当前位置: 仪器信息网 > 行业主题 > >

微波工作站小型微波能快速淬火炉

仪器信息网微波工作站小型微波能快速淬火炉专题为您提供2024年最新微波工作站小型微波能快速淬火炉价格报价、厂家品牌的相关信息, 包括微波工作站小型微波能快速淬火炉参数、型号等,不管是国产,还是进口品牌的微波工作站小型微波能快速淬火炉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微波工作站小型微波能快速淬火炉相关的耗材配件、试剂标物,还有微波工作站小型微波能快速淬火炉相关的最新资讯、资料,以及微波工作站小型微波能快速淬火炉相关的解决方案。

微波工作站小型微波能快速淬火炉相关的论坛

  • 真空淬火炉

    产品概述:郑州诺泰科技的真空淬火炉不仅可以抽真空,还可以充入保护气氛。真空度可以是10Pa,10-3Pa或更高。保护气氛可以是N2,Ar等。产品应用:真空淬火炉主要用于铜颗粒,高速钢,冷热模具钢,不锈钢,弹性合金,磁性材料和钛等材料的真空热处理,真空钎焊和真空烧结等。[img=真空淬火炉]http://pb3.pstatp.com/large/dfic-imagehandler/55e1dbbb-e094-413f-ad16-8f3c0ff3bac6[/img]真空淬火炉相关参数:最高温度:真空下1600。控温精度:+/- 1温度均匀度:+/- 5?+/- 8极限真空度:10Pa,10-3Pa或更高。腔体尺寸:600x600x600mm(腔体尺寸也可根据您的要求定制)我们还可以为您的整个生产过程提供相关设备。如果您需要,请与我们郑州诺泰科技联系。[url=http://www.china-protech.com/a/zhenkongluxilie/]http://www.zzprotech.com/a/zhenkongluxilie/[/url]

  • 【国产好仪器讨论】之上海新仪微波化学科技有限公司的密闭式高通量微波消解/萃取工作站(MDS-15)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C196929%2Ejpg&iwidth=200&iHeight=200 上海新仪微波化学科技有限公司 的 密闭式高通量微波消解/萃取工作站(MDS-15)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: MDS-15密闭高通量多功能微波样品前处理工作站功能全面一机多用操作安全(微波消解领域的百变金刚)l首创石英全透明高压消解罐,反应过程清晰可见;l首创无线远程可视监控体系,配合石英罐体,消解合成一目了然,并可全程照相、摄像;l500ml超大容量消解罐,满足10克级大容量样品消解的特殊需求;l微波干燥样品配件,实现样品消解前的干燥处理;l独家专利多功能泄压块Safety Bolt设计,无需防爆膜等耗材;l宇航纤维外罐XtraFiber等最高等级安全防护措施;l65L超大炉腔+双磁控管结构,高能均匀微波场设计;l20年行业经验,无一例人生伤害事故;l四次荣获中国分析测试协会BCEIA金奖,用户数量全国领先;大多数业界专家推荐的微波消解品牌,唯一4次荣获中国分析测试协会BCEIA金奖,2014年《国产好仪器》上榜品牌。MDS-15密闭式高通量多功能微波样品前处理工作站结合了新仪公司20多年经验与行业最新技术全力打造而成。公司研发的多种功能性罐体,能满足实验者各种需求,是一款广泛适用于常规实验室至极端条件下特殊应用的微波样品前处理工作站。MDS-15集成了业界最新技术和高端材料,产品特色鲜明。操作安全:宇航纤维外罐、安全泄压块(专利)装置等最高级别安全防护措施;便捷高效:多种功能性罐体可选,高能均匀微波场快速消解,15分钟极速风冷;经久耐用:耐腐蚀超长寿命工业级炉腔等高品质材料的使用等。MDS-15面向客户需求及样品前处理发展方向,满足现代实验室建设需求,是您明智的选择。满足您多种样品前处理需求?常规消解:MDS-15结合16位高通量GP-100消解罐,能进行260℃/ 6Mpa以内的长时间消解工作,满足绝大部分消解需求;公司研发的8位QZ-100石英消解罐,更将消解能力提升至270℃/ 6Mpa,即使最苛刻的材料也可成功消解。配合石英消解罐的远程WiFi视频监控系统让消解过程一目了然,全程可照相和摄像。?超高取样量消解:8位LV-500消解罐组合,一次可有8个500ml超大罐体同时消解,将样品取样量提升至无可比拟的10克数量级。全罐磁力搅拌,样品消解更快速彻底。创新的安全泄压片(Safety Bolt)专利设计,能保证安全定向定量泻压与完全消解相结合。各类高取样量消解需求迎刃而解。?样品干燥:F-DRY干燥器附件支持快速均匀干燥,样品干燥速度只需传统方法的1/4,并能防止....【了解更多此仪器设备的信息】

  • 【国产好仪器讨论】之上海新仪微波化学科技有限公司的70罐超高通量密闭微波消解/萃取工作站(微波消解仪)(MASTER)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C115114%2Ejpg&iwidth=200&iHeight=200 上海新仪微波化学科技有限公司 的 70罐超高通量密闭微波消解/萃取工作站(微波消解仪)(MASTER)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 继2010年新仪公司成功推出40罐高通量微波消解/萃取工作站之后,填平了国产微波化学仪器与国外同类产品的距离,获得了良好的市场反馈。而2012年新仪更是在此基础上,将微波样品前处理仪器的使用极限提升到国内外前所未有的高度。 全新MASTER 70罐超高通量密闭微波消解/萃取工作站是新仪公司20年微波化学研发历程厚积薄发的产物,是对国外同类产品消化吸收后的超越,其核心技术超过国外同类产品。这些核心技术包括消解外罐的材料和加工工艺,高通量消解转子的设计,独特的压电晶体测压技术,炉腔内消解转子同一方向连续旋转的专利技术等等,无一不体现了业界的创新和突破。 随着质谱等分析仪器的普及,快速、高效、高处理量的微波样品前处理仪器的需求越来越大,而现存的国外高通量微波消解产品普遍存在承压低,易泄漏,罐盖易变形,微波加热不均匀,操作繁重等缺陷。全新MASTER系列密闭微波消解仪就是针对这些普遍存在的问题,而开发的新型高通量微波样品前处理仪器。其独特的创新技术体现在: 1. 高通量罐架采用高强度合金材料拉杆连接成一个整体,具有强大的压力支撑作用(≥10000Kg),每个消解罐顶部和底部的垂直方向上受到罐架的强大支撑,保证了消解罐在承受压力≤4MPa, 温度≤250℃情况下不会变形,不会泄漏。(国外同类产品一般工作温度不超过210℃) 2. 高通量罐架设计可以让炉腔内的微波场随着罐架的旋转而搅拌,使多达40-70个高通量消解罐在微波场分布均匀的状态下加热。 3. 取消了防爆膜等消耗品,采用安全泄压爆裂片(专利)装置,保证消解罐在正常工作状态(压力≤4MPa,温度≤250℃)消解罐完全密闭,只有当罐内压力大到对安全构成威胁的指定强度时爆裂片自动破裂,罐盖自动上升释放压力,实现定量垂直爆破泄压,保证运行安全。正常操作情况下,安全泄压爆裂片不会破裂也无需更换。(国外同类产品工作温度超过200℃就开始自动泄压,依靠罐盖面的形变来达到泄压,但由于罐盖面是非金属材料,在温度和压力作用下,形变后不容易恢复,几次用后就失去了弹性,丧失了继续密闭功能,所以经常会出现消解罐内样品减少和干涸现象,并造成回收率降低。) 4. 温压测控装置和消解罐随转盘同方向同步旋转,通过专利的接线盒技术让转盘始终朝一个方向不停顿地旋转,无需360度来回旋转,旋转过程中无停顿,微波加热更均匀;温压....【了解更多此仪器设备的信息】

  • CEM微波工作站注意事项与日常维护

    论坛内用CEM 的微波用户不少,大家都知道微波需要清洁维护,那么具体的CEM微波工作站注意事项与日常维护有哪些了?请看:一、注意事项:1、 仪器操作(1) 微波启动后15秒内不能关掉, 微波停止后5分钟之内不得关机(2) 必须保持微波腔体、转盘、腔体保护板干燥清洁(3) 开关机间隔应大于一分钟(4) 不要空载运行仪器2、 传感器(1) 光纤温度传感器必须保持干燥清洁,小心操作,避免折压、拉扯。插入主控罐时一定要插到温控套管底。每次使用前应注意温度指示是否正常。(2) ESP 1500 PLUS 压力传感器,应保持干燥清洁,每次装配时都要先拧紧传感器与导管的联接螺帽(不要在安装好压力传感器后,拧紧该螺帽),然后插到到仪器压控接口上。注意压力传感器是插在仪器压控接口上的,不是螺纹连接,压力传感器与仪器连接时压力传感器不要转动超过一圈。(3) 红外温度传感器,必须保持窗口的干燥清洁。必要时,用镜头纸清洁。(4) 萃取时必须安装溶剂传感器,并在设定菜单中打开溶剂传感器;消解时必须拆下溶剂传感器,并在设定菜单中关闭溶剂传感器。

  • 【第三届原创参赛】MDS-8型多通量密闭微波化学工作站作业指导书

    MDS-8型多通量密闭微波化学工作站作业指导书1.目的本作业指导书制定了使用MDS-8型多通量密闭微波化学工作站的具体要求和步骤,以确保按程序操作和检测结果的准确性。2.使用环境和适用范围使用环境条件:1)温度在5~40℃范围内;2)相对湿度小于80%;3)使用环境应无腐蚀有害气体,无外界强磁场、阳光辐射,通风良好等。适用于化妆品、粮食(大米、玉米粉和面粉等)、生物纺织试样、土壤、河道沉积物、生活污泥及类似样品、粉煤灰、页岩、轻质粘土、原油、渣油等石油原料、水体中的COD等的微波消解或微波萃取。3.使用仪器设备、工具3.1 MDS-8型多通量密闭微波仪3.2 10ml移液管3.3 洗瓶3.4 吸耳球3.5 500ml烧杯3.6 剪刀3.7 67%硝酸3.8 双氧水3.9 25ml量筒4.工作程序4.1 安全注意事项1)确保微波制样设备接地良好,以防止发生触电事故。2)微波制样设备腔内不得使用金属容器。3)未放入任何加热物质,请勿运行仪器,以免空载损坏仪器。4)不可将水银温度计放入设备空腔内,防止产生电弧。5)切勿随意在门间隙夹带纸张等杂物,以防造成微波外泄。6)不要在本设备炉腔内使用溶样杯加热浓碱、浓盐溶液,否则因盐析作用而吸收微波产生炭化或电弧,是容器报废。7)本设备为专用微波制样设备,有故障必须请专业人士检查维修,不得擅自进行调试和修理,不得自行分拆,以免高压电击或微波泄漏伤害人体。8)严禁单独使用高氯酸、浓硫酸和过氧化氢等强氧化剂在密闭消解罐中消解样品,尽量避免或极为小心慎用高氯酸。9)禁止随意在密闭微波制样系统中消解以下危险物:有机溶剂,爆炸物,强氧化剂和与硝酸反应产生爆炸的物质(如:硝化甘油,苯酚,硫磺等)以及长条或块装金属类。10)试样称取量必须低于《汇编》规定值,不明成分或未知样不得大于100毫克。

  • 两款国产知名微波消解仪大比拼之红方观点:上海新仪 MDS-10 高通量超高压密闭微波消解/萃取/合成工作站

    微波消解作为一种高效的样品前处理方法,目前广泛应用于食品、纺织、石化、生物医药、环境监测等多个领域。先前我们针对外国厂商做过一次比拼,今天我们就两款国产微波消解仪(上海新仪 MDS-10 高通量超高压密闭微波消解/萃取/合成工作站)与(上海屹尧 WX-8000 专家型密闭微波反应系统)做一PK。如果您正在使用或者之前已使用过其中一家的仪器,欢迎前来分享使用经验和心得体会。同时,还可以说说您在仪器使用中遇到的问题及解决方法;如果您是某家的仪器工程师,也欢迎您就用户提出的问题进行解答,并欢迎您对仪器的参数进行解读。【本次论剑仅作参考,请勿灌水或相互攻击!】

  • 【资料】-微波能水处理技术

    活性污泥法是城市污水处理厂普遍使用的方法,但因活性污泥法是靠废水中的微生物分解污染物以净化废水的,所以受生物活性及培养问题的影响,有处理周期长、流程长、构筑物占地面积大、对环境和水质要求高、调试周期长等缺点。因此,世界上许多国家都在研究流程更简单、处理效果更好的水处理法来替代生化法。微波能水处理技术  微波能在工业生产中的应用技术研究始于1983年,在水处理中的应用研究始于1986年,世界上第一台多功能工业微波炉于1999年研制成功。某环保科技有限公司在此基础上设计生产出工业化微波能水处理设备,并安装于某市污水处理示范基地,于2002年4月一次性运行成功,进行了某滨河污水(含工业污水、生活污水等综合性市政污水)的处理,效果显著。目前该技术在某石化公司二次水深度处理工程、某电厂二次水深度处理工程应用中,出水指标已接近甲方要求,工程经调试后可转入运行。与传统水处理方法比较  微波能水处理技术在水处理中的应用效果,经专家、学者现场检测,认为该技术是水处理领域的一项技术革命,与传统工艺方法相比较有以下优点:  一是工程投资低。无需铺设庞大管网和水池,污泥量少,效率高,故投资费用比传统方法低。   二是占地面积小。用微波能水处理技术日处理2400吨水的工程,占地面积不到300平方米,其中微波能水处理设备仅占地64平方米,而用传统方法则需约2000平方米。  三是处理效率高。对污水中难降解有机物的高浓度、高浊度、高色度去除率达到90%以上,高盐度、高重金属含量和石油类污染物的去除率很高,出水可达标排放或再利用。  四是工程小型化。该技术可采取小型化、分散化的方式,堵住污染源,减少庞大的工程管网,简化工艺流程,降低工程造价,节约开支。  五是广谱性强。适用于各类城市、商业、工业、农业污水,对进水有机污染物的浓度、温度、含盐量、色度、气味、重金属含量、细菌量等均能达到满意的处理效果,不需复杂的预处理设备。   六是操作弹性大。采用微波能水处理技术的工程一旦投用,进水量、水质变化波动不影响操作,只需调整工艺参数即可。  七是杀菌灭藻强。对菌、藻类有高频穿透作用,杀伤能力极强,在短时间内可杀灭微生物,杀菌能力强。  八是无二次污染。微波能水处理技术直接把微波能转化为热能,因此不会给被处理水带入任何新的污染物。  九是固液分离快。微波能水处理技术在添加剂化学反应及微波催化的共同作用下,经物化反应后生成大量速沉絮体物,以0.7厘米每分钟的速度汇聚沉降与水分离。  十是运行费用低。日处理2400吨水的微波能水处理主体设备仅40千瓦,每吨水折合0.4千瓦时。计算综合运营费用约为每吨水0.5~1.2元。  微波能水处理技术具有诸多优于传统方法的特点,在实际应用中必然能够产生显著的社会效益、环境效益和经济效益。-中国微波在线[em61]

  • 【讨论】微波提取和快速溶剂提取的差别

    【讨论】微波提取和快速溶剂提取的差别

    加速溶剂提取的工作流程如图所示,先将固体或半固体的样品放入不锈钢萃取池中,若未加满则填入适量的硅藻土,然后萃取池被转入加热炉内,溶剂被输液泵(或依靠氮气的压力)输送到萃取池内。此时,加热炉开始加热升温,在达到设定的温度和压力后进行静态萃取。萃取结束后,萃取池中的溶剂经由滤膜进入到收集瓶中,并用溶剂清洗管路,再用氮气将其一并吹入收集瓶中。加速溶剂提取主要利用了有机溶剂在高温、高压下,其粘度降低,能更好的浸润样品基体从而能提高溶剂提取的效果。加速溶剂提取很容易实现自动化,因此其应用非常广泛。[img]http://ng1.17img.cn/bbsfiles/images/2006/04/200604081423_16448_1613333_3.jpg[/img]微波辅助提取是利用溶剂的极性分子(如甲醇、丙酮等)在微波电磁场中快速旋转和离子在微波场中的快速迁移,相互摩擦而发热,从而加热与固态样品接触的极性溶剂,使所需要的化合物从样品中分配到溶剂里。微波辅助提取一般是在密闭或敞开的微波-透明容器中进行,萃取时将提取溶剂和样品混合在提取器中。目前国内外使用最多的是密闭的萃取罐,在较高的温度和较高的压力下进行提取的,而敞开式的微波萃取系统应用的却很少。用微波萃取时,将样品和溶剂都放入特制的密闭的聚四氟乙烯萃取罐中,在设定的条件下进行微波萃取。

  • 【资料】微波消解配套组件的发展

    微波消解配套组件的发展随着ICP等分析仪器的检测限不断降低,样品前处理日益成为分析技术发展的瓶颈。样品前处理不仅耗费时间长,而且间接的限制了检测限。而最近发展的微波自动浓缩组见却可以解决上述这两个问题。直到现在,由于消解过程会产生大量气体,所以样品量的限制还是制约微波消解发展的一个重要因素。现阶段微波消解一般是10ml浓酸消化0.5g样品,随着消解罐技术以及泻压技术的发展样品量可扩展到1g以上。但如果将消解液稀释到50ml,则酸的浓度大概在20%左右,这个浓度会影响到检测限。而通过最新的微波样品自动浓缩蒸发组件,如CEM公司的MicroVap则可以最大程度的解决这些问题。运用该浓缩蒸发组件,可以在消解前或消解后通过微波加热快速的蒸发溶剂基体,有效减少试剂基体。而且整个蒸发过程无需转移消解液,并且是在半真空条件下工作,避免产生误差。控制系统会自动检测试剂混合物的沸点,并持续加热消解液直到将它浓缩到比较低的含酸量。微波加热浓缩的优势在于它是自动对消解液进行浓缩直到消解液几乎干了不再吸收微波,然后剩余物的温度就会快速下降,操作者也可以自己设定反应终点温度。和电热板浓缩不同的是,微波浓缩在溶液干的同时温度也降下来了。同时,微波浓缩非常快速,10-25ml可以在15-20分钟内完成,大大提高样品处理的效率。它可以浓缩一般的试剂基体或酸基体,可以浓缩到一个很低的酸浓度如2%-4%的硝酸浓度。计算机技术及传感器技术的最新发展使微波高通量样品前处理成为可能。计算机辅助设计使消解罐达到一个最佳的强度-重量比并解决了微波压力系统的不均衡问题。余热从罐子消散,而能量只被试剂和样品吸收MARSXpress 系统,一批可以消解40个高压罐,而且温度还要超过以前那些一批只能消解10几个的系统。这个系统为那些需要提高分析效率以及样品特别多的用户提供了更好的微波消解方案。先进的传感器可以控制和连续输出每一个消解罐的温度,这比以前的只对一个参考罐进行控制的方式更有代表性

  • 微波快速溶剂萃取技术主要优点

    微波快速溶剂萃取技术主要有以下优点:1)溶剂用量少。10g样品仅需10~30mL溶剂,试剂量只为常规萃取的1/15左右。2)微波萃取法回收率和重复性普遍优于其他萃取方法。3)微波萃取仪萃取容器每罐可达50-100mL容积,加入样品量可达10~50g,每批样品处理只需要5~20分钟即可达到非常好的萃取效果。4)微波萃取法不受含水量的影响。EPA用MARSX对不同含水量的土壤中农药的回收率进行了分析(见图1),认为微波萃取前可以无需样品干燥,这大大提高了分析的工作效率。微波萃取免除了萃取前的样品干燥处理,因此样品含水量比其他的萃取技术对基体影响更小。

  • 【资料】-从工程角度探讨微波化学实验设备的发展

    目录 0 引言 1 微波化学需要建立系统的理论基础 2 微波化学应从电磁场的全部参数来考察应用效果 3 用家用微波炉作微波化学实验的局限性 4 微波化学专用微波炉 5 实验室微波化学试验系统 6 微波功率工程应为微波化学的产业化提前作一些考虑 0 引言 1986年加拿大Gedye教授发表了第一篇微波催化化学合成的论文(这个实验是在家用微波炉内做成的),把微波电磁场作为加速化学反应的手段,引起了世人广泛的关注。激发了化学工作者利用家用微波炉这个易得的实验条件,在化学和化工的广泛领域做了许多开创性的试验,并获得了令人振奋的成果。1992年9月在荷兰召开了第一次世界微波化学会议,正式采用“微波化学”这个术语,概括了这个科学研究的方向。化学工业界有识之士认为,发现了催化剂是化学工业快速发展的第一个里程碑,可以期待着微波电磁场辅助催化化学反应的发展,有可能成为化学工业快速发展的第二个里程碑。 微波技术工作者以十分兴奋的心情阅读了大量的微波化学的试验结果,认识到这个领域正是微波功率工程研究应该辛勤耕耘的一块土地。微波功率工程应该为微波化学的发展做好自己的工作,这是自己光荣的责任。就微波功率工程应用的整体工作来说,是一个“服务性行业”,设计考察的首要条件是服从应用学科的科学规律,微波设计应以参变的方法使微波理论的规律和应用学科的规律找到一个会合点,这是项目成功的首要条件。因此,了解应用学科的需要,按需要调整自己的研究方向,才是切合实际的。 本文的目的,是从微波工程的角度,提出自己的看法。也就是说,我们从微波技术的角度所考虑的问题,不知是否和化学试验及化学工程的具体实践的要求相符合?请化学各行专家指教。 1 微波化学需要建立系统的理论基础 从我们目前看到的微波化学的论文来看,实验的内容是相当丰富的。但缺少化学实验和电磁场理论相结合的方法,分析实验成果的系统理论。〔应当说,本人视野还有局限性〕这种系统理论,正是微波技术工作的出发点。 现在是否可以将众多实验结果的“点”演绎成为规律,而这些规律和电磁场的参数具有内在关系。 我们认为,从微波理论的角度,可以引出的理论出发点如下: 化学反应催化剂的研究已经有一百年的历史,对加快化学反应速率起着决定的作用。从电磁场理论的角度来观察,电磁场并非替代催化剂或分子筛的功能,是一种辅助功能,并不完全是取而代之,而是使原有催化剂的功能发挥得更好,发展其潜力,延长其寿命。实际上电磁场的存在改善了固体的表面效应,这些表面效应正是催化剂催化化学反应的用武之地。所以,从理论上可以预期,一些原先不可能作为催化剂的物质,在电磁场存在的前提下可以具有催化功能。理论分析是很清楚的,固体表面电磁场的存在:(1)可提高分子碰撞的概率;(2)添加分子的碰撞能量(3)改变分子能量的类型(4)改变分子碰撞的方位(5)可能延长反应分子的碰撞时间。从微波加热的特点来考虑,电磁场加热具有选择性加热的特点,催化剂的电介常数大,在催化剂颗粒或粉末的邻近,呈现着陡峻的温度梯度;所以反应分子在催化剂的邻近区域接收“强活化”的条件后,迅速离开高温区,可防止反应的逆转。传统的由表及里的传热加热方法,是不可能产生微区的高温条件的,也不可能建立不平衡的陡峻的温度梯度。 大块的金属是不可能进行微波加热的,但金属催化剂粉末或颗粒,可以进行微波加热。 从微波气体放电的理论来分析,在催化剂微粒的附近可能出现低温等离子体鞘层或电晕。 在大气压微波加热的实验中,我们常常会发生初始状态气体放电现象。从微波加热应用器设计的角度来考虑,这些气体放电现象是不会出现的;应用器不可能出现如此高的电击穿场强。这是由于加热材料的尖端效应,或高电介质常数边界切向电场连续效应(高电介常数物料邻近的切向电场远高于远区)这些效应,可以在催化剂邻近构成电晕或辉光放电,在此条件下为获得离子、新生态原子、激发态粒子、自由基等,提供了有利条件。 这些电晕或辉光放电的鞘层,可以处于星星点点的分布状态,不构成整体的等离子体现象。这些星星点点的等离子体鞘层的微区,正是化学反应取得强活化的条件。 从这里也可以看出微波催化化学反应和微波等离子体化学两者是具有内在联系的。 微波化学的内容是多学科交叉的内容,首先应当是化学反应热力学、化学反应动力学和电磁场理论的充分渗透。在这个结合点上给出微波化学的理论出发点,给工程工作指出一个方向。微波化学的发展还需要其他学科的配合,特别是材料科学的配合。也就是说微波化学的发展,是需要多个学科联合攻关的系统工程。

  • 【讨论】国产微波消解仪的现状分析和未来

    “微波消解仪发展至今已有20多年,大约有2万余台国产微波消解仪分布在我国大江南北。微波消解仪由原来单一改装家用微波炉装置快速发展为先进的实验室专用微波消解工作站/系统。目前,国产微波消解仪品种较多、性能差别大、适用面各有不同。 就仪器生产厂家来说,国内生产微波消解企业呈现专业生产型锐减、多元化经营并举的新格局。最早从事微波消解仪研制单位坚持下来的也就仅剩上海新仪微波化学科技有限公司(其前身为上海新科微波溶样测试技术研究所)和北京盈安美诚,但很多研制单位不是被大企业收归囊中,就是烟消云散了。现在活跃于微波消解领域的厂家主要有上海新仪、上海屹尧、盈安美诚、上海新拓、北分瑞利以及其他厂家。  就技术而言,国内微波消解仪的差别较大,一般厂家仍停留在国外上世纪90年代中期水平。专业型的厂家因其不断自主技术创新,提升了产品档次,在诸多技术上与国外同类产品不相上下;某些细节方面的设计远优于国外产品(如:防腐蚀、人性化工具小车等)。而国内厂家主要的技术竞争优势在于消解罐架结构和消解反应罐,以及先进的非接触式高精度温压测控技术替代单一参数控制或直接导入式温压测控手段。  综观国内微波消解使用现状,国产微波消解仪与进口微波消解设备的技术差距甚小,售后服务响应速度和服务质量胜于进口设备供应商;但应用技术开发力度相对显得比较薄弱。”------------------------------------------------------------------------------------------------------------------------对于国产微波消解仪未来的发展之路,您有什么想说的?您同意文章末尾对国内微波消解仪现状的概述吗?欢迎大家共同探讨!期待您的精彩点评!

  • 【资料】-浅述微波漏能标准

    [b]浅述微波漏能标准[/b]来源:汇研微波随着微波炉与工业微波设备的不断普及,更多的人希望能进一步了解这项加热技术的科学性质,去除疑虑。 一直以来,欧美和前苏联所制定的安全标准间相差1 ~ 2个数量级,这反映了他们在研究微波对人体影响结果上的争论。 美国所制定微波辐射强度安全标准理论的基本观点是Schwan提出的: 1) 微波对肌体的影响主要是微波的热效应。 2) 微波辐射强度小于10mW/cm2时,不会引起受辐射的人体温度升高。 经过实践后,1982年美国国家标准研究所(ANSI)颁布新的微波辐射安全标准f/300 mW/cm2。其制定依据是从不超过机体组织吸收 比(SAR)阙值0.4W/kg为原则。使用此标准的还有加拿大、英国、法国、澳大利亚等国。 前苏联所制定的微波辐射强度标准的观点是:以动物实验中对动物中枢神经系统和心血管系统功能障碍的阙值强度,以及长期暴 露在有可能泄漏微波环境中临床症状的强度为依据的。其观点的出发点与美国的完全不同,属于以微波的非热效应为理论基础的,重 点在于微波非热效应对动物机体的植物性神经系统活动影响。使用此标准的国家有原波兰、捷克、保加利亚等国。 我国的微波辐射职业卫生标准研究工作起步较晚,基本上参照国外的研究和实行情况。并于1979年由卫生部和四机部联合颁布 《微波辐射暂行卫生标准》,规定受微波辐射强度为50 μW/cm2,(以每天暴露6H计算)。超过时间界限者,日最大允许量为 300μW*h/cm2 不足者为日最大允许量不大于5mW/cm2 。1983年修订标准为:受微波辐射强度不变动,但将每天暴露时间的界限改为8h, 即日最大允许量为400μW*h/cm2。同时还按下列情况区别对待: 1) 考虑微波的生物效应,对脉冲波日最大允许计量为250μW*h/cm2。 2) 某些工种,仅是肢体受到微波辐射的,与全身受到辐射的情况相比,其日最大允许剂量可比全身受辐射剂量大10倍。 3) 与固定方向微波辐射相比,非固定方向微波辐射(如转动天线的微波辐射)在同等条件下,其允许强度可比固定情况大一倍。 正常情况下(指非事故状态)人体对上述规定的微波辐射剂量是可以承受的,人体有热调节机能,可使受到微波辐照部位不致于过 多积累热量而达到受伤害的地步。 另一个方面,从保证设备安全性来说,对微波加热设备的设计和制造,抑制微波泄漏是一个重要的技术指标。应尽可能采取安全 措施来控制微波泄漏,例如,使用炉门联锁装置;在连续输送式工业微波加热设备的出入料口,加装微波漏能抑制器,将微波泄漏量 降至允许范围。我国规定家用烹饪微波炉或工业微波加热设备的微波泄漏量为:在距离设备5cm处,微波功率≤5 mW/cm2,(2450MHz)和微波功率≤1 mW/cm2(915MHz)

  • 【资料】-微波化学与技术

    [b]微波化学与技术[/b]——[i]节选自《环境微波化学技术》[/i]1.3微波化学与技术微波化学与技术是一门新兴的交叉性学科。它是在人们对微波场中物质的特性及其相互作用的深入研究基础上,利用现代微波技术来研究物质在微波场作用下的物理和化学行为的一门科学。微彼场可以被用来直接作用于化学体系从而促进或改变各类化学反应 微波场也可先被用来诱导产生等离子体,进而在各种化学反应中加以利用。 1.3.1 微波化学与技术的发展历程从历史上看,微波化学学科的产生源于徽波等离子体化学的研究。最早在化学中利用微波等离子体的报道始于1952年,当时Broida等人采用形成微波等离子体的办法以发射光谱法测定了氢一氘混合气休中氘同位素的含量,后来他们又将这一技术用于氮的稳定同位素的分析,从而开创了微波等离子体原子发射光谱分析的新领域。微波等离子体用于合成化学与材料科学则是1960年以后的事,其中最成功的实例包括金刚石、多晶硅、氮化硼等超硬材料,有机导电膜,蓝色激光材料c-GaN,单重激发态氧O2的合成 高分子材料的表面修饰和微电子材料的加工等,其中不少现已形成了产业。1970年。Harwell使用微波装置成功地处理了核废料。1974年Hesek等利用微波炉进行了样品烘干 次年,有人用它作生物样品的微波消解并取得了很大成功,现在这一技术己经商品化并作为标准方法被广泛用于分析样品的预处理。微彼技术用于有机合成化学始于1986年,Gedye等首先发表了用微波炉来进行化学合成的“烹饪实验”文章,以4-氯代苯基氧钠和苄基氯反应来制备4-氯代苯基苄基醚。传统的方法是将反应物在甲醇中回流12h,产率为65% 而用微波炉加热方法,置反应物和溶剂于密闭的聚四氟乙烯容器中,在560W时,仅35s使能得到相同产率的化合物,其反应速率可以快1 000倍以上。这一在微波沪中进行的有机反应的成功,导致在其后的短短四五年内,辐射化学领域中又增添了一门引人注日的全新课题——MORE化学( Micro-wave-Induced Organic Reaction Enhancement Chemistry)。此后微波技术在有机化合物的几十类合成反应中也都取得了很大成功。微波技术在无机固相反应中的应用是近年来迅速发展的一个新领域,为制备新型的功能材料与催化剂提供厂方便而快速的途径和方法 微波技术已广泛应用于陶瓷材料(包括超导材科)的烧结、同体快离子导体、超细纳米粉体材料、沸石分子筛的合成等。在催化领域,由于Al2O3,SiO2等无机载体不吸收微波.微波可直接传送到负载于载体表面的催化剂上并使吸附其上的羧基、水、有机物分子激话,从而加速化学反应的进行。已研究过的催化反应有甲烷合成高级烃类、光合作用的模拟和酸气污染物的去除等。在分析化学、提取化学方面,用微波进行了样品溶解。在蛋白质水解方面,采用微波技术建立了一种快速、高效的新方法。在大环、超分子、高分子化学方面,开展了采用微波法制备一些聚合物的研究工作。此外。微波技术在采油、炼油、冶金、环境污染物治理等方面也都取得了很多进展。可以看出,微波技术在化学中的应用己几乎遍及化学学科的每一个分支领域,微波化学实际上已成为化学学科中一个十分活跃而富有创新成果的新兴分支学科。微波化学是指利用微波辐射来对小分子极性物质产生有效作用,从而加速反应、改变反应机理或启通新的反应通道的交叉学科。一般来说,微波技术目前只用于热反应,而对于光化学反应等的催化作用鲜见报道。

  • 【资料】-微波消解系列1:微波消解的原理

    微波消解的原理1. 什么是微波微波是一种电磁波,是频率在300MHz—300GHz的电磁波,即波长在100cm至1mm范围内的电磁波,也就是说波长在远红外线与无线电波之间。微波波段中,波长在1-25cm 的波段专门用于霄达,其余部分用于电讯传输。为了防止民用微波功率对无线电通讯、广播、电视和雷达等造成干扰,国际上规定工业、科学研究、医学及家用等民用微波的频率为2450 土5OMHz。因此,微波消解仪器所使用的频率基本上都是245OMHz,家用微波炉也如此。2. 微波的特性(1) 金属材料不吸收微波,只能反射微波。如铜、铁、铝等。用金属(不锈钢板)作微波炉的炉膛,来回反射作用在加热物质上。不能用金属容器放入微波炉中,反射的微波对磁控管有损害。(2) 绝缘体可以透过微波,它几乎不吸收微波的能量。如玻璃、陶瓷、塑料(聚乙烯、聚苯乙烯)、聚四氟乙烯、石英、纸张等,它们对微波是透明的,微波可以穿透它们向前传播。这些物质都不会吸收微波的能量,或吸收微波极少。物质吸收微波的强弱实质上与该物质的复介电常数有关,即损耗因子越大,吸收微波的能力越强[2]。家用微波炉容器大都是塑料制品。微波密闭消解溶样罐用的材料是聚四氟乙烯、工程塑料等。(3)极性分子的物质会吸收微波(属损耗因子大的物质),如:水、酸等。它们的分子具有永久偶极矩(即分子的正负电荷的中心不重合)。极性分子在微波场中随着微波的频率而快速变换取向,来回转动,使分子间相互碰撞摩擦,吸收了微波的能量而使温度升高。我们吃的食物,其中都含有水份,水是强极性分子,因此能在微波炉中加热。下面,我们可以进一步理解微波消解试样的原理。3. 微波消解试样的原理称取0.2克-1.0克的试样置于消解罐中,加入约2mI的水,加人适量的酸。通常是选用HNO3、HCI、HF、H2O2等,把罐盖好,放入炉中。当微波通过试样时,极性分子随微波频率快速变换取向,2450MHz的微波,分子每秒钟变换方向2.45×109次,分子来回转动,与周围分子相互碰撞摩擦,分子的总能量增加,使试样温度急剧上升。同时,试液中的带电粒子(离子、水合离子等)在交变的电磁场中,受电场力的作用而来回迁移运动,也会与临近分子撞击,使得试样温度升高。这种加热方式与传统的电炉加热方式绝然不同。(1)体加热。电炉加热时,是通过热辐射、对流与热传导传送能量,热是由外向内通过器壁传给试样,通过热传导的方式加热试祥。微波加热是一种直接的体加热的方式,微波可以穿入试液的内部,在试样的不同深度,微波所到之处同时产生热效应,这不仅使加热更快速,而且更均匀。大大缩短了加热的时间,比传统的加热方式既快速又效率高。如:氧化物或硫化物在微波(2450MHz 、800W)作用下, 在1min内就能被加热到摄氏几百度。又如Mn02 1.5 克在650W微波加热1min可升温到920K,可见升温的速率非常之快。传统的加热方式(热辐射、传导与对流)中热能的利用部分低,许多热量都发散给周围环境中,而微波加热直接作用到物质内部,因而提高了能量利用率。(2)过热现象。微波加热还会出现过热现象(即比沸点温度还高)。电炉加热时,热是由外向内通过器壁传导给试样,在器壁表面上很容易形成气泡,因此就不容易出现过热现象,温度保持在沸点上,因为气化要吸收大量的热。而在微波场中,其“供热”方式完全不同,能量在体系内部直接转化。由于体系内部缺少形成气“泡”的“核心”,因而, 对一些低沸点的试剂,在密闭容器中,就很容易出现过热,可见,密闭溶样罐中的试剂能提供更高的温度,有利于试样的消化。(3)搅拌。由于试剂与试样的极性分子都在2450MHz电磁场中快速的随变化的电磁场变换取向,分子间互相碰撞摩擦,相当于试剂与试样的表面都在不断更新,试样表面不断接触新的试剂,促使试剂与试样的化学反应加速进行。交变的电磁场相当于高速搅拌器,每秒钟搅拌2.45×109 次,提高了化学反应的速率,使得消化速度加快。由此综合,微波加热快、均匀、过热、不断产生新的接触表面。有时还能降低反应活化能,改变反应动力学状况,使得微波消解能力增强,能消解许多传统方法难以消解的样品。由上讨论可知,加热的快慢和消解的快慢,不仅与微波的功率有关,还与试样的组成、浓度以及所用试剂即酸的种类和用量有关。要把一个试样在短的时间内消解完,应该选择合适的酸、合适的微波功率与时间。

  • 微波消解的前世今生

    微波消解的历史微波加热装置不像其他加热装置,它可以进行真实的控制,因为我们可以停止微波能量输出或者不断的中断微波加热。微波热量传输方式跟传统的方式也有很大不同,微波能量是通过体系内的物体吸收转化为热量,然后再带动整个体系温度升高。热量在容器内的试剂和样品混合物中传递并最终通过导体消散到周围环境。为了充分利用微波加热技术的优点,就需要给微波消解装置加上压力和温度反馈控制装置,以通过反馈结果控制微波源的开关,合理有效的利用微波能量。微波消解罐的发展在过去的20几年里,作为微波消解技术重要组成部分的消解罐有了很大的发展,从最初的只能单罐操作、操作压力很低的消解罐到现在的高温高压高通量消解罐。这个发展使微波消解的工作效率大大提高。消解罐一般由先进的能穿透微波的惰性复合材料制成,这些材料一般为透明色,非常结实,能让微波能量集中到样品混合物上,使反应更好的进行。 而消解罐的操作条件也由一开始的温度160℃,压力120psi发展到现在的操作温度可达240℃以上,耐温达300℃,操作压力可达800psi以上,耐压达1500psi。这使得微波消解的应用领域不断扩大。

  • 上海新仪MDS-8微波消解仪 金属铬的消解程序

    最近在做胶囊中金属铬的检查,用的是上海新仪生产的微波消解仪,工作站是MDS-8多通道密闭微波化学工作站,我原来用的消解程序是:5min由室温升至120℃,维持3min,6min由120℃升至150℃,维持2min,6min由150℃升至180℃,维持20min。后把180℃维持30min.结果回收率多在60%左右,有1份在100%。想请教一下做过的同志,这个消解程序能消解完全吗?

  • 2013年度科学仪器优秀新产品——海能TANK微波消解仪

    在4月18日晚举行的2014中国科学仪器发展年会颁奖典礼上,“2013年度科学仪器优秀新产品”正式公布,由海能仪器研 发生产的海能TANK微波消解仪名列其中,海能仪器的产品品质再次得到认可。http://www.hanon.cc/image/UploadFile/2014419152758915.jpg  海能TANK-pro微波消解仪是海能仪器2013年推出的新型号,它在安全、稳定、精准、快速的同时,又加 以创新,引入视频模块与无线模块,实现人机的远距离控制,实时了解机器内部工作情况,尽显安全、便捷、人性化。http://www.hanon.cc/image/UploadFile/2014419152813735.jpg  TANK-pro微波消解仪主要特点和优点:  *荧光光纤测温技术,测温精准,消除火花干扰;  *双磁控管变频大功率加热技术,实现功率连续调节,精确控温;  *独有的无线远程操控,上位机同步显示,远离微波源,远离辐射的危险;  *智能化专家系统:内存50种海能标准应用方法库,提供用户100种方法库,用户可以编辑、存储和删除特定样品的应用 方法;  *专为消解仪研制了复合材料的外罐,这种复合材料的外罐可承受的径向拉力可超过80MPa,与国内常用的PEEK外罐相比 ,重量和体积减小了一倍,又增加了散热效率,使消解完成后能较快降温,提高了工作效率;  *视频显示功能:TANK-pro自带摄像头,能够实时显示消解仪内部的工作情况,,图像清晰,方便用户对消解仪内消解罐 的运转进行观察监控;并且也可把图像通过WIFI传送到用户电脑上,用户在办公室就可对仪器运行情况一目了然。  海能仪器致力于为科技工作者提供仪器及全面的解决方案,帮助用户实现实验的准确快速与工作环境的健康安全。海能 仪器将一如既往,努力用品质与服务回报广大科技工作者的厚爱。

  • 【分享】微波干燥介绍

    一、微波原理:微波是一种波长极短的电磁波,它和无线电波、红外线、可见光一样,都属于电磁波,微波的频率范围从300MHZ到300KMHZ,即波长从1毫米到1米的范围。微波加热干燥的原理:是利用微波在快速变化的高频电磁场中与物质分子相互作用,被吸收而产生热效应,把微波能量直接转换为介质热能,微波被物体吸收后,物体自生发热,加热从物体内部、外部同时开始,能做到里外同时加热,不同的物质吸收微波的能力不同,其加热效果也各不相同,这主要取决于物质的介质损耗。水是吸收微波很强烈的物质,一般含有水分的物质都能用微波来进行加热,快速均匀,达到很好效果。二、微波干燥特点:1、干燥速度快。常规方法如:蒸汽干燥、电热干燥、热风干燥等,由10%含水量脱至1%以下需十几个小时,采用微波干燥仅需十几分钟;由5%含水量脱至1%以下常规方法需六至七小时,采用微波干燥仅需几分钟;由30%-20%含水量脱至1%以下,常规方法需二十几小时,采用微波干燥仅用二十分钟左右。常规热力干燥往往在环境及设备上存在热损失,室内环境温度高。而微波是直接对物料进行作用,因而没有额外的热能耗损,微波干燥处理均无以上现象。设备能即开即用,没有常规热力干燥的热惯性,操作灵活方便,微波功率可调,传输速度从零开始连续可调,便于操作。2、保持物料原色。由于微波干燥不需要热传导,物料自身发热,干燥速度快,接触物料的温度大大低于常规方法,不会造成物料裂变现象。3、流水线作业,操作环境好。与常规方法相比,微波设备不需要锅炉、复杂的管道系统,煤场和运输车辆,只要具备水,电基本条件即可。相比而言,一般可节电30%-50%。改善劳动条件,节省占地面积.设备的工作环境低、噪音小,极大地改善了劳动条件,整套微波设备的操作只需2-3人。微波干燥设备可以与上料机、出料输送机、振动筛、包装机等设备连接,组成一条流水生产线,这样大大提高了劳动生产力,车间里没有粉尘飞扬状况发生,符合国家GMP生产标准。

  • 【资料】进入21世纪的微波消解

    进入21世纪的微波消解 David Barclay CEM Corporation前言:正如其它新技术的发展一样,经过多年的研究开发和应用,微波消解技术已经逐步发展成为一项功能强大、技术先进的样品前处理方法。而基于保证高压消解过程效率的化学原理却超过25年保持不变。微波消解的历史微波加热装置不像其他加热装置,它可以进行真实的控制,因为我们可以停止微波能量输出或者不断的中断微波加热。微波热量传输方式跟传统的方式也有很大不同,微波能量是通过体系内的物体吸收转化为热量,然后再带动整个体系温度升高。热量在容器内的试剂和样品混合物中传递并最终通过导体消散到周围环境。为了充分利用微波加热技术的优点,就需要给微波消解装置加上压力和温度反馈控制装置,以通过反馈结果控制微波源的开关,合理有效的利用微波能量。微波消解罐的发展在过去的20几年里,作为微波消解技术重要组成部分的消解罐有了很大的发展,从最初的只能单罐操作、操作压力很低的消解罐到现在的高温高压高通量消解罐。这个发展使微波消解的工作效率大大提高。消解罐一般由先进的能穿透微波的惰性复合材料制成,这些材料一般为透明色,非常结实,能让微波能量集中到样品混合物上,使反应更好的进行。 而消解罐的操作条件也由一开始的温度160℃,压力120psi发展到现在的操作温度可达240℃以上,耐温达300℃,操作压力可达800psi以上,耐压达1500psi。这使得微波消解的应用领域不断扩大。微波消解应用的发展随着硬件的不断改进,微波消解的应用也在不断发展。最初的微波消解装置只能处理一些简单的含氧化合物,样品基体主要是土壤和一些沉淀物。随着消解罐温度和压力的不断提升,现在微波消解可以消解那些含碳量高的样品,如植物样品和生物样品。在有机样品消解过程中,会产生大量不能溶解的气体如CO2气体,这些气体连同试剂产生的蒸汽压会在反应罐中产生很大压力。因为微波消解罐的热量流动方式和其它耐温加热装置不同,所以在相同温度下微波分解样品产生的总压比其他加热装置分解样品所产生的总压要低。这就意味着同样的样品可以在比常规密闭加热罐温度更高和压力更低的条件下被消化。然而尽管如此,微波消解罐的耐压问题还是限制了样品量以及样品消解温度的最大化。目前的技术已经发展到可以在200℃左右消解0.5g大有机样品。以此类推,非有机样品的消解温度则可以达到比200℃更高,样品量更大,因为它们分解时产生的压力要比有机样品所产生的小。微波技术应用到此类非有机样品的前处理中可以说是此类样品分析的一个革命性突破。以前, 此类样品的前处理一般是通过热熔化,此时样品基体可能会给仪器带来问题。而现在,因为温度可以达到200℃以上,就可以使用更多合适的试剂,比如酸。像硝酸在80-100℃也就是高于它的沸点时它的氧化性会显著提高。因此有些有机样品只用硝酸消解就能达到以前高温用硫酸或者高氯酸时的程度。最后,经过冷却后,矿物样品再在黏度比较低,溶解性好以及基体效应比较低的试剂基体中进行稀释,然后就可以用于分析了。高温非有机样品消解的进展历史上,二氧化铪和铬铁矿样品通常使用热熔化方式进行元素分析前样品处理,样品和一些腐蚀性的固体材料,通常是碱性的氢氧化物一起在白金坩埚中用加热器加热到极限温度进行熔化,这是为后续的溶解进行的必要的熔化(图1)。随着高温微波消解罐以及温度反馈控制系统的发展,混合矿物样品和化矿可以用矿物酸在温度可再现条件下在20-45分钟内被消解掉。而如果要使这些样品完全溶解,则可以根据化学计量组成再添加其它氧化剂或溶剂。这个程序可以成功的分解样品,但需要注意的是在这个程序后有一些重要的元素可能会沉淀到其它组分中或者变为固体。大有机样品消解的进展一直以来限制微波高压消解技术发展的主要因素就是消解罐的使用体积问题。生产厂家设计罐子尺寸时主要考虑它的有效耐力,使它能承受更高的压力,却没有考虑让罐子尺寸更合适,能达到一批运行比较理想数量的罐子。因为如果罐子太重,则一次只能运行一个或者很少个罐子,消解的样品的数量就减少了。很多高压消解罐的内体积是100ml,而一些大有机样品基体比如重油或聚丙烯聚合物的样品量会受到限制,因为通常它们在消解时会产生600-800psi的气体压力,消解温度需要达到在200-220℃。如果增加样品量,则会增加消解时的压力,这就有可能超出密闭消解罐材料的耐压极限,从而发生危险。而有了泄压技术后,大有机样品消解也得以发展。泄压技术直到一个可以设定罐子压力,一旦超压可以进行排气的高温系统的出现才开始发展。罐子可以保持在一个设定的适合消解的温度下,在氧化完成后会进行排气。事实上,罐子是在消解过程中的快速放热部分排气泻掉超过的压力而一旦快速的气体变化过程停止,它会重新密闭。然而这个技术需要注意的地方是,有的制造商把排气压力设定在500psi以上,这时罐内气体压力足够将气溶胶样品带出,从而丢失样品或目标分析物。在排气前,低于500psi时,部分样品和试剂已经完成分解,那些溶解的离子化的目标分析物处在氧化状态,没有挥发性。所以需要考虑进行有效的排气识别。微波消解配套组件的发展随着ICP等分析仪器的检测限不断降低,样品前处理日益成为分析技术发展的瓶颈。样品前处理不仅耗费时间长,而且间接的限制了检测限。而最近发展的微波自动浓缩组见却可以解决上述这两个问题。直到现在,由于消解过程会产生大量气体,所以样品量的限制还是制约微波消解发展的一个重要因素。现阶段微波消解一般是10ml浓酸消化0.5g样品,随着消解罐技术以及泻压技术的发展样品量可扩展到1g以上。但如果将消解液稀释到50ml,则酸的浓度大概在20%左右,这个浓度会影响到检测限。而通过最新的微波样品自动浓缩蒸发组件,如CEM公司的MicroVap则可以最大程度的解决这些问题。运用该浓缩蒸发组件,可以在消解前或消解后通过微波加热快速的蒸发溶剂基体,有效减少试剂基体。而且整个蒸发过程无需转移消解液,并且是在半真空条件下工作,避免产生误差。控制系统会自动检测试剂混合物的沸点,并持续加热消解液直到将它浓缩到比较低的含酸量。微波加热浓缩的优势在于它是自动对消解液进行浓缩直到消解液几乎干了不再吸收微波,然后剩余物的温度就会快速下降,操作者也可以自己设定反应终点温度。和电热板浓缩不同的是,微波浓缩在溶液干的同时温度也降下来了。同时,微波浓缩非常快速,10-25ml可以在15-20分钟内完成,大大提高样品处理的效率。它可以浓缩一般的试剂基体或酸基体,可以浓缩到一个很低的酸浓度如2%-4%的硝酸浓度。计算机技术及传感器技术的最新发展使微波高通量样品前处理成为可能。计算机辅助设计使消解罐达到一个最佳的强度-重量比并解决了微波压力系统的不均衡问题。余热从罐子消散,而能量只被试剂和样品吸收MARSXpress 系统,一批可以消解40个高压罐,而且温度还要超过以前那些一批只能消解10几个的系统。这个系统为那些需要提高分析效率以及样品特别多的用户提供了更好的微波消解方案。先进的传感器可以控制和连续输出每一个消解罐的温度,这比以前的只对一个参考罐进行控制的方式更有代表性微波消解技术的未来展望微波消解技术发展的将来,操作方便、高通量以及消解罐材料的不断改进将是主要的发展方向。消解过程将更加具有灵活性,比如在同一次运行过程中可以处理不同基体的样品,或者可以在同一时间用独立的试剂和方法分别处理不同样品,使操作比传统方式更自由。操作软件将为分析人员提供最优化的分析方案,精确的功率调整将实现对消解过程的更好控制。而消解罐技术以及罐体材料的不断改进将使消解罐向着重量更小,更结实,更具工作效率的方向发展。这其中也包含了一些消解附件如自动浓缩蒸发组件、自动过滤组件等的发展,这都将使操作者用于分析的精力和时间越来越少。

  • 微波消解的原理

    微波消解的原理1. 什么是微波微波是一种电磁波,是频率在 300MHz — 300GHz 的电磁波,即波长在 100cm 至 1mm 范围内的电磁波,也就是说波长在远红外线与无线电波之间。微波波段中,波长在 1-25cm 的波段专门用于霄达,其余部分用于电讯传输。为了防止民用微波功率对无线电通讯、广播、电视和雷达等造成干扰,国际上规定工业、科学研究、医学及家用等民用微波的频率为 2450 土 5OMHz 。因此,微波消解仪器所使用的频率基本上都是 245OMHz ,家用微波炉也如此。2. 微波的特性( 1 ) 金属材料不吸收微波,只能反射微波。如铜、铁、铝等。用金属(不锈钢板)作微波炉的炉膛,来回反射作用在加热物质上。不能用金属容器放入微波炉中,反射的微波对磁控管有损害。( 2 ) 绝缘体可以透过微波,它几乎不吸收微波的能量。如玻璃、陶瓷、塑料(聚乙烯、聚苯乙烯)、聚四氟乙烯、石英、纸张等,它们对微波是透明的,微波可以穿透它们向前传播。这些物质都不会吸收微波的能量,或吸收微波极少。物质吸收微波的强弱实质上与该物质的复介电常数有关,即损耗因子越大,吸收微波的能力越强 。家用微波炉容器大都是塑料制品。微波密闭消解溶样罐用的材料是聚四氟乙烯、工程塑料等。( 3 )极性分子的物质会吸收微波(属损耗因子大的物质),如:水、酸等。它们的分子具有永久偶极矩 ( 即分子的正负电荷的中心不重合 ) 。极性分子在微波场中随着微波的频率而快速变换取向,来回转动,使分子间相互碰撞摩擦,吸收了微波的能量而使温度升高。我们吃的食物,其中都含有水份,水是强极性分子,因此能在微波炉中加热。下面,我们可以进一步理解微波消解试样的原理。3. 微波消解试样的原理称取 0.2 克 -1.0 克的试样置于消解罐中,加入约 2mI 的水,加人适量的酸。通常是选用 HNO3 、 HCI 、 HF 、 H2O2 等,把罐盖好,放入炉中。当微波通过试样时,极性分子随微波频率快速变换取向, 2450MHz 的微波,分子每秒钟变换方向 2.45 × 109 次,分子来回转动,与周围分子相互碰撞摩擦,分子的总能量增加,使试样温度急剧上升。同时,试液中的带电粒子(离子、水合离子等)在交变的电磁场中,受电场力的作用而来回迁移运动,也会与临近分子撞击,使得试样温度升高。这种加热方式与传统的电炉加热方式绝然不同。( 1 )体加热。电炉加热时,是通过热辐射、对流与热传导传送能量,热是由外向内通过器壁传给试样,通过热传导的方式加热试祥。微波加热是一种直接的体加热的方式,微波可以穿入试液的内部,在试样的不同深度,微波所到之处同时产生热效应,这不仅使加热更快速,而且更均匀。大大缩短了加热的时间,比传统的加热方式既快速又效率高。如:氧化物或硫化物在微波( 2450MHz 、 800W )作用下 , 在 1min 内就能被加热到摄氏几百度。又如二氧化锰 1.5 克在 650W 微波加热 1min 可升温到 920K ,可见升温的速率非常之快。传统的加热方式(热辐射、传导与对流)中热能的利用部分低,许多热量都发散给周围环境中,而微波加热直接作用到物质内部,因而提高了能量利用率。(2) 过热现象。微波加热还会出现过热现象(即比沸点温度还高)。电炉加热时,热是由外向内通过器壁传导给试样,在器壁表面上很容易形成气泡,因此就不容易出现过热现象,温度保持在沸点上,因为气化要吸收大量的热。而在微波场中,其“供热”方式完全不同,能量在体系内部直接转化。由于体系内部缺少形成气“泡”的“核心”,因而, 对一些低沸点的试剂,在密闭容器中,就很容易出现过热,可见,密闭溶样罐中的试剂能提供更高的温度,有利于试样的消化。( 3 )搅拌。由于试剂与试样的极性分子都在 2450MHz 电磁场中快速的随变化的电磁场变换取向,分子间互相碰撞摩擦,相当于试剂与试样的表面都在不断更新,试样表面不断接触新的试剂,促使试剂与试样的化学反应加速进行。交变的电磁场相当于高速搅拌器,每秒钟搅拌 2.45 × 109 次,提高了化学反应的速率,使得消化速度加快。由此综合,微波加热快、均匀、过热、不断产生新的接触表面。有时还能降低反应活化能,改变反应动力学状况,使得微波消解能力增强,能消解许多传统方法难以消解的样品。由上讨论可知,加热的快慢和消解的快慢,不仅与微波的功率有关,还与试样的组成、浓度以及所用试剂即酸的种类和用量有关。要把一个试样在短的时间内消解完,应该选择合适的酸、合适的微波功率与时间。

  • 【原创大赛】怎样正确的选择微波消解仪

    微波是介于远红外线和无线电波之间的电磁辐射,微波频率为2450Hz,波长为12.2cm。微波能是非电离辐射,只能导致分子运动,不引起分子结构变化,从而不会改变消解反应。因此,微波消解仪作为密闭微波消解设备,通过提高反应罐内的温度和压力,加速反应物彻底、快速分解,不仅提高了样品分解的效率,而且大大降低了实验员误操作的可能性。正因为微波消解仪的众多优点,越来越多的国标将微波消解技术列入国标方法,如《2010药典》。目前,市场上的微波消解仪品牌众多,如何正确选择合适的微波消解仪是实验室工作人员及采购者面临的一个重要难题。根据笔者的经验,正确的选择微波消解仪主要考虑安全性、准确性、故障率和耗材成本。详细内容请参看附件!

  • 【资料】-微波消解的原理

    1. 什么是微波  微波是一种电磁波,是频率在300MHz—300GHz的电磁波,即波长在100cm至1mm范围内的电磁波,也就是说波长在远红外线与无线电波之间。微波波段中,波长在1~25cm 的波段专门用于雷达,其余部分用于电讯传输。为了防止民用微波功率对无线电通讯、广播、电视和雷达等造成干扰,国际上规定工业、科学研究、医学及家用等民用微波的频率为2450 土5OMHz。因此,微波消解仪器所使用的频率基本上都是245OMHz,家用微波炉也如此。2. 微波的特性(1) 金属材料不吸收微波,只能反射微波。如铜、铁、铝等。用金属(不锈钢板)作微波炉的炉膛,来回反射作用在加热物质上。不能用金属容器放入微波炉中,反射的微波对磁控管有损害。(2) 绝缘体可以透过微波,它几乎不吸收微波的能量。如玻璃、陶瓷、塑料(聚乙烯、聚苯乙烯)、聚四氟乙烯、石英、纸张等,它们对微波是透明的,微波可以穿透它们向前传播。这些物质都不会吸收微波的能量,或吸收微波极少。物质吸收微波的强弱实质上与该物质的复介电常数有关,即损耗因子越大,吸收微波的能力越强[2]。家用微波炉容器大都是塑料制品。微波密闭消解溶样罐用的材料是聚四氟乙烯、工程塑料等。(3)极性分子的物质会吸收微波。极性分子在微波场中随着微波的频率而快速变换取向,来回转动,使分子间相互碰撞摩擦,吸收了微波的能量而使温度升高。我们吃的食物,其中都含有水份,水是强极性分子,因此能在微波炉中加热。下面,我们可以进一步理解微波消解试样的原理。3. 微波消解试样的原理  称取0.2~1.0克的试样置于消解罐中,加入约2mI的水,加人适量的酸。通常是选用HNO3、HCI、HF、H2O2等,把罐盖好,放入炉中。当微波通过试样时,极性分子随微波频率快速变换取向,2450MHz的微波,分子每秒钟变换方向2.45×109次,分子来回转动,与周围分子相互碰撞摩擦,分子的总能量增加,使试样温度急剧上升。同时,试液中的带电粒子(离子、水合离子等)在交变的电磁场中,受电场力的作用而来回迁移运动,也会与临近分子撞击,使得试样温度升高。这种加热方式与传统的电炉加热方式绝然不同。(1)体加热。电炉加热时,是通过热辐射、对流与热传导传送能量,热是由外向内通过器壁传给试样,通过热传导的方式加热试祥。微波加热是一种直接的体加热方式,微波可以穿入试液的内部。在试样的不同深度,微波所到之处同时产生热效应,这不仅使加热更快速,而且更均匀。大大缩短了加热的时间,比传统的加热方式既快速又效率高。如:氧化物或硫化物在微波(2450MHz 、800W)作用下, 在1min内就能被加热到摄氏几百度。又如1.5 克Mn02在650W微波加热1min可升温到920K,可见升温的速率非常之快。传统的加热方式(热辐射、传导与对流)中热能的利用部分低,许多热量都发散给周围环境中,而微波加热直接作用到物质内部,因而提高了能量利用率。(2)过热现象。微波加热还会出现过热现象(即比沸点温度还高)。电炉加热时,热是由外向内通过器壁传导给试样,在器壁表面上很容易形成气泡,因此就不容易出现过热现象,温度保持在沸点上,因为气化要吸收大量的热。而在微波场中,其“供热”方式完全不同,能量在体系内部直接转化。由于体系内部缺少形成“气泡”的“核心”,因而, 对一些低沸点的试剂,在密闭容器中,就很容易出现过热,可见,密闭溶样罐中的试剂能提供更高的温度,有利于试样的消化。(3)搅拌。由于试剂与试样的极性分子都在2450MHz电磁场中快速地随变化的电磁场变换取向,分子间互相碰撞摩擦,相当于试剂与试样的表面都在不断更新,试样表面不断接触新的试剂,促使试剂与试样的化学反应加速进行。交变的电磁场相当于高速搅拌器,每秒钟搅拌2.45×109 次,提高了化学反应的速率,使得消化速度加快。由此综合,微波加热快、均匀、过热、不断产生新的接触表面。有时还能降低反应活化能,改变反应动力学状况,使得微波消解能力增强,能消解许多传统方法难以消解的样品。  由上讨论可知,加热的快慢和消解的快慢,不仅与微波的功率有关,还与试样的组成、浓度以及所用试剂即酸的种类和用量有关。要把一个试样在短的时间内消解完,应该选择合适的酸、合适的微波功率与时间。微波消解的原理

  • 【资料】微波消解的原理

    1. 什么是微波 微波是一种电磁波,是频率在 300MHz — 300GHz 的电磁波,即波长在 100cm 至 1mm 范围内的电磁波,也就是说波长在远红外线与无线电波之间。微波波段中,波长在 1-25cm 的波段专门用于霄达,其余部分用于电讯传输。为了防止民用微波功率对无线电通讯、广播、电视和雷达等造成干扰,国际上规定工业、科学研究、医学及家用等民用微波的频率为 2450 土 5OMHz 。因此,微波消解仪器所使用的频率基本上都是 245OMHz ,家用微波炉也如此。 2. 微波的特性 ( 1 ) 金属材料不吸收微波,只能反射微波。如铜、铁、铝等。用金属(不锈钢板)作微波炉的炉膛,来回反射作用在加热物质上。不能用金属容器放入微波炉中,反射的微波对磁控管有损害。 ( 2 ) 绝缘体可以透过微波,它几乎不吸收微波的能量。如玻璃、陶瓷、塑料(聚乙烯、聚苯乙烯)、聚四氟乙烯、石英、纸张等,它们对微波是透明的,微波可以穿透它们向前传播。这些物质都不会吸收微波的能量,或吸收微波极少。物质吸收微波的强弱实质上与该物质的复介电常数有关,即损耗因子越大,吸收微波的能力越强 [2] 。家用微波炉容器大都是塑料制品。微波密闭消解溶样罐用的材料是聚四氟乙烯、工程塑料等。 ( 3 )极性分子的物质会吸收微波(属损耗因子大的物质),如:水、酸等。它们的分子具有永久偶极矩 ( 即分子的正负电荷的中心不重合 ) 。极性分子在微波场中随着微波的频率而快速变换取向,来回转动,使分子间相互碰撞摩擦,吸收了微波的能量而使温度升高。我们吃的食物,其中都含有水份,水是强极性分子,因此能在微波炉中加热。下面,我们可以进一步理解微波消解试样的原理。 3. 微波消解试样的原理 称取 0.2 克 -1.0 克的试样置于消解罐中,加入约 2mI 的水,加人适量的酸。通常是选用 HNO3 、 HCI 、 HF 、 H2O2 等,把罐盖好,放入炉中。当微波通过试样时,极性分子随微波频率快速变换取向, 2450MHz 的微波,分子每秒钟变换方向 2.45 × 109 次,分子来回转动,与周围分子相互碰撞摩擦,分子的总能量增加,使试样温度急剧上升。同时,试液中的带电粒子(离子、水合离子等)在交变的电磁场中,受电场力的作用而来回迁移运动,也会与临近分子撞击,使得试样温度升高。这种加热方式与传统的电炉加热方式绝然不同。 ( 1 )体加热。电炉加热时,是通过热辐射、对流与热传导传送能量,热是由外向内通过器壁传给试样,通过热传导的方式加热试祥。微波加热是一种直接的体加热的方式,微波可以穿入试液的内部, 在试样的不同深度,微波所到之处同时产生热效应,这不仅使加热更快速,而且更均匀。大大缩短了加热的时间,比传统的加热方式既快速又效率高。如:氧化物或硫化物在微波( 2450MHz 、 800W )作用下 , 在 1min 内就能被加热到摄氏几百度。又如二氧化锰 1.5 克在 650W 微波加热 1min 可升温到 920K ,可见升温的速率非常之快。传统的加热方式(热辐射、传导与对流)中热能的利用部分低,许多热量都发散给周围环境中,而微波加热直接作用到物质内部,因而提高了能量利用率。 (2) 过热现象。微波加热还会出现过热现象(即比沸点温度还高)。电炉加热时,热是由外向内通过器壁传导给试样,在器壁表面上很容易形成气泡,因此就不容易出现过热现象,温度保持在沸点上,因为气化要吸收大量的热。而在微波场中,其“供热”方式完全不同,能量在体系内部直接转化。由于体系内部缺少形成气“泡”的“核心”,因而, 对一些低沸点的试剂,在密闭容器中,就很容易出现过热,可见,密闭溶样罐中的试剂能提供更高的温度,有利于试样的消化。 ( 3 )搅拌。由于试剂与试样的极性分子都在 2450MHz 电磁场中快速的随变化的电磁场变换取向,分子间互相碰撞摩擦,相当于试剂与试样的表面都在不断更新,试样表面不断接触新的试剂,促使试剂与试样的化学反应加速进行。交变的电磁场相当于高速搅拌器,每秒钟搅拌 2.45 × 109 次,提高了化学反应的速率,使得消化速度加快。由此综合,微波加热快、均匀、过热、不断产生新的接触表面。有时还能降低反应活化能,改变反应动力学状况,使得微波消解能力增强,能消解许多传统方法难以消解的样品。 由上讨论可知,加热的快慢和消解的快慢,不仅与微波的功率有关,还与试样的组成、浓度以及所用试剂即酸的种类和用量有关。要把一个试样在短的时间内消解完,应该选择合适的酸、合适的微波功率与时间

  • 【讨论】-微波化学的兴起和发展前景

    直接利用微波辐射加速化学反应的发现还是近十年的事。近十年来,科学家们通过大量实验研究发现,微波能大大加快许多高分子化合物的合成反应;大大加速某些化合物的分解反应;微波辅助的溶液萃取较之传统的分子蒸馏和Co 超临界萃取等可大大缩短时间并获得更多有用成分等等。当前,针对这些现象所开展的大量机理性和实验研究已形成了一门新的交叉科学--微波化学。它是目前国内外发展最快的一个交叉学科领域之一,具有十分广阔的发展前景。适应这一发展,美国的CEM微波仪器公司、意大利的MILESTONE公司、澳大利亚的CSIRO公司等等都致力于各种商用微波化学系统的研制和开发,不仅先后推出了各种自动微波消解、溶液萃取、化学反应以至高温微波马弗炉,而且还推出了可连续流动式的微波化学反应系统,使合成产品的规模达数公斤的量级,大大促进了微波化学的发展进程。 微波化学这一新兴交叉领域,按照目前理论和实践的发展趋势,今后一定会有十分诱人的发展前景。

  • 大家的工作内容除了微波还有哪些?

    微波消解是一个前处理过程,有的是专职的做微波消解,有的是连带这做仪器分析,还有的是做其他工作内容。大家每天的工作内容除了微波还有哪些呢?

  • 食品微波杀菌,会是未来的趋势吗?

    最近在超市看到有食品的包装袋上,浓墨标注“微波杀菌”的字样。回来查了一下微波杀菌的原理:1. 微波能的热效应:在一定强度微波场的作用下,食品中的虫类和菌体会因分子极化现象,吸收微波能升温,从而使其蛋白质变性,失去生物活性。微波的热效应主要起快速升温杀菌作用;2.微波能的非热效应: 高频的电场也使其膜电位、极性分子结构发生改变;使微生物体内蛋白质和生理活性物质发生变异,而丧失活力或死亡。在灭菌中起到了常规物理灭菌所没有的特殊作用,也是造成细菌死亡原因之一。3.微波杀菌、保鲜是微波热效应和非热效应共同作用的结果。因此,微波杀菌温度低于常规方法,一般情况下,常规方法杀菌温度要120℃-130℃,时间约1小时,而微波杀菌温度仅要70℃-105℃,时间约90-180秒。你感觉,微波杀菌会是以后的发展趋势吗?

  • 上海新仪丘比特高通量微波消解、萃取工作站创新点讨论

    上海新仪丘比特高通量微波消解、萃取工作站创新点讨论

    采用高效的非脉冲微波功率自动变频控制技术,不但实现了微波功率对温度压力的精确闭环控制,而且提高了磁控管的微波发射效率,节能高效。12罐/批次的高通量消解能力,极大地提升了实验室样品前处理效率。创新点:可达12罐/批次的高通量处理能力;独家专利多功能爆裂块设计,无需防爆膜等耗材;宇航纤维外罐等最高等级安全防护措施;大屏彩色软件界面,操作直观明了,炫彩灵动、智能便捷;电脑链接控制,安全远程操作,无限方案存储数据库;小体积VS大炉腔,先进工业设计、完美操作体验;http://ng1.17img.cn/bbsfiles/images/2013/12/201312311440_486002_1636300_3.jpg

  • 微波消解的原理

    微波是一种电磁波,是频率在300MHz—300GHz的电磁波,即波长在100cm至1mm范围内的电磁波,也就是说波长在远红外线与无线电波之间。微波波段中,波长在1-25cm 的波段专门用于霄达,其余部分用于电讯传输。为了防止民用微波功率对无线电通讯、广播、电视和雷达等造成干扰,国际上规定工业、科学研究、医学及家用等民用微波的频率为2450 土5OMHz。因此,微波消解仪器所使用的频率基本上都是245OMHz,家用微波炉也如此。2. 微波的特性(1) 金属材料不吸收微波,只能反射微波。如铜、铁、铝等。用金属(不锈钢板)作微波炉的炉膛,来回反射作用在加热物质上。不能用金属容器放入微波炉中,反射的微波对磁控管有损害。(2) 绝缘体可以透过微波,它几乎不吸收微波的能量。如玻璃、陶瓷、塑料(聚乙烯、聚苯乙烯)、聚四氟乙烯、石英、纸张等,它们对微波是透明的,微波可以穿透它们向前传播。这些物质都不会吸收微波的能量,或吸收微波极少。物质吸收微波的强弱实质上与该物质的复介电常数有关,即损耗因子越大,吸收微波的能力越强。家用微波炉容器大都是塑料制品。微波密闭消解溶样罐用的材料是聚四氟乙烯、工程塑料等。(3)极性分子的物质会吸收微波(属损耗因子蟮奈镏剩纾核⑺岬取K堑姆肿泳哂杏谰门技?即分子的正负电荷的中心不重合)。极性分子在微波场中随着微波的频率而快速变换取向,来回转动,使分子间相互碰撞摩擦,吸收了微波的能量而使温度升高。我们吃的食物,其中都含有水份,水是强极性分子,因此能在微波炉中加热。下面,我们可以进一步理解微波消解试样的原理。3. 微波消解试样的原理称取0.2克-1.0克的试样置于消解罐中,加入约2mI的水,加人适量的酸。通常是选用HNO3、HCI、HF、H2O2等,把罐盖好,放入炉中。当微波通过试样时,极性分子随微波频率快速变换取向,2450MHz的微波,分子每秒钟变换方向2.45×109次,分子来回转动,与周围分子相互碰撞摩擦,分子的总能量增加,使试样温度急剧上升。同时,试液中的带电粒子(离子、水合离子等)在交变的电磁场中,受电场力的作用而来回迁移运动,也会与临近分子撞击,使得试样温度升高。这种加热方式与传统的电炉加热方式绝然不同。(1)体加热。电炉加热时,是通过热辐射、对流与热传导传送能量,热是由外向内通过器壁传给试样,通过热传导的方式加热试祥。微波加热是一种直接的体加热的方式,微波可以穿入试液的内部,在试样的不同深度,微波所到之处同时产生热效应,这不仅使加热更快速,而且更均匀。大大缩短了加热的时间,比传统的加热方式既快速又效率高。如:氧化物或硫化物在微波(2450MHz 、800W)作用下, 在1min内就能被加热到摄氏几百度。又如Mn02 1.5 克在650W微波加热1min可升温到920K,可见升温的速率非常之快。传统的加热方式(热辐射、传导与对流)中热能的利用部分低,许多热量都发散给周围环境中,而微波加热直接作用到物质内部,因而提高了能量利用率。(2)过热现象。微波加热还会出现过热现象(即比沸点温度还高)。电炉加热时,热是由外向内通过器壁传导给试样,在器壁表面上很容易形成气泡,因此就不容易出现过热现象,温度保持在沸点上,因为气化要吸收大量的热。而在微波场中,其“供热”方式完全不同,能量在体系内部直接转化。由于体系内部缺少形成气“泡”的“核心”,因而, 对一些低沸点的试剂,在密闭容器中,就很容易出现过热,可见,密闭溶样罐中的试剂能提供更高的温度,有利于试样的消化。(3)搅拌。由于试剂与试样的极性分子都在[font

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制