当前位置: 仪器信息网 > 行业主题 > >

分子束外延沉积速率监测控制系统

仪器信息网分子束外延沉积速率监测控制系统专题为您提供2024年最新分子束外延沉积速率监测控制系统价格报价、厂家品牌的相关信息, 包括分子束外延沉积速率监测控制系统参数、型号等,不管是国产,还是进口品牌的分子束外延沉积速率监测控制系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合分子束外延沉积速率监测控制系统相关的耗材配件、试剂标物,还有分子束外延沉积速率监测控制系统相关的最新资讯、资料,以及分子束外延沉积速率监测控制系统相关的解决方案。

分子束外延沉积速率监测控制系统相关的论坛

  • 【转帖】分子束外延生长的优缺点

    MBE有许多优点:①由于MBE是在超高真空系统中操作,使用纯度极高的元素材料,所以可以得到高纯度、高性能的外延薄膜;②生长速率低,大约为一微米每小时,可以精确地控制外延层厚度,制造超薄层晶格结构及其它器件;③生长温度低,可避免高温生长引起的杂质扩散,能得到突变的界面杂质分布;④可在生长腔内安装仪器,例如配置四极质谱仪、反射式高能衍射仪、俄歇电子谱仪、二次离子谱仪和X射线光电子能谱仪等。通过这些仪器可以对外延生长表面情况、外延层结晶学和电学性质等进行原位检测和质量评价。这保证了外延层质量;⑤由于基本能够旋转,保证了外延膜的均匀性。分子束外延技术使异质结构、量子阱与超晶格得到迅速发展,使器件物理学家和工程师们设计出新的具有“带结构工程”的器件,为晶格失配外延生长开辟了器件制造的新领域。MBE存在的不足是:表面形态的卵形缺陷,长须状缺陷及多晶生长,难于控制两种以上V族元素,不利于批量生产等。

  • 强烈建议创办一个MBE(分子束外延)版

    我是一名研究生,使用分子束外延设备制备薄膜。国内拥有此设备的地方不多,但其发展呈上升趋势。所以,我想创建桓鲂掳妫璏BE(分子束外延)版,不知道怎样才能创办。 创办这个版,目的有以下两点: 1、有关MBE设备、及相关书籍、文章在国内还不是那么多,所以在此创 办一个MBE版,可以使所有使用过MBE或对MBE有兴趣的人拥有一个交 流的平台; 2、在此我们可以互相学习,共同研究,促进MBE在国内的发展。 以下是引用的有关MBE的简单介绍及简要回顾: 分子束外延(Molecular Beam Epitaxy)技术在现代超导薄膜(YBCO、BSCCO等)、半导体物理、器件以及GaAs工业发展中起着十分关键的作用。 回顾分子束外延的发展历史,它始终追求的是应用目标,把原子一个个地排列起来,同时将几种不同组分的材料交替地生长,而每种材料的厚度小于电子的平均自由程(100nm),两种不同材料之间的界面平整度在单个原子水平上,重复周期在100次以上,这需要很高的技术。是什么力量促使人们不断完善这一技术,使它成为当今信息产业发展的一项重要技术呢?这得从诺贝尔物理学奖获得者江崎与美籍华人朱兆祥提出的半导体超晶格理论说起,他们设想,如果将两种晶格匹配得好的半导体材料A和B交替生长,则电子沿生长方向( Z 方向)的连续能带将分裂成几个微带。 从而改变了材料的电子结构,他们预言在这种人造材料中可能出现若干新的现象与效应,从而出现了人们常说的能带工程(或能带裁剪),1970 年—2006 年期间,超晶格、继而低维及小量子系统的物理器件的长足发展均与分子束外延以及有机金属[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]淀积技术的发展息息相关) 在此期间,分子束外延技术走向成熟,有若干技术上的突破。 希望仪器信息网的论坛能给我这个机会,我会把这个版创办好的。谢谢!

  • 【转帖】分子束外延生长过程

    MBE生长是由发生在衬底的一系列物理化学过程实现的,它是从[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]到凝聚相,再通过一些表面过程的结果。这一复杂过程包括的具体过程包括:(1) 来自[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]的分子和原子撞击到表面而被吸附;被吸附的分子、原子在衬底表面发生迁移和分解。 (2)原子进入衬底晶格形成外延生长。 (3)未进入衬底晶格的分子、原子因热脱附而离开表面。与其它外延生长不同,MBE外延生长可以认为是一种表面非平衡态生长过程。

  • 锅炉水位检测与控制系统

    锅炉水位检测与控制系统主要包括水位的检测、显示、排污阀门和报警控制等环节。锅炉水位测控过程主要有:锅炉水位进入磁翻板接液内层、磁浮子的检测和进水阀门控制。系统通过磁翻板或翻柱主体检测锅炉内液位。当锅炉内水位下降至设定的下限水位值时,启动翻板显示报警系统;反之,水位上升超过上限水位设定值时,则启动上限报警,该磁浮子液位计可设置多个报警点,满足系统上多方面控制要求。该水位系统采用磁敏液位传感器测量锅炉内水位。磁敏液位传感器(UHZ-10C00液位计)的输出端可外接PC+PCL机自动化控制设备,驱动LED显示器,并可向远传装置发出4~20mA电信号或无线通讯输出信号。经过处理后,反馈给报警系统通过继电器动作控制电磁阀并报警。 燃气锅炉是一个大惯性、大滞后系统,为验证确保锅炉水位控制效果,在系统完成后通过数据进行验证,控制过程中响应初始阶段的超调大约12%,响应速度快,在300s内达总测量峰值,随后420s后达稳态。水位期望值与实际值最大误差为0.15cm,最大相对误差在0.5%以内,满足精度要求。通过试验证明,该磁浮子液位传感器具有良好稳态性能和动态性能。 测试次数 期望数位/cm 实测水位/cm 误差/cm 1 20 20.12 +0.12 2 25 25.07 +0.07 3 30 29.98 -0.02 4 35 35.09 +0.09 5 40 40.15 +0.15 表中 水位期望值和实测值及其误差本文提出一种用于锅炉水位智能控制系统,可达到水位控制的预期要求,能够实现锅炉水位实时显示、控制及报警,且该装置测量量程宽泛、准确度高、性能稳定、重复性好、操作简单、界面直观,完全可满足液位量值化传递需要。

  • 反应釜温度控制系统中为何存在空气?

    在制药化工行业中,反应釜温度控制系统是经常需要使用的,但是由于反应釜温度控制系统存在一定的空气、氢气、氮气、润滑油蒸汽等一些气体,这些气体是不利于反应釜温度控制系统运行的,那么到底是怎么一回事呢?反应釜温度控制系统中这些杂质气体是使制冷系统冷凝压力升高,从而使冷凝温度升高,压缩机排气温度升高,耗电量增加,制冷效率降低,同时由于排气温度过高可能导致润滑油碳化,影响润滑效果,严重时会烧毁制冷压缩机电机。反应釜温度控制系统中的这些气体产生可能是漏入的空气,可能是在充注制冷剂、加注润滑油的时候,外界空气趁机进入,或者反应釜温度控制系统密封性不严密导致空气进入系统内部。此外,冷冻油的分解、制冷剂不纯以及金属材料的腐蚀等原因也会产生气体。当然,无锡冠亚在反应釜温度控制系统上采用的是全密闭的循环系统,避免这些空气进入反应釜温度控制系统中。一般来说,反应釜温度控制系统中的气体表现在反应釜温度控制系统压缩机的排气压力和排气温度升高,冷凝器(或储液器)上的压力表指针剧烈摆动,压缩机缸头发烫,冷凝器壳体很热;反应釜温度控制系统蒸发器表面结霜不均匀,反应釜温度控制系统存在大量气体时,因装置的制冷量下降而使环境温度降不下来,压缩机运转时间长,甚至因高压继电器动作而使压缩机停车。反应釜温度控制系统是否存在这些气体的话,可以用压力表实测制冷系统的冷凝压力与当时环境气温下的饱和压力作比较。如果实测压力大于环境温度下的饱和压力,则说明该系统中含有气体了。如果发现了反应釜温度控制系统中存在上述的这些气体的话,就需要及时排除这些气体,及时解决故障。

  • 【金秋计划】+近岸海域的沉积物采样及其质量控制

    近岸海域[url=https://zhida.zhihu.com/search?q=%E7%8E%AF%E5%A2%83%E8%AF%84%E4%BB%B7&zhida_source=entity&is_preview=1]环境评价[/url]一般除了水质的评价,还有沉积物的评价,对于近岸海域的沉积物,其采样和实验的[url=https://zhida.zhihu.com/search?q=%E8%B4%A8%E9%87%8F%E6%8E%A7%E5%88%B6&zhida_source=entity&is_preview=1]质量控制[/url]同样是重中之重。 表层沉积物样品一般用掘式采泥器采集。具体操作:将采泥器与钢丝绳末端连接好,检查是否牢靠,测量采样点水深;慢速启动绞车,提起已张口的采泥器,用手扶慢速放入水中,稳定后常速放至离底3 m~5 m,再全速放入底部,然后慢速提升采泥器,离底后快速提升;将采泥器降至接样盘上,打开采泥器耳盖,倾斜采泥器使上部水缓缓流出,再进行定性描述和分装。表层沉积物的分析样品一般取上部0 cm~2 cm的沉积物。如一次采样量不足,应再次采样。垂直断面沉积物样品用重力[url=https://zhida.zhihu.com/search?q=%E9%87%87%E6%A0%B7%E5%99%A8&zhida_source=entity&is_preview=1]采样器[/url]采集。具体操作:船到采样点后,先采集表层沉积物样品,以了解沉积物类型,若为沙质则不宜采柱状样;将采样管与绞车连接好,并检查是否牢固;慢速启动绞车,用手扶采样管下端小心送至船舷外,用钩将其慢慢放入水中;待采样管在水中停稳后,按常速将其降至离底5 m~10 m处,视重力和沉积物类型而定,再以全速砸入沉积物中;慢速提升采样管,离开海底后再快速提升至水面,出水面后减速提升,待采样管下端高过船舷后立即停车,用铁钩钩住管体将其转入船舷内,平放在甲板上;小心倾倒出管上部的积水,测量采样深度,再将柱状样缓缓挤出,按序放在接样箱上,进行描述和处理;清洗采样管,备好待用;若柱状样品长度不够或重力采样管倾斜插入沉积物时,视情况重新采样。沉积物柱状样通过分段后,用于沉降速率和不同年代污染状况的监测。一般根据监测海域的沉积物沉降速率和年代污染调查需求,确定样柱的分段间隔,用塑料刀进行分段并对每段样品按纵向分成若干份进行相应项目的监测分析。 沉积物[url=https://zhida.zhihu.com/search?q=%E6%A0%B7%E5%93%81%E9%87%87%E9%9B%86&zhida_source=entity&is_preview=1]样品采集[/url]质量控制,按照方法采集现场双样并制备成接近现场样品特性的固体合成质控样,所占比例应占样品总量的10%以上,当样品总数小于或等于10个时,可只采集和制作1个样品。

  • 【分享】LED结构生长原理以及MOCVD外延系统的介绍

    第一章 外延在光电产业角色近十几年来为了开发蓝色高亮度发光二极管,世界各地相关研究的人员无不全力投入。而商业化的产品如蓝光及绿光发光二级管LED及激光二级管LD的应用无不说明了Ⅲ-Ⅴ族元素所蕴藏的潜能,表1-1为目前商品化LED之材料及其外延技术,红色及绿色发光二极管之外延技术大多为液相外延成长法为主,而黄色、橙色发光二极管目前仍以[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]外延成长法成长磷砷化镓GaAsP材料为主。MOCVD机台是众多机台中最常被使用来制造LED之机台。而LED或是LD亮度及特性的好坏主要是在于其发光层品质及材料的好坏,发光层主要的组成不外乎是单层的InGaN/GaN量子井Single Quantum Well或是多层的量子井Multiple Quantum Well,而尽管制造LED的技术一直在进步但其发光层MQW的品质并没有成正比成长,其原是发光层中铟Indium的高挥发性和氨NH3的热裂解效率低是MOCVD机台所难于克服的难题,氨气NH3与铟Indium的裂解须要很高的裂解温度和极佳的方向性才能顺利的沉积在InGaN的表面。但要如何来设计适当的MOCVD机台为一首要的问题而解决此问题须要考虑下列因素:1要能克服GaN 成长所须的高温2要能避免MO Gas金属有机蒸发源与NH3在预热区就先进行反应3进料流速与薄膜长成厚度均。一般来说GaN的成长须要很高的温度来打断NH3之N-H的键解,另外一方面由动力学仿真也得知NH3和MO Gas会进行反应产生没有挥发性的副产物。了解这些问题之后要设计适当的MOCVD外延机台的最主要前题是要先了解GaN的成长机构,且又能降低生产成本为一重要发展趋势。第二章 MOCVD之原理MOCVD反应为一非平衡状态下成长机制,其原理为利用有机金属化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法metal-organic chemical vapor deposition MOCVD是一种利用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]反应物,或是前驱物precursor和Ⅲ族的有机金属和Ⅴ族的NH3,在基材substrate表面进行反应,传到基材衬底表面固态沉积物的制程。MOCVD 利用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]反应物间之化学反应将所需产物沉积在基材衬底表面的过程,蒸镀层的成长速率和性质成分、晶相会受到温度、压力、反应物种类、反应物浓度、反应时间、基材衬底种类、基材衬底表面性质等巨观因素影响。温度、压力、反应物浓度、反应物种类等重要的制程参数需经由热力学分析计算,再经修正即可得知。反应物扩散至基材衬底表面、表面化学反应、固态生成物沉积与气态产物的扩散脱离等微观的动力学过程对制程亦有不可忽视的影响。MOCVD 化学反应机构有反应气体在基材衬底表面膜的扩散传输、反应气体与基材衬底的吸附、表面扩散、化学反应、固态生成物之成核与成长、气态生成物的脱附过程等,其中速率最慢者即为反应速率控制步骤,亦是决定沉积膜组织型态与各种性质的关键所在。MOCVD对镀膜成分、晶相等品质容易控制,可在形状复杂的基材衬底上形成均匀镀膜,结构密致,附着力良好之优点,因此MOCVD已经成为工业界主要的镀膜技术。MOCVD制程依用途不同,制程设备也有相异的构造和型态。整套系统可分为1.进料区进料区可控制反应物浓度。气体反应物可用高压气体钢瓶经MFC 精密控制流量,而固态或液态原料则需使用蒸发器使进料蒸发或升华,再以H2、Ar等惰性气体作为carrier而将原反应物带入反应室中。2.反应室反应室控制化学反应的温度与压力。在此反应物吸收系统供给的能量,突破反应活化能的障碍开始进行反应。依照操作压力不同,MOCVD 制程可分为I 常压MOCVD APCVDii低压MOCVD LPCWDiii超低压MOCVD SLCVD。依能量来源区分为热墙式和冷墙式,如分如下(Ⅰ)热墙式由反应室外围直接加热,以高温为能量来源(II)等离子辅助MOCVD(III)电子回旋共振是电浆辅助(Ⅳ)高周波MOCVD(Ⅴ)Photo-MOCVD(Ⅵ)others其中(II)至(VI)皆为冷墙式3.废气处理系统通常以淋洗塔、酸性、碱性、毒性气体收集装置、集尘装置和排气淡化装置组合成为废气处理系统,以吸收制程废气,排放工安要求,对人体无害的气体。一般来说,一组理想的MOCVD 反应系统必需符合下列条件a.提供洁净环境。b反应物于抵达基板衬底之前以充分混合,确保膜成分均匀。c.反应物气流需在基板衬底上方保持稳定流动,以确保膜厚均匀。d.反应物提供系统切换迅速能长出上下层接口分明之多层结构。MOCVD近来也有触媒制备及改质和其它方面的应用,如制造超细晶体和控制触媒得有效深度等。在可预见的未来里,MOCVD制程的应用与前景是十分光明的。

  • 盐雾试验机喷雾控制系统介绍

    盐雾试验机喷雾控制系统介绍

    在使用[b]盐雾试验机[/b]的时候用户通常都有对盐雾试验机都有些了解了,下面小编来介绍下盐雾试验机的喷雾控制系统吧,希望可以帮助用户更加了解并使用这款设备。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/06/202106171600320102_136_1037_3.jpg!w348x348.jpg[/img][/align]  1、气动式喷雾方式:气压调节为两级调压式,其中一级为进气压力一般调节为0.2~0.3MPa,二级为喷雾压力同时为满足喷雾压力的要求(精度2kpa),本盐雾试验机选用定制高精度压力表。  2、采用内藏式玻璃喷嘴放置于圆形的塑管内。  3、喷雾前的盐水是经过盐水存储箱桶注入喷雾塔内。  4、特制石英玻璃喷嘴确保无盐结晶。  5、喷雾气体先经过油水分离器予以油水过滤稳压调节后,进入饱和筒预热湿化后,经电磁阀和调压阀到达喷嘴。  6、盐雾试验机为内置隐藏式且储存容量大。  7、盐水雾化前经过沙芯过滤器过滤,避免杂物堵塞喷嘴。  8、试验机内放置两个标准集雾漏斗可通过管道连接箱外量筒以便监测沉降量。  盐雾试验机在使用完毕后用户要注意清洁保养并进行定期的检修,这样才能在使用盐雾试验机的时候更加的得心应手。

  • 基于FPGA智能变送器控制系统总体方案

    随着工业自动化控制技术的发展,自控水平越来越高,对过程参数控制精度要求越来越严,要求变送器表不仅精度高,而且要功能多、稳定可靠、能准确传送过程参数(压力、差压、绝压、流量)、抗干扰能力强、使用维护简单,并能与控制器、执行器等设备组成功能强大的控制系统,实现通讯和过程的自动控制。所以,过去的变送器由于受测量原理和通讯所限,很难实现这种高精度控制要求,因此,自然而然地产生了原理先进具有通讯功能的智能变送器。这类先进的智能变送器集现代科技与一身,是微电子技术、精密机械加工技术、计算机技术和现代通讯技术完美结合的产物,能实现过程控制的多种要求,推动了整个自控技术的向前发展。先进的智能变送器是工业过程控制技术发展的需要,也是工艺过程实现高精度控制的必须,具有很好的市场前景。    本文根据工业应用的实际需要以及网络通信发展的功能要求,提出了基于FPGA智能变送器控制系统的总体方案,硬件系统设计、软件设计。该设计实现了系统MCU主控模块、数据采集模块、电源控制模块、数据处理模块、数据通信模块等硬件电路,并给出了系统软件流程图,重点论述了数据采集和数据模拟输出控制电路的FPGA实现,详细阐述了系统各模块电路的组成原理和实现方法,给出了整个电路系统的原理图,并制作了印刷电路板。结合XILINX公司的ISE10.1设计软件给出了模/数转换、数/模转换的仿真结果,验证了系统功能。    1、智能变送器的总体设计    本智能变送器由前端信号调理电路、高速A/D采样电路、数字信号处理电路、模拟输出电路和数字输出电路组成。如图1所示。    分析不同类型的传感器,其输出信号可分为电流信号、电压信号和电荷信号3大类,相应地设计了3种信号调理电路。以大型设备振动监测项目为例,县体的传感器有加速度、速度和位移传感器。选择不同的前端信号调理电路,变成统一规格的电压信号供后面的A/D采样。    A/D采样部分对前端电路的输出电压信号进行采样。A/D采样芯片采用ADI公司的AD7264,AD7264是双通道同步采样、14-bit、高速、低功耗、逐次逼近型模数转换器,采用5V单电源供电,采样速率高达1MSPS。A/D采样电路与前端信号调理电路用同一隔离电源供电,与后级数字信号处理电路隔离。AD7264的数据接口为串行接口,便于隔离处理。    数字信号处理电路选择带有CPU软核的FPGA。FPGA是智能式变送器的核心,它不但能对采样数据进行计算、存储和数据处理,还可以通过反馈回路对传感器进行调节。在整个系统中,FPGA主要实现对系统的控制和数据的预处理。    智能式变送器有两种输出方式:模拟输出和数字输出。数字输出将处理后的信号直接输出,通过CAN接口、TCP/IP接口传给上位机。模拟输出通过DAC芯片将信号转换成标准电压电流信号输出。    2、系统硬件设计与实现    智能变送器具有采集、处理、指示、通讯等功能,其硬件设计围绕功能进行。整个智能变送器单元根据所完成的功能分为以下几个主要功能模块:信号采集模块(传感器放大电路)、信号转换模块(模/数转换和数/模转换电路)、FPGA控制模块、通信模块(以太网和CAN总线通信)以及为整个系统提供电源的电路部分等。其中FPGA系统为整个控制器单元的核心,是变送器实现数字智能化的标志。    智能变送器的硬件总体结构框图如图2所示。变送器工作时,由传感器把被测量转变为电信号,然后将信号作A/D转换,把模拟信号变换成数字信号,送入到FPGA(XC3S4005PQ205)控制模块,FIGA通过FIR滤波器核对信号进行滤波,并通过查表法对信号进行自动补偿,然后根据实际需要。经数/模转换后将数据传给下级电路,同时也可能通过以太网或CAN总线传给局域网,实现智能变送功能。系统PCB板实物图如图3所示。    3、系统软件设计与仿真    该系统以XILINX公司的XC3S4005PQ208C作为中央处理器,整个系统主要包括初始状态(Initialization)、数据采集状态(Data_Sample)、数据处理状态(Data_Processing)、以太网传输状态(Enet_Transfers)、CAN总线传输状态(CAN_Transfers)、和模拟输出状态(Analog_Transfers)等6种状态,因此,可以利用有限状态机的设计方案来实现。其状态转换图如图4所示,通过开发工具ISE10.1对各个模块的VHDL源程序及顶层电路进行编译、逻辑综合,电路的纠错、验证、自动布局布线及仿真等各种测试,最终将设计编译的数据下载到芯片中即可。    初始状态:实现系统初始化;数据采集状态:完成数据采集过程;数据处理状态:对采集的信号进行一系列的滤波处理,非线性校正等;以太网传输状态,CAN总线传输状态:根据实际需要将信号数字输出;模拟输出状态:进行数模转换,输出标准的电压电流信号。    3.1数据采集的FPGA设计    数据采集是工业测量和控制系统中的重要部分,它是测控现场的模拟信号源与上位机之间的接口,其任务是采集现场连续变化的被测信号。对数字系统来说,数据采集主要由传感器放大电路和A/D转换电路构成,由硬件电路可见,系统通过AD7264模/数转换器来实现模/数转换。AD7264内含6个寄存器,分别是A/D转换器的结果寄存器、控制寄存器、A/D转换器A和B的内部失调寄存器、A/D转换器A和B通道的外部增益寄存器。由于XC3S4005PQ208C和AD7264都兼容SPI接口,两者的编程只需按照时序图进行即可。AD7264与FPGA的接口主要包括PD0数据输入选择端:DoutA(DoutB)两路数据输出端;OUTa(OUTb)两路数据输入端;CoutA(CoutB、CoutC、CoutD)比较器输出;G3(G2、G1、G0)四路增益控制输入信号。增益由控制寄存器的低四位控制;ADSCLK时钟信号;ADCS片选信号,低电平有效。AD7264工作频率为20MHz,在CS下降沿,跟踪保持器处于保持模式。此时,采样、转换同时被初始化模拟输入。这需要至少19个SCLK周期。第19个SCLK的下降沿到来时。AD7262恢复至跟踪模式,并设置DOUTA、DOUTB为使能。数据流由14位组成,MSB在前。图5为AD7264读寄存器时序仿真图。    3.2数据输出的FPGA实现    智能化信号调理器的输出分为数字输出和模拟输出,数字输出通过CAN接口和TCP/IP输出到上位机,或者通过总线方式输出;模拟输出通过DA转换成标准的电压电流信号输出。系统选用ADI公司AD5422数/模转换器来实现数/模转换。AD5422通过数据移位寄存器输入数据,数据在串行时钟输入SCLK的控制下首先作为24位字载入器件MSB中。数据在SCLK的上升沿逐个输入。该24位字在LATCH引脚的上升沿无条件锁存,然后数据继续逐个输入,此时与LATCH的状态无关。图6为AD5422写操作时序仿真图。    4、结束语    采用XILINX公司的ISE10.1设计软件及MODELSIM软件对系统进行反复调试仿真,给出了试验结果,验证了系统功能。并运用美国PCB公司的608A11作为加速度传感器。对设备的振动进行监测,其模拟输出的测试结果如表1所示。    最终的调试结果表明,本文所设计的智能变送器器能够稳定的实现温度、压力等变量的变送,并且频率、幅值的调节精度等技术指标均达到了预期的设计要求。

  • 真空压力控制系统中关键部件的国内外产品介绍

    真空压力控制系统中关键部件的国内外产品介绍

    [align=center][img=真空控制系统中关键技术和产品的国产化替代现状,600,362]https://ng1.17img.cn/bbsfiles/images/2023/09/202309260956335616_6667_3221506_3.jpg!w690x417.jpg[/img][/align][size=16px][color=#990000][b]摘要:真空度控制技术关键部件主要有真空计、进气流量调节装置、排气流量调节装置和真空度控制器四大类。本文在真空度控制技术基本概念和技术要求基础上,详细介绍了真空度控制技术关键部件国外产品的分布和类型,特别介绍了相关的国产产品现状。总之,除了高端电容真空计之外,真空度控制技术中的绝大多数关键部件已实现了国产化,并已得到广泛应用,后续的国产化重点将主要集中在开发MOCVD工艺中的受控蒸发混合器。[/b][/color][/size][align=center][b][color=#990000]=============================[/color][/b][/align][size=18px][color=#990000][b]1. 真空度控制技术简述[/b][/color][/size][size=16px] 在长、热、力、电这些基本物理量中,真空度作为力学领域内的一个物理量通常是各种生产工艺和科学研究中的一个重要环境参数,真空度的控制也基本都采用闭环控制模式。典型的真空度控制系统结构如图1所示,其特征如下:[/size][align=center][size=16px][color=#990000][b][img=01.真空度控制系统典型结构,400,275]https://ng1.17img.cn/bbsfiles/images/2023/09/202309260959279297_7143_3221506_3.jpg!w690x476.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 真空度控制系统典型结构[/b][/color][/size][/align][size=16px] (1)系统构成:如其他物理量的闭环控制回路一样,真空度控制回路由传感器、控制器和执行器三部分组成。对于真空度控制,执行器还包括进气流量调节装置和排气流量调节装置两部分。[/size][size=16px] (2)控制方法:真空度的控制方法一般都采用动态平衡法,即使得进气流量和出气流量达到某一平衡状态,从而实现不同真空度的准确控制。[/size][size=16px] (3)控制模式:真空度的具体控制模式有上游控制和下游控制之分。在绝对压力1kPa~100kPa的低真空度范围内,需采用下游控制模式,即恒定进气流量的同时,调节排气流量。在绝对压力小于1kPa的高真空度和超高真空度范围内,需采用上游控制模式,即恒定排气流量的同时,调节进气流量。[/size][size=16px] 在真空度控制技术的具体应用中,很多生产工艺和科学实验要求真空度控制需要达到一定的控制精度和响应速度,这些技术要求往往由以下几方面的综合精度和速度决定:[/size][size=16px] (1)传感器精度和速度:具体测量中会根据真空度工作范围选择不同测量原理的真空度传感器,如电容真空计、皮拉尼计和电离规等。其中电容真空计的精度最高,一般为0.2%或更高0.01%精度,且真空度和输出信号为线性关系。皮拉尼计和电离规的精度较差,最高精度一般也只能达到15%,且真空度和输出信号为非线性关系。特别需要注意的是,在较高精度真空度控制过程中,需要对这些非线性信号进行线性处理。真空度传感器的响应速度普遍都很高,一般都在毫秒量级,基本都能满足测控过程中对响应速度的要求。[/size][size=16px] (2)执行器精度和速度:在真空度控制系统中,执行器一般是各种阀门以及集成了阀门的各种气体质量流量控制器,因此阀门的精度和速度是执行器的重要技术指标。执行器的精度和速度主要由真空工艺容器决定,对于小于1立方米的真空容器,一般要求执行器的精度较高,特别是要求具有小于5秒以内的开闭合速度,真空容器越小要求响应速度越快,在大多数半导体材料制备所用的高温和真空腔体的真空控制中,基本都要求响应速度小于1秒,由此来快速消除温度和气压波动带来的影响而实现真空度准确控制。[/size][size=16px] (3)控制器精度和速度:[/size][size=16px]控制器精度的速度是充分利用真空度传感器和执行器精度和速度的重要保证,因此要求控制器具有足够高的AD采集精度、DA输出精度和数值计算精度。一般要求是至少16位AD采集、16位DA输出和0.1%最小输出百分比,控制速度在50毫秒以内。[/size][size=18px][color=#990000][b]2. 真空度控制系统关键部件的主要国外产品介绍[/b][/color][/size][size=16px] 在真空度控制系统中,如图1所示,关键部件主要分为真空计、进气流量调节装置、排气流量调节装置和真空度控制器四大类别。这些关键部件很多都是国外产品,特别是一些高端部件基本都是国外产品,图2为这些关键部件的国外典型产品示意图。[/size][align=center][size=16px][color=#990000][b][img=02.国外真空度控制相关典型产品,690,491]https://ng1.17img.cn/bbsfiles/images/2023/09/202309260959592438_3991_3221506_3.jpg!w690x491.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 国外真空度控制系统中的各种典型产品[/b][/color][/size][/align][size=18px][color=#990000][b]3. 真空度控制系统关键部件的国产化现状[/b][/color][/size][size=16px] 随着近几年的国产化浪潮的兴起,真空度控制系统关键部件的国产化进程也在快速发展,以下将按照四个大类对国产化现状进行详细介绍。[/size][size=16px][color=#990000][b]3.1 真空计的国产化现状[/b][/color][/size][size=16px] 真空计作为真空领域的传感器,多年来一直有大量的国产产品,但绝大多数集中在皮拉尼计和电离规等这些真空度测量精度较差的真空计领域,对于测量精度较高的薄膜电容真空计国内产品基本都是购买国外OEM核心部件后进行组装和拓展。国内目前只有个别机构开发出了薄膜电容核心探测部件并已能批量生产电容真空计,但存在成品率低和货期长问题,国内也有其他研究机构在进行薄膜电容真空计的技术攻关。[/size][size=16px] 如图3所示国内现状,国内真空计目前基本能够满足工业生产的需要,但对于一些需要高精度(0.01%)真空计的测量和控制场合,国内还无法生产,有些更高端的国外产品对国内还处于禁运状态。对于皮拉尼计和电离规这些大多已经国产化的真空计,国产真空计还缺乏具有线性处理能力的高级功能,这使得国产真空计普遍只能在真空度测控精度要求不高的场合下使用。[/size][align=center][size=16px][color=#990000][b][img=03.真空计国产化相关产品示意图,690,166]https://ng1.17img.cn/bbsfiles/images/2023/09/202309261000162441_9663_3221506_3.jpg!w690x166.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图3 真空计国产化现状示意图[/b][/color][/size][/align][size=16px][color=#990000][b]3.2 进气流量调节装置的国产化现状[/b][/color][/size][size=16px] 进气流量调节装置主要用来调节真空容器的进气流量以实现不同工艺气体的流量要求和相应真空度的高精度控制。如图4所示,目前国外进气流量调节装置主要有电磁或电机型流量调节阀、气体质量流量控制器和微小流量控制器三大品类以满足从各种流量量程气体输入控制要求。[/size][size=16px] 在进气流量调节装置的国产化方面,目前国内产品无论在品类和技术指标方面都已达到国外产品水平,完全可以替代国外产品,并已开始得到广泛应用。[/size][align=center][size=16px][color=#990000][b][img=04.进气流量调节装置国产化相关产品示意图,690,164]https://ng1.17img.cn/bbsfiles/images/2023/09/202309261000271489_6174_3221506_3.jpg!w690x164.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图4 进气流量调节装置国产化现状示意图[/b][/color][/size][/align][size=16px] 在小型快速电控调节阀门的国产化方面,国产产品已采用微型步进电机技术,直接跨越电磁阀结构,开发出了高精度、低磁滞和高线性度的系列规格的电控针型阀门,响应速度达到了1秒以内,具有超低漏率且阀门不受工作气体类型的限制,还可以用于液体流量的调节,同时还具有强耐腐蚀性。目前这种电控针阀已广泛用于真空度控制领域和流体流量精密控制领域,正逐步取代以INFICON、PFEIFFER、VAT和MKS公司为代表的进气流量调节阀产品。[/size][size=16px] 在气体质量流量控制器的国产化方面,近两年内已有许多国内公司完成了国产化,技术指标已于国外产品相差无几,目前已在各个领域内进行着国产化替代。[/size][size=16px] 微小流量控制器主要用于高真空和超高真空条件下的微小进气流量控制,且要求具有超低漏率,以往只有国外AGILENT和VATAGILENT公司生产这种可变泄漏阀,且价格昂贵和货期漫长。最近国内公司在微小流量控制方面已取得突破,采用了与国外产品不同的技术路线,在同样实现国外产品功能、技术指标和自动控制的前提下,大幅降低的成本,已可以完全替代进口产品。[/size][size=16px][color=#990000][b]3.3 排气流量调节装置的国产化现状[/b][/color][/size][size=16px] 排气流量调节装置主要用来调节真空容器的排气流量以实现相应真空度的高精度控制。如图5所示,目前国外排气流量调节装置主要有分体式和集成式电动蝶阀,其中集成式电动蝶阀(又称下游排气节流阀)是在蝶阀上集成了高速电机和PID控制器。[/size][size=16px] 在排气流量调节装置的国产化方面,目前国内产品无论在品类和技术指标方面都已达到国外产品水平,且更具有灵活的不同口径规格系列,完全可以替代国外产品,并已得到广泛应用。[/size][align=center][size=16px][color=#990000][b][img=05.排气流量调节装置国产化相关产品示意图,690,164]https://ng1.17img.cn/bbsfiles/images/2023/09/202309261000430375_6356_3221506_3.jpg!w690x164.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图5 排气流量调节装置国产化现状示意图[/b][/color][/size][/align][size=16px] 在排气流量调节装置国产化过程中,我们发现绝大多数真空工艺腔体的体积较小,在真空度精密控制过程中无需使用较大口径的蝶阀结构,仅通过较小口径的电动球阀极可很好的进行控制。另外,很多工艺设备自带控制系统而无需在电动阀门再集成PID控制器。为此,国内公司在国产化过程中开发了独立结构的电动球阀,有7秒和1秒两种规格,如图5所示。这种独立结构的电动球阀可由任何外部PID调节器进行控制,具有很好的灵活性且降低成本,同时还具有极小的真空漏率,非常适合真空设备的排气流量和低真空度的精密控制,并已在各种真空工艺设备和科学仪器设备中得到了广泛应用。[/size][size=16px] 对于大口径蝶形压力控制阀,国内有机构也完成了国产化,模仿国外电动蝶阀结构将PID控制器与蝶阀进行了集成,并配有相应的计算机操作软件,但在价格上对国外产品的冲击有限。[/size][size=16px][color=#990000][b]3.4 真空度控制器的国产化现状[/b][/color][/size][size=16px] 真空度控制器作为一种典型的PID控制器,主要用来检测真空计的输出信号,并与设定值进行比较和PID计算后输出控制信号,驱动外部进气或排气调节阀开度进行快速变化,最终实现真空度测量值与设定值达到一致。目前国内外生产真空计的厂家普遍都提供真空度控制器产品,但这些真空度控制器普遍存在以下问题,而国内产品的问题则略显严重。[/size][size=16px] (1)国内外真空度控制器的共性问题是测量和控制精度不高,普遍采用较低精度的AD和DA转换器,无法发挥真空计(特别是电容真空计)的高精度优势,国内产品这方面的问题尤为严重。能实现高精度测量和控制的国外产品,则价格昂贵。[/size][size=16px] (2)国产真空度控制器大多为单通道形式,无法进行全真空度范围精密控制中进气和排气流量的同时调节,而国外的高端真空度控制器多为2通道以上结构。[/size][size=16px] (3)对于皮拉尼计和电离规这样的非线性输出信号,国产真空度控制器缺乏线性化处理功能,而国外高端真空度控制器基本都具有线性化处理功能,能更好保证真空度测量和控制精度。[/size][size=16px] (4)国产真空度控制器普遍缺乏计算机控制软件,无法简便和直观的进行过程参数的设置、显示、存储和调用。国外高端真空度控制器基本都配有相应的计算机软件。[/size][size=16px] 为了解决上述问题,目前新型的国产真空度控制器已经开发成功,如图6所示,已可以生产工业用单通道和双通道两个规格系列的多功能型真空压力控制器,基本可以替代国外高端产品。[/size][align=center][size=16px][color=#990000][b][img=06.真空度控制器国产化相关产品示意图,690,164]https://ng1.17img.cn/bbsfiles/images/2023/09/202309261000588787_2774_3221506_3.jpg!w690x164.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图6 真空度控制器国产化相关产品示意图[/b][/color][/size][/align][size=16px] 在国产化的单通道和双通道系列控制器中,采用了目前国际上工业用控制器最高精度的芯片电路,即24位AD、16位DA和0.01%最小输出百分比,可充分发挥高精度真空计和精密电动阀门的测控优势,已实现0.1%的真空压力控制精度。这种新型真空压力控制器的重要特点之一是带有线性化处理功能,通过八点最小二乘法拟合来提高非线性信号的测量精度。[/size][size=16px] 这种新型真空压力控制器是一种多功能控制器,除了可以进行真空压力控制之外,更可以进行各种温度和张力控制,同时还具有串级控制、分程控制、比值控制和远程设定点等高级复杂控制功能。控制器系列具有标准的工业控制器小巧尺寸,面板安装方式,并配备了计算机软件。[/size][size=18px][color=#990000][b]4. 总结[/b][/color][/size][size=16px]综上所述,在真空度控制系统关键部件的国产产品中,除了高端电容真空计之外,绝大多数部件已实现了国产化。后续的国产化重点将主要集中在受控蒸发混合器的开发,以在各种化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]沉积CVD工艺中,如ALD、APCVD、MOCVD和PECVD等,实现前驱体流量的精密控制。[/size][align=center][b][color=#990000][/color][/b][/align][align=center][b][color=#990000]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 微激光束焊接中真空控制系统的压力调节解决方案

    微激光束焊接中真空控制系统的压力调节解决方案

    [color=#990000]摘要:本文针对微激光束焊接中真空控制系统的压力调节,介绍了相应的解决方案。具体实施方案是配备不同量程的真空计、进气电动针阀、排气电动球阀和双通道高精度PID控制器,并采用上游和下游控制模式可实现全量程范围内的气压调节和恒定控制。此解决方案可在全量程范围内任意设定点的真空度恒定控制达到波动率小于±1%。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000] [size=18px]一、背景介绍[/size][/color]微激光束焊接 (LBW) 也称为微焊接,是通过投射出的微小直径激光光束,产生微观焊缝将不同金属熔合在一起。最近有客户提出定制要求,要求在微激光束焊接的系统中,配备用于精确压力调节的真空控制系统。具体要求是焊接腔室内充入惰性气体,焊接腔室内的绝对气压在10Pa至一个大气压(0.1MPa)的真空范围内精确恒定控制,在任意控制点上的气压波动小于±1%。本文将针对上述客户对微激光束焊接中真空控制系统的压力调节技术要求,提出相应的解决方案。具体实施方案是配备不同量程的真空计、进气电动针阀、出气电动球阀和双通道高精度PID控制器,并针对不同真空度量程分别采用上游和下游控制模式实现全量程范围内的气压调节和恒定控制。此解决方案可在全量程范围内任意设定点的真空度恒定控制达到波动率小于±1%。[size=18px][color=#990000]二、解决方案[/color][/size]微激光束焊接 (LBW) 真空控制系统的压力调节解决方案如下图所示。[align=center][img=微激光束焊接中的真空控制系统,400,555]https://ng1.17img.cn/bbsfiles/images/2022/09/202209201618016926_439_3221506_3.png!w590x819.jpg[/img][/align]由于微激光束焊接所要求的气压调节范围(绝对压力)为10Pa~0.1MPa的真空度,并实现全量程任意设定真空度在恒定过程中的波动率小于±1%,而且还要求对焊接过程中所引起的气压波动进行快速调节并恒定能力,故本解决方案采用两个控制回路来覆盖全量程。第一个控制回路负责控制1kPa~101kPa范围的高气压,采用了1000Torr量程的薄膜电容真空计作为传感器。此真空计连接PID控制器的第一通道,PID控制器通过接收到的真空度信号与设定值进行比较来调节电动球阀,使得焊接室内的气压快速达到设定值并保持恒定。第二个控制回路负责控制10Pa~1kPa范围的低气压,采用了10Torr量程的薄膜电容真空计作为传感器。此真空计连接PID控制器的第二通道,PID控制器通过接收到的真空度信号与设定值进行比较来调节电动针阀,使得焊接室内的气压快速达到设定值并保持恒定。为保证控制精度和稳定性,此解决方案中要求电动针阀和球阀需要具有1秒以内的响应速度,并要求双通道PID控制器具有24位AD和16位DA的高精度。此解决方案已成功得到广泛应用。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 微波等离子体化学气相沉积(MPCVD)系统中真空压力控制装置的国产化替代

    微波等离子体化学气相沉积(MPCVD)系统中真空压力控制装置的国产化替代

    [size=14px][color=#cc0000]摘要:目前微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中的真空压力控制装置普遍采用美国MKS公司的控制阀和控制器。本文介绍了采用MKS公司产品在实际应用中存在控制精度差和价格昂贵的现象,介绍了为解决这些问题的国产化替代方案,介绍了最新研发的真空压力控制装置国产化替代产品,并验证了国产化替代产品具有更高的控制精度和价格优势。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#cc0000] [/color][color=#cc0000]1. 问题的提出[/color][/size][size=14px]  在微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中,微波发生器产生的微波用波导管传输至反应器,并向反应器中通入不同气体构成的混合气体,高强度微波能激发分解基片上方的含碳气体形成活性含碳基团和原子态氢,并形成等离子体,从而在基片上沉积得到金刚石薄膜。等离子体激发形成于谐振器内,谐振器真空压力的调节对金刚石的合成质量至关重要,现有技术中,真空管路上通常设置可以自动调节阀芯大小的比例阀对谐振腔真空压力进行自动控制,目前国内外比较成熟的技术是比例阀采用美国MKS公司的248系列控制阀和相应的配套驱动器1249B和控制器250E等。但在实际应用中,如美国FD3M公司发明专利“真空压力控制装置和微博等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积装置”(专利号CN 108517556)中所描述的那样,使用MSK公司产品主要存在以下几方面的问题:[/size][size=14px]  (1)不包括真空计的话,仅真空压力控制至少需要一个248系列控制阀、一个配套的驱动器1249B和一个真空压力控制器250E,所构成的闭环控制装置整体价格比较昂贵。[/size][size=14px]  (2)248系列控制阀是一种典型的比例阀,这种比例阀动态控制精度难以满足真空压力控制要求,如设定值为20、30、50、100和150Torr不同工艺真空压力时,实际控制压力分别为24、33、53、102和152Torr,控制波动范围为1.3~20%。[/size][size=14px]  另外,通过我们的使用经验和分析,在微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中采用MKS公司产品还存在以下问题:[/size][size=14px]  (1)美国MKS公司248系列控制阀,以及148J和154B系列控制阀,因为其阀芯开度较小,使用中相应的气体流量也较小,所以MKS公司将这些控制阀分类为上游流量控制阀。在微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中,一般是控制阀安装在工作腔室和真空泵之间的真空管路中,也就是所谓的下游控制模式,而MKS公司的下游流量控制阀的最小孔径为50mm以上,对MPCVD系统而言这显然孔径太大,同时这些下游流量控制阀价格更加昂贵。因此,选用小孔径小流量的248系列控制阀作为下游控制模式中 的控制阀实属无奈之举。[/size][size=14px]  (2)如果将美国MKS公司248系列上游控制阀用到MPCVD系统真空压力的下游控制,所带来的另一个问题是工艺过程中所产生的杂质对控制阀的污染,而采用可拆卸可清洗的下游控制阀则可很好的解决此问题,这也是MKS公司下游控制阀的主要功能之一。[/size][size=14px]  针对上述微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统中真空压力控制中存在的问题,上海依阳实业有限公司开发了新型低价的下游真空压力控制装置,通过大量验证试验和实际使用,证明可成功实现真空压力下游控制方式的国产化替代。[/size][size=18px][color=#cc0000]2. MPCVD系统中的真空压力下游控制模式[/color][/size][size=14px]  针对微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积(MPCVD)系统,系统真空腔体内的真空压力采用了下游控制模式,此控制模式的结构如图2-1所示。[/size][align=center][size=14px][color=#cc0000][img=,690,291]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041531385213_1293_3384_3.png!w690x291.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图2-1 MPCVD系统真空压力下游控制模式示意图[/color][/align][size=14px]  上述微波等离子体化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积设备的工作原理和过程为:首先对真空腔抽真空,并向真空腔内通入工艺混合气体,然后通过微波源产生微波,微波经过转换后进行谐振真空腔,最终形成相应形状的等离子体,从而形成[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积[/size][size=14px]  装置可以通过调节微波功率、工作气压调节温度。为了进行工作气压的调节,在真空泵和真空腔之间增加一个数字调节阀。当设定一定的进气速率后,调节阀用来控制装置的出气速率由此来控制工作腔室内的真空度,采用薄膜电容真空计来高精度测量绝对真空度,而调节阀的开度则采用24位高精度控制器进行PID控制。[/size][size=18px][color=#cc0000]3. 下游控制模式的特点[/color][/size][size=14px]  如图2-1所示,下游控制模式是一种控制真空系统内部真空压力的方法,其中抽气速度是可变的,通常由真空泵和腔室之间的控制阀实现。[/size][size=14px]  下游控制模式是维持真空系统下游的压力,增加抽速以增加真空度,减少流量以减少真空度,因此,这称为直接作用,这种控制器配置通常称为标准真空压力调节器。[/size][size=14px]  在真空压力下游模式控制期间,控制阀将以特定的速率限制真空泵抽出气体,同时还与控制器通信。如果从控制器接收到不正确的输出电压(意味着压力不正确),控制阀将调整抽气流量。压力过高,控制阀会增大开度来增加抽速,压力过低,控制阀会减小开度来降低抽速。[/size][size=14px]  下游模式具有以下特点:[/size][size=14px]  (1)下游模式作为目前最常用的控制模式,通常在各种条件下都能很好地工作。[/size][size=14px]  (2)下游控制模式主要用于精确控制真空腔体的下游实际出气速率,与真空泵连接的出气口径一般较大,相应的真空管路也较粗,因此下游控制阀的口径一般也相应较大,由此可满足不同大口径抽气速率的要求。[/size][size=14px]  (3)在下游模式控制过程中,其有效性有时可能会受到“外部”因素的挑战,如入口气体流速的突然变化、等离子体事件的开启或关闭使得温度突变而带来内部真空压力的突变。此外,某些流量和压力的组合会迫使控制阀在等于或超过其预期控制范围的极限的位置上运行。在这种情况下,精确或可重复的压力控制都是不可行的。或者,压力控制可能是可行的,但不是以快速有效的方式,结果造成产品的产量和良率受到影响。[/size][size=14px]  (4)在下游模式中,会在更换气体或等待腔室内气体沉降时引起延迟。[/size][size=18px][color=#cc0000]4. 下游控制用真空压力控制装置[/color][/size][size=14px]  下游控制模式用的真空压力控制装置包括数字式控制阀和24位高精度PID控制器。[/size][size=16px][color=#cc0000]4.1. 数字式控制阀[/color][/size][size=14px]  数字式控制阀为上海依阳公司生产的LCV-DS-M8型数字式调节阀,如图4-1所示,其技术指标如下:[/size][size=14px]  (1)公称通径:快卸:DN10-DN50、活套:DN10-DN200、螺纹:DN10-DN100。[/size][size=14px]  (2)适用范围(Pa):快卸法兰(KF)2×105~1.3×10-6/活套法兰6×105~1.3×10-6。[/size][size=14px]  (3)动作范围:0~90°;动作时间:小于7秒。[/size][size=14px]  (4)阀门漏率(Pa.L/S):≤1.3×10-6。[/size][size=14px]  (5)适用温度:2℃~90℃。[/size][size=14px]  (6)阀体材质:不锈钢304或316L。[/size][size=14px]  (7)密封件材质:增强聚四氟乙烯。[/size][size=14px]  (8)控制信号:DC 0~10V或4~20mA。[/size][size=14px]  (9)阀体可拆卸清洗。[/size][align=center][color=#cc0000][size=14px][img=,315,400]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041532016015_1144_3384_3.png!w315x400.jpg[/img][/size][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图4-1 依阳LCV-DS-M8数字式调节阀[/color][/align][size=16px][color=#cc0000]4.2. 真空压力PID控制器[/color][/size][size=14px]  真空压力控制器为上海依阳公司生产的EYOUNG2021-VCC型真空压力PID控制器,如图4-2所示,其技术指标如下:[/size][size=14px]  (1)控制周期:50ms/100ms。[/size][size=14px]  (2)测量精度:0.1%FS(采用24位AD)。[/size][size=14px]  (3)采样速率:20Hz/10Hz。[/size][size=14px]  (4)控制输出:直流0~10V、4-20mA和固态继电器。[/size][size=14px]  (5)控制程序:支持9条控制程序,每条程序可设定24段程序曲线。[/size][size=14px]  (6)PID参数:20组分组PID和分组PID限幅,PID自整定。[/size][size=14px]  (7)标准MODBUS RTU 通讯协议。两线制RS485。[/size][size=14px]  (8)设备供电: 86~260VAC(47~63HZ)/DC24V。[/size][align=center][size=14px][color=#cc0000][img=,500,500]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041532370653_8698_3384_3.jpg!w500x500.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图4-2 依阳24位真空压力控制器[/color][/align][size=18px][color=#cc0000]5. 控制效果[/color][/size][size=14px]  为了考核所研制的控制阀和控制器的集成控制效果,如图5-1所示,在一真空系统上进行了安装和考核试验。[/size][align=center][size=14px][color=#cc0000][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041533305822_2863_3384_3.png!w690x425.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-1 真空压力下游控制模式试验考核[/color][/align][size=14px]  在考核试验中,先开启真空泵和控制阀对样品腔抽真空,并按照设定流量向真空腔充入相应的工作气体,真空度分别用薄膜电容式真空计和皮拉尼真空计分别测量,并对真空腔内的真空压力进行恒定控制。在整个过程中真空腔内的真空度按照多个设定值进行控制,如71、200、300、450和600Torr,整个过程中的真空压力变化如图5-2所示。[/size][align=center][size=14px][color=#cc0000][img=,690,413]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041534037381_7474_3384_3.png!w690x413.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-2 考核试验过程中的不同真空度控制结果[/color][/align][size=14px]  为了更好的观察考核试验结果,将图5-2中真空度71Torr处的控制结果放大显示,如图5-3所示。从图5-3所示结果可以看出,在71Torr真空压力恒定控制过程中,真空压力的波动最大不超过±1Torr,波动率约为±1.4%。同样,也可以由此计算其他设定值下的真空压力控制的波动率,证明都远小于±1.4%,由此证明控制精度要比MKS公司产品高出一个数量级,可见国产化替代产品具有更高的准确性。[/size][align=center][size=14px][color=#cc0000][img=,690,418]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041534134372_7696_3384_3.png!w690x418.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-3 考核试验中设定值为71Torr时的控制结果[/color][/align][size=14px]  另外,还将国产化替代产品安装到微波等离体子热处理设备上进行实际应用考核。在热处理过程中,先开启真空泵和控制阀对样品真空腔抽真空,并通惰性气体对样品真空腔进行清洗,然后按照设定流量充入相应的工作气体,并对样品腔内的真空压力进行恒定控制。真空压力恒定后开启等离子源对样品进行热处理,温度控制在几千度以上,在整个过程中样品腔内的真空压力始终控制在设定值几百Torr上。整个变温前后阶段整个过程中的真空压力变化如图5-4所示。[/size][align=center][size=14px][color=#cc0000][img=,690,420]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041534238555_747_3384_3.png!w690x420.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-4 微波等离子体高温热处理过程中的真空压力变化曲线[/color][/align][size=14px]  为了更好的观察热处理过程中真空压力的变化情况,将图54中的温度突变处放大显示,如图5-5所示。[/size][align=center][size=14px][color=#cc0000][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2021/06/202106041534344190_6882_3384_3.png!w690x425.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图5-5 微波等离子体高温热处理过程中温度突变时的真空压力变化[/color][/align][size=14px]  从图5-5所示结果可以看出,在几百Torr真空压力恒定控制过程中,真空压力的波动非常小,约为0.5%,由此可见调节阀和控制器工作的准确性。[/size][size=18px][color=#cc0000]6. 总结[/color][/size][size=14px]  综上所述,采用了完全国产化的数字式调节阀和高精度控制器,完美验证了真空压力下游控制方式的可靠性和准确性,证明了国产化产品完全可以替代美国MKS公司相应的真空压力控制产品,并比国外产品具有更高的控制精度和价格优势。[/size][size=14px][/size][size=14px][/size][hr/]

  • 快速温变试验箱电气控制系统原理

    快速温变试验箱电气控制系统原理 快速温变试验箱电气系统设有手动和自动控制;具有温度测控、实时数据显示、参数设定、记录打印、报警、故障显示等功能,快速温变试验箱电气控制系统基本构成:  系统配置压缩机高、低压力开关,用于系统运行故障报警和保护压缩机作用。系统还为压缩机设有超压、过载、过热、缺相保护。风机设有热保护功能快速温变试验箱电气系统分强电和弱电两部分。强电部分主要由控制R404A压缩机的起停、箱内风机运行的交流接触器、热继电器;控制辅助加热器的固态继电器及线路保护的断路器等器件组成。弱电部分由日本优易1100型彩色液晶触摸屏及配套PLC(带USB接口1个,RS232接口1个,可与电脑连接,可与电脑进行数据通讯)和人机界面触摸屏、温度传感器组成。温度测量传感器为:Pt100铂电阻,通过Pt100铂电阻把温度信号送入PLC的A/D转换模块,实现试验箱内的温度的控制和显示,Pt100选用进口A级元件。http://www.whgt17.com/uploads/allimg/160817/1-160QG515350-L.jpg

  • 气相色谱仪温度控制系统简述

    气相色谱仪温度控制系统简述

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制系统简述[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]温度控制的准确和可靠,对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的可靠性而言至关重要。尤其是环境分析、生命科学、食品安全、石化分析、电子工业等样品较为复杂、分析方法较为复杂或者分析要求较高的领域,样品分析保留时间重现性的要求较高,对色谱系统温度的要求也比较高。本文简述色谱温度控制系统的基本原理和参与温度控制的主要元器件。[/font][align=center][font=宋体]简述[/font][/align][font=宋体]随着社会科技进步,分析工作者面临着日益增多的分析要求较高的工作,例如食品安全、环境分析、石化分析等方面存在较多复杂样品,一般对组分保留时间的重复性有较高的要求,这就要求[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]有更好的温度控制系统。[/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的温度控制系统属于典型的反馈控制系统,控制装置对目标部件的温度施加的控制作用,是取自目标部件温度的反馈信息,用来不断修正设定温度与实际温度之间的偏差,从而实现目标部件的控制任务,温度系统的结构如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][img=,503,129]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300836001297_3118_1604036_3.jpg!w690x176.jpg[/img][font=宋体] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]温度控制系统框图[/font][/font][/align][font=宋体][font=宋体]以[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱为例对控制系统的工作过程予以说明,在分析工作过程中,如果柱温箱的实际温度发生异常扰动,温度传感器将测定温度值反馈给比较点,温度控制系统将设置温度与测定温度的偏差[/font][font=Times New Roman]e[/font][font=宋体]发送给温度控制器,温度控制器向执行器发出对应的指令——调节加热功率和冷却部件,执行器接受指令使柱温箱温度恢复为设定值。[/font][/font][align=center][font=宋体]温度控制系统元器件组成[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制元器件组成如图[/font][font=Times New Roman]2[/font][font=宋体]所示,被控部件(柱温箱、进样口、检测器或者其他部件)内安装的温度传感器测定其实际温度传送给控制器,控制器调节执行器(包括加热器和冷却器)的工作,使加热器释放的热量与被控部件耗散热量(包括部件自身耗散热量和冷却器消耗热量)达到平衡,被控部件的温度即可达到稳定状态。[/font][/font][align=center][img=,323,158]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300836089450_6453_1604036_3.jpg!w690x338.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]温度控制系统元件示意图[/font][/font][/align][font=宋体][font=Times New Roman]1 [/font][font=宋体]温度传感器[/font][/font][font=宋体]常用的温度传感器为铂电阻、热敏电阻和热电偶。温度传感器可以及时准确的测定被控部件的温度反馈给控制器。[/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]执行器[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]通常使用加热器、柱箱风扇、冷却组件、冷却风扇、液氮或液体二氧化碳控制器作为温度执行器。[/font][font=宋体]加热器一般选用加热丝、加热棒等电阻式加热器为进样口、色谱柱、检测器或者其他部件提供加热源,以升高各部件温度。[/font][font=宋体]柱箱一般采用流动空气浴方式加热,柱箱风扇可以使柱箱内温度分布更加均匀,并加快柱箱升温降温速度。[/font][font=宋体]柱箱冷却组件包括柱箱后开门、后开门控制电机、风道、辅助降温风扇以及液氮、液体二氧化碳等部件,以降低柱温箱温度。[/font][font=宋体]某些特殊场合下,某些形式的进样口带有冷却风扇、液氮、液体二氧化碳部件降低进样口温度。[/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]控制器[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制器通常情况下由晶闸管之类的电器元件和控制线路组成。色谱系统工作时,由控制器协调加热器和冷却器工作,以获得稳定温度。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]其他部件[/font][/font][font=宋体]保护器(温度熔断器、热电偶或温度开关),当温度控制出现严重故障时,迅速切换系统加热。[/font][align=center][font=宋体]温度控制系统的需要注意的问题[/font][/align][font=宋体][font=Times New Roman]1 [/font][font=宋体]控制系统的时间常数[/font][/font][font=宋体]温度控制系统稳定工作需要传感器与执行器之间的响应时间配合良好,否则将会出现温度震荡的现象。色谱柱温箱要求控制系统响应速度较快,以满足高精度、高速度温度控制要求。一般需要选择响应速度快的薄膜铂电阻符合高速度的控制器工作要求。而检测器、进样口或者其他金属基体的部件,一般需要系统响应时间不要过快。[/font][font=宋体]以进样口为例,常见的进样口使用金属块作为基体,当温度传感器测量到进样口温度低于设定值,控制器发出指令使加热器提高加热功率提高进样口温度。但是进样口温度升高到设定值并不能瞬间完成,即进样口接收到加热指令直至温度上升到设定值之间需要一定的时间差异,如果系统控制时间常数过短,在此期间控制器仍旧发出加热指令,那么进样口温度就会较多超出设定值,降温过程也同样会存在此问题。色谱工作者就会观察到加样口温度在设定值附近发生震荡。[/font][font=宋体]进样口一般使用装配式铂电阻,感知温度也存在一定延迟,与金属块升温延迟都是进样口温度时间常数的重要组成部分,温控系统必须设定有良好的控制信号时间延迟。[/font][font=宋体]也就是说,对于进样口此类的加热惯性较大的部件,当温度控制系统检测到进样口温度发生偏差时,并非迅速给出加热或降温指令,而是首先延迟一段时间,然后再进行调节。[/font][font=宋体]柱温箱系统的加热惯性较小,温控系统需要较短的时间常数。[/font][font=宋体]温度控制不稳定,从而干扰色谱图基线和待测组分的保留时间,比较典型的结果是正弦波状态的基线。[/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]故障和保护[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度系统的基本原理和常用元器件功能。[/font]

  • 【求助】示差折光检测器带有温度控制系统吗?

    [size=4]请问用过示差折光检测器的同仁,示差折光检测器带有温度控制系统吗?如果没带温度控制系统该如何进行温度控制呢?这个检测器大概价位是多少?当然这与生产品牌有关,准备购买,所以想多了解一下性能和价位,希望能得到更多的信息。[/size]

  • 西门子PLC与DTD110结合的泵压力控制系统方案

    管线压力监测控制系统,采用西门子PLC和西安达泰电子DTD110系列无线遥测RTU,实现有线与无线的混合布线方案。 DTD110系列RTU采用智能控制器管理,与DTD4系列无线数传模块结合实现无线遥测遥控。提供4路4~20mA信号输入和4路4~20mA信号输出。 采集工业现场的变送器输出的标准4~20mA电流信号并通过无线方式传送,远端输出4~20mA电流信号。 可以直接接入显示仪表、PLC或DCS等设备。http://www.dataie.com/admin/UploadFiles/201172515643288.jpg

  • 串级、分程、比值、前馈、选择性和三冲量六种复杂控制系统概述

    串级、分程、比值、前馈、选择性和三冲量六种复杂控制系统概述

    [size=14px][color=#990000]摘要:本文主要针对各种工业生产和仪器设备中的温度、流量、真空、压力和张力等参数的高精度自动控制,介绍了几种常用的复杂控制系统,如串级、分程、比值、前馈-反馈、选择性以及三冲量控制系统。本文主要目的是展示这些复杂控制技术基本概念和结构框图,为后续推出的各种复杂控制用PID调节器做基础技术讲解,以便在实际自动化控制中能充分发挥复杂控制用PID调节器的强大功能。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][b]一、概述[/b][/color][/size][size=14px]控制系统一般又可分为简单控制系统和复杂控制系统两大类,所谓复杂,是相对于简单而言的。凡是多参数,具有两个以上传感器、两个以上调节器或两个以上执行器组成多回路的自动控制系统,通称为复杂控制系统。[/size][size=14px]如图1所示,目前常用的复杂控制系统有串级、分程、比值、前馈-反馈、选择性以及三冲量等几种形式,并且随着生产发展的需要和科学技术进步,还会陆续出现了许多其他新型的复杂控制系统。[/size][align=center][size=14px][img=01.复杂控制器构成,690,187]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141044037509_6178_3221506_3.png!w690x187.jpg[/img][/size][/align][size=14px][/size][align=center]图1 常用的几种复杂控制系统[/align][size=14px][/size][size=14px]本文将针对上述几种复杂控制系统,重点介绍这些复杂控制系统中使用的超高精度PID控制器和典型应用案例,以期提高工程应用的设计效率、提高控制效果和降低成本造价。[/size][size=14px][/size][b][size=18px][color=#990000]二、串级控制(Cascade Control)系统[/color][/size][/b][size=14px][/size][size=14px]串级控制系统是应用最早和最广泛的一种复杂控制系统,它是根据系统结构命名。串级控制系统由两个或两个以上的控制器串联连接组成,一个控制器的输出作为另一个控制器的设定值,这类控制系统称为串级控制系统。[/size][size=14px][/size][size=14px]串级控制系统的特点是将两个PID调节器相串联,主调节器的输出作为副调节器的设定,当被控对象的滞后较大,干扰比较剧烈、频繁时,可考虑采用串级控制系统。特别是需要进行超高精度控制,以及跨参数和跨量程控制时,串级控制系统则能重复发挥其优势。[/size][size=14px][/size][size=14px]串级控制系统广泛应用于温度、真空、流量、压力和张力控制等方面,典型的串级控制系统结构如图1所示。[/size][size=14px][/size][align=center][size=14px][img=02.串级控制系统结构示意图,550,220]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141044355064_2880_3221506_3.png!w690x276.jpg[/img][/size][/align][size=14px][/size][align=center]图2 串级控制系统结构示意图[/align][size=14px][/size][size=14px]如图2所示,串级控制系统包括副控回路(由副调节器、执行器和传感器1组成)和主控回路(由主调节器、副控回路和传感器2组成),主控回路和副控回路以串联形式与被控对象连接,其中副控回路相当于主控回路中的执行器。以下是串级控制系统中各部分的主要功能:[/size][size=14px][/size][size=14px](1)主调节器(主控制器):根据主参数(传感器2测量值)与设定值的偏差而进行PID调节,其输出作为副调节器的设定值。[/size][size=14px][/size][size=14px](2)副调节器(副控制器):其设定值由主调节器的输出决定,并根据副参数(传感器1测量值)与给定值(即主调节器输出)的偏差进行PID调节。[/size][size=14px][/size][size=14px](3)副回路(内回路):由副参数(传感器1)、副调节器及所包括的一部分被控对象所组成的闭环回路(随动回路)[/size][size=14px][/size][size=14px](4)主回路(外回路):将副回路看做是一个执行器,则主参数(传感器2)、主调节器、副回路及被控对象组成的闭环回路(主动回路)。[/size][size=14px][/size][size=14px](5)主对象(被控对象、惰性区):主参数(一般为传感器2)所处的那一部分工艺设备,它的输入信号为副变量,输出信号为主参数(主变量)。[/size][size=14px][/size][size=14px](6)副对象(导前区):副参数所处的那一部分工艺设备,它的输入信号为主调节量,其输出信号为副参数(副变量)。[/size][size=14px][/size][size=14px]串级控制系统是在单回路控制结构上增加了一个随动的副回路,因此,与单回路控制相比有以下几个特点:[/size][size=14px][/size][size=14px](1)对进入副回路的扰动具有较迅速和较强的克服能力。[/size][size=14px][/size][size=14px](2)可以改善对象特性,特别是能提高控制精度和工作效率。[/size][size=14px][/size][size=14px](3)可消除副回路的非线性特性的影响。[/size][size=14px][/size][size=14px](4)可实现夸参数和夸量程的控制。[/size][size=14px][/size][size=14px](5)串级控制系统具有一定的自适应能力。[/size][size=14px][/size][size=14px]二、分程控制(Split-Range Control)系统[/size][size=14px][/size][size=14px]简单控制系统就是一个调节器的输出驱动一个执行器动作,而分程控制系统的特点是一个调节器的输出同时驱动几个工作范围不同的执行器。[/size][size=14px][/size][size=14px]通常,在一个简单控制系统中,一个调节器的输出信号只控制一个执行器,其结构与特性如图3(a)所示。如果一个调节器的输出信号同时送给两个执行器,这就是一种分程控制系统。这里两个执行器并联使用,其工作特性如图3(b)所示。[/size][size=14px][/size][align=center][size=14px][img=03.分程控制系统结构和特性示意图,690,310]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141045391335_1640_3221506_3.png!w690x310.jpg[/img][/size][/align][size=14px][/size][align=center]图3 简单(a)和分程(b)控制系统结构和特性示意图[/align][size=14px][/size][size=14px]分程控制已经广泛应用在温度、流量和压力控制等工业流程当中,也通常用来控制双模式的运行场合。例如,分程控制被用在保持一个既有加热控制又有冷却控制的容器内的温度。当其温度(单一测量值)低于目标温度设定值时,首先关闭冷却装置,然后开始打开加热装置。当温度上升到设定值以上时,首先关闭加热装置,然后开始打开冷却装置。另外一种分程控制方式是,采用分段量程控制来调整两个执行器从而实现更大范围内的操作。一个执行器控制低量程范围,另一个执行器控制高量程范围。以上两种应用场合都要求在每一个流程管线上配备一个执行器。[/size][size=14px][/size][size=14px]分程控制的典型应用是聚合反应工艺、冷热循环浴、TEC半导体温度控制、动态平衡法的真空和压力控制等。[/size][size=14px][/size][b][size=18px][color=#990000]三、比值控制(Ratio Control)系统[/color][/size][/b][size=14px][/size][size=14px]为保持两种或两种以上变量比值为恒定的控制叫比值控制。在炼油、化工、燃烧、制药、造纸和晶体生长等生产过程中,经常要求两种或两种以上的物料或工作气体按一定比例混合后进行工作。一旦比例失调,就会影响生产的正常运行,影响产品质量,甚至发生生产事故。[/size][size=14px][/size][size=14px]在比值控制系统中,一个变量需要跟随另一变量变化。前者称为从动量S,后者称为主动量M,比值K=M/S。通常选择的主动量应是系统中主要的物料或关键物料的相关变量,它们通常是可测不可控。常见的比值控制系统有单闭环比值、双闭环比值、串级比值(变比值)三种。[/size][size=14px][/size][size=14px][color=#990000][b]3.1 单闭环比值控制系统[/b][/color][/size][size=14px][/size][size=14px]单闭环比值控制系统结构如图4所示。[/size][size=14px][/size][align=center][size=14px][img=单闭环比值控制系统结构框图,600,236]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141046030140_8657_3221506_3.png!w690x272.jpg[/img][/size][/align][size=14px][/size][align=center]图4 单闭环比值控制系统结构框图[/align][size=14px][/size][size=14px]单闭环比值控制系统的优点是不但能实现从动量跟踪主动量变化,而且能克服从动量干扰等。结构简单,能确保比值不变,是应用最多的方案。但缺点是主动量不受控。[/size][size=14px][/size][size=14px]如图2和图4所示,单闭环比值控制系统与串级控制非常相似,但它们的不同之处在于:[/size][size=14px][/size][size=14px](1)单闭环比值控制系统无主对象,即主动量不受控,并且从动量不会影响主动量。[/size][size=14px][/size][size=14px](2)串级控制系统中,副变量是操纵变量到被控变量之间总对象的一个中间变量,该副变量是主对象的输入,通过改变副被控变量来调节主被控变量。[/size][size=14px][/size][size=14px](3)串级控制的副控回路与比值控制系统的从动量控制子系统都是随动控制系统。[/size][size=14px][/size][size=14px](4)比值控制系统中,从动量控制系统是随动控制系统,其设定值由系统外部的主调节器提供,其任务就是使从动量尽可能地保持与设定值相等,随着主动量的变化,始终保持主动量与从动量的比值关系。[/size][size=14px][/size][size=14px](5)在系统稳定时,该比值是比较精确的,在动态过程中,比值关系相对不够精确。[/size][size=14px][/size][size=14px](6)当主动量处于不变状态时,从动量控制系统又相当于一个定值控制系统。[/size][size=14px][/size][size=14px][b][color=#990000]3.2 双闭环比值控制系统[/color][/b][/size][size=14px][/size][size=14px]在主动量也需要控制时,增加一个主动量闭环控制系统,单闭环比值控制系统成为双闭环比值控制系统,双闭环比值控制系统结构如图5所示。[/size][size=14px][/size][align=center][size=14px][img=双闭环比值控制系统结构框图,600,313]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141046526180_3146_3221506_3.png!w690x360.jpg[/img][/size][/align][size=14px][/size][align=center]图5 双闭环比值控制系统结构框图[/align][size=14px][/size][size=14px]双闭环比值控制系统的优点是:能克服主动量扰动,实现其定值控制。从动量控制回路能抑制作用于副回路中的扰动,使从动量与主动量成比值关系。当扰动消除后,主动量和从动量都恢复到原设定值上,其比值不变,并且主动量和从动量都变化平稳。当系统需要改变时,只要改变主动量的设定值,主动量和从动量就会按比例同时增加或减小,从而克服了上述单闭环比值控制系统的缺点。[/size][size=14px][/size][size=14px]双闭环比值控制系统常用于主动量和从动量扰动频繁,工艺参数经常需要改变,同时要求系统总参数恒定的工艺过程,如无此要求,可采用两个单独的闭环控制系统来保持比值关系。[/size][size=14px][/size][size=14px]在采用双闭环比值控制方案时,对主动量控制器的参数整定应尽量保证其输出为非周期变化,以防止共振的产生。[/size][size=14px][/size][size=14px][b][color=#990000]3.3 变比值控制系统[/color][/b][/size][size=14px][/size][size=14px]当系统中存在着除主动量和从动量干扰外的其他干扰,为了保证产品质量,必须适当修正两变量的比值。因此,出现了按照一定工艺指标自动修正比值系数的变比值控制系统。变比值控制系统要求两个变量的比值能灵活低地随第三变量的需要而进行调整,由此可见,变比值控制系统是一个以第三个变量为主变量、以其他两个变量比值为副变量的串级控制系统,有时变比值控制系统也成为串级比值控制系统。在变比值控制系统中,比值只是一种手段,不是最终目的,而第三变量往往是产品质量或工艺指标。[/size][size=14px][/size][size=14px]同样,变比值控制系统也可以有单闭环和双闭环形式,如图6所示。[/size][size=14px][/size][align=center][size=14px][img=变比值控制系统结构示意图,650,717]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141048070661_493_3221506_3.png!w690x762.jpg[/img][/size][/align][size=14px][/size][align=center]图6 变比值控制系统结构框图:(a)单闭环结构;(b)双闭环结构[/align][align=center][size=14px][/size][/align][b][size=18px][color=#990000]四、前馈控制(Feedforward Control)系统[/color][/size][/b][size=14px][/size][size=14px]简单控制系统一般都属于反馈控制(feedback control),是按被控变量与设定值的偏差进行控制,因此只有在偏差产生后,调节器才对操纵变量进行控制,以补偿扰动变量对被控变量的影响。若扰动已经产生,而被控量尚未发生变化,反馈控制作用是不会产生的,所以,这种控制作用总是落后于扰动作用的,是不及时的控制。[/size][size=14px][/size][size=14px]由此,依据预防控制策略设计的控制系统称为前馈控制系统。前馈控制系统是根据扰动或给定值的变化按补偿原理来工作的控制系统,其特点是当扰动产生后,被控变量还未变化以前,根据扰动作用的大小进行控制,以补偿扰动作用对被控变量的影响。前馈控制系统运用得当,可以使被控变量的扰动消灭在萌芽之中,使被控变量不会因扰动作用或给定值变化而产生偏差,它较之反馈控制能更加及时地进行控制,并且不受系统滞后的影响。采用前馈控制系统的条件是:[/size][size=14px][/size][size=14px](1)扰动可测但不可控。[/size][size=14px][/size][size=14px](2)变化频繁且变化幅度大的扰动。[/size][size=14px][/size][size=14px](3)扰动对被控变量的影响显著,反馈控制难以及时克服,且过程控制精度要求又十分严格的情况。[/size][size=14px][/size][size=14px]前馈控制的好处是直接控制无滞后,可以提高系统的响应速率,但是需要比较准确地知道被控对象模型和系统特性。而反馈控制的优点是不需要知道被控对象的模型即可实现比较准确的控制,但是需要偏差发生之后才能进行调节,具有滞后性。所以,理论上把前馈和反馈结合起来,既能实现较高的控制精度,也能提高系统响应速度。需要注意的是:前馈控制属于开环控制,反馈控制属于闭环控制。[/size][size=14px][/size][size=14px]前馈反馈控制系统有两种结构形式,一种是前馈控制作用与反馈控制作用相乘;另一种是前馈控制作用与反馈控制作用相加,这是前馈反馈控制系统中最典型的结构形式。典型的前馈-反馈控制系统结构如图7所示。[/size][size=14px][/size][align=center][size=14px][img=前馈-反馈控制系统结构框图,550,251]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141048430650_3026_3221506_3.png!w690x315.jpg[/img][/size][/align][size=14px][/size][align=center]图7 前馈-反馈控制系统结构框图[/align][size=14px][/size][size=14px]在高精度控制中,前馈控制可用来提高系统的跟踪性能。经典控制理论中的前馈控制设计是基于复合控制思想,当闭环系统为连续系统时,使前馈环节与闭环系统的传递函数之积为1,从而实现输出完全复现输入。从图7中可以发现,前馈环节的传递函数是被控对象的倒数。那么就是在使用前馈控制前需要对被控对象的模型有了解,才能有针对性的设计出合适的前馈控制器。也就说,每个系统的前馈控制器都是不一样的,每个前馈控制器都是专用的。[/size][size=14px][/size][b][size=18px][color=#990000]五、选择性控制(Selective Control)系统[/color][/size][/b][size=14px][/size][size=14px] 选择性控制系统也叫超驰控制系统,也可称为自保护系统或软保护系统。选择性控制是把生产过程中对某些工业参数的限制条件所构成的逻辑关系迭加到正常的自动控制系统上去的组合控制方案。系统由正常控制部分和取代控制部分组成,正常情况下正常控制部分工作,取代控制部分不工作;当生产过程某个参数趋于危险极限时但还未进人危险区域时,取代控制部分工作,而正常控制部分不工作,直到生产重新恢复正常,然后正常控制部分又重新工作。这种能自动切换使控制系统在正常和异常情况下均能工作的控制系统叫选择性控制系统。[/size][size=14px][/size][size=14px]通常把控制回路中有选择器的控制系统称为选择性控制系统。选择器实现逻辑运算,分为高选器和低选器两类。高选器输出是其输入信号中的高信号,低选器输出是其输入信号中的低信号。根据选择器在系统结构中的位置不同,选择性控制系统可分为两种:[/size][size=14px][/size][size=14px](1)选择器位于两个调节器和一个执行器之间,选择器对两个调节器输出信号进行选择,如图8(a)所示。这种选择性控制系统的主要特点是:两个调节器共用一个执行器。在生产正常情况下,两个调节器的输出信号同时送至选择器,选出正常调节器输出的控制信号送给执行器,实现对生产过程的自动控制,此时取代调节器处于开路状态,对系统不起控制作用。当生产不正常时,通过选择器选出取代调节器代替正常调节器对系统进行控制。此时,正常调节器处于开路状态,对系统不起控制作用。当系统的生产情况恢复正常,通过选择器的自动切换,仍由原正常调节器来控制生产的正常进行。[/size][size=14px][/size][align=center][size=14px][img=选择性控制系统结构框图,690,547]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141049190661_493_3221506_3.png!w690x547.jpg[/img][/size][/align][size=14px][/size][align=center]图8 选择性控制系统结构框图[/align][size=14px][/size][size=14px](2)选择器位于调节器之前,对传感器输出信号进行选择的系统,如图8(b)所示。该选择性系统的特点是几个传感器合用一个调节器。通常选择的目的有两个,其一是选出最高或最低测量值;其二是选出可靠测量值。[/size][size=14px][/size][size=14px]在图8(a)所示的选择性控制系统中,由于系统中总有一台控制器处于开环状态,因此易产生积分饱和。防积分饱和有限幅法、外反馈法、积分切除法三种。[/size][size=14px][/size][b][size=18px][color=#990000]六、三冲量控制(Three Impulse Control)系统[/color][/size][/b][size=14px][/size][size=14px]三冲量控制系统是来自电厂锅炉给水自动调节系统的一个名词,是根据汽包液位、给水流量和蒸汽流量三冲量经PID计算来调节给水阀门开度,从而达到自动控制汽包液位的目的。[/size][size=14px][/size][size=14px]所谓冲量,实际就是变量,多冲量控制中的冲量,是指控制系统的测量信号。三冲量控制意味着对三个变量进行测量和控制从而使得其中一个变量达到稳定。[/size][size=14px][/size][size=14px]一般而言,如图9所示,三冲量控制系统从结构上来说,是一个带有前馈控制的串级控制系统。以液位控制为例,主调节器(液位控制器)与副调节器(流量控制器)构成串级控制系统。汽包液位(传感器2)是主变量、给水流量(传感器1)是副变量。副变量的引入使系统对给水压力的波动有较强的克服能力。蒸汽流量(传感器3)的波动是引起汽包液位变化的因素,是干扰作用,蒸汽波动时,通过引入前馈调节器,使给水流量(传感器1)作相应的变化,所以这是按干扰进行控制的,是把蒸汽流量信号作为前馈信号引入控制的。[/size][size=14px][/size][align=center][size=14px][img=三冲量控制系统结构框图,690,371]https://ng1.17img.cn/bbsfiles/images/2022/10/202210141049398083_4900_3221506_3.png!w690x371.jpg[/img][/size][/align][size=14px][/size][align=center]图9 三冲量控制系统结构框图[/align][size=14px][/size][b][size=18px][color=#990000]七、总结[/color][/size][/b][size=14px][/size][size=14px]综上所述,在复杂控制系统中可能有几个过程测量值、几个PID控制器以及不止一个执行器;或者尽管主控制回路中被控量、PID控制器和执行器各有一个,但还有其他的过程测量值、运算器或补偿器构成辅助控制系统,这样主、辅控制回路协同完成复杂控制功能。复杂控制系统中有几个闭环回路,因而也是多回路控制系统。[/size][size=14px][/size][size=14px]另外,随着技术的进步,越来越多的生产、工艺和设备仪器对自动化控制要求越来越高,对于被控对象比较特殊,被控量不止一个,生产工艺对控制品质的要求比较高或者被控对象特性并不复杂,但控制要求却比较特殊,如超高精度,这些都需要复杂控制系统予以解决。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size]

  • 干式运输型液氮罐的智能控制系统

    干式运输型液氮罐的智能控制系统

    干式运输型液氮罐在现代物流中扮演着重要的角色。这种特殊的液氮罐能够安全、高效地储存和运输液体氮气,被广泛应用于医疗、化工、半导体等领域。  然而,在使用过程中,液氮罐的温度和压力控制是至关重要的,这直接关系到液氮罐内液氮的稳定性和可靠性。为了提高效率和保障安全,智能控制系统成为必不可少的一部分。本文将探讨干式运输型液氮罐智能控制系统的设计与优化。  首先,我们需要了解液氮罐的基本工作原理。干式运输型液氮罐主要由罐体、内胆、真空绝热层和控制系统组成。当液体氮气进入储罐后,通过真空绝热层的保护,减少了热量的传输,从而保持液态状态。而控制系统则对液氮罐的温度和压力进行监测和控制,以确保液氮罐内的环境始终稳定。[img=液氮罐,400,372]https://ng1.17img.cn/bbsfiles/images/2023/11/202311301123439518_1703_3312634_3.jpg!w400x372.jpg[/img]  传统的液氮罐控制系统通常采用传感器和人工操作的方式来实现温度和压力的监测与调节。然而,这种方式存在着人工操作不准确、反应迟缓等问题,同时也增加了人工成本。因此,智能控制系统应运而生。  智能控制系统通过集成传感器、执行器、控制算法和通信技术,能够实时监测和控制液氮罐的温度和压力。首先,通过温度传感器和压力传感器采集罐内环境的数据,并将其传输给控制器。控制器根据预设的参数和算法进行数据处理,判断罐内环境的状态,并根据需要发送控制信号给执行器。  在控制信号的作用下,执行器可以自动调节液氮罐的温度和压力。例如,当温度过高时,控制系统可以启动冷却装置将温度降低 当压力过大时,控制系统可以通过排气阀门释放部分气体来降低压力。通过智能控制系统的优化和升级,液氮罐的温度和压力控制将更加准确和高效。  此外,智能控制系统还具有远程监控和故障诊断的功能。通过通信技术,控制系统可以与上位机或云平台进行数据交换和传输,实现远程监控。操作人员可以随时查看液氮罐的运行状态和数据,并根据需要进行调整和控制。同时,智能控制系统可以对液氮罐进行故障诊断,及时发现并报警故障,提高维护效率和减少停机时间。  总之,干式运输型液氮罐(www.cnpetjy.com)的智能控制系统在提高效率和保障安全方面具有重要作用。通过集成传感器、执行器、控制算法和通信技术,智能控制系统能够实时监测和控制液氮罐的温度和压力,实现自动化调节 同时,还能够实现远程监控和故障诊断,提高了运行效率和可靠性。未来,随着技术的不断进步,液氮罐智能控制系统的功能和性能还将进一步提升,为物流行业带来更多的便利和效益。

  • 【原创大赛】烟气脱硝测试装置控制系统改造

    [font='宋体'][size=13px][color=#333333]烟气脱硝测试装置是模拟燃煤电厂烟气条件进行脱硝催化剂测试的非标装置,测试装置的参数按照[/color][/size][/font][font='宋体'][size=13px][color=#333333]DT/L1286要求进行控制。整个测试系统主要有:配气系统、制氮系统、反应器、控制系统、测试系统、取样系统等构成。[/color][/size][/font][font='宋体'][size=13px][color=#333333]1.控制系统作用及问题[/color][/size][/font][font='宋体'][size=13px][color=#333333]控制系统单元主要由电源模块、传感器模块、质量流量计、继电器、电磁阀、P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]控制器等组成,主要[/color][/size][/font][font='宋体'][size=13px][color=#333333]作用是[/color][/size][/font][font='宋体'][size=13px][color=#333333]对系统参数的采集、控制及报警。全尺寸平台使用P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]进行控制,通过控制电脑提供人机交互界面,并结合软件平台实现控制元件参数的设定和自动化运行。随着对设备[/color][/size][/font][font='宋体'][size=13px][color=#333333]使用的不断积累[/color][/size][/font][font='宋体'][size=13px][color=#333333],以及检测能力扩大迫切的要求,伴随着多项技术改造,原始控制系统已经无法满足使用要求[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.系统改造[/color][/size][/font][font='宋体'][size=13px][color=#333333]为完善自动控制功能,增强控制系统运行安全性和稳定性,对控制系统采取[/color][/size][/font][font='宋体'][size=13px][color=#333333]了如下的[/color][/size][/font][font='宋体'][size=13px][color=#333333]技术改造[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.1[/color][/size][/font][font='宋体'][size=13px][color=#333333]对P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]进行升级,增加一套冗余P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]专门用于分布式控制温控系统和电加热系统[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.2[/color][/size][/font][font='宋体'][size=13px][color=#333333]对模拟量数据采集和阀的控制等实现全局掌控,避免发生卡顿、宕机等隐患。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.3[/color][/size][/font][font='宋体'][size=13px][color=#333333]在空压机和制氮机端增加双绞屏蔽电缆和电脑通讯,既可以远程启停设备,还可以监视设备运行各项参数及状态,对冷干机使用基于L[/color][/size][/font][font='宋体'][size=13px][color=#333333]oRa[/color][/size][/font][font='宋体'][size=13px][color=#333333]技术的远程控制方式。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.4[/color][/size][/font][font='宋体'][size=13px][color=#333333]对所有软件平台进行优化,整合线路,更换软件架构,采用无线与网线相结合的传输模式配合分布式多中央控制系统,增加系统运行的安全性。对设备控制根据各系统进行模块化布置,对测试过程按照逻辑顺序进行显示和监控。在保留和优化原有重要报警及保护程序的基础上,增加各系统分部锁定、多分布连锁,以及分布复位和总复位功能。有效发挥数据库管理系统作用,为组分配置提供数据参考[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.5[/color][/size][/font][font='宋体'][size=13px][color=#333333]对供气系统软件程序根据气源变化重新编辑公式以满足自动配气功能。根据管道加热器控制柜的改造,设计研发独立的控制软件,既能设定温度,还能控制交流接触器开断,实时监控温控表、电力调整器的各项参数,具备储存报警信息、三相电流异常数据、操作记录等功能。[/color][/size][/font][font='宋体'][size=13px][color=#333333]经过上述技术改造,控制系统更合理,可靠性和稳定性进一步增强,提高了测试效率。[/color][/size][/font]

  • 液氮罐中如何应对控制系统失效

    应急反应和安全措施  在控制系统失效的情况下,首要任务是通过手动操作关闭罐体的出液阀门,以防止液氮的过度流动。这样可以避免罐体内压力突然升高而引发其他安全隐患。同时,操作人员需要穿戴适当的防护装备,如手套和护目镜,以应对可能的液氮泄漏或喷溅情况。[img=,690,788]https://ng1.17img.cn/bbsfiles/images/2024/08/202408051007272164_2545_6088378_3.jpg!w690x788.jpg[/img]  控制系统恢复策略  一旦安全措施得以落实,接下来的关键步骤是评估控制系统的具体故障原因。这可能涉及到检查传感器、执行器或电子控制单元等关键部件。操作人员可以利用备用的手动控制功能,例如手动阀门和调节装置,来恢复对液氮罐的基本控制。  温度和压力监测  控制系统失效后,温度和压力的实时监测尤为重要。通过罐体内部的温度传感器和压力传感器,操作人员能够及时掌握液氮的工作状态。监测数据可以帮助确定液氮的液位和温度变化,从而指导后续的操作调整和安全措施。[img=,685,1140]https://ng1.17img.cn/bbsfiles/images/2024/08/202408051008031830_7644_6088378_3.png!w685x1140.jpg[/img]  调整液氮供给量  失效的控制系统可能导致液氮的供给量异常波动,甚至中断。为了维持罐体内液氮的稳定工作状态,操作人员需要根据实时监测的数据,逐步调整液氮的供给量。这需要精确的调节和操作技巧,以避免过度补充或供给不足的情况发生。  紧急联系和报告  在应对控制系统失效的过程中,保持紧急联系通道的畅通是非常关键的。操作人员应当及时向相关管理人员和技术支持团队报告故障情况,并请求必要的紧急维修和支持。及时沟通和反馈能够有效减少事故的影响和扩散范围。  系统维修和恢复  最后,一旦故障原因明确并得到解决,操作人员和技术人员需进行系统的全面维修和恢复。这可能涉及到更换损坏的控制单元、传感器或执行器等关键部件,确保液氮罐的控制系统能够再次安全、稳定地运行。  通过以上详细的步骤和应对策略,[url=http://www.yedanguan001.com/]东亚液氮罐厂家[/url]在面对控制系统失效时能够有效地应对,最大限度地保障设备的安全运行和液氮的稳定供应。这些措施不仅需要操作人员具备高超的技术操作能力,还需要具备快速应对紧急情况的能力和严谨的操作态度。在液氮应用领域,安全始终是第一优先级,只有通过科学合理的应对措施,才能有效降低事故风险,保障生产工作的顺利进行。

  • 气相色谱流量与压力控制系统概述

    1 概述在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析过程中,我们需要各种各样的气体供应用以保证仪器的正常运行,例如需要载气以一定的流速将气体样品或经气化后的样品带入色谱柱进行分离,需要空气(助燃气)、氢气(燃气)来保证氢火焰离子化检测器的燃烧,并需要氮气(尾吹气)稀释火焰调节灵敏度。根据塔板理论和速率理论,载气的流速/流量(两者具有一定的对应关系,下文根据习惯称之为流速或者流量)的不同会带来分离度和柱效的变化;对于氢火焰离子化检测器(FID)而言,空气、氢气和氮气的流量比例需要控制在大致10:1:1,常用的流量为300:30:30(mL/min)。更多的,对于进样口而言,载气、分流和隔垫吹扫流量的调节会影响分析结果;对于火焰光度检测器(FPD),空气、氢气和氮气的流量的不同会引起检测器出峰变化或者完全没有响应;电子捕获检测器(ECD)的尾吹气大小会影响峰宽和灵敏度等等。因此而言,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,载气流速/流量的控制显得尤为重要。那么,应当如何进行载气流速/流量的调节呢?2 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的流量/压力控制的装置类型一般而言,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器内部涉及到气体控制的描述,都是以流量的数值和描述来表示;涉及到压力的描述,常见的就是柱头压(又称之为柱前压)。柱头压指的是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]进样口处的压力,在色谱柱和温度条件固定的情况下,一定的柱头压对应的色谱柱的流量值是固定的。本文为了描述方便,暂时不具体区分两者的细节,详细内容将在后期的文章中介绍;本文中,流量/压力控制是一个整体概念。对于目前市面上常见的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],其流量/压力控制采用的控制装置一般分为两类:即手动调节流量/压力的机械阀控制系统和可以自动调节流量/压力的电子流量控制系统。2.1 机械阀控制系统目前来说,国内外厂家都可以提供使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/c4/5c/1c45c142c2d1fccc90fb1fadde70318e.png[/img]使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等。以进样口的流量/压力控制而言,具有稳流阀-背压阀、稳流阀-针型阀、稳压阀-背压阀和稳压阀-针型阀等多种类型。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ff/ff/affff8f6361ed469d2887a3e9d0b009f.png[/img][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器从诞生到现在的几十年时间中,使用机械阀进行流量/压力控制具有强大的生命力,一直未曾中断。其特点是性价比高、控制稳定;但是流量/压力调节较为繁琐,受到外部环境(如温度)的影响较大。2.2 电子流量控制系统目前来说,国内外厂家都可以提供使用电子流量控制装置进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器。相对而言,国外厂家起步较早,发展更为成熟一些。使用电子流量控制装置进行流量/压力控制的装置和技术,岛津称作AFC和APC,安捷伦称作做EPC,瓦里安称作EFC,PE则称之为PPC。一言概括,就是可以对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中的载气进行自动化的流量设定和压力设定,避免了重复性的、简单繁琐的使用皂膜流量计手动测定流量。2.2.1 电子流量控制装置发展的国内外趋势1984年,HP公司率先推出了电子气路控制器(EPC),尽管当时的压力调整精度仅0.1psi,线路连接比较复杂,气路接口多,体积较大,但它却大大提高了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分析的方便性和数据结果的质量。随着科技的发展,Agilent公司相继推出了第二、三、四、五代EPC,压力调整精度提高到0.001psi,采用金属注射成型(3D)和数字化信号通路,数字化设定所有气路参数(包括进样口和检测器气路),可安装6路EPC模块,实现16个通道的EPC控制。通过精确EPC气路控制,使流量和压力精确稳定,实现了保留时间和峰面积高度重复,也使[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]和[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]分析达到前所未有的水平。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/92/e4/b92e4af407ad117ba9863f0b1db0d268.png[/img]国外其它知名色谱仪器厂家,如:Shimadzu、Thermo Fisher、PE、Varian等公司都已推出了带电子流量控制装置的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],如:Shimadzu GC-2010,Varian 3800,PE Clarus 680等。尽管这些仪器价格比较昂贵,仅仪器主机价格就高达8~12万元,但由于采用了电子流量控制装置,自动化程度高,从而使其在高端市场的仪器中具有很大的竞争优势,并因此成为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]招标中的一个门槛。国内厂家对应用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的电子流量控制装置的研究起步较晚,多集中在单个比例阀和传感器构成的简单电子流量控制模块的使用上,类似于质量流量计的模式。2005年,国产首款采用电子程序压力流量控制(EPC)系统的GC 128型全自动[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]在上海精密科学仪器有限公司诞生,并于同年8月通过了上海市科委专家组的验收。该仪器是上海市科委下达的科技攻关项目,由复旦大学和上海精密科学仪器有限公司合作完成,实现了载气流量控制(EFC)、柱头压力控制(EPC)和检测器气体控制(PPC)。但只能对氮气和氢气两种气体实现控制。作为国家“十一五”科技攻关项目,浙江福立分析仪器有限公司实现了毛细管进样系统的EPC控制技术。GC-9710型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力控制精度高达0.0015psi,具备恒压/程序升压(8阶)、恒流/程序升流四种模式。北分瑞利在2009年推出的SP-2020型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]也配备了载气和辅助气的电子流量控制,虽采用的是市售的EPC和MFC模块,但实现了压力和流量的计算机软件反控,提高了整体仪器的自动化程度。另外,北京东西分析的GC-4100、上海天美的GC7980,常州磐诺的A90、A91也都具有电子流量控制装置,并在市场上开始销售。此外,单独的电子流量控制模块也受到国内外非色谱厂家的关注,电子压力控制器和质量流量控制器作为成熟商品已推向市场。例如,美国PARKER公司已有成熟的微型电子压力控制器,而且有专门为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]设计的模块(下图)。国内也有多家单独开发电子流量控制装置的厂家,如杭州浩海等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/46/5a/8465af294507f122ff59c61cdd51c3fc.png[/img]2.2.2 电子流量控制装置的作用和功能使用机械阀控制[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器的流量/压力,以毛细柱进样口为例,在进样模式上只能实现分流模式和完全不分流模式,一些厂家通过改装气路可以实现不分流进样;在控制方式上可以实现恒压(恒定柱头压)控制,如果色谱柱程序升温,那么分流流量就会发生变化。如果采用功能完善的电子流量控制,对于初学者而言容易上手,可以迅速了解仪器和进入工作。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/bb/50/abb5089df37e5b85f6eccd08d669c664.png[/img][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ae/3e/fae3eb16ed713166ef1aa583ec761781.png[/img]另外,采用电子流量控制,一方面可以在仪器或者工作站上快速实现流量、压力的设定;另一方面,可以实现分流进样、不分流进样和完全不分流进样、大体积进样等多种进样模式,同时可以实现恒定压力、恒定流量,程序压力、程序流量等控制模式。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/da/b5/0dab5c0a1402d6280f9402c6d2deaa10.png[/img]2.3 其他方式在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析过程中,涉及到不同的分析方法时候,更改最多的是进样口的参数——载气、分流和柱前压参数。检测器的温度、流量则更改较少。因此,为了节省成本和便于推广,一些厂家推出了简化版的自动化控制仪器,主要包括两种:2.3.1 采用机械阀+流量传感器这种配置应当算是机械阀控制的简单升级版。其主要改变是在需要读取流量的管路上加装流量传感器,可以直接读出流量数值,避免了采用皂膜流量计进行测定的繁琐。这种技术只能用来直接读取流量参数而不能在仪器操作面板上设定流量参数。目前市面上岛津的GC Smart(GC-2018)便采用了这种模式,厂家宣传称之为AFM(AdvancedFlow Monitoring)技术,省去以往繁复的计算,轻松获得流量比和分流比。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d1/0a/dd10afaaf62e56fd006354eafd0269ac.png[/img]2.3.1采用电子流量控制+机械阀该种配置是电子流量控制控制的简化版。其主要特色是,在需要经常调节流量/压力的进样口处采用电子流量控制;在较少调节的检测器,如氢火焰离子化检测器(FID)的氢气、空气和氮气处则采用机械阀。这种技术和全部采用电子流量控制的仪器没有太大的区别,主要在于使用户降低采购成本。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器随着时间和科技的发展,变得越来越自动化。但是出于成本和操作的考虑,采用机械阀控制和电子流量控制的仪器均大量存在。具体选用何种控制模式的仪器,要根据实际需要和预算水平来考虑。以上是本次文章的全部内容,在下面几期的文章中,将详细介绍机械阀控制系统和电子流量控制系统的组成、结构和工作原理。敬请关注

  • [推荐] 更新TA公司DSC的DOS控制系统为WINDOWS平台操作系统

    一、目前DSC910设备存在的问题:DSC910设备经过多年使用,操作控制系统会出现老化和紊乱现象,影响仪器使用或者耽误实验进程,甚至出现控制系统瘫痪的情况,在此情况下该仪器主设备完好无损,仅因软件问题而导致仪器废置,造成资源浪费。据多方面考察和测试,其主要原因在于数据采集模块出现问题或者瘫痪,严重影响平时正常的测试试验工作;而操作控制系统集成硬件(美国TA公司PS/2型专用计算机)的零配件厂家早已停产,市场上也无该类零配件出售,这给该仪器的维修和养护工作造成很大困难,并且该仪器操作系统是落后的DOS操作平台,使用起来极不方便,更新换代势在必然,但TA厂方又没有提供新的基于WINDOWS平台的操作系统升级版本,给用户造成极大的不便。二、对DSC910存在的问题解决的方法:针对目前DSC910用户所面对的这种困难和DSC910仪器存在的这种问题,我公司从用户的角度出发,锐意革新,经过将近一年的研发、测试及现场应用,已经成功地将DSC910改造成为基于WINDOWS系统的操作控制、数据采集系统,很好地解决了上述问题,此项技术已成功应用于近代化学研究所的DSC910技术改造项目中,目前运行良好,获得使用者好评。该类设备的技术改造一般包括更换操作系统硬件,改造数据采集系统,并引入先进的操作软件。三、对DSC910设备进行技术改造的意义1.DSC910设备的瘫机一般是因为控制系统出现问题,而主设备完好无损,对原设备进行技术改造可以进行资源再利用,节省资源成本。在具有代表性的使用方——西安近代化学研究所——使用中,该设备曾经是用14年而主设备完好无损,出现问题主要在于计算机控制系统部分,经过北京纳辰科技发展有限责任公司的改造,至少在5年内可以保证DSC910设备的正常运行,可为其带来极大的实际效益。2.专用PS/2工控机改造为通用计算机,便于控制计算机的更换、软件更新、数据保存、延长仪器使用寿命。3.专用DSC910实验操作软件转换为通用控制软件,控制方便简单,界面更为友好,即专用DOS系统改造为更为通用的WINDOWS系统,方便实验人员使用,提高实验效率。4.数据采集转换过程更为方便,不用再经过转换软件进行专门的转换,数据格式可以随实验人员的需求而转变,方便科研人员根据需要进行数据处理。5.虽然目前新设备层出不穷,但是其功能与旧设备大同小异,而就科研开发人员对设备的熟悉程度,分析问题的透彻程度而言,新不如旧;同时如果作为学生实验用设备,该设备可靠程度高,有利于学生操作能力的培育,从这些角度考虑,对DSC910设备进行技术改造也有更为现实的意义。四、新控制系统主要特点:1.本系统基于WINDOWS平台。所有实验操作过程在WINDOWS平台下进行,一改过去平台下快捷键不断重复的过程,使得实验过程操作简单,实验监控过程一目了然。2.本系统的操作软件采用更人性化的界面设计,对操作过程采用逐步引导方式,达到了会用计算机就会做实验的的界面方式,防止新的实验技术人员误操作可能的发生。3.本系统的数据采集模块采用全新的高速数据采集方式,完全兼容原DOS平台下的操作控制命令,为实验数据的安全、可靠提供了保证。4.本系统的数据保存格式转换更为自由,一般情况下,使用原DOS系统需要经过不断地转换才能成为科研人员所能采用处理的数据格式。在本系统中可以彻底解决这一问题,即能提供TA分析软件的所需格式,也可以转换为科研人员所需要的其它数据格式。5.本系统可替代TA的DSC2950控制系统,同时对多台仪器进行控制。另:本公司可对目前TA公司所有基于DOS平台的控制系统进行升级,实现WINDOWS平台控制。联系电话:010-62964171 62980382 87133153 联系人:郭先生 王先生北京纳辰2006年5月

  • 摩擦磨损试验机的控制系统

    摩擦磨损试验机的控制系统是连接试验人员与设备主机之间的纽带,用于对试验的进行控制与数据的显示,今天介绍的控制系统是济南凯锐公司自主研发,其不仅操作简单,而且功能齐全,还可以根据客户的需要量身定做。另外像电子万能试验机和液压万能试验机的控制系统其功能跟该系列产品大体也类似,具体看参照其他相关文章。1.摩擦磨损试验机的控制系统依托于windows控制系统,一切功能的实现都是在此基础上进行的,其全部内容所占空间也不过几百兆。控制系统相比较电脑系统来说,升级更容易,也更好操作。2.系统实现了分级别管理,控制系统的全部数据对于高权限的操作来说是完全公开的,不仅包括试验操作部分还包括设备的检定标定等功能。而对于普通的使用者来说也能对完全满足试验进行操作,即常规的试验操作部分。这样就保证系统的安全性,避免了因其他人对系统的操作造成系统的紊乱。3.控制系统具有完善的功能模块,有菜单栏,数据显示区(试验力显示区、摩擦力显示区、时间控制区、转速显示区、温度显示区、报警提示),曲线显示区(试验力-时间、摩擦力-时间-摩擦系数、摩擦系数-时间、转速-时间、温度-时间、摩擦力矩-时间),试验控制部分等思达部分组成。每个部分所能实现的功能还有很多,这里不一一介绍,详情可咨询凯锐的其他相关资料。4.该控制系统支持各种品牌商业用打印机,类似于三星、联想、爱普生等,兼容性高。5.操作功能不仅包括自动操作还可以进行手动操作,手动操作弥补了自动操作的一些缺点。适合用户进行各类复杂的数据分析。

  • 气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]手工流量控制系统和电子流量控制系统[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]稳定可靠、精确度良好的气体流量(压力)控制对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的准确性和可靠性而言至关重要。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]工作时需要稳定可靠、精确度良好的气体流量(压力)控制,包括载气、检测器气体和其他辅助气体流量控制,以获得良好的保留时间和峰面积的重现性。[/font][font=宋体]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量系统,分为手工流量控制和电子流量控制两种形式,在实际使用场合下各有其优劣。电子流量控制因其高精度、高重复性、易用性、可编程等特性,在现代的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]气体控制系统中的使用日益广泛。[/font][align=center][font=宋体]手工流量(压力)控制系统优势和缺点[/font][/align][font=宋体]手工流量控制系统一般由恒压阀、恒流阀、针型阀、背压阀、压力表、流量计和阻尼器等部件组成。需要通过色谱工作者手工操作,调节各种阀针旋钮,读取压力表数值和使用流量计辅助工作,以实现系统气体流量的控制。[/font][font=宋体]手工流量控制系统的优势:制造成本较低,工作可靠性较好,对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]实验室环境要求不高、维护和维修成本较低、系统抗污染能力较强,可以在无电源状态下工作。[/font][font=宋体]手工流量控制系统使用的各种阀,机械结构较为坚固,色谱工作者只需要保证气源清洁干净,阀本身不容易损坏。装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量部分的常见故障往往与气源不良有关,例如气源中含有水、固体颗粒物或油污等。[/font][font=宋体]实验室空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量较差、灰尘严重或者存在一定腐蚀性气体时,对于手工流量控制系统的影响不大。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口连接的针型阀或者背压阀,可能有样品流过内部,如果维护不足,可能会造成污染。采用手工流量控制方式的仪器,针型阀或背压阀的清洗维护方法较为简单,如果需要更换,维修成本也比较低。[/font][font=宋体][font=宋体]某些意外情况下例如实验室意外断电时,装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气并不会停止工作,可以保护色谱柱和检测器,例如[/font][font=Times New Roman]ECD[/font][font=宋体]、[/font][font=Times New Roman]TCD[/font][font=宋体]、强极性色谱柱。但是需要注意[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]火焰的问题,如果意外断电情况下,检测器容易发生积水问题,会造成检测器内部发生锈蚀或者损坏喷嘴等后果。[/font][/font][font=宋体]手工流量控制系统的缺陷:[/font][font=宋体][font=宋体]一、[/font] [font=宋体]重现性差,调控精度低[/font][/font][font=宋体] [font=宋体]手工流量控制系统使用的机械部件控制精度较低,并且由于螺杆调节存在间隙、机械磨损、弹性元件疲劳等问题,该系统难以获得良好的重复性,面临复杂样品或复杂分析系统,手工流量控制系统往往难以应对。机械阀调节联合压力表指示的调控方式也难以实现较高的调节精度。[/font][/font][font=宋体][font=宋体]例如精密多阀多柱分析系统、反吹系统、中心切割分析系统、[/font][font=Times New Roman]PONA[/font][font=宋体]分析等,这些系统要求保留时间的重复性较高,往往要求[/font][font=Times New Roman]0.01min[/font][font=宋体]范围的偏差,这些情况下手工流量控制器难以达到要求。[/font][/font][font=宋体][font=Times New Roman]1.1 [/font][font=宋体]螺纹间隙造成调节问题。[/font][/font][font=宋体][font=宋体]机械阀一般采用螺杆的方式实现阀调节,但是由于螺纹存在间隙将会造成调节问题,如图[/font][font=Times New Roman]1[/font][font=宋体]所示,螺杆顺时针旋转和逆时针旋转到相同角度时,螺杆在左右方向上移动距离存在一定程度的偏差。[/font][/font][font=宋体]色谱工作者旋转阀旋钮时需要注意操作手法,尽量减弱此现象造成的调节偏差。以带有刻度盘的稳流阀为例,建议规定阀旋钮的操作方向,例如逆时针。如果当前刻度低于设定值,可以直接逆时针旋转至设定刻度;如果当前刻度高于设定值,需要顺时针旋转至旋钮刻度低于设定值,然后再逆时针旋转旋钮。[/font][align=center][img=,424,165]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434357590_9342_1604036_3.jpg!w690x269.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]螺杆转动存在间隙问题[/font][/font][/align][font=宋体][font=Times New Roman]1.2 [/font][font=宋体]机械部件磨损[/font][/font][font=宋体]阀部件由于机械运动,总是不可避免的存在磨损问题,造成调节偏差。[/font][font=宋体][font=Times New Roman]1.3 [/font][font=宋体]弹性元件的机械变形或疲劳[/font][/font][font=宋体]压力表和机械阀中存在弹簧管或弹性膜之类的弹性元件,长期受压使用后会发生机械变形,造成弹性变化,最终造成偏差。[/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434421573_5012_1604036_3.jpg!w615x435.jpg[/img][font='Times New Roman'] [/font][/align][font=宋体]一般情况下,仪器停机之后,需要将机械阀调节至关机状态,有些气路中安装有泄压阀以保护压力表和调节阀。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配套的气源钢瓶,分析结束关闭[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统之后,建议将所有压力表泄压为零,并关闭减压阀。[/font][font=宋体]二、 [/font][font=宋体]调节不方便、调节速度慢。[/font][font=宋体]流量或压力的修改,靠色谱工作者手工操作完成,最终的精度和稳定性与操作习惯相关。如果某台[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]需要开展多个分析项目,需要修改不同分析条件时,流量的调节比较费时费力。[/font][font=宋体]机械阀旋钮的调节位置一般不能与输出压力或流量直接相关,某些机械阀设计有刻度盘,但是不能彻底解决问题,调节螺杆注意手法。[/font][font=宋体]恒流阀的调节惯性较大,调节速度较慢。[/font][font=宋体]三、体积笨重[/font][font=宋体]各种阀一般不能单独工作,稳压阀和背压阀一般需要压力表协助工作,稳流阀、针型阀一般需要流量计辅助工作,才可以保证调节的准确性。调节和显示部件较多,手工流量控制系统体积较大,系统较笨重。[/font][font=宋体]三、 [/font][font=宋体]无法编程工作[/font][font=宋体]手工流量控制系统难以实现程序升压(程序升流)或程序降压(程序降流)功能。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制系统的优势的缺陷[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制系统一般由比例电磁阀,电子压力传感器、电子流量传感器,控制线路和阻尼器等部件组成,基于传感器和计算机技术,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中央处理器([/font][font=Times New Roman]CPU[/font][font=宋体])的程序控制下协同工作,实现高精度的流量(压力)控制,现代[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]装备有高精度电子流量控制器是总体发展趋势。[/font][/font][font=宋体]电子流量控制系统的优势:可以编程控制,调节方便快速,精度和重现性好。[/font][font=宋体][font=Times New Roman]1 [/font][font=宋体]重现性好[/font][/font][font=宋体][font=宋体]随着现代电子技术和计算机技术的发展,采用电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以达到较高的保留时间和峰面积重复性性能,高端的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]保留时间重复性指标一般[/font][font=Times New Roman]RSD[/font][font=宋体]小于[/font][font=Times New Roman]0.01%[/font][font=宋体],峰面积相对标准偏差一般小于[/font][font=Times New Roman]1%[/font][font=宋体],并且可以长期稳定运行。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统重新开关机,无需校准和调节也可以达到开关机之前的稳定状态。[/font][/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]调节精度高[/font][/font][font=宋体][font=宋体]以进样口为例,现代的高端[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以实现[/font][font=Times New Roman]0.01kPa[/font][font=宋体]的压力或[/font][font=Times New Roman]0.01ml/min[/font][font=宋体]的流量控制精度。[/font][/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]调节方便、速度快[/font][/font][font=宋体]色谱工作者可以简单的在色谱数据工作站输入目标流量和压力,电子流量控制器可以在数秒的时间范围内完成调节。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]体积小,重量轻[/font][/font][font=宋体][font=宋体]电子流量控制器([/font][font=Times New Roman]EPC[/font][font=宋体]、[/font][font=Times New Roman]AFC[/font][font=宋体]或者[/font][font=Times New Roman]EFC[/font][font=宋体])是现代机械、电子计算机技术的结晶,所有的流量控制部件可以集成在在几十[/font][font=Times New Roman]cm[/font][font=宋体]见方,重量不超过[/font][font=Times New Roman]1kg[/font][font=宋体]的模块中。[/font][/font][font=宋体][font=Times New Roman]5 [/font][font=宋体]可以编程[/font][/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以方便的实现程序升压(程序升流)、程序降压(程序降流)或者定时开关等复杂气流控制功能。[/font][font=宋体]电子流量控制器的缺陷:制造成本高,实验室环境要求高,维护和维修成本高,必须在有电源的状态下工作,需要经常校准。[/font][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]对气源要求较高。一旦发生气源不良问题,例如气源含水、固体颗粒物或油污,会造成电子流量控制器输出流量发生错误,甚至造成流量控制器损坏。实验室湿度较大,存在较多灰尘、有机蒸汽或者腐蚀性气体都可能会对电子流量控制器造成不良影响。[/font][font=宋体]安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口的电子流量控制器对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的维护有更高的要求,如果样品沸点较高并且浓度较大,分流出口捕集阱需要加强维护,否则可能造成电子流量控制器的污染或者损坏。该类型的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]总体维护和维修的成本较高。[/font][font=宋体]由于电子元器件的特性,某些压力或流量传感器会发生电气性能变化,造成输出流量或压力的不正确,需要经常进行校准。[/font][align=center][font=宋体]小结[/font][/align][font=宋体]综述手工流量控制系统和电子流量控制系统的优势和缺陷。[/font]

  • 盐雾箱加热及喷雾控制系统,想您所想,急您所急

    盐雾箱加热及喷雾控制系统,想您所想,急您所急

    [b] 盐雾箱[/b]是当今卖的很火热的一款设备,很多客户,都喜欢选购它。如果有一天,你功成名就,千万不要让金钱名利控制你的行动,而忽视给你帮助的人,因为是他们给你更多动力,而陪伴是长情的告白。那盐雾箱加热及喷雾控制系统是怎么样的呢,接下来我们一起来看看吧。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/04/202104241433238003_6959_1037_3.jpg!w348x348.jpg[/img][/align]  l、采用塔式喷雾器(塔尖高度可调节)。  2、喷雾方式:连续、间隙任选,试验定时范围:0-999小时、分、秒、任意设置。  3、采用自动和手动两种加水系统补充压力桶,实验室水位防止盐雾箱因为供水不足导致超高温损伤仪器。  4、超大盐水箱可连续喷雾72小时不用补充盐水。  5、温度控制输出功率均由微电脑演算,可以高精度及高效率之用电效益。  本盐雾箱采用U型合金高速加温电热管,纯钛制发热管拥有超长使用寿命及完全独立系统不影响盐雾试验及控制线路。

  • 气相色谱仪机械控制系统简述

    气相色谱仪机械控制系统简述

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]机械控制系统简述[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]随着色谱分析应用要求的日益提高,并且伴随着现代机械[/font][font=Times New Roman]-[/font][font=宋体]电子技术的发展,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url])色谱仪逐渐成为复杂的机械[/font][font=Times New Roman]-[/font][font=宋体]光学[/font][font=Times New Roman]-[/font][font=宋体]电子[/font][font=Times New Roman]-[/font][font=宋体]化学分析系统。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])系统中安装的自动进样器单元(包括液体自动进样器、自动阀进样器、顶空进样器、热解析进样器、吹扫捕集进样器、热裂解进样器等)、自动阀切换单元、风扇和柱温箱后开门部分在仪器运行工作中都需要进行精确地机械控制,这些单元需要精确控制的物理量有机械位置、机械位移、旋转角度、速度和加速度等。本文对机械控制系统的基本原理和方法给予简单叙述,希望对色谱工作者和色谱维修工作者的日常工作给予一定帮助。[/font][/font][align=center][font=宋体][font=宋体]简述[/font] [font=宋体]开环和闭环控制[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])分析系统中存在较多机械运动部件,系统需要根据分析方法的要求,在合适的时间和状态下对运动部件进行合适的控制,例如部件的空间位置和位移、部件的运行速度和角度以及部件运行的加速度。[/font][font=宋体][font=宋体]常见情况下,部件的基本控制方式分开环控制和闭环控制两种,图[/font][font=Times New Roman]1[/font][font=宋体]为开环控制的基本原理框图,控制系统由控制器、执行器(一般为电机或气缸)、传动机构和目标部件组成。信号由输入端向输出端单向传递,没有信号反馈形成闭环的回路,此种控制方式的特点为,输出量不会对输入量产生任何影响。[/font][/font][font=宋体]开环控制方式结构较为简单、调节方便、故障率低,控制器直接给出系统输入量,对系统中可能产生的干扰或者系统中参数变化均不给出补偿,在精度要求不高或者扰动影响较小的场合下较为适用。例如[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱后开门角度的控制、柱温箱或其他部件风扇运转速度的控制或者色谱柱切换阀旋转控制,一般采用开环控制方式。[/font][font=宋体]开环控制方式的缺陷较为明显,当系统出现故障时,目标部件不能完成控制目标,单系统不能识别此故障。例如在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱后开门控制系统中,当执行器(电机)不能运转致使柱箱后开门不能开启,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱温度将会产生降温速度异常降低的故障,但系统并不会给出硬件报警信息。[/font][img=,483,40]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242115130118_3723_1604036_3.jpg!w690x57.jpg[/img][font=Calibri] [/font][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]开环控制系统原理框图[/font][/font][/align][font=宋体][font=宋体]图[/font][font=Calibri]2[/font][font=宋体]为闭环控制系统原理框图,与开环系统相比,该系统增加了传感器测量回路,使闭环控制系统有较高的精度,但结构更为复杂,系统的分析与设计相应较为困难。[/font][/font][font=宋体]闭环控制的工作原理是基于偏差的控制,在系统工作过程中,系统将传感器反馈的目标部件的实际位置传递给比较器,控制系统将反馈量与设定量进行比较,如果发生正向偏差,系统将向执行器(电机)给出命令,使其旋转或者降低速度,最终减小偏差。[/font][img=,503,114]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242115216501_132_1604036_3.jpg!w690x157.jpg[/img][font=宋体] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]闭环控制系统原理框图[/font][/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])的温度、流量、进样器位置、角度、速度的控制一般采用闭环控制方式,用以实现高稳定性、高速、高准确性的控制。例如某些型号的自动进样器,可以对进样针的空间位置实现[/font][font=Times New Roman]0.01mm[/font][font=宋体]精度的控制。[/font][/font][font=宋体] [/font][font='Times New Roman'] [/font]

  • 涂胶机运动控制系统分析

    [font='微软雅黑','sans-serif'][color=#666666]涂胶机是用于给机柜、灯具、蓄电池、汽车等有密封要求的产品,按照密封轨迹涂密封胶的一种工业生产机床。标准涂胶机运动控制系统为三轴联动,通过直线插补与圆弧插补完成涂胶轨迹。本文主要对三维涂胶机的运动控制系统原理与结构进行分析。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]运动控制系统是以电动机为控制对象,以控制器为核心,以电力电子、功率变换装置为执行机构,在控制理论指导下组成的电气传动控制系统。一个典型的现代运动控制系统的硬件主要由上位计算机、运动控制器、功率驱动装置、电动机和传感器反馈检测装置和被控对象等几部分组成。[/color][/font][font='Arial','sans-serif'][color=#666666][/color][/font][font='微软雅黑','sans-serif'][color=#666666]一、涂胶机运动控制器运动控制器根据结构不同的可分为:基于计算机标准总线的运动控制器;[/color][/font][font='Arial','sans-serif'][color=#666666] Soft[/color][/font][font='微软雅黑','sans-serif'][color=#666666]型开放式运动控制器;嵌入式结构的运动控制器。[/color][/font][font='Arial','sans-serif'][color=#666666] Soft[/color][/font][font='微软雅黑','sans-serif'][color=#666666]型开放式运动控制器运动控制软件全部装在计算机中,而硬件部分仅是计算机与伺服驱动和外部[/color][/font][font='Arial','sans-serif'][color=#666666]IO[/color][/font][font='微软雅黑','sans-serif'][color=#666666]之间的标准化通用接口。用户在[/color][/font][font='Arial','sans-serif'][color=#666666]Windows[/color][/font][font='微软雅黑','sans-serif'][color=#666666]平台和其他操作系统的支持下,利用开放的运动控制内核,开发所需的控制功能,构成各种类型的运动控制系统。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]嵌入式结构的运动控制器是把计算机嵌入到运动控制器中的一种产品,它能够独立运行。运动控制器与计算机之间的通信依然是靠计算机总线,实质上是基于总线结构的运动控制器的一种变种。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]三维涂胶机运动控制器为基于总线的运动控制器。用计算机硬件和操作系统,结合运动控制应用程序来实现的,具有高速的数据处理能力。总线形式上为[/color][/font][font='Arial','sans-serif'][color=#666666]104[/color][/font][font='微软雅黑','sans-serif'][color=#666666]总线、[/color][/font][font='Arial','sans-serif'][color=#666666]RS232[/color][/font][font='微软雅黑','sans-serif'][color=#666666]接口和[/color][/font][font='Arial','sans-serif'][color=#666666]USB[/color][/font][font='微软雅黑','sans-serif'][color=#666666]接口。运动控制器采用[/color][/font][font='Arial','sans-serif'][color=#666666]DSP[/color][/font][font='微软雅黑','sans-serif'][color=#666666]芯片作为[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666],可完成运动规划、高速实时插补、伺服滤波控制和伺服驱动、外部[/color][/font][font='Arial','sans-serif'][color=#666666]IO[/color][/font][font='微软雅黑','sans-serif'][color=#666666]之间的标准化通用接口功能。控制器支持功能强大的运动控制软件库、[/color][/font][font='Arial','sans-serif'][color=#666666]C[/color][/font][font='微软雅黑','sans-serif'][color=#666666]语言运动函数库、[/color][/font][font='Arial','sans-serif'][color=#666666]WindowsDLL[/color][/font][font='微软雅黑','sans-serif'][color=#666666]动态链接库等,根据工艺需求,在[/color][/font][font='Arial','sans-serif'][color=#666666]WINDOWS[/color][/font][font='微软雅黑','sans-serif'][color=#666666]等平台下开发应用软件,组成涂胶机运动控制控制系统[/color][/font][font='Arial','sans-serif'][color=#666666].[/color][/font][font='微软雅黑','sans-serif'][color=#666666]二涂胶机运动控制方式[/color][/font][font='微软雅黑','sans-serif'][color=#666666]运动控制形式有点位运动控制、连续轨迹运动控制、同步运动控制。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]点位运动控制即仅对终点位置有要求,与运动的中间过程即运动轨迹无关。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]同步运动控制是指多个轴之间的运动协调控制,可以是多个轴在运动全程中进行同步,也可以是在运动过程中的局部有速度同步。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]三维涂胶机控制方式为连续轨迹运动控制,又称为轮廓控制,主要对胶头的运动轨迹进行控制。该控制方式要求系统在高速运动的情况下,既要保证系统加工的轮廓精度,还要保证胶头沿轮廓运动时的切向速度的恒定。对小线段加工时,有多段程序预处理功能。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]三涂胶机运动控制器硬件结构[/color][/font][font='微软雅黑','sans-serif'][color=#666666]涂胶机系统以基于[/color][/font][font='Arial','sans-serif'][color=#666666]“PC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]机[/color][/font][font='Arial','sans-serif'][color=#666666]+[/color][/font][font='微软雅黑','sans-serif'][color=#666666]运动控制器[/color][/font][font='Arial','sans-serif'][color=#666666]”[/color][/font][font='微软雅黑','sans-serif'][color=#666666]为核心,采用运动控制器、驱动器和交流伺服电动机构成一个开放式硬件结构。在该伺服控制系统中,控制器上专用[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666]与[/color][/font][font='Arial','sans-serif'][color=#666666]PC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]机[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666]构成主从式双[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666]控制模式。[/color][/font][font='Arial','sans-serif'][color=#666666]PC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]机负责人机交互界面的管理和控制系统的实时监控等方面的工作,例如键盘和鼠标的管理、系统状态的显示、控制指令的发送和外部信号[/color][/font][font='Arial','sans-serif'][color=#666666]IO[/color][/font][font='微软雅黑','sans-serif'][color=#666666]的监控等。运动控制器配备内容丰富、功能强大的运动函数库,供用户使用完成电动机的运动规划。系统采取脉冲输出的位置控制方式,脉冲频率的大小控制电机的速度,信号的正负控制电机正反转,以实现三轴的位置控制。[/color][/font][font='Arial','sans-serif'][color=#666666]X[/color][/font][font='微软雅黑','sans-serif'][color=#666666]轴、[/color][/font][font='Arial','sans-serif'][color=#666666]Y[/color][/font][font='微软雅黑','sans-serif'][color=#666666]轴、[/color][/font][font='Arial','sans-serif'][color=#666666]Z[/color][/font][font='微软雅黑','sans-serif'][color=#666666]轴原点、限位检测是通过接近开关来实现,原点检测开关作为每个轴的零点位置,限位检测开关确保每轴工作行程极限。这些状态信号送入运动控制卡状态寄存器后由[/color][/font][font='Arial','sans-serif'][color=#666666]CPU[/color][/font][font='微软雅黑','sans-serif'][color=#666666]随时读出,达到对[/color][/font][font='Arial','sans-serif'][color=#666666]IO[/color][/font][font='微软雅黑','sans-serif'][color=#666666]状态信号的检测。在硬件上,运动控制器上的光电隔离措施既隔离了外设对内部数字系统的干扰,有能有效防止过电压、过电流等外界突发事件对计算机系统的损坏,大大提高了系统的控制精度和可靠性。[/color][/font][font='微软雅黑','sans-serif'][color=#666666]四涂胶机运动控制系统的软件结构[/color][/font][font='微软雅黑','sans-serif'][color=#666666]涂胶机运动控制器配备有运动函数库,函数库为单轴及多轴的步进或伺服控制提供了许多运动函数,如单轴运动、多轴独立运动、多轴插补运动以及多轴同步运动等等。运动控制器组成的控制系统,采用[/color][/font][font='Arial','sans-serif'][color=#666666]VC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]语言开发友好的人机界面应用程序、方便的人机交互和管理。系统的程序结构模块如图所示,除了主体的运动控制程序外,还包括初始化、与[/color][/font][font='Arial','sans-serif'][color=#666666]PC[/color][/font][font='微软雅黑','sans-serif'][color=#666666]实时数据交互、系统保护、状态监测等部分。[/color][/font][font='微软雅黑','sans-serif'][color=#666666][back=white]五结语[/back][/color][/font][font='微软雅黑','sans-serif'][color=#333333][/color][/font][font='微软雅黑','sans-serif'][color=#666666][back=white]综上所述,三维涂胶机运动控制系统采用基于总线的运动控制器,构建了合理的硬件结构和软件结构。通过连续轨迹控制方式,完成既定运动和高精度的伺服控制。实现涂胶机的高速高精度运转。[/back][/color][/font]

  • 【转帖】冷热冲击试验箱测控系统

    冷热冲击试验箱测控系统  1、温度测量:Pt100铂电阻。  2、控制装置:控制器采用进口可编程PLC及优质进口LCD彩色液晶触摸屏双回路温度控制系统、其控制显示器采用进口彩色液晶触摸大屏幕(5.7英寸)控制显示屏该控制器采用中文操作显示界面显示,可显示、设定试验参数、曲线、总运行时间、段总运行时间、加热器工作状态及日历时间等。控制程序的编制采用人机对话方式,界面友好,仅需设定温度就可实现制冷机的自动运行功能。   控制系统使用智能化控制软件系统,具备自动组合制冷、加热等子系统的工况,从而保证在整个温度范围内的高精度控制,同时达到节能、降耗的目的,完善的检测装置能自动进行详细的故障显示、报警,如当试验箱发生异常时,控制器用中文汉字显示故障状态、同时具备历史数据表趋势图及历史故障记录的储存功能。制造商提供两年内控制软件系统免费升级的服务。   可选配R485计算机通讯接口及计算机上、下机计算机机辅助控制系统装置,实现连机数据传输及远程控制功能。  3、系统设定精度:温度:0.1 ℃  时间:1min  4、冷热冲击试验箱的运行方式:程式运行或定值运行均可  5、冷热冲击试验箱具备独立的工作时间累计时器。

  • Icpoes气路控制系统维护

    安捷伦ICP-OES的气体控制系统是否稳定正常地运行,直接影响到仪器测定数据的好坏,如果气路中有水珠、机械杂物杂屑等都会造成气流不稳定,因此,对气体控制系统要经常进行检查和维护。首先要做气体试验,打开气体控制系统的电源开关,使电磁阀处于工作状态,然后开启气瓶及减压阀,使气体压力指示在额定值上,然后关闭气瓶,观察减压阀上的压力表指针,应在几个小时内没有下降或下降很少,否则气路中有漏气现象,需要检查和排除。由于氩气中常夹杂有水分和其它杂质,管道和接头中也会有一些机械碎屑脱落,造成气路不畅通。因此,需要定期进行清理,拔下某些区段管道,然后打开气瓶,短促地放一段时间的气体,将管道中的水珠,尘粒等吹出。在安装气体管道,特别是将载气管路接在雾化器上时,要注意不要让管子弯曲太厉害,否则载气流量不稳而造成脉动,影响测定。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制