当前位置: 仪器信息网 > 行业主题 > >

二维镜

仪器信息网二维镜专题为您提供2024年最新二维镜价格报价、厂家品牌的相关信息, 包括二维镜参数、型号等,不管是国产,还是进口品牌的二维镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二维镜相关的耗材配件、试剂标物,还有二维镜相关的最新资讯、资料,以及二维镜相关的解决方案。

二维镜相关的资讯

  • 迄今速度最快能耗最低二维晶体管问世
    北京大学电子学院彭练矛教授-邱晨光研究员课题组日前制备出10纳米超短沟道弹道二维硒化铟晶体管,首次使得二维晶体管实际性能超过Intel商用10纳米节点的硅基鳍型晶体管,并将二维晶体管的工作电压降到0.5V,这也是世界上迄今速度最快能耗最低的二维半导体晶体管。该研究成果以《二维硒化铟弹道晶体管》为题日前在线发表于《自然》。芯片为大数据和人工智能的发展提供源源不断的动力,芯片速度的提升得益于晶体管的微缩,然而当前传统硅基场效应晶体管的性能逐渐接近其本征物理极限。受限于接触、栅介质和材料等方面的瓶颈,迄今为止,所有二维晶体管所实现的性能均不能媲美业界先进硅基晶体管,其实验结果远落后于理论预测。对此,团队在研发过程中实现了三方面技术革新:一是采用高载流子热速度(更小有效质量)的三层硒化铟作沟道,实现了室温弹道率高达83%,为目前场效应晶体管的最高值,远高于硅基晶体管的弹道率(小于60%);二是解决了二维材料表面生长超薄氧化层的难题,制备出2.6纳米超薄双栅氧化铪,将器件跨导提升到6毫西微米,超过所有二维器件一个数量级;三是开创了掺杂诱导二维相变技术,克服了二维器件领域金半接触的国际难题,将总电阻刷新至124欧姆微米。研究团队表示,这项工作突破了长期以来阻碍二维电子学发展的关键科学瓶颈,将n型二维半导体晶体管的性能首次推近理论极限,率先在实验上证明出二维器件性能和功耗上优于先进硅基技术,为推动二维半导体技术的发展注入了强有力的信心和活力。
  • 行业应用 | 国仪量子钻石原子力显微镜:打开二维磁性材料新天地
    几个世纪以来,人类探索磁性及其相关现象的脚步从未停歇。在电磁学和量子力学发展的早期,人类很难想象磁石对铁的吸引力,鸟、鱼或昆虫在相隔数千英里的目的地之间的导航能力,这些神奇又有趣的现象具有相同的磁性起源。这些磁性来源于基本粒子的运动电荷与自旋,它和电子一样普遍存在。近年来,二维磁性材料在国际上成为备受关注的研究热点,它们为自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面都有着重要的应用价值。近日,《物理学报》2021年第12期也推出了二维磁性材料专题,从不同的角度描述了二维磁性材料在理论与实验方面的进展。《物理学报》2021年第12期你能想象得到吗?只有几个原子厚度的二维磁性材料就可以为极小的硅电子器件提供基板。这种神奇的材料由成对的超薄层制成,超薄层通过范德瓦耳斯力,即分子间作用力堆叠在一起,同时层内原子以化学键进行连接。虽然只有原子级的厚度,但依然保持着磁学、电学、力学、光学等方面的物理和化学特性。二维磁性材料 图片引用自https://phys.org/news/2018-10-flexy-flat-functional-magnets.html打个有趣的比方,二维磁性材料中的每个电子都像一个微小的罗盘,拥有北极和南极,这些“罗盘针”的方向决定了磁化强度。当这些无穷小的“罗盘针”自发对齐时,磁序就构成物质的基本相位,因此可制备出很多功能性装置,例如发电机和电动机、磁阻存储器和光学阻隔器等。这种神奇的特性也让二维磁性材料变得炙手可热起来,虽然现在集成电路制造工艺在不断提高,但由于器件在不断缩小,已经受到量子效应的限制,微电子行业已经遇到了可靠性低、功耗大等瓶颈,延续了近50年的摩尔定律也不再“吃香”(摩尔定律:集成电路上可以容纳的晶体管数目在大约每经过18个月便会增加一倍)。如果未来二维磁性材料能够在磁传感器、随机存储器等新型自旋电子学器件领域得到应用,说不定有望突破集成电路性能瓶颈。我们已经知道,具有磁性的范德瓦耳斯晶体带有特殊的磁电效应,因此在二维磁性材料的研究过程中,定量的磁性研究是必不可少的步骤。然而,对此类磁体在纳米尺度上磁性响应的定量实验研究依然非常缺乏。现有的一些研究报道了在微米尺度上实现了对晶体磁性的检测,但这些技术不仅还无法提供关于磁化的定量信息,还极容易干扰阻碍超薄样品的磁信号。因此,检测技术的更新对于探测材料纳米尺度上的磁性质是非常紧迫的挑战。国仪量子QDAFM为了解决这一难题,国仪量子提供了一种新的测量途径——量子钻石原子力显微镜(QDAFM)。QDAFM是基于NV色心和AFM扫描成像技术的量子精密测量仪器。通过对钻石中氮—空位(NV)色心发光缺陷的自旋进行量子操控与读出,可实现磁学性质的定量无损成像,具有纳米级的高空间分辨率以及单个自旋的超高探测灵敏度,可用于定量检测范德瓦耳斯磁体的关键磁学性质,并对其磁化、局部缺陷和磁畴进行高空间分辨率的磁成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势,在量子科学,化学与材料科学,以及生物和医疗等研究领域有着广泛的应用前景。二维碘化铬的磁化图引用自Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)下面,为大家介绍QDAFM在微纳磁成像、超导磁成像、细胞原位成像、拓扑磁结构表征等方面的具体应用。01微纳磁成像对于磁性材料,确定其静态自旋分布是凝聚态物理中的重要问题,也是研究新型磁性器件的关键。QDAFM提供了一种新的测量途径,能够实现高空间分辨率的磁性成像,具有非侵入性、可覆盖宽温区、大磁场测量范围等独到优势。布洛赫型磁畴壁成像引用自Tetienne, J. P.et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry.Nature Communications6, 6733(2015)02超导磁成像对超导体及其涡旋的微观尺度研究,能够为理解超导机理提供重要信息。利用工作在低温下的QDAFM,可以对超导体的磁涡旋进行定量的成像研究,并扩展到众多低温凝聚态体系的磁性测量。单个磁性涡旋的杂散场定量成像引用自Thiel, L.et al.Quantitativenanoscale vortex imaging using a cryogenic quantum magnetometer. Nature Nanotechnology 11,677- 681 (2016).03细胞原位成像在细胞原位实现纳米级分子成像是生物学研究的重要手段。在众多成像技术中,磁共振成像技术能够快速、无破坏地获取样品体内的自旋分布图像,已经广泛应用在多个科学领域中。特别是在临床医学中,因其对生物体几乎无损伤,对疾病的机理研究、诊断和治疗起着重要的作用。然而,传统的磁共振成像技术使用磁感应线圈作为传感器,空间分辨率极限在微米以上,无法进行细胞内分子尺度的成像。利用QDAFM的高空间分辨率特性,研究人员观测到了细胞内部存在于细胞器中的铁蛋白,分辨率达到了10纳米。细胞原位铁蛋白分子的纳米磁成像引用自Wang, P. et al. Nanoscale magnetic imaging of ferritins in a single cell. Science advances 5, 8038 (2019).04拓扑磁结构表征磁性斯格明子是具有拓扑保护性质的纳米尺度涡旋磁结构。磁性斯格明子展现出丰富新奇的物理学特性,为研究拓扑自旋电子学提供了新的平台,在未来高密度、低能耗、非易失性计算和存储器件中也具有潜在应用。但是室温下单个斯格明子的探测在实验上仍具有挑战性。QDAFM的高灵敏度和高分辨率特点,是解决这一难题的有力工具,通过杂散场测量可重构出斯格明子的磁结构。斯格明子磁场成像引用自Dovzhenko, Y. et al. Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction. Nature Communications 9, 2712 (2018).参考文献:1.《物理学报》2021年第12期,二维磁性材料专题2.Two-dimensional magnetic crystals and emergent heterostructure devices(Science, 2019, DOI: 10.1126/science.aav4450)3.https://phys.org/news/2018-10-flexy-flat-functional-magnets.html4.Probing magnetism in 2D materials at the nanoscale with single-spin microscopy(Science, 2019, DOI: 10.1126/science.aav6926)
  • 雪景科技全二维气相色谱技术交流大会在南京召开
    2018年5月24-25日,雪景科技主办的第一届全二维气相色谱技术交流大会在南京城市名人酒店召开。会议吸引了全国60多位全二维色谱行业的专家学者参加。 会议第一天,雪景科技首席科学家官晓胜博士给参会人员普及了全二维气相色谱的发展历程和基本原理,然后着重介绍了雪景科技固态热调制器SSM1800的工作原理、安装、操作和维护过程。简短的午休过后,雪景科技软件经理、Canvas软件系统的开发者汤璐茜给大家详细讲解了全二维数据处理软件Canvas的操作使用和应用案例。 接下来,参会的专家学者参观了雪景科技在南京的全二维色谱应用开发实验室,现场了解固态热调制器在不同系统上安装情况和实际结果。大家看到真实的仪器和系统后热情都非常高涨,实验室里所有全二维系统前都围满了参观人员,纷纷询问具体操作和使用情况,雪景科技相关工程师对大家关心的问题均进行了耐心细致的解答。 第二天的应用交流会上,来自石化、环境、香料等不同行业的全二维气相色谱用户介绍了他们各自领域内的应用情况。这些报告个个精彩纷呈,引得台下的听众踊跃提问,很多相关的老师都利用报告间隙时间交流使用过程中的细节。 最后,雪景科技邀请的全二维气相色谱领域的国际专家Philip Marriott教授给中国的全二维色谱用户做了名为“Multidimensional and Comprehensive 2D GC Methods to Achieve High Resolution Profiling of Complex Volatile Samples”的主题报告。Marriott教授作为制冷剂式热调制技术的发明人,介绍了从事20多年以来有关全二维色谱理论、设备、方法、应用等各方面的研究成果。他深入浅出又生动幽默的讲解牢牢抓住了听众的注意力,不时博得观众的阵阵欢笑和掌声。 会后,参会的专家学者纷纷表示,本次会议加深了他们对全二维色谱技术的理解,也促进了国内全二维用户的相互交流。两天的技术交流大会取得了圆满成功。
  • 第二届雪景科技全二维色谱技术与应用大会召开
    2019年8月22-23日,雪景科技主办的第二届全二维色谱技术与应用大会在南京召开。会议主题是推广全二维气相及液相色谱技术,促进国内各行业的技术和应用交流。来自全国各地不同行业的近80位专家学者参加。会议很荣幸地邀请到国内全二维色谱技术的开创人——大连化物所的许国旺老师,给大家带来一场精彩的主题报告,许老师首先讲述了21世纪初期他们实验组首次引入全二维气相色谱的缘由,以及在此基础上开展的一系列全二维色谱研究和应用,主要用于石化、环境、风味等行业,重点介绍了目前很热门的代谢组学的研究方向和技术手段。全方面给大家展示了全二维色谱技术的发展历程和未来方向,广大听众都意犹未尽,收益良多。此外,来自石化、环境、风味等多个行业的全二维色谱工作者为大家进行了技术交流和分享,从理论研究、方法优化、仪器开发,到具体应用和标准开发等,这些报告精彩纷呈,台下听众提问不断,互动积极,受到了很好的效果。这次会议上,应一些老师的要求,主办方还专门安排了一个小时的分组讨论,将所有参会人员分成四个小组进行经验分享和技术交流。大家对目前全二维技术在各行业内的发展和具体的应用开展热烈讨论,很多刚刚开始接触全二维的老师提出了很多疑惑和问题,也得到了很好的解答。会后很多老师感觉一个小时的时间过得太快,很多问题都没来得及讨论。希望以后有更多的机会跟大家讨论。最后,雪景科技官晓胜博士发布了刚刚推出的准止流气流调制技术和产品,该产品极简的原理和精妙的设计引起了大家强烈的兴趣,对其技术细节和效果进行了广泛的交流,最后纷纷表达惊喜,这个产品“完全超出了之前对全二维技术的想象”,“难以置信全二维技术居然能如此简单”。两天紧张的日程结束后,一些老师还专门参观了雪景科技位于南京的应用实验室,现场体会了我们的产品以及一些技术细节。参会的专家学者纷纷表示,本次会议收获很大,不但加深了他们对全二维色谱技术的理解,也认识了很多同行和朋友。希望今后雪景科技的全二维技术大会越办越好,继续为促进全二维用户的交流和推动全二维技术的发展搭建平台。
  • 在扫描电镜下衬度较低的二维材料,如何准确表征?
    以石墨烯、BN、MoS2为代表的二维材料因其特殊的性能成为现在科研领域的新宠。现在,除了石墨烯和MoS2等热度较高的二维材料之外,很多其他类型的二维材料也相继被开发出来。然而真正的二维材料因为厚度极薄,在扫描电镜下衬度较低;而且因为X射线在深度方向的穿透,EDS对二维材料上的分析也无能为力。而目前的二维材料除了用到SEM之外,拉曼光谱也是极其重要的表征手段,而将两者完全一体化的电镜-拉曼系统在二维材料的表征上有着得天独厚的优势。生长的石墨烯片层很多科研工作者都会通过扫描电镜进行石墨烯的形貌观察,然而观察到的究竟是否是石墨烯?石墨烯质量、厚度如何?这些问题却不是仅用SEM能够知道的。而扫描电镜-拉曼联用技术给出了很好的解决方案,确实成为石墨烯研究最强大的“神器”。在电镜-拉曼一体化系统中,当用SEM观察的同时可以直接进行拉曼光谱的面扫描,可以通过D峰、G峰、2D峰之间的关系直接得到石墨烯的质量、厚度等信息。如下图,在SEM观察到的区域再进行拉曼光谱面扫描,发现扫描区域存在三种不同的光谱。厚度约薄的2D峰强度越高,厚度增加2D峰减弱但G峰升高。因此电镜-拉曼一体化系统的SEM和Raman混合图像上不仅有形貌信息,也有石墨烯的质量厚度信息。在SEM观察形貌的同时进行拉曼面扫描通过拉曼特征峰获得石墨烯质量、厚度信息 目前,有关石墨烯质量和厚度的测试方法还没有明确的国家标准,行业上比较认可的方法有光学对比度法、原子力显微镜法和拉曼光谱法。在拉曼光谱中通常也用G峰和2D峰的比值来衡量石墨烯的厚度,比值越小,膜厚也约小。如下图,在硅衬底上用CVD法生长的石墨烯。我们通过电镜-拉曼一体化系统得到G峰和2D峰的面分布图,不过仅有G峰和2D峰的分布情况并不能完全帮助我们进行明确的厚度分布分析。在硅衬底上用CVD法生长的石墨烯石墨烯样品的G峰和2D峰拉曼面分布图而电镜-拉曼一体化系统的面分布能力非常强大,除了利用正常峰的强度、半高宽、位移等物理性质进行Mapping外,还可生成2D峰/G峰强度的面分布图。 通过电镜-拉曼一体化系统得到石墨烯样品的2D峰/G峰强度的面分布图通过2D/G峰强度的分布图有助于我们更加准确的进行石墨烯厚度分布的分析,最终获得不同膜厚区域的特征光谱,以及其分布图。石墨烯样品不同膜厚区域的拉曼特征光谱 石墨烯样品不同膜厚区域分布图石墨烯的质量控制与鉴别石墨烯是一个非常热门的新兴领域,不过也正因为如此,石墨烯的研究和制备也存在着良莠不齐的现象。很多研究的时候,在电镜下观察到明显的明暗衬度的膜层就认为是石墨烯,甚至一些文献中也出现了这样的情况。科研工作者也会借助AFM、普通拉曼光谱等来配合电镜进行石墨烯的表征,但是拉曼光谱、AFM的数据和SEM的数据基本不在同一处,不能很好的进行严密的论证。所以从表征的角度来看,不在同一处的不同仪器的数据,有时并不能充分说明问题,至少表征还不够严密。比如在上述例子中,在花状的石墨烯外面,电镜图像上认为的空白处,经过电镜-拉曼一体化系统扫描后,该区域的拉曼光谱依然反应出石墨烯的存在。 再比如下图,在电镜中观察到类似石墨烯的膜层状结构,然而试样是否真是石墨烯?质量、厚度又是如何?这还需要借助其他手段进行综合判断。在电镜中观察到类似石墨烯的膜层状结构 在利用电镜-拉曼一体化系统对该区域进行拉曼光谱面分布分析后,发现该区域的D峰、G峰强度较高,而2D峰很弱,说明了该区域的膜厚比较高,已经算不上是石墨烯,而且缺陷也很多,石墨烯的质量并不是非常理想,此外该区域还存在较多的拥有荧光峰的杂质。进行拉曼光谱面分布分析该区域石墨烯厚度 该区域存在较多拥有荧光峰的杂质 此外,很多客户在电镜下观察到的石墨烯,经过电镜-拉曼一体化系统分析后,也发现均是质量不好的石墨烯,或者是石墨薄片,甚至是非晶碳,如下图。质量不好的石墨烯、石墨薄片、非晶碳等的SEM图像质量不好的石墨烯、石墨薄片、非晶碳等的拉曼特征峰表现 由此可见,电镜-拉曼联用技术对于石墨烯的观察和原位的质量鉴别及分析有着非常强大的优势。石墨烯复合材料现在热门的不仅仅是石墨烯本身,很多石墨烯转移材料,或者把石墨烯作为添加剂的新材料和器件也成为研究热门,希望利用石墨烯特殊的热力光电磁性能来改变材料的性能。那么石墨烯在新复合材料中的分布、状态及本身质量就成为新材料性能能否提升及提升多少的重要因素。因此在石墨烯复合材料中,能够准确的进行传统电镜形貌、元素的测试,及石墨烯的详细表征就成为了表征环节的重中之重,而这是电镜-拉曼联用技术的最大优势所在。 如下图,金属合金材料中复合石墨烯,用以增强新材料的力学性能。在电镜下确实观察到了衬度偏暗的区域,能谱分析出的确是富含碳。但该区域是否真是石墨烯?只能求助于电镜-拉曼联用技术。通过电镜-拉曼一体化系统分析,结果表明偏暗区域的确是石墨烯的存在,不过缺陷相对较多,膜层层数也较多,这些信息对复合材料性能的研究有着置换重要的作用。 金属合金材料的SEM图像,衬度偏暗的区域可能是复合石墨烯通过能谱分析,SEM图像中衬度偏暗的区域富含碳 通过电镜-拉曼分析技术,确认为石墨烯,且该区域缺陷和膜层层数相对较多 再比如下图,试样为表面包覆石墨烯的锌粉。要想通过截面制备或者侧面直接观察出石墨烯的厚度和层数,无论扫描电镜的分辨率有多好,都是不可能完成的任务。就算真的观察到类似层状的结构,也不是我们所理解的石墨烯每一层层数,只是很多层堆叠在一起后的分层而已。而在电镜-拉曼一体化系统中可以直接进行拉曼面扫的分析。观察到在整个扫描区域内,都有明显的G峰和2D峰分布。由此我们可以知道该锌粉外层的确有质量较好的石墨烯包覆,而且层数很少。 表面包覆石墨烯的锌粉 通过电镜-拉曼一体化系统,观察到整个区域内G峰和2D峰的分布MoS2的研究除了石墨烯外,过渡金属二硫化物也是二维材料的一个大类,如MoS2也是因为其特殊性能在电子器件领域广受关注。电镜和能谱对二维的MoS2的表征除了稍有形貌信息外,再无其他分析能力了。但是MoS2却有非常强的拉曼特征峰。如下图,通过拉曼峰我们可以分析出MoS2的孪晶。MoS2的SEM图像MoS2 的SEM-Raman叠加图像通过拉曼特征峰表征MoS2的孪晶通过对MoS2的拉曼面扫描,我们发现MoS2的特征峰在不同的区域呈现出不同的分裂。由此我们可以对其做出更详细的分析,另外通过特征峰分裂后的波数差值,也可以大致得到MoS2的层数。而这都是常规电镜无法得出的信息。MoS2的拉曼面扫描分析MoS2的特征峰在不同的区域呈现出不同的分裂其他二维材料满足结构有序、在二维平面生长、在第三维度超薄这三个条件都算是二维材料,现在除了石墨烯和MoS2等热度较高的二维材料之外,很多其他类型的二维材料也相继被开发出来。比如和C元素相邻的B、Si、P、Ge、Sn等元素的单原子层材料,即X烯,如硅烯、磷烯、硼烯;还有二维有机材料,如二维MOF或COF;还有超薄氮化物,如BN等。这些二维材料都有着很强的拉曼特征谱峰,所以利用电镜-拉曼一体化系统对二维材料的分析表征将会成为不可或缺的重要手段。关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注TESCAN新微信“TESCAN公司”,更多精彩资讯
  • 扫描隧道显微镜助力揭示二维材料边界态物理本质
    p style="text-indent: 2em text-align: justify "传统的三维半导体材料表面存在大量的悬挂键,可通过捕获和散射等方式影响和限制自由载流子的运动,因此表面态的设计、制造和优化是提高三维半导体器件性能的关键因素。类似于三维半导体材料的表面态,单层二维材料(如二硫化钼和石墨烯)在边界原子的终止和重建可以产生边界态,这使二维材料产生了许多独特的现象,使其得到广泛的应用。 /pp style="text-indent: 2em text-align: justify "针对此现象,微电子所微电子器件与集成技术重点实验室刘明院士和李泠研究员的科研团队与中科院物理所、北京理工大学、美国加州大学洛杉矶分校合作,对单层MoS2/WSe2晶体管进行了器件测试、扫描隧道显微镜实验观测和第一性原理计算,发现二维材料的边界态是控制器件亚阈值特性及影响器件迁移率的关键因素,并在国际上首次提出这种边界态是拉廷格液体的物理本质。该科学发现对于研究器件性能优化和低功耗应用具有一定的意义。 /pp style="text-align: justify text-indent: 2em "该工作以《Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals》为题发表在 Nature Communications期刊上(DOI: 10.1038/s41467-020-14383-0)。微电子所博士后杨冠华和物理所邵岩博士为该文章第一作者,微电子所刘明院士、李泠研究员、北京理工大学王业亮教授和美国加州大学洛杉矶分校段镶锋教授为共同通讯作者。 /pp style="text-align: justify text-indent: 2em "上述工作得到了国家自然科学基金委、科技部、中科院等相关项目的资助。 /pp style="text-indent: 2em text-align: justify "全文链接:https://www.nature.com/articles/s41467-020-14383-0#citeas /pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="http://www.ime.ac.cn/zhxx/ttxw/202009/W020200925583655261172.png"//pp style="text-align: center "strong图a./strong二维材料边界电导比例与温度、栅压关系。strong图b./strong I/T1+α与qV/kBT关系。strong图c. /strongSTS能谱。 /pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/iCSMD2020/" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/287a2421-2521-43a6-aa4c-219af657b8e0.jpg" title="半导体材料与器件.jpg" alt="半导体材料与器件.jpg"//a/p
  • 乌尔姆大学电镜组《自然通讯》:二维聚合物透射电镜高分辨成像分辨率突破2埃!
    1.透射电镜(TEM)成像挑战透射电镜高分辨成像是新材料结构研究不可或缺的技术之一,尤其是发展得欣欣向荣的二维材料界, 得益于它们易于剥离或者生长成薄膜的性质, TEM在二维材料成像上可谓所向披靡。近年来二位聚合物是潜力无限的新兴二维材料,我们可以用乐高来想象二维聚合物,不同的积木结构(单体monomers)通过在水和气体界面聚合搭出一个二维的网格,每层网格之间再通过范德华力结合。各式单体带来了材料结构和性能的无限可能[1],与此同时结构的解析是发展新二位聚合物过程中不可或缺的一环。在TEM的成像的过程中,高速电子如同密集的子弹穿透研究材料,和材料进行碰撞并传递能量,一方面电子携带了结构的信息,同时这种强力轰击又破坏了材料的结构,连锁反应导致大面积的积木的轰然倒塌。这意味着我们只能用非常少量的电子来获得结构信息,否则材料就会被打乱成无序状态。然而电子少信息也少,只能得到低清的图像,缺乏高清细节。因此TEM表征二维聚合物以及所有对电子轰击敏感的材料是电镜领域的一大挑战。图1,辐照损伤黑魔法(图1左作者 J. S. Pailly, 来源, 中右来源:depositphotos)2.优化电压,突破2 埃[2]!乌尔姆大学的Kaiser教授电镜组的研究人员梁宝坤和戚浩远博士接受了这个挑战。重要的第一步,就是研究如何降低电子对于材料的损伤。进而提高成像的分辨率,看到二维聚合物里前所未见的细节。在TEM中,电子发射的速度是影响着电子对材料杀伤力的重要条件之一。研究人员在高分辨成像使用的电压范围内 (80-300 kV), 通过电子衍射量化测量了二维聚亚胺能收受的总最大电子轰击量。然而这里我们需要注意的是,由于电子和材料结构相比如此微小,不少电子在分子积木搭建的二维结构间隙中穿过,因此使用的电子总量高并不代表能获得更多结构信息,我们还需要得到其中递信息的电子的比例。在图表中,可以看到这两个变量相对电压有着相反的变化趋势。结合两个变量,我们得到电子利用的最高效率在120 kV 达到顶峰。图2 二维聚亚胺结构图示。材料可承受电子量,结构信息比例和电子利用效率不同电压的量化分析。最优电压和相差矫正的强强联手,研究人员终于看到了高清版的二维聚亚胺结构,成像分辨率首次达到了2 埃以内,细节历历在目!图3 2D-PI-BPDA 和2D-PI-DhTPA的高分辨图像以及图像模拟。FFT显示出图像分辨率突破 2 埃。3.首次呈现间隙缺陷表活引导的界面二维聚合物合成方法,实现了晶圆尺寸级别的高结晶度的薄膜自下而上的生长[3][4]。样品晶区之间的晶界结构以及晶体缺陷材料非常重要的特征。通过优化TEM成像条件,清晰的视野使更多结构细节得以浮现,二维聚亚胺的单体卟啉中心4埃直径的孔道清晰可见。然而在某些区域,图像上的‘异象‘让研究者一时以为自己眼花了。2D-PI-BPDA 的孔洞的四个角出现神秘亮点,2D-PI-DhTPA里发现的则是半月形的弧线。通过文献分析和密度泛函(DFTB)的计算的帮助,终于解密了这些神奇的图案来自于卟啉分子在规整的二位聚合物网格中形成的间隙缺陷。研究人员解释这种缺陷产生的动力来自于被酸性环境质子化之后带正电荷的分子间产生的静电排斥作用。就如同乐高积木上突然长出了一些新的凸起点,导致它们无法完美堆叠在一起。然而当他们扭转或者平移之后,对抗解除,就可以继续堆叠,从而构成了类似统计模型中展示的结构。图4 2D-PI-BPDA 和2D-PI-DhTPA的间隙缺陷图,DFTB计算结构以及图像模拟。4.分辨单体侧边官能团得益于分辨的提高,单体侧边的官能团能够被直接分辨。单体DhTPA 的苯环上2,5对位各链接了一个氢氧根,研究人员通过对比图像上单体宽度的半峰宽惊喜地发现在目前in-focus成像条件下,官能团的氢氧根侧链能被轻松分辨。这对理解二维聚合物的通道环境对材料性质的影响有重要意义。图5 2D-PI-BPDA 和2D-PI-DhTPA 链接单体的结构,以及其高分辨图像宽度测量。5.应用展望研究人员继续对半无序状态下的亚胺进行了成像和分析, 从图可见,原本六边形的网格结构被许多五边和七边的结构取代。为了量化分析,研究人员利用了神经网络的方法来分析结构中多边形的配比,以及单体间距的长短角度。这个新工具可以帮助电镜研究人员进一步提高数据分析的效率,跨学科联合,事半功倍。图6 a-PI 高分辨成像以及神经网络图片分析结果。参考文献:[1] Feng X and Schlüter A D 2018 Towards Macroscopic Crystalline 2D Polymers Angew. Chemie - Int. Ed.5713748–63[2] Liang B, Zhang Y, Leist C, Ou Z, Položij M, Wang Z, Mücke D, Dong R, Zheng Z, Heine T, Feng X, Kaiser U and Qi H 2022 Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films Submitted[3] Ou Z, Liang B, Liang Z, Tan F, Dong X, Gong L, Zhao P, Wang H, Zou Y, Xia Y, Chen X, Liu W, Qi H, Kaiser U and Zheng Z 2022 Oriented growth of thin films of covalent organic frameworks with large single-crystalline domains on the water surfac J. Am. Chem. Soc.[4] Sahabudeen H, Qi H, Glatz B A, Tranca D, Dong R, Hou Y, Zhang T, Kuttner C, Lehnert T, Seifert G, Kaiser U and Fery A 2016 Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness Hafeesudeen Nat. Commun.71–8
  • 二维半金属—二维超导体之间超流拖拽效应揭示
    15日,记者从中国科学技术大学获悉,该校曾长淦教授、李林副研究员研究团队与北京量子信息科学研究院解宏毅副研究员等合作,通过构筑石墨烯与氧化物界面超导体系的复合结构,揭示了二维半金属和二维超导体之间由于量子涨落诱导的巨幅超流拖拽效应。相关成果日前在线发表于《自然物理》。对于两个空间相近但彼此绝缘的导电层构成的电双层结构,在其中一层(主动层)施加驱动电流,层间载流子之间的耦合会在另一层(被动层)中诱导产生一个开路电压或闭路电流,即产生层间拖拽效应。基于二维电子气之间的拖拽效应,可以探索准粒子的层间长程相互作用,发现如激子超流体等新颖层间关联量子态。由于较强的介电屏蔽效应,拖拽电流耦合比远远小于1。而将其中一层或两层替换成超导材料,将有望产生耦合比显著增强的超流拖拽效应。研究团队构筑了石墨烯与氧化物异质界面组成的二维半金属—超导体电双层结构,并对其层间拖拽行为进行了系统研究。他们发现,在氧化物界面超导转变区间,石墨烯层中施加驱动电流可以在氧化物界面诱导出巨幅拖拽电流,且强度可以通过栅压/外磁场等进行有效调控。特别是在界面超导最优掺杂附近,拖拽电流耦合比达到0.3,即所产生的拖拽电流大小与驱动电流相当。与此前传统普通金属/超导金属体系相比,耦合比提高了两个量级以上。这一结果揭示了宏观量子涨落对于层间准粒子相互作用的显著调制。在应用层面,基于该复合结构将有望制备新型电流或电压高效转换器件,包括超导二极管等量子器件,将推动具有丰富量子物相的更广泛二维电子体系的拖拽效应研究,并发现更多基于层间长程耦合的新颖量子多体效应。
  • 北京航空航天大学实现二维材料合成方法新突破
    近日,北京航空航天大学宫勇吉教授团队与北京大学吴凯教授团队合作在Nature Synthesis期刊上发表了一篇题为“Flux-assisted growth of atomically thin materials”的研究成果。课题组突破传统方法合成二维材料的限制,采用熔体辅助析出的方法,高效可控地实现了近100种超薄纳米片材料的合成,包括传统方法无法合成的复杂多元层状或者非层状超薄二维单晶材料。论文通讯作者是宫勇吉、吴凯;第一作者是张鹏、王兴国、江华宁。二维材料由于特殊的物理和化学特性,近年来引起了大量关注。尤其是这些原子薄材料为在二维极限层面探索催化、磁性、超导和拓扑性质提供了理想的平台。因此,高质量二维材料的可控制备已经成为其在电子和信息产业应用的先决条件。化学气相沉积(CVD)和机械剥离(ME)已被广泛应用于各种超薄材料的制备,但是这些方法目前面临越来越多的挑战。CVD气相反应的特性,决定了其在制备多元素材料时,气相分布不均匀往往会导致相分离,因此很难可控合成复杂多元二维材料。另外,对于具有一些特殊性质的非层状材料,由于其材料高表面能或者晶面之间较强的键合能,既不能被CVD合成,也不能被ME机械剥离。有鉴于此,为突破传统方法合成二维材料的限制,北京航空航天大学宫勇吉教授团队联合北京大学吴凯教授团队,提出一种全新、简单、强大且高效的熔体辅助生长二维材料的普适性策略。该方法利用经典生长单晶的熔体析出过程辅以空间限域,成功制备出一系列超薄二维单晶,包括层状或者非层状,少元或者多元二维单晶。另外,该方法也展现出制备二维单晶薄膜的潜力。不同于气相沉积方法,熔体析出法具有高效稳定、组分可控、重复性高等优点。特别的,该方法对外在生长条件,如温度、气流大小、前驱体数量等具有极高容忍度。图1:a-d. 熔体辅助析出过程及生长机制。e-h. Fe5GeTe2、AgCrS2重复率及厚度分布统计和条件容忍度。熔体辅助生长方法具有高重复率及对生长条件高容忍度。以Fe5GeTe2及AgCrS2为代表性的二维材料,生长重复率均接近100%,约为98%。另外,其生长气流大小可在50-500 sccm变化,生长温度区间可达接近200 °C,显示出熔体辅助法的优越性。图2:合成的80种超薄二维单晶及代表性的大尺寸单晶及厘米级薄膜。熔体辅助生长方法具有普适性。利用熔体辅助析出方法,成功制备出80种具有代表性的超薄二维单晶。其中包括层状和非层状,少元和多元和大尺寸单晶及薄膜二维材料。特别的,其中以CuCrTe2、FeGe、BiFeO3等为代表的非层状材料,既难以被CVD合成,也不能被机械剥离。充分证明了熔体辅助生长方法的独特性和优越性。图3:代表性材料Fe3GeTe2、Fe5GeTe2、MnPS3、CuInP2S6结构及比例分析。熔体析出二维单晶比例控制准确,性能优异。球差电镜测试结果表明材料结晶性能良好,元素比例准确。PFM测试结果证明了生长的超薄In2Se3具有明显铁电性能,可以和机械剥离In2Se3纳米片相媲美。NbSe2超导测试结果与CVD及机械剥离NbSe2二维片相当,表明熔体析出样品出色的结晶性。图4:In2Se3铁电性能及NbSe2超导性能表征。该研究提出一种不同于传统合成二维材料的普适性新方法,为合成更多复杂多元二维材料,非层状二维材料及大尺寸薄膜铺平了道路。相关论文信息:https://doi.org/10.1038/s44160-022-00165-7为促进二维材料的研究与应用,仪器信息网将于2022年11月15日组织召开 “二维材料的表征与评价”主题网络研讨会。邀请业内专家以及厂商技术人员就二维材料最新应用研究进展、检测技术及标准化等分享精彩报告,为广大用户搭建一个即时、高效的交流平台。点击图片直达会议页面
  • 雪景科技推出多款针对特定应用的全二维色谱分析系统
    为了满足不同行业对全二维气相色谱的技术需求,雪景科技近期推出了多款针对特定行业应用的全二维气相色谱分析系统。这些系统是雪景科技多年来在不同行业全二维分析应用开发经验的总结和提炼,集成了品牌气相色谱和质谱、全二维调制器及定制配件、样品前处理、全二维柱系统和实验方法、以及数据处理流程,形成了针对特定应用的一整套专业化全二维色谱解决方案。研究人员可以快速上手,节省了全二维和多维色谱系统配置和方法开发的时间,最大程度上发挥出全二维气相色谱的强大分析功能。 1. 原油及石油产品全二维分析系统(P510系列)采用最新的全二维气相色谱分析技术,对原油、油田沉积物、以及各种中低馏分石油产品(汽油、煤油、柴油等)的化学组成进行分析,实现族类分离、全组分分析、或目标化合物定量等。广泛用于石油勘探、石油化工、煤化工、化工环境监测等领域。 2. 挥发性及半挥发性有机化合物全二维分析系统(H880系列)可用于离线或在线分析空气、颗粒物、水样、土壤以及材料中的挥发性有机物(VOCs)和半挥发性有机物(SVOCs)的化学组成和含量。提供最全面最准确的化合物组分信息和定量结果,满足大气科学、环境监测、公共安全、产品质控等多个领域的分析应用要求。搭配多种进样配件,实现各种场景的应用需求。包括自动液体进样、CTC自动进样平台(模块可选)、多模式及热脱附模块、在线VOCs富集浓缩系统、在线颗粒物捕集脱附系统等。 3. 矿物油全二维分析系统(S830系列)适用于环境、食品、粮油产品以及食品包装材料中矿物油含量的分析检测,采用业界领先的全二维气相色谱技术,样品经提取后可直接进样,无需预柱分离,利用全二维色谱的双柱系统一次性分离饱和烷烃(MOSH)和芳香烃(MOAH)组分,同时得到MOSH和MOAH的含量,极大提高检测效率。灵敏度和可靠性较常规方法也有显著提高。此外,搭配升级组件后可实现矿物油中典型化合物定性和精细分析(TOF质谱),以及整合样品全自动前处理和提取过程(CTC自动前处理平台)。 4. 香精香料及风味物质全二维分析系统(T360系列)整合最新的全二维气相色谱分析技术和配套系统,搭配最适合风味分析的柱系统和调制柱,对食品饮料、烟草、中草药、农产品及天然香料等原料中的挥发性物质进行全面精细分析,提高风味鉴定、质量控制、工艺优化和真伪甄别等应用的分析能力和准确性。该系统特别集成了雪景科技研发的自动切换高级模式,在一套系统上实现常规一维、全二维、中心切割的全自动切换,而且切换过程及柱系统维护(换色谱柱)无需放空质谱,同时支持多检测器协同检测(质谱、FID、嗅闻仪等)。真正做到了“一机多用”,“维护无忧”。 雪景科技专注于全二维及多维色谱的技术开发和应用推广,竭诚为各行业用户提供更方便、更高效、更经济的色谱分析技术、数据处理方法,以及整体解决方案。
  • 我国突破12英寸二维半导体晶圆批量制备技术
    7月4日,《科学通报》以《模块化局域元素供应技术批量制备12英寸过渡金属硫族化合物》为题,在线发表了松山湖材料实验室/北京大学教授刘开辉、中国科学院院士王恩哥团队,松山湖材料实验室/中国科学院物理研究所研究员张广宇团队及合作者最新研究成果。该研究提出模块化局域元素供应生长技术,成功实现了半导体性二维过渡金属硫族化合物晶圆批量化高效制备,晶圆尺寸可从2英寸扩展至与现代半导体工艺兼容的12英寸,有望推动二维半导体材料由实验研究向产业应用过渡,为新一代高性能半导体技术发展奠定了材料基础。二维半导体是一种新兴半导体材料,具有优异的物理化学性质,以单层过渡金属硫族化合物为代表。与传统半导体发展路线类似,晶圆材料是推动二维半导体技术迈向产业化的根基。如何实现批量化、大尺寸、低成本制备二维半导体晶圆是亟待解决的科学问题。针对二维半导体晶圆的尺寸放大与批量制备核心科学问题,研究人员提出了一种全新的模块化局域元素供应生长策略,实现了二维半导体最大到12英寸晶圆的批量化制备。为了解决批量化制备的难题,研究人员在单层过渡金属硫族化合物制备过程中,实验设计将所需的多种前驱体与生长衬底以“面对面”模式组装构成单个生长模块。过渡金属元素与硫族元素按精确比例局域供应至生长衬底,实现单层过渡金属硫族化合物晶圆的高质量制备。多个生长模块可通过纵向堆叠组成阵列结构,实现多种尺寸晶圆薄膜的低成本批量化制备。该研究成果为二维半导体晶圆的大尺寸、规模化制备提供了一种全新的技术方案,有望推动二维半导体走向产业应用。值得一提的是,松山湖材料实验室在前沿科学研究和创新样板工厂两大核心板块都布局了二维半导体方向的研究。近3年来,该实验室针对二维半导体晶圆制备和规模化器件构筑取得系列进展,在国际上引起广泛关注。
  • 达硕信息与雪景电子科技在全二维气相色谱领域深入合作
    达硕信息与雪景电子科技在全二维气相色谱领域深入合作2016年1月 15 日,大连达硕信息技术有限公司(以下简称:达硕信息)与雪景电子科技(上海)有限公司依托各自优势,在全二维气相色谱(GC×GC)数据分析软件开发、产品推广及解决方案展开全面合作,达硕信息也成为雪景电子科技国内首家合作经销商。 达硕信息是国家级高新技术企业,是国内为数不多的具备算法创新能力,提供数据处理软件产品和服务,及行业数据个性化解决方案的企业。公司海外归来的同事具有很强的全二维色谱分析及其复杂数据分析处理背景,在国际领先的Philip Marriott研究组从事多年的全二维化学计量学相关算法研究,研究成果丰硕,获得广泛的国际认可。 关于雪景电子科技雪景电子科技( 上海)有限公司致力于以全二维气相色谱为主的先进色谱技术的研发、销售、推广、以及技术咨询服务。公司由留美海归博士创办成立,技术研发实力雄厚,人才配备精良。研发团队拥有世界顶尖分析仪器公司研发实验室多年工作经验,对全二维色谱的系统开发和应用实践有着深刻的理解和丰富的经验。 一、全二维气相色谱简介(GC×GC)全二维气相色谱(Comprehensive Two-dimensional Gas Chromatography, 简称GC×GC)是上世纪九十年代在传统的一维气相色谱基础上发展起来的一种新的色谱分析技术。其主要原理是把分离机理不同而又互相独立的两支色谱柱以串联方式连接,中间装有一个调制器(Modulator), 经第一根柱子分离后的所有馏出物在调制器内进行浓缩聚集后以周期性的脉冲形式释放到第二根柱子里进行继续分离,最后进入色谱检测器(图1)。这样在第一维没有完全分开的组分(共馏出物)在第二维进行进一步分离,达到了正交分离的效果。 图1 全二维气相色谱原理图 ■全二维色谱图 检测器的信号经过专业软件重整合并后可以生成直观的全二维色谱图。一般以第一根柱上的保留时间为横坐标, 第二根柱上的保留时间为第二横坐标,信号强度为纵坐标做三维图;或以第一根柱上的保留时间为横坐标,第二根柱上的保留时间为纵坐标,信号强度以颜色深浅区分的二维等高图或轮廓图。 ■技术特点 相比于传统的一维气相色谱,全二维气相色谱的主要优势在于 →分辨率高,峰容量大 →灵敏度高 →不同种类的化合物在色谱图上的分布有规律,便于定性分析 ■调制器(Modulator) 全二维色谱最核心的部件是调制器,根据调制的类型,可分为气流式调(Flow modulator)和热式调制器(Thermal modulator)。气流式调制器也称阀调制器,通过一段固定长度的样品管路和两个切换阀来实现馏分的聚集和释放。该技术安装简单,调制范围广,但配置灵活性差,性能不理想,而且与质谱配合时大量样品都需要被分流(因为质谱的进口流量一般不超过1-2ml/min,而气流式调制器的出口流量一般在20ml/min左右),从而影响灵敏度,目前实际应用并不普及。而热式调制器采用对某段色谱柱进行反复冷却和加热实现组分在色谱柱内的聚集和释放,配置灵活,性能更好,是目前主流的调制器类型。LECO和ZOEX是目前世界上主要的两家热调制器生产厂家(均为美国公司),国内目前以研究仿制为主,还未形成有竞争力的商业化产品。这些市场上主流的热调制器均采用大量制冷剂(液氮、液态二氧化碳或制冷空气等)进行制冷,使用不方便,维护成本高,难以在基层实验室进行推广。■主要市场全二维气相色谱技术相比传统一维色谱,分离能力大大增强,特别适合于针对复杂样品的高分辨解析,或者是在含有较大本底物质的样品中针对某些特定痕量物质的分析检测。目前主要用于以下行业和市场 →石油化工(油品分析,工艺检测,溢油分析) →环境检测(挥发性有机物,PM2.5溯源,持久性有机物) →食品药品(非法添加,农药残留,特色鉴定) →香精香料(有效成分,添加物、残留物分析) →生物医疗(代谢组学,呼气检测) 二、新一代全二维气相色谱技术 针对现有热调制器和全二维气相色谱使用不便的问题,雪景电子科技(上海)有限公司与达硕信息在硬件设计、配置优化、数据处理等方面进行了一系列的创新,推出了以新型固态热调制器为基础的新一代全二维气相色谱技术,为全二维气相色谱在普通实验室甚至实验室外的应用创造了条件。■新型固态热调制器 新型固态热调制器采用半导体制冷技术,使全二维气相色谱(GC×GC)彻底摆脱了液氮和其他制冷剂的使用。创新的机械、热管理与模块化设计在保证了产品性能与目前主流热调制器相当的基础上,显著提高了热效率,减小了系统体积和功耗,简化了安装与操作过程(图2)。这些技术进步极大地降低了GC×GC技术的使用难度和运营成本,适合于在常规实验室推广普及。另外,固态热调制器可以简单安装各种气相色谱平台进行使用,首次使全二维气相色谱在野外分析和在线检测的应用成为可能。 图2 新型固态热调制器实物图及装配效果图主要技术特点和指标 →制冷方式:半导体制冷元件(TEC),无需任何制冷剂 →外观:575px×275px×250px →重量:5kg →电源:110-220VAC, 最大功耗 220W →冷区温度:-50—100°C,数字设定,支持多阶程序升温 →热区温度:40—320°C,数字设定,支持多阶程序升温 →调制范围:C5-C40 →调制周期:≥1.5s →调制后峰宽:典型值20-25ms →吹扫气用量:干燥氮气或空气3-10ml/min(20psi), 用于保持冷区干燥 →通讯接口:USB与PC通讯,同步线与GC通讯 →人机界面:PC客户端 →色谱平台:可搭配任何气相色谱平台,包括实验室色谱和便携式色谱 →创新的电子补气模式 新一代全二维气相色谱技术在调制器和第二维分析柱之间加入了一路电子控制的补气(图3)。这种全新的工作模式给全二维色谱带来了巨大的优势和灵活性。 图3 带有电子控制的补气模式的全二维气相色谱原理图 首先,第一维和第二维的流量实现了完全解耦,从而可以方便灵活地对两维流量同时进行优化。而在传统的全二维气相色谱中,第一维和第二维流量相同,一般无法实现同时优化,需要采用额外的二维柱箱对二维分离进行有限的调节(消除峰迂回等)。全新的补气模式省去了二维柱箱配置,进一步简化了系统。更重要的是,灵活的两维流量控制也首次让两维保留时间锁定和比例缩放成为可能,实现了在不同检测器和不同配置条件下谱图的精确对应(详见最新技术应用),为建立特定样品的二维指纹图谱库以及快速筛查和谱图比对铺平了道路。此外,电子补气模式还可以提供一些额外的功能,比如对一维柱的反吹保护等。■全二维色谱数据处理软件数据处理一直是全二维色谱技术中的难点和痛点。雪景科技推出的Canvas多维色谱数据处理软件使用了高度智能化的算法,根据使用者的习惯和分析规律,省略了大部分冗余的用户参数,使全二维气相色谱分析更加简洁快速。该数据处理软件可以实现以下功能 →二维色谱可视化 →智能化调制周期判定、峰识别和积分(全程自动化,无需客户干预) →族分析功能 →色谱图对比 →定量与定性分析 →系统流路计算优化 此外,还可以根据不同客户的需求,对常用全二维气相色谱功能进行集成和定制,方便客户的日常操作与检测分析。 ■达硕信息在全二维色谱分析和算法方面拥有丰富的经验,特别是在谱图分析、模式识别、指纹图谱库建立等方面掌握全球领先的核心技术。达硕信息将与雪景科技将展开深入合作,进一步完善二维色谱数据处理软件的功能,并逐步建立典型行业重要样品的二维指纹图谱库,力争降低全二维色谱分析的技术门槛和操作难度,为今后全二维气相色谱分析的普及与标准化作出贡献。三、发展路线与合作模式 我们的特点是拥有自主知识产权的简单实用的硬件和软件,以及丰富的全二维气相色谱分析应用和数据处理经验。对于现有的分析检测行业的用户,如果需要对复杂样品进行全面分析,我们可以提供必要的硬件和软件,将常用的一维气相色谱简单升级成全二维气相色谱系统,以达到高分离度高分辨率的要求。同时,我们也将和各行各业的分析检测客户深入合作,根据行业特点,共同开发标准化的全二维分析方法,逐步建立起典型样品的二维指纹图谱库,实现利用非质谱检测器进行样品快速比对和常规筛查,简化分析过程,减少数据处理时间,从而实现全二维气相色谱技术在分析检测行业的普及应用。此外我们也欢迎各仪器厂商和我们进行系统集成等方面的合作,将全二维气相色谱技术进一步推向更广阔的市场,尤其是在线和便携式的检测市场。×
  • Advanced Materials | 新型二维原子晶体材料Si9C15的构筑
    碳元素与硅元素同属第四主族,其原子最外层有四个未配对电子,可形成四根共价键。例如金刚石与单晶硅分别是碳原子和硅原子以sp3杂化方式与临近的四个原子成键形成的稳定结构。原则上,碳原子和硅原子可以以任意的比例互换,组成SixCy的一大类具有闪锌矿结构的晶体材料。理论预言表明,二维的SixCy晶体可以以蜂窝状结构稳定存在,随着碳硅比例的不同具有大范围可调节的带隙,从而产生丰富的物理化学性质,引起了研究人员广泛的关注。然而,自然界中的硅原子并不喜欢sp2杂化方式的平面二维结构,碳硅化合物晶体多数不存在像石墨一样的层状体材料。因此,常规的机械剥离方法并不适用于制备二维碳化硅材料。已有的实验报道包括利用液相剥离和扫描透射电子显微镜电子束诱导等手段获取准二维SiC和SiC2材料,然而这些材料存在着厚度不均一、尺寸太小以及无法集成等问题。因此,发展一种新的实验手段获取高质量、大尺寸的单晶二维碳化硅材料具有重要意义。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室高鸿钧研究团队利用组内自主设计研发的分子束外延-低温扫描隧道显微镜联合系统,对石墨烯硅插层技术进行了优化,并将其应用于二维碳化硅材料的构筑,成功在钌和铑两种单晶表面生长出大面积、高质量、单晶的单层Si9C15材料。他们首先在金属钌(铑)单晶表面生长获得高质量单层石墨烯,然后在石墨烯上沉积过量的硅,在1400 K高温下退火得到了厘米量级的单层碳化硅材料(图一)。他们进一步结合扫描隧道显微镜、扫描透射电子显微镜、X射线光电子能谱等表征手段和第一性原理计算,确定该二维材料是组分为Si9C15的翘曲蜂窝状结构(图二,图三)。蜂窝状结构由碳-碳六元环和碳-硅六元环组成,每个碳-碳六元环被十二个碳-硅六元环所包围。扫描隧道谱显示该二维材料表现出半导体特征,能隙为1.9eV(图四)。值得一提的是,单层Si9C15晶体具有较好的空气稳定性。制备的二维单晶样品在直接暴露空气72小时后重新传入超高真空腔体,在870 K退火1小时之后可以看到晶体结构几乎没有受到破坏(图五)。该项研究首次获得了大面积、高质量的单晶二维碳化硅材料。计算结果还显示在不同晶格常数的金属单晶衬底上有可能生长出不同碳硅比的二维材料,揭开了利用外延生长获取二维碳化硅材料的序幕。相关成果以“Experimental realization of atomic monolayer Si9C15”为题发表于Advanced Materials上。该工作与中国科学院大学的周武教授和国家纳米中心的张礼智研究员进行了合作。博士高兆艳、博士生徐文鹏、博士后高艺璇和博士后Roger Guzman为论文共同第一作者,李更、张礼智、周武和高鸿钧为共同通讯作者。该工作得到科技部(2019YFA0308500, 2018YFA0305700, 2018YFA0305800)、国家自然科学基金(61888102,51991340,52072401)、中国科学院(YSBR-003)和北京杰出青年科学家计划(BJJWZYJH01201914430039)等的支持。文章链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202204779 图一:单层Si9C15材料的获取。图二:二维Si9C15材料的原子构型图三:STEM图像证实二维Si9C15材料的存在。图四:二维Si9C15材料的电子结构。图五:二维Si9C15材料具有较好的空气稳定性。【近期会议推荐】仪器信息网将于2022年8月30-31日举办第五届纳米材料表征与检测技术网络会议,开设“能源与环境纳米材料”、“生物医用纳米材料”“纳米材料表征技术与设备研发(上)”、“纳米材料表征技术与设备研发(下)”4个专场,邀请20余位领域内专家,围绕纳米材料热点研究方向,从成分分析、形貌分析、粒度分析、结构分析以及表界面分析等主流分析和表征技术带来精彩报告。会议涉及热点研究方向:电极材料、医药材料、多铁/铁电材料、电子敏感材料、超宽禁带半导体材料......会议包含表征与检测技术:冷冻电镜、透射电镜、扫描电镜、扫描隧道能谱、X射线光电子能谱、纳米粒度及Zeta电位仪、超分辨荧光成像、表面等离子体耦合发射、荧光单分子单粒子光谱、磁纳米粒子成像、拉曼光谱、X射线三维成像......为纳米材料工作者及相关专业技术人员提供线上学术与技术交流的平台,帮助大家迅速掌握纳米材料主流分析和表征技术,共同提高纳米材料研究及应用水平。(点击此处进入会议官网,免费报名参会)
  • 南京大学团队在与Micro LED相关的二维半导体领域取得关键突破
    二维半导体材料,以过渡金属硫族化合物(TMDC)为代表,具有极限厚度、高迁移率和后端异质集成等特点,有望延续摩尔定律并实现三维架构的集成电路,因此受到了学术界和工业界的关注。经过近十年的发展,二维电子学已经取得了巨大进步,但在大面积单晶制备、关键器件工艺、与主流半导体技术兼容性等方面仍存在挑战。南京大学电子科学与工程学院王欣然教授课题组聚焦上述问题,研究突破二维半导体单晶制备和异质集成关键技术,为后摩尔时代集成电路的发展提供了新思路。相关研究成果近期连续发表在Nature Nanotechnology上。脚踏实地构筑“原子梯田”,突破二维半导体单晶外延半导体单晶材料是微电子产业的基石。与主流的12寸单晶硅晶圆相比,二维半导体的制备仍停留在小尺寸和多晶阶段,开发大面积、高质量的单晶薄膜,是迈向二维集成电路的第一步。然而,二维材料的生长过程中,数以百万计的微观晶粒随机生成,只有控制所有晶粒保持严格一致的排列方向,才有可能获得整体的单晶材料。蓝宝石是半导体工业界广泛使用的一种衬底,在规模化生产、低成本和工艺兼容性方面具有突出的优势。合作团队提出了一种方案,通过改变蓝宝石表面原子台阶的方向,人工构筑了原子尺度的“梯田”。利用“原子梯田”的定向诱导成核机制,实现了TMDC的定向生长。基于此原理,团队在国际上首次实现了2英寸MoS2单晶薄膜的外延生长。得益于材料质量的提升,基于MoS2单晶制备的场效应晶体管迁移率高达102.6 cm2/Vs,电流密度达到450 μA/μm,是国际上报道的最高综合性能之一。同时,该技术具有良好的普适性,适用于MoSe2等其他材料的单晶制备,该工作为TMDC在集成电路领域的应用奠定了材料基础。仰望星空,二维半导体为未来显示技术带来光明大面积单晶材料的突破使得二维半导体走向应用成为可能。在第二个工作中,电子学院合作团队基于第三代半导体研究的多年积累,结合最新的二维半导体单晶方案,提出了基于MoS2薄膜晶体管驱动电路、单片集成的超高分辨Micro LED显示技术方案。Micro LED是指以微米量级LED为发光像素单元,将其与驱动模块组装形成高密度显示阵列的技术。与当前主流的LCD、OLED等显示技术相比,Micro LED在亮度、分辨率、能耗、使用寿命、响应速度和热稳定性等方面具有跨代优势,是国际公认的下一代显示技术。然而,Micro LED的产业化目前仍面临诸多挑战。首先,小尺寸下高密度显示单元的驱动需求难以匹配。其次,产业界流行的巨量转移技术在成本和良率上难以满足高分辨率显示的发展需求。特别对于AR/VR等超高分辨应用,不仅要求分辨率超过3000PPI,而且还需要显示像元有更快的响应频率。合作团队瞄准高分辨率微显示领域,提出了MoS2 薄膜晶体管驱动电路与GaN基Micro LED显示芯片的3D单片集成的技术方案。团队开发了非“巨量转移”的低温单片异质集成技术,采用近乎无损伤的大尺寸二维半导体TFT制造工艺,实现了1270 PPI的高亮度、高分辨率微显示器,可以满足未来微显示、车载显示、可见光通讯等跨领域应用。其中,相较于传统二维半导体器件工艺,团队研发的新型工艺将薄膜晶体管性能提升超过200%,差异度降低67%,最大驱动电流超过200 μA/μm,优于IGZO、LTPS等商用材料,展示出二维半导体材料在显示驱动产业方面的巨大应用潜力。该工作在国际上首次将高性能二维半导体TFT与Micro LED两个新兴技术融合,为未来Micro LED显示技术发展提供了全新技术路线。上述工作分别以“Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire”(通讯作者为王欣然教授和东南大学王金兰教授)和“Three dimensional monolithic Micro LED display driven by atomically-thin transistor matrix”(通讯作者为王欣然教授、刘斌教授、施毅教授和厦门大学张荣教授)为题,近期在线发表于Nature Nanotechnology。该系列工作得到了江苏省前沿引领技术基础研究专项、国家自然科学基金和国家重点研发计划等项目的支持,合作单位包括南京大学现代工程与应用科学学院、东南大学、南京工业大学、厦门大学、中科院长春光机所、天马微电子股份有限公司、南京浣轩半导体有限公司等。
  • 雪景科技发布全二维气相色谱气流调制器产品
    2019年8月23日,雪景科技在第二届全二维色谱技术与应用大会上正式发布了全新的气流调制器 QFM1200 QFM1200系列气流调制器采用雪景科技发明的准止流调制技术(Quasi-stop flow modulation), 通过周期性将进样口直接联通二维柱,(近似)停止一维流动并产生较大的二维流量,将一维馏出物快速释放至二维,实现调制效果。 QFM1200开创了一种全新的气流调制原理,继承了气流调制的优势,包括体积小巧,无需制冷剂,沸点范围宽,运行稳定可靠,重复性好,无需维护等。同时进一步简化了结构和附属设备,省去了目前气流调制技术常用的额外气流控制组件和微流路元件,显著降低了系统复杂度。可以在常规色谱平台上更简便、更快捷、更经济地升级到全二维气相色谱系统。雪景科技同时推出了针对不同应用的多种柱系统配置和优化色谱方法,当方法确定后可长期不间断稳定运行,在常规分析及便携式现场分析领域具有广阔的应用前景。
  • 雪景全二维气相色谱系统控制及数据处理软件
    雪景新型固态热调制器是世界上第一台商业化的基于固态半导体制冷技术的热调制器,使传统的全二维气相色谱彻底摆脱了液氮和其他制冷剂的使用。独特的机械和热管理设计保证了产品与目前主流热调制器相当的调制性能。其小巧的结构和方便的操作极大地简化了GC×GC技术的使用难度和运营成本,适合于在广大常规实验室和野外检测的分析实践中进行推广应用。  固态热调制器还可以安装与任意GC平台上,配合独立的控制软件和全二维数据处理软件,非常方便地将常规的一维GC或者GCMS升级成全二维气相色谱系统,极大提高原有系统的峰容量和分离能力。  固态热调制器控制软件 SSM Viewer  主要功能包括:固态热调制器状态实时监测;固态热调制器参数(冷热去温度、程序升温、调制周期等)设定与控制;外部设备同步,支持手动启动;方法编辑和进样序列编辑。  全二维气相色谱系统配置软件  全二维GC计算器是配置GC分析柱和气流系统,特别是包括多个分析柱和多点流路控制的参数设置工具。系统应用包括分析柱反吹,流出物分流,中心切割,气流调制/热调制的全二维GC或以上的任意组合系统。  全二维数据处理软件Canvas  雪景科技Canvas能够直接读取安捷伦数据文件,同时支持其他通用色谱质谱数据文件格式。  主要功能包括:二维数据可视化、色谱峰自动检测与积分、质谱数据分析和NIST库检索、化合物族建立和分析、色谱图比较与差异分析、基本定性和定量以及其他定制功能。
  • 重庆研究院单晶二维材料GeSe大面积单原子层研究获新进展
    p  近日,中国科学院重庆绿色智能技术研究院量子信息技术中心团队在以GeSe为代表的IVsupA/supVIsupB/sup大面积单原子层材料制备和能带结构确定,及其器件测试分析研究中取得最新进展。/pp  目前已有近百种二维材料被人们发现,包括第四主族单质、第三和第五主族构成的二元化合物、金属硫族化合物、复合氧化物等。这些发现不仅打破了长久以来二维晶体无法在自然界中稳定存在的说法,其自身的特性更是呈现出许多新奇的物理现象和电子性质,如半整数、分数和分形量子霍尔效应、高迁移率、能带结构转变等。IVsupA/supVIsupB/sup单晶二维材料MX(M=Ge,Sn;X=S,Se)因极高稳定性、环境友好性、丰富蕴藏量,以及从材料结构到性能上与黑磷烯的相似性而受到广泛关注。基于第一性原理方法对MX的能带结构的计算、对其从间接带隙到直接带隙的临界层厚,以及基于其Csub2v/sub对称结构的压电性能理论预测的研究已多有报道。但受其脆性影响,该类型材料难以直接采用物理撕裂法制备得到单原子层材料。采用化学合成方法,也难以获得较大面积的单原子层(大于1微米)。因此,对IVsupA/supVIsupB/sup单晶二维材料的研究迄今仍停留在理论预测阶段。/pp  在MX中,GeSe理论上被认为是唯一具有直接带隙的材料,且该材料的光谱范围预测几乎覆盖了整个太阳光光谱,这使它在量子光学、光电探测、光伏、电学等领域有巨大的应用潜力。据此,重庆研究院量子信息技术中心团队研究发现,利用单晶硅表面二氧化硅的隔热效果和激光减薄方法,可以在一定激光功率密度下不断地减薄GeSe的层厚,直至单原子层。其减薄机理是激光在GeSe表层产生高热,由于GeSe材料本身的层状特性,难以将热量及时传导出去,导致层厚被不断减薄。当GeSe的层厚被减薄至单原子层时,整个SiOsub2/sub/Si可以被看作热沉而无法继续减薄。利用此方法,该团队首次实验制备出了100微米以上的GeSe单原子层材料,基于荧光谱、拉曼谱等方法对GeSe单原子层的原子和能带结构进行研究,并基于第一性原理方法理论印证了实验结果的可靠性。实验和理论计算表明,GeSe单原子层的荧光谱非常宽,从可见光波段到近红外波段发现了8个荧光峰,从间接带隙到直接带隙的转变发生在第三层。此外,该团队分别实验制备出了基于GeSe体材料和二维材料的晶体管,其I-V和光反应性能表明,二维材料的光敏度是相应体材料的3.3倍,同时二维材料器件的光反应度也远优于相应体材料器件。/pp  相关研究成果发表在emAdvanced Functional Materials/em上。该研究得到了重庆市基础前沿重大项目、中科院“西部之光”西部青年学者A类项目、国家自然科学基金面上项目的资助。??/ppbr//p
  • 南京理工大学360万元采购全二维气质联用系统
    3月17日,南京理工大学全二维气相色谱四极杆高分辨飞行时间质谱联用系统公开招标,采购一台气质,预算金额360万元。  项目编号:XHTC-HW-2020-2043、ZZ0254-G20HZ0784  项目名称:全二维气相色谱四极杆高分辨飞行时间质谱联用系统  采购需求:序号货物名称数量简要技术参数(采购需求)预算金额(万元)是否接受进口产品采购用途1全二维气相色谱四极杆高分辨飞行时间质谱联用系统1套包含气相色谱仪主机,自动进样器,全二维调制器,四极杆飞行时间质谱仪,氮气发生器等360.0是实现对反应机理进行深层次的研究  合同履行期限:合同签订后5个月内交付  本项目( 不接受 )联合体投标。  开标时间:2021年04月08日 09点30分(北京时间)
  • 一天2篇Nature!南京大学在二维材料领域取得重要突破!
    近日,南京大学电子科学与工程学院王欣然教授、王肖沐教授和施毅教授团队在二维材料领域取得重要进展,相关成果分别以“Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire”和“Observation of Chiral and Slow Plasmons in Twisted Bilayer Graphene”为题,5月4日同期在线发表于《自然》。一、发现扭角石墨烯中等离激元新物态表面等离激元,对光场具有亚波长尺度的局域能力,在微纳光子学和集成光电器件、超分辨成像等领域有广阔的应用前景。传统等离激元金属和环境介质的光学性质密切相关,容易受到金属欧姆损耗和环境因素影响。拓扑特性中的边缘态可以对等离激元实现保护,抑制损耗,探索这类等离激元新模式有望帮助解决等离激元纳米光子器件损耗高的关键问题。王肖沐教授和施毅教授研究团队,在扭角石墨烯材料中提出并实现了一类全新的等离激元模式:手性贝利等离激元。研究团队根据扭角石墨烯的结构手性,揭示了强关联能态的拓扑特性,预言了非零贝利曲率在中红外频段可以引入反常霍尔电导。在此基础上,团队制备了具有长程高度有序摩尔超晶格的扭角石墨烯材料,并系统地研究了红外表面等离激元响应。观测到了具有手性特征的贝利等离激元边缘态,并验证了通过电场调控实现的开关操作。研究成果通过拓扑边缘态保护等离激元,有效降低了损耗,在中远红外光电器件、量子计算和纳米光学等方面具有巨大应用潜力。图1 扭角石墨烯示意图(a)及光学显微镜图像(b)(c)扭角石墨烯纳米条带中的红外等离激元响应。在15微米(650cm-1)长波红外范围内,手性纳米条带中出现新的具有拓扑特性的贝利等离激元新模式。扭角石墨烯是一类具有丰富多体相互作用的强关联电子材料。通过改变层间扭转角度,掺杂等条件,可以对电子的能态进行灵活地调控,实现超导、拓扑等奇异物态。研究团队指出,由于扭角石墨烯自身的非中心对称结构,在打破时间反演对称性的条件下,会产生非零的贝利曲率,进而在材料中引入非零的横向光电导(即反常霍尔电导)。将这种拓扑能态与等离激元结合,可以有效降低其散射损耗。研究团队依据这样的思路,制备了大面积的“魔角”(1.08°扭角的双层石墨烯),并在其上构筑了具有手性结构的纳米条带。图2 光照强度(a)和静电掺杂(b)对手性贝利等离激元边缘模式共振能级劈裂的调控作用。在这种同时打破空间和时间反演对称性的条件下,非零贝利曲率在纳米条带中通过拓扑边缘态形成了手性贝利等离激元新模式。实验上,手性等离激元以共振峰位的劈裂为标志。而通过光强和掺杂,可以调控贝利曲率的大小,进而调制能级劈裂的开关。手性等离激元存在的另一个证据是零磁场法拉第效应,即光通过材料时其偏振方向会发生偏转。实验中实现了高达15°的极化旋转。这些非磁场下的奇异光学效应,在制作偏振片等重要光学应用上有着广泛的前景。南京大学王肖沐/施毅教授团队,专注于于高性能红外光电器件的研究工作。近年来,获得了以弹道雪崩光电探测器(Nature Nanotechnology,14,217(2019))和能谷光电子器件(Nature Nanotechnology,15,743(2020))为标志的系列创新成果。本次的研究工作,是该团队在广泛国际合作支持下,通过体系强相互作用和谷电子特性对光子进行有效调控实现的一个突破性进展。南京大学电子科学与工程学院硕士生黄天烨为第一作者,电子科技大学李雪松教授课题组完成了单晶石墨烯的生长工作,明尼苏达大学 Tony Low教授课题组完成了主要计算工作,中科院沈阳金属所杨腾研究员、北京计算所邵磊副研究员的课题组协助完成了部分计算工作。南京大学微制造与集成工艺中心在微加工方面给予了重要的支持。该工作得到国家科技部重点研发计划、自然科学基金重点项目、江苏省双创团队和中科院先导计划等项目资助。二、突破双层二维半导体外延生长核心技术集成电路摩尔定律是推动人类信息社会发展的源动力。当前,集成电路已经发展到5nm技术节点,继续维持晶体管尺寸微缩需要寻求材料的创新。近年来,以MoS2为代表的二维半导体在电子器件和集成电路等领域获得了迅速的发展,王欣然教授课题组在该领域长期积累,2021年在《Nature Nanotechnology》连续报道了大面积MoS2单晶制备以及MoS2驱动的超高分辨Micro-LED显示技术两个成果。尽管学术界和工业界在单层二维半导体生长方面已经取得了很大的进展,但是单层材料在面向高性能计算应用时依然受限。相比于单层MoS2,双层MoS2具有更窄的带隙和更高的电子态密度,理论上可以提升驱动电流,更适合应用于高性能计算。然而,由于材料生长热力学的限制,“1+1=2”的逐层生长方法难以给出均匀的双层,因此层数可控的二维半导体外延制备一直是尚未解决的难题。图3 双层MoS2生长机制针对该问题,王欣然教授与东南大学合作,另辟蹊径,提出了衬底诱导的双层成核以及“齐头并进”的全新生长机制,在国际上首次报道了大面积均匀的双层MoS2薄膜外延生长。研究团队首先进行了理论计算,发现虽然单层生长在热力学上是最稳定的,但是通过在蓝宝石表面构建更高的“原子梯田”,可以实现边缘对齐的双层成核,从而打破了“1+1=2”的逐层生长传统模式局限(图3)。研究团队利用高温退火工艺,在蓝宝石表面上获得了均匀分布的高原子台阶,成功获得了超过99%的双层形核,并实现了厘米级的双层连续薄膜。原子力显微镜、透射电子显微镜、拉曼光谱和荧光光谱等多种表征手段均证明了双层薄膜的均匀性。进一步,团队证明了双层MoS2与蓝宝石衬底具有特定的外延关系,以及双层MoS2的层间具有2H和3R两种堆垛模式,并在理论上给出了解释。图4 双层MoS2的晶体管器件性能研究团队进一步制造了双层MoS2沟道的场效应晶体管(FET)器件阵列,并系统评估了其电学性能(图4)。相比单层材料,双层MoS2晶体管的迁移率提升了37.9%,达到~122.6cm2V-1S-1,同时器件均一性得到了大幅度提升。进一步,团队报道了开态电流高达1.27 mA/μm的FET,刷新了二维半导体器件的最高纪录,并超过了国际器件与系统路线图所规划的2028年目标。该工作突破了层数可控的二维半导体外延生长技术,并且实现了最高性能的晶体管器件。南京大学电子科学与工程学院博士生刘蕾为第一作者,王欣然教授、李涛涛副研究员和东南大学王金兰教授、马亮教授为论文共同通讯作者,南京大学施毅教授、聂越峰教授、王鹏教授以及微制造与集成工艺中心对该工作进行了指导和支持。该研究得到了江苏省前沿引领技术基础研究、国家重点研发计划和国家自然科学基金等项目的资助。
  • 解决方案 | 禾信全二维气质联用仪,探索香精成分分析新方向
    近年来,随着人们生活水平的提高和对物质文化的追求,国民经济中科技含量高、配套性强、与其他行业关联度高的香精香料工业得到了迅猛的发展,日用香精的使用也越来越广泛。面对日益激烈的市场竞争,为占据更多的市场份额,各大香精企业竞相推出新品种、新原料、新技术,提出科学配方,不断打造日用香精新亮点。香精成分检测分析的难点香精样品成分复杂,组分种类高达数千种,且浓度范围较宽,化学性质、组成结构也各不相同,检测分析工作非常困难。传统GCMS方法受限于峰容量不足,香精成分全组分分析需要同时使用三套不同柱系统:非极性(如DB-5, DB-1)、极性(如Wax)和中等极性(如DB-17),同时需要进行3套柱系统数据分析,工作量大且会检出多种重合组分,为分析测试人员带来极大困扰,已经成为行业公认的检测分析痛点。解决方案广州禾信仪器股份有限公司(股票代码:688622)全二维气相色谱飞行时间质谱联用仪GGT 0620,搭载新型固态热调制技术,将两根不同固定相的色谱柱串联,峰容量大,灵敏度高,可实现香精样品中全组分的近正交分离,定性能力强,检测效果显著优于常规的三套柱系统,已经成为香精组分检测、工艺优化、真假鉴别等方面的高新质谱检测技术。图1是采用禾信GGT 0620分析A香精公司香精样品的局部谱图。可知:图1:某香精样品难分析组分分离结果图(同分异构体和理化性质相似的化合物)GGT 0620分离度较好,可将莪术呋醚酮、香柏酮、兰桉醇、喇叭茶醇、α毕橙茄醇等理化性质相似的化合物在二维色谱上完全分离,这在一维GCMS上是难以实现的。此外,由于GGT 0620具有极窄的色谱峰宽,因此检测灵敏度高,是常规一维GCMS的10倍以上;GGT 0620数据处理软件中具有简单易操作的数据自动检索定性功能,可大大减少香精组分分析的工作量。分析一个未知香精样品组分,GGT 0620相比一维GCMS节省一半以上分析时间,效率大大提高。图2是采用禾信GGT 0620对B香精公司混合香精样品的成分溯源结果。可知:图2:某香精样品配方成分溯源结果(1)GGT 0620可进行全组分成分分析,从而确定不同的单体香精及混合香精的化学组成;(2)GGT 0620具有自主开发的溯源算法,它可以结合特征组分进行分析,能快速、准确地获得混合香精中单体香精的占比,出具准确的分析结果。随着中国经济的发展和人们生活水平的提高,我国香精香料需求双向增长,香精香料企业将面临更大的挑战,因此,“高效、安全、环保”的香精分析技术是香精企业占据市场的核心竞争力。禾信全二维气相色谱飞行时间质谱联用仪 GGT 0620分离度好,灵敏度高,分析速度快,在复杂香精样品分析方面具有独特优势,将不断参与到各香精香料企业的生产开发过程,助力中国香精行业的快速发展。
  • Science: 扫描探针显微镜控制器在二维磁性材料研究中的突破性应用进展
    导读:自2017年来,二维磁性在单层材料中的实现使得二维磁性材料受到了大的关注。范德瓦尔斯磁体让我们对二维限下的磁性有了更进一步的了解,不同磁结构的范德瓦尔斯磁体使得实验上探究二维下的磁学模型成为可能。例如,在单层CrI3中发现Ising铁磁,而XY模型的NiPS3在单层限下的磁性会被抑制。除了这些,有着变磁行为的范德瓦尔斯磁体更为有趣,比如在少层CrCl3中由于奇数层存在着未补偿磁矩,使得奇数层存在着spin-flop转变,而偶数层则没有。目前,现存的二维磁性材料非常稀少,这意味着新范德瓦尔斯磁体的发现,不仅仅有助于二维磁性的研究,更是为二维自旋电子学器件的应用提供了材料基础[1]。相比于传统的三维空间结构,二维层状磁性材料因其原子层间较弱的范德华尔斯作用力,能够人为操控其层间堆叠方式,进而有可能影响其磁耦合特性,为新型二维自旋器件的研制提供新思路。然而,堆叠方式与磁耦合间的关联机制仍不甚明晰,需要借助先进的扫描探针技术才能实现在原子层面的直接实验观测。美国RHK公司所提供的先进R9plus扫描探针显微镜控制器可以有效结合课题组自主研发的扫描探针设备,同时给予高效率的扫描控制,从而可以针对二维磁性材料应用领域展开更为深入的研究。本文重点介绍国内课题组灵活运用RHK公司扫描探针控制器,配合自主研发设计的扫描探针设备所开展的一系列国际前沿性二维材料领域的研究工作,其中各研究工作当前已在国际SCI核心学术期刊发表。科学成果的突破,离不开实验技术的不断攻坚克难。复旦大学物理学系教授高春雷、吴施伟团队通过团队自主研发搭建的扫描探针设备创造性地将原位化合物分子束外延生长技术和自旋化扫描隧道显微镜相结合,在原子层面彻底厘清了双层二维磁性半导体溴化铬(CrBr3)的层间堆叠和磁耦合间的关联,为二维磁性的调控指出了新的维度。相关研究成果以 《范德华尔斯堆叠依赖的层间磁耦合的直接观测》(“Direct observation of van der Waals stacking dependent interlayer magnetism”)为题发表于《科学》(Science)主刊,其中复旦大学物理学系博士后陈维炯为作者[2]。图中所示为陈博士与RHK技术总监进行深入的技术探讨,现场摸索优化测试信号,并详细沟通具体的测量细节,为后续高效率提取高质量大数据做准备。 课题组运用自主研制的自旋化扫描隧道显微镜测量技术,结合RHK公司先进的扫描探针显微镜控制器对自主研发实验设备实现测量调控,团队进一步在原子分辨下获取了样品磁化方向的相对变化,从而实现了实验突破,揭秘材料堆叠方式与磁耦合之间的直接关联性。团队以CrBr3双层膜作为主要研究对象和潜在突破口。双层CrBr3间较弱的范德瓦尔斯力赋予层间发生相对转动和平移的“自由”,从而使堆叠方式多样化成为可能。确实,在实验中获得的CrBr3双层膜具有两种不同的转动堆叠结构(H型和R型),分别对应迥异的结构对称性。其中,R型堆叠结构中,双层膜上下两层间同向平行排列,且沿晶体镜面方向作一定平移;H型堆叠结构中,双层膜上下两层之间旋转了180度,反向平行交错排列。这两种结构均是在相应的体材料中从未发现过的全新堆叠结构。至此,团队率先在原子尺度阐明了CrBr3堆叠结构与层间铁磁、反铁磁耦合的直接关联,为理解三卤化铬家族CrX3中不同成员的迥异磁耦合提供了指导。H型和R型堆叠的CrBr3双层膜自旋化扫描隧道显微镜测量 更多精彩案例: 《Nature》子刊:中国科大扭转双层石墨烯重要进展! 范德瓦尔斯堆叠的双层石墨烯具有一系列新奇的电学性质(例如,电场可调控的能隙、随扭转转角变化的范霍夫奇点以及一维拓扑边界态等)。当双层石墨烯的扭转转角减小到一系列特定的值(魔角)时,体系的费米面附近出现平带,电子在能量空间高度局域,电子-电子相互作用显著增强,出现莫特缘体和反常超导量子物态。另一方面,这些新奇的性质与双层石墨烯体系的扭转角度有着严格的依赖关系,体系层间相互作用随着转角减小会逐渐增强,因此探寻和研究这种层间耦合对理解扭转双层石墨烯的电子结构和物理性质至关重要。中国科学技术大学合肥微尺度物质科学研究中心国际功能材料量子设计中心(ICQD)物理系秦胜勇教授与武汉大学袁声军教授及其他国内外同行合作,利用扫描隧道显微镜和扫描隧道谱,次在双层转角石墨烯体系中发现了本征赝磁场存在的重要证据,结合大尺度理论计算指出该赝磁场来源于层间相互作用导致的非均匀晶格重构。相关研究成果以“Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene”为题,于2020年发表于《自然通讯》(Nature Communications 2020,11,371)上[3]。图:小角度双层石墨烯中本征赝磁场的发现。对于转角为0.48度的双层石墨烯,在不加外磁场情况下,实验发现了贋朗道能(图b),理论计算进一步验证了这种贋磁场行为(图c),并估算出贋磁场值大约为6特斯拉(图e)。 该团队系统研究了小角度下(1°)双层石墨烯的电学性质,次证实了由晶格重构导致的本征赝磁场。先,研究人员发现体系中赝磁场导致了低能载流子的能量量子化,并计算出这种本征赝磁场在实空间的分布。研究发现赝磁场的分布并不是均匀的,而是以AA堆叠为中心呈涡旋状,且在AA堆叠边界区域达到大值;另外,该赝磁场的大小随着转角的减小而增大,其分布和大小受到外加应力的调控。该项研究证实,在小角度扭转双层石墨烯中晶格重构导致的赝磁场和强关联电子态存在着内在的关联,层间相互作用对体系的结构重构和性质变化有着非常重要的影响。这一现象可以推广到其他范德瓦尔斯堆叠的二维材料体系中。这项工作同时表明,具有本征赝磁场的小角度扭转双层石墨烯是实现量子反常霍尔效应的一个可能平台,为研究二维材料的性质和应用提供了新的思路。RHK公司提供的R9plus扫描探针显微镜强有力的为国内自主研发技术提供有力保障,除了在科研领域内重点关注的二维材料发挥重要作用以外,也对国内其它相关扫描探针设备研发领域课题组提供技术支持。中国科学技术大学陆轻铀教授团队与中国科学院强磁场科学中心、新加坡国立大学等单位合作,利用扫描探针控制器实现了高精度的磁力显微镜观察表征,报告了在超薄BaTiO3/SrRuO3 (BTO/SRO)双层异质结构中发现铁电体(FE)驱动的、高度可调谐的磁性斯格明子。在BTO中,FE驱动的离子位移可以穿过异质界面,并继续为多个单元进入SRO。这种所谓的FE邻近效应已经在不同的FE/金属氧化物异质界面中得到了预测和证实。在BTO/SRO异质结构中,这种效应可以诱导相当大的DMI,从而稳定强大的磁性物质。此外,通过利用BTO覆盖层的FE化,可以实现对斯格明子性质的局部、可逆和非易失性控制。这种铁电可调的斯格明子系统为设计具有高集成性和可寻址性的基于斯格明子的功能设备提供了一个潜在的方向。相关成果以题为“Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures”发表在了Nat. Mater.上[4]。B20S5样品中磁性斯格明子的磁力显微镜表征 除此之外该课题组也对二维过渡金属硫化物材料MoTe2温度依赖的表面STM图像、电子结构、晶格动力学和拓扑性质进行了研究。研究结果以Uniaxial negative thermal expansion and band renormalization in monolayer Td-MoTe2 at low temperature为题,发表在美国物理学会杂志《物理评论B》上。该工作为二维过渡金属硫化物材料MX2的低温研究、实验制备和器件开发提供了直接的理论支持,其揭示的MoTe2低温下反常物性的内在物理机制对其它具有内在MX2八面体结构畸变的二维材料同样具有参考价值[5]。学术工作之外,该课题组在仪器设备研发方面也取得了优异的成果,课题组在国际上次研制成功混合磁体端条件下原子分辨扫描隧道显微镜(STM),相关研究成果发表在显微镜领域著名期刊Ultramicroscopy和著名仪器刊物Review of Scientific Instruments上。此工作利用混合磁体搭配RHK公司扫描探针设备开展原子分辨成像研究,对于突破当前超强磁场下只能开展输运等宏观平均效果测量的瓶颈,进入到广阔的物性微观起源探索领域,具有标志性意义。同时,课题组又针对超强磁场下的生物分子高分辨成像,搭建了一套室温大气环境下的分体式STM。该系统将一段螺纹密封式胶囊腔体通过一根长弹簧悬吊于混合磁体中心,并将STM核心镜体悬吊于胶囊腔体内用以减弱声音振动干扰。经测试,该STM在27.5特斯拉超强磁场下依然保持原子分辨。由于没有真空、低温环境的保护,搭建混合磁体超强磁场、超强振动和声音环境下的室温大气STM难度更大。此前,国际上还未曾报道过水冷磁体或混合磁体中的室温大气STM[6]。混合磁体STM系统:(a)混合磁体照片;(b)混合磁体STM系统简图;(c)STM镜体;(i-iv)分别为0T、21.3T、28.3T、30.1T磁场强度下石墨的原子分辨STM图像。 参考文献:1. Peng, Y., et al., A Quaternary van der Waals Ferromagnetic Semiconductor AgVP2Se6. Advanced Functional Materials, 2020. 30(34): p. 1910036.2. Chen, W., et al., Direct observation of van der Waals stacking-dependent interlayer magnetism. Science, 2019. 366(6468): p. 983-987.3. Shi, H., et al., Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat Commun, 2020. 11(1): p. 371.4. Wang, L., et al., Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat Mater, 2018. 17(12): p. 1087-1094.5. Ge, Y., et al., Uniaxial negative thermal expansion and band renormalization in monolayer Td?MoTe2 at low temperature. Physical Review B, 2020. 101(10).6. Meng, W., et al., 30 T scanning tunnelling microscope in a hybrid magnet with essentially non-metallic design. Ultramicroscopy, 2020. 212: p. 112975.
  • ACS Nano I 用扫描探针显微镜表征二维过渡金属硫族化合物的本征电学特性
    *以下应用说明基于 ACS Nano publication, 2021 15, 6, 9482–9494. 出版日期: May 27, 2021. 介绍 在传统的平面硅场效应晶体管(FET)中,当其横向尺寸小于晶体管厚度时,栅极可控性变弱,从而导致不利的短沟道效应,包括漏电流、沟道中载流子迁移率饱和、 沟道热载流子退化和 介质层时变击穿。因此,需要减小晶体管主体厚度以确保有效的栅极静电控制。理论研究表明,由于二维 (2D) 材料的原子厚度和表面懸鍵,特别是二维过渡金属二硫属化物 (TMD) 作为沟道材料的性能优于硅,能够实现原子级尺度,优异的静电门控,降低断电功耗,进一步扩展摩尔定律。[1-6] 表征沉积态二维材料的内在物理和电学特性的适当技术是沉积态二维材料的质量与基于二维材料的电子设备性能之间的关键联系。此联系可以帮助我们更好地了解、控制和改进基于二维材料的设备的性能。然而,在没有任何转移和图案化过程的情况下,在纳米尺度上分析沉积态二维材料的固有电学特性的技术是有限的。 在本应用说明中,扫描探针显微镜 (SPM) 用于研究沉积态二维TMD 的固有电学特性。 导电原子力显微镜 (C-AFM) 无需任何图案化,直接在生长态二维材料表面进行扫描。 C-AFM 能够将生长态二维材料的电导率与其形貌相关联,从而将二维材料的电特性与其物理特性(如层厚度等)联系起来。所有这些,C-AFM为我们提供了沉积态2D材料的全面信息,并帮助我们评估这些固有特性对基于二维材料的纳电子学的影响。实验细节 Park NX-Hivac 在高真空(~10-5Torr)下,用 C-AFM 在 Park NX-Hivac AFM 上使用 Pt/Ir 涂层的硅探针(弹簧常数 k~3N/m,共振频率 f0~75kHz,PPP-EFM)评估蓝宝石上生长态 MoS2和WS2层的固有电学特性。高真空环境有助于减少样品上始终存在的水层。[4,6] 将C-AFM测量的偏压施加到样品卡盘上,并通过线性电流放大器测量产生的电流。收集所有 C-AFM 电流图所施加的偏压均为1 V。在样品的顶部和侧面涂上银漆,以确保电接触。结果与讨论 在 C-AFM 电流图(图 1b)中,同轴切割蓝宝石上沉积的 MoS2 层在整个表面上显示出非均匀导电性,尽管图 1a 中的形貌显示了完全聚结的单层 MoS2 ,其顶部约有~37%的表面晶体(命名为1.3 ML)。通过引入离轴 1º 切割蓝宝石作为衬底,MoS2 层的电导率变得更加均匀, 与它们更均匀的表面结构一致(图 1c 和 d)。 总体而言,离轴 1º 切割蓝宝石上约~83% 的单层 MoS2 具有更高的电导率,而使用同轴上切割蓝宝石仅占 51%。 [7] 电导率较低的区域在图 1b、d 中用粉红色标记,阈值电流约为 ~0.3 μA。 因此,通过引入离轴 1º 切割蓝宝石(图 1b、d 中的 49% 到 17%) 可降低较弱导电区域的密度。图1.(a,c)分别在同轴和离轴1º切割蓝宝石上生长的1.3 ML MoS2的C-AFM形貌图(b、 d)同时与(a,c)一起获得的 C-AFM 电流图。通过电流阈值(~0.3μA),第一单层MoS2中的非均匀和导电性较弱区域以粉红色突出显示。经许可复制图像。[7] Copyright 2021, American Chemical Society.通过跳过蓝宝石晶片的预外延处理过程,该密度可以进一步降低到约~6.5%(图 2a-b)。具有较低电导率的 MoS2 区域的形状不是随机的,而是对应于特定的下层蓝宝石阶地。离轴 1º 切割蓝宝石上具有较低 MoS2 电导率的区域对应于聚集在一起的阶地。在预外延处理和 MOCVD 过程中,台阶会分解和凝聚。台阶(变形)成型主要由预外延处理和 MOCVD 工艺中使用的高温驱动。正如对离轴 1º 切割蓝宝石所预期的那样,随着 Wterrace 变窄,阶梯聚束变得更可能发生。当单层 MoS2 沉积在离轴 1º 切割蓝宝石上而不进行任何预外延处理时,高导电区域的密度从 83%(图 1d)进一步增加到 93.5%(图 2b)。可以观察到成束台阶(具有更高的 Hterrace,图 2a 中的 5.8%)和导电性较弱的区域(图 2b 中的暗区为 6.5%)之间存在明显的相关性。从图 2c 中的地形和电流图提取的横截面轮廓进一步支持了这一观察结果。然而,在图 2b 中没有完全去除导电性较弱的区域。这应该与生长温度(在我们的工作中为 1000 °C)有关,该温度足以在沉积过程中在蓝宝石表面引入阶梯聚束。[8-10]图2. 蓝宝石上生长的MoS2的不均匀导电性. (a-b)C-AFM 形貌图,同时获得离轴1º切割蓝宝石上1.3 ML MoS2 的电流图. (c)(a-b)位置处的相应横截面高度(红色)和电流(蓝色)剖面. (d- e)形貌图,同时获得同轴切割蓝宝石上3.5 ML MoS2的电流图。经参考文献[7]许可,对图像进行了改编。 Copyright 2021, American Chemical Society.关于观察到的 MoS2 电导率分布的不均匀性,我们发现非封闭顶层中 MoS2 晶体的存在不会影响电导率。 事实上,具有较低电导率的 MoS2 区域与 MoS2 层厚度几乎保持不变,因为它们也存在于 3.5 ML MoS2 中(图 2d-e):形貌和当前图像中黄色虚线区域的比较表明,MoS2 晶体具有非封闭顶层中方向错误的基面不会影响该区域的导电性。 此外,值得注意的是,不同电导区域的存在不仅出现在 MoS2 外延层中,也出现在蓝宝石上生长的 MOCVD WS2 层中,如图 3 所示。图3.(a-b)同轴切割蓝宝石的形貌图和同时获得的1.7 ML WS2电流图。经参考文献[7]许可,对图像进行了改编。 Copyright 2021, American Chemical Society.因此,较低的导电性主要与完全闭合的第一MoS2单层有关,而不是与非闭合的顶层有关。图4a-b显示了两个第二层MoS2晶体,其中一些区域具有较高的导电性,而另一些区域具有较低的导电性,从而进一步支持了这一点。图4.(a-b)在同轴切割蓝宝石上生长的1.3 ML MoS2上第2-3层MoS2岛的导电性。(a)在同轴切割蓝宝石上生长的MoS2的形貌及其相应的(b)电流图。白色的晶体轮廓显示部分区域具有较高的导电性,部分区域具有较低的导电性,表明表面晶体对蓝宝石上MoS2的不均匀导电性贡献不大。(c-f)轴切割蓝宝石上生长的1.3 ML MoS2的降解。(c-d)MOCVD生长后立即收集的1.3 ML MoS2的1 V下的形貌图及其相应的电流图。(e-f)在氮气柜中储存6个月后,同一样品在1 V下的形貌图和电流图。在(c)中没有氧化区,但在(e)中MoS2被部分氧化,这总是与(f)中的较弱导电区相关。经参考文献[7]许可,对图像进行了改编。 Copyright 2021, American Chemical Society.结果表明,蓝宝石起始表面的状态是决定第一层MoS2单层物理和电学性能的关键参数之一。结论通过 C-AFM 评估二维 TMD的固有电学特性,并将其与样品形貌联系起来。我们在沉积的二维 TMD 单层中发现了非均匀导电性,这可能源于:(i)TMD 层厚度变化导致的TMD 表面粗糙度; (ii)蓝宝石表面形貌引起的 TMD 应变;(iii)由于每个蓝宝石阶地的 TMD 形核率的依赖性,TMD 晶粒内缺陷率;(iv)蓝宝石表面结构和终端引起的 TMD 界面缺陷,可能导致不同的局部掺杂效应。进一步的研究正在进行中,将 C-AFM 与先进的光谱技术(如拉曼、PL和TOFSIM)相结合,以进一步探索外延二维材料的固有特性。参考文献 (1) Liu, Y. Duan, X. Shin H.-J. Park, S. Huang, Y. Duan, X. Promises and Prospects of Two-Dimensional Transistors. Nature 2021, 591, 43–53.(2) Su, S.-K. Chuu, C.-P. Li, M.-Y. Cheng, C.-C. Wong, H.-S. P. Li, L.-J. Layered Semiconducting 2D Materials for Future Transistor Applications. Small Struct. 2021, 2, 2000103.(3) Akinwande, D. Huyghebaert, C. Wang, C.-H. Serna, M. I. Goossens, S. Li, L.-J. Wong, H.-S. P. Koppens, F. H. L. Graphene and Two-Dimensional Materials for Silicon Technology. Nature 2019, 573, 507–518.(4) Agarwal, T. Szabo, A. Bardon, M. G. Soree, B. Radu, I. Raghavan, P. Luisier, M. Dehaene, W. Heyns, M. Benchmarking of Monolithic 3D Integrated MX2 FETs with Si FinFETs. In 2017IEEE International Electron Devices Meeting (IEDM) 2017 p 5.7.1–5.7.4.(5) Smets, Q. Arutchelvan, G. Jussot, J. Verreck, D. Asselberghs, I. Nalin Mehta, A. Gaur, A. Lin, D. Kazzi, S. E. Groven, B. Caymax, M. Radu, I. Ultra-Scaled MOCVD MoS2 MOSFETs with42nm Contact Pitch and 250μA/Mm Drain Current. In 2019 IEEE International Electron Devices Meeting (IEDM) 2019 p 23.2.1–23.2.4.(6) Smets, Q. Verreck, D. Shi, Y. Arutchelvan, G. Groven, B. Wu, X. Sutar, S. Banerjee, S. Nalin Mehta, A. Lin, D. Asselberghs, I. Radu, I. Sources of variability in scaled MoS2 FETs. In 2020 IEEE International Electron Devices Meeting (IEDM) 2020 p 3.1.1–3.1.4.(7) Shi, Y. Groven, B. Serron, J. Wu, X. Nalin Mehta, A. Minj, A. Sergeant, S. Han, H. Asselberghs, I. Lin, D. Brems, S. Huyghebaert, C. Morin, P. Radu, I. Caymax, M. Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High- Performance Nanoelectronics. ACS Nano 2020, DOI: 10.1021/ acsnano.0c07761.(8) Cuccureddu, F. Murphy, S. Shvets, I. V. Porcu, M. Zandbergen, H. W. Sidorov, N. S. Bozhko, S. I. Surface Morphology of C-Plane Sapphire (α-Alumina) Produced by High Temperature Anneal. Surf. Sci. 2010, 604, 12941299.(9) Curiotto, S. Chatain, D. Surface Morphology and Composition of C-, a- and m-Sapphire Surfaces in O2 and H2 Environments. Surf. Sci. 2009, 603, 2688–2697.(10) Ribič, P. R. Bratina, G. Behavior of the (0001) Surface of Sapphire upon High-Temperature Annealing. Surf. Sci. 2007, 601, 44–49.想要了解更多内容,请关注微信公众号:Park原子力显微镜,或拨打400-878-6829联系我们Park北京分公司 北京市海淀区彩和坊路8号天创科技大厦518室 Park上海实验室 上海市申长路518号虹桥绿谷C座305号 Park广州实验室 广州市天河区五山路200号天河北文创苑B座211
  • 二维材料成功集成到硅微芯片内
    沙特阿卜杜拉国王科技大学科学家在27日出版的《自然》杂志上发表论文指出,他们成功将二维材料集成在硅微芯片上,并实现了优异的集成密度、电子性能和良品率。研究成果将帮助半导体公司降低制造成本,及人工智能公司减少数据处理时间和能耗。微芯片内的设备和电路的光学显微镜图像。图片来源:《自然》杂志网站二维材料有望彻底改变半导体行业,但尽管科学家们研制出了多款类似设备,但技术制备水平较低,因为大部分技术使用与目前的半导体工业不兼容的合成和加工方法,在无功能的基板上制造出大型器件,且成品率较差。例如,IBM曾试图将石墨烯集成到用于射频应用的晶体管中,但这些器件无法存储或处理信息。最新研究将名为多层六方氮化硼的二维绝缘材料(约6纳米厚),集成到包含由互补金属—氧化物半导体技术制成的硅晶体管的微芯片内,实现了优异的集成密度、电子性能和良品率。研究人员表示,研制出的器件宽度仅260纳米,能用于高级数据存储和计算。未来大多数微芯片将会利用这些二维材料优异的电子和热属性。最新制造出的微芯片显示出了高耐久性和特殊的电子性能,使制备出功耗极低的人工神经网络成为可能。人工神经网络是人工智能系统的关键组成部分,但现有大多数设备都不适合实现这种类型的神经网络,最新研究为此开辟了一条新途径。此外,最新研究有望帮助微芯片制造商和人工智能公司开发新硬件,以减少数据处理时间并降低能耗。研究人员强调,最新研究对纳米电子和半导体领域来说具有重要意义,因为所生产的器件和电路性能优异,且具有深远的工业应用潜力。
  • 亚洲区域二维相关光谱学术会议通知
    2014年4月18-20日 中国 北京  由北京大学化学与工程学院与Thermo Fisher公司资助的&ldquo 亚洲区域二维相关光谱学术会议&rdquo (The Asian Regional Conference on 2DCOS (2DCOS-2014)),将于2014年4月18-20日在北京市召开。本次会议的主题是讨论二维相关光谱在国内外的进展, 这是回顾二维相关光谱在过去近三十年的发展,展望该领域发展蓝图的一次学术盛会。本次会议有幸邀请到二维相关光谱的创始人美国特拉华大学的Isao Noda教授,韩国江原国立大学Young Mee Jung教授做大会报告。并邀请国内从事二维相关光谱研究的专家学者做学术报告。由于您在本领域所做出的杰出贡献,本次会议邀请您做一个20分钟左右的特邀学术报告。  有关会议各项事宜通知如下:  一、会议日程:  2014年4月18日:报到  2014年4月19日:学术报告  2014年4月20日:学术报告,会议结束  二、征文要求:  1. 提交论文摘要一份,纸张大小用A4纸版式(用Office Word软件排版,页边距2cm,单倍行距),篇幅1页,字号:小四。  2. 论文截至日期:2014年4月8日。  3. 《Chinese Chemical Letters》和国际学术期刊《Biomedical Spectroscopy and Imaging》为本次会议组织专刊,请本次会议的参会者于会后准备论文全文,投送上述期刊。  三、联系方式:  联系人:徐怡庄:010-62757150,13241838035,18600896025  E-mail:xyz@pku.edu.cn  四、特别提示:  1. 会务费:参会代表需缴纳会务费500元/人。请提前注册、交费。现场注册600元/人。  汇款账号:02000045090891311-51  开户行:工商银行北京海淀支行  并请在汇款单简短附言中写上亚洲区域二维相关光谱学术会议以及您的姓名和单位。如果您届时因故不能出席会议,预交的会议注册费不退。  2. 本次会议住宿自理。距会场最近旅馆为北京大学中关新园,电话:010-62752288。请参会代表尽早预订。  五、会议报到地址:  地址:北京市海淀区成府路202号,北京大学化学与分子工程学院  电话:010-62757150  亚洲区域二维相关光谱学术会议组委会  北京大学化学与分子工程学院(代章)  2014年3月24日
  • 科学岛团队构筑新型二维磁性同质偏置器件
    近期,中科院合肥研究院强磁场中心盛志高研究员课题组与中国科学技术大学张振宇教授等人合作,成功研发了一种新型二维同质偏置器件。与三维同类器件相比,该二维偏置器件具有无老化、可延长、可恢复等特点,不仅为低维磁性器件设计和交换偏置效应机理的研究提供了新思路,且有望成为二维电子技术与装备中的核心磁性元器件。相关研究成果发表在国际期刊先进材料(Advanced Materials)上,并申请了发明专利。   二维范德瓦尔斯磁性材料,因其层状结构、无悬键表面、强磁各向异性等特性,为基础磁性研究和低维磁性器件开发提供了极佳的平台。但弱的层间耦合作用,极大限制了二维磁性材料的功能器件应用。因此,如何有效通过界面工程,实现强的磁交换作用(如交换偏置效应,ExB),已成为构建二维磁性器件的关键科学问题之一。   针对这一问题,盛志高课题组经过大量材料筛选与技术探索,最终发现通过单轴压力技术,可以将具有铁磁基态的二维铁锗碲(Fe3GeTe2)材料诱导成为具有铁磁-反铁磁共存的材料同质、磁性异质结构,且发现该结构具有实用级的交换偏置效应。这一压力诱导相变被磁光测试、高分辨透射电子显微镜测试、及第一性原理计算证实。由于该材料同质、磁性异质结构的铁磁-反铁磁耦合发生在同质结内部,其原子级平滑的磁界面使其交换偏置效应展现出无老化(non-aging)、可延长(extendable),可恢复(rechargeable)等三维器件中不存在的优良特性。这一结果为设计和开发高性能二维磁性器件开辟了一条新的途径,其优异的交换偏置特性为二维磁性器件的有效应用提供了机遇。   强磁场中心盛志高研究员和中国科学技术大学张振宇教授为本文的共同通讯作者。山西师范大学许小红团队,中科院合肥研究院固体所罗轩、强磁场中心孙玉平团队共同参与此项课题研究。该项研究获得了国家重点研发计划、国家自然科学基金、安徽省实验室方向基金、中科院合肥研究院院长基金、以及国家重大科技基础设施“稳态强磁场实验装置”(SHMFF)的支持。图1:(a)单轴加压处理后诱导FGT磁转变的示意图;(b)加压后FGT的磁光现象;(c)FGT无老化、可延长、可恢复的交换偏置效应示意图
  • 岛津推出二维液质杂质鉴定系统
    制药企业QA/QC 部门的液相检测方法中会经常使用非挥发性缓冲盐流动相(如磷酸盐缓冲溶液),但当进行液质联用分析时,流动相必须转换为适合于ESI(APCI)的挥发性流动相。而改变流动相很多时候会使得杂质峰的保留时间发生变化,甚至湮没在主峰中,因此,需要耗时耗力摸索新的分析方法。 为解决上述问题,近日,岛津公司在中国市场推出了岛津独有的LCMS-IT-TOF 的新应用系统&mdash &mdash 二维液质杂质鉴定系统。通过使用岛津二维液质杂质鉴定系统,无需改变原先的流动相分离条件,就可以将目标杂质从一维色谱中收集下来,在二维色谱中直接使用挥发性流动相进行MS 分析。如果同时配备IT-TOF,则可以通过多级高分辨质谱进行精确定性分析。 2D LC/MS 杂质鉴定系统流路图 二维液质杂质鉴定系统是基于Prominence 设计、用于LCMS-IT-TOF 前端的应用系统,配置包括LCMS-IT-TOF,Prominence 系列液相单元以及 &ldquo 二维液质杂质鉴定系统启动包&rdquo 。启动包中包括二维液相色谱质谱联用的控制软件及整套连接管路。 本系统特长 1)无需改变分析方法无需改变原有分析方法,系统就可以通过一维色谱分离,将目标杂质组分导入样品环;然后,二维色谱分离目标杂质,并通过提供准确和多级(n³ 2)的质谱数据来达到鉴别杂质的目的。 2) 二维方式实现全自动切换当液相色谱分析使用非挥发性盐流动相(如磷酸盐缓冲液),转换为液质联用分析时,需将流动相转换为挥发性流动相(不使用缓冲盐或使用挥发性缓冲盐)以适应大气压离子源。而本系统允许在一维分析中使用非挥发性盐流动相,在二维液质分析中使用挥发性流动相,自动实现流动相的在线改变。 3)可通过专用软件轻松使用该系统二维色谱分析通常需要复杂的指令程序来控制切换阀以收集目标杂质。在此系统中,通过简单的输入杂质保留时间,即可以自动创建时间程序来实现阀的切换等动作。当杂质的保留时间未知或者因为分析条件变化而改变时,也可手动控制阀来实现切换。 有关详情,敬请咨询岛津公司 · 北京分公司 (010) 8525-2310/2312· 浦西分公司 (021) 2201-3888· 广州分公司 (020) 8710-8661· 四川分公司 (028) 8619-8421· 沈阳分公司(024) 2341-4778· 西安分公司(029) 8838-6350· 乌鲁木齐分公司(0991) 230-6271· 昆明分公司(0871) 315-2986· 南京分公司(025) 8689-0258· 重庆分公司(023) 6380-6068· 深圳分公司(0755) 8287-7677· 武汉分公司(027) 8555-7910· 河南分公司(0371) 8663-2981 岛津用户服务热线电话:800-8100439 400-6500439 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 上海天美公布官方公众平台微信二维码
    上海天美官方公众平台微信已完成认证,欢迎各位专家、同行、同事积极订阅!~ 扫描以下 上海天美 二维码,速度关注。首先准备工具1、智能手机一部(这个是必须的)2、手机上装微信(这个也是必须的)具体操作步骤1、首先的注册微信客服端2、扫描二维码:操作方法:打开微信 朋友们 添加朋友扫描二维码 加为好友 关注成功 关于上海天美科学仪器有限公司 上海天美是由创建于1994年的上海天美科学仪器有限公司和2006年成立的上海天美生化仪器设备工程有限公司组成,它们都是天美(控股)有限公司的独资子公司。上海天美在上海、北京、广州、成都、沈阳、西安等地设立分公司。上海天美主要产品包括气相、液相、离子色谱仪、紫外/可见、原子吸收分光光度计、荧光光谱、电化学、酶标/洗板、超微量核酸蛋白测定仪、离心机、生命科学系列以及试剂、耗材和软件等,提供完整的实验室综合解决方案,为各行各业的客户服务。欲了解更多信息,请浏览公司网站:www.techcomp.com.cn 上海天美市场部2013年06月24日
  • 稳定高效的纳升二维分离技术-在线双反相色谱
    贾伟沃特世科技(上海)有限公司实验中心对于微量而且复杂的样品,如蛋白质组学样品、蛋白药物中的残留宿主细胞蛋白(HCP)等,不但需要高灵敏的纳升级液相,而且需要更为充分的分离。在线二维纳升分离技术(on-line 2D NanoLC)应运而生,并已成为微量复杂样品液质分析所必不可少的分离手段。 传统的纳升在线二维技术,一般采用强阳离子交换(SCX)作为第一维,反相色谱(RP)作为第二维的分离手段。这种方法是根据样品在盐溶液中的离子特性与疏水性,这两种属性间的正交关系实现的。但是SCX-RP技术在纳升级分离中却困难重重。困难主要来自SCX分离维度。在SCX分离中需要使用浓度较高的盐溶液作为流动相,但含盐流动相易发生盐析或导致样品在管路内沉淀,而纳升液相的管路内径又非常小(25-100微米)。因此,在实际运用SCX-RP分离时,经常出现管路阻塞而导致实验失败。 为此,除提供传统的SCX-RP分离技术外,沃特世创造性地开发了双反相二维分离方法。(RP-RP)。这种RP-RP技术不必使用高浓度盐溶液作为流动相,避免了离子交换分离易造成的管路阻塞问题,从而大大提高了纳升二维液相的系统稳定性和实用性。更令人兴奋的是,经过哈佛医学院的Jarrod A. Marto全面的实验对比发现,较SCX-RP方法, 运用RP-RP分离技术得到的液质分析结果更好(图1)[1] RP-RP双反相二维方法可以帮助科学家得到更多的蛋白质分析结果.这是因为:1、SCX方法使用的盐缓冲液易产生离子噪音背景,从而影响质谱数据质量;2、SCX分离效果取决于多肽所携带的电荷数,而多肽携带电荷数量类别有限,因此第一维SCX分离度较差,造成液质数据信息质量不高。图一R P-R P双反相分离技术在第一、第二维都使用了反相色谱,那么它是如何实现二维分离所必须的分离性质的正交呢?原来,经过研究发现,在不同pH值环境下,多肽的反相保留行为是不一样的(图2)[2]。根据这个性质,沃特世的科学家开发出了独有的RP-RP纳升在线二维系统——nanoACQUITY UPLC System with 2D-LC。这个系统的分离柱,使用了UPLC一贯的亚二微米颗粒填料,因此具有了UPLC的超高分离度等优点。此外,它还不需要分流就可以实现精准的纳升流速,可为实验室节省巨大的高纯度流动相购买费用及废液处理费用,而且更加环保。nanoACQUITY UPLC System with 2D-LC双反相二维系统优点总结如下:■ 较SCX-RP技术,使用RP-RP系统可得到更多的蛋白鉴定结果。■ RP-RP系统较SCX-RP系统更稳定、耐用。■ 与nano HPLC相比,nanoACQUITY UPLC具有UPLC超群的分离效果。■ 不分流实现精准的纳图二nanoACQUITY UPLC System with 2D-LC双反相在线二维系统结构及分析流程如图3,其中包括三根色谱柱:高pH反相柱、捕获柱、低pH反相柱。在此系统中,第一维色谱柱为高pH色谱柱。样品进入第一维色谱柱后,第一维梯度泵可按使用者要求,自动地阶梯式提高有机相比例,以将样品中不同疏水性肽段分批洗脱下来。从高pH反相柱上洗脱下的多肽会被富集柱捕获。每批次被富集的多肽,将在第二维泵的线性梯度模式下进入低pH反相分析柱,在这里经过充分分离后,样品将到达离子源,进入质谱分析器。 其中左下图为结构示意图。步骤①:样品被自动进样器采集后,在第一维梯度泵的推动下进入高pH色谱柱。步骤②:样品在第一维泵阶梯式梯度作用下,将一部分多肽冲出,后被捕获柱富集。其中第二维梯度泵通过施加9倍于第一维泵的水相流动相,将溶剂稀释为适合捕获柱富集的体系。步骤③:在六通阀切换后,第二维泵通过线性梯度,将多肽样品进行充分分离并送至质谱分析。在执行完步骤①后,步骤②与步骤③交替进行直到完成所需分析。双反相在线二维系统nanoACQUIT Y UP LC System with2D-LC已经在多肽的液质分析方面被广泛应用,帮助研究人员取得了众多极具价值的研究成果。图3. nanoACQUITY UPLC System with 2D-LC系统结构及分析流程图。参考文献(1) Zhou F, Cardoza JD, Ficarro SB, Adelmant GO, Lazaro JB, Marto JA. Online Nanoflow RP-RP-MS Reveals Dynamics of Multicomponent Ku Complex in Response to DNA Damage. J Proteome Res. 2010, 9, 6242-6255.(2) Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensionalseparation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 2005, 28, 1694–1703. 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # #联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 解决方案 | 全二维气质联用仪鉴别白酒风味组分
    背景介绍白酒是我国历史悠久的传统蒸馏酒,目前主要有以酱香型、清香型、浓香型、米香型四种香型为主的十二大香型白酒。由于原料及生产工艺的差异,不同香型白酒有着不同的风味组分特征,构成了白酒丰富多彩的风味特色。因此,白酒中的特征风味化合物分析已成为当今研究者的关注重点。方案简介随着科技的发展,白酒风味物质的分析方法逐渐由传统化学方法引向高端仪器分析。为了更好地支持白酒风味物质分析,禾信仪器秉承“做中国人的质谱仪器”发展理念,与中国食品发酵工业研究院标准和数字化研究发展部合作开展基于全二维气质联用仪(GGT 0620)等国际领先的白酒分析技术,推出白酒风味组分分析检测解决方案。方案以全二维气质联用仪(GGT 0620)为核心设备,搭载全自动智能进样平台、全新半导体制冷固态热调制器和海量化合物数据分析软件,开展白酒中风味物质的高通量定性鉴定、定量分析,将现代高新技术融合进庞大复杂的白酒风味成分体系研究中,逐渐揭开不同香型白酒所含风味物质的神秘面纱,从而科学地引导中国白酒行业的快速发展。全二维气质联用仪(GGT 0620)产品图片应用案例 01某浓香型白酒风味成分分析仪器配置参数部分测试结果风味成分定性分析下图是该浓香型白酒样品的全二维色谱图,通过自动峰检测,共检测到1864种挥发性有机物成分,化合物组成非常丰富,且不同种类的化合物(酯类、醇类、有机酸类)在全二维色谱图呈现规律性分布。某浓香型白酒样品的全二维色谱图风味化合物组成分析通过海量化合物数据分析软件(MDT)可以实现一键自动分析,一键完成数据自动分类及统计,确定该浓香型白酒中烷烃、烯烃、芳烃、酯类、醛类等类别化合物占比和主要风味成分,具体数据见下表。某浓香型白酒样品的各类化合物数量及占比表不同年份酒差异性分析通过对该浓香型白酒的不同年份酒统计分析,较好地实现了对三个储存年限的年份酒的鉴别。下图中绿色Y3代表储存3年,蓝色Y6代表储存6年,红色Y9代表储存9年,通过图示可以看出,Y3与Y6、Y9不同年份酒能达到很好区分。不同年份某浓香型白酒样品的聚类分析图酒越陈越香,白酒储存年限越长,陈味越突出,入口感觉越细腻。通过GGT 0620可以对不同存储年限的酒风味物质进行鉴别,有助于各大白酒厂商筛选出口感较好的陈年老酒。实验结论使用 GGT 0620 结合海量化合物数据分析软件对某浓香型白酒样品进行非靶向分析,共测得1864多种挥发性有机物成分。与此同时,有效完成了对该白酒主要风味成分的类别和占比分析,并对不同年份酒开展了准确鉴别分析,为浓香型白酒风味物质的研究和不同年份酒的鉴定提供了一种准确有效的分析方法。 02某清香型白酒挥发性成分分析仪器配置参数部分测试结果风味成分定性分析下图是九类清香型白酒样品的全二维色谱图,每类样品检测出400-700种挥发性有机物,总计检出1600多种挥发性有机物成分,其中以 2-3#样品中检测到的化合物种类最多,达到 609 种,化合物组成非常丰富。9个某清香型白酒样品的全二维色谱图风味化合物组成分析通过MDT数据处理软件对检测到的化合物组成进行统计分析,结果如下图,九类白酒样品中含量最高的化合物种类均是以癸酸乙酯、辛酸乙酯、月桂酸乙酯、己酸乙酯酯等为主的酯类化合物,相对含量都在50%以上。酮类、醇类、烯烃类及酸类化合物含量略低一些。某清香型白酒样品的各类化合物数量及占比表主成分物质分析PCA是常用的无监督统计方法,用于降低大数据集的维数,以揭示样本间的差异,它对复杂数据集能提供直观解释,并从中揭示出数据集中观测数据的分组、趋势以及离群。采用PCA方法对九类清香型白酒样品采集数据进行差异化分析,并经MDT软件分析处理后得到832个变量,按类别区别划分为九组进行PCA分析,得分图如下图所示。9个某清香型白酒样品的全二维色谱图实验结论使用 GGT 0620 结合化学计量学方法对九个清香型白酒样品进行非靶向分析,共测得 1600 多种挥发性有机物成分。Canvas 软件、MDT 软件可以联合处理和挖掘全二维气质联用数据,找出差异/相似化合物,最后通过商业化多元数据分析软件得到样品间的聚类关系,为区分不同类别的清香型白酒提供了一种快速、可靠的分析思路。 03某白酒样品中的氨基甲酸乙酯(EC)测定分析仪器配置参数部分测试结果某白酒样品中的风味成分定性分析下图是某白酒样品的全二维色谱图,通过自动峰检测,成功分离了上千种挥发性化合物,在选择离子模式下有助于从这个庞大的数据中找到目标物EC,并且白酒基质对目标物没有任何的影响。△ EC 和 D5-EC在白酒基质中二维色谱图△ EC 和 D5-EC在选择离子模式(M/Z 62,64)二维色谱图某白酒样品中的EC定量曲线分析按照实验方法依次从低浓度到高浓度对标准白酒样品溶液进行分析,在10-500μg/L的范围内,线性相关系数达到0.998,可以满足国标方法GB 5009.223-2014的要求。EC测定的标准曲线实验结论禾信仪器GGT 0620是分析白酒中EC的有力工具,分析过程不需要繁琐的人工操作以及衍生试剂和有毒有害试剂的消耗,同时可保留丰富的样品挥发性物质信息,有效减小基质效应的影响。此外,该实验也为白兰地、威士忌等高酒精浓度饮料酒中EC的定量测定提供了新方法,为发酵食品的安全生产提供了新思路。 04白酒标准化数据库建立指导目前,我国白酒风味研究还存在专业风味数据库缺乏的问题。在没有合适的谱图库的情况下,为了提高风味剖析的准确性和科学性,相关高校、科研院所及龙头生产企业都会分别购买几百种甚至上千种风味标准物质,但是相关资源共享还存在一定难度。基于全二维气质联用仪(GGT 0620),可以开展不同香型、相同香型、不同地区白酒样品的风味物质分析,完善升级中国白酒风味物质大数据库组分数量和相关信息,建立白酒的风味物质标准化数据库,为白酒真实性鉴别提供科学技术依据。总结禾信仪器白酒风味组分分析检测解决方案,既可以快速准确地研究庞大复杂的白酒风味成分体系,还可以监测白酒的关键性安全指标,实现白酒风味物质检测和安全监测的双重目标。未来,禾信仪器将聚焦更多高端质谱仪器,提供更多更专业化的白酒分析检测质谱解决方案,希望能为广大的白酒行业分析工作人员提供支持和帮助。
  • 二维磁性材料非线性光学研究取得重要进展
    p style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "据悉,近年来,二维磁性材料在国际上成为备受关注的研究热点。它们能将自发磁化保持到单原胞层厚度,为人们理解和调控低维磁性提供了新的研究平台,也为二维磁性与自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面有着重要应用价值。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "尽管二维磁性材料的铁磁性质已有研究,但反铁磁态由于不具有宏观磁化,材料体系整体对外不表现出磁性,加之样品既薄又小,其实验研究是领域内的一大难题。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "针对这一问题,近日,复旦大学物理系吴施伟课题组与华盛顿大学许晓栋课题组合作,在二维磁性材料双层三碘化铬中观测到源于层间反铁磁结构的非互易二次谐波非线性光学响应,并揭示了三碘化铬中层间反铁磁耦合与范德瓦尔斯堆叠结构的关联。北京时间8月1日凌晨,相关研究成果以《反铁磁双层三碘化铬中巨大的非互易二次谐波产生》(“Giant nonreciprocal second harmonic generation from antiferromagnetic bilayer CrI3”)为题发表于《自然》(Nature)杂志。/span/pp style="text-align: center text-indent: 2em "span style="font-family: " times new roman" "img style="max-width: 100% max-height: 100% width: 400px height: 273px " src="https://img1.17img.cn/17img/images/201908/uepic/4ab2a45d-ae2c-44ff-a0d7-2d4959a3a9a0.jpg" title="caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" alt="caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" width="400" height="273" border="0" vspace="0"//span/pp style="text-indent: 2em text-align: center "span style="font-family: " times new roman" font-size: 14px "双层三碘化铬 图片来自复旦大学物理系网站/span/pp style="text-align: justify "strongspan style="font-family: " times new roman" "将经典方法引入新领域 开辟广阔研究空间/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "研究工作中观测到的由层间反铁磁诱导的二次谐波响应让团队成员们非常兴奋,因为他们知道,这在二维材料的研究和非线性光学领域都具有重要的意义。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "“意义首先在于其独特性。”吴施伟介绍,迄今为止二维材料领域所研究的二次谐波大多由晶格结构的对称破缺引起。“对称破缺也就是破坏对称性,例如人的左右手原本是镜面对称的,如果一只手指受伤,那么镜面对称就破缺了。”而这种由磁结构产生的非互易二次谐波和前者有本质区别,从原理上就十分新颖。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "反铁磁材料由于没有宏观的磁矩,对外部的物理激励一般难以产生宏观的可测量的响应,对仅有几个原子层厚的二维反铁磁材料往往无能为力。“过去这个问题就像是灯光照不到的地方,一片黑暗无从下手。然而就是这样的一种‘暗’状态,现在能通过二次谐波的方式变‘亮’。这也是将一种经典的方法引入一个新领域的美妙所在。”吴施伟对此颇有感触。这种二次谐波过程对材料磁结构的对称性高度敏感,为二维磁性材料的研究开辟了广阔的研究空间。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "研究团队同时发现,双层反铁磁三碘化铬的二次谐波信号相比于过去已知的磁致二次谐波信号(例如氧化铬Cr2O3),在响应系数上有三个以上数量级的提升,比常规铁磁界面产生的二次谐波更是高出十个数量级。利用这一强烈的二次谐波信号,团队得以揭示双层三碘化铬的原胞层堆叠结构的对称性。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "吴施伟介绍,体材三碘化铬在高温下属于单斜(monoclinic)晶系,在低温下发生结构相变而变为菱形(rhombohedral)晶系,两者的差别在于范德瓦尔斯作用(一种原子或分子之间的相互作用力,相比于化学键的相互作用,范德瓦尔斯相互作用弱得多)的层间平移。但在寡层极限下,低温下的晶格堆叠结构还存在着争议。团队在实验中使用一束偏振光测量了材料在空间不同方向的极化,通过测量偏振极化的二次谐波信号,发现它与单斜晶格的堆叠结构都具备镜面对称性,这与国际上新近发表的理论计算结果一致,为研究二维材料层间堆叠结构与层间铁磁、反铁磁耦合的关联提供了新的实验证据和研究手段。/span/pp style="text-align: justify "strongspan style="font-family: " times new roman" "创新研发实验系统 实现基础研究突破/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "研究团队在实验中探测的反铁磁材料仅有两个原胞层厚度(厚度在2nm以下),而在此条件下,中子散射等测量手段很难奏效。针对这一问题,团队基于过去多年在二维材料非线性光学研究领域的积累,运用了光学二次谐波这一方法来探测二维磁性材料的磁结构与相关特性。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "光学二次谐波过程对体系的对称性高度敏感,光学二次谐波的探测方法从体系的对称性入手,能够灵敏地探测体系的反铁磁性。与通常探测磁性的实验手段不同,它不依赖于材料的宏观磁性,而取决于微观磁结构造成的对称破缺。双层三碘化铬在反铁磁态下,其磁结构不但打破了时间反演对称性,也同时打破了空间反演对称性,由此产生强烈的非互易二次谐波响应。当体系升至转变温度以上、或施加面外磁场拉为铁磁态后,磁结构的对称性却发生了改变,这一二次谐波信号也随之消失。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "自2017年至今,两年的协力共进浇灌出如今的成果。团队首先利用实验室已有的无液氦可变温显微光学扫描成像系统进行了初步测量,但由于该系统没有磁场,很多关键的实验测量受到了限制。为解决这一问题,课题组成员攻坚克难,利用一套无液氦室温孔超导磁体,自主研发搭建了一套无液氦可变温强磁场显微光学扫描成像系统,并借助新系统实现强磁场下的光学测量,完成了关键数据的探测。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "据了解,该研究工作的合作团队还包括香港大学教授姚望、卡耐基梅隆大学教授肖笛、华盛顿大学教授曹霆、美国橡树岭国家实验室研究员Michael McGuire,以及我系教授刘韡韬、陈张海、高春雷等。吴施伟和许晓栋为文章的通讯作者,我系博士研究生孙泽元和易扬帆为共同第一作者。研究工作得到自然科学基金委、科技部重大研究计划和重点研发专项计划等项目经费的支持。/span/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制