当前位置: 仪器信息网 > 行业主题 > >

超高精度液态水水汽同位素分析仪

仪器信息网超高精度液态水水汽同位素分析仪专题为您提供2024年最新超高精度液态水水汽同位素分析仪价格报价、厂家品牌的相关信息, 包括超高精度液态水水汽同位素分析仪参数、型号等,不管是国产,还是进口品牌的超高精度液态水水汽同位素分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超高精度液态水水汽同位素分析仪相关的耗材配件、试剂标物,还有超高精度液态水水汽同位素分析仪相关的最新资讯、资料,以及超高精度液态水水汽同位素分析仪相关的解决方案。

超高精度液态水水汽同位素分析仪相关的资讯

  • 133万!长安大学激光液态水同位素分析仪采购项目
    项目编号:CZB2022086H , SCZC2022-ZB-1518/001项目名称:长安大学激光液态水同位素分析仪采购项目预算金额:133.0000000 万元(人民币)采购需求:激光液态水同位素分析仪采购,具体要求详见招标文件。合同履行期限:自合同签订后60个日历日内完成交货、安装、调试。本项目( 不接受 )联合体投标。
  • 理加联合“LGR 水同位素分析仪培训活动”圆满结束
    2013年10月12日 中国科学院地理科学与资源研究所 LGR水同位素分析仪培训活动2013年10月12日,由北京理加联合科技有限公司组织的LGR水同位素分析仪培训活动圆满结束,培训在中国科学院地理科学与资源研究所举行,邀请到了地理资源所理化分析中心主任梁涛老师致辞,北京理加联合科技有限公司吴宏革工程师针对LGR仪器的原理和操作流程以及样品的前处理做了培训,来自中科院地理资源所,中国水科院,北京林业大学,中国农业大学30余名老师和同学参与了培训。 中国科学院地理科学与资源研究所目前共有3台LGR的液态水同位素分析仪,用户部门分别为生态系统网络观测与模拟重点实验室、陆地水循环及地表过程重点实验室、理化分析仪中心,此次到货的是一台45EP液态水-水汽同位素分析仪。
  • 大气降水氢氧稳定同位素测试方法
    一、研究背景与意义大气降水作为内陆水循环的重要水分输入项,其形成过程中,伴随着地表蒸发、植物蒸腾以及水汽凝结等平衡分馏或动力分馏过程,使降水中的氢氧稳定同位素组成有不同的特征。因此降水氢氧稳定同位素常被视为良好的示踪剂,被广泛应用于水汽源地示踪、古气候重建、蒸发量及局地水汽再循环的估算等研究。降水氢氧稳定同位素的研究始于上世纪五十年代,以国际原子能机构(IAEA)和世界气象组织(WMO)建立了全球大气降水同位素观测网(Global Network of Isotopes in Precipitation, GNIP)为标志,开始了全球性的降水氢氧稳定同位素的长期监测;随后研究者们在国家、区域或单站点尺度上也开展了大气降水氢氧稳定同位素的监测,这些观测数据促进了我们对于复杂水循环过程的认识。因此,高时间和空间分辨率的降水氢氧稳定同位素的监测是一项非常重要的工作。二、测量原理降水氢氧稳定同位素组成的测定采用的是基于光腔衰荡光谱(Cavity Ring-Down Spectrospecopy, CRDS)技术的Picarro高精度水同位素分析仪。同其它光谱技术相同,CRDS技术也是基于气态分子独特的红外吸收光谱来量化稳定同位素组成的方法,但不同于其它光谱技术基于吸收强度的测量,CRDS技术是基于时间的测量,其测量结果对激光源本身的变动不敏感,从而可以保证仪器的噪声更小,且精度更高。Picarro高精度水同位素分析仪的光腔采用三镜片小光腔(体积约35 ml,长度约为25 cm)的设计,可以保证更快的腔室内气体更新速率,使仪器的响应时间更快;同时小光腔的设计可以实现对光腔内温度和压强的控制(温度:± 0.005 ℃;压强:±0.0002 大气压),使仪器具有更好的漂移性能。光腔内采用高反射率镜面可以有效的减少由于激光透射所引起激光强度的减弱,从而可以使激光穿过的更大的气体厚度,即更大的有效长光程( 10公里),从而使仪器拥有更低的检测下限。三、仪器介绍基于CRDS技术的Picarro高精度水同位素分析仪可以用于液态水样品中稳定氢氧同位素比率(δ2H,δ17O和δ18O)的测量,如降水、河水、湖水、地下水、冰川水、土壤水和植物水等液态水。仪器的典型精度:δ2H: <0.1‰,δ17O: <0.025‰,δ18O: <0.025‰;测量速度:每9分钟可以完成一针测量,每天可以完成160针(即27个样品)的测量;测量范围:满足同位素标记的重氘样品测量,δ2H的测量上限≥50000‰(或≥8500ppm);取样温度:0-50 ℃;样品体积:<2 μL/针(可调)。四、取样方法根据国际原子能机构和世界气象组织的要求,采用标准雨量器进行降水样品的收集。如需测定月尺度上的降水氢氧稳定同位素组成,可在室内准备一个足够大的容器,每次降水后,将在室外通过雨量器收集到的降水倒入该容器,低温密封保存,每个月的最后一天取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。如需测定降水事件尺度上的降水稳定氢氧稳定同位素,则在每次降水后取10毫升过滤后的样品装入样品瓶中,使用封口膜密封,并冷藏保存。各观测点收集的降水样品可寄送至北京松盛华嘉检测技术有限公司使用基于CRDS技术的Picarro高精度水同位素分析仪进行集中测试。五、公司介绍北京松盛华嘉检测技术有限公司,为北京理加联合科技有限公司的全资子公司,致力于为用户提供更高质量的稳定同位素样品测试服务。已先后为中国科学院生态环境研究中心、中国科学院地理科学与资源研究所、中国科学院西北生态环境资源研究院、中国林业科学研究院林业研究所、中国科学院植物研究所、中国科学院遗传与发育生物学研究所和中国水利水电科学研究院等近百家单位提供快速、精确的稳定同位素测试服务和技术咨询服务。北京松盛华嘉检测技术有限公司拥有专业的测试团队,提供快速、精确的测试服务,可以为您提供及时的数据测样服务,助力您科研成果的尽快发布。
  • 107万!中国石油大学(北京)水同位素分析仪采购项目
    项目编号:2241STC33218项目名称:中国石油大学(北京)水同位素分析仪采购项目预算金额:107.5000000 万元(人民币)采购需求:包号标的名称数量简要技术需求或服务要求是否接受进口产品投标01水同位素分析仪1台主要用于分析液态水中δD、δ18O及δ17O,包括主机及全自动进样器等,可实现对液态水样品的全自动进样测量,为深入研究陆地生态系统的水分循环、水分平衡、水分利用及地下水来源等研究提供精确、有效的科学数据。接受 注:投标人必须针对本项目所有内容进行投标,不允许拆分投标。合同履行期限:合同签订后60日内。本项目( 不接受 )联合体投标。
  • 科学家采用多接收等离子体质谱仪,实现钛稳定同位素组成超高精度测量
    中国科学技术大学地球和空间科学学院特任教授邓正宾与多位国际学者合作,实现了钛稳定同位素组成的超高精度测量方法,应用刻画了地球形成早期到现代的地幔来源火成岩的钛同位素记录,揭示了地球地幔的运转模式是呈阶段性演变的以及现代板块构造体制下接近全地幔对流的模式只是地球演化近期的过渡状态。7月26日,相关研究成果以Earth’s evolving geodynamic regime recorded by titanium isotopes为题,在线发表在《自然》(Nature)上。  地球自外向内主要分为地壳、地幔和地核。其中,地幔在660公里处存在地震波速的不连续界面,将地幔分为上地幔和下地幔两个圈层。在地球地质历史中,上、下地幔的物质交换会影响元素在地壳和地幔中的分配,对于理解类地行星的动力学和热演化十分重要。地球化学研究发现现代深部地幔保留了地球形成早期的稀有气体或短半衰期放射性核素的同位素记录,意味着下地幔存在原始物质的储库;而地震层析成像研究发现俯冲板片可进入下地幔,意味着现今上、下地幔存在大量物质交换,且现有交换速率下地球早期形成的储库应难以在漫长地质历史中得到保留,与地球化学观察所得结论相对立。在地壳熔融过程中,钛稳定同位素体系存在显著分馏,是用来示踪地壳-地幔的物质交换的良好工具;钛作为难熔元素,在变质和水岩作用过程中不易发生迁移,通过钛稳定同位素研究可以得到地球形成以来相对完整的地壳-地幔物质交换记录,为长期争论的地幔内部物质交换问题带来新的约束。  邓正宾同丹麦哥本哈根大学等国际研究机构,采用最新一代多接收等离子体质谱仪开发超高精度钛稳定同位素分析方法,改进和优化样品处理流程和数据处理方法,将已有钛稳定同位素分析方法的分析精度提高了3-4倍以用来限定自然样品中微小的分馏信号。  利用新的分析方法,邓正宾等对24件球粒陨石样品的钛同位素进行标定,确定全硅酸盐地球的钛稳定同位素组成和现在的上地幔存在显著差别。在此基础上,科研人员对比研究了全球从太古代到元古代(38亿年-20亿年以前)的地幔来源火成岩以及现代洋岛玄武岩样品。结果发现,早太古代(38亿年-35亿年)的样品和球粒陨石的钛稳定同位素组成一致;在35亿年到27亿年之间地球地幔来源火成岩样品的同位素组成随着时间逐渐变轻,直到与现代普通型大洋中脊玄武岩接近;而现代洋岛玄武岩的钛稳定同位素组成与大洋中脊玄武岩存在差别,更接近全硅酸盐地球的组成特征(图1)。  结合已有大陆地壳生长模型,研究推测目前地幔中的钛稳定同位素组成的变化可能反映:地球太古代(38亿年至27亿年前)上、下地幔的物质交流处于受限的状态(图2,f=0.2);而该格局在现代已被打破,体现在现代洋岛玄武岩的钛稳定同位素组成存在较大范围。对比其锶同位素组成,现代洋岛玄武岩的钛稳定同位素组成变化无法单纯由沉积物或大陆地壳物质的再循环导致,代表了部分原始地幔物质的参与(图3)。这反映了现代地球内部原始地幔储库仍存在却在逐步被瓦解。  该工作基于同位素分析技术方法的突破,综合研究地球地幔来源火成岩在地质历史中同位素记录随着时间的变化,发现地球地幔的运转模式不是一成不变的,即现代深俯冲板片可以进入下地幔以及接近全地幔对流的格局只是地球演化近期的过渡状态而不完全代表地球早期的动力学特征。该工作弥合了地球化学和地球物理对地球内部过程约束的矛盾;同时,在此基础上,亟需对地球地质历史中地幔物质交换模式及其演化具体控制机制开展更多研究,以更好认识类地行星的地质和宜居性演化。  美国加州大学圣巴巴拉分校、英国卡迪夫大学、瑞士苏黎世联邦理工和法国巴黎地球物理学院的科研人员参与研究。图1.球粒陨石、古老地幔来演火成岩、现代大洋中脊玄武岩和洋岛玄武岩的钛稳定同位素组成。图2.大陆地壳生长模型和地球地幔来源火成岩的钛稳定同位素组成随时间的演化。图3.现代洋岛玄武岩和大洋中脊玄武岩的钛稳定同位素和锶同位素组成,可见其钛稳定同位素组成的变化无法单纯由沉积物或大陆地壳物质的再循环导致。
  • 原生态有限公司应邀参加第三届全国稳定同位素生态学 研讨会及技术研修班
    2016年11月27日-12月1日,由中国生态学学会稳定同位素生态专业委员会主办,清华大学深圳研究院承办,第三届全国稳定同位素生态学研讨会及技术研修班在深圳顺利召开,近500余人参加了此次盛会,原生态有限公司(即北京普瑞亿科科技有限公司)作为特邀单位参加了此次会议。会议围绕“稳定同位素生态学基本理论及其新进展”、“稳定同位素与动植物分子生态、生理生态和种群生态学研究”、“稳定同位素与生态系统生态学、全球变化生态学和古生态学研究”、“稳定同位素与环境科学、农林科学和食品科学等领域的研究”、“稳定同位素新技术、新方法和新应用拓展研究”五个主题展开。Graham Farquhar、Joseph Berry、Jim Ehleringer、周力平、吴纪华教授,韩兴国、李胜功、方运霆、冯晓娟、谢丽琪研究员等作了精彩的特邀报告。美国Picarro公司林智威先生、美国Arrow Grand Technologies公司吴晟先生应邀作了“光腔衰荡光谱学(CRDS)在生态学相关稳定同位素分析中的应用”、“空心波导稳定同位素测量技术在生态研究和能源开采方面的应用”报告,我公司技术工程师牛晓伟、郭俊飞应邀作了新仪器、新功能与新功能的技术培训报告,现场反应热烈。 在随后的稳定同位素技术研修班培训中,中国科学院地理科学与资源研究所温学发研究员作了“稳定同位素红外光谱(IRIS)技术测定碳水稳定同位素的校正策略”的精彩报告。我公司技术工程师牛晓伟、郭俊飞、钡科瑞检测李娜以及美国Arrow Grand Technologies公司吴晟先生就我公司现场展示的L2120-i水同位素分析仪、G2201-i CO2 CH4同位素分析仪、ECS4010 元素分析仪、G4301 便携式CO2 CH4 H2O分析仪、土壤呼吸室(自主研发)、原位根系扫描仪(自主研发)、HandySpec便携仪光谱分析仪、GC-IR2单体同位素分析仪等仪器的原理、应用、操作、注意事项等进行了详细的培训,收到参会人员好评和肯定。 北京普瑞亿科科技有限公司非常注重产品应用培训和售前售后技术服务,投资500万建立了开放实验室,依托现有设备,通过与用户互动,进行样品分析测试、咨询服务、售后培训和维修等工作。通过参加本届稳定同位素生态学研讨会及技术研修班,进一步促进了我公司与研究学者的深入交流,加强了与同领域科研机构和大学单位的对接,原生态有限公司会一直致力于搭建提供优秀的解决方案和先进的仪器设备的平台,为推广稳定同位素技术在我国生态学各领域研究以及民生领域的应用助力。 产品链接:G4301 便携式CO2 CH4 H2O分析仪超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)G2201-i CO2 CH4同位素分析仪RhizoScan原位根系扫描仪ECS 4010 元素分析仪土壤呼吸室HandySpec便携仪光谱分析仪GC-IR2单体同位素分析仪关于北京普瑞亿科科技有限公司: 北京普瑞亿科科技有限公司以经营稳定性和放射性同位素分析仪、超痕量气体分析仪、环境气象观测系统、元素分析仪等仪器设备为主,兼顾自主创新研发,致力于为广大用户提供先进仪器设备和成套解决方案的综合性企业。公司在温室气体研究、同位素分析、食品掺假和溯源分析、痕量气体检测、元素分析、气象观测、应急响应、军事防御、城市安全等领域开展工作。 北京普瑞亿科科技有限公司已与多家国际著名厂商签订独家代理协议,负责其产品在中国区的推广、销售、维修和技术支持等服务。主要包括以激光稳定性同位素分析仪和超痕量气体仪而著称的美国Picarro公司,以提供高品质民用航空和军事气象站解决方案而著称的美国Coastal公司,以提供中尺度土壤含水量测量系统而著称的美国Hydroinnova公司,以提供最高精确度绝对碳含量测量而著称的美国UIC公司,以基于零空白自动取样技术的高品质微型元素分析仪而著称的意大利NC Technologies公司,以提供多用途光谱分析系统解决方案而著称的德国Tec5公司;同时与美国PerkinElmer公司,美国ThermoFisher公司等进行深度合作,并与波兰Easy Test ,美国2B,美国Apollo SciTech等公司达成合作共识。 更多详情请关注北京普瑞亿科科技有限公司官网:www.pri-eco.com
  • Picarro L2140-i水同位素分析仪功能升级—新增“快速”和“调查”模式
    随着激光测量技术的发展,氢氧稳定同位素已广泛应用于植物水分利用来源、树木年轮或叶蜡烷烃中记录的气候或生理生态过程信息、降水水汽来源、土壤水运移和补给机制、地下水机制、水体蒸发、水体的营养动态和停留时间、植物蒸腾和土壤蒸发的区分、径流的形成和汇合、岩盐地质年龄、重建古气候、水文循环过程与机制等各方面研究。其中,17O-盈余可用于重建空气质量轨迹、确定水源区、重建过去湿度、识别大气中注入平流层的水汽、在树叶尺度上的蒸散收支限制、了解热带地区的云对流等方面研究。基于光腔衰荡光谱(CRDS)技术的L2140-i水同位素分析仪是Picarro的旗舰产品,操作快速、简单且无需样品转换,可准确同步测量固体、液体或气体中的δ18O、δD、δ17O和17O-盈余。Picarro L2140-i水同位素分析仪新增的快速和调查模式可满足高通量测试需求(适用于δ18O和δD测量模式)。. 快速模式:每天测量多达50个样品,同时保持出色的精度。通过将样品测量分为两个阶段来实现通量的加倍:记忆效应减少阶段和样品分析阶段。. 调查模式:可对大批样品水同位素值进行快速测量(每天多达900次进样)。使用户能进行快速调查,以按同位素值对样本进行排序。最大限度地减少相邻样品之间的同位素差异,在记忆效应减少阶段避免不必要的注射。
  • 地质地球所提出硫化物颗粒的高精度硫同位素分析方法
    硫化物是自然界中常见的一类矿物,其形成往往与地质运动或生命活动相关。硫化物中的硫同位素组成是示踪生命活动,厘定地质过程的重要依据。传统离子探针硫同位素分析精度虽然可以达到0.1-0.2 &permil ,但其束斑一般为10-30 &mu m,不适用于微生物活动相关的微细硫化物颗粒(5 mm)和硫化物复杂环带等样品的硫同位素分析。纳米离子探针具有高空间分辨的特点,但通常其分析精度较传统离子探针逊色,前人在~2 mm空间分辨下,硫化物硫同位素分析的精度仅为2-4&permil ,制约了其在地球科学中的应用。  为获得更高的空间分辨和分析精度,中国科学院地质与地球物理研究所地球与行星物理院重点实验室张建超工程师与其合作者以纳米离子探针为平台,开展了超高空间分辨与高精度的硫同位素分析方法研究。QSA效应(电子倍增器无法记录几乎同时到达的两个离子而造成的测量误差)是制约高精度同位素分析的关键因素,该研究创新性地提出了精确校正QSA效应方法,并成功研发了不同空间尺度内硫同位素高精度分析的实验方法,其空间分辨和外部分析精度分别为:~5 mm尺度内分析精度0.3&permil 、 ~2 mm尺度内分析精度0.5&permil 、 ~1 mm尺度内分析精度1&permil 。这一结果是同等空间分辨下最优的分析精度,处于国际领先水平层次,能够满足微米-亚微米尺度的硫化物颗粒(如草莓状黄铁矿)及复杂环带的高精度硫同位素分析的需求。  该研究成果近期发表在国际分析技术刊物Journal of Analytical Atomic Spectrometry 上(Zhang et al. Improved precision and spatial resolution of sulfur isotope analysis using NanoSIMS. Journal of Analytical Atomic Spectrometry, 2014, 29(10) : 1934-1943)。  地质地球所提出硫化物颗粒的高精度硫同位素分析方法
  • 原生态有限公司应邀参加第十四届中国水论坛
    8月25-27日,第十四届中国水论坛在长春召开,原生态有限公司应邀参加了此次会议,并展示了L2140-i超高精度液态水和水汽同位素分析仪、G2201-i CO2 CH4同位素分析仪、CRS-1000/B土壤含水量测量系统以及IM-CRDS水同位素分析仪等多款仪器。本次大会由中国科学院东北地理与农业生态研究所、吉林大学、吉林省科学技术协会、长春市科学技术协会等单位共同承办,以“面向未来的水安全与可持续发展”为主题。超过600位的水科学领域专家学者参会,围绕变化环境下水循环演变与水资源配置、生态水文与水生态文明建设、农业水资源高效利用、地下水管理与污染修复以及河湖水系连通理论与技术等7个议题,与会专家学者开展了广泛、深入的讨论。多位中科院院士做了精彩的特邀主题报告。我公司非常重视此次会议,由公司销售总监周女士亲自带队参与了此次盛会。值得一提的是,我公司展示的仪器,特别是超高精度液态水和水汽同位素分析仪(L2140-i、L2130-i)、CRS-1000/B土壤含水量测量系统两款仪器,得到了与会专家学者的极大关注,大会期间不断有专家学者来到我公司展台前,对超高精度液态水和水汽同位素分析仪(L2140-i、L2130-i)、CRS-1000/B土壤含水量测量系统的仪器性能、操作使用等相关问题进行详细地咨询,领取产品资料,并留下仪器使用需求和购买意向。我公司销售工程师刘洪涛就与会学者关心的问题,进行了耐心而细致地解答。超高精度液态水和水汽同位素分析仪(L2140-i、L2130-i),可做到一个设备进行固态水、液态水和气态水的同位素测量,具有极高的稳定性、灵敏度、精度以及野外的耐用性,对环境温度变化不敏感,具有最小的记忆效应和漂移。CRS-1000/B土壤含水量测量系统,是一套创新的中尺度土壤含水量测量系统,该分析仪通过测量近地面环境宇宙射线中的快中子浓度,确定土壤含水量。其主要特点是无危害、非接触、无破坏、不受土壤质地和盐分等影响。此外,该分析仪测量范围大、测量深度适中,可野外连续自动测定大面积的土壤含水量,是遥感反演土壤含水量的有效验证手段。原生态有限公司(即北京普瑞亿科科技有限公司)非常注重产品应用培训和售前售后技术服务,投资500万建立了开放实验室,依托现有设备,通过与用户互动,进行样品分析测试、咨询服务、售后培训和维修等工作。通过参加本届水论坛,进一步促进了我公司与研究学者的深入交流,加强了与同领域科研机构和大学的对接,原生态有限公司会一直致力于搭建提供优秀的解决方案和先进的仪器设备的平台,为我国经济社会可持续发展和生态文明建设的水安全保障提供支持。产品链接:G4301 便携式CO2 CH4 H2O分析仪IM-CRDS水同位素分析仪CRS-1000/B土壤含水量测量系统超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)G2201-i CO2 CH4同位素分析仪RhizoScan原位根系扫描仪关于北京普瑞亿科科技有限公司: 北京普瑞亿科科技有限公司以经营稳定性和放射性同位素分析仪、超痕量气体分析仪、环境气象观测系统、元素分析仪等仪器设备为主,兼顾自主创新研发,致力于为广大用户提供先进仪器设备和成套解决方案的综合性企业。公司在温室气体研究、同位素分析、食品掺假和溯源分析、痕量气体检测、元素分析、气象观测、应急响应、军事防御、城市安全等领域开展工作。 北京普瑞亿科科技有限公司已与多家国际著名厂商签订独家代理协议,负责其产品在中国区的推广、销售、维修和技术支持等服务。主要包括以激光稳定性同位素分析仪和超痕量气体仪而著称的美国Picarro公司,以提供高品质民用航空和军事气象站解决方案而著称的美国Coastal公司,以提供中尺度土壤含水量测量系统而著称的美国Hydroinnova公司,以提供最高精确度绝对碳含量测量而著称的美国UIC公司,以基于零空白自动取样技术的高品质微型元素分析仪而著称的意大利NC Technologies公司,以提供多用途光谱分析系统解决方案而著称的德国Tec5公司;同时与美国PerkinElmer公司,美国ThermoFisher公司等进行深度合作,并与波兰Easy Test ,美国2B,美国Apollo SciTech等公司达成合作共识。 更多详情请关注北京普瑞亿科科技有限公司官网:www.pri-eco.com
  • 130万!中国科学院青藏高原研究所水汽稳定同位素分析仪采购项目
    项目编号:OITC-G220371386项目名称:中国科学院青藏高原研究所水汽稳定同位素分析仪采购项目预算金额:130.8000000 万元(人民币)最高限价(如有):130.8000000 万元(人民币)采购需求:包号货物名称数量是否允许采购进口产品采购预算(人民币)最高限价(人民币)1 水汽稳定同位素分析仪2套是130.8万元130.8万元 合同履行期限:详见项目需求本项目( 不接受 )联合体投标。
  • 海兰达尔:高精度温室气体分析仪或将成环境监测市场下一个刚需
    随着双碳政策的逐步推进,从碳达峰碳中和目标的提出,再到“十四五”生态环境监测规划、碳监测评估试点工作方案的发布,国家政策明确提出开展温室气体监测和评估,推进碳排放实测技术发展和信息化水平提升等内容。习总书记讲话中提出,中国二氧化碳的碳排放力争于2030年前达到峰值,努力争取到2060年前实现“碳中和”。在双碳战略下,温室气体监测将成为未来一段时期环境监测的重点,也将为整个环境监测市场带来新的增长点。但是,这个新的增长点如何把控?立足当下,各个企业又有怎样全新的布局?仪器信息网今天就机遇、市场、技术、产品、销售、发展六大模块采访了江苏海兰达尔环境科技有限公司(以下简称“海兰达尔”),海兰达尔环境是否会在将来有全新的布局呢——仪器信息网:当前双碳等一系列政策出台将给环境监测市场带来哪些热点机遇?这对温室气体监测仪器有怎样新的要求?海兰达尔:自《碳监测评估试点工作方案》发布以来,碳监测工作已在重点行业、城市、区域三个层面如火如荼地开展,旨在探索建立碳监测评估技术方法体系,形成业务化运行模式,总结经验做法,发挥示范效应,为应对气候变化工作成效评估提供数据支撑。当下的市场条件,对于环境监测行业来说是重要的机遇。碳监测工作的有效开展,离不开高性能环境监测仪器提供的保障。对于各个重点行业(火电,钢铁,石油天然气开采,煤炭开采和废弃物处理),需要分别开展CO2和CH4的监测;对于试点城市,则需要根据情况,开展高精度CO2,N2O,CH4浓度,CO2/H2O通量,碳同位素(13CO2,14CO2)等要素的监测。这些监测需求除了要求温室气体分析仪能满足高精度地面原位测量,还对监测方法的适应性提出了很高的要求。当下的碳监测朝着 “天空地一体化”的方向发展,地面、船舶、走航、无人机都是很好的监测手段。同时,原位和移动测量的数据还可与卫星遥感监测的结果相互验证,从而评估监测手段的科学性。高精度温室气体分析仪未来会成为环境监测市场的下一个刚需,与环境大气污染物分析仪形成协同观测,发挥重要的监测作用。另一方面,温室气体不断升高是全球面临的问题,国际社会的协作也是非常重要的一环。因此国内外监测网络数据的兼容性就非常重要,这就要求在监测技术和方法上、质量控制以及质量保证方面尽可能一致或相近。为了满足野外站点长期无人值守的监测需求,这要求温室气体分析仪在保证高精度,低漂移,长期稳定性的基础上,更加注重坚固耐用,简单便携,易于安装,便于维护的特性。仪器信息网:关于温室气体监测,目前国内外市场发展态势如何?目前主流市场有怎样的竞争格局?海兰达尔:目前高精度的温室气体监测仪器仍以进口为主,进口仪器技术已经相当成熟,在国际上多个重要的温室气体监测网络(如中国气象局温室气体观测网,世界气象组织(WMO)GAW,欧洲综合碳观测系统(ICOS)等)都有广泛的应用和部署。国产化的温室气体监测设备还在发展中,仪器的性能(包括精度,漂移等)和稳定性还需要有效地验证。当前的主流技术和品牌有:光腔衰荡光谱法(美国Picarro品牌),离轴积分腔输出光谱法,以及传统的非分散红外光谱法和傅里叶变换红外光谱法等。其中首屈一指的技术就是Picarro的CRDS光谱技术,仪器测量的性能和稳定性均为最佳,是高精度监测的首选设备,被誉为温室气体监测的黄金标准,也已经被广泛应用在多个试点城市,占据了高精度温室气体监测的主要市场。仪器信息网:贵公司销售的温室气体监测仪与市场上同类品牌相比有什么优势?海兰达尔:海兰达尔是美国Picarro公司在国内的授权销售和售后服务商,所提供的Picarro分析仪是世界上最顶尖的高精度温室气体监测设备。Picarro的所有产品均基于其核心技术-光腔衰荡光谱(CRDS)技术,拥有超过45个光腔衰荡光谱专利。不同于其它光谱技术,CRDS 技术并不通过测量光强经样品后的变化来测得样品的吸收度,而是测量光强在光腔内的衰荡时间,这样可以使其不像传统光谱技术那样受到光源干扰而造成的测量偏差。同时Picarro仪器光腔内部进行精确的温度和压强控制,保证光腔内环境的稳定性,从而最大程度地减小测量中分析仪对环境的依赖效应。高精度的温室气体分析仪会自动进行水汽校正,排除掉水汽对CO2,CH4浓度测量的影响,这也是其如此高精度的最重要保证和Picarro产品区别于同类产品的最大特点。Picarro产品与同类品牌相比的优势有以下这些:高精度(满足WMO和ICOS以及国内环境监测部门对于数据质量的要求)低漂移,长期稳定性好;专利技术,已被众多国际监测网络认可并大量应用操作简单,无耗材,维护频率低;具有独特的水汽校正,精确报告待测气体的干气摩尔分数。简单便携,易于安装,便于维护,可在野外或实验室部署;仪器信息网:贵公司在温室气体检测产品线方面是如何布局的?目前有哪些产品或者成果?海兰达尔:我司销售的温室气体分析仪以Picarro高精度温室气体浓度和同位素产品为主,主要有:高精度温室气体浓度分析仪:G2301(CO2,CH4),G2401(CO2,CH4和CO),G5310(N2O,CO),G4301(便携式测量CO2,CH4)。温室气体稳定碳同位素和浓度分析仪:G2131-i(CO2,CH4浓度,δ13C-CO2), G2201-i(CO2,CH4浓度,δ13C-CO2,δ13C-CH4)。同时我司配合Picarro产品自主研发了配套的温室气体监测预处理系统,包括多通道进样系统(GHG-PRE系列)和样气冷凝除湿系统(GHG-CT系列冷阱),GHG-CT系列冷阱能将样气降低至-50℃甚至-70℃条件下进行除水,使其符合国标和WMO对于温室气体样气除水效率的要求。GHG-PRE系列除实现样气和标气的自动切换以外,还能对冷阱进行控制,包括制冷温度、切换温度、除霜温度、除霜时间、A/B双通道冷阱切换等,这使得样气除水通道的A和B分别处于冷凝除水和加热除霜状态,并定时进行状态切换,以实现冷阱的免维护。此外,除水通道状态切换能配合前端的多路选择阀进行设置,这保证了冷阱的无盲点运行,使得样气始终处于冷凝除湿状态。目前这套预处理系统通过了国内第三方检测机构多项测试和检验,配合Picarro高精度温室气体分析仪,已在多个高精度温室气体监测站点实现安装运行,突破性的设计和鲜明的技术特点使其非常适合高精度温室气体监测对于样气除水的要求。高精度温室气体监测系统安装应用案例海兰达尔预处理系统通过检测报告仪器信息网:目前,贵公司温室气体监测仪的销售情况如何?有哪些典型的应用单位?从对未来的预期来说,哪些单位会是仪器使用大户?海兰达尔:目前我司销售的高精度温室气体分析仪在全国多个环境监测部门、气象部门和科研机构都有广泛应用。典型应用单位有:无锡市生态环境局,江苏省环境监测中心,中国环境监测总站,广州市环境监测中心站,深圳市环境监测中心站,中国气象局,浙江省气象局,安徽省气象局,山西省气象局,中国科学院青藏高原研究所,北京大学,集美大学,西北大学等。对于中国市场,我司除了在现有的环境监测和气象行业继续深耕以外,会更加拓展其它行业的业务机会,如石油石化等重点行业和生态监测行业等,这些行业都有潜在的温室气体监测需求。在未来,气象行业、生态环境监测行业等相关领域会是使用大户。仪器信息网:贵公司将来重点关注和拓展的方向是什么?目前已经在开展或将开展哪些气体监测创新仪器/应用的研究? 海兰达尔:我司未来会更加关注温室气体稳定碳同位素的应用,寻求利用稳定碳同位素进行碳源汇监测的市场机会,另外关注生态监测中碳通量监测。同时,拓展温室气体分析仪移动监测业务,比如车载,船载和无人机等方式,形成立体化监测的网络。
  • 原生态有限公司成功参加第三届《青年地学论坛》
    9月16-18日,第三届《青年地学论坛》在西安宾馆举行。应中国科学院地球环境研究所邀请,原生态有限公司作为唯一的生态环境领域参展商参加了此次会议,并主要展示了超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)、UIC碳分析仪(CM150、CM250)、CRS-1000/B土壤含水量测量系统、G4301便携式CO2 CH4 H2O分析仪、G2508 CO2 CH4 N2O NH3 H2O分析仪以及G2201-i CO2 CH4同位素分析仪等多款仪器。 “青年地学论坛”是以青年学者为主体的地球科学学术交流盛会,此次会议由中国科学院地球环境研究所承办,参会人员达350余人,参与单位超过110家。论坛围绕“第四纪地质与全球变化”、“地球化学与环境科学”、“生态过程与可持续发展”“海洋科学前沿进展”和“气溶胶与大气污染”五个专题展开。 开幕式上,安芷生院士通过视频致欢迎辞,对此次论坛的成功举办表示祝贺。会议期间于贵瑞研究员、刘青松教授、杨守业教授、康世昌研究员、黄方教授、韩永明研究员等分别做了大会专题报告,共计126位青年学者及学生就地球科学各个相关领域进行了探讨交流,并有54份poster进行了展板交流。 我公司非常重视此次会议,由公司销售主管张学涛亲自带队参与了此次盛会。值得一提的是,我公司展示的仪器,特别是超高精度液态水和水汽同位素分析仪(L2140-i、L2130-i)、UIC碳分析仪(CM150、CM250)、G4301便携式CO2 CH4 H2O分析仪三款仪器,得到了与会专家学者的极大关注,大会期间不断有专家学者来到我公司展台前,对这三款仪器性能、操作使用等相关问题进行详细地咨询,领取产品资料,并留下仪器使用需求和购买意向。我公司销售主管张学涛和销售工程师杨悦就与会学者关心的问题,进行了耐心而细致地解答。产品链接:UIC碳分析仪(CM150、CM250)G2508 CO2 CH4 N2O NH3 H2O分析仪G4301 便携式CO2 CH4 H2O分析仪IM-CRDS水同位素分析仪CRS-1000/B土壤含水量测量系统超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)G2201-i CO2 CH4同位素分析仪RhizoScan原位根系扫描仪关于北京普瑞亿科科技有限公司: 北京普瑞亿科科技有限公司以经营稳定性和放射性同位素分析仪、超痕量气体分析仪、环境气象观测系统、元素分析仪等仪器设备为主,兼顾自主创新研发,致力于为广大用户提供先进仪器设备和成套解决方案的综合性企业。公司在温室气体研究、同位素分析、食品掺假和溯源分析、痕量气体检测、元素分析、气象观测、应急响应、军事防御、城市安全等领域开展工作。 北京普瑞亿科科技有限公司已与多家国际著名厂商签订独家代理协议,负责其产品在中国区的推广、销售、维修和技术支持等服务。主要包括以激光稳定性同位素分析仪和超痕量气体仪而著称的美国Picarro公司,以提供高品质民用航空和军事气象站解决方案而著称的美国Coastal公司,以提供中尺度土壤含水量测量系统而著称的美国Hydroinnova公司,以提供最高精确度绝对碳含量测量而著称的美国UIC公司,以基于零空白自动取样技术的高品质微型元素分析仪而著称的意大利NC Technologies公司,以提供多用途光谱分析系统解决方案而著称的德国Tec5公司;同时与美国PerkinElmer公司,美国ThermoFisher公司等进行深度合作,并与波兰Easy Test ,美国2B,美国Apollo SciTech等公司达成合作共识。 更多详情请关注北京普瑞亿科科技有限公司官网:www.pri-eco.com
  • Science:火星冰川下液态水的雷达证据
    p style="text-align: justify " 据国外媒体报道,火星极地冰盖底部存在液态水的假说于30多年前首次提出,之后的争论一直没有决定性的结果。无线电回声探测(radio echo sounding,RES)是很适合用来解决这一争论的技术,因为低频率雷达被广泛用于探测陆地极地冰盖底部的液态水,效果也很成功。冰与水之间,或冰与水饱和沉积物之间的界面,能够产生明亮的雷达发射。火星快车号(Mars Express)探测器上的火星亚表面和电离层探测高新雷达(Mars Advanced Radar for Subsurface and Ionosphere Sounding,MARSIS)正是用于进行RES实验的设备。MARSIS已经在火星亚表面进行了超过12年的调查,搜寻液态水的证据。有报道显示,在靠近南极层状沉积(South Polar Layered Deposits,SPLD),即火星南极冰盖最厚部分的区域具有强烈的基底回波。这些特征被解释为,由于雷达信号通过非常冷的纯水冰层传播,因而衰减可以忽略不计。在南极层状沉积的其他区域因此也探测到反常的明亮反射。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/fe5efc18-11dc-4cf6-9b1b-26bf19a199e2.jpg" title="sinaa.png"/ MARSIS采集的雷达数据/pp style="text-align: justify " 在地球上,对极地冰盖上收集的雷达数据的解释通常基于定性(基岩形态)和定量(反射雷达的峰值功率)分析的结合。MARSIS的设计,尤其是其非常大的足迹范围(约3到5千米),无法提供很高的空间分辨率,极大限制了它通过基底地形识别冰下是否存在水体的能力。因此,对极地沉积底部液态水的精确探测要求定量估算基底物质的相对介电常数(以下称为介电常数),该数值决定了雷达回波的强度。/pp style="text-align: justify " 在2012年5月29日至2015年12月27日间,MARSIS调查了火星南极高原一处宽200千米的区域,中心位于193° E, 81° S,与之前一项研究的区域基本对应。无论是从火星轨道激光测高仪(Mars Orbiter Laser Altimeter,MOLA)的地形数据,还是在现有的轨道图像中,这片区域都没有展现出任何异常的特征。这里地形平坦,由水冰和含量10%到20%的尘埃组成,并且季节性地覆盖一层厚度不超过1米的干冰。火星勘测轨道飞行器(Mars Reconnaissance Orbiter)上的浅地层雷达对该区域进行了更高频率的雷达观测,揭示了SPLD中几乎没有任何内部分层,并且未检测到任何基底回波,与北极层状沉积和SPLD其他区域的观测结果形成鲜明对比。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/bf3e2987-e9bc-448a-954b-b5b3fef73243.jpg" title="sinab.png"/ 基底地形和反射回波功率/pp style="text-align: justify " 通过发射以3和4MHz或4和5MHz为中心的紧密间隔无线电脉冲,利用机载未处理数据模式获得了总共29个雷达剖面图。观测是在探测器位于火星夜面时进行的,以最大限度地减少信号的电离层散射。图2A显示了在该区域收集的一张MARSIS雷达图,图中尖锐的表面反射之后,是由SPLD内层间界面产生的若干次反射。这些回波中最后一个代表了富含冰的SPLD与底层物质(以下称为基底物质)之间的反射。在大多数调查区域,基底反射微弱且分散,但在某些位置,基底反射却非常锐利,并且具有比周围区域和表面更大的强度(明亮的反射)(图2B)。在多个轨道的观测重叠的情况下,以相同频率采集的表面和亚表面回波功率具有一致的数值。/pp style="text-align: justify "表面和基底回波之间的双向脉冲传播时间可用于估计亚表面反射体的深度,并绘制基底地形图。假设SPLD内的平均信号速度为170m/μs,接近在水冰中的传播速度,那基底反射体的深度就大约是表面以下1.5千米。MARSIS大范围的足迹和基底回波在明亮反射体外部扩散的属性阻止了基底地形的细节重建,但是可以识别出一条从西向东的区域斜坡(图3A)。明亮反射体集中的亚表面区域在地形上是平,而且被较高的地面包围,除了在其东侧存在一个凹陷。/pp style="text-align: justify " 介电常数可以提供对基底物质组成的约束,原则上可以从SPLD底部反射信号的功率中获取。遗憾的是,我们并不知道MARSIS天线的辐射功率,因为它无法在地面上校准(这得归咎于仪器的大尺寸),因此反射回波的强度只能根据相对量来衡量。通常是将亚表面的回波强度归一化为表面值,也就是计算基底和表面回波功率的比率。这种方法的优点还在于补偿信号的电离层衰减。按照这种方法,我们将亚表面回波功率归一化为沿各个轨道计算的地面功率的中值;我们发现,在给定频率下,所有归一化剖面产生了一致的基底回波功率值(图S3)。图3B显示了归一化后基底回波功率的区域图;在所有交叉轨道上,明亮反射体都位于193° E, 81° S附近,勾画出了一个定义明确、宽20千米的亚表面异常。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/bc0feb22-cc22-4162-8613-2c33e2b82141.jpg" title="sinac.png"/ 介电常数模拟和获取结果br//pp style="text-align: justify " 为了计算基底的介电常数,我们还需要有关SPLD介电特性——取决于沉积物的组成和温度——的信息。由于水冰和尘埃的确切比例未知,又由于表面和SPLD底部之间的热梯度受到很大限制,因此我们探索了这些参数的可能取值范围,并计算了相应的介电常数范围。我们做出了以下通用假设:1)SPLD由水冰和尘埃(含量从2%到20%不等)混合组成;2)SPLD内部的温度剖面是线性的,从表面的固定温度(160K)开始,上升到SPLD底部的可变温度(170K到270K)。通过考虑平面波与一个三层结构的正常撞击来计算各种电磁场景,三层结构分别是:具有自由空间介电常数的半无限层;代表SPLD的均匀层;以及代表SPLD下方物质,具有可变介电常数值的另一个半无限层。该计算输出的是一个包含一系列曲线的包络,这些曲线将归一化的基底回波功率与基底物质的介电常数联系起来(图4A)。这一包络通过对每个允许的介电常数值与归一化基底回波功率值的概率分布值进行加权,从而确定基底介电常数(包括明亮区域的内外)的分布(图4B)。该过程产生了两个基底介电常数的独特分布,估计位于明亮反射区域的内部和外部(图4C和图S4),其在3、4和5MHz的中值分别是30 ± 3、33 ± 1和22 ± 1,以及9.9 ± 0.5、7.5± 0.1和6.7 ± 0.1。明亮区域外部的基底介电常数在4到15之间,是典型的干燥陆地火山岩。这也与SPLD基底物质之前的预估值(7.5到8.5),以及火星中纬度表面致密干燥火成岩的雷达表面回波功率值一致。与此相反的是,此前在火星上并没有观察到像明亮区域内这么高的介电常数值。在地球上,大于15的介电常数值很少与干燥物质联系在一起。/pp style="text-align: justify " 采集于南极和格陵兰的RES数据显示,大于15的介电常数值可以用来指示极地沉积下方存在液态水。基于地球和火星在物理现象上的明显类比,我们可以推断,从SPLD下方明亮区域中获得的高介电常数值(部分)是水饱和物质和/或液态水层造成的。/pp style="text-align: justify " 我们分析了SPLD下方明亮区域的其他可能解释。例如位于SPLD顶部或底部的干冰层,或者整个SPLD中水冰的极低温度,与表面反射相比,这些都可能增强基底回波功率。我们否定了这些解释,有的因为需要非常具体且不大可能的物理条件,有的则是因为它们不足以导致强烈的基底反射(图S5和S6)。尽管SPLD底部的压力和温度与液态二氧化碳的存在可以相容,但它的相对介电常数(约为1.6)要比液态水(约为80)低很多,因此不能产生明亮的反射。/pp style="text-align: justify " 此前有研究利用凤凰号着陆器的湿化学实验室(Wet Chemistry Lab)发现,火星北部平原土壤中含有大量的镁、钙和高氯酸盐,支持了极地沉积底部液态水的存在。高氯酸盐可以通过不同的物理和/或化学机制形成,并且已经在火星的不同区域被发现。因此,可以合理地假设它们也存在于SPLD的底部。由于极地沉积底部的温度估计约为205K,又由于高氯酸盐能强烈抑制水的冰点(镁和钙的高氯酸盐能使水的冰点分别降至204K和198K),因此我们认为,在极地沉积底部有可能存在一层高氯酸盐水。这层盐水可以和基底土壤混合,形成污泥,或者位于基底物质上方,形成局部盐水池。/pp style="text-align: justify " 此前在火星冰川下方的雷达探测中,液态水证据的缺乏已经被用来支持这样的假说,即火星极地冰盖对基底融化而言太薄了,一些作者声称液态水可能位于比以往认为的更深的位置。MARSIS的数据显示,在相对较浅的深度(约1.5千米),液态水也可能稳定地存在于SPLD下方,从而约束了火星水圈的模型。SPLD的原始数据覆盖范围十分有限(只占南极高原面积的几个百分点),加上融水区域的面积需要足够大(直径数千米,厚度几十厘米)才能被MARSIS探测到,从而限制了识别小型液态水体及其之间是否存在液态连接的可能性。因此,没有理由认定火星亚表面水体的存在只局限于某一区域。/ppbr//p
  • 原生态有限公司应邀参加第十五届中国生态大会
    8月25-27日,第十五届中国生态学大会在兰州召开。应主办方邀请,原生态有限公司参加了此次盛会。本次大会由中国生态学学会主办,兰州大学承办,大会主题为“创新生态科学,建设美丽中国”。来自全国生态环境领域的近2000位专家学者参加了此次会议,通过特邀报告、分会场专题报告会、学术墙报、研究生论坛等形式,探讨了稳定同位素生态学研究与应用、景观生态学学科发展与前沿、长期生态学研究的科学问题与关键技术与生态系统碳、氮、水通量的联网观测与集成研究等29个热点专题。第十五届中国生态大会是中国生态学领域的一次盛会,我公司高度重视此次会议,由公司总经理张光辉先生亲自带队,一行多人奔赴兰州,并带来国内首台新设计的“G4301便携式CO2 CH4 H2O分析仪”,提供与会代表现场观摩试用。G4301是新一代超轻便、电池供电的温室气体分析仪,兼顾了便携性以及测量所需的高精度和灵敏度,整体设计结实耐用,重量轻至11.3Kg,稳定功率为25W;其采样系统和内部整合的气体泵,可用于土壤的气室开发式或闭路式测量,并具备其他野外使用的扩展功能。该设备采用近红外激光,通过高精度传感器进行特定识别,用单一的时间变量进行浓度分析,测量有效路径可达5km。高精度测量腔室只有35ml,并配备高精度温度和压力控制系统,确保仪器在不断变化的环境条件下获得超高的精确度、准确性和超低的漂移。 除了G4301便携式温室气体分析仪,我公司还展示了G2508 CO2 CH4 N2O NH3 H2O分析仪、L2140-i超高精度液态水和水汽同位素分析仪、G2201-i CO2 CH4同位素分析仪、CRS-1000/B土壤含水量测量系统以及CM-CRDS碳同位素分析仪等生态领域多款仪器,得到了与会专家学者的极大关注。在原生态有限公司(即北京普瑞亿科公司)的展台前,不断有与会专家学者领取产品资料,咨询仪器性能、操作使用等相关问题,并留下仪器使用需求和购买意向。在稳定同位素生态学研究与应用分会场,工程师于扬做了题为“Picarro analyzer:Applications in Carbon, Nitrogen & Water Cycling Research”,主要介绍了Picarro系列仪器在碳氮、水循环研究中的应用,并详细解答了与会专家学者的提问。通过参加此次生态学大会,促进了我公司与科研学者们的深入交流,加强了与同领域科研机构和大学的对接,进一步提升了我公司在生态学相关领域的影响力,也为推动我国生态领域研究的创新发展提供了新思路。 产品链接:G4301 便携式CO2 CH4 H2O分析仪G2508 CO2 CH4 N2O NH3 H2O分析仪CRS-1000/B土壤含水量测量系统超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)G2201-i CO2 CH4同位素分析仪RhizoScan原位根系扫描仪
  • 基于碰撞反应池多接收等离子体质谱的K-Ca-Fe同位素高精度分析
    以Nu Sapphire为代表的最新一代含碰撞池CC-MC-ICP-MS,配有传统MC-ICP-MS的高能通道(6kV加速电压)和基于碰撞池技术的低能通道(4kV加速电压),其中六级杆碰撞反应池使用氢气和氦气,能够有效去除各种含氩基团对41K+、40Ca+和56Fe+等造成的干扰(图1),因此可以在低分辨模式下对K、Ca及Fe同位素开展高精度分析,可有效降低样品测试含量,有利于珍贵样品和低含量样品分析。   中国科学院地质与地球物理研究所成矿元素与同位素分析实验室于2021年4月安装了Nu Sapphire,实验室人员李文君、高炳宇、王静和苏本勋等通过系统优化新一代碰撞反应池(CC)-MC-ICP-MS(Nu Sapphire)的低能路径参数,使用低分辨+碰撞反应池技术,相继建立K、Ca及Fe同位素分析测试方法。 图1 碰撞反应池多接收等离子体质谱工作原理(以K为例)   K同位素:K溶液上机浓度降低至200 ng/g,δ41K的长期精度小于0.04‰ (2SD);在标样-样品间插法的测试分析中,样品和标样的K浓度匹配可扩大至20%,大大提高分析效率;10种地质标样的K同位素分析结果与文献报导一致(图2),并首次报道了锰结核(NOD-P-1)和铁建造(FeR-2,FeR-4)的K同位素组成,为铁、锰样品的实验室数据比对提供新的依据。 图2 地质标样与文献中δ41K值的比对   Ca同位素:实现了40Ca、42Ca和44Ca的同时测定,将Ca测试浓度降低至100 ng g-1,δ44/40Ca的长期精度与TIMS相似(2SD 0.1‰);11种地质标样的Ca同位素分析结果与文献报导一致(图3);δ44/40Ca和δ44/42Ca的同时测定还可以获得放射性40Ca(ε40Ca),40Ca作为40K衰变子体之一,对高K样品进行ε40Ca分析在研究岩浆成因和风化作用中具有较大潜力。 图3 地质标样与文献中Ca同位素比值的比对   Fe同位素:将Fe上样量降低至50 ng,相对中、高分辨模式提高了~ 40倍,且δ56Fe的长期精度优于0.03‰(2SD);21种地质标样的Fe同位素分析结果与文献报导一致(图4)。 图4 地质标样与文献中δ56Fe的比对   以上研究成果发表于Science China Earth Sciences和Journal of Analytical Atomic Spectrometry上。本研究受中国科学院地质与地球物理研究所实验技术创新基金(批准号:TEC 202103)和中国科学院青年创新促进会共同资助。   1. Li W, Cui M, Pan Q, et al. High-precision potassium isotope analysis using the Nu Sapphire collision cell (CC)-MC-ICP-MS[J]. Science China Earth Sciences, 2022, 65(8): 1510-1521. DOI: 10.1007/s11430-022-9948-6. [李文君*, 崔梦萌, 潘旗旗, 王静, 高炳宇, 刘善科, 袁梦, 苏本勋*, 赵野, 滕方振, 韩贵琳. 碰撞反应池MC-ICP-MS(Nu Sapphire)高精度钾同位素分析. 中国科学: 地球科学, 2022, 52(9): 1800-1812.]   2. 高炳宇*, 苏本勋*, 李文君, 袁梦, 孙剑, 赵野, 刘霞. High-precision analysis of calcium isotopes using the Nu Sapphire collision cell (CC)-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022. DOI: 10.1039/D2JA 00150k.   3. 王静*, 唐冬梅, 苏本勋*, 袁庆晗, 李文君, 高炳宇, 陈开运, 包志安, 赵野. High-precision iron isotopic measurements in low resolution using collision cell (CC)-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(9): 1869-1875. DOI: 10.1039/D2JA00084A.
  • 研究人员建立高精度测定汞同位素组成方法
    近期,中科院地化所研究人员针对贵州万山汞矿区汞的同位素地球化学循环,进行了详细而系统的研究。他们找到了示踪土壤汞来源的有效工具,并发现汞在水稻体内迁移转化过程可发生较大汞同位素变化,同时汞矿冶炼过程能导致汞同位素分馏。相关成果先后发表于《科学通报》、《环境科学与技术》等期刊。  据了解,该所环境地球化学国家重点实验室冯新斌课题组,率先在国内建立了高精度测定汞同位素组成的方法。目前,该技术已成功应用于典型生态系统的汞污染源示踪研究。  最近,研究人员又通过测定贵州省不同汞污染区表层土壤的汞同位素组成,发现不同汞污染区土壤汞存在不同的汞同位素组成特征。研究证实,汞同位素的&ldquo 质量分馏(MDF)&mdash 非质量分馏(MIF)&rdquo 二维体系,可能成为未来示踪土壤汞来源的有效工具。尤其是汞同位素的MIF特征,对于示踪和定量表层土壤大气汞的贡献率具有重要作用。  另一项研究则发现,汞在水稻体内迁移转化过程可以发生较大汞同位素分馏,从而为进一步解释汞在植物体内的迁移转化奠定了基础。通过分别测定土壤汞和大气汞的同位素组成,研究人员得出了水稻植株不同部位汞的二元同位素混合模型,并根据水稻不同部位汞同位素非质量分馏的强弱,估算了其大气汞的相对比例。  研究人员还通过测定万山汞矿的汞矿石和汞冶炼废渣样品,发现汞矿冶炼过程能导致汞同位素质量分馏,这对示踪汞矿区不同汞污染源的环境效应具有重要意义。他们还对汞矿区土壤中生物可利用态的汞进行提取,并测定了其汞同位素组成,为汞污染土壤修复技术提供了重要依据。
  • 原生态有限公司成功参加2016年全国污染生态学学术研讨会
    2016年7月29-31日,2016年全国污染生态学学术研讨会暨中国生态学学会污染生态专业委员会第三届四次会议在哈尔滨工业大学城市水资源与水环境国家重点实验室召开。原生态有限公司作为唯一的参展商参加了此次会议,并主要展示了CRS-1000/B土壤含水量测量系统、G2508 CO2 CH4 N2O NH3 H2O分析仪、超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)和TOC-CRDS碳同位素分析仪等多款仪器,与会专家学者给予了极大的关注。本次会议由中国生态学学会污染生态专业委员会发起,中国生态学学会污染生态专业委员会、中国科学院沈阳应用生态研究所、南开大学和哈尔滨工业大学联合主办。来自北京大学、天津大学、东北林业大学、东北农业大学、暨南大学、兰州大学、沈阳大学、南开大学、上海交通大学、南京农业大学、西北农林科技大学、云南农业大学、广东省农业科学院农业资源与环境研究所等60多个科研院所、大专院校以及相关单位170多名代表参加了本次研讨会。与会专家学者热烈探讨了“城市大气污染生态与治理”、“海绵城市:雨水的综合利用与处理,修复城市水生态”、“城市土壤污染与防治”、“城市治水:城市河流、人工湿地与氧化塘处理城市污水”、“城市固体废物处置”等多个议题。 此次学术研讨会,促进了我公司与生态学领域专家学者的深入交流,加强了与同领域科研院所、大专院校的对接,进一步提升了本公司在环境与生态相关领域的影响力。产品链接:CRS-1000/B土壤含水量测量系统G2508 CO2 CH4 N2O NH3 H2O分析仪TOC-CRDS碳同位素分析仪超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)RhizoScan原位根系扫描仪
  • 中国和澳大利亚合作开展农田水汽同位素通量实验
    澳大利亚新南威尔士大学(UNSW)的Matthew McCabe教授和Jason Evans教授及他们的博士生Mick Cai与澳大利亚核科学技术组织(ANSTO)Stephen Parkes博士一行到中心进行访问研究,并与我中心沈彦俊研究组的研究人员在栾城农业生态系统实验站开展了为期3周的田间水汽同位素通量联合观测实验。   中澳联合试验期间,双方进行了有关水资源与水循环研究的学术交流,Matthew教授等几位专家先后介绍了同位素在水循环研究中的应用、澳洲流域水循环综合观测计划与农业用水管理等内容;沈彦俊研究员等针对栾城农业生态系统试验站的水热通量实验与海河流域水热变化方面的研究项目进展情况做了详细的介绍。   本次实验是在国家自然科学基金项目和中国科学院知识创新项目的支持下开展的,澳方提供目前国际比较先进的LGR和Picarro水汽同位素观测设备,中方提供其他实验设施,在双方的共同努力下顺利完成,这次合作增进了中澳双方的了解,加强了研究人员和学生之间的科技交流,并为将来进一步的合作奠定了坚实的基础。 benwen:www.shunstar.com.cn
  • 同位素 | 青藏高原东北部高寒沙地沙蒿根系在沙丘不同地貌部位的吸水策略
    位于青藏高原东北部的青海湖,拥有着丰富的自然景观,既优美壮丽又独具特色。然而,在气候变化和人类过度开垦畜牧等因素的影响下,青海湖的环境逐渐恶化,生态遭到破坏,沙漠化面积也日益扩大。据统计,青海湖周边地区现有沙化土地170.7万亩、占区域土地总面积的11.7%。在植被恢复的过程中,青海湖地区的典型固沙植物沙蒿、沙棘和乌柳等对土壤养分及土壤有机质的提高发挥了较大的作用,其中自然植被沙蒿对土壤养分的改良效果最明显。沙蒿 (学名:Artemisia desertorum)是菊科蒿属多年生半灌木状植物,天然生长在沙漠地区,分布甚广。在我国主要分布在黑龙江、内蒙古、陕西、宁夏、甘肃、青海、新疆、四川、西藏等地,多生长于草原、草甸、森林草原、高山草原、荒坡、砾质坡地、干河谷、河岸边、林缘及路旁等。沙蒿枝条匍匐生长,有利于防风阻沙,具有适应性强、耐干早、抗风蚀、喜沙埋、生长快、固沙作用强等特点,为固沙先锋植物。接下来我们来了解一篇关于青藏高原东北部高寒沙地沙蒿根系在沙丘不同地貌部位的吸水策略的论文。沙漠化是青藏高原东北部的主要土地退化问题之一。青海湖位于青藏高原东北部,属于高寒半干旱气候影响下的生态脆弱区和全球气候变化敏感区,青海湖周边土地沙漠化严重。以前针对本区固沙植物的研究主要集中在植物的防风固沙机理与生态功能上,对植物与水分关系的关注较少,尤其是本土物种在不同微地貌导致的不同供水条件下。基于此,青海大学的研究团队以青海湖的自然固沙植物沙蒿作为研究对象,评估高寒半干旱沙地乡土树种的水土利用来源。本研究聚焦于三个关键科学问题:1)本土植物的季节性水源是什么?2) 控制不同沙漠地貌部位用水差异的关键是什么?3)根系分布及立地条件对植物的用水模式有什么影响?基于以上科学问题,本研究的假设如下:1)不同沙丘地貌部位的植物在不同季节使用不同的水源,2)植物会倾向于在水有限的情况下使用深层土壤水或地下水。本研究结果将有助于指导高寒沙地植物种的筛选,以确保生态适应和结构优化。本研究中作者收集了0-120 cm土层样品,利用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)提取土壤中的水分,并利用ABB LGR液态水同位素分析仪(Model DLT-100)测定水样中的氢氧稳定同位素组成(δ2H和δ18O)。同时,于生长季节在采样点测定植物的群落结构特征、根系分布及土壤机械组成。【结果】沙丘不同地貌部位沙蒿下方的土壤含水量(SWC, %)的季节变化。同一字母表示不同地貌部位无显著差异(p 0.05),不同字母表示不同地貌部位差异显著(p 0.05)。不同沙丘地貌部位沙蒿的(A)生长高度、(B)冠幅、(C)盖度和(D)密度。同一字母表示不同地貌部位无显著差异(p 0.05),不同字母表示不同地貌部位差异显著(p 0.05)。沙蒿根系在不同沙丘地貌部位的分布特征。(A)迎风坡,(B)丘顶,(C)背风坡。不同地貌部位沙蒿的吸水层次贡献率。(A)迎风坡,(B)丘顶,(C)背风坡。【结论】本研究以高寒沙地天然分布的沙蒿作为研究对象,利用稳定同位素技术分析其在生长季节的水分利用来源变化情况。结果表明,尽管该物种具有较高的耐寒性和耐旱性,以及能吸收利用不同深度水源的能力。本区沙蒿在生长季初期主要依赖于表层土壤水分,迎风坡利用地下水。进入生长旺盛季,降雨量和土壤含水量都最高,沙蒿利用中层土壤水分。在生长期末期,浅层土壤水再次成为植物可利用的最多水源。总的来说,高寒沙地沙蒿使用的浅层土壤水最多,其吸水模式与分布在不同沙丘地貌的根系分布一致。沙丘微地貌不仅通过风力作用和土壤特性影响植被生长,也影响了植物的用水深度。
  • 同位素 | 利用稳定同位素研究亚高山生境植物水源差异
    水分是植物生长不可或缺的因素,水分有效性的波动直接影响植物的生长、数量和空间分布。在全球气候变化下,区域降水格局已经发生了改变。植物不同水源的贡献率反映了生态系统对气候变化的响应程度。因此,追踪和分析植物水源可以为研究全球气候变化提供参考。祁连山位于青藏高原东北缘,是中国西北地区重要的生态屏障。因此,研究亚高山生境植物水源对于理解祁连山生态和水文过程具有重要意义。已有很多学者利用氢氧稳定同位素(δ2H和δ18O)进行了诸如此类的研究,但关于亚高山生境不同坡向植物水源的研究鲜少报道。基于此,在本研究中,来自西北师范大学和中科院西北生态环境资源研究所的研究团队监测了青藏高原东北缘祁连山东段冷龙岭北坡的上池沟(37°38′10″N,101°51′9″E,3080 m a.s.l.,图1)的降水、土壤水、木质部水、降水和泉水的稳定同位素组成以及相关环境变量(气象和土壤水变量),利用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取土壤和木质部中的水分,并利用ABB LGR T-LWIA-45-EP液态水同位素分析仪测定所有水样的δ2H值和δ18O值。基于这些数据,分析了不同水体稳定同位素的变化,并利用多源线性混合模型(IsoSource)计算不同水源对植物的相对贡献率。本研究目标是:(1)观察相同和不同生境下亚高山灌木的水源以及(2)研究亚高山灌木对水源变化的适应性。图1 研究区和采样点位置。【结果】图2 不同水体δ2H和δ18O之间的关系。图3 半阳坡和半阴坡不同亚高山灌木的水源。表1 亚高山灌木主要水源及其贡献率。图4 5-12月半阳坡不同亚高山灌木的植物水源。图5 5-12月半阴坡不同亚高山灌木的植物水源。【结论】青藏高原东北缘的亚高山生境中灌木的水分吸收特征相似。特别是灌木木质部水分主要来源于0-30cm土壤水。在降水量少或需水量大的月份,同一生境的亚高山灌木争夺浅层土壤水。在此期间,为了满足生长所需的水分,一些亚高山灌木增加了对深层土壤水的利用,导致同一生境中亚高山灌木水源存在明显差异。同样,在旱季或生长季,半阳坡或半阴坡的亚高山灌木对深层土壤水的利用增加,导致不同生境中同一亚高山灌木物种水源存在显著差异。与其他亚高山灌木相比,杯腺柳(Salix cupularis),山生柳(Salix oritrepha),金露梅(Potentilla fruticosa),硬叶柳(Salix sclerophylla),烈香杜鹃(Rhododendron anthopogonoides)和 陇蜀杜鹃(Rhododendron przewalskii)根据降水和土壤水条件改变了其水分利用模式,表明其具有较强的环境适应性。在全球变化背景下,为了恢复亚高山生态环境,应选择能够在旱季或生长季调整其水分利用策略的灌木树种。请点击下方链接,阅读原文https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310499&idx=1&sn=50381317af5c0f25d0739b6cbcdcfa3f&chksm=bee1ab9c8996228a367dd8cc6f778f80a7deff7b49c807bac194f912428231318b4544693e27#rd
  • 同位素 | 三种不同气候下露水的稳定同位素变化
    全球变暖增加了当地大气对水分的需求,导致许多地区降水减少,两者都会导致干旱。水汽可以在辐射冷却到露点温度以下的表面凝结成露水。露水因其对地表水平衡的重要贡献而被认为是一个重要水源,尤其是在半干旱和干旱地区。干旱地区,年露水量占降雨量的9%-23%。在热带岛屿旱季,露水可以作为一种替代水源。露水对干旱地区或干旱期植物的生存、生长和发育十分重要,例如带来夜间水分以及通过植物气孔或特殊的物理特征(如气生植物)直接被叶片吸收利用。因此,露水可以增加叶片的净光合产物积累,提高植物水分利用效率。露水还参与了大气中的化学过程,例如亚硝酸盐氧化物的昼夜(和夜间)循环。从1961-2010,中国露水频率降低了5.2天/10年,这主要是因为近地表增温和相对湿度(RH)下降。此外,中国干旱区露水频率下降率(50%)高于半湿润和湿润地区(40%和28%)。因此,随着全球气候变化,不同地区露水具有不同的趋势,需了解不同气候区域的露水特征以更好地预测未来露水动态变化。图片来源于网络,如有侵权请联系删除δ2H和δ18O是天然和传统的水文示踪剂,在追踪与不同类型水(例如降雨、降雪、露水、雾、地表水、植物水和冰芯)相关的不同水文气象过程中发挥着重要作用。两种质量分馏过程,平衡分馏和动力学分馏,是水相变过程中同位素差异的根本原因。它们分别由饱和水汽压和不同同位素的扩散速率决定。17O-excess(17O-excess = ln(δ17O + 1)-0.528×ln (δ18O + 1)),作为一种新的示踪剂,可用来提供有关水分输送、降雨和蒸发的额外限制,以探测水文和气象过程。与传统的依赖于温度和RH的同位素相比,17O-excess主要对10-45℃的RH敏感。δ′18O(δ′18O = 1000×ln(δ18O + 1))和 δ′17O(δ′17O = 1000×ln (δ17O + 1))之间的关系可用来更好的解释自来水和降水形成机制,区分干旱类型和纳米布沙漠不同类型的凝结。此外,利用17O-excess与δ′18O(或 d-excess)之间的关系(如实验室模型试验、降水和天然水体(河流、渠道、水井、泉水、地下水、湖泊和池塘))来推断经历平衡分馏或动力学分馏的不同水分蒸发过程是一种有效的方法。然而,到目前为止,还没有公布δ2H,δ18O,δ17O,d-excess和17O-excess日露水同位素记录。图片来源于网络,如有侵权请联系删除基于此,在本文中,作者于2014年7月-2018年4月从3个不同的气候区域(纳米布沙漠中部的戈巴布(沙漠气候)、法国尼斯(地中海气候)、美国中部印第安纳波利斯(湿润大陆性气候))收集了黎明前日露水。利用基于离轴积分腔输出光谱技术的三参数水汽同位素分析仪(T-WVIA-45-EP)同时分析了露水的δ2H,δ18O,δ17O,然后计算了d-excess和17O-excess。该报告介绍了3个气候区域的日露水同位素数据集。在研究全球露水动力学和露水形成机制时,研究者可以利用该数据集作为参考。【结果】表1 戈巴布(2014年7月-2017年6月)、尼斯(2017年12月-2018年4月)和印第安纳波利斯(2017年1月至2017年10月)的每日露水记录汇总。图1 戈巴布(紫色)、尼斯(蓝色)和印第安纳波利斯(红色)露水的稳定同位素变化。图2 基于戈巴布、尼斯和印第安纳波利斯每日露水的δ18O和δ2H之间的关系及δ′18O和 δ′17O之间的关系(b)。请点击下方链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650310465&idx=2&sn=e1d3675059e7a6e4221f5633291cd304&chksm=bee1abbe899622a8ec8b2b200b841a8a8def0dc591af3b2ae6543b52a6c03d08f7ce4fd95b10&token=234254584&lang=zh_CN#rd
  • 我国首台超高精度光矢量分析仪问世 打破美国垄断
    可在几百米的光纤中测出小至0.1毫米的误差,较国外垄断产品,测量分辨率提高了1600倍,相位精度提高了10倍̷̷记者19日从南京航空航天大学获悉,该校研发的我国首台超高精度光矢量分析仪问世。  超高精度光矢量分析仪就像“火眼金睛”,从家用光纤路由器到航天飞船等大量应用的光学器件领域都需要用到它。它可以对光器件的两个最关键指标——幅度响应和相位响应进行精确测量,从而在研发和应用中掌握其性能。第一代仪器仅能测量幅度响应,第二代仪器可以同时测量幅度响应和相位响应,但目前全球仅有美国纳斯达克上市公司LUNA的OVA5000一款产品,并且其高精度版不对我国销售。  2010年,南京航空航天大学潘时龙教授开始筹建微波光子学实验室。他带领团队在研究中发现,国外光矢量分析仪采用“以光测光”的办法,费时费力而且精度不高,自主研发的光矢量分析仪采用“以电测光”的方法,把光信号转换为微波信号。课题组先后掌握了光频梳通道化技术、平衡光电探测技术和新型电光调制技术,基本攻克了相关的技术难点。该光矢量分析仪的第二代样机先后被中科院半导体所、江苏光扬光电等十余家单位试用 还帮助某海军单位实现了光纤干涉器的自动化测量,测量精度提高10倍,节省成本一半以上。
  • 祝贺2021年稳定同位素测量技术及应用学术交流会圆满成功!
    2021年4月15~16日,由北京师范大学地表过程与资源生态国家重点实验室主办,加拿大ABB公司及北京理加联合科技有限公司协办的2021年稳定同位素测量技术及应用学术交流会在线上成功举办。来自清华大学、北京大学、北京师范大学、中国林科院、中国科学院、中国农业大学、北京林业大学、东北师范大学、深圳大学、西南大学、南京信息工程大学、浙江大学、复旦大学、南开大学、同济大学、新疆大学、西北农林科技大学、美因茨大学、马德里理工大学等100余个单位的专家学者及业务人员参加了此次会议,直播间两日访问次数达3.5W余次。本次交流会的主题为:基于稳定同位素技术地表过程综合监测研究进展。目的为面向广大科研人员,开展以稳定同位素基础理论,技术方法,数据分析和地表过程综合监测研究进展等多方面为主的技术交流和培训,促进和推广稳定同位素技术在不同领域的应用。本次研讨会分为专家报告和技术培训两部分。4月15日9:00会议开始,北京理加联合科技有限公司孙宝宇总经理为会议致开幕辞,欢迎前来参会的老师,并预祝本次研讨会圆满成功。在上午的报告中,清华大学林光辉教授、东北师范大学白娥教授、深圳大学宋欣教授、北京理加联合科技有限公司孙宝宇总经理分别介绍了稳定同位素生态学研究及其应用的一些新进展、应用氮稳定同位素研究森林氮循环、植物水分及纤维素氧氢同位素分馏效应研究、生态系统监测新技术及应用实践的研究进展。在下午的报告中,北京师范大学王佩副教授、北京林业大学余新晓教授、西南大学何新华教授、ABB LGR公司Frederic despagne博士、中国科学院地理科学与资源研究所杨丽虎高级工程师、中国林业科学研究院徐庆研究员分别就植被冠层叶片水同位素观测及示踪研究、基于稳定同位素技术的植被水碳过程研究、田间原位13C/15N双标记实验技术及碳氮循环跟踪、Applications of ABB LGR-ICOS stable isotope analyzers in ecology、同位素技术在水文水资源中的应用、稳定同位素在陆地生态系统植物水分利用研究中的应用等方面进行了详细地介绍。4月16日上午,中国科学院地理科学与资源研究所温学发研究员、中国林业科学研究院孙守家副研究员、南京信息工程大学肖薇教授、北京师范大学吴秀臣教授、北京理加联合科技有限公司赵妮应用工程师分别介绍了同位素技术在生态系统生态学中的应用、稳定碳同位素在生态学研究中的应用、基于稳定同位素法研究地表对大气水汽的贡献、积雪对中国北方森林生长的影响、激光同位素测量技术在生态系统水碳氮循环中的应用。16日下午,由北京理加联合科技有限公司杜文生技术工程师对ABB LGR 水同位素分析仪及LI-2100 全自动真空冷凝抽提系统进行了详细的操作培训。本次交流会充分利用互联网平台,采用线上直播形式,各位老师通过共享屏幕、语音及文字对话等方式,快速进行问题答疑。培训过程中大家专心听讲,面对其中的难点,积极参与线上交流,学习氛围良好,互动热烈。此次线上会议还有直播抽奖环节,共抽取一等奖(2名)二等奖(6名)三等奖(10名)在直播结束后,依然有同学在直播间提出问题希望与老师进行交流,我们特此收集直播间内所提出的相关问题,如下,感谢各位老师的耐心解答。白娥老师Q&AQ:请问白老师,累积回收率超过100%如何理解?谢谢老师!A:累积回收率超过100%是由实验误差造成的,这在示踪实验中是比较常见的,也是被允许的。Q:请问白老师,零张力和吸力获取土壤溶液来源上的区别是什么?谢谢您。A:零张力和吸力获取土壤溶液来源上的区别:这个问题做土壤水的同仁们会更加清楚,零张力是渗漏水,也就是我们说的淋溶掉的。吸力采样计是孔隙水,采到的水可能并不一定能够淋失掉。但是有时候零张力采到的样品会非常少,为了更了解土壤水,就用吸力的代替了。Q:白老师 您好 在有机物的生物降解过程中 需要添加的氮量较多 才能降解有机物 我想知道有机物降解的过程中 氮的去向 那这时候我是可以加的标记的N15量较多吗?或者我可以加少量的标记15N,加更多的没有标记的氮吗?谢谢老师。A:在最终产品15N丰度达到很高的情况下,但是N15的添加量不足以降解有机物,我想既能降解有机物,又能知道氮的去向,我认为可以混合量多的没有标记的氮源和量少的15N标记的氮源,然后达到使用量后加入,只有计算的时候别算错了就可以。Q:白老师您好,想请教一下白老师,进一步讲一下气体怎么进行测定的,谢谢老师。A:气体的测定:用的静态箱法,采集到气袋后,用测定气体同位素的仪器测定同位素丰度Q:请问老师捕食者的同位素和猎物的同位素是否有具体的数值关系?A:捕食者的同位素和猎物的同位素一般有关系,决定一个生物的同位素最重要的因素是他的来源,比如猎物的氮是捕食者氮的来源,但是具体要看比例,如果还有很多其他来源,而这个猎物的占比小,则关系弱。如果捕食者只依赖这一单一来源,则应该有很强的相关性。Q:白老师,您好。在您讲的Part1.沉降氮的去向这个实验中,铵态氮和硝态氮是分别添加在不同的土壤中,还是同时添加在相同土壤中的?如果是添加在相同土壤,那么铵态氮和硝态氮在一系列的转化过程中,是不是会存在铵态氮中的N15跑到硝酸基中去了的情况,这应该是会影响硝态氮和铵态氮的测定的吧?A:Part1.沉降氮的去向这个实验中,铵态氮和硝态氮是分别添加在不同的土壤中的。不能同时添加到一个样品,你说的是对的。宋欣老师Q&AQ:感谢宋老师的精彩报告,有两个问题请教您一下:1. 用于抽提的枝条要剥皮吗?我看您PNAS的文章里面没有明确提到这一点,个人感觉剥皮对抽提的结果影响还挺大的;2. 您通过有机质H和木质部水的交换在一定程度上挑战了“两个水世界”,请问您有没有考虑过对于整株植物不同部位本身同位素组成的异质性以及土壤水分(比如不同孔隙尺度)同位素组成的异质性对您的整个结果的影响,谢谢。A:很好的问题。1)剥皮了,文章的方法里面其实有提到;2)这个问题很重要,土壤水真空抽提过程中也存在潜在的分馏,而且机制比较复杂,很多研究者都在做这个方面的研究,我们的控制实验使用的是沙土(我们甚至考虑过用水培,这样就能明确知道真实水源水的值了),因为根据前人的研究,沙土的分馏效应几乎可以忽略,我们论文里有针对土壤分馏复杂性的讨论;另植物不同部位同位素组成的差异,-- 这里是指枝条水还是叶片水?植物不同部位同位素组成的差异,我想了一下,在我们的实验体系里关系不大,一个是我们用的是小树苗,冠层比较简单,另外chamber里面空气充分混合,没有像野外一样存在小气候的差异,另外我们的取样部位是主干,而不是侧枝,而且主干使用了铝箔包裹,防止蒸腾富集。不过野外情况下会复杂很多,within-plant isotope heterogeneity的确是需要注意的问题。 Q:想问下宋老师,这种氢同位素贫化会因为植物的生长期不同和季节变化而变化吗?随时间和空间变化,还是会有一个恒定的偏移量?A:很好的问题。答案目前还不太清楚,这个问题值得通过进一步的数据积累去更好的揭示。根据我们发现的贫化程度和枝条水含量具有较好相关性的结果猜测,时空变化如果伴随枝条水含量(比如旱季枝条含水量可能偏低?)也发生变化的,那么贫化程度理应也会有差异的,不过差异幅度到底有多大还不说。一般来说枝条水含量的种间差异要比种内要大,因此贫化程度应该也是种间比种内差异大?何新华老师Q&AQ:13CO2标记要56天才取样?这样需要好多标记气体啊?A:大田标记13CO2标记一般是当天一次标记就拆掉装置,第二天就开始取样(持续天数根据实验目的和植物类型自定;土壤可持续数年如果标记地取样点未被扰动的话)。我们的经验是密闭留置标记装置过夜,第二天中午再拆掉,一般让剩余未吸收和/或当晚土壤呼吸释放的13CO2第二天上午再被植物吸收利用。Q:那个圆圆的土壤,是机器钻取的。那你们的机器最多是100cm吗?有没有试过更深的呢?A:根据作物根系,我们取样到100cm深度。(地质)钻孔机可取数米至数千米深样品。Q:标记之后一般多久取样,最优。A:没有最优取样时间,依实验目的而定。一般来说,叶片13C光合同化、15NO3-还原、15N同化取样可以以秒、分、小时至数天计;植物(上述情况除外)和土壤取样以天、周、月或年计。Q:植物是持续标记的吗?密封的环境怎么更换干冰这些降温装置?A:根据实验目的、植物和土壤等类型自定一次或持续多次标记。干冰是负20℃,多少视情况择定。Q:何老师,您好!在降雨量1800mm的地区做大树碳氮双标需要注意什么?A:需要数天以上的不降雨天气,其它以实验目的、植物树冠和土壤等类型择定。孙守家老师Q&AQ:老师您好,我想请教一下,油茶是碳三植物还是碳四植物?A:油茶是碳三植物,油茶叶片δ13C值在-29.55‰~-27.52‰之间,不同地区略有差异。关于此次会议PPT是否可以分享工作人员还在与各位老师沟通当中我们会将可以分享的PPT逐步在公众号内进行推送通过此次交流会的学习和交流,相信各位老师、同学对同位素的相关知识有了更深层次的认识,并且对LGR液态水同位素分析仪及LI-2100全自动真空冷凝抽提系统也有了进一步的了解。如您有任何需要,欢迎随时联系我们,北京理加科技有限公司将竭诚为广大科研工作者服务。点击链接观看此次会议回放。https://wx.vzan.com/live/livedetail-231207136?v=637432175100650385
  • CO2同位素分析仪在估算侧柏瞬时和长期CO2同化上的应用
    【摘要】森林的长期生产力和固碳能力受气候变化影响,已成为全球关注的问题。本研究中,我们提供了一种简单且无损的方法来研究多时间尺度上树木CO2同化率。这种新的方法结合了树干液流和稳定碳同位素分辨率以估算碳同化率。我们通过分析变异性并进行配对样本t检验,比较了气体交换测量和新方法测得的CO2同化率,以验证其准确性和适用性。气体交换和同位素测量都表明早晨CO2同化率高于下午,峰值在10-11 am左右出现,可能是由于夜间的水储存和早晨的高气孔导度。侧柏日,月,年尺度上CO2同化率的变异性与供水条件有关。与以往的研究相比,我们利用稳定碳同位素分辨率(Δ13C)和树干液流测量估算的年CO2同化率的结果与传统方法结果相一致。侧柏对供水可以有效的响应,这就解释了为什么它可以很好地适应半干旱区环境。估算CO2同化率的新方法是准确的,且适用于北京周边的半干旱地区。【研究区域】位于燕山鹫峰国家森林生态系统研究站(NFERS,40°03′N,116°05′E)。【碳同位素测定】利用碳同位素分析仪(CCIA-36d-EP,LGR)结合廓线系统进行长期野外观测。研究区域的地理位置(a)研究区域2013年-2016年三个土壤深度(30cm,60cm和90cm)的月土壤含水量(SWC);(b)月降水量(P)和平均气温(Ta);(c)月平均饱和水汽压差(VPD)和光合有效辐射(PAR)。(a)16个树木样品的月平均林分蒸腾(Ts),误差线表示标准偏差;(b)每个样品的月林分蒸腾。TDP系统每月测得的树木每小时平均蒸腾值(Th)。负数的绝对值表示生长在阴坡的8棵树的平均蒸腾量,而正值表示生长在阳坡的8棵树的平均蒸腾量。阳坡和阴坡树木的月δ13Cls。每个点表示每月代表日(2天)的平均δ13Cls。误差线表示平均值的标准误差。Th和叶片δ13Cls估算的每个月树木每小时平均CO2同化率(Ah)。负数的绝对值表示生长在阴坡的8棵树的平均CO2同化率,而正值表示生长在阳坡的8棵树的平均CO2同化率。13C分辨率(Ah和A' h)和便携式红外气体分析仪(A6400和A' 6400)估算的每小时平均CO2同化率的比较。Ah和A6400表示生长在阳坡的CO2同化率,A' h和A' 6400表示生长在阴坡的CO2同化率。
  • 原生态有限公司成功参加2016年全国青年作物栽培与生理学术研讨会
    由中国作物学会主办,农业部作物生理生态与耕作学科群及中国作物学会栽培专业委员会协办,山东农业大学与中国农业科学院作物科学研究所共同承办的“2016年全国青年作物栽培与生理学术研讨会”于2016年10月26-28日在山东省泰安市顺利召开。原生态有限公司(即北京普瑞亿科科技有限公司)应邀参加了此次大会,主要展示了G4301便携式CO2 CH4 H2O分析仪、G2201-i CO2 CH4同位素分析仪、G2508 CO2 CH4 N2O NH3 H2O分析仪、超高精度液态水和水汽同位素分析仪(L2130-i、L2140-i)、CRS-1000/B土壤含水量测量系统、环境气象监测等多款仪器,同时也将稳定同位素分析和元素分析服务展示给与会专家学者。本次会议以“作物可持续生产与现代农业”为主题,围绕作物高产高效协同的理论与技术、作物节本增效耕作的理论与技术、作物抗逆稳产及对环境适应机制和作物轻简化生产的原理与技术等四个专题,与会专家学者深入探讨了作物生理生态与栽培耕作学科的发展方向与研究重点。我公司高度重视此次会议,公司总经理张光辉先生亲自带队前往,由销售主管张学涛和销售工程师李锦桥进行现场讲解。在我公司的展台前,不断有与会专家学者领取产品资料,咨询仪器性能、操作使用等相关问题,并留下仪器使用需求和购买意向。值得一提的是,新一代超轻便、电池供电的温室气体分析仪——Picarro G430便携式CO2 CH4 H2O分析仪在展会上相当吸睛。其兼顾了便携性以及测量所需的高精度和灵敏度,整体设计结实耐用,重量轻至11.3Kg,稳定功率为25W;其采样系统和内部整合的气体泵,可用于土壤的气室开发式或闭路式测量,并具备其他野外使用的扩展功能。该设备采用近红外激光,通过高精度传感器进行特定识别,用单一的时间变量进行浓度分析,测量有效路径可达5km。高精度测量腔室只有35ml,并配备高精度温度和压力控制系统,确保仪器在不断变化的环境条件下获得超高的精确度、准确性和超低的漂移。通过参加此次全国青年作物栽培与生理学术研讨会,促进了我公司与科研学者的深入交流,加强了与同领域科研机构和大学的对接,进一步提升了我公司在生态学相关领域的影响力,也为推动作物生理生态与栽培耕作学科的创新发展提供了新思路。关于北京普瑞亿科科技有限公司: 北京普瑞亿科科技有限公司以经营稳定性和放射性同位素分析仪、超痕量气体分析仪、环境气象观测系统、元素分析仪等仪器设备为主,兼顾自主创新研发,致力于为广大用户提供先进仪器设备和成套解决方案的综合性企业。公司在温室气体研究、同位素分析、食品掺假和溯源分析、痕量气体检测、元素分析、气象观测、应急响应、军事防御、城市安全等领域开展工作。 北京普瑞亿科科技有限公司已与多家国际厂商签订代理协议,负责其产品在中国区的推广、销售、维修和技术支持等服务。主要包括以激光稳定性同位素分析仪和超痕量气体仪而著称的美国Picarro公司,以提供高品质民用航空和军事气象站解决方案而著称的美国Coastal公司,以提供中尺度土壤含水量测量系统而著称的美国Hydroinnova公司,以提供最高精确度绝对碳含量测量而著称的美国UIC公司,以基于零空白自动取样技术的高品质微型元素分析仪而著称的意大利NC Technologies公司,以提供多用途光谱分析系统解决方案而著称的德国Tec5公司;同时与美国PerkinElmer公司,美国ThermoFisher公司等进行深度合作,并与波兰Easy Test ,美国2B,美国Apollo SciTech等公司达成合作共识。 更多详情请关注北京普瑞亿科科技有限公司官网:www.pri-eco.com
  • 同位素地质研究专用仪器成功研发
    我国大型高端质谱仪器一直以引进为主,受国外技术封锁,一些用于高精度同位素分析和核科学研究的质谱仪器引进十分困难,且价格高昂。  为了推动我国高端质谱仪器的自主研发,针对目前宇宙样品及地球化学珍贵样品稳定同位素、稀土元素微区原位分析的难题,国家重大科学仪器设备开发专项设立“同位素地质学专用 TOF-SIMS(飞行时间二次离子质谱)科学仪器”项目,由中国地质科学院地质研究所国家科技基础条件平台北京离子探针中心牵头实施。  据了解,根据记者掌握的情况,项目研制的两台分别用于稳定同位素分析和稀土元素分析的TOF-SIMS-SI和TOF-SIMS-REE仪器,将为岩石成因学、矿床成因学、地球环境、气候变化、月球及行星演化等热点研究领域提供最先进的技术支撑。  专家称,用于高精度同位素丰度分析的TOF-SIMS 是一项全新的技术,它的成功研制,将是质谱学技术划时代的里程碑,同时将进一步推动地球化学和宇宙化学向更微的空间发展。像 SHRIMP 的诞生一样,这项新技术的诞生将带来一系列重要的科学成果,特别是将直接为我国探月工程在获得月球样品后的分析研究工作奠定坚实的技术基础。  据介绍,经过近4年的技术攻关,北京离子探针中心联合中国科学院大连化学物理研究所和吉林大学等单位完成了两台TOF-SIMS仪器的整体设计,对一次离子源等关键部件进行了设计加工和单独调试,并完成了TOF-SIMS专用系统控制软件和数据处理软件的开发和优化。  自2014年8月起,项目组开始对两台TOF-SIMS整机进行总装配和总调试工作。2015年6月,TOF-SIMS整机的质量分辨率可达12000(m=106)。截至2015 年初,项目共取得新装置 12套、核心部件20个;新申请专利 33项,获专利授权8项(其中发明专利2项);登记软件著作权3项;发表论文24篇,取得了重要的阶段性成果。  一是首次将飞行时间二次离子质谱(TOF-SIMS)技术应用于精密同位素分析和元素丰度测定。近年来,随着离子接收系统在技术上取得突破性进展,北京离子探针中心和相关合作单位在国内率先尝试将 TOF技术应用于高精度同位素分析仪器的研发。  二是开发了一套适用于珍贵地质样品(如月岩、宇宙颗粒等)高灵敏度、高分辨率同位素分析的小束斑氧离子一次源和离子光学系统。  三是开发了提高地学样品分析灵敏度的二次中性粒子激光后电离技术。实验结果表明,在优化条件下,飞秒后电离技术可使信号提高60 倍。  四是研发了高分辨TOF质量分析器。有效解决了双聚焦SIMS质谱的低离子通过率、体积庞大、成本高昂的不足。  五是开发了一套满足超高真空环境下高精度同位素分析要求的创新型三维样品台及样品传送系统。  项目组专家表示,该科研项目尽管取得了一定的成效,但该仪器目前尚处于研发阶段,待目标仪器的技术指标达到任务书的设计要求后,项目组将启动以下两项应用示范研究工作:一是应用TOF-SIMS-SI仪器分析金属硫化物(黄铁矿、闪锌矿等)的硫同位素,探讨典型铜矿床铜的富集和矿床形成机理 二是应用TOF-SIMS-REE仪器对月岩和月球陨石样品中锆石的稀土含量和配分模式进行分析,以探讨月岩中锆石的成因 测定月岩样品和月球陨石中锆石的Ti元素含量,估算其结晶时的温度,从而推算撞击事件的温度。  据中国矿业报记者了解到,2015年8月,项目组已将TOF-SIMS-REE仪器应用于纯金属样品铜和银的同位素丰度分析,分析精度可达 1%。
  • 气相色谱-中红外同位素光谱联用技术分析水中苯系物单体碳同位素
    单体稳定碳同位素分析(C-CSIA)技术是示踪温室气体与环境有机污染物来源和过程的有力工具。目前,气相色谱-同位素比值质谱仪(GC-IRMS)是C-SIA的主流技术。近年来,光谱同位素分析技术进步飞速,且具有高效、便携、可现场布控、分析成本低等特点,在现场实时测量温室气体和二氧化碳地质封存场地逸散气体的同位素指纹方面优势明显。但是,该项技术目前主要应用于甲烷、乙烷、丙烷等小分子气体的碳同位素分析。适用于不同环境介质样品中各类化合物的碳同位素光谱分析技术仍缺乏方法优化和系统验证,主要技术难点是衔接混合样品的高效色谱分离和光谱同位素的同步分析。近期,中国科学院广州地球化学研究所有机地球化学国家重点实验室博士研究生张霁云及导师金彪、张干研究员、王强工程师与苏州冠德能源科技有限公司史哲工程师及齐鲁工业大学朱地教授联合攻关,采用气相色谱-中红外同位素光谱联用技术,在水中苯系物的单体碳同位素组成分析方面取得了突破。这项工作聚焦水中挥发性有机污染物的C-CSIA分析测试需求,联用气相色谱和中红外光谱,通过调节、优化气路设计以及光谱参数,采用固相微萃取(SPME)和预热顶空两种进样方式,实现了微克每升浓度级别水溶液样品中的苯、甲苯、乙苯、三甲基苯等物质的色谱分离与单体δ13C高精度分析。通过与GC-IRMS技术的分析结果对比表明此方法对于各目标单体的分析误差均在0.5‰以内。另外,我们应用这个方法观测到了页岩气水平钻井过程钻井液中三甲基苯的稳定碳同位素分馏。该方法稳定性强、精度高、并以氮气为载气降低了污染物C-CSIA的分析成本,更利于污染场地现场布控和现场测试(图1)。图1. 气相色谱-中红外同位素光谱联用方法建立、优化与页岩气开发场地应用图2. 测量系统构成与原理(左)及JAAS期刊封面(右)该项成果近期以主封面(Front Cover)文章发表在Journal of Analytical Atomic Spectrometry (JAAS) 杂志(图2),该研究获得国家重点研发计划“页岩气开采场地特征污染物筛查和污染防控”(2019YFC1805500)和中国科学院仪器研发攻关预研项目(282021000003)资助。
  • Picarro G2210-i——奶牛场甲烷排放的同位素特征研究
    Picarro G2210-i——奶牛场甲烷排放的同位素特征研究江苏海兰达尔 2023-03-03 15:39 发表于江苏原文链接:https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021JG006675研究背景和目的甲烷的同位素特征是判断甲烷浓度升高的来源的重要工具,大气甲烷的全球稳定碳同位素比值(表示为δ13CCH4)随着CH4的大气摩尔分数的增加向更负值转变。最新的同位素证据表明,甲烷的上升可能主要是由于生物甲烷排放的增加,因为相较于化石和热源甲烷,生物甲烷的13C更少。基于这一解释,可能导致大气中甲烷浓度上升的生物来源主要包括反刍动物、稻田和湿地等。然而,鉴于我们对甲烷预算的理解仍然不完整,显然需要在区域一级对甲烷进行足够的同位素原位测量,以确定主导当前全球甲烷排放量上升的来源的位置和类型。在这项研究中,研究人员提供了来自加州圣华金谷(该州91%的奶牛群养殖在此处)一个奶牛场的δ13CCH4季节性大气测量数据。这项研究的主要目的是测量厌氧粪肥泻湖和肠发酵源区排放的δ13CCH4,并利用这一同位素特征值来确定该地区其它奶牛场的下风向羽流采样中检测到的甲烷热点的主要来源。同时,这些同位素特征有助于完善加州和全球甲烷预算的知识体系。测量仪器和方法研究人员使用移动平台收集了温室气体和污染物的连续测量数据,搭载设备包括Picarro CRDS分析仪G2210-i和G2401,GPS(记录地理位置和车速),二维声波风速计(测量风向、风速、空气温度和相对湿度)以及校准气瓶。从高度为2.87m的采样口吸入样品空气测量以下痕量气体:甲烷(CH4)、δ13CCH4、二氧化碳(CO2)、一氧化碳(CO)、乙烷(C2H6)。在每个测量周期的前后分别使用高、低两种浓度的混合标准气体对测量气体进行了校正。其中2018年秋季、2019年春季和2019年夏季使用的标气同位素值为-39.5‰,2019年秋季为-40.7‰,2020年冬季为-38.5‰。每个季节在参考测量地点收集微气象测量数据,使用的是安装在粪肥泻湖附近固定塔上的三维超声风速计(如下图1)。测量高度为2.4和11m,频率为20Hz,为了进行分析,只使用了来自2.4m高度测量的气象数据。另外在2020年1月15日,使用了一个由透明PVC材料制成的长方体腔室,用来从谷仓和静态粪堆中分离和测量。该腔室被放置在谷仓或粪堆表面,并通过Synflex管与移动平台的气体分析系统连接。对于每个样本,收集了10分钟的测量值。同时还通过与移动平台气体分析系统相连的同步管,测量了不同种类奶牛呼吸排放的δ13CCH4。图1 加州圣华金谷观测地点的设备布局和位置研究结果(部分)奶牛场不同来源的甲烷排放具有不同的甲烷同位素特征,在不同季节具有可比性(如下图3)。其中肠道发酵源的δ13CCH4信号比粪肥泻湖的甲烷更低。动物饲养区的δ13CCH4范围为-69.7±0.6‰~-51.6±0.1‰,而粪肥泻湖的δ13CCH4范围为-49.5±0.1‰~-40.5±0.2‰。同时观察到粪肥泻湖的同位素特征有一些细微的季节差异。甲烷观测值在畜栏、谷仓和粪肥泻湖之间的差异很大。在所有季节中,畜栏和谷仓的甲烷平均摩尔分数分别为5.4±3.4和8.5±6.3ppm,粪肥泻湖排放最高,为18.4±18.2ppm。图3 测量农场(畜栏、谷仓和粪肥泻湖)的季节性δ13CCH4同位素特征结论与讨论甲烷的稳定碳同位素测量是区分肠道和粪便甲烷的一种有价值的源解析技术。在试验农场内,肠道发酵源区和粪肥泻湖之间的δ13CCH4特征区分明显。这些源特征在整个季节都具有可比性,特别是来自粪肥泻湖,并且彼此之间的差异至少为~8‰。通过在下风向的观测显示,肠道发酵衍生的甲烷贡献率羽流中甲烷的0~93%,这随着排放足迹中动物畜舍和泻湖的数量而变化。测量奶牛场下风向甲烷的13C可能是监测和量化肠道和粪便排放比的有用工具,并可通过估算甲烷来源的贡献来评估减排策略的有效性。Picarro G2210-i高精度碳同位素分析仪Picarro G2210-i 同位素分析仪专为满足科学界实施实时甲烷排放源归属的需求而设计。高精度测量大气中甲烷和乙烷的功能与二氧化碳和水汽测量相结合,为用户提供一种用来测量并确定垃圾填埋场、压裂站和废弃油气井等甲烷排放源的独特工具。 编辑人:陆文涛审核人:史恒霖
  • 安装案例——奋战在各种环境中的Picarro仪器
    Picarro的产品是基于我们拥有专利的光腔衰荡光谱学(crds)技术,能以ppb的精度来测量气体的浓度,也能测量同位素比值。经过近20年的发展,Picarro已推出碳、水、氮同位素、温室气体、痕量气体等近30个型号的分析仪。分析仪出厂前均要经过严酷的军方检测程序以确保设备可以在各种环境条件下稳定、长时间无故障运行。目前Picarro产品以销售超过3000套,遍布全球60多个国家和地区,服务于各行各业的科研工作者。 室内测量:待在干净整洁的实验室里开展测试工作自然是可以保证仪器的稳定运行,这也是很多Picarro设备的常用方式,但Picarro可不满足于这种安逸的生活,我们的座右铭就是“科研-永不止步”,今天我们就主要来看看Picarro家族的小伙伴们在野外监测方面都有哪些经历,室内嘛,咱们就一笑而过吧。 图1 南京大学超净实验室-l2140-i液态水同位素分析仪 野外定点在线监测野外在线监测是科研仪器的一个重要使用方式,但能否在各种复杂、极端环境下正常运行,并给科学家们提供准确可靠的科研数据,就是对科研仪器的一项考验了。对于Picarro来说,无论是热带森林、高山草甸还是极地冰原,我们都能坚守,不求别墅洋房,但求一个小木屋能遮风避雨即可。图2、3 美国科罗拉多大学学者在科罗拉多州中部森林通过测试水汽同位素研究森林水循环过程 当然,考虑到长时间无人值守,监测站布置还是要多做考虑,除了防水、防火,有时候还要考虑防捣乱。 图4 普林斯顿大学(美国)在肯尼亚中部的permilab的液态水同位素有了安身立命之所,就是北极我们也敢闯一闯。 图5 Picarro进驻北格陵兰岛eemian冰芯钻探营地(neem) 有些时候条件不允许,科学家们无法给我们提供一个小房子,有个保温箱也是可以的。 图6 比利时列日大学在比利时多林尼陆地观测站(dto)利用涡动相关法对草原ch4通量进行测定 图7 比利时 安特卫普大学在南美法属圭亚那热带原始森林中测试土壤呼吸当然,在没有箱子装的情况下,有个帐篷也没问题。图8 加拿大圣方济各泽维尔大学野外土壤呼吸测试 如果是短时间监测,再确保没有降雨、降雪、降冰雹的情况下,不要帐篷也行。图9 国际原子能机构赞助在北京郊外玉米田的水蒸气同位素进行测量 太阳比较大的时候,记得给打把伞哈............图10后续我们将分享 Picarro 仪器在各种环境中奋战的经历,期待您的联系!期待picarro家族的小伙伴们在今后的科研工作中有更加精彩的表现。
  • 三价钛(III)还原法硝酸盐18O与水中18O之间零同位素交换
    在研究氮的来源、循环和去向的时候,最重要的是有一个可靠的样品制备方法。三价钛(III)还原法提供了一种低成本、快速和简单的方法,与成熟的细菌和镉还原+叠氮化方法相比,该方法优于其他方法。重要的是,在将溶解的硝酸盐转化为N2O气体的过程中,硝酸盐(或中间化合物)和水之间没有氧原子的交换,这使得该方法测定的氧同位素值反映了硝酸盐的氧同位素组成。将硝酸盐样品溶解在δ18OWater值明显不同的水中(-10.9‰和-40.7‰),一式三份,用三价钛(III)还原法处理样品验证硝酸盐和水是否存在氧交换。样品在N2O模式下使用EnvirovisION系统进行硝酸盐同位素分析,在40℃的水平衡模式下使用iso FLOW顶空分析仪进行δ18OWater分析。表1 两组硝酸盐样品的分析结果结果表明,在样品制备过程中没有发生氧交换,证明了三价钛(III)还原法对自然丰度样品的适用性(表1)。对于溶解的硝酸盐的同位素分析,NO3 -一旦转化为N2O,从样品气体中分离CO2和N2O气体也很重要,因为它们具有相同的质量,无法用IRMS进行区分。EnvirovisION利用低温预浓缩、化学捕集和气相色谱技术完全分离气体,进行CO2、CH4和N2O的高精度同位素分析。德国元素硝酸盐样品氮氧同位素分析的最新解决方案EnvirovisION。EnvirovisION是环境样品分析的理想解决方案,通过isoprime visION与iso FLOW GHG结合的轻松操作,采用三价钛还原法分析硝酸盐样品,大大降低了样品预处理的技术门槛,同时保持了最高水平的精确度和准确性,避免了繁琐的样品多步处理、厌氧细菌培养的维护和剧毒化学品的使用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制