光片,提供高轴向分辨率的原始三维图像并大幅度降低成像对活细胞的光毒性。  在图像处理上,针对原始图像中噪声,衍射极限等多因素耦合造成的复杂降质,研究者们进一步提出各向同性、分而治之(Isotropic Divide-stage-to-process, ID)的计算重建新思路,构建了多段级联的卷积神经网络,先利用局部多级先验知识的分段训练精确模拟成像物理过程,再通过多种损失函数的联合优化对网络进行整体约束,将光学成像中固有的噪声、光学模糊、降采样、非均一性等降质问题联合求解,大幅度提升了算法在应对低信噪比-低分辨率图像时的增强性和精确性。最终,研究团队基于单组带噪、衍射受限的光片图像即实时重建出高信噪比的超分辨图像。  研究人员表示,光学和算法的软硬联合(IDDR-SPIM),克服了超分辨成像中时间和空间分辨率的相互妥协,无损速度地打破衍射极限,将活细胞三维成像空间分辨率提升到各向同性100纳米的同时实现视频速度的高时间分辨率。  研究人员进一步实现了GFP标记内质网和RFP标记线粒体结构的同步-三维-动态超分辨成像,捕捉到了内质网调控线粒体分裂的精细三维动态过程,并基于高时空分辨率的数据对内质网与线粒体的三维相互作用进行定量分析。得益于IDDR-SPIM成像极低的光漂白率,研究人员还对Drp1寡聚体调控线粒体分裂或分支的过程进行了持续观测,并分类表征了线粒体附着蛋白和游离蛋白在运动轨迹和速度上的不同。由于蛋白寡聚体较细胞器结构体积更小,包含荧光分子更少,且在三维空间均存在运动,使用传统的超分辨显微镜均难以捕捉,更难以完成长时间观察。  该研究提出了一种新的光片超分辨显微成像策略,通过多级衍射调控的光片照明成像技术联合分而治之的深度学习单图超分辨算法,大幅突破现有三维超分辨成像的时空分辨率极限,为快速、三维、长时程地观测活细胞的精细动态和相互作用提供了强有力的新工具。  华中科技大学教授费鹏和张玉慧为共同通讯作者。费鹏课题组博士生赵宇轩、周瑶,张玉慧课题组博士后张朦、博士生张文婷为论文共同第一作者。本研究在基金委重大研究计划培育项目、基金委面上项目、国家重点研发计划、基金委重大仪器研制项目、武汉光电国家研究中心WNLO创新基金的资助下开展和完成。
  • Meadowlark公司收购CRi空间光调制器业务
    Meadowlark公司收购CRi空间光调制器业务 近日,美国Meadowlark Optics公司与Cambridge Research & Instrumentation(CRi)公司发布联合声明,宣布双方就Meadowlark Optics公司正式收购CRi公司液晶空间光调制器产品线达成协议。 Meadowlark Optics公司总裁兼CEO Garry Gorsuch先生表示,纳入CRi SLM产品,进一步丰富了美国Meadowlark Optics公司的产品线,充分证明了公司要发展和扩大更多SLM市场的决心,以及公司在空间光调制器生产核心技术方面的信心。作为美国Meadowlark Optics公司在空间光调制器产品线的中国地区独家代理商,昊量光电将一如既往地为客户(包括CRi SLM客户)提供优质的服务与技术支持!关于CRI:CRi公司的P128 SLM和 P640透射式液晶SLM在超快脉冲整形方面具有独特的技术优势,持有多项技术专利。目前CRI公司的SLM产品线已经加入到Meadowlark现有的透射和反射SLM产品线中。 关于Meadowlark Optics公司:2014年7月,Meadowlark收购了Boulder Nonlinear Systems 的商业产品部分,BNS公司的产品包括了SLMs、光学快门,偏振旋转器,可变波片和立体光学镊子系统。截止目前,Meadowlark的SLM产品线已经涵盖了美国原BNS公司的SLM,CRi的的SLM,以及Meadowlark公司原有的SLM生产线。目前Meadowlark公司的液晶空间光调制器的研发技术、生产工艺及拥有的专利技术数量,均处于全球领先地位。 关于上海昊量光电设备有限公司:上海昊量光电设备有限公司作为Meadowlark Optics公司空间光调制器产品线中国地区的独家代理,深耕SLM行业多年。上海昊量光电设备有限公司拥有专业的销售团队及售后技术团队,多年来坚持为客户提供一流的产品和售后服务,在SLM的应用领域得到了客户高度的认可和好评。 调制器 空间光调制器超高速液晶空间光调制器透射式液晶空间光调制器 ? 美国BNS公司(Boulder Nonlinear Systems, Inc.)生产销售适用于各种光电应用的液晶空间光调制器(liquid crystal spatial light modulator),能够根据指定的像素图案对光在空间的分布进行调制,在需要pixel-by-pixel光束控制以优化产品性能的应用领域正扮演着 越来越重要的角色。BNS公司能够提供基于LCoS(liquid crystal on silicon)技术的各种反射式空间光调制器,包括纯相位调制,纯振幅调制,及振幅相位混合调制。其XY(512X512)面阵及 linear(1X4096)线阵空间光调制器被广泛应用于激光光束偏转与可编程相位掩模等热点领域。 BNS公司的空间光调制器具有相位或振幅调制速率高、透过效率高、图形软件操作界面友好等特点。调制器 空间光调制器XY系列偏振无关液晶空间光调制器1x12,288线阵相位型液晶调制器XY系列铁电液晶空间光调制器XY系列向列液晶空间光调制器 专用实验设备 CUBE-便携式光镊系统全息光镊系统
  • 超分辨显微镜研究获进展
    p style="text-align: justify text-indent: 2em "中国科学院上海高等研究院宏观量子中心研究员王中阳课题组和中国科学院上海光学精密机械研究所量子光学实验室研究员韩申生课题组合作,首次提出利用鬼成像方法加快超分辨率荧光光学显微镜的成像速度。新方法有望捕获细胞内以亚毫秒速度发生的生物过程。相关研究成果以Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints 为题发表在美国光学学会刊物OPTICA上(DOI: 10.1364 / OPTICA.6.001515),并被美国光学学会(The Optical Society, OSA)作为高影响研究工作在发表的同时同步向媒体进行宣传推广。/pp style="text-align: justify text-indent: 2em "超分辨光学显微技术通过克服光的衍射极限来实现纳米级的分辨率。尽管传统超分辨显微镜可以定位细胞内单个分子,并构建超分辨图像,但在活细胞中却很难使用,因为重建图像需要成百上千帧——这个过程太慢,无法捕捉快速变化的动力学过程。为了解决这个问题,该研究团队将随机相位调制器加入到荧光显微镜中实现荧光信号的编码,并结合鬼成像技术与随机测量压缩感知方法,大幅度提高图像信息获取效率,数量级地减少重构超分辨图像所需的采样帧数。研究结果表明,在高标记密度下只需要通过单帧荧光图像的采样就可实现80nm分辨率的超分辨光学成像。/pp style="text-align: justify text-indent: 2em "此外,研究的新方法还与2014年诺贝尔奖三大超分辨率技术之一的随机光学重建显微镜(STORM)相结合,将STORM的采样帧数减少了一个数量级以上。研究结果显示成像一个60nm的环,该方法只用10帧图像就可以重构图像,而传统的STORM方法需要多达4000帧图像才能达到同样的效果。该方法还实现用100帧图像分辨40nm标尺。并且研究的超分辨成像显微镜不需要高的照明强度,这有助于减少光漂白和光毒性,有利于长时间的动态生物过程和活细胞成像研究。因此这项创新技术有望在生物、医学等超分辨显微成像研究领域得到广泛的应用。/pp style="text-align: justify text-indent: 2em "文章的第一作者是上海高研院博士研究生李文文。该工作受到国家重点研发计划(“数字诊疗装备研发”专项)的资助。 /pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 516px " src="https://img1.17img.cn/17img/images/201912/uepic/bdc8a826-986f-499a-b428-d54bb5a2570c.jpg" title="显微镜装置示意图与重构结果.jpg" alt="显微镜装置示意图与重构结果.jpg" width="600" height="516" border="0" vspace="0"//pp style="text-align: center "图:显微镜装置示意图与重构结果/p
  • 500us(2KHz)高速纯相位液晶空间光调制器(SLM)面世!
    纯相位液晶空间光调制器的液晶响应速度多年以来一直受限于60Hz的数据传输及30-140ms的液晶响应时间限制,无法实现高速的调制,不能满足相控阵扫描,自适应光学等高速调制应用的使用要求。一直以来,纯相位空间光调制器的速度到底可以做到多快?一直备受科研工作者的关注。 美国Meadowlark公司近日推出了高液晶响应速度(2KHz at 532nm)、高光利用效率(98%)、高填充因子(97.2%)、高分辨率(1024x1024)的纯相位液晶空间光调制器。500us(2KHz)高速纯相位液晶空间光调制器(SLM)产品特点:1) 液晶响应速度快:2KHz at 532nmMeadowlark Optics的硅基液晶(LCoS)空间光调制器(SLM)专为纯相位应用而设计,并结合了具有高刷新率的模拟数据寻址。这种组合为用户提供了具有高相位稳定性的最快响应时间(500us fall time)。图1 液晶响应时间 1024 x 1024 SLM非常适合需要高速、高衍射效率、低相位纹波和高功率激光器的应用。客户还可以控制温度设定点,从而在开关速度和相位稳定性之间找到完美的平衡。1024 x 1024 空间光调制器系统包括一个Gen3 x8 PCIe控制器,带有输入和输出触发器以及低延迟图像传输。触发可以在696µs的SLM芯片刷新周期边界上执行,对于需要SLM与外部硬件紧密同步的应用,甚至可以在刷新周期中间执行。该控制器还包括可加载752幅1024x1024(8bit)图片的内部存储器,可以提前加载,然后全速排序,以便在操作期间最大限度地减少PCIe总线上的流量。 2)光利用效率高:Up to 98%Meadowlark公司可提供镀介质镜型号的SLM,填充了像素间的间隙,使液晶空间光调制器的面积填充率达到100%,提高反射率、降低衍射损耗。镀介质镜型的SLM可以在400-1700nm工作波段范围内轻松实现98%(Max)的光利用率,同时降低了激光引起的热效应,提高了SLM的损伤阈值,以满足高功率脉冲激光调制和激光加工等应用需求。图2 镀介电膜的SLM反射率曲线图3 SLM损伤阈值测试 3) 高波前质量(λ/20)许多用于表征和校正像差的算法都基于Zernike多项式。然而,对圆形孔径的依赖不适用于描述正方形或矩形阵列的像差。已经开发了基于SLM的干涉子孔径的替代策略[9],以确保SLM的有效区域上的像差可以被校正到λ/ 40或更好。图4(a/c)未校准的SLM波前(λ/ 7 RMS)(b/d)校准后的SLM波前(λ/ 20 RMS)上海昊量光电作为Meadowlark Optics公司在中国大陆地区独家代理商,为您提供专业的选型以及技术服务。上海昊量光电设备有限公司可以给客户提供样品试用,以及相关的技术支持。您可以通过我们的官方网站了解更多的液晶空间光调制器产品信息,或直接来电咨询。
  • 合肥研究院采用超快技术构筑GHz高频光弹调制器
    近期,中国科学院合肥物质科学研究院强磁场科学中心盛志高研究团队等采用超快时间分辨泵浦探测技术,在SrTiO3晶体中实现了由超快相干声子诱导的GHz频率的双折射调制,其工作频率远超现今商业光弹调制器的截止频率。相关研究成果发表在《先进科学》(Advanced Science)上,并申请了发明专利。具有双折射效应的特定材料能塑造光。基于双折射调制技术工作的光弹调制器是现代光学技术的核心元件之一。目前的光弹调制器多借助压电材料提供的机械应力,来驱动光弹晶体实现双折射调制,其工作频率受限于光弹/压电晶体的谐振频率,一般为kHz量级。随着高频信号处理和高频光通信的需求不断涌现,亟需研发具有GHz工作频率的双折射材料与调制技术。针对这一现状,盛志高课题组与合作者经过大量材料筛选与技术探索,借助强磁场磁光实验室中的超快泵浦-探测系统,在钙钛矿SrTiO3晶体中发现了由超快相干声子诱导的GHz光学双折射效应,并实现了对其进行光学操控。研究团队在换能器/SrTiO3异质结构中,使用超快激光脉冲产生了具有低阻尼的相干声学声子。经过系列材料筛选,研究发现LaRhO3半导体薄膜作为换能器层能获得相对较高的光子-声子能量转换效率。进一步,研究在优化的异质结构中发现,超快相干声学声子可以在应力敏感的SrTiO3晶体中诱导出具有GHz频率的光学双折射。同时,研究团队通过双泵浦技术实现了对相干声子及其诱导的GHz双折射的光学操纵。这揭示了超快光学双折射调制的一种机制,并为GHz高频声光器件的应用奠定了技术基础。研究工作得到国家重点研发计划、国家自然科学基金、强磁场安徽省实验室方向基金和合肥大科学中心高端用户培育基金的支持。左图:激光诱导的声学声子激发SrTiO3晶体GHz双折射原理示意图;右图:不同晶体取向的SrTiO3晶体GHz双折射调制。
  • 滨松推出1550nm光利用率98%的新型空间光调制器
    在光通信的研究中,所涉及的波段除了可见光中的多个波长(如780nm)外,在红外波段,1550nm是最多被选择的。由于光纤中使用的玻璃材料的吸收特性,1550nm光在传输过程中能量损失是最小的,这样就能达成更远距离的光通信。除了对光本身性能的利用外,光通信还要求光路中的每一个元件,在保证功能的前提下,最大程度地控制光能损失。光通信研究典型光路空间光调制器中的光能损失想要光携带信息传输向远方,需要对其进行编码。空间光调制器(LCOS-SLM)就是可以通过相位调制来实现这一操作的元件。待编码的激光束穿过空间光调制器透明的玻璃基板层和ITO电极层,到达液晶层完成相位的调制(电压→液晶分子排列方向→折射率→光程→相位)后,经过反射面的反射进行输出。这时候的光,就已经是满载信息的了。 当然,作为光路中的其中一环,"高性能、低光能损失"也是光通信对空间光调制器提出的苛刻要求。光在空间光调制器的透明的玻璃基板层和ITO电极层其实损失都较小,而液晶层为主要的的工作层,调制带来的损耗难以避免。在这种情况下,提高反射面的反射率,便是控制元件整体光能损失的最有效方法。目前空间光调制器反射层主要有两类:传统的铝制反射层和介质镜。其中,后者的反射率是明显高于前者的。虽然在可见光波段高反射率介质镜已经得以应用,但受材料限制,适用于1550nm的介质镜始终是业界的技术瓶颈。因此,大部分针对此波长的空间光调制器,一直以来采用的都是传统材料(铝)的反射层,光利用率也只在80%左右。155nm处光利用率达98%的新型空间光调制器滨松成功突破了材料和工艺难题,自主开发出了可应用于1500nm-1600nm波段的介质镜。利用此项独家的专利技术,研发了在1550nm附近超高光利用率(97%)的全新空间光调制。 目前市面上1550nm附近各主要SLM产品的光利用率对比除了1550nm高反射率外,滨松此款新型空间光调制器在上升和下降时间方面,较以往产品也有了明显的提升,灵敏度进一步改善。新品现在可以接受预定咨询,而针对光通信用可见光波段,滨松同样可以提供丰富的产品选择。 滨松1550nm高反射率空间光调制器基本参数一览整体方案提供:InGaAs红外相机+空间光调制器针对调制后的光斑观察和分析,滨松也可提供针对1550nm附近波段的高灵敏InGaAs红外相机,可搭配空间光调制器,应用于光通信研究中。
  • 美国Meadowlark公司推出亚毫秒响应速度的纯相位液晶空间光调制器!
    美国Meadowlark公司推出亚毫秒液晶空间光调制器!目前市面上的纯相位液晶空间光调制器的液晶响应速度均处于50Hz以内(0-2π),无法满足高速调制客户的使用要求。 为满足自适应、通信等领域的用户高速调制的需求,美国Meadowlark公司(原BNS)于2016年推出了目前市面上唯一一款兼具有高液晶响应速度(0-2π)(285Hz-667Hz @ 532nm;166Hz-250Hz@1550nm)、高衍射效率(90-95%)、高填充因子(100%)、的纯相位液晶空间光调制器。 美国Meadowlark Optics公司的超高速液晶空间光调制器采用瞬态向列液晶效应技术(Transient Nematic Effects)、相位环绕技术(Phase Wrapping)、局部校准技术(Regional LUTs),实现了超高速的液晶响应速度。这三项技术均已申请专利。 瞬态向列液晶效应技术超高速液晶空间光调制器与高速型的空间光调制器响应速度对比上海昊量光电设备有限公司可以给客户提供样品试用,以及相关的技术支持。您可以通过我们的官方网站(http://www.auniontech.com/n/news/v_The_Fastest_Liquid_Crystal_Spatial_Light_Modulator.html)了解更多的液晶空间光调制器产品信息,或直接来电咨询021-34241962。
  • 我国学者在超分辨光学显微镜领域取得重要进展
    p  在国家自然科学基金项目等资助下,中国科学院生物物理研究所徐涛院士和纪伟教授级高级工程师在提高光学显微镜分辨率技术领域取得重要进展。相关成果以“Molecular Resolution Imaging by Repetitive Optical Selective Exposure”( 基于重复光学选择曝光的分子分辨率成像技术)为题,于2019年9月9日在Nature Methods(《自然方法学》)杂志在线发表。论文链接:https://www.nature.com/articles/s41592-019-0544-2。/pp  该工作提出了一种基于激光干涉条纹定位成像的新技术,并据此研制出新型单分子干涉定位显微镜(Repetitive Optical Selective Exposure, ROSE),将荧光显微镜分辨率提升至3 nm以内的分子尺度,单分子定位精度接近1 nm,可以分辨点距为5 nm的DNA origami(DNA 折纸)结构。为降低单分子发光时的闪烁和漂白对亮度和定位精度产生的不良影响,研发团队对显微镜光路进行了创造性地设计,分别为:基于电光调制器的干涉条纹快速切换激发光路,基于谐振振镜扫描的6组共轭成像光路,两种光路的同步实现了高达8 kHz的分时成像,确保在相机的单次曝光时间里把每个单分子发光状态均匀分配给6个干涉条纹,有效避免了荧光分子发光能力波动对定位精度的干扰。/pp  研发团队利用该技术对不同荧光位点间距的DNA origami阵列进行验证测试,证明干涉成像分辨率达到了3 nm的分子水平。后续的细胞实验结果显示,该技术在免疫标记的微管、CCP(clathrin coated pits,网格蛋白有被小窝)以及较致密的细胞骨架成像时展现出良好性能,该工作使得超高分辨光学显微镜家族再添新成员,光学显微镜分辨率被进一步突破,将为进一步解析精细亚细胞的组分和生物大分子的纳米结构提供有力工具。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/a05a7f71-279c-47d6-855f-34acf83f1e5f.jpg" title="tpxw2019-09-19-01.jpg" alt="tpxw2019-09-19-01.jpg"//pp style="text-align: center "strong图. ROSE干涉定位与传统质心定位的原理示意,以及用于DNA origami和细胞微丝成像效果比较/strong/p
  • 滨松成功研发出适用于高功率CW激光器的空间光调制器
    滨松公司利用其独特的光学半导体制造工艺,成功研制出世界上最大规模的液晶型空间光调制器(Spatial Light Modulator,以下简称SLM※1),该SLM的有效面积约较以往产品增加了4倍,且耐热性更高。该开发器件可应用于工业用高功率连续振荡(以下简称CW)激光器,实现激光分束等控制,应用到如金属3D打印,以激光烧灼金属粉来模塑成形车辆部件等,同时有望提高激光热加工的效率和精度。本次研发项目的一部分是受量子科学技术研发机构(QST)管理的内阁办公室综合科学技术和创新会议战略创新创造计划(SIP)第2期项目“利用光和量子实现Society 5.0技术”的项目委托,开展的研发工作。该开发器件将于4月18日(星期一)至22日(星期五)在横滨Pacifico(横滨市神奈川县)举办为期5天的国内最大的国际光学技术会议“OPIC 2022”上发布,敬请期待。※1 SLM:通过液晶控制激光等入射光的波前,调整反射光的波前形状,来校正入射光的光束和畸变 等,是可自由控制激光衍射图形的光学设备。传统开发产品(左)和本次研发器件(右)产品开发概要本次研发的器件是适用于高输出功率CW激光器的SLM。激光器分为在短时间间隔内可重复输出的脉冲激光器和连续输出的CW激光器。脉冲激光器可以减少热损坏,实现高精度加工;而CW激光器可用于金属材料的焊接和切割等热加工,因此成为激光加工的主流。滨松凭借长期以来积累的独特的薄膜和电路设计技术,已经成功开发了全球耐光性能最佳,适用于工业脉冲激光器的SLM。通过应用SLM,将多个高功率脉冲激光光束进行并行加工,相较于仅聚焦到1个点的加工方式,它的优势在于它可以实现碳纤维增强塑料(CFRP)等难加工材料的高速、高精度地加工。但在应用于CW激光器时,存在随着SLM温度上升导致性能下降的问题。SLM结构和图形控制原理SLM由带像素电极的硅衬底、带透明电极的玻璃衬底,以及两衬底中间的液晶层组成。它通过控制在像素电极上的液晶的倾斜角度,来改变入射光的路径长度然后进行衍射。其结果便是,通过对入射光进行分支、畸变校正等,实现对激光束照射后衍射图形的自由调控。此次,滨松公司运用了大型光学半导体器件在开发和生产中积累的拼接技术(※2),将SLM的有效面积扩大到30.24×30.72 mm,约为现有尺寸的4倍,为世界上最大的液晶型SLM,也因此它可以减少SLM单位面积的入射光能量。同时,由于采用耐热性和导热性俱佳的大型陶瓷衬底,提高了散热效率,成功地抑制了因CW激光器连续照射而引起的温度升高,使得SLM可适用于工业用的高功率CW激光器。此外,大面积硅衬底在制造过程中容易出现弯曲、平整度恶化的情况,进而导致入射图形的光束形状产生畸变,针对这一问题我们运用了滨松独特的光学半导体元件生产技术,使SLM在增大面积的同时,保持了衬底的平整度。至此,实现了光束的高精度控制。※2拼接技术:在硅衬底上反复进行光刻的技术。适用于完成无法一次性光刻的大型电子回路。本次研发的器件适用于工业用高功率CW激光器,实现多点同时并行加工,有望提高如金属3D打印为代表的激光焊接和激光切割等激光热加工的效率。此外,通过对光束形状进行高精度的控制,该开发器件可根据对象物体的材料和形状进行优化,进而实现高精度的激光热加工。今后,我们将继续优化SLM结构中的多层介质膜反射镜,以进一步提高耐光性能。此外,我们也会将此开发器件搭载到激光加工设备中,进行实际验证实验。研发背景SIP第2期课题旨在通过将网络空间(虚拟空间)和物理空间(现实空间)高度融合的信息物理系统(Cyber Physical System,以下简称CPS)验证具有革命性的创新型工业制造。其中,“利用光和量子的Society 5.0实现技术”中,我们研发的主题包括激光加工在内的3个领域,旨在通过CPS激光加工系统验证创新型制造的可能性。随着CPS激光加工系统的实现,我们期待通过AI人工智能收集在多种条件下用激光照射物体得到的加工结果数据,选择最佳的加工条件,进而优化设计和生产过程。SLM被定义为CPS激光加工系统中必需的关键设备,为此,我们将继续致力于提高SLM的性能。本次研发的器件在CPS激光加工系统中的应用场景主要规格
  • 显微镜界的“黑科技”:3D超分辨成像系统
    近, 法国abbelight公司研发的模块化多功能单分子定位显微 (SMLM)系统凭借其有的DAISY等技术在3D超分辨成像领域取得重大突破,在学术界引起了广泛的关注。该系统次实现在三维空间上的15 nm超3D定位;且因为模块化设计具有高兼容,仅需使用一个c-mount接口即可将客户的倒置荧光显微镜升成超分辨显微镜,是佳的超分辨搭建方案。 轴向延伸 定位Abbeligh公司系列超分辨模块采用了先进且特的双通路DAISY技术能够将以往定位不佳的Z轴精度提高到15 nm,真正实现三维空间上的15 nm超3D定位。同时此技术巧妙地结合DONALD和SAF技术的优势,有效解决采集过程中的热漂移和多色成像中不同波长激光位置不同等问题,大幅度提高了长时间和多色成像的度,并且还可实现多4色的同时3D成像。超大视野 图像采集在光路方面,SAFe light 能够实现在较低激光能量下对大视野图像的均匀照射。这使得abbelight能够在不增加采集时间的前提下,一次性采集200 × 200 μm2 范围内的图像,并且能够保证图像照射光的整体均一性。灵活兼容 轻松升abbelight具有高度兼容性,仅需使用一个c-mount接口即可将您的倒置荧光显微镜升成超分辨显微镜,并且基本不会破坏显微镜的原有功能,节约您的预算与空间。(除了模块外,abbelight也提供完整的超分辨系统)先进软件 功能强大abbelight 同时还是一台十分简便易用的设备,该设备的NEO软件简单、直观、优化良好,可提供全面的参数控制命令、实时3D漂移校正、实时3D重构图像、高速3D定位图像处理、空间分析和测量、分辨率计算等功能。初次应用 轻松上手对于超分辨中的光漂问题,abbelight的商业化成像液能够有效的降低成像过程中的光漂作用。对于初学者来说,abbelight 还提供全面的技术支持,帮助您快速的建立自己的超分辨观测方法,打开超分辨大门,助力科之路。【新发表文章】[1]. Belkahla, Hanen, et al. "Carbon dots, a powerful non-toxic support for bioimaging by fluorescence nanoscopy and eradication of bacteria by photothermia." Nanoscale Advances (2019).[2]. Jimenez, Angélique, Karoline Friedl, and Christophe Leterrier. "About samples, giving examples: Optimized Single Molecule Localization Microscopy." bioRxiv (2019): 568295.[3]. Cabriel, Clément, et al. "Combining 3D single molecule localization strategies for reproducible bioimaging." Nature communications 10.1 (2019): 1980.[4]. Capmany, Anahi, et al. "MYO1C stabilizes actin and facilitates the arrival of transport carriers at the Golgi complex." J Cell Sci 132.8 (2019): jcs225029.
  • 肿瘤现形记:高分辨荧光显微成像仪发力
    p  癌症被谓为众病之王,如何预防恶性肿瘤的转移和扩散,一直是临床医学界难题。/pp  有没有一种技术手段,能够对生物活体进行观察和追踪,让医生从整体上了解疾病发展的进程,及时调整药物和基因治疗方案,从而改变或阻止疾病发展?/pp  答案是肯定的。/pp  由宁波永新光学股份有限公司牵头,联合浙江大学、上海理工大学、复旦大学附属中山医院、南京医科大学等共同进行研究和开发的“高分辨荧光显微成像仪”正在为解决这一难题而不懈努力,也正因此,该项目获得了科技部重大科学仪器设备开发重点专项立项。/pp  “‘高分辨荧光显微成像仪’是以永新公司现有的一代高端倒置荧光显微成像系统主体为基础,开发出一个具有光切片成像、荧光标记与共定位、三维空间还原及动态成像、单分子荧光探测、荧光漂白后恢复等的复杂多功能高端荧光显微成像系统。”公司技术总监、项目负责人毛磊对科技日报记者说。/pp  虽然电子显微镜、原子力显微镜等技术已经实现获得更高的分辨率,但由于不能对活体实时成像,样品制备复杂等原因,光学显微镜仍然是当前生物医学、生命科学以及医学研究等方面的主要观测设备。/pp  “相比较传统的显微成像技术,这种高分辨荧光成像技术不仅可以实现对活体组织微观结构、各种肿瘤细胞的显微成像,还为细胞组学、基因组学、蛋白组学、肿瘤学等研究提供了强大的技术支撑,是一项在生命科学领域有着不可替代优势的技术。”毛磊说。/pp  此外,这种技术还可以在活体动物体内进行显微成像,通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,让研究人员直接快速地检测各种癌症模型中肿瘤的生长、转移以及对药物的反应,比传统方法更适合于肿瘤体内生长的定量分析。/pp  值得一提的是,为了提高光学显微的成像效果,以便从复杂的细胞组织中提取出自己想要的细节,研发团队还采用了荧光标记的方法,在细胞中加入特殊的荧光标记物,这些标记物在特定的光照下,有的发红光,有的发绿光,而且每种荧光标记物都具有一定的选择性,只与细胞中既有的特定分子结合,然后发出荧光。/pp  “荧光成像大大提高了光学显微成像的对比度,还帮助研发人员分辨细胞中的不同结构。预期项目结题后,3—5年内将可实现累计销售1亿多元,10年内可实现年销售3—5亿元,利税超亿元。该项成果将推动我国高端显微镜的‘跨代式’发展。”毛磊说。/pp  相关统计显示,2016年全球该类产品市场共有30多亿美元,中国市场大约在16亿元人民币(约占世界市场8%),年增长率超过30% 而在世界高端显微镜市场,我国显微镜制造企业占比小于1%,具有很大的市场空间。/pp  “永新已经与三家应用单位共同在遗传/发育生物学、细胞生物学等荧光免疫方面进行了应用开发,其中NIB900、NE900系列研究级显微镜已实现批量生产,并在国内外高校及科研院所销售超过200台。下一阶段,我们将围绕切片成像模块、单分子探测模块及全内反射模块以及核心部件如高倍率、大数值孔径平场复消色差物镜,荧光滤光片,微分干涉组件等进行深度研发,最终实现预期目标。”毛磊表示。/p
  • 肿瘤现形记:高分辨荧光显微成像仪发力
    p  癌症被谓为众病之王,如何预防恶性肿瘤的转移和扩散,一直是临床医学界难题。/pp  有没有一种技术手段,能够对生物活体进行观察和追踪,让医生从整体上了解疾病发展的进程,及时调整药物和基因治疗方案,从而改变或阻止疾病发展?/pp  答案是肯定的。/pp  由宁波永新光学股份有限公司牵头,联合浙江大学、上海理工大学、复旦大学附属中山医院、南京医科大学等共同进行研究和开发的“高分辨荧光显微成像仪”正在为解决这一难题而不懈努力,也正因此,该项目获得了科技部重大科学仪器设备开发重点专项立项。/pp  “‘高分辨荧光显微成像仪’是以永新公司现有的一代高端倒置荧光显微成像系统主体为基础,开发出一个具有光切片成像、荧光标记与共定位、三维空间还原及动态成像、单分子荧光探测、荧光漂白后恢复等的复杂多功能高端荧光显微成像系统。”公司技术总监、项目负责人毛磊对记者说。/pp  虽然电子显微镜、原子力显微镜等技术已经实现获得更高的分辨率,但由于不能对活体实时成像,样品制备复杂等原因,光学显微镜仍然是当前生物医学、生命科学以及医学研究等方面的主要观测设备。/pp  “相比较传统的显微成像技术,这种高分辨荧光成像技术不仅可以实现对活体组织微观结构、各种肿瘤细胞的显微成像,还为细胞组学、基因组学、蛋白组学、肿瘤学等研究提供了强大的技术支撑,是一项在生命科学领域有着不可替代优势的技术。”毛磊说。/pp  此外,这种技术还可以在活体动物体内进行显微成像,通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,让研究人员直接快速地检测各种癌症模型中肿瘤的生长、转移以及对药物的反应,比传统方法更适合于肿瘤体内生长的定量分析。/pp  值得一提的是,为了提高光学显微的成像效果,以便从复杂的细胞组织中提取出自己想要的细节,研发团队还采用了荧光标记的方法,在细胞中加入特殊的荧光标记物,这些标记物在特定的光照下,有的发红光,有的发绿光,而且每种荧光标记物都具有一定的选择性,只与细胞中既有的特定分子结合,然后发出荧光。/pp  “荧光成像大大提高了光学显微成像的对比度,还帮助研发人员分辨细胞中的不同结构。预期项目结题后,3—5年内将可实现累计销售1亿多元,10年内可实现年销售3—5亿元,利税超亿元。该项成果将推动我国高端显微镜的‘跨代式’发展。”毛磊说。/pp  相关统计显示,2016年全球该类产品市场共有30多亿美元,中国市场大约在16亿元人民币(约占世界市场8%),年增长率超过30% 而在世界高端显微镜市场,我国显微镜制造企业占比小于1%,具有很大的市场空间。/pp  “永新已经与三家应用单位共同在遗传/发育生物学、细胞生物学等荧光免疫方面进行了应用开发,其中NIB900、NE900系列研究级显微镜已实现批量生产,并在国内外高校及科研院所销售超过200台。下一阶段,我们将围绕切片成像模块、单分子探测模块及全内反射模块以及核心部件如高倍率、大数值孔径平场复消色差物镜,荧光滤光片,微分干涉组件等进行深度研发,最终实现预期目标。”毛磊表示。/p
  • 专家点评NBT| 陈良怡/李浩宇合作团队发明计算超分辨图像重建算法,稳定提升荧光显微镜2倍分辨率
    2014年诺贝尔化学奖授予了荧光超分辨显微技术,利用荧光分子的化学开关特性(PALM/FPALM/STORM)或者物理的直接受激辐射现象(STED),实现超越衍射极限的超分辨成像。尽管如此,活细胞中的超分辨率成像仍然存在两个主要瓶颈:(1)超分辨率的光毒性限制了观察活细胞中精细生理过程;(2)受限于荧光分子单位时间内发出的光子数,时间和空间分辨率不可兼得。受限于这个瓶颈,为了在活细胞上达到60 nm空间分辨率极限,现有超分辨率成像手段需要强照明功率(kW~MW/mm2)、特殊荧光探针和长曝光时间( 2 s)。强照明功率引起的强漂白会破坏真实荧光结构的完整性,长曝光时间在图像重构时导致运动伪影,降低有效分辨率。迄今为止,基于光学硬件或者荧光探针的改进无法进一步提升活细胞超分辨率的时空分辨率,实现毫秒尺度60 nm的时空分辨率成像。2021年11月16日,哈尔滨工业大学李浩宇教授团队与北京大学陈良怡教授团队合作在Nature Biotechnology上发表论文Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy【1】。他们另辟蹊径,发明基于新计算原理的荧光超分辨率显微成像,进一步拓展荧光显微镜的分辨率极限。通过提出“荧光图像的分辨率提高等价于图像的相对稀疏性增加”这个通用先验知识,结合之前提出的信号空时连续性先验知识【2】,他们发明了两步迭代解卷积算法,即稀疏解卷积(Sparse deconvolution)方法,突破现有荧光显微系统的光学硬件限制,首次实现通用计算荧光超分辨率成像。结合自主研发的超分辨率结构光(SIM)系统,实现目前活细胞光学成像中最高空间分辨率(60nm)下,速度最快(564Hz)、成像时间最长(1小时以上)的超分辨成像。结合商业的转盘共聚焦结构光显微镜,实现四色、三维、长时间的活细胞超分辨成像。1、应用举例:DNA折纸标准样本验证为了在已知结构样本中验证分辨率的提升,研究者设计并合成了两个荧光标记位点的DNA折纸样本,每个位点用4~5个Cy5标记。当这些分子间距为60 nm、80 nm和100 nm时,它们在TIRF-SIM下几乎无法区分,但在经过稀疏解卷积重建后(Sparse-SIM,图1)可以很好地区分它们中间的距离。整体结果可以用单分子定位显微镜ROSE【3】交叉验证,与Sparse-SIM得到的DNA折纸的荧光对间距以及不同间距荧光对在玻片上的分布一致。图1:Sparse-SIM解析不同距离DNA折纸样本。(a)在相同视场下,用配对Cy5标记不同距离(60 nm, 80 nm, 100 nm, 120 nm)的DNA折纸样品,用TIRF(左)、TIRF-SIM(中)和Sparse-SIM(右)成像。(b)在TIRF、TIRF-SIM和Sparse-SIM下,黄色(60 nm)、蓝色(80 nm)(80 nm)、绿色(100 nm)和红色(120 nm)框包围的放大区域。比例尺:(a)2 μm;(b)100 nm。2、应用举例:Sparse-SIM超快活细胞成像揭示核孔结构和胰岛素囊泡早期融合孔道在活细胞成像中,稀疏结构光显微镜(Sparse-SIM)可以解析标记不同核孔蛋白(Nup35, Nup93, Nup98,或Nup107)的环状核孔结构,而它们在传统结构光显微镜(2D-SIM)下形状大小与100 nm荧光珠类似(图2c, 2d)。由于相机像素尺寸与孔径直径类似,测量的核孔拟合直径与Sparse-SIM的分辨率相当。校正后Nup35和Nup107孔的直径分别为~66 ± 3 nm和~97 ± 5 nm,而Nup98和Nup93直径大小处于这个范围中(图2e, 2f),结果与以前用其他超分辨成像方法在固定细胞中获得的直径相符【4】。有趣的是,12分钟超分辨成像可以显示活细胞中核孔形状变化,这可能反映了核膜上的单个核孔复合物动态重新定向到焦平面或远离焦平面(图2g),这是其他超分辨方法难以观察到的。图2:Sparse-SIM解析核孔蛋白动态过程。(c)用Sparse-SIM观察活COS-7细胞中以Nup98-GFP标记的动态环状核孔的典型例子,持续时间超过10分钟。上下区域分别显示2D-SIM和Sparse-SIM下的图像。(d)比较(c)中青色框中的核孔结构快照与100 nm荧光珠在不同重建方法(2D-SIM、20次RL解卷积后、50次RL解卷积后、Sparse-SIM)下的结果。(e)由于核孔的大小与Sparse-SIM的分辨率和像素大小相当,按照Supplementary Note 9.1的协议(详情请见文章),分别推导出Nup35-GFP(红色)、Nup98-GFP(黄色)、Nup93-GFP(绿色)和Nup107-GFP(青色)标记的核孔结构的实际直径。(f)Nup35(66 ± 3 nm, n=30)、Nup98(75 ± 6 nm, n=40)、Nup93(79 ± 4 nm, n = 40)、Nup107(97 ± 5nm ,n = 40)的平均直径环。左右两幅蒙太奇分别为传统Wiener重构或稀疏解卷积后的结果。(g)在6个时间点对 (c)中的品红色方框放大并显示。比例尺:(c)500 nm;(d, g, f)100 nm。通过滚动重建,Sparse-SIM的时间分辨率可达564 Hz,识别出来INS-1细胞中VAMP2-pHluorin标记的、更小的胰岛素囊泡融合孔道(如~61 nm孔径)。它们在囊泡融合的早期出现,孔径小(平均直径~87 nm),持续时间短(9.5 ms),不能被之前传统的TIRF-SIM所识别【2】。另一方面,鉴别出来的稳定融合孔在囊泡融合的后期出现,孔径大(平均直径~116 nm),持续时间长(47 ms),是之前看到的结构【2】。值得一提的是,虽然这里发现的囊泡早期融合孔状态很难被其他的超分辨率成像手段所直接验证,但是它们的发生频率与30多年前用快速冷冻蚀刻电子显微镜所观察到的“小的融合孔发生概率远低于大的融合孔”现象相吻合【6】。3、应用举例:稀疏解卷积是提升荧光显微镜分辨率的通用方法与当下热门的深度学习超分辨率显微重建不同,信号的空时连续性、高空间分辨率导致的荧光图像相对稀疏性这两个先验知识,是荧光显微成像的通用先验知识,不依赖于样本的形态以及特定的荧光显微镜种类。因此,稀疏解卷积是通用荧光显微计算超分辨率成像算法,可被广泛应用于提升其他荧光显微模态分辨率,观察不同种类细胞器的精细结构及动态(图3)。图3 | 稀疏解卷积广泛应用于提升不同显微成像模态空间分辨率,揭示各类细胞器精细结构动态。比如稀疏解卷积增强的商业超分辨转盘共焦结构光显微镜(SD-SIM)【7】,可以实现XY方向90纳米,Z方向250 纳米的空间分辨率,清晰记录分裂期7 μm深度内的全细胞内所有线粒体外膜网络(图4)。同样,若稀疏解卷积增强与商业SD-SIM结合,可以很容易实现活细胞上的三维、四色超分辨率成像。稀疏解卷积可以与膨胀显微镜(ExM)【8】结合,解析细胞膨胀后的复杂结构;也可以与宽场、点扫描的共聚焦、受激辐射损耗显微镜(STED)【9】以及微型化双光子显微镜(FHIRM-TPM 2.0)【10】结合,实现近两倍的空间分辨率提升。因此,稀疏解卷积的提出,将帮助使用各种各样荧光显微镜的生物医学研究者更好地分辨细胞中的精细动态结构。图4 | Sparse SD-SIM解析活细胞三维线粒体外膜网络。(k)活体COS-7细胞的线粒体外膜(Tom20-mCherry标记)的三维分布,颜色表征深度。(l)SD-SIM原始数据与Sparse SD-SIM的水平(左)和垂直(右)的白色框区域放大展示。比例尺:(k)5 μm;(l)1 μm。总之,通过稀疏解卷积算法(Sparse deconvolution)来实现计算荧光超分辨率成像,与目前基于特定物理原理或者特殊荧光探针的超分辨率方法都不相同。与超快结构光超分辨显微镜结合形成的Sparse-SIM是目前活细胞光学成像中,分辨率最高(60纳米)、速度最快(564帧/秒)、成像时间最长(1小时以上)的超分辨光学显微成像手段。它也可以与现有的多数商业荧光显微镜结合,有效提升它们的空间分辨率,看到更清楚的精细结构动态。哈尔滨工业大学博士生赵唯淞、北京大学博士后赵士群、李柳菊为共同第一作者,哈尔滨工业大学仪器科学与工程学院李浩宇教授和北京大学未来技术学院陈良怡教授为论文共同通讯作者,共同作者还包括哈尔滨工业大学谭久彬院士、刘俭教授,北京大学毛珩博士,生科院成像平台单春燕博士和华南师范大学刘彦梅教授。参与合作的实验室包括武汉大学宋保亮教授、北京大学陈兴教授、中科院国家纳米科学中心丁宝全教授和生物物理所纪伟教授等。该项工作得到北京大学膜生物学重点实验室、麦戈文脑研究所、北大-清华生命科学联合中心、北京智源人工智能研究院的支持,也是多模态跨尺度国家生物医学成像设施建设过程中的重要成果。专家点评徐平勇(中科院生物物理所)自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。在固定细胞中,以MINFLUX、SIMFLUX以及ROSE等为代表的超分辨成像技术利用调制光照射单分子定位的方法实现了小于10纳米的空间分辨率。然而,在活细胞中进一步提高成像的空间分辨率仍然面临挑战。一个主要原因是活细胞成像的时空分辨率是互相关联的,为了减少活细胞里的运动伪影,需要通过提高采样频率来提高时间分辨率,但是采样频率或者时间分辨率的提高会减少记录的光子数,使得空间分辨率下降。在现有超分辨成像技术中,结构光照明成像SIM技术具有最高的时间分辨率,但是受限于成像原理本身和所采用的维纳反卷积等算法,空间分辨率进一步提高遇到了挑战。陈良怡和李浩宇团队合作发展的稀疏结构光超分辨显微成像技术(Sparse-SIM),保留了陈良怡团队前期发展的海森-SIM的高时间分辨率的优点,并进一步将SIM的空间分辨率提高到60纳米。该技术属于计算超分辨率成像方法,主要包括两步迭代解卷积求解算法。其核心是将Richardson–Lucy反卷积算法应用到SIM成像中,通过前期发展的基于信号的时空连续性的先验知识重建图像的方法减少或者消除Richardson–Lucy反卷积应用中的噪声问题;并利用提出的“荧光图像的分辨率提高等价于图像的相对稀疏性增加”这个先验知识作为约束条件,建立通用的计算框架——稀疏解卷积技术。该工作有几个方面的突破和创新:1)解决了Richardson–Lucy反卷积应用到生物成像中的噪声和先验知识问题,拓展了它在生物成像中的实际应用;2)利用稀疏结构光超分辨成像在活细胞中实现了同时高时空分辨率长时程成像;3)方法具有普适性,可以广泛用于宽场成像和其它超分辨成像技术,提高这些成像方法的分辨率。目前发展的Sparse-SIM主要是基于二维结构光 (2D-SIM) 系统,实现了活细胞中空间分辨率60nm、时间分辨率564Hz、成像时间1小时以上的超分辨成像。这是目前活细胞成像中同时具有的最高时空分辨率。其空间分辨率可与非线性SIM相媲美,但是时间分辨率更高,成像设备上的复杂程度也相对要低一些。将来Sparse-SIM技术也有望能用于三维结构光成像,尽管受限于3D-SIM成像方法本身成像的时间分辨率会有所下降。总之,Sparse-SIM技术同时具有高的时间和空间分辨率,其在活细胞成像中的应用有望带来诸多生物学中的重要发现。尤其重要的是,稀疏解卷积技术框架适用于目前多数荧光显微镜成像方法,并将这些成像的空间分辨率提升了近两倍,将大大促进这些荧光成像方法的发展和它们在生物学中的广泛应用。刘兴国(中科院广州生物医药与健康研究院)以SIM、STORM/PALM、STED为代表的的超分辨成像技术,成功突破了光学衍射极限,极大推动了亚细胞结构和细胞器互作动态等微观结构研究,获得了2014年诺贝尔化学奖。然而超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高——在超分辨成像技术中,SIM技术具有最好的时间分辨率,然而空间分辨率也是3种主流技术中最低的,缺乏对100nm以下尺度的亚细胞器结构的解析力。在充分利用SIM技术的时间分辨率的基础上,如何提高空间分辨率是一个重要的研究方向。北京大学陈良怡团队与哈尔滨工业大学李浩宇教授在Nature Biotechnology 杂志报道最新开发的Sparse deconvolution算法,并成功结合SIM技术开发出Sparse-SIM,在时空分辨率上成功将SIM技术的空间分辨率从110nm提高到60nm,同时保持毫秒级的时间分辨率。同时,陈良仪团队研究显示,本技术同样可以提高SD-SIM、STED等超分辨技术的轴向分辨率,甚至可以使普通宽场显微镜获得更好的信噪比。这一精彩的工作不但是领域的重要技术进展,而且具有广阔的应用空间。 陈良怡团队之前的工作,在硬件和软件水平挖掘SIM技术的时空分辨率,成功开发了高时空分辨率的Hessian SIM技术;本次研究再次在软件算法上取得突破,进一步推动了SIM技术在活细胞超分辨成像在时空分辨率的极限。应用Sparse-SIM技术,同时检测了核孔复合物结构、网格蛋白(clathrin)动态、溶酶体和内质网相互作用、内质网对线粒体内嵴动态的调控等重要过程,显现出Sparse-SIM强大的应用能力和应用前景。如何易于操作的提高超分辨成像技术的时空分辨率是亚细胞器结构和动态研究方面的一个重要方向,Sparse deconvolution算法或者Sparse-SIM提供了一个重要的生命科学研究工具,去探索更微观的生命科学过程。参考文献[1] Weisong Z, Shiqun Z, Liuju L, et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy [J]. Nature biotechnology, 2021: DOI: https://doi.org/10.1038/s41587-021-01092-2.[2] Huang X, Fan J, Li L, et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy [J]. Nature biotechnology, 2018, 36(5): 451-459.[3] Gu L, Li Y, Zhang S, et al. Molecular resolution imaging by repetitive optical selective exposure [J]. Nature Methods, 2019, 16(11): 1114-1118.[4] Szymborska A, Marco A d, Daigle N, et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging [J]. Science, 2013, 341(6146): 655-658.[6] Ornberg R L, Reese T S. Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes [J]. The Journal of Cell Biology, 1981, 90: 40 - 54.[7] Schulz O, Pieper C, Clever M, et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy [J]. PNAS, 2013, 110(52): 21000-21005.[8] Sun D-E, Fan X, Shi Y, et al. Click-ExM enables expansion microscopy for all biomolecules [J]. Nature Methods, 2021, 18: 107–113.[9] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters, 1994, 19(11): 780-782.[10] Zong W, Wu R, Chen S, et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging [J]. Nature Methods, 2021, 18(1): 46-49.
  • 哈工大仪器学院李浩宇教授团队突破超分辨显微成像质量评估难题
    近日,哈工大仪器学院李浩宇教授团队在超分辨荧光显微成像技术领域取得突破性进展。针对目前超分辨荧光显微图像重建质量难以有效精确评估的问题,该团队提出了一种像素级的误差量化方法,利用滚动傅里叶环相关计算方法(rolling Fourier ring correlation,rFRC),评估超分辨尺度下的图像重建不确定度(基于超分辨成像在超高分辨能力的层面上对更微细结构进行成像测量的不确定度),在无需比对参考图像的条件下,通用地生成超分辨尺度下像素级的误差定量分布图。该项技术可准确描绘出生物分析并精确定位可靠性较低的区域,相比图像不确定分析领域内现有的方法,其判定尺度的精细程度最高可提升近10倍。12月14日,该研究成果以《滚动傅里叶环相关定量超分辨显微成像质量异质性分析和评定》(Quantitatively mapping local quality of super-resolution microscopy by rolling Fourier ring correlation)为题,以长文形式在线发表于《自然》(Nature)杂志旗下的国际权威光学期刊《光:科学与应用》(Light: Science & Applications,2022年影响因子20.3)。通过设置荧光探针或结合物理的受激辐射现象,超分辨荧光显微镜已经突破了分辨率的物理衍射极限(200~300纳米)。然而,超分辨显微镜对样本的超分辨信息提取能力,往往依赖于图像的计算重建与后续处理,而化学环境和光学设置等因素会在重构中对图像产生影响,造成噪声与失真,降低超分辨图像质量。因此,对超分辨图像进行精确可靠的质量评估,可有效量化误差和不确定性,从而进一步分析生命科学问题。尽管目前已有几种方法可对超分辨图像质量进行评估,但还无法在超分辨尺度上进行超精密且无参考的量化分析,且难以准确评价图像分辨率分布的异质性。为解决上述问题,李浩宇教授团队针对图像的像素级细小误差,采用滚动傅里叶环相关计算在超分辨尺度上进行量化和估计。与此同时,对于较大的结构失真等错误,引入改进的分辨率比例尺误差图(RSM),最终构成一套完善的超分辨尺度显微图像重建质量评估方案(Pixel-level ANalysis of Error Locations-PANEL,像素级图像误差定位分析)。利用该项技术可以精确比较不同单分子定位显微镜重建算法的性能,并进一步促进超分辨率尺度下不同重建图像的有效融合,最大限度降低了潜在误差。此外,该方法还能够与目前常用的多种模态光学超分辨显微成像技术结合,成为一种易于使用的图像局域质量评估分析工具。利用该方法可以有效评估单分子定位显微镜(STORM)分辨率异质性。这里展示的是单分子定位显微镜拍摄的微管数据集对提出的评估方法进行验证(如下图左),从图中给出的不确定量化评价和分辨率分布地图,证明该方法成功绘制出微管密集程度变化引起的分辨率异质性(如下图右)。rFRC评估单分子定位显微镜的超分辨率图像。左:于COS-7细胞中用Alexa Fluor647标记的α-微管蛋白的 STORM重建结果(四周)与其rFRC图(中央);右:STORM 结果(亮绿色)和高斯平均 rFRC 图(shifted jet图)的合并视图,用于突出显示低质量区域。 超分辨荧光显微技术虽然突破了分辨率的衍射极限,使得科学问题可以进一步在更小尺度对微观世界直接探索和感知,但在看得清不清之外,看得准不准和看得真不真实依旧是生命科学研究探索中的重大阻碍。只有明确知道超分辨成像测量的不确定度,才能指导我们走向更高的成像分辨率与质量。因此,提出新的量化分析技术在超分辨的精细尺度,以像素级准确量化误差能力,揭示了图像空间信息的不确定性和分辨率分布的异质性,不仅告诉我们超分辨结果的准确度,基于超分辨图像的生物分析提供了重要支持,还可利用量化评估信息,对不同重建方法甚至不同模态的超分辨结果融合利用,最大限度降低误差,充分利用高频空间的超分辨信息,进一步提升图像的整体分辨率。除此之外,该方法原理的通用性使其可以广泛用作跨模态工具,评估其他基于定位和基于波动的显微镜的分辨率异质性,在生物显微成像技术领域有望成为广泛应用的生物数据分析评定方法,推动计算显微成像技术领域获得更大的进步和应用价值。该项研究成果主要由哈工大仪器学院、北京大学未来技术学院和南开大学物理学院合作完成。哈工大为论文第一通讯单位,哈工大助理教授赵唯淞为论文第一作者,哈工大李浩宇教授和北京大学陈良怡教授为论文通讯作者。北京大学助理教授黄小帅和南开大学博士后杨建宇为论文共同第一作者,共同通讯作者还有南开大学潘雷霆教授和北京大学赵士群副研究员。哈工大仪器科学与技术学科带头人谭久彬院士为论文共同作者和哈工大科研团队负责人。该项工作受到国家自然科学基金项目(优秀青年科学基金、国家重大科研仪器研制项目)和科技部重点研发计划(前沿生物技术)等项目资助。
  • 哈工大突破高通量超分辨显微成像难题
    近日,哈尔滨工业大学仪器学院青年教授李浩宇团队在生物医学超分辨显微成像技术领域取得突破性进展。针对目前超分辨显微镜所面临的成像通量限制,团队提出基于计算光学成像的新一代高通量三维动态超分辨率成像方法,通过计算成像技术增强荧光涨落探测灵敏度,使探测灵敏度提升两个数量级以上,突破了现有显微成像技术在高通量视场、高空间分辨率和高时间分辨率等难以兼顾的难题,将目前世界上超分辨显微镜中最高通量视场成像范围提升至毫米级,可在10分钟内对包含超过2000个细胞的视场上实现了128纳米的超高空间分辨率成像,为细胞学异质性和生物医学等研究提供新的科学影像仪器。   该研究成果以《通过增强荧光涨落检测实现高通量超分辨率成像》为题,以长文形式在线发表于国际权威杂志《自然光子学》(Nature Photonics,2021年影响因子39.7,光学类最高)。
  • Nature子刊:香港科技大学瞿佳男团队开发活体高分辨大脑成像新技术
    大脑是高等生命体最复杂的器官。在其自然状态下实现对神经元、神经胶质细胞和微血管系统的非侵入式活体高分辨成像对于促进理解大脑生理机能和疾病至关重要。为了实现这一目标,研究人员一直致力于研发能穿过颅骨的大脑活体成像技术。虽然超声成像、正电子发射断层扫描、磁共振成像等技术都能对大脑进行无损成像,但却无法提供足够的空间分辨率来解析亚细胞水平的生物结构和功能。光学显微镜的独到之处在于能够以高空间分辨率提供活体样本的结构和功能信息。然而,当光波在不均匀生物组织(例如哺乳动物颅骨和大脑组织)中传输时就会遇到组织产生的光学像差和散射,从而限制了光学成像的分辨率和深度。近年发展的三光子显微镜(3PM)技术是一种使用长激发波长和高阶非线性激发的光学成像方法。与其他光学成像技术相比,3PM有效地减少了散射和背景荧光,在对哺乳动物大脑成像方面已经显示出巨大的潜力。然而,不透明的颅骨和脑组织仍然会严重衰减激发和发射光子并产生光学像差和散射,从而降低成像质量和深度。自适应光学(AO)是一种校正光波波前畸变的方法,最早用于大型天文望远镜排除大气产生的像差实现高分辨成像。近10多年 AO 已被应用于光学显微镜领域,通过校正组织像差来提高成像分辨率。然而,传统 AO 技术的波前测量精度和像差矫正准确性都随着成像深度的增加迅速下降。因此,如何在弱信号和大散射情况下准确测量并矫正像差对于在组织深层实现高分辨成像是一个巨大的挑战。近日,香港科技大学瞿佳男/叶玉如研究组在 Nature Biotechnology 期刊上在线发表了题为:Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping 的研究论文研究团队在近年发展了多项 AO 显微成像技术的基础上,开发了一种新型活体自适应光学三光子显微成像(AO-3PM)系统。该系统结合全新自适应光学技术和三光子显微成像,实现了穿过活体小鼠完整头骨在大脑深层的高分辨率大视场成像。AO-3PM 大幅提升了非侵入式活体成像的图像质量,为无损研究大脑结构和功能提供了又一强有力的工具。在这项工作中,研究团队发明了一种称为 analog lock-in phase-detection for focus sensing and shaping(ALPHA-FSS 或 -FSS)的 AO 技术,对激发光的相位进行特定调制,再利用相敏探测方法对生物组织引入的低阶和高阶像差进行快速精确测量及矫正(图1)。实验证明-FSS 技术能够在大背景噪声情况下显著提高测量的信噪比,直接得到激发光在显微镜焦面的电场幅值和相位,并用于准确校正小鼠头骨及大脑组织产生的像差和部分散射。不仅如此,AO-3PM 系统还包括另一套共轭自适应光学技术,用于克服矫正波前和生物组织像差随着扫描角度变大迅速解耦的问题,显著扩大了-FSS 的矫正有效范围和高分辨成像的视场。图1:-FSS-3PM系统及对100um厚小鼠头骨引起的像差矫正。(A) AO-3PM系统结构图。(B) 100um厚的头骨下300um深处荧光珠在X-Y平面和X-Z平面的图像,未矫正组织像差(左),-FSS矫正组织像差(右)。(C) 空间光调制器上的矫正图案。(D) B图中沿虚线荧光信号轮廓。比例尺:(B) 2um。研究人员使用1300nm波长的飞秒脉冲激光作为激发光验证了 AO-3PM 的成像性能,展示了穿过小鼠完整头骨的体内和体外成像。与传统的三光子显微成像相比, AO-3PM 能够获得更高的空间分辨率,并提升在小鼠大脑深层荧光信号强度最高达数百倍。凭借对低阶和高阶像差的矫正能力,AO-3PM 可以在保留完整头骨的情况下能够清晰分辨深皮质区的神经元胞体和树突以及微血管的精细结构,实现了穿过小鼠完整头骨在软脑膜下方750 µm深处的无损高分辨率成像(图2)。研究团队还发现 AO-3PM 在大幅提升神经元胞体钙离子信号的同时,更能清晰提取出单独树突钙离子信号,从而可以同步记录神经元胞体树突间的电信号关联。在去除头骨后 AO-3PM 还可获得在软脑膜下方达1.1 mm 深度的海马体高分辨率结构图像。图2:AO-3PM实现活体穿过头骨对大脑皮质的大范围高分辨成像。(A) Thy1-YFP转基因小鼠大脑内150X150X780um^3范围内对黄色荧光蛋白(YFP)标记的神经元(橙色)和Texas Red Dextran标记的微血管(红色)的高分辨成像。(B) 椎体神经元的最大强度投影(脑膜下方545-555um),未矫正组织像差(上),-FSS矫正组织像差(下)。比例尺:(B) 大图20um,小图5um最后,研究人员利用 AO-3PM 在保留完整头骨情况下实现了精密激光损伤,并以此研究了微小损伤后大脑皮质内小胶质细胞的响应过程(图3)。结果显示 AO-3PM 成像可清晰分辨小胶质细胞突起向微米级激光损伤点伸张和包裹的完整过程,有助于研究活体状况下免疫细胞对大脑环境变化的动态反应。同时,研究还表明 AO-3 PM产生的精密微小激光损伤只引起局部免疫细胞的迅速反应,而100微米外相邻大脑皮质的小胶质细胞并不会发生形态和位置的变化。为了验证在更大像差和散射情况下 AO-3PM 的性能,研究人员进一步对老年阿兹海默症老鼠大脑的小胶质细胞和淀粉样斑块进行活体成像。结果显示穿过其140um 厚的完整头骨,AO-3PM 仍然能清晰分辨胶质细胞的精细形态和与淀粉样斑块的相互作用。图3:AO-3PM实现活体穿过头骨精确激光手术以及老年阿兹海默症老鼠大脑内对小胶质细胞高分辨成像。(A) 激光手术后对Cx3Cr1-GFP转基因老鼠内被绿色荧光蛋白标记的小胶质细胞间隔时间成像。(B) 空间光调制器上的矫正图案。(C) A图中沿虚线荧光信号轮廓。(D) 在12个月大的老年阿兹海默症老鼠大脑对小胶质细胞和淀粉样斑块的双色成像。比例尺:(A) 20um;(D) 10um。总体而言,这项研究结果表明,AO-3PM 技术在促进活体生物高分辨成像特别是在活体大脑无创成像研究方面具有巨大潜力。
  • 中美联合研制自适应光学双光子荧光显微镜
    像差问题一直困扰着光学领域的工作者。像差会使光波前发生形变,不仅降低成像的信噪比和分辨率,使得很多时候我们只能&ldquo 雾里看花&rdquo ,更甚者,产生赝像,或无法获得有意义的图像。像差问题对双光子成像的影响尤为严重,因为在那里,荧光信号对入射光强度的依赖是平方关系,一旦入射光波前形变,不仅聚焦强度大幅下降,成像分辨率也急剧恶化。因此,如何解决像差问题,实现活体,例如小鼠大脑皮层,深层区域的高质量成像成为光学成像发展中最具挑战性的问题之一。  美国Howard Hughes Medical Institute (霍华德· 休斯医学研究所)在Janelia Farm Research Campus的吉娜博士小组与来自中科院上海光机所强场激光物理国家重点实验室的王琛博士最近成功将一种新的自适应光学的方法和双光子显微镜结合,研制出一种新的自适应光学双光子荧光显微镜。通过校正活体小鼠大脑的像差,在视觉皮层的不同深度处均获得了提高数倍的成像分辨率和信号强度,大大改进了成像质量,使得原来在活体鼠脑中不可见或者模糊的细节变得清晰可见,她们成功将该方法应用于老鼠视觉皮层第五层(约500µ m)的形貌结构成像和钙离子功能成像。这一新的自适应光学方法,首次使得在活体小鼠深层区域成像中获得近衍射极限的成像分辨率成为现实。这一成果以题Multiplexed aberration measurement for deep tissue imaging in vivo发表在最新一期的Nature Methods (自然· 方法)杂志上。  在该自适应光学双光子荧光显微镜中,她们将空间光位相调制器光学共轭到显微物镜的后焦平面,通过位相调制器将入射光分成若干子区域,每一块子区域的波前都可以被独立控制。同时,她们用数字微阵列光处理器,以不同的频率同时调制其中一半子区域的入射光强度,以另一半子区域作为&ldquo 参考波前&rdquo 。来自所有子区域光束会在焦点处会聚干涉,通过监测焦点激发的双光子信号随时间的变化情况,并进行傅里叶变换分析,可以&ldquo 分解&rdquo 得到被调制的每一块子区域的&ldquo 光线&rdquo 的贡献信息,从而可以实现对一半子区域波前的并行测量。对另一半子区域重复这一测量过程,从而获得整个入射波前的信息并进行校正。该方法耗时很短,通常约1~3分钟左右即可完成像差的测量和校正,无需复杂的计算,适用于任何标记密度和标记类型的样品。更重要的是,得到的像差校正图案可以用于提高较大视场范围内的成像质量。该方法无疑为在体研究小鼠大脑皮层深层区域的生物、医学问题提供了可行性方案。
  • 我国科学家在光学超分辨显微成像技术领域取得重要突破
    近日,哈尔滨工业大学仪器学院现代显微仪器研究所在光学超分辨显微成像技术领域取得突破性进展。研究团队在低光毒性条件下,把结构光显微镜的分辨率从110纳米提高到60纳米,实现了长时程、超快速、活细胞超分辨成像。11月16日,研究成果以《稀疏解卷积增强活细胞超分辨荧光显微镜的分辨率》(Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy)为题,以长文形式在线发表于国际权威杂志《自然-生物技术》(Nature Biotechnology)。显微仪器的分辨能力代表人类对科学探索的边界,2014年诺贝尔化学奖就授予了3位在超分辨率荧光显微技术领域取得重要成就的学者。哈工大现代显微仪器研究所团队提出了一种可突破光学衍射极限的计算显微成像算法,利用荧光成像的前向物理模型与压缩感知理论,并结合稀疏性与时空连续性的双约束条件,建立起一个通用的解算框架——稀疏解卷积技术,突破了现有光学超分辨显微系统的硬件限制,扩展了时空分辨率和频谱。在此基础上,研究团队研发了超快结构光超分辨荧光显微镜系统(Sparse-SIM),该系统具有超分辨、高通量、非侵入、低毒性等特点,在高速成像条件下,具备优于60纳米的分辨率和超过1小时的超长时间活细胞动态成像性能。团队首次观察到了胰岛分泌过程中具有的两种特征的融合孔道,第一次利用线性结构光显微镜观察到只有在非线性条件下才能分辨的环状的不同蛋白标记的核孔复合体与小窝蛋白。此外,研究人员还展示了利用该影像技术解析肌动蛋白动态网络、细胞深处溶酶体和脂滴的快速行为,并记录了双色线粒体内外膜之间的精细相对运动。该项工作在物理和化学方法基础上,首次从计算的角度提出了突破光学衍射极限的通用模型,实现了从0到1的原理创新,是目前活细胞光学显微成像中分辨率最高(60纳米)、速度最快(564帧/秒)、成像时间最长(1小时以上)的超分辨显微仪器。该技术框架也被证明适用于目前多数荧光显微镜成像系统模态,均可实现近两倍的稳定空间分辨率提升,为精准医疗和新药研发提供了新一代生物医学超分辨影像仪器,使未来大幅度加速疾病模型的高精度表征成为可能。该项研究成果主要由哈工大仪器学院和北京大学未来技术学院合作完成。哈工大为论文第一单位,哈工大博士生赵唯淞、北大博士后赵士群和李柳菊为论文共同第一作者,哈工大李浩宇副教授和北大陈良怡教授为论文共同通讯作者,哈工大刘俭教授和谭久彬院士均为论文共同作者和哈工大科研团队负责人。合作单位还包括中科院国家纳米中心、中科院生物物理所、武汉大学等。
  • 突破!国产自研超分辨显微镜完成商品化——访北京大学未来技术学院陈良怡教授
    1873年,德国物理学家恩斯特阿贝(Ernst Abbe)提出,光学显微镜受限于光的衍射效应和光学系统的有限孔径,存在分辨率极限,其数值约为200 nm。超分辨显微成像技术的诞生,却打破了这一极限。2014年的诺贝尔化学奖,就授予了三位在超分辨荧光成像技术领域做出突出贡献的科学家,可见该技术之重要性。那么,我国的超分辨显微成像技术发展到什么阶段?主要用于科学研究的超分辨显微成像技术对于人民大众究竟有何意义?带着这些问题,仪器信息网编辑走进北京协同创新研究院超分辨精准诊疗实验室寻求答案。北京协同创新研究院我们本次访谈的对象是北京大学未来技术学院(原北京大学分子医学研究所)陈良怡教授,他带领团队自主研发的HiS-SIM智能超灵敏活细胞超分辨显微镜(以下简称“HiS-SIM显微镜”)曾被评为“2018年中国光学十大进展”。2019年初,陈良怡和同为北京大学教师的毛珩共同成立广州超视计生物科技有限公司(以下简称“广州超视计”),将HiS-SIM显微镜商品化。毛珩作为广州超视计首席执行官一同接受了采访。陈良怡教授 北京大学未来技术学院SIM活细胞超分辨成像的意义我们的谈话,是从一种叫佩梅病的罕见病开始,患有佩梅病的人通常寿命较短,甚至出生后即死亡。长期以来,佩梅病的不同分型间的发病机制和有效治疗药物筛选是医学研究未解的难题。2018年的一场学术会议上,专注于佩梅病研究的北京大学第一医院儿科教授王静敏听到陈良怡关于自研超分辨率显微镜的报告,似乎看到了新的希望,两个团队随后开展合作,成功通过海森结构光超分辨成像手段揭示了不同临床分型的佩梅病患者的发病机制并筛选出细胞水平上可缓解最严重的细胞表型的化合物胆固醇和姜黄素。“在临床研究中对显微镜的应用很多,但医院病理科用的显微镜分辨率通常太低,看得不够清楚。在活细胞层面看清楚疾病发生的过程和原因,找到治疗疾病的药物和方法,这就是超分辨显微镜的意义。”陈良怡如是说。超分辨显微技术有多种,如光激活定位显微(PALM)、随机光学重构显微(STORM)、受激发射损耗(STED)和结构光照明(SIM)等,不同的成像技术其优劣势各不相同。在陈良怡看来,实现超分辨活细胞成像对生命科学研究至关重要,在众多超分辨显微技术中,SIM做活细胞成像是最合适的。“单纯从分辨率的角度看,PALM/STORM技术或者电镜早就可以实现更高分辨率的成像,但却不能很好地实现活细胞成像。”陈良怡继续解释道:“北京大学的保安进门会问三个终极哲学问题:你是谁?你从哪里来?你到哪里去?超分辨活细胞成像就是解决这个问题。通过高分辨显微技术对活细胞进行观察,研究人员可以看到蛋白从哪里来、到哪里去、跟谁见了面、它的partner是谁……,根据这些过程可以确定它在何时具有何种功能,而只有在活细胞里观察,才能获取到最大限度的动态信息。”商业化产品已实现销售 一年内实现用户认可走进实验室,我们看到左边工作台上摆放着一套设计简洁、以黄灰为主色调的HiS-SIM智能超灵敏活细胞超分辨显微镜(以下简称“HiS-SIM显微镜”),旁边的产品手册上这样介绍这台仪器:“HiS-SIM历时2年完成由实验室系统到工程样机再到预售产品的全通路研发,是现有成像灵敏度和分辨率最高的商用超分辨率显微镜。”下面是主要技术参数:分辨率:60纳米,可辨识线粒体内嵴及其动态过程;灵敏度:光强相比其他结构光超分辨率显微镜:1/10,比PALM/STORM超分辨显微镜:1/1000,比STED超分辨显微镜:1/400000;成像速度:最快564Hz,可观察到囊泡分泌孔道和新中间态;超低毒性:连续1小时1Hz成像无漂白,远优于其余超分辨显微镜。HiS-SIM智能超灵敏活细胞超分辨显微镜据毛珩介绍,HiS-SIM超灵敏活细胞超分辨显微镜硬件已经完成升级,而软件在经历了1500多个版本升级后也基本完成。“因为第一阶段的定位是面向全国最重要的成像平台,所以仪器要有足够的功能模块和容差性。过去一年,仪器不断有新的功能加进去,经过疯狂的内测,形成测试用例。追求稳定性,是产品推出一年后才正式启动销售的原因。”事实上,一年的时间把这样一台高端仪器做到稳定性良好,并非易事。陈良怡回答:“这跟人和钱有关。其一,我们团队的几十个人长时间在全负荷工作;其二,这个过程中我们投入了大量的钱。所谓一分钱一分货,我们所付出的巨大代价,才最终转化成现在这个‘真金白银’的稳定系统。”“我们从研发到测试的人员,可以说是‘国家队’了,他们唯一欠缺的是产业化经验,所以我们又高薪聘请了一些有大厂工作经验的人来补足核心团队所欠缺的部分。”毛珩补充道。目前超视计的商业化超分辨显微镜已经实现了多台销售,也有多家高校和科研院所在联系试用,有些研究人员利用这项技术已经做出了不错的成果,发表了数十篇文章。对于他们而言,产业化的道路已经迈出了很大一步。在回答国产超分辨显微镜何时能够实现国产替代这个问题时,陈良怡十分自信地说:“我们认为我们的技术已经比国外更好了,但需要练好内功,保持产品稳定性,最终让所有人认可,我们希望在一年内实现。”HiS-SIM智能超灵敏活细胞超分辨显微镜成像高端显微镜国产化:趋势很好 困难重重 目前,国内做高端光学显微镜的团队有很多,如中科院生物物理所、中科院苏州医工所、西安交大等许多科研单位都在进行高端显微镜的研究以及转化工作,广州和深圳等地还有很多光学仪器的初创企业。陈良怡认为:“国内高端显微镜的发展趋势很好,这也是国家所需,国家需要把科研成果写在祖国的大地上。但是无论国内有多少人在做,只有做出的产品用户使用后觉得好,愿意花钱去买,才算国产高端显微镜取得成功。就超分辨显微镜而言,这个市场像是一个“竞技场”,国产厂商竞争的舞台不应该只设定在国内,而是要去对标‘四大家’(蔡司、徕卡、奥林巴斯和尼康)。”同时,陈良怡也讲述了目前国产化的困境。他讲到:“国产高端显微技术发展势头虽好,但也面临重重困难,发展国产高端仪器不仅仅是技术本身的问题,还有用户认知的问题和进口品牌对国产先进技术密切跟进的问题等,可谓‘前有悬崖,后有追兵’。国产高端显微镜企业从初创到有一定规模,这个过程不会一帆风顺。但在当前国家所面临的形势下,即使困难,我们还是要做产业化这件事,国家出台的国产替代政策对我们会有一定的帮助,但是最终是否可以持续发展壮大还是要靠自己。”技术已不输国外 核心零部件逐步实现国产替代陈良怡认为,超分辨显微成像的技术水平,国内已不比国外差。目前国产超分辨显微镜与国外的差距主要体现在两个方面:一是核心器件,国外产品更具有稳定性优势,目前不可替代;二是在整体构架和理念,即成熟的人员构架和“做到最好”的理念。 超分辨显微镜的核心零部件主要有激光器、高灵敏的科学级相机、空间光调制器、显微镜主机、控制器等。这些零部件国内都有可替代的产品,但在实际生产过程中,它们占比仅不到五成。两位受访人解释了其中的原因和广州超视计在这个环节的布局。毛珩介绍了目前国产核心零部件生产制造商存在的问题。他讲到:“国内零部件的生产制造商常年为国外的仪器公司做代工,所以他们有能力做这件事情,但只是有能力,想要替代进口他们还缺‘两头’:上头设计和下头检测。而这两头恰好是我们能做的,接下来我们将深入参与核心零部件的制造,负责设计和检测,再按照难易程度逐年增加国产零部件的占比。” “国内厂商很愿意这样做,原因是他们目前或正在为国外企业代工,或大批量生产精度不高的产品,价格都很低。如果来生产生物医学成像高端仪器的零部件,虽然量不大,但利润很高,对他们来说是很好的选择。目前我们跟国产厂商还处于一起慢慢磨合的状态,长线上我们希望国内厂家能够做起来。”陈良怡补充道。陈良怡认为,仪器是核心,如果国产超分辨显微镜能够做好,就能够牵引核心零部件的发展,逐渐建设产业链,最后形成超分辨显微镜的制造生态。陈良怡和毛珩(右)合影政策支持很关键 国家意志可带动市场投入近些年来,国家出台多项对高新技术的支持政策,“十四五”规划中也强调了科技创新的战略意义。在陈良怡看来,国家的支持政策给像超分辨显微镜这样的国产高端仪器带来了机遇。主要体现在两个方面:第一是国家有系统的机制支持这样的项目,还会有一定的资金支持;第二,会促进更多国家或地方政府主导牵头的相关产业基金支持。“因为这个市场还太小,目前投资人不愿意进来,如果完全依靠市场机制,我们这样的初创型高新技术企业很难存活,所以国家政策支持对于高新技术企业来说至关重要。”陈良怡坦言。陈良怡举了两个例子,北京的京津冀国家技术创新中心和广州的粤港澳大湾区协同创新研究院,对于高新技术企业的支持基金,一部分来自国家或地方政府,一部分来自市场。他认为,两者合在一起,既体现出来国家的意志和需求,又有一些长期的投资者关注,如果这种机制能够顺利实施下去,对国产仪器发展将是利好。大家需对“国产”转变观念陈良怡所在的北京大学分子医学研究所,刚刚更名为北京大学未来技术学院,学院的理念是希望大家研究成果最后是能够被用上的,这样的环境促使院里的老师们去思考研究成果转化的事情。“做PI其实挺好,有很多人来寻求合作,发文章也利于评职称,但这意义不大。”陈良怡讲到,“为什么要做产业化?因为我们做的技术真的非常好,希望更多的人来用,产业化才是最高效的路径。”从科学家到企业家,陈良怡对于身份的转变也有颇多感受。他坦言:“原来做科研,是买仪器的,现在变成卖仪器的,角色转换后理解了很多东西。拉投资、招人、员工激励、成本……,这些都是运营一个公司要考虑的事情。推广产品时,还会有更多新的问题要面对。”首先面临的问题是绝大多数用户对国产仪器的固有认知:“国产的,能不能卖便宜点?”陈良怡说:“你要看要的是什么样的东西。”在陈良怡看来,要解决这个问题,让国产高新技术企业更好的发展,需要三个层面的努力。第一个层面是国家的支持,包括政策和资金。第二个层面是企业的自我的高要求,企业要对国家和投资人的钱负责,做国产高端仪器,不能只要求填补国内空白,而是要做到可与国际顶尖产品竞争的水平,要付出足够的成本和代价把每一个环节做好。第三个层面是用户的体谅,因为高端仪器并非走量的产品,不可能便宜50万就可以多卖10台,如果用户一开始期望国产仪器是便宜货,仪器企业为了价格优势用较差的器件,结果器件出了问题了,用户认为国产的果然不好而不再购买,陷入这样的负循环,国产仪器永远也做不好。“大家观念上的改变才是最主要的,需要企业和用户双方共同努力去打破这个怪圈。企业不能‘用爱发电’,不能只依赖国家政策,而是要有底气做出比国际顶尖更好的产品,才有资格让用户体谅并真正因为支持国货而感觉光荣。”陈良怡讲到。陈良怡团队合影后记:陈良怡戏言,超分辨显微镜研究和产业化是一个“大坑”,然而“入坑”后的他,却踏踏实实走过每一步。技术研发,他追求先进性和现实意义;转化产品,他追求稳定性和用户友好。采访结束时,陈良怡显露出些许疲态,或许是大学教授和创业者的双重身份占据了他太多精力,从决定产业化的那一刻起,就开始不停地奔波。可即便如此,我们依然能从到他满怀激情的介绍中感受到他对自己正在做的事业有着无限的热情和信心。实验室右边工作台上摆放着超视计与商业伙伴战略合作的联用超分辨显微成像系统,陈良怡指着它说:“这台仪器可以满足生命科学95%的成像需求。”我想,中国科研人员需要有这样对“自主研发”的自信,国产仪器厂商也应该有制造“国际领先产品”的信念,而这些都源于踏实的付出和确有的实力。
  • 徐涛院士团队研制出分子尺度分辨率干涉定位显微镜
    p style="text-align: justify text-indent: 2em "Seeing is believing,光学显微镜自1590年由荷兰詹森父子创制伊始,即成为生命科学最重要的研究工具之一。进入21世纪,借助荧光分子,科学家将光学显微镜的分辨率提高了一个数量级,由约一半光波波长(250 nm)拓展至几十纳米,并兴起了超高分辨荧光成像技术,用于“看到”精细的亚细胞结构和生物大分子定位,相关工作荣膺2014年诺贝尔化学奖。/pp style="text-align: justify text-indent: 2em "9月9日,Nature Methods杂志在线发表了中国科学院生物物理研究所徐涛院士研究组与科学研究平台纪伟正高级工程师研发团队合作研究论文,题为“Molecular resolution imaging by repetitive optical selective exposure”,为超高分辨光学显微镜家族再添新成员,使显微镜分辨率进一步被突破。该工作提出了一种基于激光干涉条纹定位成像的新技术,并据此研制出新型单分子干涉定位显微镜(Repetitive Optical Selective Exposure, ROSE),将荧光显微镜分辨率提升至3 nm以内的分子尺度,单分子定位精度接近1 nm,可以分辨点距为5 nm的DNA origami(DNA 折纸)结构。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 226px " src="https://img1.17img.cn/17img/images/201909/uepic/bcbdc347-2f8b-464e-9014-787a341c1e21.jpg" title="徐涛院士组与科学研究平台研发团队实现分子尺度分辨率光学成像.jpg" alt="徐涛院士组与科学研究平台研发团队实现分子尺度分辨率光学成像.jpg" width="450" height="226" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong图1 左侧,传统质心拟合定位方法,右侧,ROSE干涉定位方法/strong/pp style="text-align: justify text-indent: 2em "所谓干涉定位,是指采用不同方向和相位的激光干涉条纹激发荧光分子,荧光分子的发光强度与其所处条纹的相位有关,该技术即是通过荧光分子强度与干涉条纹的相位关系,来确定荧光分子的精确位置。为降低单分子发光时的闪烁和漂白对亮度和定位精度产生的不良影响,研发团队对显微镜光路进行了创造性地设计,分别为:基于电光调制器的干涉条纹快速切换激发光路,基于谐振振镜扫描的6组共轭成像光路,两种光路的同步实现了高达8 kHz的分时成像,确保在相机的单次曝光时间里把每个单分子发光状态均匀分配给6个干涉条纹,有效避免了荧光分子发光能力波动对定位精度的干扰。/pp style="text-align: justify text-indent: 2em "研发团队利用该技术对不同荧光位点间距的DNA origami阵列进行验证测试,证明干涉成像分辨率达到了3 nm的分子水平,可以解析5 nm的DNA origami阵列。后续的功能性实验结果显示,该技术在免疫标记的微管、CCP(clathrin coated pits,网格蛋白有被小窝)以及较致密的细胞骨架成像时展现出良好性能,该技术将为进一步解析精细亚细胞的组分和生物大分子的纳米结构提供有力工具。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 311px " src="https://img1.17img.cn/17img/images/201909/uepic/45780611-1a95-4748-a74e-d777d33bd780.jpg" title="分子尺度分辨率光学成像.jpg" alt="分子尺度分辨率光学成像.jpg" width="450" height="311" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong图2左侧,不同荧光位点间距的DNA origami成像,ROSE技术与传统的质心拟合方法进行对比验证。右侧,鬼笔环肽标记的微丝成像,ROSE技术与传统的质心拟合方法进行对比验证。/strong/pp style="text-align: justify text-indent: 2em "徐涛院士领衔的仪器研发团队近年来致力于显微成像仪器设备和技术方法的研究和开发,先后研制出偏振单分子干涉成像、冷冻单分子定位成像以及超分辨光电融合成像系统,开发了新的超分辨显微成像算法、探针和技术,申请有多项发明专利,上述成果被广泛应用于细胞生物学相关研究,支撑团队与合作者在该领域取得了系统性成果产出。纪伟正高级工程师所在的生命科学仪器研发中心是根据研究所发展新技术新方法的迫切需求而设立,隶属于科学研究平台,在提供技术服务的同时,聚焦生物显微成像仪器设备的研发与应用推广。/pp style="text-align: justify text-indent: 2em "徐涛院士和纪伟正高级工程师为该文章的共同通讯作者,谷陆生、李媛媛、张淑文为共同第一作者。李栋研究员、薛艳红、李尉兴参与了本课题。/pp style="text-align: justify text-indent: 2em "该工作受到中国科学院科研仪器设备研制项目、国家重点研发计划、国家自然科学基金以及北京市科技计划等项目的资助。/p
  • 高速三维动态成像 苏州医工所在结构光照明超分辨显微成像仪器研制方面取得进展
    对于生物医学研究,著名物理学家理查德费曼有句名言:“...很多基础生物学的问题是很容易被回答的;你只是需要看到它们就够了”。这句话一定程度上说明了直接观察的光学显微镜对于细胞生物学、发育生物学、免疫学、病理药理学等生物医学研究的重要性。但是受衍射极限的限制,传统光学显微镜的分辨率理论上只能达到光波长的一半。近20年来,超分辨荧光显微成像技术的出现有效打破了光学衍射极限的束缚。基于单分子定位技术的超分辨显微镜(SMLM)和受激发射损耗显微镜(STED)以及结构光照明超分辨显微镜(SIM)等技术在众多课题组的努力下都得到了长足发展,尤其是结构光照明显微镜由于成像速度快、光毒性小、无需特殊荧光标记等优势,已成为生命科学领域尤其是活细胞成像中最受欢迎的技术手段。近期,苏州医工所李辉课题组围绕着结构光照明超分辨显微成像方法、高保真SIM重构算法、以及国产化的SIM显微镜研制等方面取得了一系列重要进展。   三维成像方法因可以获取到更多的生物样品信息而备受关注。但是现有的三维成像不可避免的带来离焦模糊和时间分辨率差的问题,很难用于对样品的快速三维动态成像。为了实现对厚样品的快速三维成像,李辉课题组发展了基于数字微镜阵列器件(DMD)和液体变焦透镜(ETL)的结构光照明层切显微技术,并开发了基于两张原始图像的层切成像算法。该方法将传统的三维层切成像的速度提高了数倍以上,课题组利用该技术对斑马鱼和大脑血管的心血管系统进行了高速动态成像,清晰地显示了心脏跳动期的收缩-舒张过程以及腹部血管的蠕动特性。相关成果以“Four-dimensional visualization of zebrafish cardiovascular and vessel dynamics by a structured illumination microscope with electrically tunable lens”为题发表在Biomedical Optical Express(2020)上,其中博士生陈冲为论文第一作者。   图1 基于两张正反图像的结构光照明层切算法(左);斑马鱼心脏跳动过程的快速三维成像(右)。   结构光照明超分辨成像技术在多种纳米尺度的亚细胞结构研究中已经得到广泛的应用。但是对于具有大动态范围的样本,例如聚集的细胞囊泡,样品中荧光较强的聚集性区域和亮度较弱的稀疏区域不能同时呈现。现有的SIM方法针对这种样品无法重建出高质量的图像。对此,李辉课题组提出了一种采用多重曝光采集的高动态SIM成像方法HDR-SIM,采集三组不同强度照明的SIM图像然后融合出一帧超分辨图像。用HDR-SIM,强度相差400多倍单个和聚集的荧光小球样本在同一张SIM超分辨图中可以同时观察到,并且对分辨率不会产生影响。在使用本方法观测不同尺度的细胞囊泡结构,单个小囊泡和大的囊泡聚集都可以同时获得清晰的分辨。相关成果以“High Dynamic Range Structured Illumination Microscope Based on Multiple Exposures”为题发表在Frontiers in Physics (2021)上,其中梁永为论文第一作者。   图2 高动态SIM成像原理(左);“聚集-单个”的荧光小球高动态SIM成像(右)。   在结构光照明成像过程中,超分辨图像重建算法尤为关键。SIM重建算法的一些固有缺陷造成超分辨图像中经常出现重构伪影,使得SIM图像的保真度经常受到质疑,并且图像重建时需要完成一系列复杂的参数设定,限制着普通用户对SIM技术应用。李辉课题组开发了一种基于点频谱优化的高保真SIM重建算法。该算法有效克服了常规SIM算法极易产生重构伪影且光学层切能力差的问题,对不同质量原始数据的处理均能获得具有极少伪影和良好光学层切的高质量超分辨图像,有效提高了SIM成像的保真度。同时,该算法对OTF失配和用户自定义参数不敏感,使用生成的理论OTF和较少的参数即可重构高质量SIM图像,降低了SIM成像对实验实施和后处理重构的高要求,提升了算法对普通用户的友好度。相较于几种传统的SIM算法, HiFi-SIM算法对多种不同图像质量、不同样品复杂度、不同图像来源(商用设备/自主搭建SIM系统)的原始数据进行重建, HiFi-SIM均展现出了最少的重建伪影和最优的图像质量。相关成果以“High-fidelity structured illumination microscopy by point-spread-function engineering”为题发表在国际光学类顶级期刊Light: Science & Applications (2021) 上,其中文刚为论文第一作者。   图3 高保真结构光照明超分辨成像重建算法HiFi-SIM(左);细胞结构HiFi-SIM与其他算法重建结果比较(右)。   李辉课题组自2014年以来一直专注SIM成像的技术创新、仪器研发和应用推广,开发了多种形式的结构光照明显微镜系统。最近,基于课题组最新的研究成果,研发了一套可集成于显微镜下层光路的结构光照明插件,具有结构紧凑、方便易用等特点。插件可配置国产倒置荧光显微镜,实现了SIM超分辨成像系统的国产化替代。首台机器已经于近期交付某大学用户进行试用。 图4 插件式结构光照明超分辨成像系统   以上工作得到了国家重点研发计划项目和国家自然科学基金委项目的支持。
  • 研究人员开发出合理化深度学习超分辨显微成像方法
    近年来,以深度学习为代表的计算超分辨方法可在不损失其他成像性能的前提下,提升显微图像分辨率或信噪比,表现出广阔的应用前景。然而,针对生物医学研究必需高保真度、可定量分析的图像要求,深度学习显微成像方法存在三大共性问题:受限于深度学习内秉的频谱频移(spectral-bias)问题,输出图像分辨率无法达到真值(ground truth)水平;受限于超分辨重建、去噪问题的病态性(ill-posed problem)和神经网络模型的不确定性(model-uncertainty),重建或预测结果的真实性无法得到保障;深度神经网络的训练需要大量数据,但高质量训练数据的采集在许多应用场景下极其困难、甚至无法实现。当前,深度学习显微成像方法的研究和发展如火如荼,并表现出超越传统成像性能极限的潜力,但上述问题阻碍了现有深度学习超分辨或去噪方法在生物显微成像实验中的使用。   10月6日,中国科学院生物物理研究所李栋课题组联合清华大学自动化系、清华大学脑与认知科学研究院、清华-IDG/麦戈文脑科学研究院戴琼海课题组,美国霍华德休斯医学研究所博士Jennifer Lippincott-Schwartz,在Nature Biotechnology上,以长文(Article)的形式,发表了题为Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes的论文。该研究提出了一套合理化深度学习(rationalized deep learning,rDL)显微成像技术框架,将光学成像模型及物理先验与神经网络结构设计相融合,合理化网络训练、预测过程,从而实现了高性能、高保真的显微图像去噪与超分辨重建,并结合实验室自主研发、搭建的多模态结构光照明显微镜(Multi-SIM)与高速晶格光片显微镜(LLSM),将传统TIRF/GI-SIM、3D-SIM、LLS-SIM和LLSM的成像速度/时程提升30倍以上,实现了当前国际最快(684Hz)、成像时程最长(最长可达3小时、60,000时间点以上)的活体细胞成像性能,首次对高速摆动纤毛(30Hz)中转运蛋白(IFT)的多种运输行为以及完整细胞分裂过程中核仁液液相分离(liquid-liquid phase separation)过程进行快速、多色、长时程、超分辨观测。Nature Biotechnology针对这一工作同时发表了评述文章(Research Briefing)。   具体而言,李栋/戴琼海研究团队提出的合理化深度学习结构光超分辨重建架构(rDL SIM)不同于现有超分辨神经网络模型的端到端(end-to-end)训练模式,而是采用分步重建策略,首先利用所提出的融合成像物理模型和结构光照明先验的神经网络对原始SIM图像进行去噪和高频信息增强,然后通过经典解析算法进行SIM重建以获得最终的超分辨图像。相比于该团队去年在Nature Methods上提出的超分辨重建神经网络模型DFCAN/DFGAN,rDL SIM可将超分辨重建结果的不确定性降低3~5倍,并实现更高的保真度和重建质量;相比于其他去噪算法(如CARE),rDL SIM可恢复出调制在原始图像中的莫尔条纹,并将高频信息增强10倍以上。   此外,针对晶格光片显微镜、共聚焦显微镜等宽场照明或点扫描成像模态,该团队提出了一种可学习的傅立叶域噪声抑制模块(FNSM)。该模块可以利用OTF信息对显微图像中的噪声进行自适应滤除。科研团队以此构建了嵌入FNSM的通道注意力去噪神经网络架构,并基于显微成像数据本身的时空连续性,提出了时空交织采样自监督训练策略(TiS/SiS-rDL)。该策略无需额外采集训练数据、亦无需保证时序数据具有时间连续性,即可实现媲美监督学习效果的去噪神经网络的训练,解决了实际生物成像实验中高质量训练数据难以获取的难题。   合理化深度学习超分辨显微成像方法可适用于包括2D-SIM、3D-SIM、LLSM等在内的多种显微成像模态,提供高分辨率、高保真的显微图像重建性能,相较于传统方法最多可以提升30倍的成像时程和10倍的成像速度。借助rDL成像技术,研究团队开展了诸多过去的成像手段无法开展的超分辨活体成像实验,并与Lippincott-Schwartz、中科院分子细胞科学卓越创新中心研究员朱学良、中科院遗传与发育生物学研究所研究员何康敏探讨了其潜在的生物学意义,包括:对滴落在玻片上的U2OS细胞贴壁生长过程进行双色、长时程(1小时以上)、超分辨(97nm分辨率)观测,清晰、真实地记录了细胞粘附和迁移的动力学现象,且不干扰这一漫长、脆弱的生命过程;对高速摆动纤毛以当前最快的684Hz成像速率进行长达60,000个时间点的连续超分辨观测,且过程中无明显光漂白或细胞活性损伤,并对纤毛摆动模式和频率进行统计分析;对摆动纤毛及纤毛内转运蛋白(IFT)进行超快、超分辨双色成像,揭示了IFT在行进途中碰撞、重组、掉头等多种新行为;通过对cCAS-DNA与ER进行双色、长时程、超分辨成像,观测到cGAS-DNA在保持与ER持续接触过程中的定向运动、转向或扩散等行为,拓展了对膜性细胞器与无膜细胞器相互作用机制的认知;对HeLa细胞分裂过程中的核仁磷酸蛋白(NPM1)、RNA聚合酶I亚基RPA49及染色质(H2B)进行超长时程(12秒采集间隔,2.5小时以上)的三维超分辨活体成像,实现了对完整有丝分裂过程中NPM1与RPA49两种结构形态变化的三维超分辨活体连续观测,揭示了细胞有丝分裂过程中核仁形成以及NPM1、RPA49两种无膜亚细胞结构的相变、互作规律;以10Hz的全细胞体成像帧率对高尔基体进行长达10,000时间点的连续拍摄,并实现了对完整细胞分裂过程内质网、溶酶体、线粒体等亚细胞结构的三色、高速(秒量级)、超长时程(小时量级,1000个时间点)三维观测,探究了细胞有丝分裂过程中细胞器在子代细胞中的均匀分配机制。   李栋/戴琼海合作团队通过人工智能算法与光学显微成像技术的交叉创新,提出了合理化深度学习超分辨显微成像框架,解决了现有深度学习成像方法分辨率损失、预测不确定性、训练集不易采集等难题,可为多种活体显微成像模态提供30倍以上的成像速度与时程的提升,为细胞生物学、发育生物学、神经科学等领域的发展提供了重要的研究工具。同时,该研究团队所坚持和倡导的人工智能算法与光学成像原理交叉创新、软硬结合的研究思路,为现代光学显微成像的发展开辟了新的技术路径。   研究工作得到国家自然科学基金、科技部、中科院、中国博士后科学基金、腾讯“科学探索奖”、清华大学“水木学者”计划的支持。图1.合理化深度学习超分辨显微成像神经网络架构图2.合理化深度学习超分辨显微成像方法应用概览
  • 理化所等在超窄带发光石墨烯量子点的超分辨光谱和空间传感研究中获进展
    超窄带发光材料在多种光电器件、激光、超分辨、成像和传感等应用中具有重要的科学价值和技术意义。碳点作为一种新型的碳纳米发光材料,因具有发光稳定性好、带隙宽度可调、双光子吸收截面积大、选择性的荧光淬灭/增强、生物相容和低毒性等优势受到广泛关注。碳点在长波长和高效率发光等方面快速发展,但在窄带发射方面的研究较少。相对于稀土材料5~15 nm和量子点材料15~30 nm的窄带发光,目前所报道的大部分碳点的发射半峰宽在40~60 nm以上,如何降低碳点的发射半峰宽成为发光碳点材料领域的关键问题和研究热点。  近年来,中国科学院理化技术研究所特种影像材料与技术中心系统提出了二维共轭小分子化合物作为碳源制备出高效窄带长波长发光碳点的新方法(Physical Chemistry Chemical Physics 2016, 25002 Particle & Particle Systems Characterization 2016, 811 ACS Applied Materials & Interfaces, 2018, 16005 Journal of Materials Chemistry C, 2018, 5957 Nanoscale, 2019, 11577等)。科研人员以酞菁类平面共轭大环化合物为碳源,采用一步法制备出两种窄带发射的红光石墨烯量子点,这两种石墨烯量子点的发光半峰宽(分别为21 m和30 nm)已达到发光材料中超窄带发射的范围。该工作为进一步开展制备超窄带发射的石墨烯量子点提供了新思路,并拓展了窄带发射石墨烯量子点在发光材料、激光发射、光路复用、生物传感、LED等方面的应用范围。  除超窄带发光外,这两种石墨烯量子点还具有发射波长在远红光范围( 680 nm)、发射峰位置相近、激发波长和荧光寿命部分依赖等特点。基于此,理化所特种影像材料与技术中心与以色列巴伊兰大学工学院合作提出了基于超窄带发射石墨烯量子点的超分辨传感策略,并应用于光谱和空间超分辨成像传感检测。该方法无需使用光谱仪即可提取光谱信息,通过两种类型的窄带发光石墨烯量子点的独特波长和时间“特征”实现空间分离,在超分辨光谱和空间传感领域有潜在应用价值,如超分辨技术可以克服光学成像应用的光学衍射极限,有望填补电子显微镜(~1 nm)和普通可见光学显微镜(200-250nm)之间的空缺,观察到更精细的结构或更高分辨率的图像。  相关研究成果以Ultra-narrow-bandwidth graphene quantum dots for superresolved spectral and spatial sensing为题,在线发表在NPG Asia Materials上,并已申请中国发明专利。理化所研究员谢政和巴伊兰大学工学院院长、教授Zeev Zalevsky为论文通讯作者,理化所硕士研究生王真为论文第一作者。  此外,这类碳点因良好的光声特性,可应用于光声成像超分辨方面。中以双方团队通过进一步合作,将另外一类两色可逆转换碳点(绿光和红光的最高发光效率为80%,ACS Applied Materials & Interfaces, 2018, 10, 16005)应用到了光声超分辨成像中,提出一种基于多个亚像素吸收器的分离和定位的扩展分辨率成像概念,该技术提高了光声成像超分辨率。相关研究成果以Autoencoder based blind source separation for photoacoustic resolution enhancement为题,发表在Scientific Reports上。  上述两项研究工作得到国家自然科学基金和中科院国际人才计划-外国专家特聘研究员计划项目等的资助。两种窄带发光红光石墨烯量子点的发光特性和超分辨成像应用示意图
  • 我国科研团队在光学超分辨显微成像技术领域取得重要突破
    16日,记者从哈尔滨工业大学获悉,该校仪器学院现代显微仪器研究所在光学超分辨显微成像技术领域取得突破性进展。研究团队在低光毒性条件下,把结构光显微镜的分辨率从110纳米提高到60纳米,实现了长时程、超快速、活细胞超分辨成像。为精准医疗和新药研发提供了新一代生物医学超分辨影像仪器,使未来大幅度加速疾病模型的高精度表征成为可能。  显微仪器的分辨能力代表人类对科学探索的边界,2014年诺贝尔化学奖就授予了3位在超分辨率荧光显微技术领域取得重要成就的学者。哈工大现代显微仪器研究所团队提出了一种可突破光学衍射极限的计算显微成像算法,利用荧光成像的前向物理模型与压缩感知理论,并结合稀疏性与时空连续性的双约束条件,建立起一个通用的解算框架——稀疏解卷积技术,突破了现有光学超分辨显微系统的硬件限制,扩展了时空分辨率和频谱。  在此基础上,研究团队研发了超快结构光超分辨荧光显微镜系统(Sparse-SIM),该系统具有超分辨、高通量、非侵入、低毒性等特点,在高速成像条件下,具备优于60纳米的分辨率和超过1小时的超长时间活细胞动态成像性能。团队首次观察到了胰岛分泌过程中具有的两种特征的融合孔道,第一次利用线性结构光显微镜观察到只有在非线性条件下才能分辨的环状的不同蛋白标记的核孔复合体与小窝蛋白。此外,研究人员还展示了利用该影像技术解析肌动蛋白动态网络、细胞深处溶酶体和脂滴的快速行为,并记录了双色线粒体内外膜之间的精细相对运动。  据悉,该项研究成果主要由哈工大仪器学院和北京大学未来技术学院合作完成。11月16日,研究成果以《稀疏解卷积增强活细胞超分辨荧光显微镜的分辨率》为题,以长文形式在线发表于国际权威杂志《自然-生物技术》。
  • 清华大学黄翊东团队:基于深度学习的高空间分辨率片上快速光谱成像
    近日,清华大学电子系黄翊东、崔开宇团队以「Deep-learning-based on-chip rapid spectral imaging with high spatial resolution」¹为题在Chip上发表研究论文,提出将深度展开神经网络ADMM-net与基于自由形状的超表面光谱成像芯片相结合,实现了高空间分辨率的片上快速光谱成像,并消除了光谱图像的马赛克现象。光谱成像扩展了传统彩色相机的概念,可以在多个光谱通道捕获图像,在遥感、精准农业、生物医学、环境监测和天文学等领域得到了广泛应用。传统的基于扫描方式的光谱相机存在采集速度慢、体积大、成本高等问题。基于超表面宽带调制和计算光谱重建的片上光谱成像为实现消费级的便携式光谱相机提供了一种很有前景的方案。图1展示了超表面光谱成像芯片的基本结构,由硅基超表面层和带有微透镜的CMOS图像传感器组成,超表面层包含了360 × 440个超表面单元,每个超表面单元对应于成像空间中的一点,入射光经过每个超表面单元的频谱调制后被下方的传感器像素所探测。任一点处的光谱可以由该点附近的若干个光强探测值重建得到,重建过程对应于求解一个欠定线性方程组。现有的光谱图像重建算法需要通过逐点光谱重建来得到整个数据立方,存在计算耗时长和重建图像存在马赛克现象的问题。图1 | 超表面光谱成像芯片的结构示意图由于不同的超表面单元具有不同的光谱调制特性,整个超表面光谱成像芯片在不同波长下具有不同的空间调制特性,因此本文受启发于编码孔径快照式光谱成像算法,采用深度展开神经网络ADMM-net²进行光谱图像的快速重建,其基本架构如图2所示。网络包含K=12个阶段,每个阶段都包含线性变换W()和降噪卷积神经网络(通常采用U-net结构)两部分。网络的输入是包含所有超表面单元光谱调制特性的传感矩阵Φ和测量图像y,输出为重建的光谱图像数据立方。图2 | 深度展开神经网络ADMM-net的基本架构图3展示了利用超表面光谱成像芯片对标准色卡进行实际成像测量后,采用不同算法重建数据立方的结果。从RGB伪彩色图中可以看出,ADMM-net的图像细节重建效果显著优于采用传统的CVX算法进行逐点光谱重建的结果,有效消除了图像的马赛克现象。并且,相比于传统迭代算法GAP-TV³和端到端神经网络λ-net⁴的重建结果,ADMM-net的光谱重建准确性也更优。此外,采用ADMM-net进行单次重建仅需18毫秒,而逐点光谱重建则需要4854秒,本工作在重建速度上实现了约5个数量级的提升。图3 | 对标准色卡进行实际成像测量后,利用不同算法进行光谱图像重建的结果进一步,本工作利用ADMM-net实现了对户外驾驶场景的实时光谱成像,如图4所示,光谱成像速率达到约36帧/秒。从RGB伪彩色图中可见,车辆的色彩重建准确性较好;并且,从第20、100帧图像中的采样点A和B的重建光谱来看,天空和白色车辆的光谱具有明显的差异,有望解决自动驾驶场景中的同色异谱识别问题,避免相撞事故的发生。此外,具有视频帧率的高空间分辨快速光谱成像,也展示出实时光谱成像芯片在机器视觉领域的巨大应用潜力。图4 | 户外驾驶场景的实时光谱成像结果
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制