当前位置: 仪器信息网 > 行业主题 > >

大小鼠自发活动旷场图像分析系统

仪器信息网大小鼠自发活动旷场图像分析系统专题为您提供2024年最新大小鼠自发活动旷场图像分析系统价格报价、厂家品牌的相关信息, 包括大小鼠自发活动旷场图像分析系统参数、型号等,不管是国产,还是进口品牌的大小鼠自发活动旷场图像分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大小鼠自发活动旷场图像分析系统相关的耗材配件、试剂标物,还有大小鼠自发活动旷场图像分析系统相关的最新资讯、资料,以及大小鼠自发活动旷场图像分析系统相关的解决方案。

大小鼠自发活动旷场图像分析系统相关的论坛

  • 扫描电镜束斑大小与图像分辨率

    束斑大小和分辨率之间有直接的因果关系。诸如冷场或热场发射、提高电子枪的亮度、降低电子枪的能量发散度、大幅提高电子枪的真空度等等都是为减小束斑服务的。钨灯丝由于其曲率半径太大、发射电流又小,可以说电镜研发单位无法使它得到有用的足够小的束斑。冷场电镜比热场电镜的束斑小,更比钨灯丝的小,所以在观察图像时钨灯丝电镜更需要注意spot size的调整。我们用人眼的分辨率0.3mm计算一下SS的调整。1000倍下SS要小于0.3mm÷1000=300nm ,同理10000倍下要小于30nm ,100000倍下要小于3nm 。显示器的分辨率也会影响图像清晰度,有资料表明当有两个以上像素重叠时图像会显得模糊。我们可以在图像采集时设置一个图像分辨率,该设置必须高于由束斑直径确定的二次电子图像分辨率。

  • 【分享】图像分析仪在金相分析中的应用

    图像分析仪在金相分析中的应用近年来,随着计算机技术和体视学的发展,图像分析仪被广泛地应用于金相分析中,使传统的金相分析技术从定性或半定量的工作状态逐步向定量金相分析方向发展。 金相工作者多年来一直从金相试样抛光表面上通过显微镜观察来定性地描述金属材料的显微组织特征或采用与各种标准图片比较的方法评定显微组织、晶粒度、非金属夹杂物及第二相质点等,这种方法精确性不高,评定时带有很大的主观性,其结果的重现性也不能令人满意,而且均是在金相试样抛光表面的二维平面上测定,其测量的结果与三维空间真实组织形貌相比有一定差距。现代体视学的出现为人们提供了一种由二维图像外推到三维空间的科学,即将二维平面上所测定的数据与金属材料的三维空间的实际显微组织形状、大小、数量及分布联系起来的一门科学,并可使材料的三维空间组织形状、大小、数量及分布与其机械性能建立内在联系,为科学地评价材料提供了可靠的分析数据。 由于金属材料中的显徽组织和非金属夹杂物等并非均匀分布,因此任何一个参数的测定都不能只靠人眼在显微镜下测定一个或几个视场来确定,需用统计的方法对足够多的视场进行大量的统计工作,才能保证测量结果的可靠性。如果仅靠人的眼睛在显微镜上进行目视评定,其准确性、一致性和重现性都很差,而且测定速度很慢,有些甚至因工作量过大而无法进行。图像分析仪以先进的电子光学和电子计算机技术代替人眼观察及统计计算,可以迅速而准确地进行有统计意义的测定及数据处理,同时具有精度高、重现性好,避免了人为因素对金相评定结果的影响等特点,而且操作简便,可直接打印测量报告,目前已成为定量金相分析中不可缺少的手段。 图像分析仪是对材料进行定量金相研究的强有力工具,也是日常金相检验的好帮手,可以避免人工评定带来的主观误差,从而也避免了扯皮现象。虽然在日常金相检验中,不可能也不必每次都使用图像分析仪,但当产品质量出现异常或金相组织级别处于合格与不合格之间而无法判别时,则可以借助图像分析仪对其进行定量分析,得出准确结果,确保产品质量。图像分析仪在金相分析中的应用,拓展了金相检验的检测项目,促进了检测水平的提高,对于提高检测人员的素质也是十分有益的。 图像分析仪的系统由金相显徽镜和宏观摄像台组成的光学成像系统,其用途是使金相试样或照片形成图像。金相显微镜可直接对金相试样进行定量金相分析;宏观摄像台适用于分析金相照片、底片及实物等。 为了能用计算机存贮、处理和分析图像,首先需将图像数字化。一帧图像是由不同灰度的一种分布所组成,用数学符号表示为j=j(x,y),x、y为图像上像素点的坐标,j则表示其灰度值。所以,一帧图像可以用一个m×n阶矩表示,矩中每个元素对应于图像中一像素点,aij的值即表示图像中属于第i行第j列的像素点的灰度值。CCD摄像机(电荷耦合器件摄像机)就是一种图像数字化设备。金相试样上的显微特征经过光学系统后在CCD上成像并由CCD实现光电转换和扫描,然后作为图像信号取出,由放大器进行放大,并量化成灰度级以后贮存起来,从而得到数字图像。 计算机根据数字图像中需测量特征的灰度值范围,设定灰度值阈值T。对于数字图像中任何一个像素点,若其灰度大于或等于T,则用白色(灰度值255)来代替它原来的灰度;若小于T则用黑色(灰度值0)来代替原来的灰度,可以把灰度图像转化为只有黑、白两种灰度的二值图像,然后再对图像进行必要的处理,使计算机能方便对二值图像进行粒子计数、面积、周长测量等图像分析工作。若采用伪彩色处理,则可把256个灰度级转换成对应的彩色,使灰度很接近的细节和其周围环境或其他细节易于识别,从而改善图像,更利于计算机处理多特征物图像。 图像分析仪通常都具有下列基本图像处理、分析功能:图像采集。 图像增强和处理:包括阴影校正,伪彩色处理,灰度变换,平滑、锐化;图像编辑等。 图像分割。 二值图像处理:包括形态学处理(腐蚀、膨胀、骨胳化等),二值图像的算术运算、联接、自动修补等。 测量:包括特征物统计,对其周长、面积、X/Y投影、轴长、取向角等参数进行统计测量。 数据输出。

  • 网络讲堂:11月6日 3D颗粒图像分析技术及应用案例(最新3D颗粒图像PartAn 3D分析仪开发者主讲)

    http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif3D颗粒图像分析技术及应用案例(最新3D颗粒图像PartAn 3D分析仪开发者主讲)讲座时间:2014年11月06日 10:00主讲人:Dr. Terje JorgensenDr. Terje Jorgensen 专业从事动态颗粒图像研究超过30年,最新3D颗粒图像PartAn 3D分析仪开发者 全英文讲解,中文同声翻译http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif【简介】2014年麦奇克全新推出拥有专利技术的3D颗粒图像分析仪,实现动态颗粒图像实时分析,提供多于30种不同的形态参数,本次网络讲堂邀请到3D颗粒图像技术主研发者Dr. Terje Jorgensen 亲自讲解3D图像分析技术及应用案例。颗粒的大小形状与颗粒材料的结构和产生颗粒时的工艺工程有关,复杂的颗粒形状对粒径测量方法会产生很大的影响。目前,基于激光散射原理的颗粒测量仪器被广泛应用,适合不同类型的干法/湿法样品分析。但是,由于该方法是典型的统计分析方法,颗粒的散射信号由多元光电探测器接收,经过数学模型处理后得到相应的粒度分布结果,而不能得到颗粒的实际形状信息,而且,其粒度直径D定义为等效球形的光学当量体积直径。但实际上我们所测的颗粒形状千差万别,在很多对颗粒形状有要求的应用领域,例如,在磨料涂料,建筑材料,食品工业,矿物加工,制药原料,石油石化等领域会产生较大的影响。通常,一般采用显微镜法来观察颗粒的形貌和测量颗粒的大小,所谓“眼见为实”,但是所能测量的样品量极少(约0.01g),而且必须经过一定的样品制备程序,所以美国Microtrac推出了最新的动态颗粒图像分析方法,配合先进的3D图像分析技术,实时统计并显示颗粒图像及粒度分布信息,提供描述每个颗粒30多种的大小和形状的参数(直径,周长,面积,体积,圆度,球度,凹凸度,延伸度以及长宽比等),为颗粒的分析提供了最全面的参数分析。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2014年11月06日 9:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/12225、报名及参会咨询:QQ群—231246773

  • 线束剖面分析的使用过程和图像分析

    [color=#2f2f2f]来源:http://www.dg[/color][url=https://links.jianshu.com/go?to=http%3A%2F%2Fbbs.elecfans.com%2Fzhuti_715_1.html]ti[/url][color=#2f2f2f]anze.com 作者:天泽精密仪器[/color] 对于人们来说,日常购买东西时,最重要的就是商品的质量,往往人们选择超市购物就是因为超市里的商品都通过了严格的质检,有着优秀的品质,购买大品牌的产品也是同样出于对质量的考虑,可是厂家在生产的时候,如何确定自己的产品质量达到标准了呢?这就是[url=http://www.dgtianze.com/]线束剖面分析仪[/url]的作用了。很多对于自己的品牌和质量有着高标准严要求的厂家,对于自身的产品质量追求也非常的严格,在每个批次的产品出厂前,都要对产品做抽样质检,这时候就需要用到线束剖面分析仪。首先要将需要做检验的线束切割成相应的端子样本,用来方便分析仪使用,接着就要打开线束剖面分析仪,待智能系统启动后,将相应的端子样本放到分析仪的端子夹上,分析仪就会通过全方位的扫描及图像精度放大来自动分析端子样本的组成成份、结构、图案规则等等数据,操作人员只需要根据不同的操作步骤对端子样本进行一些简单的操作,配合分析仪的预设程序就可以,像是将样本放到腐蚀性能试验的专用小槽里,或是将做完检验的无用样本取出,清洁好分析仪等等,大部分的分析工作,都可以由分析仪自动完成。线束剖面分析仪在使用中会自动提示进入下一个阶段,操作人员只需要按着提示进行操作就可以,分析仪对端子样本的分析包涵了多个方面,包括承压力、拉力、韧性、强度、抗腐蚀性、耐氧化度等等,因此对于产品的性能检验是非常综合而且多方面的。[img]http://www.dgtianze.com/uploads/allimg/190810/1-1ZQ00R053920.png[/img]线束剖面分析仪是我们在工业生产中必不可少的检测工具,如果检测结果并不是如此精确,就有可能使得不合格的产品随着厂家流入市场,所造成的安全隐患、经济效益损失是不可估量的,最重要的是会影响到厂商的信誉问题,所以说,经过更新以后的线束剖面分析仪,不管是在操作方面、图形清晰程度还是数据读取分析对比上,都比过去得到了一个更明显的提升,有效的解决客户的困扰。在样品的截取、切割打磨的这一系列过程中,就使用了新技术的支持和进口产品的运用,让端子样品的横截面更平滑细腻,这样就便于下一步的图像采集,使得图像更清晰,减少误差和失误。在图片采集方面,线束剖面分析仪采用超高清的摄像头进行拍摄,所以图像的成像效果非常好,还原真实程度也很高,想要观察到更清晰的样本,还可以在显示屏上直接对图像进行放大,范围从四十五倍到两百五十倍不等,非常方便使用者进行使用和观察,这些都依托了摄像头所拍摄的超高清图像。观察图像的设备则采用最新技术支持,具有很强的可信性和立体感。从寻找数据、研究数据、分析数据到得出结果仅仅需要短短几分钟。在分析数据和所得出的报告来看,不仅是速度较以往有了很大的提高,整个测量的过程也更完整更细致,包含多个步骤全部由系统自动完成。

  • 资料 小鼠养殖环境

    小白鼠俗称“小鼠”、尖嘴鼠,由于颜色纯白而得名。我国饲养小白鼠历史最早,据记载,公元307~1641年就有人捕获野生小鼠进行饲养,并作为古代僧侣们的祭物。据资料介绍,从18世纪开始,小鼠开始成为实验动物,有的也进行观赏饲养。一、生物学特性(一)分类学地位小白鼠是野生鼷鼠的变种,隶属于动物界,脊椎动物门,哺乳纲,啮齿目,鼠种。我国目前饲养最广泛的是1946年从印度某研究所引入到云南昆明饲养的品种,又名昆明种。50年代由昆明引到北京生物制品研究所,以后输送到全国各地饲养。(二)形态特生小白鼠经过人们长期选择,定向培育,已形成许多品种类型。一般人们把它分为普通常用小白鼠和满足特殊需要的特种小白鼠两种。特种小白鼠有高癌鼠、低癌鼠、糖尿病鼠及先天性肌肉萎缩病鼠等。有的将小白鼠根据不同杂交方法和获得遗传特性而划分为近交品系、突变品系、远交和杂交群等。1972年以前,国际上公认的小白鼠近交系已有250多个。各品种小白鼠形态特征略有差异,但基本上相差不多。普通小白鼠体长约8厘米,尾略短或略长于体长,面部尖实,嘴前部有长长的触毛,耳耸立呈半圆形,眼睛大,嘴尖,被毛有纯白色和白斑色。90日龄昆明种小白鼠,体长9~11.0厘米,一般雄鼠大于雌鼠,尾有四小白鼠经过人们无数代的定向选择,生活习性有了一定的改变,环境适应性较差。如果把它们放回到室外环境,往往会因缺乏竞争力而难以生存。在人工饲养条件下的小白鼠,胆小怕惊,温顺,较易捕捉。当它受惊时,尾巴挺直并猛力甩动。夜间比白天活跃,喜群居。白日常集群而卧,下午4~5点钟以后活动加强,尤其在晚上更加活跃。当人在晚上进入鼠舍,即可听到小鼠不停地活动与啃咬所发出的沙沙响声。小白鼠喜阴暗、安静的环境,对环境温度、湿度很敏感,经不起温度的骤变和过高的温度。夏季温度过高常影响种母鼠的受胎率和仔鼠生长发育。冬季室温过低,不仅会影响种鼠的生长繁殖,且易发生多种疾病。小白鼠最适宜的室温是18~22℃,相对湿度为50~60%时较理想。此外,小白鼠尚有在干燥角落营巢的习性。白化小白鼠怕强光,在比较强烈光照下,哺乳母鼠易发生神经紊乱,可能发生吃仔鼠的现象。受到噪音的刺激,也会吃仔鼠。雄鼠好斗,性成熟的雄鼠放在一起,常发生互斗咬伤。雄鼠具有分泌醋酸氨臭气的特征,是引起饲养室内特殊臭气的原因。小白鼠为杂食性动物,可供利用的饲料很多,但作为实验动物饲养,应针对不同类型的小白鼠和各个生长发育阶段来制定合理的日粮标准。健康小白鼠一般能活存18个月至20个月,最长的可活至二年半。但年老的小鼠常体弱毛稀,多死于各种疾病,尤以肿瘤为多。(一)饲养设施经过长期入工饲养的小白鼠,对环境的适应性差,不耐冷热,要求生活在清洁无尘,空气新鲜,温度在18~22℃,相对湿度50~60%,噪音85分贝以下,氨浓度20PPm.通风换气8~12次/小时的环境中。因此,它对饲养房舍的建筑、环境条件要求比较严格。目前,国外饲养实验小白鼠多采用全封闭式的饲养设施,室内温度。湿度、光照、通风全部自动控制。国内饲养条件,尽管因陋就简,也要满足小白鼠对生活环境的基本要求。此外,笼具是小白鼠的生活场所,也是从事饲养人员每天都得操作的用具,因而笼具的结构、质量、式样以及重量等,是否合乎科学饲养要求,这对动物的生长繁殖,改善工作人员的劳动条件和提高工作效率等,都是十分重要的。1.鼠舍饲养小白鼠的房舍不宜过大,以20~25平方米为宜。这样有利于鼠群的调整及房舍的消毒。如果是平房,每幢房舍之间应有一定的距离,至少不少于15米,这样既可保证周围环境的宽敞,又可较有效地控制疾病的传播。除饲养房舍之外,还应合理设计辅助设施。例清洁消毒室,饲料、笼具、垫料贮藏室以及工作人员的更衣室、消毒室等。2.鼠罐当前在国内使用的有白瓷罐。泥瓦罐和塑料罐3种,还包括配备相应的罐盖。白瓷罐外形呈桶状,上口直径22厘米,下底直径18厘米,罐高吸厘米。其优点是上口较大,空气流通,夏季小白鼠居住凉爽,因其不渗水,不易引起铁鼠架的腐蚀。缺点是冬季保温性能差,笨重不易操作。泥瓦罐外形呈鼓状,有二个耳把。上口直径16厘米,下底直径15厘米,中间直径18厘米,罐高17厘米。优点是冬季保温性能好,使用轻便,价格便宜。具有防潮、暗光、价廉以及减少疾病传播等优点,是我国饲养小白鼠的传统用具。缺点是易渗水,腐蚀铁架,长期使用时,鼠粪和鼠尿熏染的臭气大。经过洗刷煮沸消毒,其臭味仍不易除去,有的破损率较大,过于笨重。塑料罐外形呈桶状,上口直径23厘米,下底直径19厘米,罐高14厘米,罐口上缘有卷边,罐重约150克。原料为聚乙烯塑料。其优点是使用轻便,不吸水,耐磨损,便于洗刷消毒,易干燥,贮存方便,耐腐蚀,耐用,破损少,老化后仍可回收,劳动强度轻。各种罐盖的外形结构及其大小都是按照鼠罐上口边缘的外形大小用铁丝编制而成。盖面上有填装饲料及饮水瓶的同斗,其孔大小,以逃不出仔鼠为原则。3.鼠盒小型盒长37厘米,宽26厘米,高17厘米。鼠盒可用于一公多母配种生产使用,也可用作待发小白鼠或饲养试验用鼠。利用鼠盒饲养小白鼠,其活动面积较大,但铁皮制作的盒底,容易被鼠的粪尿腐蚀。鼠盒盖的制法与要求同鼠罐。4.鼠架鼠架有木制及铁制两种。现在多为铁制的,材料多选用三角铁和薄铁皮(或塑料板)焊接而成。鼠架的大小根据条件、饲养数量等情况而定。一般的尺寸为高171厘米,长160厘米,宽50厘米,连同架盖分为五层。除顶盖外,每层鼠架可容纳鼠罐12个,每个鼠架分4层,共容纳鼠罐48个。目前国外已推广使用能够拆开的活动鼠架,用不锈钢制成,有很好的防腐性能。5.饮水器饮水器是饲养小白鼠的必备用具。常用的有玻璃瓶、塑料瓶和乳头式自动饮水器3种。其中以玻璃瓶使用最为广泛,一般采用容量250毫升和5吗毫升两种型号的玻璃瓶,瓶口使用生理盐水瓶上的瓶塞,从中间打孔插入铝管或玻璃管,其内径为0.5厘米,外径0.7厘米。6.铺垫物垫料,能吸附水分、动物的排泄物,维持笼内和动物本身的清洁卫生,垫料应不含挥发性、刺激性物质,无毒性,不会干扰动物实验。垫料的原料常用锯末、木刨花、木屑、碎玉米芯等。垫料的原材料常会携带各种微生物和寄生虫,使用前要经加工处理、消毒灭菌、除虫等。欧洲国家多用白杨木屑做垫料,而美国多用碎玉米芯,考虑到了材料的毒性因素和取材的难易。目前我国实验动物垫料尚未标准化,多采用混合木屑,其成分和毒性都不确定,可喜的是,现已开展了相关的研究,莎适合国情的标准化垫料,指日可待。

  • 48.10 5'-DFUR在小鼠结直肠癌模型内转化分析

    48.10 5'-DFUR在小鼠结直肠癌模型内转化分析

    【作者】 但操;【导师】 张继民; 【作者单位】 广州医学院, 外科学,【摘要】 研究背景:5’-脱氧氟尿苷(5’-deoxy-5-fluorouridine, 5’-DFUR)是临床治疗消化道恶性肿瘤的口服抗癌药物,为5-氟尿嘧啶(5-FU)的前体药物。其本身没有细胞毒作用,需要在细胞内经过胸苷磷酸化酶(thymidine phosphorylase,TP)转化为5-FU才能发挥抗肿瘤作用。已有文献报道乳腺癌和胃癌细胞可以表达TP活性,而大肠癌细胞是否表达TP则持论不同。我们在前期研究中发现大肠癌组织中TP活性主要由间质细胞中的巨噬细胞表达,而测定6株结肠癌细胞系也几乎没有TP蛋白表达。在癌细胞不表达TP的情况下5’-DFUR在结直肠癌组织中如何转化尚属疑问。我们前期体内实验对结肠癌小鼠动物模型应用化疗药物5’-DFUR进行治疗,结果发现与5-FU相比平均荷瘤生存期更长,平均瘤重轻,同期平均体重下降缓慢,提示5’-DFUR在小鼠结肠癌组织比正常组织中转化率高,抗癌选择性高。其原因可能是TP酶在癌组织中分布较正常组织多。前期体外实验把5’-DFUR加入培养基中同人血单核细胞一起培养24h,5’-DFUR对4种癌细胞的IC50明显下降,提示血液中单核细胞也可表达TP。由于尚未发现实验比较在癌组织和血液中TP含量,故两者TP的含量高低尚需要实验进一步证实。本实验应用高效液相色谱法(high performance liquid chromatography,HPLC)测定应用5’-DFUR后癌组织和血液中5-FU的转化情况,间接推断TP酶在癌组织和血液中分布差异,为进一步研究5’-DFUR在结直肠癌组织中转化及TP酶调控机制提供资料。实验材料:1、实验动物SPF级近交系BALB/c小鼠28只,6-8周龄,雄性,体重20.00±2.34g,购自广东省医学实验动物中心。2、肿瘤细胞株BALB/c小鼠结肠腺癌细胞株(CT26),购自美国菌种保藏中心(American Type Culture Collection, ATCC)。3、实验药物5’-DFUR由Roche公司日本研究中心提供; 5-FU注射液,江苏南通精华制药有限公司生产(批号: 080607);5-FU标准品购自Sigma有限公司提供(批号: 097K1352)。4、实验仪器岛津高效液相系统;色谱柱:Diamonsil C18柱(250mm×4.6mm,5μm)实验方法:1、小鼠结肠癌CT-26细胞株的培养10%胎牛血清1640培养基,含青霉素100×103 U/L和链霉素100 mg/L,37℃,5%CO2水浴恒温培养箱中培养,隔日换液,2-3天酶消化法传代。2、细胞悬液制备制备模型当天取指数生长期的细胞,用0.25%胰蛋白酶消化,机械吹打成细胞悬液,2 000r/min离心5 min,弃上清液,加适量生理盐水调整细胞浓度至1×107个/ml,以台盼蓝测定细胞活力在95%以上。3、结肠癌模型制作方法将体外培养的CT26细胞悬液0.2ml注入小鼠(BALB/c)背部皮下,约2周后基本可以形成肉眼可见的肿瘤隆起。4、动物分组及给药荷瘤小鼠28只随机分为4组:①5’-DFUR给药15分钟组;②5’-DFUR给药30分钟组;③5-FU给药15分钟组;④5-FU给药30分钟组。根据动物体重,5-FU用量0.020mg/g ,配制浓度为1.0 mg/ml。5’-DFUR用量0.038mg/g;配置浓度为2.0mg/ml。各组分别腹腔注射给药15分钟、30分钟后处死小鼠立即取血和瘤组织。5、标本处理小鼠眼眶动静脉取血0.5 ml后放置入37℃水浴30分钟,3200rpm离心5min,取上清液4℃保存。肿瘤组织用滤纸吸干血迹后称重,然后按0.5g组织与4 ml生理盐水(1:8)加入匀浆器匀浆5min, 3200rpm离心5min,取上清液4℃保存。6、制作血液和肿瘤组织的5-FU药物标准曲线取未给药小鼠血清7份,每份90μL,分别加入由5-FU对照品和蒸馏水配制的系列标准液适量并混匀配成100μL,使血清中药物浓度分别为6.25,12.5,25.0,50.0,100.0,200.0,400.0μg·mL-1,制作血清标准曲线;取未给药小鼠肿瘤组织匀浆液7份,每份90μL,分别加入由5-FU对照品和蒸馏水配制的系列标准液适量并混匀配成100μL,使肿瘤匀浆液中药物浓度分别为1.0,2.0,4.0,8.0,16.0,32.0,64.0μg·mL-1,制作肿瘤标准曲线。7、测量各标本浓度取血清100μL,置于5mL玻璃试管中,加入乙酸乙酯2mL,漩涡振荡2min后,3200rpm离心5min,取上层析液置于另一玻璃试管中。再次加入乙酸乙酯2mL进行第二次提取,漩涡振荡2min后,3200rpm离心5min,取上层析液,然后合并两次提取的上层析液,离心浓缩挥干。加入100μL流动相定容,混匀取出,置于EP管中,10000rpm离心7min,取上层析液20μL进样。记录药物峰面积,代入相应标准曲线计算药物浓度;取肿瘤匀浆液100μL,以同样方法处理标本测量浓度。8、观测指标给药15分钟、30分钟处死组5’-DFUR组和5-FU组小鼠血液与癌组织5-FU浓度。9、统计学方法应用统计软件SPSS13.0数据包对5’-DFUR组和5-FU组小鼠血液与癌组织5-FU浓度采用配对样本t检验进行比较。当P0.05时,认为差异有统计学意义。结果:1、注射药物5’-DFUR 15、30分钟后,癌组织转化的5-FU浓度分别54.64μg/g±12.80μg/g和45.58μg/g±18.82μg/g,血清中中5-FU浓度分别为8.83μg/ml±1.68μg/ml和9.82μg/ml±2.93μg/ml,15分钟、30分钟组癌组织5-FU浓度分别为血清的6.36、4.47倍(P0.05);2、注射药物5-FU 15、30分钟后,癌组织转化的5-FU浓度分别86.13μg/g±15.42μg/g和94.68μg/g±39.89μg/g,血清中5-FU浓度分别为133.35μg/ml±20.69μg/ml和112.70μg/ml±26.27μg/ml,15分钟、30分钟组血清5-FU浓度分别为癌组织的1.59、1.62倍(P0.05)。结论:小鼠结肠癌模型体内,癌组织内5’-DFUR转化率高于血液,考虑分布在癌组织中的PyNPase酶比血液高。 【谱图】http://ng1.17img.cn/bbsfiles/images/2012/08/201208142214_383901_1609970_3.jpg

  • 文双春:基金申请在高校已成为一场自发的群众运动

    文双春:基金申请在高校已成为一场自发的群众运动2012-03-01 18:34 来源:丁香园 作者:文双春 http://img.dxycdn.com/cms/upload/userfiles/image/2012/03/01/1330413497_small.jpgNature, 16 February 2012, vol. 482, pp. 429国家自然科学基金申请到了最后交本子的时候,从我院的统计来看,所有教学科研一线人员,能够申请的,或作为项目申请人,或作为项目参与人员,几乎全部披挂上阵了。前几年,学校和各学院还不时举行基金申请动员或推介会,参会人员踊跃;这两年类似的会议很少了,即使偶有举办,参会者也是寥寥无几,但基金申请时却是一派全民皆兵的景象。可以说,基金申请在高校已经成为一场既不需要动员也不需要推介的自发群众运动。可以从申请和批准两个方面考察这场群众运动的成因。从申请方来看,全民自发申请主要源自高校教师的科研动力或压力,对科研有兴趣和追求的,自然有申请项目的动力,在科研方面尚无或尚缺基础和专长的,迫于强大的科研压力也赶鸭子上架了。虽说高校教师的天职是教学,但在现有的考核和评价机制中,科研依然是最重的砝码,而且只有更重没有最重,没有科研,高校教师将变得愈发难以生存和发展。特别是近几年,高校的科研又前所未有地突出强调项目和经费,领导的关注点从论文数转移到了钱数,项目和经费成了高校教师卡脖子的事情。在这种背景下,无论是科研为主还是教学见长,无论是科研新手还是教学老兵,男女老少都必须见“钱”眼开,任何项目申请机会都要全力以赴扑上去,申请了不一定有希望,但不申请肯定是完蛋。就国家自然科学基金而言,首先它毕竟是“金”,是实实在在白花花的米米。虽说“金”不是万能的,但于今天的高校教师来说,没有“金”的确是万万不能的。科研不做不行,而想做点科研,招收和培养研究生要“金”,起个炉灶要“金”,买点柴火要“金”,发表文章要“金”,一举一动都要“金”。前不久nature发表一篇谈科学基金申请的文章,文章篇头的巨幅招贴图不是什么只有科学家才感兴趣的双螺旋或中微子之类的神秘东东,而是人见人爱的一堆堆“粪土”般的洋money,人家老外就是那么露骨或坦然:科学基金靠“金”勾引,科研人员奔“金”而去。科学无国界,申请科学基金的动力或动机应该也无国界吧!其次,也是最重要的,即使咱中国人比老外高尚,申请基金纯粹是为科学献身,丝毫没有拜“金”主义思想,那基金也是“基”——高校教师的生存之“基”,发展之“基”!高校的科研大多以基础或应用基础研究为主,基金已成了很多高校岗位聘任、职称晋升、研究生导师资格审核、人才选拔等的关键性指标,有了基金,就有了根基、阶梯、跳板。基金,从名字看,它似乎就是为高校教师而生、管高校教师死活的把戏;有了它,既可为自己奠“基”,又可到别处掘“金”;缺了它,可就要时刻提心吊胆自己的“基”被捣、“金”被扣啰!从受理、评审和批准方看,国家自然科学基金是自由申请、来者不拒,自主选题、海纳百川,既可凭实力取胜,也有撞大运的可能,活要活的正当,死也死的明白,这些因素在客观上为基金申请成为自发群众运动创造了条件。相对来说,国内现有其它科研资助体系,绝大多数既不自由,也不自主,更不公平,衙门八字开,有题无钱莫进来,你明着申请,他暗箱操作,宰你没商量,你想讨个说法比秋菊打官司还难。这类项目自然是即使米米堆积如山也很难勾起无权无势无门道的普罗大众的兴趣了。当然了,这类项目本身也许就不需要人民群众的参与,特别是广泛参与。在今天的高校,没有任何其它一件工作或一项活动象国家自然科学基金申请这样,成为几乎每位教师的自觉自愿尽心尽力行为。基金申请在高校已成为一场自发的群众运动,这到底是好事还是坏事?我个人认为有利有弊,但总体来说,利大于弊。毕竟,它是一场全民科学运动,一场科研意识的唤醒和提升、科学知识的普及和增长、科学思维的训练和梳理、科学思想的交流和碰撞的全民运动。国家自然科学基金在高校科学研究和人才培养中已经并将继续发挥极其重要的作用,其整体作用是目前国内其它任何一种科学资助体系都无法比拟和取代的。如何从国家、地域、单位等不同层面引导和组织这种热情高涨的大规模自发群众运动,使其更有效地服务于科学发展和经济社会发展的需求,也许是一个值得思考的问题,因为,一个自由但有序的运动其威力兴许更加强大。

  • 动态图像仪与静态图像仪的发展

    动态图像仪与静态图像仪的发展一、图像法基本原理 根据在测量过程中颗粒是否运动,颗粒图像分析技术可分为静态颗粒图像分析仪与动态颗粒图像分析仪两种。 图像法是颗粒分析中唯一具有形貌分析能力的方法,可进行球形度,长径比等参数的分析统计,对某些行业有重要的意义。 颗粒在图像仪上成像,组成图像的最小单位是像素,每个像素有特定的尺寸。图像粒度仪就是通过统计每个颗粒在图像中所占的像素的多少,然后计算出它的面积,进而求出等面积圆的直径。准确的图像法测量都依赖于两个方面。一是图像获取,获得高质量额颗粒图像;二是图像处理,要有高效而准确的图像处理算法。二、我国动态图像仪的发展 静态图像仪是上个世纪八十年代才研发推出,由于静态颗粒图像仪取样的颗粒数有限,影响统计的代表性,以及存在颗粒数取向误差。上世纪末国外开始研发态图像仪,如荷兰、英国、法国、德国等不同品牌产品相继推出。我国上海理工大、天津国国家海洋研究中心也跟着研究过,但直到2007济南微纳才首次研发出国内第一台动态颗粒图像分析仪Winner100。并通过了济南市科技局的鉴定,专家评定为国内首创,达到国际先进水平。三、静态图像仪与动态图像仪的对比Winn99E显微颗粒图像仪是济南微纳研制的一款静态图像仪。使用过程是把少量样品放在载玻片上,用相应的分散介质分散均匀后。把载玻片放在显微镜载物台上,将物镜调至相应的放大倍数,让颗粒在镜头内显示清晰为止,即可观察颗粒的大小分布与形貌特征。也可以通过软件在电脑屏幕上直接观察颗粒的大小分布与形貌特征,通过图像分析,包括:灰度图、自动二值化、收缩、膨胀、消除边界黑点、消除颗粒粘连、消除空心、颗粒分析8种操作。软件会自动完成一系列图像处理操作,并进行颗粒的分析。静态图像分析仪最大的优点就是可以直观的观察样品的形貌,在小颗粒分布及形貌分析上更占优势。虽然静态颗粒图像仪有观测直观、数据丰富,但是取样量少、测试代表性不强。但是静态图像仪的市场价格比较便宜,在行业应用也比较普遍。 Winner100D动态颗粒图像仪,测样原理是由湿法激光粒度仪的循环系统配备先进的高速摄像系统,动态进样采集,通过软件分析获得具有代表性的粒径分布数据。 Winner100D在winner100的原理基础上,创新设计出封闭式大远景深远心光路,配合约束式平槽样品窗,大大提高颗粒清晰度。Winner100D已经解决了动态图像仪对运动图像易出现拖尾现象,成像质量也差,看不清颗粒形貌等问题。值得一提的是,本款产品软件中增加了颗粒圆形度(磨圆角)的计算模块,对颗粒圆形度的分析符合美国石油天然气标准:API_RP58.并且适应应用此版图的地质、磨料、石油天然气等行业规范、此计算模块为国内唯一,对于以上行业具有重要意义。此外,winner100D还是第一台应用了样品窗自清洗装置的颗粒测试设备,延长样窗寿命,但换洗频次大大降低,甚至可以终身不需拆洗。动态颗粒图像仪比较静态颗粒图像仪而言,测量的颗粒数目要更多,取样好代表性强;并且在介质中分散流动中进行测量,分散效果好,无需后续软件进行分割处理(注:图像分割算法再好结果也会损失颗粒信息)。动态颗粒图像仪在实际应用中更加的智能、快捷,操作简单,也是图像技术发展主要方向。四、图像技术的领先发展动态图像仪对微小颗粒而言,成像光路系统放大倍率越大,其景深也就越小,这一点严重制约动态颗粒图像仪的发展,如何将流动中的颗粒约束到一个平面上,这是动态颗粒图像仪最关键部分。目前国内外现有的方式借鉴了细胞测量中的流体聚焦技术----鞘流技术,即将待测颗粒样品流入鞘液中,鞘液对其进行约束,从而获得清晰的颗粒图像。这种技术能够很好的解决颗粒聚焦问题,但是其制备鞘液比较复杂,成本也很高,测量时间也较长,而且的关键部件鞘流池如果有大的颗粒很容易发生堵塞现象,清理疏通也都很费时费力。Winner100、Winner219采用新技术对动态颗粒进行平面约束,使得颗粒在流动的过程中都能够保持在一个平面内流动,从而获得清晰的颗粒图像,且操作简单方便。其中Winner219采用静态动态双模式进行测量,采用同一光路,只需更换测量平台即可进行方便切换。静态图像测量模式平台采用二位运动控制精密平台,可选择上部光源或者背部光源进行打光,制备好样品后,将样品放置于平台上即可进行自动化测量,采集图像完毕后软件会自动进行图像拼接,能够将样品拼接成完整图像,从而使得测量结果更加智能精确可靠。动态图像测量模式下,更换为动态颗粒测量平台(液路循环系统),颗粒在约束平面内流动的过程中进行拍照测量,简单实用,易于操作。Winner219全自动颗粒图像仪是目前国内最先进的图像仪器,也是机械视觉技术工业实用化的经典之作。随着技术的发展,相信不久的将来微纳将会在技术上自我超越,研发出更高端的图像仪器。

  • 动态颗粒图像分析仪的研制

    动态颗粒图像分析仪的研制摘要:本文论证了研制动态颗粒图像分析仪的必要性与背景, 介绍了winner100实现动态颗粒测试的方法以及技术特征。评价了动态颗粒图像分析仪的实用价值与科学意义。关键词.. 动态颗粒, 图像分析, 粒度与形状,3 维一、问题的提出颗粒是组成材料的基本单元, 影响材料的性能的不仅是颗粒的化学组成, 颗粒的大小与颗粒的形态对材料的性能影响巨大, 因此颗粒粒度与形态的检测越来越受到各行业的重视。目前检测颗粒大小和颗粒形态的方法有多种,激光粒度分析仪、沉降粒度仪、电阻法粒度亦、颗粒图像分析技术是最常用的技术。激光粒度分析仪、沉降粒度仪、电阻法粒度仪, 只能检测颗粒大小, 不能检测颗粒形状;颗粒图像分析技术是一种不仅可以检测颗粒大小也可以检测颗粒形状对唯一方法, 但是由于此种技术有几个致命的缺点限制了它的进一步发展:1.样品制备困难。颗粒在载玻片上很难得到充分的分散, 由于颗粒粘连使得颗粒分析的准确性大受影响; 2.颗粒处于静态, 非球形颗粒的取向会对测试结果造成偏离;3.由于显微镜的视场有限, 被测得颗粒数目受到很大限制, 因此取样的代表性差, 重复性不好。由于以上问题, 颗粒测试中急需一种性能更加优越的测试装置, 能够获得颗粒的准确图像, 操作简便, 满足颗粒形状和颗粒粒度分析的更高要求。国际上荷兰安米德公司、德国新帕泰克公司、德国莱驰公司均推出了同时测定颗粒粒与形状的图像分析仪。国内尚无此种产品, 济南微纳公司通过3年的攻关研制的winner100 颗粒图像分析仪填补了此项空白。二、动态颗粒测试的方法与技术特征Winner100突破了传统的颗粒图像仪的工作模式, 采用超声样品分散系统分散颗粒, 高速摄像头对动态颗粒图像进行采集, 1微秒可以采集一幅颗粒图像, 用计算机对图像进行分析处理, 达到对颗粒粒度与形态进行三维同时测试的目的。其主要技术特征有:1.彻底改变了手工制样操作繁琐的局面, 样品制备操作非常简单, 分散效果好; 2.采用功能强大的动态颗粒图像分析软件, 具有高速采样、自动颗粒图像处理, 实时显示当前图像、实时分析粒度分布、连续统计分析结果, 处理策略自行编程, 多种粒径定义选择, 粒度统计、形状分析等多种功能。打印报告允许自行编辑。3.动态测试使颗粒采样数量无限增加, 统计结果真实可靠, 代表性好、重复性高;4.动态测试使颗粒不同侧面得到采样, 实现了三维测试, 彻底消除了二维测试的颗粒取向误差;粒度测试结果可以与激光粒度分析仪比美。5.winner100动态图像分析专用软件具有强大的图像处理功能;6.支持多种粒径选择和多种粒度分布, 具有多种图像处理功能及其集成处理, 支持图像采集间隔设定与实时显示颗粒形貌与当时粒度分布和累计粒度分布, 记录并显示粒度波动图, 可以输出多种分析图表, 高性能的软件使使用者的颗粒分析工作变得十分轻松方便。7.本成果不仅可用于实验室颗粒分析, 也适用于颗粒在线粒度与粒形监测。对杜会经济发展和科学进步的意义本项目突破了显微静态图像分析的局限, 在国内率先提出动态颗粒图像分析的概念;由于颗粒运动中测试, 克服了二维颗粒图像分析的弊病, 大大提高了采样代表性, 消除了颗粒取向误差, 使颗粒粘连问题彻底解决。本项成果克服了静态颗粒图像仪的缺陷, 提供了一种对运动颗粒同时进行粒度与形状分析的先进手段, 具有操作简单, 测试范围广, 代表性好, 准确可靠, 直观可视, 适用于1-6000微米的各种固体颗粒。可以广泛应用于建材、化工、石油、金属与非金属、环保、轻工、国防等众多领域的实验室和在线颗粒粒度与形状分析。无疑, 对于提高我国各行业颗粒测试水平和经济发展具有重要的实用价值。颗粒测试的基础是颗粒的表征, 本项成果提供了一种颗粒动态测试的实用手段, 因此颗粒的三维表征问题就提到了议事日程上来, 颗粒的三维表征对颗粒学的进步与发展具有重要的意义。[color=blac

  • 【原创】显微成像MV-200 工业图像采集卡低价批发

    【原创】显微成像MV-200 工业图像采集卡低价批发

    显微成像MV-200 工业图像采集卡低价批发【特点简介】MV-200工业图像采集卡是一款成熟稳定的高精度真彩色(黑白)实时工业图像采集卡,硬件结构和底层函数很稳定,硬件兼容性能好,并能在各种专用及较恶劣的工作环境中稳定地工作。它具有高清晰度、流畅的图像画面,运动图像软件处理,动态图像采集效果好MV-200工业图像采集卡所采集图像质量完全忠实于源信号,实时采集效果具有高分辨率、高清晰度、高保真的特点,其图象质量较目前市场流行的多媒体卡在分辨率上有革命性的提高,完全实时、无像素衰减,为用户大幅度降低采购同档次图象卡的成本。MV-200工业图像采集卡还有它的软件特性:一次写成软件,可适用于各款维视图像卡,方便用户编程开发,可广泛应用于医学影像、分析测量、生物医学、工业图象分析,流水线检测,以及其它多种高精度图像处理分析领域。【技术规格】 图象采集分辨率:最大768×576 单场采集分辨率:最大768×288.支持VFW接口,适用H324、H263压缩/解压缩标准,图像采集的同时可720*576高清晰度录像。 视频信号实时采集到内存、显存,可真彩/伪彩/黑白,支持VGA所有显示方式及9种图象采集格式,如RGB32、RGB24、RGB16、Y8、YUV411;  可由用户定义任意采集方式,采集窗口大小;支持窗口叠加能; 可实时采集单场、单帧,任意间隔以及连续帧的图象; 采样位数∶黑白方式8bit,彩色方式RGB各8bit; 可在图象上实时叠加字符、图形、文字。 亮度、对比度、色度、饱和度,画面大小比例均可由软件调节;Plug&Play方式,即插即用; 提供两路AV及一路S端子输入。 支持写VGA调色板实现实时伪彩色图像显示/采集; VFW/WDM/API编程方式,均可支持一机多卡工作。【产品特点】独特的视频输入滤波技术端口,极大地提高了图像采集的清晰度和显示速度;使用多片MV-200工业图像采集卡,可以做到多通道、多窗口同时实时地显示视频输入信号,无需分时进。MV-200工业图像采集卡软件功能丰富完善、开发简单方便,在Microvision系列图象卡中容易移植。优秀的图象质量+良好的技术支持+配套OEM优惠价格。提供二次开发工具包,全力支持开发,对软件开发商、系统集成商授权,我们还可以根据用户的要求直接改写软件,或代为ODM、OEM,全面满足您的需求;支持使用VC、VB、Delphi语言编程。提供DEMO源程序及函数接口。【应用领域】★工业测量 ★工业检测 ★显微成像 ★安全监控 ★智能交通 ★生物识别 ★金融票证 ★机器视觉 ★图像分析 ★红外成像[img]http://ng1.17img.cn/bbsfiles/images/2007/09/200709051701_63236_1780763_3.jpg[/img][URL=http://www.xamv.com]http://www.xamv.com[/URL][URL=http://www.microvision.cn]http://www.microvision.cn[/URL]

  • 【分享】图像分析仪在金相分析中的应用

    近年来,随着计算机技术和体视学的发展,图像分析仪被广泛地应用于金相分析中,使传统的金相分析技术从定性或半定量的工作状态逐步向定量金相分析方向发展。  金相工作者多年来一直从金相试样抛光表面上通过显微镜观察来定性地描述金属材料的显微组织特征或采用与各种标准图片比较的方法评定显微组织、晶粒度、非金属夹杂物及第二相质点等,这种方法精确性不高,评定时带有很大的主观性,其结果的重现性也不能令人满意,而且均是在金相试样抛光表面的二维平面上测定,其测量的结果与三维空间真实组织形貌相比有一定差距。现代体视学的出现为人们提供了一种由二维图像外推到三维空间的科学,即将二维平面上所测定的数据与金属材料的三维空间的实际显微组织形状、大小、数量及分布联系起来的一门科学,并可使材料的三维空间组织形状、大小、数量及分布与其机械性能建立内在联系,为科学地评价材料提供了可靠的分析数据。

  • 小鼠读脑仪在美研制成功

    中国科技网讯 (记者何屹)据每日科学网站2月20日(北京时间)报道,斯坦福大学的科学家开发出一种系统,可以实时观察活鼠大脑活动情况,对研究诸如阿尔茨海默氏症等神经退行性疾病的新治疗手段具有十分重要的作用。该研究发表在近期出版的《自然·神经科学》杂志上。 研究人员首先利用基因疗法令老鼠神经细胞表达绿色荧光蛋白,该蛋白对钙离子敏感。当神经元受到刺激时,细胞内充满钙离子,荧光蛋白被激活,整个细胞会发出明亮的绿色荧光,就像一朵灿烂的绿色小烟花在黑色背景下绽放。随后,研究人员在老鼠大脑负责空间和情景记忆的海马体上方植入一个微型显微镜,显微镜与相机芯片相连,并可将数字图片传送到电脑,在电脑屏幕上显示老鼠大脑活动的实时视频。 海马体对环境非常敏感,在不同的环境下会有不同的细胞响应。当老鼠在实验环境的某个特定区域挠墙时,刺激特定的神经元闪烁绿色荧光。当小鼠流窜到别的区域时,绿色荧光会从某个神经元褪色,转而刺激新的神经元细胞发光。科学家在掌握了小鼠行为和神经元之间的关联后,仅仅通过小鼠脑部荧光闪烁的混乱图景,就能够清楚地了解老鼠究竟位于何处。 该研究小组发现,小鼠神经元的刺激模式十分稳定,实验间隔时间长达一月之后,仍可保持不变。而观察相同的细胞对于了解脑部疾病非常重要。如果某一个特定的神经元在测试时发生功能障碍,表明正常神经元已经死亡或出现神经退化疾病。研究人员就可以利用某些实验性的治疗试剂进行治疗,然后在相同刺激条件下,确定神经元能否恢复功能。 目前这项技术尚不能应用于人类,但小鼠模型是研究人类神经退行性疾病新疗法的一个重要起点,该系统将成为临床前研究评估的一种非常有用的工具。目前研究人员已经成立了一个公司,生产和销售该设备。 总编辑圈点 一般所说的“读脑仪”,通常指对脑意识进行探测和显现的电子设备,譬如测谎仪就算一种读脑设备。但在本文的研究中,“读脑”是为了找出实验对象的行为和神经元之间的关联,再进行医学药理学的分析。与意识探测相同的是,关乎“脑”研究,人类都还只是接触到皮毛,不过,随着近几年新进展的不断出炉,无论是“倾听大脑的思想”,还是将小鼠模型应用于研究人类神经退行性疾病新疗法,相信只是时间问题。 《科技日报》(2013-02-21 一版)

  • 从图像质量来判断电镜故障(十月)

    [align=center][b][font=微软雅黑][color=#cc0000]【第十五届原创大赛】从图像质量来判断电镜故障(十月)[/color][/font][/b][/align][align=center][/align][color=#cc0000][b][font=微软雅黑]【序】[/font][font=微软雅黑] 电子显微镜得到的最终结果大都是图像信息,有些故障现象是可以反映在图像信息上,对于有经验的操作者在观察电镜图像时,可以通过电镜成像质量来判断故障所在,下面简单介绍透镜出现的一些常见的图像表现现象和特征,由此大致可以判断部分故障可能出现的原因,这些都是一些经验性总结,可供电镜操作人员参考。[/font][font=微软雅黑]【一、电子束光斑周期性波动】[/font][font=微软雅黑] 这种现象一般都是电路系统的故障,主要有两种表现形式,一是照明系统的出了故障,照明灯受热胀冷缩影响导致灯座接触不良,使电路不稳定。二是出现在成像系统中,虽然偏转系统的偏转线圈出故障时束斑虽然有周期性变化,但大小变化不明显。但在电子成像系统上,束斑不但有周期性变化,而且还有比较明显的明暗和大小变化。以此重点检查电镜电子束偏转电路系统。[/font][font=微软雅黑]【二、电子束光斑无规律波动】[/font][font=微软雅黑] 该现象主要是有由光路污染引起的。如果是照明系统的污染,束斑只有无规律的摆动,而没有明显的明暗和大小变化。若污染在在成像系统内,则束斑除了无规律的摆动外,还有比较明显的明暗和增大缩小的变化。此处重点需要清洗光栏、极靴和光路系统部件。[/font][font=微软雅黑] 注意:在大致确定污染部位后,利用可动部件来判断是哪个点存在污染,最终有的放矢的将污染点彻底清洗掉。[/font][font=微软雅黑]【三、电子束光斑亮度变化】[/font][font=微软雅黑] 电镜图像常常会发生明暗变化,这里大多与高压放电和外界磁场干扰有关。这种故障的处理首先是关掉高压调制功能,观察束流表是否有变化,如果有变化,可判断是高压放电引起的,重点检查高压油箱、高压电缆以及电子枪是否存在污染导致放电。另外如果束流未发生变化,则可确认灯丝是否饱和或是外界磁场干扰。[/font][font=微软雅黑]【四、图像按一定轴向有规律周期性摆动】[/font][font=微软雅黑] 这个现象大部分是由回路上故障造成的。图像的分析和束斑在照明系统和成像系统的分析和检查方法是一样的。值得注意的是高压产生微小电平叠加也能出现此现象。[/font][font=微软雅黑]【五、图像无规则摆动,且是无轴向的,摆动时间和振幅也是无规律的】[/font][font=微软雅黑] 这种摆动主要是由污染造成的。污染在照明系统还是成像系统,具体污染在哪一个透镜上,需要仔细检查并加以判断。其检查方法与透镜污染后束斑表现的现象一样,排除故障的方法也一样。[/font][font=微软雅黑]【六、通过照片质量来判断故障所在】[/font][font=微软雅黑] [font=微软雅黑]1、在X或Y轴上出现过焦重线现象,往往是电子束偏转系统的消像散装置未调到最佳点。如果物镜活动光栏孔未校正或被污染都有可能会出现此现象。[/font][/font][font=微软雅黑] 2、照片在X和Y轴上有毛刺。以下几点因素都有可能会造成图像毛刺。[/font][font=微软雅黑]①样品导电性能不良,引起电荷积累而放电。[/font][font=微软雅黑]②由于透镜载网与膜接合不牢,或是膜太厚,或是样品太大、太浓,在电子束照射下引起热漂移。[/font][font=微软雅黑]③在拍照时外界的机械振动或干扰。[/font][font=微软雅黑]④外界杂散磁场的严重干扰。[/font][font=微软雅黑]⑤光栏的污染等。[/font][font=微软雅黑] 3、有轴向的不清晰成像,不清晰度是以轴向成扩散状。这是成像系统透镜中的问题,往往是回路的问题。但是高压的变化也会引起阳极势场的变化,使束流变化而引起的故障现象,此时需要检查高压回路。[/font][font=微软雅黑] 4、照片局部存在模糊不清。这往往是出现在观察室以下的放电引起的故障。荧光板、快门、底片、观察窗玻璃等部位由于污染或接地不良造成的放电。[/font][font=微软雅黑]【小结】[/font][font=微软雅黑] [font=微软雅黑]透过电子显微镜成像的表面现象看故障的本质,故障固有千变万化,但大都离不开水(冷却系统)、气(真空系统)、光(照明系统)、电(电路系统)、样(样品系统),在长期的操作维护实践中不断总结和经验积累,最终通过在成像质量上仔细的观察,可直观的判断出一些常见的故障,同时也可快速加以排除,并提高电镜的使用寿命和工作效率。[/font][/font][font=微软雅黑] [/font][font=微软雅黑] [/font][font=微软雅黑] 2022.10.19[/font][/b][/color]

  • 【转帖】哈佛育出能“闻”出光线的小鼠

    哈佛育出能“闻”出光线的小鼠 为气味和感受间关系的研究开辟新途径 据美国物理学家组织网10月18日(北京时间)报道,哈佛大学神经生物学家培养出一种能“闻”出光线的小鼠,为研究人员更好地理解嗅觉功能的神经机制提供了一种新工具。本周的《自然·神经科学》杂志详述了这项研究,这为未来研究气味和感受之间的关系以及其他感知系统的神经机制开辟了新方向。 要分析大脑的嗅觉感知是如何辨别气味的,最好的方法是研究大脑的活动方式。但气味种类繁多,化学成分非常复杂,变化微细让人难以捉摸,因此追寻这些由嗅觉刺激形成的大脑模式非常困难。 如果让鼻子作为视网膜那会怎么样呢?哈佛大学分子与细胞生物学教授温卡泰斯·默西和冷泉港实验室的同事利用遗传光学技术,把一种光敏蛋白质跟小鼠的嗅觉输入系统结合,培育了一批转基因小鼠,它们的所有嗅觉感受神经元都能表达视网膜素转导通道2(channelrhodopsin-2)蛋白质,这些转基因小鼠的嗅觉路径因此变成由光来激活,代替气味来研究大脑神经细胞如何区别不同气味。 嗅觉信息会在大脑中形成不同的三维空间组织形态,由于光输入很容易被控制,研究人员因此能设计一系列试验,利用光选择性地刺激鼻子里的特定感觉神经,研究大脑中嗅球的激活模式。 默西说,因为用外来光照代替气味在大脑中形成的空间组织只是一种临时性结构,新研究也存在一定的局限,并不能完全解释气味感受能力。研究还显示,在气味被感受的过程中,“嗅闻”的时机起着很大作用。

  • 【原创1+1系列活动】全自动核酸分析系统免费体验开始

    【原创1+1系列活动】全自动核酸分析系统免费体验开始

    您还在为做胶时小心翼翼对待如EB类的核酸染料而苦恼吗?还在为胶分辨率低,没办法获得差异结果而头疼吗?还在为同样的PCR产物用不同大小的Marker估算,但结果不同而纠结吗?还在为传统电泳繁杂的步骤耽误时间而痛苦吗?现在你可以对这一切说NO了,免费体验全自动核酸分析系统Qsep100(点击查看详情)开始了!这款分析系统,是利用微毛细管电泳技术检测双链DNA的新仪器,PCR后您不用再制胶,不用再接触EB,不用再浪费时间跑胶和花心思分析胶上的结果。全自动毛细管核酸分析系统(点击查看详情)Qsep100,承担您所有的实验步骤,节省您宝贵的时间,提高您实验结果的精确性。  全自动核酸分析系统Qsep100,采用毛细管电泳原理,对DNA 片段进行分离和检测。该系统包含检测模块、分析模块、样品进样器和可替换的Pen-shape 卡夹。最快3分钟完成一个样本检测,检测样本灵敏度低至0.1ng/ul,可分辨出1-4bp差异的DNA片段,可对结果进行定性和定量分析。电泳峰图、凝胶电泳图、DNA片段差异的分析都可以通过软件来完成。只需简单几个操作,您就可以获得直观、精准的检测结果,让您的实验标准、精准、自动、高效。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_648236_1604352_3.gif  凡报名的网友在活动期间,昊诺斯科技将携带仪器上门免费为您做体验。  免费体验期,参加体验互动活动,将有精美礼品奉上哟\(^o^)/~  参加方式一:仪器信息网上注册,发帖并加入昊诺斯-鼎昊源真心英雄队(发帖时“选择主题”请选择“第五届原创”;“参加原创团队”点“是”,记得选择“昊诺斯-鼎昊源真心英雄队”哟),累积积分,还有机会获得仪器信息网的礼品呢O(∩_∩)O~http://bbs.instrument.com.cn/images/HomeFocus/2012081614290062.jpg点击加入我们,让我们成为朋友吧!  参加方式二:关注并发微博@昊诺斯生物(新浪微博)http://ng1.17img.cn/bbsfiles/images/2012/09/201209141410_390911_2507958_3.gif  发帖内容可涉及以下3方面:(分享试用感受可同时参加原创大赛获得双重奖励!)  1、 使用全自动毛细管核酸分析系统Qsep100的体验照片和体验感觉,奖励礼品:计时器或手机座。http://ng1.17img.cn/bbsfiles/images/2012/10/201210251416_399232_2961690_3.jpg  2、 具体实验的数据和分析结果,奖励礼品:U盘。http://ng1.17img.cn/bbsfiles/images/2012/10/201210251419_399233_2961690_3.jpg  3、 使用全自动毛细管核酸分析系统Qsep100得到实验数据,并以此发表的文章,将有现金奖励。(SCI文章500元,核心期刊300元)  欢迎垂询北京昊诺斯科技有限公司市场部产品负责人曹迪 18601371910 caodi@herosbio.com,(因为区域划分,活动仅限北方区域,具体问题欢迎来电垂询)。  温馨提醒:您发帖后,请您发邮件到heros@herosbio.com或致电市场专员董丽芳座机010-64842431-315及时和我们联系,我们核实完后将尽快将送出礼品。

  • 【分享】图像分析仪在金相分析中的应用2

    一、图像分析仪的原理及功能简介  图像分析仪的系统由金相显徽镜和宏观摄像台组成的光学成像系统,其用途是使金相试样或照片形成图像。金相显微镜可直接对金相试样进行定量金相分析;宏观摄像台适用于分析金相照片、底片及实物等。  为了能用计算机存贮、处理和分析图像,首先需将图像数字化。一帧图像是由不同灰度的一种分布所组成,用数学符号表示为j=j(x,y),x、y为图像上像素点的坐标,j则表示其灰度值。所以,一帧图像可以用一个m×n阶矩表示,矩中每个元素对应于图像中一像素点,aij的值即表示图像中属于第i行第j列的像素点的灰度值。CCD摄像机(电荷耦合器件摄像机)就是一种图像数字化设备。金相试样上的显微特征经过光学系统后在CCD上成像并由CCD实现光电转换和扫描,然后作为图像信号取出,由放大器进行放大,并量化成灰度级以后贮存起来,从而得到数字图像。  计算机根据数字图像中需测量特征的灰度值范围,设定灰度值阈值T。对于数字图像中任何一个像素点,若其灰度大于或等于T,则用白色(灰度值255)来代替它原来的灰度;若小于T则用黑色(灰度值0)来代替原来的灰度,可以把灰度图像转化为只有黑、白两种灰度的二值图像,然后再对图像进行必要的处理,使计算机能方便对二值图像进行粒子计数、面积、周长测量等图像分析工作。若采用伪彩色处理,则可把256个灰度级转换成对应的彩色,使灰度很接近的细节和其周围环境或其他细节易于识别,从而改善图像,更利于计算机处理多特征物图像。

  • 【转帖】可逆反应与自发反应

    每个化学反应理论上均是可逆反应。 正反应中定义物质从反应物转换成产物。 逆反应刖相反,产物转换成反应物。化学平衡指正反应速率和逆反应速率达到相等的状态,因此反应物和产物均会存在。 然而,平衡态的反应方向可透过改变反应状态改变,譬如温度或压力。勒沙特烈原理在此用来预测是产物或反应物形成。虽然所有的反应在一些范围内均是可逆的,部份反应仍可归类为不可逆反应。“不可逆反应”指得是“完全反应”。意思是几乎所有的反应物均形成产物,甚至在极端状况下均难以逆转反应。另一种反应机制称为自发反应,是一种热力学倾向,表示此反应引起总体熵的净增加。自发反应(相对于非自发反应)不须外在协助(如能量供给)就会产生。在化学平衡的系统中,反应过程中自发反应的方向可预期形成较多的物质。有机化学中类别较多,有自由基反应,离子型反应;亲电反应,亲核反应;硝化反应,卤化反应,磺化反应,氨化反应,酰化反应,氰化反应,加成反应,消去反应,取代反应,加聚反应,缩聚反应等。酸、碱

  • 【原创】如何选购显微数码成像分析系统?

    一、前沿2009年10月6日,瑞典皇家科学院宣布,将2009年诺贝尔物理学奖的一半授予美国科学家威拉德• 博伊尔和乔治• 史密斯,因为他们于1969年发明了半导体集成电路成像技术,CCD感应器。经过四十年的发展,CCD技术由实验室逐步走向了市场,具有越来越广阔的应用。CCD数码成像对摄影产生了革命性的影响。在感光胶片之外,人们可以通过电子电路捕捉图像,这些以数字形式存在的图像更加易于处理和分发。数字图像已经成为许多研究领域中不可替代的重要工具。数码成像技术应用到显微镜上,以替代以往的胶卷拍摄,现在已经广泛应用了。以前我们用胶卷来进行显微拍摄,要等一卷拍完,冲洗出来才能确定拍摄的图像是否清晰,如果拍摄的图像不理想,而显微观察的样品又失效了,就需要重新制作样品,给研究工作带来很大的不便,而现在使用显微数码相机来拍摄显微图像,所见即所得,当时就是保存处理,甚至统计分析,极大的提高了工作效率。二、显微数码成像系统的组成显微数码成像系统包括CCD/CMOS专业相机,图像采集处理软件,显微镜接口,数据传输线等,其中最核心的设备是CCD和CMOS图像传感器,前者由光电耦合器件构成,后者由金属氧化物器件构成。两者都是光电二极管结构感受入射光并转换为电信号,主要区别在于读出信号所用的方法。CCD(Charge Coupled Device ,感光耦合组件)上感光组件的表面具有储存电荷的能力,并以矩阵的方式排列。当其表面感受到光线时,会将电荷反应在组件上,整个CCD上的所有感光组件所产生的信号,就构成了一个完整的画面。CCD的结构分三层 ,第一层“微型镜头”“ON-CHIP MICRO LENS”,这是为了有效提升CCD的总像素,又要确保单一像素持续缩小以维持CCD的标准面积,在每一感光二极管上(单一像素)装置微小镜片。CCD的第二层是“分色滤色片”,目前有两种分色方式,一是RGB原色分色法,另一个则是CMYG补色分色法。原色CCD的优势在于画质锐利,色彩真实,但缺点则是噪声问题。第三层:感光层,这层主要是负责将穿过滤色层的光源转换成电子信号,并将信号传送到影像处理芯片,将影像还原。数码成像的核心器件除CCD,现在越来越多的使用CMOS(Complementary Metal-Oxide Semiconductor,互补性氧化金属半导体,CMOS和CCD一样同在数码相机中可记录光线变化的半导体。CMOS传感器中每一个感光元件都直接整合了放大器和模数转换逻辑,当感光二极管接受光照、产生模拟的电信号之后,电信号首先被该感光元件中的放大器放大,然后直接转换成对应的数字信号。CMOS的优势在于成本低,耗电需求少,便于制造, 可以与影像处理电路同处于一个芯片上,缺点是较容易出现杂点。三 显微镜成像系统相关参数对CCD/CMOS数码成像系统的结构和原理有了一个基本了解后,我们再对成像系统的一些基本参数作一个说明。在实际应用中,很多用户对像素多少很敏感,一上来就提到我要多少万像素的成像系统,其实在专业成像应用中,像素多少只是影响成像的一个因素,还有其他很多指标,包括分辨率,感光器件大小,动态范围,灵敏度,量子效率,信噪比等。感光器件的面积大小是衡量显微成像系统质量的一个重要指标,感光器件的面积越大,捕获的光子越多,感光性能越好,信噪比越低。当前数码成像系统中较常应用的感光器件规格如下:1英寸(靶面尺寸为宽12.7mm*高9.6mm,对角线16mm),2/3英寸, 1/2英寸,1/3英寸,另外有时也用到1/1.8英寸,1/2.5英寸的CCD/CMOS感光器件。 像素是CCD/CMOS能分辨的最小的感光元件,显微数码成像系统的像素由低到高有:45万左右,140万左右,200万左右,300万左右,500万左右,900万像素,甚至还有更高的达到2000万像素以上。一般来说,像素越高,图像分辨率越高,成像也就越清晰,但有时候图像分辨率达到一定程度后,就不是影响成像质量的主要指标了。比如图像分辨率高,噪声也很高时,成像质量也不会很好。暗电流是导致CCD噪音的很重要的因素。暗电流指在没有曝光的情况下,在一定的时间内,CCD传感器中像素产生的电荷。我们在做荧光拍摄的时候,需要的曝光的时候比较长,这样导致CCD产生较多的暗电流,对图像的质量影响非常大。通常情况下通过降低CCD的温度来最大限度的减少暗电流对成像的影响。Peltier制冷技术一般可将CCD温度降低5-30°C,在长时间拍摄或一次曝光超过5-10秒,CCD芯片会发热,没有致冷设备的芯片,“热”或者白的像素点就会遮盖图像,图像会出向明显的雪花点。CCD结构设计、数字化的方法等都会影响噪音的产生。当然通过改善结构、优化方法,同样能减少噪音的产生。显微荧光或其他弱光的拍摄对CCD噪音的降低要求很高,应选用高分辨率数字冷却CCD成像系统,使其能够捕获到信号极其微弱的荧光样品图像,并且能够最大程度的降低噪音,减少背景,提供出色的图像清晰度。所以一般在荧光及弱光观察时需要选择制冷CCD。在显微数码成像过程中,对于荧光及弱光的拍摄,除了制冷降低热噪声外,还可使用 BINNING技术提高图像的灵敏度,BINNING像素合并是一种非常有用的功能,它可被用来提高像素的大小和灵敏度,比如摄像头像素大小为5u,当经过2x2合并后,像素大小为10u,3X3合并后,像素大小为15u, 这是图像的整体像素变少了,但成像的灵敏度可提高9倍。动态范围表示在一个图像中最亮与最暗的比值。12bit表示从最暗到最亮等分为212=4096个级别,16bit即分为216个级别,可见bit值越高能分出的细微差别越大,一般CMOS成像系统动态范围具有8-10bit, CCD以10-12bit为主,少部分可达16bit。对动态范围进行量化需要一个运算公式,即动态范围值 = 20 log (well depth/read noise),动态范围的值越高成像系统的性能就越好。量子效率也称像素灵敏度,指在一定的曝光量下,像素势阱中所积累的电荷数与入射到像素表面上的光子数之比。不同结构的CCD其量子效率差异很大。比如100光子中积累到像素势阱中的电荷数是50个,则量子效率为50%(100 photons = 50 electrons means 50% efficiency)。值得注意的是CCD 的量子效率与入射光的波长有关。对显微数码成像系统的参数有了整体认识后,在实际应用中选择合适型号的产品就比较容易了。高分辨率显微数码成像技术在国外已有二十来年的发展历史,产品目前已比较成熟。国外的专业数码产品有多个品牌,比较著名的有德国的ProgRes,美国Roper Scientific的系列产品,另外OLYMPUS、NIKON、LEICA、ZEISS等显微镜厂家也有一些配套的专业数码成像系统 。其中CCD成像系统主要采用SONY及KODRA公司的芯片,因此相关产品性能差别不是很大。国内专业数码成像产品的设计制造时间还不长,但随着配套技术的成熟,100万像素以上的CCD/CMOS专业数码成像产品开始陆续推出,主要的专业厂家有北京的大恒、微视、杭州欧普林,广州明美等企业。北京大恒早期主要研发生产图像采集卡,目前可以量产140万像素的CCD摄像头,130万/200万/320万/500万像素CMOS摄像头,主要用到工业领域。

  • 提供图像分析软件image pro plus5.0.2的下载地址

    http://www.zgcnc.net/down/show.asp?id=1171软件简介 从图像到解答MediaCybernetics 的Image-Pro Plus 是适用于医学,科学研究,工业和其他领域的专业图像处理系统, 是拥有世界上最广泛用户群体的图像分析著名品牌。二十年来,我们富有经验的软件和图像专家队伍一直领导着图像分析领域的技术发展。从图像采集, 处理,分析, 到报告, 存档, 输出, Image-ProPlus 都能为您轻松完成。如果您的工作包含动态图像(Time Laps), 多层光切(ZStack),或多通道荧光图像(Multi-Channel)的获取和分析等复杂要求, Image-Pro Plus将更是您首选和唯一所需的软件平台.资料管理Image-Pro Plus 内置的图像数据库功能,是一个存储,调用和管理图像的强大的工具。这一智能化的管理工具使用户可以对所记录的图像进行批量处理。同时,您可以把图像分析和测量的结果加入用户自定义的数据表格项中。您也可以用非破坏性的标准法对您的图像添加注解以便日后查询。文档和报告报告生成器(Report Generator)可以帮助您方便地创建用户化的输出报告。报告中的图像, 数据和文本可根据需要缩放尺寸和改变位置。图像采集自由选择输入设备Image-Pro Plus 支持多种数码相机, 图像采集卡,TWAIN 和扫描机等输入设备。您可以从我们(序列图像管理及景深扩展)的网址查阅到所支持的设备详情。同时我们也不断开发新的设备驱功程序以适应软件更新和新产品推出的需要。全面图像格式支持Image-Pro Plus 支持所有常用的图像文件格式,这包含8,12,16 位灰度图像和24,36,48 位彩色图像及32 位浮点图像。Image-Pro Plus 也支持主要的共聚焦显微镜图像, 这意味着与这些图像一起存储的数据信息也能自动地被Image-Pro Plus 识别并使用在处理和测量过程中。图像处理强大的处理功能确保可靠的分析结果Image-Pro Plus 强大的图像处理能力能为您生成高质量的图像和得到精确的分析结果。您可使用背景校正,视场平衡及多种等效对比增强技术(Equalization)加强图像的色彩质量或对比度。* 功能全面的滤波器组可以锐化(Sharpen),柔化(Soften),羽化(Blur)和强化目标的边缘。对相互重叠或成簇的物体,形态学(Morphometric)操作将能帮助您进行有效的分离。* 用户可定义的大型频域滤波器( 大至4000x4000)可对图像进行高速的低通,高通,带通和边缘增强处理。* 快速傅立叶变换(FFT),使您可在图像的频率域进行高速复杂的处理工作。* 景深扩展(EDF)功能可从部份聚焦的系列图像合成全聚焦的单幅图像.* 序列图像管理功能(Sequence Tools andSet Manager)可使您方便有效地管理复杂的序列图像.* 彩色通道(Color Channel) 及混色(Composite Images)可完成各种彩色图像格式的转换, 通道图像提取, 或从任意多组灰色图像合成彩色图像.* 同位性分析(Co-localization)可生成同位性点聚图并给出同位性参数结果.* 交互式彩色信息分离工具(Interactive Color Segmentation)利用物体的色彩特性将其从背景中分离出来。用户可以基于直方图或彩色空间模式设定多重范围(Multiple Ranges),并为每一范围选择一个特定的表达色彩。测量功能Image-Pro Plus 运用与您的图像读取设备相联的绝对空间刻度校准,因此可确保测量结果的准确性。用户可方便地采集一幅图像, 然后从Image-Pro Plus 所包含的60 多个浓度,空间或形态学 (Marphology) 参数中选取所需要的参数,选用自动或手动测量功能,即可快速地得到测量结果.物体可基于测量结果自动分类。使用滤波和自动分离等高级功能,能有效地分离重叠的物体,识别完整的物体边界或成簇的目标物。质量控制在质量控制中,您可以首先对一个参考图像完成参考值测量。测量的结果保存在一个模板(Template)文件中。在其后对同类样品进行批量测量时,您可调用该模板,Image-Pro Plus 将自动提示你需测量的参数并比照参照值,给出合格或失效报告。将这一过程用宏程序记录下来,就可实现质量控制的自动化, 大大提高工作效率。浓度测量Image-Pro Plus 的校准方式充分考虑到系统的多样性,无论对吸收或反射图像都能提供绝对光密度测量。undefined Image-Pro Plus 的数据分析功能能最大限度地再现您的测量结果。您可使用点聚图,直方图,频谱图,线谱图(Line Profile)或伪彩色显示结果, 不仅于此,您还可以使用布尔代数或算术运算,或强大的几何功能对图像进行空间变换。为便于归档,收集和进一步的统计分析,Image-Pro Plus 支持动态数据转换(DDE),能方便地将测量结果送到Excel 或其他列表分析软件中。规范化支持(Regulatory Support)这类功能是为支持象药品生产厂这样有规范化要求的用户而设计的.与公司内部健全的规范系统相结合, 这些功能使用户能更方便地满足政府监管机构的要求。操作审核(Audit Trail)这一审核功能将所有Image-Pro Plus 的操作(从开始到结束)记录在可打印输出的文本文件格式以便随时查证.文件和图像签署标志(Signature)利用操作审核(Audit Trail)功能,用户可创建单一文件或图像的签署标志(Signature),用户可由此判断文件或图像在上一次处理后是否被再修改过.用户化创建用户化的应用程序或自动功能. Image-Pro Plus 内置的Auto Pro 强大功能可让您把冗长的连续操作简化为一次单击键盘或鼠标操作。您可使用Visual Basic 或 Visual C++来记录一系列操作并用宏指令集成化,以满足您特殊的图像处理或自动化要求.“在对不同图像处理软件进行比较评估后, 我最后决定采用Image-Pro Plus,不仅因为它大量的内在功能, 还因为它建设性的用户界面把所有功能有机地结合起来了. Image-Pro Plus是一个伟大的产品.”Holger Adelmann, Bayer AG 临床药剂师对代加工(OEM),系统集成商或需要为图像分析创建标准应用程序的终极用户来说,我们的软件开发工具Software Development Kit)是一个功能强大的开发环境,它有一方便的开发助手功能(wizard),帮助快速解决图像问题而不必一切从零开始,大大降低产品开发的风险和费用。图像社区我们的用户讨论组和解决方案区就象一个虚拟的图像分析社区,使您可以随时方便地与遍布全球的Image-Pro Plus 用户交流,学习和探讨解决方案.专业应用模块以下专业应用模块更使得Image-Pro Plus 成为今日图像应用领域的首选品牌。这些产品和模块都是按照实际的工作模式,照典型的实验协议设计的。* 材料分析模块(Materials-Pro)为材料科学或工业领域的研究和技术人员设计,应用于质量控制和产品开发的专业产品.* 电动显微镜控制模块(Scope-Pro)为需要对电动显微镜进行控制和要求高自动化的用户设计. 可控制电动聚焦马达, 载物台,滤波片组和物镜切换等.* 高级荧光图像采集模块 (AFA)(Advanced Fluorescence Acquisition)通过控制电动荧光显微镜及电动样品台, 可管理和控制以下图像采集模式的任意组合: 时间(Time), 荧光通道 (Multicolor), 多焦面 (ZStack),样品位置 (Stage Positions).* 三维反卷积模块和三维重建模块(Sharp-Stack and 3D Constructor)最新的三维重建模块帮助您将采集于电动或共焦显微镜的序列光切图像(Z-Stack)中所隐藏或难于理解的信息提取和表达出来.

  • 【转帖】新产品Cellscreen全自动细胞图像分析仪

    Cellscreen系统第一次实现了可重复对细胞培养进行观察。无需染色、无需制样,通过光学图像分析将细胞培养的生长曲线保存;与其它现有测试方法相比,Cellscreen系统对细胞培养无损伤性,独立性。第一次实现了对同一细胞培养区域进行多次测量。Cellscreen技术证明是一种精确的、可靠的、自定义实验条件、操作方便、节省成本的方法。Cellscreen能优化和加速新产品和测试程序的开发。 Cellscreen应用领域 Cellscreen模块化设计能适用于更广范的领域,例如: 制药研究:Cellscreen系统能缩短常规科研究时间,能拍摄细胞生长因子的各种因素,如毒性测试及生物适应性的测试。 生物技术研究:Cellscreen系统适用于增殖研究、过程(培养基)最优化、质量控制。另外,用于拍摄克隆细胞实验的新性质,如应用在新的治疗蛋白和抗体的研究。 Cellscreen系统的优势: l缩短制药研发的时间周期 l对细胞培养无损伤—细胞可再用于其它研究 l可扩展的详细的结果描述,对细胞培养过程的文档和图像存档 l与现有的方法相比,更精确——可靠、重复性、自定义 l很容易融入到日常实验 l很容易操作Multiwellplate l特别低的操作成本-对所有的测量只需要一个培养皿,不需试剂、不需对细胞染色。 l节省时间—不需样品制备 l技术成熟—innovatesAG图像识别技术 l模块化设计—系统可扩展其它分析模块 Cellscreen系统模块化设计: 为满足广泛的分析需求,Cellscreen系统是按模块化设计,能运行不同的软件系统。硬件由一个双处理器电脑及控制单元组成,控制单元通过高精度电机台自动聚焦、自动调光来控制显微镜;不同的软件模块对数码相机获取的图像进行分析,分析所得的图像和数据存储在终端数据库。 软件模块包括: l悬浮细胞的增殖研究模块(PS模块) l贴壁细胞的增殖研究模块(PA) l克隆细胞实验模块(CL) 细胞增殖研究模块(PS和PA)能重复观测细胞培养的生长因子,CL模块观察克隆细胞,并能追随到起源的单克隆细胞。 克隆细胞实验模块(CL) 在整个培养过程中,CL模块自动监控单个克隆细胞到群体的生长过程;为了证明细胞群体的单克隆细胞起源,需要监控整个生长过程。 Cellscreen系统用40倍放大系数抓取容器低部的16幅图像,它能代表整个容器的状态。 所有获得的图像和数据存档到数据库,因此可以跟踪任何生物群体的成长过程,证明生物群体起源的单克隆细胞。 很好的保护—Cellscreen的培养器 Cellscreen的培养器精确的安装在显微镜上,在测量过程中,对您贵重的细胞培养,它保持一个稳定的环境。对温度和CO2的浓度能精确的控制。培养器可以长时间或频繁的监控微量滴定盘,而不需移动它。 贴壁细胞的增殖研究模块(PA) PA模块通过测量细胞覆盖区域,用户可以观察到贴壁细胞的增殖。PA以40放大倍数获得图像。系统可以自由选择培养皿的区域。这系统适用于所有通用的微量滴定盘规格(6-96眼)。结果以图像和曲线的形式表示出来。PA模块将所有的图像和结果存档,输出格式CSV(兼容Excel格式)。 PA模块精确的测量至少80%细胞的生长因子,用于科研、发展、研制新产品。 悬浮细胞的增殖研究模块(PS) PS模块通常应用在对细胞生长因子影响的研究。为了获得生长曲线,悬浮液里培育的细胞数量被重复的量化——时间、原料、操作的消耗成本。对同一培养皿里的细胞生长,PS模块能重复计数、消除对每次测量都需要更换盘子的影响。 另外,Cellscreen系统对每个细胞进行计数,相对现存的细胞计数方法,它有很高的精确性。PS模块用的是100放大倍数,它获得的图像有很好的分辨率,能提供出细胞直径和细胞形状的一些信息。 Cellscreen系统概述 很容易综合到您的日常工作中——易学易用 实验和测量的标准化 在准备阶段,用户按要求设定实验配置。对实验条件有详细选择和描述,例如:微量滴定盘上的哪个培养皿,培养皿里哪个区域需要检测;另外一些参数需要选定,如:体积、细胞类型、培养方法、细胞直径。因为无需吸液管,其它方法中隐含的误差就很容易避免。 图像清晰、分析准确 现在的测量方法里,用CCD相机拍摄图像,对每一幅图片用相同的技术指标聚焦。 Cellscreen精确的控制技术保证,在每一个测量过程中,准确的拍摄培养皿的同一区域;因此对每一选择的区域,用户可以跟踪细胞的生长过程;PS软件对选定区域的细胞进行计数;CL和PA软件用来测定克隆细胞和悬浮细胞的表面区域。 广泛和详细的结果陈述 用户可以选择结果的描述方式:如照片、生长曲线、细胞浓度曲线图或幻灯片,用来证明细胞生长发育的全过程。所有的信息,如实验设置、图像的获得、处理结果以及一些简单的实验文档都自动保存在终端数据库。

  • SRS与自发拉曼

    受激拉曼散射与自发拉曼散射相比有哪些优缺点啊?受激拉曼散射既可以放大拉曼信号,与CARS相比又能采到与自发拉曼谱线相同的谱,还可以做定量分析,为什么应用没有自发拉曼广泛?

  • 二维付立叶变换光学系统的空间带宽积与颗粒大小分析

    二维付立叶变换光学系统的空间带宽积与颗粒大小分析

    二维付立叶变换光学系统的空间带宽积与颗粒大小分析任中京(山东建材学院 250022)提要用付立叶光学原理,从理论与实践讨论了二维付立叶变换光学系统的空间带宽积的物理意义。首次提出了具有重要实用价值的敏感空间带宽积概念并介绍了它的主要应用。关健词光学付立叶变换,空间带宽积,粒度分析二维付立叶变换光学系统最成功的应用领域之一就是颗粒粒度分析。依据付立叶光学原理,通过检测群的付立叶谱,无需颗粒按大小在空间分离,便可实现粒度实时与动态测试与分析,从而开辟了粒度在线分析的广阔前景现在已被广泛应用于建材、冶金、能源、化工等许多领域。此类粒度分析仪与经典的成象光学仪器不同,不能用放大率、景深、清晰度等参数来描述,概括仪器本质特征的参数是空间带宽积,空间带宽积制约着激光粒度仪的测量范围、分辩率、粒度的分级。正确理解空间带宽积,是改进与提高激光粒度分析仪的基础。本文着重探讨空间带宽积的物理意义,及其与颗粒大小分析之间的密切关系。空间带宽积在二维付立叶变换光路中,直径为d的圆孔屏置于前焦面,在平行激光照射下,在后焦面可得到此孔的衍射图样,中心O级衍射谱称为爱里斑,爱里斑半径由下式表示:http://ng1.17img.cn/bbsfiles/images/2013/05/201305281052_441887_388_3.jpg从(2)式可见,衍射物的空间尺度d与衍射空间频谱宽度ρ/λf的乘积为一常数,我们称d*ρ/λf为空间带宽积。为了不失一般性,我们讨论二维付立叶变换系统对任一空域函数的抽样,在空域频域均采用直角座标系。由抽样定理可知,在空域对于带限函数g(x,y)使用间隔为△x△y的寻距抽样,得样本函数:http://ng1.17img.cn/bbsfiles/images/2013/05/201305281052_441888_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281052_441889_388_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/05/201305281052_441890_388_3.jpg我们称满足(5)式的抽样间隔为尼奎斯特间隔。(5)式表明尼奎斯特间隔与原函数的带宽之积等于1。此乘积即为直角座标系中的空间带宽积。以上分析表明:小的空间尺寸必然对应着一个宽的频带,换句话说,要测量小颗粒必须要用较宽的频带。如果尼奎斯特间隔大子所测的颗粒,则此颗粒在抽样中将被漏掉,频率将失真。尼奎斯特间隔对激光粒度仪来讲就是该仪器最小可分辩尺寸。激光粒度仪的空间带宽积在激光粒度仪中,由于颗粒群的空间频谱具有中心对称性,因此通常采用同心环状的阵列探测器对功率谱进行抽样。现考察一个半径为r0的颗粒,其透过率函数为http://ng1.17img.cn/bbsfiles/images/2013/05/201305281052_441891_388_3.jpg(11)式给出了颗粒与其付立叶径向功率谱的敏感空间带宽积。其物理意义是颗粒直径d发生变化时,满足上式的ρm处的功率谱变化最大。敏感空间带宽积在激光粒度分析仪的设计中具有重要作用。敏感空间带宽积的应用敏感空间带宽积在激光粒度分析仪的设计中可用来确定测量的上下限粒径,与颗粒的分级。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281052_441892_388_3.jpg从(11)式还可看出,使用长波长的激光光源或者增大付立叶透镜的焦距有利于扩大测量范围;反之,则有利于提高仪器的分辩率。[s

  • 凝胶成像分析系统

    凝胶成像分析系统

    凝胶成像分析系统用途j用于对各种电泳凝胶图像的采集、保存和分析;基本功能140万像素CCD,电动变焦,智能化分析暗箱,具有开门断紫外线,自动延时关断,变焦镜头保护,RS232接口,触摸软键,可通过鼠标实现CCD设置和变焦镜头调整的遥控功能;配备中文界面图像软件,确保对图像的“观察,拍摄,分析”过程一气呵成,同时兼容tif,jpg,bmp,gif等图像格式;具有开门防护,延时关断,漏电保护等功能;具有“自动曝光、自动白平衡”性能,其方便性远远优于数码相机,以及模拟CCD;具有强制激发紫外透射光的功能;拍摄范围:4.5-6(cm)~20-20(cm);图像观察:支持TWAIN接口,达到“实时浏览”的效果,可全屏显示,通过鼠标设置CCD关于图片亮度、黑白对比度、∮值等参数,也可以通过鼠标激活变焦镜头驱动串口,获得对观察谱带的放大,缩小,变焦等操作;图像处理:具有添加文字,箭头,图形注释,旋转,缩放,亮度,弧度,对比度的自动、手动调整及图片颜色的调整,负向及3D模拟显示等;图像分析:配合使用凝胶分析软件,可获得诸如泳道,条带的自动,手动识别,谱带分子量,灰度值,样品量,百分比浓度,迁移率等自动计算结果;主要特点ABS模具外壳,流线型设计,大方美观;进口低照度高分辨率数字CCD,便于捕捉弱带,实时浏览,全屏显示,操作简单;配有进口6倍变焦镜头,光圈F1.2~16,遥控电动变焦智能控制,便于凝胶的缩放观察;采用多层镀膜滤光镜组,有效滤除背景干扰噪声;超薄(透射)磷屏转换板和反射白光板;抽屉式操作台,便于对凝胶的各种操作(配备专用剥胶装置)配有品牌计算机和打印机基本参数紫外光源:透射波长:302nm反射波长:254nm、365nm、透射面积:250*210mm外形尺寸及重量外形尺寸(L*W*H):47*38*81cm重量:26.3kghttp://ng1.17img.cn/bbsfiles/images/2012/04/201204181016_361982_2470658_3.jpg

  • 【求购】哪个厂家有下列配置的微透析系统

    微透析探针:2通道微量注射泵;自由运动装置配置;自由活动装置1套适合于微透析探针;动物笼 1套 适合于大小鼠;样本冷却系统1套;样本收集器;PCR96孔板或500μl离心管;最小采集量:5μl;采集速率:5秒~99分钟1秒步进;脑立体定位仪固定器。

  • 放大倍数是扫描电子显微镜分析样品的关键吗?

    放大倍数是一个非常简单的概念,但是由于其自身的定义有时会产生混乱。这个博客的目的是澄清这个话题,并探讨其他可以更好地描述一个对象有多大的参数。第一个放大镜可以追溯到希腊时期,阿里斯托芬首先使用其描述了孩子们试图看到小细节的休闲活动。这是第一次“放大”这个词语出现在我们的语言中。随着时代的发展进步,人们在科学探索中对微观和纳米世界的兴趣呈指数级增长,从而需要量化放大倍数。  现代科学对于放大倍率的定义是两次测量之间的比率,这意味着需要两个对象来正确评估该值。第一个对象显然是样品,第二个是它的图片。事实上,虽然样品尺寸不变,但图片可以以任意大小打印。所以请允许我做一些计算:  这意味着如果我打印苹果照片时第一次打印时选择标准打印机的纸张,再次打印时选择用于覆盖建筑物的海报,则两次放大倍数值将发生显着变化。显微镜观察具有更科学严谨的例子:当存储样品的数字图像时,调整图像大小会导致放大倍数不再准确。因此,放大倍率是相对数量,在科学领域并没有实际用途。  科学家使用的是以下几个参数,描述实际成像区域的大小(视野 - 显微镜成像的区域)以及该图像的清晰度(分辨率)。放大公式也相应地改变:放大倍数=图像尺寸/实际样品尺寸。[align=center][img]http://www.gdkjfw.com/images/image/57181528960215.png[/img][/align]  如上,公式仍然是一个模糊的描述,并且没有考虑分辨率。这意味着将相同的图像缩放到较大的屏幕将导致放大倍数也会改变。视野定义为成像区域的大小,该值通常在几毫米(小飞虫)到几微米(小飞虫的的毛发)和几个纳米(外骨骼的分子宏观结构)之间。使用现代仪器,可以对几百皮米范围内的物体进行成像 - 这是原子的平均尺寸。  但是,我如何知道对样品进行成像需要的视野大小?这又是一个棘手的问题,但可以用一个例子很容易地回答。在与你最好的朋友的照片中,通常一个脸孔占据空间的5-10%。这已经足够让您识别图像中的人物。但是,如果你拍照的脸占据整个照片,你可以观察到脸上细小的细节,如头发,皮肤上的斑点和眼睛的颜色。  这意味着,例如,如果您有平均大小为1微米的颗粒,并且您想要对它们进行计数,则每个图像可以有20个颗粒,而不是一次成像一个颗粒来浪费时间。还考虑到颗粒之间的空白,25-30微米的视野对于这样的样品是足够的。另一方面,如果您的兴趣在于颗粒的结构,则需要特写,观察区域必须更接近2-3微米。  台式扫描电子显微镜正变得越来越受欢迎,因为它具有与高端光学显微镜相当的价格同时提供更多的选择,它的分辨率更高,并且可以与其他分析工具的集成来测量诸如表面粗糙度和元素组成等,这使得其成为最通用的[url=www.gdkjfw.com]成像仪器[/url]。

  • 厂商活动:真心英雄第二关全自动核酸分析系统免费体验风暴来袭

    厂商活动:真心英雄第二关全自动核酸分析系统免费体验风暴来袭

    您还在为做胶时小心翼翼对待如EB类的核酸染料而苦恼吗?还在为胶分辨率低,没办法获得差异结果而头疼吗?还在为同样的PCR产物用不同大小的Marker估算,但结果不同而纠结吗?还在为传统电泳繁杂的步骤耽误时间而痛苦吗?现在你可以对这一切说NO了,免费体验全自动核酸分析系统Qsep100开始了!这款分析系统,是利用微毛细管电泳技术检测双链DNA的新仪器,PCR后您不用再制胶,不用再接触EB,不用再浪费时间跑胶和花心思分析胶上的结果。全自动核酸分析系统,承担您所有的实验步骤,节省您宝贵的时间,提高您实验结果的精确性。 全自动核酸分析系统Qsep100,采用毛细管电泳原理,对DNA 片段进行分离和检测。该系统包含检测模块、分析模块、样品进样器和可替换的Pen-shape 卡夹。最快3分钟完成一个样本检测,检测样本灵敏度低至0.1ng/ul,可分辨出1-4bp差异的DNA片段,可对结果进行定性和定量分析。电泳峰图、凝胶电泳图、DNA片段差异的分析都可以通过软件来完成。只需简单几个操作,您就可以获得直观、精准的检测结果。此毛细管电泳技术让您的实验标准、精准、自动、高效。还等什么,快来参加体验吧,凡报名的老师在活动期间,我们将携带仪器上门免费为您做体验。免费体验期,参加体验互动活动,还可获得昊诺斯8GU盘或瑞士军刀背包一个(奖品以实物为准)。\(^o^)/~http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647449_1622715_3.jpg真心英雄活动第二关试用报名网址:http://www.instrument.com.cn/custom/SH100700/20130522/free.shtml另外,您也可以致电北京昊诺斯科技有限公司市场部产品负责人杜广红 13910514003 duguanghong@herosbio.com(因为区域划分,活动仅限北方区域,具体问题欢迎来电垂询)。

  • 图像分析基本原理及分析过程

    图像分析基本原理及分析过程概述在生物及医学研究中,对图像的判读与分析特别是对显微镜下微观图像的观察研究从来都是重要的研究手段。随着技术的进步,分析图像的方法也从眼观尺量进入到了使用计算机软件进行定量分析的阶段。计算机软件的发展速度呈加速前进,采集图像的设备也不断更新,这使得我们能有更多的手段来分析测量复杂的生物图像。现在我们可以使用CCD数码相机来采集图像。使用功能比较强大的图像分析软件来进行图像分析测量。相比之下,在不太久远的十来年前使用的图像分析仪及单色的图像采集摄像机已经过时了。而图像分析的手段也比以前丰富。简单地引用以前的分析方法未必就是最佳的方法,在许多情况下,需要我们依据软件及相机的情况设计与研究目标相适应的分析方法。分析测量图像绝不仅仅是一个软件使用的问题,而是从实验设计开始,就要综合考虑研究目标、样品制作方法、拍摄方式、选择视野等各方面因素,最后才是通过软件实现最有效的图像分析测量。一个完整的图像分析过程应该包括:1.明确需要测量分析的对象。2.使用适当的方法拍摄下这个对象,包括进行适当的染色及取样,采集到突出显示的测量对象的照片。3.分析照片上的图像元素,确定能反映测量对象的图像图形4.测量照片上的图形的测量参数,进而得到测量对象的测量数据5.对测量对象进行统计分析。图像分析的最佳效果,是利用图像分析软件可以自动地判断测量目标,准确分析测量出目标对象的数值。由于生物图像的复杂性,软件往往作不到这一点。此时只能退而求其次,采取抽样统计,手工选择等方法进行近似的测量。测量方法本身有时候也能成为一个研究课题。

  • 显微图像的标定

    显微图像的标定

    显微图像标定操作规程细胞大小和长短是浮游生物重要的形态特征,见图1,常常需要测量细胞粒径作为种类鉴别的依据。定量分析同样需要准确测量视野面积来计算单位体积的浮游生物数量。显微镜通过CCD接电脑后,测量和分析是针对电脑中的图像来的,必须精确确定被拍摄样本的实际尺寸与所获取的图像尺寸之间的关系,这种尺寸关系的确定由标定来完成。http://ng1.17img.cn/bbsfiles/images/2013/12/201312300911_485431_1771086_3.jpg图1标定方法:1. 连接好显微镜和仪器主机,打开显微图像分析系统。2.将台测微尺当作显微玻片标本,点击“连接”,见图2 。http://ng1.17img.cn/bbsfiles/images/2013/12/201312300842_485417_1771086_3.jpg 图2用4倍物镜观察并调整直至图像清晰,图3。台尺的刻度代表标本的实际长度,本次使用的测微尺小格为0.01mm。http://ng1.17img.cn/bbsfiles/images/2013/12/201312300845_485420_1771086_3.jpg图33.点击“人工拍摄”,获取测微尺图像。图4 .http://ng1.17img.cn/bbsfiles/images/2013/12/201312300849_485423_1771086_3.jpg图44.点击屏幕右下角的标定选项,选择需要标定的比例尺。此次图像是4倍物镜形成,选择“4x”。在测微尺图像上确定两点的距离,在弹出的对话框中输入图像中线段的实际长度。http://ng1.17img.cn/bbsfiles/images/2013/12/201312300906_485426_1771086_3.jpg图5http://ng1.17img.cn/bbsfiles/images/2013/12/201312300909_485429_1771086_3.jpg图65.点击“确定”,完成本次标定。6.重复2.-6.步骤,用10倍和40倍物镜拍照后标定。标定图像观察实际样品时,获得清晰图像后,选择物镜倍数,点击选择显示比例尺,选择“单张固化”或“全部固化”可以将生成的比例尺嵌入单张图像上或嵌入到获取的所有图像上。http://ng1.17img.cn/bbsfiles/images/2013/12/201312300914_485433_1771086_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制