当前位置: 仪器信息网 > 行业主题 > >

超精准全开放强磁场低温研究平台

仪器信息网超精准全开放强磁场低温研究平台专题为您提供2024年最新超精准全开放强磁场低温研究平台价格报价、厂家品牌的相关信息, 包括超精准全开放强磁场低温研究平台参数、型号等,不管是国产,还是进口品牌的超精准全开放强磁场低温研究平台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超精准全开放强磁场低温研究平台相关的耗材配件、试剂标物,还有超精准全开放强磁场低温研究平台相关的最新资讯、资料,以及超精准全开放强磁场低温研究平台相关的解决方案。

超精准全开放强磁场低温研究平台相关的论坛

  • 稳态强磁场实验装置测试系统产出新成果

    近期,中国科学技术大学朱弘教授小组利用稳态强磁场实验装置电子自旋共振等测试系统,研究了压缩应变(La,Ba)MnO3薄膜中的磁晶各向异性,其研究结果近期发表于《应用物理学杂志》(Journal of Applied Physics)。 中国科学院强磁场科学中心的科学实验测试系统包括输运实验测试系统、磁性实验测试系统、磁光实验测试系统、极低温实验测试系统、高压实验测试系统和组合显微系统。朱弘小组此次实验就是利用磁性实验测试系统中的“电子顺磁共振谱仪”,进行了一系列研究。其实验结果表明,在Sr或Ca掺杂的锰氧化物铁磁薄膜中容易磁化轴沿拉伸应变方向。该工作利用转角铁磁共振技术,发现在Ba掺杂的薄膜中情况正相反,易磁化方向对应面内的压缩应变方向。实验得到面外共振位置高达12千奥斯特(kOe),表明除了形状各向异性外,磁晶各向异性非常可观,且是易面的。这种磁晶各向异性“异常”的表现反映了锰氧化物与Bethe-Slater曲线的物理内容相一致。(La,Ba)MnO3和Co、Ni相同,易磁化轴沿压缩方向;而另两种掺杂的锰氧化物(LaCa),(LaSr)和a-Fe一样表现相反。 强磁场科学中心成立于2008年4月30日,是国家发改委支持的“十一五”国家重大科学工程。中心的长远预设目标包括强磁场的产生、强磁场下的物性研究以及依托强磁场实验装置进行科学技术发明,其实验设施包括磁体装置和科学实验测试系统。2010年,部分磁体装置及测试系统建成,已开始先期投入试运行并陆续向用户开放,基本实现“边建设边运行”。 稳态强磁场实验装置项目建设总目标是建立40T级稳态混合磁体实验装置和系列不同用途的高功率水冷磁体、超导磁体实验装置,使我国的强磁场水平跻身于世界先进行列。目前四台超导磁体中的SM3与配套核磁共振谱仪完成联调,并已开展了多项结构生物学和药物学方面的研究,SM2已调试成功,正与组合显微测试系统SMA联调。磁体装置方面,强磁场中心现已成功研制出国内首台铌三锡管内电缆导体的超导磁体以及我国首台井式真空充气保护大型铌锡线圈热处理炉系统。http://www.cas.cn/ky/kyjz/201208/W020120820347280715931.jpg

  • Science: 低温强磁场磁力显微镜—调控拓扑绝缘体磁畴壁手性边界态

    Science: 低温强磁场磁力显微镜—调控拓扑绝缘体磁畴壁手性边界态

    拓扑绝缘体,顾名思义是绝缘的,有趣的是在它的边界或表面总是存在导电的边缘态,这是拓扑绝缘体的独特性质。近期,理论预测存在的拓扑绝缘体在实验上被证实存在于二维与三维材料中,引起了科研界的大量关注。通常二维电子气体系中存在着量子霍尔效应,实验中观测到了手性边界态存在于材料的边界。在三维体材料的拓扑绝缘体中实验上可观测到反常量子霍尔效应。 K. Yasuda, Y. Tokura等人利用德国attocube公司的低温强磁场磁力显微镜attoMFM在0.5K温度与0.015T磁场环境下,证实了拓扑绝缘体磁畴壁的手性边界态的可调控性能,不同于之前实验上观测到的拓扑绝缘体中自然形成随机分布的磁畴中的手性边界态。Y. Tokura等人基于Cr-掺杂 (Bi1-ySby)2Te3制备了拓扑绝缘体薄膜,基底是InP(如图1C)。图1D为在0.5K极低温下使用MFM测量的材料中的磁畴分布,可以清晰看到自然形成的随机分布的大小与形貌不一的磁畴。通过使用MFM磁性探针的针尖在0.015T的磁场环境下扫描样品区域成功实现了对材料磁畴的调控。图1F为调控后样品的磁畴情况,被探针扫描过的区域,磁畴方向保持一致。[align=center][img=,500,273]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311331396935_7457_981_3.jpg!w690x378.jpg[/img][/align][align=center]图1: A&B 拓扑绝缘体磁畴调控示意图;C 拓扑绝缘体材料结构;D attoMFM实验观测自然形成多个磁畴; E&F MFM探针调控磁畴[/align][align=center][/align][align=center] 该拓扑绝缘体磁畴反转的性能随磁场大小变化的结果也被仔细研究。通过缓慢改变磁场,不同磁场下拓扑绝缘体样品的磁畴方向可清楚地被证实发生了反转(见图2)。通过观察,随机分布气泡状磁畴(0.06T磁场附近)一般的大小在200纳米左右。[/align][align=center][/align][align=center][img=,500,206]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311339098931_5066_981_3.jpg!w690x285.jpg[/img][/align][align=center]图2: A 霍尔器件电测量结果;B attoMFM观测不同磁场下拓扑绝缘体的磁畴情况[/align][align=center][/align][align=center] 不仅通过attoMFM直观观测分析磁畴手性边界态调控,电学输运结果也证实手性边界态的调控。图3为在温度0.5K的时候,拓扑绝缘体电学器件以及相应的电学测量数据。数据表明,霍尔电阻可被调控为是正负h/e2的数值,证实了不同磁畴的手性边界态的调控被实现。作者预见,该实验结果对于低消耗功率自旋电子器件的研究提供了一种可能的途径。[/align][align=center][/align][align=center][img=,500,565]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311333567372_456_981_3.jpg!w690x780.jpg[/img][/align][align=center]图3:拓扑绝缘体制备器件反常量子霍尔效应结果证实磁畴手性边界态调控[/align][align=center][/align][align=center][img=,500,303]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311334450730_967_981_3.jpg!w690x419.jpg[/img][/align][align=center]图4:拓扑绝缘体磁畴手性边界态调控相关设备—低温强磁场原子力磁力显微镜[/align][align=center][/align][align=center][/align]低温强磁场原子力磁力显微镜attoAFM/MFM主要技术特点:-温度范围:mK...300 K-磁场范围:0...12T (取决于磁体)-样品定位范围:5×5×5 mm3-扫描范围: 50×50 μ㎡@300 K, 30×30μ㎡@4 K-商业化探针-可升级PFM, ct-AFM, SHPM, CFM等功能参考文献:“Quantized chiral edge conduction on domain walls of a magnetic topological insulator” K. Yasuda, Y. Tokura et al, Science 358, 1311-1314 (2017)

  • 记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修原创:大陆2015-11-13一、前言磁场设备是磁学研究中产生磁场的设备,根据可产生最高磁场强弱可以分为亥姆赫兹线圈、永磁场发生器、电磁铁、超导磁体与强脉冲磁场发生器几种,其中使用脉冲磁场发生器原理是短时间通大电流产生强磁场,在相同的散热及供电功率等配套条件下可以产生比稳恒磁体强一个数量级以上的磁场,因而可以在物理、化学与生物研究中需要强场的场合应用。目前脉冲强磁场能产生的最高磁场的世界纪录超过2千特斯拉,不过这些极端磁场的产生过程伴随爆炸冲击波作用,只是一次性的产生,线圈无法再次使用,而且需要防爆实验环境;能够重复使用同一个线圈可控产生的脉冲强磁场最高约1百特斯拉,这需要配套专门的实验室与供电通道;在普通实验室条件下对脉冲磁场发生装置的需求一是不需要专门的电力改造,且整个装置方便移动,不过产生的磁场最高超过10特斯拉,我们实验室(磁学国家重点实验室)就有一套这样的样机设备,是实验室几位老前辈在1990年前后自己做的,设备整体照片如图1,它的主体分为充放电控制模块、线圈负载与电容柜(如图02中肚子里主要装的是1kV,0.1mF的电容阵列,合计98个,总容量9.8毫法拉) 、。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573466_1611921_3.png图01 脉冲强磁场装置照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573467_1611921_3.jpeg图02 脉冲强磁场装置中的电容二、故障及诊断维修前段时间有使用者在使用过程中发现设备电容无法充到设定电压,从而无法放电产生磁场。首先通过沟通,获知设备是在用户更换自己的负载线圈之后引起,用户自己的负载线圈电感约10纳亨,而设备标配的负载线圈是280微亨,相差4个数量级;然后结合图03所示的脉冲强磁场的电路分析故障在充电模块;最后打开机柜,通过肉眼观察线路板与元器件,如图04所示,可以看到大功率晶闸管的散热固定木柱有裂纹,从而将故障诊断在晶闸管上。值得一提的是,必须赞一下实验室前辈们:在设备制造过程中保留着晶闸管的铭牌,这样尽管他们退休好多年了,设备出现问题,后人还可以找到配件的线索。将晶闸管拆下来后发现正反向都是导通状态,显然控制端无法控制其单向积累电荷给电容充电,因而根据铭牌上的最大电流500A、耐压1800V、控制电压1.5V指标购买替换晶闸管,幸运的是市场上还能找到同样规格的KP-500A晶闸管,买回来替换上后测试发现仪器可以正常充放电,至此维修工作完成。简单分析其原因是使用者将负载换成特别轻的电感,这样在最高800V充电后,电感几乎不能增加阻抗,此时放电回路电路中的阻抗幅值约0.5欧姆,导致放电回路中的电流瞬间超过1600安培,而晶闸管的最高承受电流只有500安培,所以损坏导致故障。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573468_1611921_3.gif图03 脉冲强磁场装置充放电原理电路图http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573469_1611921_3.png图04 脉冲强磁场装置充放电电路照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573470_1611921_3.jpeg图05 更换的晶闸管照片三、测试验证我们知道,设备维修让设备能工作与是否适合科学研究是两码事,为了让使用者更好的在该设备上开展研究,需要在正常工作的基础上对其性能做一次测试验证,测量不同充电电压对应在标准负载线圈中的放电脉冲磁场。测试用到的工具是带轴向(霍尔传感器)磁场探头的特斯拉计(高斯计),与一台示波器,如图06所示,由于仪器尾部自带有BNC模拟接口,将其连在示波器上,但初步测试发现仪器标配的模拟信号在较高磁场下有饱和截断平台,如图07所示。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573471_1611921_3.png图06 测试验证需要的仪器http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573472_1611921_3.png图07 直接使用模拟信号观测脉冲场波形经过与特斯拉计的工程师交流,得知其模拟输出的是原始霍尔电压信号放大10倍并做滤波限幅保护等电路处理之后输出的结果,而设备限幅4V,对应典型传感器最高只能测量4T的磁场。我们目前的应用明显要测量超过4T的磁场,那么要想获得高于4T的模拟脉冲信号,怎么办呢?使用原始(未经放大、调理、限幅处理的)霍尔电压信号!于是打开特斯拉计机箱,如图08所示,http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573473_1611921_3.png图08 特斯拉计内部电路结构http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573474_1611921_3.png图09 改变模拟BNC输入线的接入位置做好以上的准备工作后,开始进行测量系统标定,为了简便,这里使用一块永磁体产生磁场做动态模拟电压-磁场标定,放在探头边上,通过调节距离改变特斯拉计的输入磁场,记录特斯拉计与示波器上直流信号的平均值,绘制成曲线并拟合如图10所示。然后将磁场探头放入负载线圈的中心位置,测量不同放电电压下产生的脉冲磁场波形,并根据指数衰减放电函数拟合出峰值与脉宽,如图11所示。最后将所有的初始放电电压获得的脉冲磁场信号曲线的拟合结果汇总可得脉宽不随放电电压变化,恒定约1毫秒,峰值磁场与初始放电电压关系经拟合满足为B(特斯拉)=20V(千伏)关系,该设备在最高800V电压充电时产生峰值磁场约16T,使用相对简单的原理与低成本[c

  • 强磁场有无危害?

    请问核磁的强磁场对人体有无危害?如果有,主要是哪几个方面?平时需要注意哪些方面?

  • NMR在动力学研究中的一个疑问——强磁场的影响?

    在学化学的人眼里,影响化学反应进程的因素很多,比如温度、时间、pH值、浓度、压力、微波等等,但似乎都不大考虑磁场的影响。因此,NMR可以用来研究化学反应的动力学。但是,磁场真的对反应没有影响吗?或是影响太小?以前以及最近陆续看到或听到几篇关于磁场对晶体的影响的论文。一个是,在外加磁场下,溶液里生成的氨基酸晶体与不加磁场时的晶体特征不一样。另一个是,在外加磁场下作X射线衍射,有机物晶体粉末重新定向排列,其结果类似于晶体。地球磁场的磁感应强度通常为0.4~0.8高斯,而NMR的磁场可高达十几个特斯拉(注1特斯拉=10000高斯)。

  • 我国刷新脉冲磁场最高强度纪录 闯入90特斯拉大关

    科技日报讯 近日,依托华中科技大学建设的国家脉冲强磁场科学中心(筹)自行研制的脉冲磁体,成功实现了90.6特斯拉的峰值磁场,再次刷新我国脉冲磁场最高强度纪录,使我国成为继美、德后,第三个闯入90特斯拉大关的国家。 中国工程院院士、华中科技大学教授潘垣介绍,磁现象是物质的基本现象之一。当物质处在磁场中,其内部结构可能发生改变,产生新成果。强磁场与极低温、超高压一样,被列为现代科学实验最重要的极端条件之一。它可分为稳态强磁场和脉冲强磁场两大类,其对应的发生装置又分为稳态强磁场装置和脉冲强磁场装置。有资料显示,自1913年以来,世界上有19项与强磁场有关的成果获得诺贝尔奖;仅近30年来,就有8项与此有关的成果获得诺贝尔奖,如量子霍尔效应、分数量子霍尔效应、磁共振成像等。 据国家脉冲强磁场科学中心(筹)主任李亮介绍,产生90.6特斯拉磁场强度的磁体、电源、控制系统等全套装置均为中心自主开发研制。脉冲磁体是产生高强磁场最重要的部件,电流和磁场相互作用在瞬间所产生的强大电动力和急剧温升,是限制磁场强度提高的两大主要因素。与美国、德国90特斯拉级脉冲磁体都采用昂贵的高强高导材料相比,我国磁体制造成本还不到他们同类磁体的1/10。 据称,为实现90特斯拉以上的磁场强度,美国洛斯—阿拉莫斯强磁场实验室用了20年,德国德累斯顿强磁场实验室用了10年,而我国仅用5年就实现了这一水平。(记者刘志伟 通讯员程远) 《科技日报》(2013-08-14 一版)

  • 【原创】牛津仪器推出最新应用于中子散射研究的低温磁场环境仪器(2007年8月1日)

    牛津仪器纳米科学部推出一系列最新产品,可以为中子散射研究提供低温高磁场的样品环境(低温至25mk, 磁场至15T)。 牛津仪器有独一无二的多领域科研团队,与从事中子散射研究的科学家团体有着多年的合作。牛津仪器为能设计出应用于中子散射研究的低温磁场系统而感到骄傲,我们一直处于该领域的最前沿。牛津仪器超导部此次研发出的新仪器是 VarioxAc-TL, Tritontm DR制冷机 和新型超导磁体。 [color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 世界首台!AIMS望远镜突破太阳磁场测量难题

    记者从青海冷湖天文观测基地获悉,世界首台“用于太阳磁场精确测量的中红外观测系统”(简称AIMS望远镜)已实现核心科学目标——将矢量磁场测量精度提高一个量级,实现了太阳磁场从“间接测量”到“直接测量”的跨越。AIMS望远镜是国家自然科学基金委员会支持的重大仪器专项(部委推荐)项目,落户于平均海拔约4000米的青海省海西蒙古族藏族自治州茫崖市冷湖镇赛什腾山D平台。据了解,经过5个多月的前期调试观测,目前望远镜技术指标已满足任务书要求,进入验收准备阶段。中国科学院国家天文台怀柔太阳观测基地总工程师王东光介绍,科学数据分析表明,AIMS望远镜首次以优于10高斯量级的精度开展太阳矢量磁场精确测量。“这意味着AIMS望远镜利用超窄带傅立叶光谱仪,在中红外波段实现了直接测量塞曼裂距得到太阳磁场强度的预期目标,突破了太阳磁场测量百年历史中的瓶颈问题,实现了太阳磁场从‘间接测量’到‘直接测量’的跨越。”王东光说,“塞曼裂距与波长的平方成正比,在AIMS望远镜之前,太阳磁场多在可见光或近红外波段观测,由于裂距很小,观测仪器很难分辨。AIMS望远镜的工作波长为12.3微米,在同等磁场强度下,塞曼裂距增加几百倍,使得‘直接测量’成为可能。”[img]https://img1.17img.cn/17img/images/202401/uepic/ba3f6eca-6915-4961-859c-22afd01ca552.jpg[/img]??[font=楷体][size=18px][color=#000080]这是2023年4月8日拍摄的AIMS主体结构。新华社记者顾玲 摄[/color][/size][/font]AIMS望远镜是国际上第一台专用于中红外太阳磁场观测的设备,将揭开太阳在中红外波段的神秘面纱。“通过消除杂散光的光学设计和真空制冷等技术,我们解决了该波段红外太阳观测面临的环境背景噪声高、探测器性能下降等难题。”中科院国家天文台高级工程师冯志伟介绍,红外成像终端由红外光学、焦平面阵列探测器和真空制冷三个系统组成,包括探测器芯片在内的所有部件均为国产。该终端系统主要用于8至10微米波段太阳单色成像观测,从而研究太阳剧烈爆发过程中的物质和能量转移机制。此外,AIMS望远镜也实现了中红外太阳磁场测量相关技术和方法的突破,在国内首次实现中红外太阳望远镜系统级偏振性能补偿与定标,“望远系统在中国天文观测中首次采用离轴光学系统设计,焦面科学仪器除8至10微米的红外单色像外,还配备了国际领先的高光谱分辨率红外成像光谱仪和偏振测量系统。”王东光介绍,AIMS望远镜的研制,除了在太阳磁场精确测量方面起到引领作用外,也可在中红外这一目前所知不多的波段上寻找新的科学机遇。[img]https://img1.17img.cn/17img/images/202401/uepic/08c61536-40b2-4642-a56f-75b8f1f4e198.jpg[/img][font=楷体][size=18px][color=#000080]  AIMS望远镜科研团队成员正在观看电脑屏幕显示出分裂的光谱。(受访者供图)[/color][/size][/font]据介绍,AIMS望远镜旨在通过提供更精确的太阳磁场和中红外成像、光谱观测数据,研究太阳磁场活动中磁能的产生、积累、触发和能量释放机制,研究耀斑等剧烈爆发过程中物质和能量的转移过程,有望取得突破性的太阳物理研究成果。[来源:新华社][align=right][/align]

  • 2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30

    2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30

    2016国产磁测量好仪器系列之五:磁场测量扫描成像系统F-30原创:李响、杨文振、薜立强、冀石磊、郑文京 工程师,北京翠海佳诚磁电科技有限责任公司推荐:陆俊 工程师,中科院物理所磁学室2016年10月28日一句话推荐理由:国产半导体器件的骄傲之作应用在中强磁场测量上的好仪器。一、引言 磁场无形,但又无处不在,无时无刻不在直接或间接的影响着我们的生活,比如地磁、磁卡、电机、变压充电器、电磁炉、微波炉、手机、磁盘、钞票、耳麦、磁悬浮列车、核磁共振成像仪这些让我们每天都在和各种各样的磁场打交道,然而对于磁场如何衡量,如何产生如何测量恐怕较少有人去关注,简单概括几点:一是磁场的单位,常用的单位是奥斯特,国际单位安每米比较小(1 Oe ~ 79.6 A/m),注意严格来讲不要将单位表达成高斯或特斯拉这两个磁感应强度单位,因为磁场强度和磁感应强度概念上完全不同,尽管二者可根据(经常以空气或真空的)磁导率相互变换,即1奥斯特磁场在真空或空气中诱导的磁感应强度为1高斯或万分之一特斯拉。二是磁场的产生,首先地球是跟我们关系最密切的磁场源,地表磁场大约为0.5奥斯特,随纬度升高有缓慢增强趋势;其次是为了产生变化磁场,可以通过永磁体机械组装的方式,也可以使用线圈中通过电流的方式,根据线圈材料或结构的不同可以形成不同类型的通电线圈磁场源,比如超导线圈在不消耗能量情况下维持100kOe以上的磁场,高强度导电材料及结构制成的1MOe以上的脉冲强磁场;还有一种和磁场产生相反,要尽可能减少磁场,以防止地球磁场或其他干扰磁场对精密传感器造成不利影响,破坏极端条件探索、精密标定测量等任务,这时要用到消磁措施,可以使用主动电流对消与被动屏蔽两种方法,综合利用消磁技术,我们可以获得比地磁场弱10个数量级的洁净磁场环境。三是磁场的测量,相比产生技术方法,磁场测量要复杂得多,其类型有电磁感应、霍尔、磁阻、磁电、磁光、磁致伸缩、磁共振及非线性磁效应等基本原理,其中值得一提的几个包括最通用且测量范围最广的感应线圈磁探测器、前沿科学探索中常用的超导量子干涉仪(SQUID)、地磁或空间磁场探测中常用的磁通门或原子光泵磁力仪、智能手机里植入的各向异性磁阻AMR芯片、磁场计量常用的核磁共振磁力仪以及跟电磁相关的生产及科研任务中常见的中等强度磁场(地磁场上下四个数量级之间)测量上最常见最常用的霍尔磁场计。以上关于磁场的量级、产生与测量方法比较汇总于图1,在中等磁场强度测量应用最广泛的为霍尔传感器,虽然它没有核磁共振磁力仪ppm级的高精度,但它同时具备足够的精密度(通常约千分之一)、高空间分辨、高线性度、单一传感器宽测量范围、成本又相对较低等明显优势,因而市面上高斯计、特斯拉计等中等强度磁场测量仪绝大多数基于霍尔传感器,本文介绍的磁测量产品也基于霍尔磁场计,在前述磁相关的器件及应用产品的质量控制、监护与升级过程中扮演着不可缺少的角色。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616260_0_3.png图1 磁场的量级、不同产生与测量方法比较概览图二、背景中科院半导体所从20世纪80年代始研究高迁移率砷化镓(GaAs)霍尔器件,后来经过两代人的薪火传承克服半导体材料制备、内置温度补偿器件设计与测量数字化采样及软件优化上的技术难题逐渐发展成熟,最终落地北京翠海公司,形成CH-1800,CH3600等被用户认可的高斯计产品。近些年为了配合电磁制造业质量提升的业界需求,为电机磁体、核磁共振磁体空间均匀性、多级磁体分布提供系统的测量方案,翠海公司在高斯计的基础上增加无磁运动机构和软件集成,开发出F-30磁场测量扫描成像仪,照片如图2所示。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616259_0_3.jpg图2 F-30 型磁场测量扫描成像设备照片三、简介F-30由上位机(装有控制软件)、高精度高斯计(一维或者三维)、与高斯计搭配的探头、多维电控位移台以及位移台的控制器组成,如图3所示。简单来说可以分为两个部分,一部分只是用来采集数据,另一部分只是位移,两个部分搭配起来就组成了这个位移采集系统。位移模块由多维电控位移台和位移台控制器组成,通过操作上位机软件给控制器下命令,控制器就根据命令带动电控位移台各个轴运动,这个电控位移台的参数(台面大小、运动轴长度、运动方式、多少维度)用户可定制,即实现在允许范围内的各个角度、各种形状的扫描。 数据采集模块由高精度高斯计和与高斯计配套的探头组成,电控位移台的轴上有固定的探头夹持位置,采集数据时将探头放在夹持位置上,探头测量的数据实时上传到高斯计上,而高斯计与上位机软件通信连接,上位机则根据需要选择是否记录当前位置的数据。通过上位机软件控制位移台控制器和高斯计,可以将位移台上某个位置与高斯计读到的数据值相关联,一维高斯计读到的就是运动到的点对应的某个方向的数据值,三维高斯计则是一个点上 X 方向的值、Y 方向的值、Z 方向的值、此点上的温度(根据需要探头和高斯计中可有温度补偿功能)及三轴中两两矢量和、总矢量和的数值大小和方向夹角,扫描的数据可以导出保存在 EXCEl 中,根据位置和数据值可由软件绘制出各种需要的示意图:二维标准图、二维颠倒图、二维雷达图、三维曲线图、三维网状图、三维立体图、矢量图、圆柱展开图及多条曲线或多个立体图放在同一张图中进行对照比较。软件中还对常见的几种形状(空间磁场分布、矩形图、磁环、同心圆等)的扫描进行了集成化,只需设置几个参数便可以自动进行扫描,自由度高,精准度高,无需看管。http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616261_0_3.png图3 F-30型磁场测量扫描成像仪组成框图F-30根据不同的测量件需求可以定制,磁场测量部件的主要技术指标如表1,传感器照片如图4,其测量方向、维度以及尺寸都可以根据需要定制。 关于磁场扫描成像时间,(1)常规扫描:每点扫描时间可设置,一般为保证数据的稳定性,在每点的停留时间为1~2s,总时间由测试工件尺寸和扫描步长决定;(2)快速扫描模式:在位移台运动过程中不做停留,通过高速数据采集获得每点磁场值每点测量可小于0.1s。表1: F-30磁场测量部件主要指标http://ng1.17img.cn/bbsfiles/images/2016/11/201611101944_616269_0_3.jpg运动部件有三个平移与两个旋转自由度,大致示意图如图5,典型测试场景及系统软件照片如图6所示,运动部件指标表2。表2 F-30运动学指标列表http://ng1.17img.cn/bbsfiles/images

  • 【求助】急问:核磁仪里的磁场

    我想问一下核磁共振仪器里面的两块超导磁体之间的磁场是匀强磁场吗?假设在其中放入一个带正电荷的粒子,磁场对它的作用力应该是什么方向的呢?怎么分析它的运动轨迹?谢谢

  • 【转帖】磁场冷却效应的发现者——李庆贤

    【转帖】磁场冷却效应的发现者——李庆贤

    磁场冷却效应的发现者——李庆贤[img]http://ng1.17img.cn/bbsfiles/images/2007/07/200707081315_57540_1634962_3.jpg[/img]李庆贤,物理学家、物理教育家。曾开展对磁铁矿晶体在低温下磁性的研究,首先从实验上观测到感生磁各向异性在相变点的磁场冷却效应。在建设东吴大学物理系、重建南京师范学院物理系以及培养物理人才方面做出了重大贡献。李庆贤,1902年出生于浙江省吴兴。幼年聪明好学,在家乡南浔小学学习时,成绩优异。1916年考入苏州东吴大学理科。在该大学毕业时,又以一等成绩被这所教会学校接纳为国际斐陶斐(φ.τ.Φ.)荣誉学会会员(每届1—3名),并被留校任教多年。1928年,因获得美国洛克菲勒(Rockefel1er)基金会奖学金而进入美国伊利诺伊(Illinois)大学攻读学位。在J.孔兹(Kunz)教授指导下,李庆贤研究低温下磁铁矿晶体的磁性并在1931年获得了博士学位。 低温下磁铁矿晶体磁性研究的新发现   低温下磁铁矿晶体磁性的研究是一项承前启后的创造性工作。在李庆贤之前,1929年D.外斯(Weiss)观测到四氧化三铁(Fe3O4)在-155℃时饱和磁化强度突然降低,他将此现象解释为大的磁晶各向异性引起的结果。同年,R.W.米勒(Miller)又观察到四氧化三铁的比热在-155℃以下发生急剧增大的现象。为了探讨这些现象的原因,李庆贤做了大量的精细实验。他将天然四氧化三铁单晶体研磨成(100)、(110)和(111)三种取向的圆片样品,将它们置于180—800高斯的外磁场中,他利用悬丝扭转测定法,测量了这些样品在垂直于和平行于外磁场的分量情况下,磁化强度随晶体偏转角的变化,测量是在-150℃—-170℃间进行的。他还测量了样品在室温和液态空气温度下的X射线衍射谱。从大量实验结果的仔细分析中,他作出了这样的结论:磁铁矿晶体的磁性在-155℃以上时都与室温结果相同,衍射斑点的分布也不发生改变,而在-160℃时却发生了变化。这是在他之前未被人发现,而且此前的有关磁性理论所不能解释的现象。李庆贤在其博士论文中断言:“至少从磁性的观点而言,磁铁矿石的磁对称性必定发生了变化。”   李庆贤的发现,立即引起了物理学界的注意。人们纷纷选取-160℃的温度点对磁铁矿进行其他方面的实验。在李庆贤宣布发现之后的第二年,即1932年,日本物理学家观测到四氧化三铁的电阻率的不连续变化;在其后20年又观测到它在-160℃附近有相当大的晶格形变。1947年,E.J.W.维韦(Verwey)等人提出:这些变化是由于磁铁矿中二价与三价铁离子在其所占据的八面晶位上呈有序排列引起的。1958年,维韦的观点由中子衍射从微观结构上得到证实。因此,后来将这一转变称为维韦相变或电子有序化相变。由此可见,在这一系列关于磁铁矿低温磁性的物性异常变化的研究中,李庆贤首先提出了磁对称性改变的新见解,也是首先从实验上观测到感生磁各向异性在相变点的磁场冷却效应。李庆贤的研究是在30年代初作出的,但在其后30余年仍然受到国际磁学界的重视。在60—70年代的许多磁学专著或磁学物理学著作中,都将李庆贤的发现作为一项重大成就加以叙述。日本物理学家近角聪信称李庆贤是“首先观察到磁冷却效应”的人;前苏联学者C.B.冯索夫斯基(Boнсовский)也在其著作中多处引用李庆贤的实验研究。

  • 磁场能改变热量传递方向

    2012年12月27日 来源: 中国科技网 作者: 杨雪 中国科技网讯 据《自然》杂志网站近日报道,意大利比萨的NEST纳米科学研究所的科学家在最新研究中发现,磁场能控制个体间热流传递的方向,使热量可能从较冷个体传递到较热个体。 物理学家布莱恩·约瑟夫森曾在1962年预测,电子可以在两个被一层薄绝缘体分开的超导体之间“打开通道”,这一过程在传统物理学中是不允许的。约瑟夫森随后制作了超导量子干涉器件(SQUIDs),SQUIDs包括两个Y形的超导体,连接形成回路,还有两个绝缘薄片夹在中间。 该研究所的弗朗西斯科·贾佐托和玛丽亚·何塞·马丁内斯·佩雷斯测量了SQUIDs器件的热特性,即里面的电子如何进行热传递。他们对SQUIDs器件的一端进行了加热,并测量了与之相连的电极温度。结果发现,当他们改变穿过回路的磁场时,流过SQUIDs器件的热量也会跟着变化。 该发现在一定程度上颠覆了热传递,使热量可能从较冷个体传递到较热个体。这显然违反热力学第二定律——热量永远从较热个体传递到较冷个体。但贾佐托认为,上述过程其实完全合理,因为只有部分热流发生相位变化。如果仅考虑单电子热传递,净流仍然是从热端到冷端。 这种热流的变换可以依据该超导体的“相位”来解释,波函数波峰和波谷的位置描述了SQUIDs器件回路中的超导电子对。最大热流发生在当回路一半的波峰与另一半的波峰相遇时,反之,当波峰与波谷相遇,热流处于最小值。磁场使这些相位相互转换,从而改变热流。 荷兰代尔夫特理工大学的克莱普维克认为,贾佐托他们的研究“可爱”但“不惊人”,并怀疑其实际应用价值。他说:“唯一可能的领域是固态制冷,取代低温冷却液。” 但贾佐托认为,研究有助于实现微型高效热机的开发。他也希望该研究成为“相干热量”的基础,用热交换代替电信号传递信息。之前,贾佐托和其他人已经建造了用电而不是磁来控制热交换的设备。 《科技日报》 2012-12-27(二版)

  • 【原创】低温科技,开辟物理研究新道路

    牛津仪器超导部在第十一届全国低温物理学术年会中展示其最新的低温超导技术和整体解决方案,为专业用户提供优质产品及服务2007年8月10日至14日,牛津仪器公司超导部参加在哈尔滨市举办的2007年第十一届全国低温物理学术年会,并于展示其最先进的低温制冷技术以及无液氦整体解决方案。本次年会由中国物理学会低温物理专业委员会主办,中科院物理研究所和哈尔滨工业大学凝聚态科学与技术研究中心承办,是中国最早最具权威的低温物理研讨会。作为此次年会的最大赞助商,牛津仪器不仅充分展示了其在低温技术研发方面的实力,而且还将展览一系列的未来技术,与与会学者共同探讨低温技术的发展趋势,以及如何在节省液氦的同时提高实验效率。牛津仪器超导部经理李俊云博士表示:“牛津仪器始终坚信低温技术的改善将为科学的发展带来更多的激动人心的发现。作为全球领先的低温超导技术提供者,牛津仪器多年来一直关注于低温超导领域的发展以及降低实验消耗的研究,致力于为科研,工业等各个专业领域提供量身定制的低温解决方案。“为专业人士提供专业的服务”是牛津仪器的品牌承诺,希望通过不断的科技创新满足科学家的实验需求,在减少实验消耗的同时提高仪器性能,为中国的低温物理发展贡献一份力量。 在本次的展会中,超导部门就公司的四个最新实验技术- 无液氦低温磁场测量环境、高效液氦杜瓦系统、无需液氦的稀释制冷机以及通用测量环境系统进行展示,并邀请相关的专家及研发人员就这四方面技术与发展进行探讨。首先,在全球液氦日趋紧张的今天,低温系统的液氦节约技术尤为重要。出色的无液氦技术使科研更简单、更轻松,从而降低了实验的经济成本和时间成本,提高了实验效率。牛津仪器专业的低温实验解决方案不仅针对具体研究进行度身定制的仪器设计,而且因地制宜采用多种液氦循环方式实现对实验系统有更简单更方便的维护。另外,良好的实验设备形成令人愉悦的科研环境还能够激励科研工作者进行更多的探索。当然,牛津仪器最为人所熟知的便是其领先业界的稀释制冷机系统和超导磁体,目前最新一代稀释制冷机——TritonDR ——采用了最新无液氦技术,利用内部气体自循环和无泄漏的管道实现可靠的实验操作。Triton 还采用了低振动脉冲冷头,自诊断电脑控制,飞瓦(10^-15w)温控技术,为低温实验提供了最佳的条件控制。牛津仪器已可以提供磁场强度至22T的超导磁体,与稀释制冷机共同提供低温强磁场的实验环境。 牛津仪器在中国的低温科研方面扮演了重要的角色,不断致力于为中国提供优质低温实验解决方案。

  • 强激光高能量密度物理研究新进展——局域超临界场致正负电子对产生过程的磁场控制

    量子场论被认为是描述最本质物理规律的学科之一。利用最基本的关系式,狄拉克方程,所提出的多种预测已经被证实,并得到具有重大意义的结果。到目前为止,关于最具挑战性且有重大价值的一项预测的真实性验证还仍然在探索中:光是否能够直接转化成物质,即强场下真空中是否能够激发出正负粒子对。1951年诺贝尔奖得主Julian Schwinger给出了电子对在均匀稳恒电场中产生率的表达式,这项先驱性的工作引起了人们对这项对物理基础学科发展和应用极富挑战性的重大科学课题的注意,并激发人们开始投入大量精力来挑战这个未解的难题。超快超强激光技术的快速发展正在为开展这项研究提供前所未有的实验条件,使其逐渐成为物理学的一个新的前沿热点。迄今为止,人们在实验上已经得到一些有意义的结果,重离子对撞实验以及美国斯坦福线型加速器上进行的46.6GeV电子束和强激光碰撞实验,已经证实了正负电子对的产生。但是到目前为止,由强光场直接引起的真空击穿和相应的正负电子对产生过程的实验还未能实现,主要原因是目前激光系统的最大强度虽然已经高达2×1022W/cm2,但仍不足以直接“击穿“真空。为了获得更高功率的激光系统,跨国研究中心也正在建设中。我们能够预期,在不久的将来,激光就可接近甚至达到“击穿”真空并自发产生正负电子对的强度,在避免其它效应的情况下对超临界场产生正负粒子对的过程进行直接检验。如果能够实现,将是人类首次证实光可以直接转化成为物质,即爱因斯坦的能质公式E=mc2, 这对于物理学的发展和所带来影响是不可估量的。 对于这一重要问题,理论和数值方面已经得到了非常有意义的结果,但大部分工作都只考虑了电场而并没有考虑磁场效应。最近中科院物理所/北京凝聚态物理国家实验室(筹)光物理实验室强激光高能量密度物理组与美国伊利诺斯州立大学、中国矿业大学和上海交通大学的合作者一起,首次研究了磁场效应对局域超临界电场下正负电子对产生过程的影响。通过运用基于量子场论的非微扰的精确数值模拟,发现在超临界的电场中即使考虑强度非常小的磁场,只要其空间宽度足够宽,仍然可以关闭正负电子对产生通道,使系统变为次临界,并且伴随产生粒子数在时间上的震荡效应(见图1)。一直被公认的Schwinger公式和Hund公式都无法对这种效应做出描述。通过计算系统总哈密顿量的能量本征值得出,磁场变宽的同时正负能态的上下限随之相互远移,当磁场宽度达到粒子在磁场中的回旋半径的时候系统就变为次临界(见图2),并且出现离散的朗道能级引发粒子数在时间上的震荡效应。上述研究结果发表在近期的物理评论快报上:http://prl.aps.org/abstract/PRL/v109/i25/e253202。该工作得到了国家基金委、科技部、科学院和美国国家基金委的资助。http://www.iop.cas.cn/xwzx/kydt/201212/W020121231638765715614.png 图1. 不同磁场宽度下正负电子对的产生数随时间的变化关系。其中WB=1.25/c约为电子在磁场中的回旋半径:磁场宽度小于回旋半径时,粒子数持续产生,系统为超临界;磁场宽度大于回旋半径时,系统变为次临界。http://www.iop.cas.cn/xwzx/kydt/201212/W020121231638765722390.gif 图2. 根据总哈密顿量得到的能级分布随磁场宽度WB变化关系。宽度小于回旋半径时,正负能态交叠,能够持续产生电子对;宽度大于回旋半径时,正负能态分离并出现离散的朗道能级。

  • 【原创】磁场系统(Magnet System)

    [size=3][font=宋体]磁场系统[/font][font=宋体]提供被加速的带电粒子在所控制的轨道中做圆周运动所需要的磁场强度,由磁铁、线圈、磁场电源配给系统([/font][font=Times New Roman]Magnet Power Supply PSMC[/font][font=宋体])等组成。[/font][/size][size=3][font=Times New Roman] [/font][font=宋体]现代医用回旋加速器的磁场结构设计根据粒子动力学和[/font][font=Times New Roman]LH Thomas[/font][font=宋体]的轴向聚焦理论采用与传统回旋加速器的平面磁极不同的扇形磁极,其形成的深谷磁场代替了传统的匀强磁场。常用的扇形磁极有直边扇形磁极、螺旋扇形磁极和分离扇形磁极等。[/font][/size][size=3][font=宋体]回旋加速器的磁体常见的有方形和[/font][font=Times New Roman]C[/font][font=宋体]形两种结构,[/font][font=宋体]前者由两个横梁和两个立柱组成的磁轭加上两个磁极构成,是普通回旋加速器普遍采用的结构。而分离扇形的等时性回旋加速器则常采用后者,它可提供较多的空间来安放束流的其它设备。回旋加速器的磁铁通常由含碳量极低的工业纯铁或低碳钢制成。[/font][color=#eaeaea][size=5][/size][/color][/size][size=3][font=宋体]回旋加速器的工作磁场[/font][b][i][color=blue][size=3][font=Times New Roman]B[/font][/size][/color][/i][/b][font=宋体]愈高,其基本造价就愈低。从经济的观点看,[/font][b][i][color=blue][size=3][font=Times New Roman]B[/font][/size][/color][/i][/b][font=宋体]愈高愈好。然而,磁场过高时,磁体钢材的导磁率将迅速下降,发生“磁饱和”现象,此时不仅磁体激磁的效率大大下降,从而可使造价和运行费用反而升高,更重要的是磁场的分布将随激励水平的高低而发生显著变化,这将会给加速离子能量和品种的调节造成巨大的困难。因此,通常将[/font][b][i][color=blue][size=3][font=Times New Roman]B[/font][/size][/color][/i][/b][font=宋体]选择在[/font][font=Times New Roman]1.2~2.0[b][color=blue][size=3]T[/size][/color][/b][/font][font=宋体]之间。离子种类和能量固定的加速器的磁感应强度往往选在[/font][font=Times New Roman]2.0[b][color=blue][size=3]T[/size][/color][/b][/font][font=宋体]附近,离子和能量可变的加速器则选择在低限附近。[/font][/size][size=3][font=宋体]回旋加速器的磁铁通常用磁钢的锻件制成,也可用若干厚钢板迭焊后再进行加工而制成。为了达到高的磁感应强度[/font][b][i][color=blue][size=3][font=Times New Roman]B[/font][/size][/color][/i][/b][font=宋体],所用的材料必须是饱和磁感应强度高的磁钢。钢材中的杂质(主要为碳)可造成饱和磁感应强度下降,因此通常采用含碳量极低的工业纯铁(“阿姆科”软铁)或低碳钢作为回旋加速器主磁铁铁芯的材料。[/font][/size][font=宋体]近年来,由于超导磁体技术的进展,已成功地将该技术应用于回旋加速器,建成了超导回旋加速器,这类加速器的磁体主线圈是用铌钛和铜的合金材料制成。当液氮将线圈冷却到[/font][font='Times New Roman']4.2K[/font][font=宋体]时,通过的电流高达[/font][font='Times New Roman']34000A[/font][font=宋体],可产生约[/font][font='Times New Roman']5.0T[/font][font=宋体]的强磁场。在这样的条件下,回旋加速器的尺寸只是常规型的[/font][font='Times New Roman']1/3~1/2[/font][font=宋体]左右,而磁体的运行费用仅为常规的[/font][font='Times New Roman']1/10[/font][font=宋体]。[/font]

  • 日本研究发现伽马射线爆发时有强大磁场参与

    日本研究人员日前宣布,他们弄清了宇宙中最强的爆炸现象——伽马射线爆发的部分机制,即在伽马射线爆发时可能有强大磁场参与。日本研究人员日前宣布,他们弄清了宇宙中最强的爆炸现象——伽马射线爆发的部分机制,即在伽马射线爆发时可能有强大磁场参与。这一成果将有助于弄清伽马射线爆发的详细机制。伽马射线爆发被认为主要在离地球100亿光年以外的太空中发生。当质量相当于太阳30倍以上的巨大恒星寿命终结,发生超新星爆发并产生黑洞时,随着黑洞中心出现喷流现象,会有非常强大的伽马射线在数十秒内爆发性释放。伽马射线是一种强电磁波,具有极强的穿透本领,但因为无法穿透地球大气层,因此只能在太空中被探测到。日本金泽大学和山形大学等机构的研究人员利用去年5月发射的太空帆船“伊卡洛斯”号上的观测装置,在去年8月26日观测到了伽马射线爆发。研究小组分析观测数据,发现伽马射线波长振动的偏光现象。研究小组认为,偏光是伽马射线爆发时有强大磁场参与的证据。而且根据观测分析,可能有多个磁场存在。

  • 【资料】-电磁场理论

    既然说到微波化学大家就应该对电磁场有所了解[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=26325]电磁场理论[/url]本书讨论电磁场的基本理论与应用,且偏重于微波理论与技术方面。 全书分四部分.第一部分((1-5章)是静态场的基本理论,第二部分(6-9章)是时变场与波的基本理论,第三部分(10,、11章〕是函数理论及在场与波中的应用.第四部分(12-14章〕是场与波的求解方法。 本书是在修订原版(1984年)的基础上,将近年来国内外的理论与应用成果总结进去,其中也包括了作者的研究成果。 本书可供电磁场工程专业的大学高年级学生、研究生、教师和科技人员参考。[color=red]感谢楼主的分享,特设为精华,希望大家也能发好的帖子,好帖必赏。[/color]

  • 【资料】关于征求国家环境保护标准《电场、磁场、电磁场防护规定》(征求意见稿)意见的函

    环境保护部办公厅函 环办函〔2008〕833号 关于征求国家环境保护标准《电场、磁场、电磁场防护规定》(征求意见稿)意见的函 各有关单位:  为贯彻落实《中华人民共和国环境保护法》,我部组织对《电磁辐射防护规定》(GB8702-88)进行了修订,形成《电场、磁场、电磁场防护规定》(征求意见稿)。现将征求意见稿和编制说明印送给你们,请研究并于2008年11月30日前提出书面反馈意见。  联系人:封有才  地址:北京西城区西直门内南小街115号  邮政编码:100035  电话:(010)66556348,66556382(传真)  Email:feng.youcai@sepa.gov.cn  附件:   1.征求意见单位名单(略)  2.《电场、磁场、电磁场防护规定》(征求意见稿)[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=133279].《电场、磁场、电磁场防护规定》(征求意见稿)[/url]  3.《电场、磁场、电磁场防护规定》(征求意见稿)编制说明[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=133280].《电场、磁场、电磁场防护规定》(征求意见稿)编制说明[/url]  二○○八年十一月二十日

  • 上海首台磁共振加速器投入使用,精准灭杀肿瘤再添“利器”

    4月9日,沪上首台磁共振加速器在复旦大学附属肿瘤医院正式投入临床使用,这意味恶性肿瘤的精准放射治疗又新添了一把“利器”。该治疗系统治疗的肿瘤主要是头颈部肿瘤、乳腺癌、肝脏肿瘤、胰腺癌、胃、结直肠等,接下来,医院还将针对软组织肿瘤、食管癌、宫颈癌、前列腺癌等其它肿瘤开展治疗。此外,基于磁共振加速器的系列科学研究已经在持续开展中,包括基于MR-LINAC的一站式自适应放疗的临床应用、MR引导下直肠癌新辅助放化疗联合免疫治疗的前瞻性临床研究等。这是一种光子放疗新模式,其创新在于:加速器根据实时的核磁共振图像,精准区分患者肿瘤组织和周围器官,通过高精度放射线照射肿瘤组织,医生全程“透视”并追踪肿瘤形态变化、实时调整治疗策略。复旦大学附属肿瘤医院放射治疗中心主任章真教授说:“作为肿瘤治疗的主要手段之一,放射治疗也被誉为'隐形的手术刀’。其通过高能量的放射线照射肿瘤组织,实现杀灭肿瘤的效果。70%的肿瘤患者在整个治疗过程中需要接受放射治疗,放疗早已不是既往公众认知中的'姑息性疗法’。'精准放疗时代的到来,越来越多的新'武器’让放射治疗再上新台阶。”章真说,“将影像设备和加速器结合在一台设备上,让医生能够在放射治疗过程中可以实时观察肿瘤状态和周围组织的运动,无疑可以引导放射线更精准地照射肿瘤,最大程度上减少对正常组织的损伤,减少放射治疗的并发症。”据了解,此次投入临床使用的磁共振加速器,便是将磁共振和加速器融为一体。凭借高分辨率、无辐射的磁共振成像,实时显示患者肿瘤病灶的清晰边界,无疑为放射治疗医生增加了一双“透视眼”,能够全程监测肿瘤患者的病灶状态,进而引导放射线精准治疗。该中心副主任胡伟刚教授介绍,通过该设备的在线自适应放射治疗管理系统,医生还可以根据患者的实际情况,实时调整放射治疗计划,为患者提供个性化的精准放疗方案。[来源:复旦大学附属肿瘤医院][align=right][/align]

  • 我国科学家实现无液氦极低温制冷基础研究突破

    一个世纪之前,人类第一次将氦气液化,从此利用液氦的极低温制冷技术被广泛应用。例如一些大科学装置、深空探测、材料科学、量子计算等高技术领域。然而,低温技术中不可缺少的氦元素全球供应短缺,有什么方法可以不用氦元素实现极低温制冷?中国科学院大学苏刚教授、中国科学院物理研究所项俊森博士和孙培杰研究员、中国科学院理论物理研究所李伟研究员、北京航空航天大学金文涛副教授等人组成的联合研究团队通过多年研究,在近期实现了无液氦情况下极低温制冷基础研究的重要突破,这就为破解我国氦资源短缺的问题提供了解决方案。该科研成果北京时间1月11日在国际学术期刊《自然》发表。[align=center][img=,530,]https://img1.17img.cn/17img/images/202401/uepic/32138bef-1937-438a-974e-340ac20aa30e.jpg[/img][/align][align=center]科研人员挑选高质量钴基三角晶格单晶样品[/align]超固态是一种在接近绝对零度(0开,也就是零下273.15摄氏度)时出现的量子物态,在超固态情形下,物质中的原子一方面呈现规则的排列,同时还可以在其间“无粘滞”地流动。超固态自20世纪70年代作为理论猜测提出以来,各国科学家尚未在固态物质中找到超固态存在的可靠实验证据。在这项研究中,我国科研人员在一种钴基三角晶格量子磁性材料中,首次发现了名为“自旋超固态”的新奇物质状态,得到了其存在的实验证据。随后科研人员利用该材料,通过绝热去磁过程获得了94毫开,也就是零下273.056摄氏度的极低温,实现了无液氦极低温制冷,并命名该效应为“自旋超固态巨磁卡效应”。[align=center][img=,530,]https://img1.17img.cn/17img/images/202401/uepic/c3dd3d46-2e2f-41f7-84cc-4350120390d4.jpg[/img][/align][align=center]科研人员调试极低温制冷平台[/align]中国科学院大学苏刚教授介绍,比如我们把这次发现的材料放到磁场里面,保持热量不泄漏的情况下给它退磁,也就是把磁场去掉。慢慢地在降磁场的过程中,材料的温度就会慢慢地降下去,最后就降到了94毫开(零下273.056摄氏度)。[align=center][img=,530,]https://img1.17img.cn/17img/images/202401/uepic/cde5e51d-fdff-4213-beaf-eab01a1d4dfe.jpg[/img][/align][align=center]科研人员讨论新的实验结果[/align]据了解,极低温制冷是我国科研领域亟待攻克的关键核心技术之一。这次基础研究的突破是国际上在实际固体材料中首次给出超固态存在的实验证据。科研团队未来的工作目标是继续突破极低温的极限,并在未来建成无液氦极低温制冷机。极低温制冷机可以为例如超导量子计算机提供接近绝对零度的极低温运行环境,并且在凝聚态物理、材料科学、深空探测等前沿技术领域广泛应用。[来源:央视新闻客户端][align=right][/align]

  • 【分享】电磁场与自杀有关系

    研究发现:如果人规则地暴露在低频电磁场中,自杀的可能性更高。美国科学家研究了从1950年到1986年被5家电力公司雇用的工人,并从十三万九千工人中选出了六千工人作细致的研究。工人平均在公司中工作16年。研究者发现,在规则地暴露于电磁场辐射的工人中,自杀率是没有经常受到电磁辐射工人的两倍。暴露于最强的电磁场辐射的工人,也是自杀率最高的工人。自杀通常发生在暴露于最强的电磁场辐射的第二年。研究人员说:这项研究提供了最低电磁辐射的积累与自杀的关系。从50岁以下的自杀者身上看出,这两者的相关关系尤为突出。辐射会减少褪黑激素,因此会激发抑郁症,在极端的情况下就会发生自杀。

  • 永久磁场,交流磁场和“直流磁场”

    [url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析仪,采用塞曼方式扣除背景的干扰早已不是什么新鲜的技术了。使用塞曼方式就要有磁场存在,那么磁钢就是产生磁场的来源了。在目前市面上所销售的塞曼扣除背景的仪器中,使用的磁钢种类,我本人见过的有两种;一种是永久磁钢的,也称为永久磁场的,它是将两个软铁极靴预先充好磁来使用的。另一种是交流磁钢的,它是在原子化阶段,通过给两个极靴外围的线圈施加上交流电流而产生交流磁场的。但是我还听到另一种说法,就是直流磁场。我的问题是:是不是真有给磁钢极靴上的线圈施加直流电流而产生直流磁场的磁钢?望大家发表高见!

  • 【求助】氘在磁场中的分裂

    氘核(I=1)在磁场中会分裂成三个能级,即I=+1,0,-1.请问这三个状态分别表示的是什么意思?我理解的是在磁场中,一个自旋方向和磁场相同,一个相反,而0的那个则表示在磁场中不旋转。不知道这样理解是否正确。

  • 【原创】提个建议…在线状态的设置与开放

    我在其它网站上看到一项功能挺好的,即用户在线状态,在此平台上,你可以看到全部上网的人员会员、认证会员、游客。也可以看到他现在在什么版面,看什么贴子。不知我们论坛是否有此功能,若有,我希望能开放到版主这一层。别的网是全开放式的。找人和找贴较方便。要是你跟踪某人的特点,可以跟踪其所看贴子就可以知道一些他的兴趣爱好及特长啦,这样便于发现人才。上了名单的游击队员也无所遁形。

  • 我国首台近室温超低场核磁共振谱仪研制成功

    核磁共振是检查身体的“利器”,但植入心脏起搏器的患者“禁止入内”——这是因为核磁共振的高磁场可能导致心脏起搏器的损坏。但我国科学家日前研制成功的超低场核磁共振谱仪,很可能在不久的将来解除这项“禁令”。 这台仪器是由中科院武汉物理与数学研究所超灵敏磁共振研究组研制成功的,是我国首台近室温(40摄氏度)的超低场核磁共振谱仪。这种仪器不但可用来研究物质分子在地磁场等自然条件下的结构信息与动力学,还能直接探测铁磁性物质如氧化铁磁纳米粒子等样品,有望在生物、医学等领域发挥作用。 核磁共振是一种探测物质分子结构和动力学的技术,探测到的信息则要用磁共振成像来还原,这就需要核磁共振谱仪。传统的核磁共振技术采用射频感应线圈来探测磁共振信号,为了获得更高的信号灵敏度,大多数商用核磁共振谱仪都在向高磁场发展。但是,高磁场有很多局限性。比如不能用于心脏起搏器等体内植入器件;再比如,我们身处的地球磁场是弱磁场,这就让传统的核磁共振谱仪面对处于自然环境中的化学样品和生物组织往往“束手无策”,难以获得可用的信号。 超低场核磁共振谱仪就是一种可以探测极弱磁场下磁共振信号的仪器。该研究组刘国宾博士利用高灵敏原子磁力计替代传统的射频线圈,从而能通过光学技术探测到极弱磁场下的磁共振信号。这种仪器既能在自然条件下保持灵敏性,也降低了制造成本;同时,它对造影剂的探测精度很高,因此在医学、生物等领域有很广阔的应用前景。来源:光明日报 2013年11月19日

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制