瑞典SKF 143-011-315双回路齿环泵单元是一款专为高要求润滑系统设计的先进设备,结合了SKF在润滑技术领域的深厚积累与卓越创新。以下是对该产品的详细介绍: 一、产品概述 SKF 143-011-315双回路齿环泵单元,作为SKF齿轮泵系列中的高端产品,采用了独特的双回路设计,能够同时满足两个独立润滑点的需求。该泵单元以其高效能、高可靠性和易于维护的特点,广泛应用于各种工业领域的润滑系统中。 二、主要特点 双回路设计:该泵单元的最大亮点在于其双回路设计,这一设计使得泵能够同时向两个润滑点精确、稳定地输送润滑剂。这种设计不仅提高了系统的灵活性,还确保了各个润滑点都能得到充分的润滑,从而延长了设备的使用寿命。 高效能:SKF 143-011-315双回路齿环泵单元采用了高效能的齿轮泵技术和先进的电机驱动系统,能够在低能耗下提供稳定的流量和压力输出。这使得该泵单元在运行时能够保持高效率,降低了运行成本。 高可靠性:SKF以其卓越的品质控制体系和生产工艺,确保了该泵单元的高可靠性。无论是在恶劣的工况环境下,还是在连续运行和高负载工况下,该泵单元都能保持稳定的性能输出,确保设备的正常运行。 易于维护:该泵单元的设计考虑了维护的便捷性,使得用户能够轻松地进行日常维护和保养。同时,SKF还提供了全面的技术支持和售后服务,为用户提供了无忧的使用体验。 广泛的应用领域:SKF 143-011-315双回路齿环泵单元广泛应用于各种需要集中润滑或循环润滑的工业领域,如制造业、采矿与冶金、能源行业以及交通运输等。在这些领域中,该泵单元以其卓越的性能和可靠的品质赢得了用户的广泛好评。 三、总结 瑞典SKF 143-011-315双回路齿环泵单元以其双回路设计、高效能、高可靠性和易于维护的特点,成为了工业润滑领域的佼佼者。无论是在提高设备运行效率、延长设备使用寿命还是降低运行成本方面,该泵单元都展现出了卓越的性能和优势。对于需要高精度、高可靠性润滑系统的用户来说,SKF 143-011-315双回路齿环泵单元无疑是一个理想的选择。
[align=center][color=#990000][b]超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代[/b][/color][/align][align=center][color=#990000]Unwind Tension Controller for Dancer Input with Tension Indication—— Domestic Substitution of Montalvo Tension Controller[/color][/align][align=center][img=超高精度浮辊和张力双回路控制器:Montalvo张力控制器的国产替代,690,542]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092010572560_1350_3221506_3.jpg!w690x542.jpg[/img][/align][color=#990000]摘要:针对目前市场上张力控制器普遍存在的测控精度较差、功能单一、适用传感器类型少和PID参数无法自整定等问题,本文分析了国外浮辊和张力双通道控制器的技术特点。对标国外高端张力控制器产品,本文重点介绍了国产替代产品的性能,国产张力控制器同样具有浮辊和张力双回路控制功能,但由于每个通道都采用了24位AD、16位DA和双精度浮点运算,可以实现超高精度的张力控制,而所具有的PID自整定功能则使得操作更为快捷方便。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][b]一、问题的提出[/b][/color][/size]张力控制器主要应用于冶金,造纸,薄膜,染整,织布,塑胶,线材等设备上,是一种实现恒张力或者锥度张力控制的自动控制仪表,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。典型的张力控制器主要由AD,DA转换器和高性能微处理器等组成,张力控制器与张力传感器和电气比例阀组成典型的张力控制系统。在具体张力控制过程中,张力控制器是根据张力传感器和A/D模式转换器测量到的张力与设定的目标张力相比较后,经微处理器PID运算自动调整D/A输出从而改变电气比例阀的输出压力来实现卷料的张力调节,可广泛用于各种需对张力进行精密测控的场合,具有使用灵活和广泛的适用性。目前市场上有各种张力控制器,但在高精度张力控制过程中,普遍存在以下不足:(1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。(2)输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制显然无法实现。(3)浮点运算精度较差:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较差,从而使得输出百分比的最小调节量也只能为0.1%,根本无法进行电气比例阀输出压力的精细调节,进而无法实现超高精度的张力控制。(4)单通道控制:绝大多数张力控制器尽管可以实现如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制模式。而个别国外的张力控制器产品,如Montalvo的Z4UI双回路控制器则能实现放卷扭矩和浮辊位置的同时控制。(5)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限。(6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适PID则显着尤为重要,但目前很多张力控制器并没有这项PID参数自整定功能。针对上述目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制以及相关控制器的国产替代,本文将对国外高端张力控制器技术特点进行分析,并对标国外产品介绍研发的新型浮辊和张力双回路超高精度控制器产品。[b][size=18px][color=#990000]二、Montalvo公司 Z4UI 双回路张力控制器技术特点分析[/color][/size][size=18px][color=#990000][/color][/size][/b]蒙特福Montalvo公司是国外著名的张力控制相关产品生产厂商,其最具特点的控制器产品是Z4UI浮辊和张力双回路控制器,我们将对标此张力控制器进行分析。蒙特福Z4UI浮辊和张力双回路控制系统结构如图1所示,控制器内置了张力指示器,能够同时检测浮辊电位计信号和张力检测器的张力信号,从而提供高精度的张力控制。它集合了浮辊吸收缓冲张力波动的功能和张力检测器精确、稳定的检测优势,通过渐进式“Progressive“ PID 控制电路调节放卷制动器的转矩输出,保持浮辊臂的位置不变来实现张力控制。模拟式张力表显示卷材的张力大小,操作员可直接监视张力稳定性,并根据张力表显示的实际卷材张力,来调节浮辊臂上的载荷从而保持理想张力。[align=center][color=#990000][img=01.Z4UI浮辊和张力双回路控制.jpg,690,275]https://ng1.17img.cn/bbsfiles/images/2022/10/202210092013010509_6406_3221506_3.jpg!w690x275.jpg[/img][/color][/align][align=center][color=#990000]图1 Z4UI双回路控制器在浮辊和张力控制系统中应用的结构示意图[/color][/align]由此可以看出,蒙特福Z4UI控制器是个典型的双回路闭环控制器。其中,一个回路是通过检测浮辊位置信号(DPS-1位置传感器或浮辊电位器)来控制第一个电气比例阀(I/P转换器)压力输出,由此来调整气缸位置将气压转换成扭矩输出达到张力调节。另一个回路通过检测卷径信号(接近开关或超声波探头)来控制第二个电气比例阀(I/P转换器)压力输出,由此来调整放卷位置达到张力调节。由此可见,蒙特福Z4UI双回路控制器是通过同时对两个变量的检测和控制来实现高精度的放卷调节。蒙特福Z4UI控制器的另外一个特点是采用RS-232与上位机(PLC或PC)进行通讯,采用控制软件进行所有操作,减少了人工界面操作的复杂程度。[b][size=18px][color=#990000]三、国产双回路超高精度张力控制器[/color][/size][/b]从上述蒙特福Z4UI双回路张力控制器技术特点可以看出,双回路张力控制器的核心技术内容就是一个非常典型的双通道PID控制器,张力的控制则是采用外置传感器实现电气比例阀的串级形式的PID控制,因此,双回路张力控制器的技术特征就是双通道的电气比例阀串级PID控制。基于此分析,结合我们在真空压力方面进行电气比例阀超高精度串级PID控制的成功经验,我们可以将通用型的VPC-2021系列PID调节器(单通道和双通道)应用于张力控制中,由此可完全实现蒙特福Z4UI双回路张力控制器的替代。VPC-2021-2系列双通道PID调节器是标准形式的工业用控制器,具有96×96mm、96×48mm和48×96mm三种规格,但其最大优点是具有超高精度检测和控制能力,其中具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,具备0.01%的最小输出百分比。用于张力控制的双通道超高精度PID控制器如图2所示,电气接线如图3所示,主要技术指标如下:[align=center][color=#990000][img=VPC 2021-2超高精度PID控制器,600,266]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101508335313_3719_3221506_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#990000]图2 VPC 2021-2系列双通道张力控制器[/color][/align](1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。(2)独立双回路控制,每路控制输出刷新率50ms,双通道独立的输入和输出,双回路报警功能可以多功能应用,每通道都具备独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。(3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置极可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。(4)双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。(5)支持数字和模拟远程操作功能,支持标准MODBUS RTU 通讯协议。(6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能。每个通道采用独立的PID参数,且可独立的进行PID参数自整定。(7)带传感器馈电供电功能(24V,50mA)。(8)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。(9)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。(10)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[align=center][img=,690,276]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101726466183_8818_3221506_3.png!w690x276.jpg[/img][/align][align=center][color=#990000]图3 VPC 2021-2系列双通道控制器电气连接图[/color][/align]从上述国产控制器技术指标可以看出,国产VPC 2021-2系列双通道控制器的性能和功能要远优于蒙特福Z4UI控制器,并具有强大的拓展能力,完全可以实现对蒙特福Z4UI控制器的替代。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align][align=center][/align]
摘 要:介绍了AMC系列多回路智能监控单元在智能配电回路中的的应用,将众多配出回路的测量、计量、开关状态监测、控制和数字通讯等功能于一体,大大简化了系统的设计,降低了设备成本,简化了用户投资,方便了用户的使用和检修。具有功能强大、性价比高、方便用户使用、节约用户投资等优点关键字:AMC系列智能监控单元,简化系统,降低投资,性价比高0 引言 随着配电系统的发展,智能配电回路中各种仪表向集成化和网络化发展的方向是越来越清晰。目前单回路集成化的优势已经出现,但是对多个回路的集成还未产生。 本文将要介绍的是最新开发的AMC系列多回路智能监控单元在智能配电出线回路中的应用。该系列监控单元主要应用于多个配电出线回路的电参量的监测,它将回路中的母线电压、多个配出回路的电流、功率、电能和各个回路的开关状态集中测量、显示、并通讯输出,实现了对监控要求较简单的配电出线回路的集中测量和监视,一个AMC多回路监控单元就能实现上述多个回路的监测功能,大大方便了系统的接线、安装、调试;节约了用户的投资,降低了系统成本等优点,必将引领国内外智能配电领域的发展方向,成为智能配电中出线回路监控系统的发展主流。1 技术背景 在传统的智能配电出线回路中,要实现对回路中每个负载的各种电参量的全面监测,一般有以下2种组网方式(以三相为例): 该方案在三相智能配电出线回路中是比较常见的一种方案。在对配电出线回路负载的监控中,用户一般需要监控各路负载的各种电参量,包括每路负载的电流、电压、功率、电能、开关状态等。因此在设计方案时,针对每种电参量,用户需要单独配置可以测量各种电参量的仪表,由图1可以看到,为了监控每路负载,用户必须为每路负载配置1个电流表、1个电压表、1个功率表、1个电能表、1个I/O模块。而且为了实现网络化管理,每个仪表还必须是能够进行通讯的。由图1 可以看出,用于监测每路三相负载的电测仪表达到5个。采用该方案的缺点是需要多个仪表才能监控每路负载的各种电参量,监控路数越多,使用仪表越多,用户安装、维修、管理很不方便。且投资较大。优点是单个仪表出故障不影响对配电回路的其他电参量的监控,测量的精度较高,实时性较强。 方案2:(图2) 该方案在三相智能配电出线回路中也是比较常见的一个方案。该方案较上面方案的先进之处在于,用于监控每个回路电参量的仪表由1个多功能的智能仪表代替了多个仪表,1个多功能仪表集测量电流、电压、功率、电能和开关量输入输出于一体,并可进行组网通讯。该方案的优点是每路负载只需配置1个仪表即可实现对该路负载的所有电参量的测量和控制,组网方便,用户投资较方案1少,安装、维护、管理较为方便,测量的精度较高,实时性较强。缺点是一旦仪表出线故障则无法对该负载继续监控。 以上2中方案在智能配电出线回路中是常用的,但是,以上2中方案的缺点是显而易见的,投资成本太大是一个主要的缺点。且接线、安装、调试等都不方便。2 AMC系列智能监控单元技术指标 AMC系列智能监控单元是针对出线回路中一般回路的监控要求,经过充分调研并结合实际需求开发的多回路智能配电监控装置。该监控单元分为单相和三相2大系列,其型号分类见表1。其技术指标见表2。外型及安装尺寸见图3,一般安装在配电柜内。3 AMC系列智能监控单元的设计简介 AMC系列多回路智能监控单元的原理设计上,采用多个电子切换开关+1个电能计量芯片+1个CPU来实现对多个回路的监测。其原理框图见图4。 核心器件CPU选用飞思卡尔公司的MC9S08AW32型单片机,它是第一款基于高度节能型S08核的器件,片上资源丰富,抗干扰能力突出。内含32K字节用户程序空间,片上集成2048字节RAM,支持BDM片上调试功能,片内集成看门狗电路。 电能计量芯片采用ADI公司的高精度三相电能测量芯片ADE7758,适用于各种三相电路(不论三线制或者四线制)中测量有功功率、复功率、视在功率。该IC内嵌了高精度的模数转换器和固定模式的数字处理信号处理器(DSP),具有数字积分、数字滤波和具有众多实用电能监测、计量功能,是新一代高性能全数字电能表的理想芯片。 电子开关采用双四选一的CD4052高速电子开关。在单片机的控制下,实现在不同电流信号之间的高速切换。 多路电流信号经电子开关进入电能芯片,结合母线电压即可由电能芯片测得多个回路的各种电参量。4 AMC系列智能监控单元的应用4.1 典型应用 图5为AMC系列三相多回路智能监控单元的典型应用图。在应用中,出线回路中的3个三相负载的所有电参量测量都由1个AMC三相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。 图6为AMC系列单相多回路智能监控单元的典型应用图。在应用中,出线回路中的9个单相负载的所有电参量测量都由1个AMC单相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。4.2 应用案例 图7是江苏某广电大厦0.4kV低压配电出线图。在该设计图中,每个单相负载的电流测量采用CL72-AI(测量单相电流)表来实现,每个三相负载的电流测量由CL72-AI3来实现(测量三相电流)。由图可以看出,该出线回路总共要使用12个仪表。 图8是采用AMC多回路监控单元后,针对图7系统所做的修改。由图8可以看出,1个AMC16-1E9代替了9个CL72-AI,1个AMC16-3E3代替了3个CL72-AI3,大大简化了系统,并可同时检测母线电压、每个出线回路的电能,并可利用通讯接口,实现广电大厦的内部电能计量、考核、管理。5 结语 AMC系列产品的功能强大,单个仪表能够测量多个回路负载的多种电参量。对比图7和图8两种设计方案,采用AMC系列多回路智能监控单元,能够大大简化系统的设计方案,与传统方案相比,降低用户的投资成本,方便了系统的接线、安装、调试、维护等优点。
随着配电系统的发展,智能配电回路中各种仪表向集成化和网络化发展的方向是越来越清晰。目前单回路集成化的优势已经出现,但是对多个回路的集成还未产生。 本文将要介绍的是最新开发的AMC系列多回路智能监控单元在智能配电出线回路中的应用。该系列监控单元主要应用于多个配电出线回路的电参量的监测,它将回路中的母线电压、多个配出回路的电流、功率、电能和各个回路的开关状态集中测量、显示、并通讯输出,实现了对监控要求较简单的配电出线回路的集中测量和监视,一个AMC多回路监控单元就能实现上述多个回路的监测功能,大大方便了系统的接线、安装、调试;节约了用户的投资,降低了系统成本等优点,必将引领国内外智能配电领域的发展方向,成为智能配电中出线回路监控系统的发展主流。
AMC系列多回路监控单元在智能配电回路中的应用安科瑞 蔡昀羲摘 要:介绍了AMC系列多回路智能监控单元在智能配电回路中的的应用,将众多配出回路的测量、计量、开关状态监测、控制和数字通讯等功能于一体,大大简化了系统的设计,降低了设备成本,简化了用户投资,方便了用户的使用和检修。具有功能强大、性价比高、方便用户使用、节约用户投资等优点关键字:AMC系列智能监控单元,简化系统,降低投资,性价比高0 引言 随着配电系统的发展,智能配电回路中各种仪表向集成化和网络化发展的方向是越来越清晰。目前单回路集成化的优势已经出现,但是对多个回路的集成还未产生。 本文将要介绍的是最新开发的AMC系列多回路智能监控单元在智能配电出线回路中的应用。该系列监控单元主要应用于多个配电出线回路的电参量的监测,它将回路中的母线电压、多个配出回路的电流、功率、电能和各个回路的开关状态集中测量、显示、并通讯输出,实现了对监控要求较简单的配电出线回路的集中测量和监视,一个AMC多回路监控单元就能实现上述多个回路的监测功能,大大方便了系统的接线、安装、调试;节约了用户的投资,降低了系统成本等优点,必将引领国内外智能配电领域的发展方向,成为智能配电中出线回路监控系统的发展主流。1 技术背景 在传统的智能配电出线回路中,要实现对回路中每个负载的各种电参量的全面监测,一般有以下2种组网方式(以三相为例): 方案1:(图1)http://www.acrel.cn/cn/download/common/upload/2011/02/24/152038p9.jpg图 1 该方案在三相智能配电出线回路中是比较常见的一种方案。在对配电出线回路负载的监控中,用户一般需要监控各路负载的各种电参量,包括每路负载的电流、电压、功率、电能、开关状态等。因此在设计方案时,针对每种电参量,用户需要单独配置可以测量各种电参量的仪表,由图1可以看到,为了监控每路负载,用户必须为每路负载配置1个电流表、1个电压表、1个功率表、1个电能表、1个I/O模块。而且为了实现网络化管理,每个仪表还必须是能够进行通讯的。由图1 可以看出,用于监测每路三相负载的电测仪表达到5个。采用该方案的缺点是需要多个仪表才能监控每路负载的各种电参量,监控路数越多,使用仪表越多,用户安装、维修、管理很不方便。且投资较大。优点是单个仪表出故障不影响对配电回路的其他电参量的监控,测量的精度较高,实时性较强。 方案2:(图2)http://www.acrel.cn/cn/download/common/upload/2011/02/24/152058jp.jpg图 2 该方案在三相智能配电出线回路中也是比较常见的一个方案。该方案较上面方案的先进之处在于,用于监控每个回路电参量的仪表由1个多功能的智能仪表代替了多个仪表,1个多功能仪表集测量电流、电压、功率、电能和开关量输入输出于一体,并可进行组网通讯。该方案的优点是每路负载只需配置1个仪表即可实现对该路负载的所有电参量的测量和控制,组网方便,用户投资较方案1少,安装、维护、管理较为方便,测量的精度较高,实时性较强。缺点是一旦仪表出线故障则无法对该负载继续监控。 以上2中方案在智能配电出线回路中是常用的,但是,以上2中方案的缺点是显而易见的,投资成本太大是一个主要的缺点。且接线、安装、调试等都不方便。2 AMC系列智能监控单元技术指标 AMC系列智能监控单元是针对出线回路中一般回路的监控要求,经过充分调研并结合实际需求开发的多回路智能配电监控装置。该监控单元分为单相和三相2大系列,其型号分类见表1。其技术指标见表2。外型及安装尺寸见图3,一般安装在配电柜内。表 1 产品型号及功能http://www.acrel.cn/cn/download/common/upload/2011/02/25/161746lo.jpg表 2 技术指标http://www.acrel.cn/cn/download/common/upload/2011/02/25/161757ca.jpghttp://www.acrel.cn/cn/download/common/upload/2011/02/25/161813uv.jpg图 33 AMC系列智能监控单元的设计简介 AMC系列多回路智能监控单元的原理设计上,采用多个电子切换开关+1个电能计量芯片+1个CPU来实现对多个回路的监测。其原理框图见图4。http://www.acrel.cn/cn/download/common/upload/2011/02/21/104235r4.jpg图 4 核心器件CPU选用飞思卡尔公司的MC9S08AW32型单片机,它是第一款基于高度节能型S08核的器件,片上资源丰富,抗干扰能力突出。内含32K字节用户程序空间,片上集成2048字节RAM,支持BDM片上调试功能,片内集成看门狗电路。 电能计量芯片采用ADI公司的高精度三相电能测量芯片ADE7758,适用于各种三相电路(不论三线制或者四线制)中测量有功功率、复功率、视在功率。该IC内嵌了高精度的模数转换器和固定模式的数字处理信号处理器(DSP),具有数字积分、数字滤波和具有众多实用电能监测、计量功能,是新一代高性能全数字电能表的理想芯片。 电子开关采用双四选一的CD4052高速电子开关。在单片机的控制下,实现在不同电流信号之间的高速切换。 多路电流信号经电子开关进入电能芯片,结合母线电压即可由电能芯片测得多个回路的各种电参量。4 AMC系列智能监控单元的应用4.1 典型应用 图5为AMC系列三相多回路智能监控单元的典型应用图。在应用中,出线回路中的3个三相负载的所有电参量测量都由1个AMC三相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。http://www.acrel.cn/cn/download/common/upload/2011/02/24/152457rk.jpg图 5 图6为AMC系列单相多回路智能监控单元的典型应用图。在应用中,出线回路中的9个单相负载的所有电参量测量都由1个AMC单相多回路监控单元来实现。并带有Modbus通讯输出,供用户远程监测和控制。http://www.acrel.cn/cn/download/common/upload/2011/02/24/1525120s.jpg图 64.2 应用案例 图7是江苏某广电大厦0.4kV低压配电出线图。在该设计图中,每个单相负载的电流测量采用CL72-AI(测量单相电流)表来实现,每个三相负载的电流测量由CL72-AI3来实现(测量三相电流)。由图可以看出,该出线回路总共要使用12个仪表。http://www.acrel.cn/cn/download/common/upload/2011/02/25/161826ga.jpg图 7 图8是采用AMC多回路监控单元后,针对图7系统所做的修改。由图8可以看出,1个AMC16-1E9代替了9个CL72-AI,1个AMC16-3E3代替了3个CL72-AI3,大大简化了系统,并可同时检测母线电压、每个出线回路的电能,并可利用通讯接口,实现广电大厦的内部电能计量、考核、管理。http://www.acrel.cn/cn/download/common/upload/2011/02/25/161834h1.jpg图 85 结语 AMC系列产品的功能强大,单个仪表能够测量多个回路负载的多种电参量。对比图7和图8两种设计方案,采用AMC系列多回路智能监控单元,能够大大简化系统的设计方案,与传统方案相比,降低用户的投资成本,方便了系统的接线、安装、调试、维护等优点。
我单位纯化水循环回路,有时用户不用水,回路循环中发现电导率为:[color=black][font=新宋体]控制值[/font][/color][font=新宋体]≤[/font][font=新宋体]3 µ S/cm,实际会升高到[color=black][font=新宋体]控制值 [/font][/color][font=新宋体]6[/font][font=新宋体] µ S/cm,不知道何原因? [/font][/font]
?溶解氧的测定通常使用溶解氧测定仪。?这种仪器能够通过不同的测量原理来准确测定水中溶解氧的含量。 溶解氧测定仪的工作原理基于氧透过隔膜被工作电极还原,产生与氧浓度成正比的扩散电流,通过测量此电流,得到水中溶解氧的浓度。这种仪器通常由传感器和显示仪表两部分组成,传感器部分由金电极和银电极或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路?。
原油PVT测定仪 哪家型号比较好点 求推荐
有没有哪位大侠提供一下关于进口原油盐含量测定仪的相关信息,本人想了解,谢谢!
回路校验仪是专门为毫安回路提供校准、检验、故障诊断等完整便捷的解决方案的手持便携式仪器。回路校验仪具有小巧、坚固、可靠,便于携带和手持的特征,具有“三高”即高精度、高分辨率、高可靠性的特征。回路校验仪是对电流回路进行校准、维修和维护的,高性能解决方案,新型的快速感应旋钮使其非常快速、易用、长寿命。 回路校验仪输出采用全数字输入方式,操作简单,并有中文提示,测量时可选择最小、最大、平均、保持和相对测量模式。回路校验仪可以输出电流给变送器及其他设备,也可以仿真一个变送器输出电流独有功能,测量电压,通过已设定的负载电阻,自动算出回路电流。回路校验仪方便了测量,不必断开线路,保证了回路的安全,对整个测量过程对负载电流几乎没有影响,能够自动量程转换、量程宽,可有效提高精度。 回路校验仪可模拟变送器的输出、可进行开关的通和断测量、可测量交直流电压、电阻、频率、毫伏、交直流电流、二极管,特别适合现场过程回路的校验、维修和故障诊断。回路校验仪可它广泛应用于石油化工、冶金、电厂、轻工、建材、环保等领域。
[font=Encryption][color=#898989]摘要:[/color][/font][font=Encryption][color=#666666] 高含蜡原油生产时,油井井筒结蜡的影响因素很多也很复杂,仅通过对油样结蜡实验分析或者井筒结蜡厚度的理论分析进行结蜡规律研究比较片面,现场井筒蜡样实验分析及不同气油比压力下结蜡规律实验是必要的补充.以安塞油田高平2井区长10油层原油及蜡样为研究对象,通过黏温曲线测定析蜡温度、原油全组分实验分析、蜡样全组分实验分析、不同气油比和压力条件下实验分析、不同产液量和含水率的理论计算分析等多种手段,全面综合地研究和认识其结蜡规律,为制定清防蜡措施提供了更详实的依据.[/color][/font]
摘 要:介绍一个基于ADE7758和MC9S08AW32方案的智能监控单元的设计方法,详细说明了设计原理、硬件构成以及软件设计的方法,该装置能够实现最多3个三相回路(或9个单相回路)、18路开关量信号的监控;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化、网络化及集成化发展的需求。关键字:多回路,智能监控单元,RS485Abstract: A design of hardware and software platform for multiloop monitoring device based on ADE7758+MC9S08AW32, the design principle , hardware configuration and flow of softwave were described in detail . This device can implement monitor at most 3 loop of 3-phase 4-wire (or 9 single loop) , 18 on-off signal ; with RS485 and PC ,can achieve data and status messages send , meet the evolutive requirment of intelligentize , network and integration in low voltage power distribution.Key words: multiloop , aptitude monitoring device ,RS4850 引言 在配电系统领域,智能化和网络化是一个主流的发展方向,但是在实际使用中,若每一个配电回路都安装智能化的网络监测仪表,用户的硬件投资成本是非常大的,鉴于此,集成化又将是一个发展的方向,即将多个配电回路的电参量测量由一个智能仪表来实现。因此,一种设计先进、可靠性高、测量精度高的多回路智能监控单元的出现,能够在保证实现用户测量要求的同时,大大降低用户的硬件投资成本和使用成本。 本文介绍一种AMC系列多回路智能监控单元(见图1)的设计方法,最多实现3个三相回路(或9个单相回路)的电参量测量;结合RS485总线技术及上位机软件,可实现数据及状态信息远传,满足低压配电智能化、网络化及集成化的发展需求。1 AMC多回路监控单元技术特点 AMC多回路监控单元主要应用于多个配出回路的电参数的监测,它将回路中的母线电压、多个配出回路的电流、功率、电能和各个回路的开关状态集中测量、显示、并具有通讯输出,实现了对监控要求较简单的配电出线回路的集中测量和监视。一个AMC多回路监控单元就能完成实现上述多个回路的监测功能,大大方便了系统的接线、安装、调试;节约了用户的投资,降低了系统成本。具体型号及产品功能见表1。 表1 产品型号及功能 型号功能应用单相AMC16-1I99路单相I、ULN、RS485/Modbus9个单相回路的电参数监测、开关监测、并可实现通讯AMC16-1E99路单相I、ULN、kW、kWh 、RS485/ModbusAMC16-1E9/K9路单相I、ULN、kW、kWh、RS485/Modbus、18路DI、1路DO三相AMC16-3I33路三相I、U、RS485/Modbus3个三相回路的电参数监测、开关监测、并可实现通讯AMC16-3E33路三相I、U、kW、kWh、RS485/ModbusAMC16-3E3/K3路三相I、U、kW、kWh、RS485/Modbus、18路DI、1路DO2 系统结构 整体系统由中央处理单元、电源、交流采样运算、人机界面、开关量控制、通讯接口模块等构成,装置硬件结构如图2所示。2.1 中央处理单元专用电能芯片 中央处理器采用Freescale公司的高性能处理器MC9S08AW32。MC9S08AW32是Freescale公司一款基于S08内核的高度节能性处理器。是第一款认可用于汽车市场的微控制器。可应用在家电、汽车、工业控制等高度集成的高性能器件。具有业内最佳的EMC性能。 CPU总线频率最高可达20MHz,最高运行速率可达40MHz。丰富的片内资源: 32K Flash存储器,内部时钟发生器,带有8个可编程通道的定时器,10位、16通道ADC,双SCI口、丰富的I/O口、SPI、I2C等接口,极大地方便了硬件的扩展。并且支持BDM片上调试方式。2.2 电源 采用的电源模块为通用+5V开关电源模块。电路原理见图3。该电源模块输入电压为AC85V~265V或DC100V~350V,输入频率45Hz~60Hz,输出电压稳定、故障率小,输出纹波 1%,转换效率≥75%。具有过压、过流保护。该模块经实际现场使用,具有很高的稳定性、可靠性和抗干扰能力。2.3 交流采样及运算 交流采样运算单元包括交流采样和专用电能芯片。 系统的母线电压经电压互感器、采样电路、滤波电路后,电压信号进入专用电能芯片的电压通道。 多路负载的各路电流经电流互感器、采样电路、滤波电路后,电流信号进入高速信号切换开关的输入通道。由高速信号切换开关的通断来控制各路负载的电流信号进入电能芯片的电流通道。 专用电能芯片采用美国ADI公司的高精确度三相电能测量芯片ADE7758。该芯片的测量精度高,功能强大。带有一个串行口,两路脉冲输出,集成了数字积分、参考基准电压源、温度敏感元件等,有可用于有功功率、复功率、视在功率、有效值的测量以及以数字方式校正系统误差(增益、相位和失调等)所必须的信号处理电路。该芯片适用于各种三相电路(不论三线制或者四线制)中测量有功功率、复功率、视在功率。2.4 人机界面 人机界面采用LED数码显示。系统采用2排四位LED数码管加1排6位数码管显示各个回路的电参量,其显示的数据含义由红色LED发光二极管指示。其默认显示方式为循环显示各个回路的电参量,用户也可根据实际需要进行设置。电参量的显示范围0~9999,并在编程状态下显示菜单及参数,见图4仪表界面。数码管显示采用动态扫描方式,其驱动电路使用一片74HC595加三极管构成。2.5 开关量控制模块 开关量控制模块由开关量输入和告警输出组成,电路原理见图5。开关量输入经光电耦合器连接到CPU。告警输出由GPIO口经光电耦合器连接到输出继电器。开关量输入共设有18路,分别监测3个三相回路的分闸、合闸状态。设有1路告警输出,其告警条件可任意设置,只要满足一个设定的条件就会输出告警信号。2.6 通讯接口模块 3 实现功能及原理 本设计的主要目的就是采用单个电能芯片来实现对多个回路负载的电流、电压、功率、电能等参数的测量。考虑到成本和性能的要求,本设计采用的方案是1个电能芯片加多个电子开关,来实现对3个三相回路的各种电参量的测量和监测。 该方案的实现方式为,将回路的母线电压接入电能芯片ADE7758的电压通道,多路负载的电流通过由电子开关在CPU的控制下进行顺序分时切换,使ADE7758能够分时按顺序对各路负载进行电参量的测量及运算,并将所测得的数据由CPU进行各种处理。 监控单元主机结构分为电源、主板和显示板3大板块。其中电源板主要是开关电源、通讯和开关量的元器件布置,主板主要是采样运算电路、CPU及
大家有知道智能灰熔点测定仪的吗?哪家生产厂家质量好啊?
下面介绍几种回路电阻测试仪的用途 1、回路电阻测试仪:接地电阻表 用途及适用范围:接地电阻适用直接测量各种接地装置的接地电阻值,亦可供一般低电阻的测量,四端钮(0~1~10~100Ω规格)还可以测量土壤电阻率.。 2、回路电阻测试仪:单钳回路电阻测试仪 单钳回路接地电阻测试仪性能及特点:独特单钳设计,可避免双钳式两探头之间相互干扰的误差不必打辅助地桩,直接钳住即可测量。 3、回路电阻测试仪:接地阻抗测试仪 钳式接地电阻计系列量测时,不必使用辅助接地棒,也不须中断待测设备之接地,只要钳夹住接地线或棒,就能量测出对地电阻达0.1Ω。也能作电流量测。 4、回路电阻测试仪:环路电阻测试仪 采用微处理器控制,具有高精度和高可靠性。测试时检查三个指示灯检查接线状态是否正确。直读短路保护电流和接地故障电流。测试电阻过热时会自动锁定。法兰球阀 5、回路电阻测试仪:型数字式接地电阻测试仪 该测试仪专门用来测量各类电器设备、避雷针等接地装置的接地电阻值。测试原理先进。 6、回路电阻测试仪:双钳口接地电阻测试仪 具有多种接地电阻测量方法:无辅助极/三极/四极/而极法-----适合多种测量环境;其测量范围为0.002Ω—300KΩ,可以满足多种要求。
适用标准:GB/T2538-88 原油实验法 产品说明:该仪器采用当代先进技术、集机械、光学 、电子及计算机技术于一体,采用德国JUMO原装测温传感器及国际先进的数控光学检测系统,可自动完成原油蒸馏实验。红外线辐射加热,微机控温,确保蒸馏速率均匀稳定。一体化整机结,安装简便。主要技术指标:1、测温范围:0-400℃ 分辨率:0.1℃2、体积检测范围:0-100ml 分辨率:0.1ml3、水浴恒温范围:20±4℃(低于250℃)55±5℃(高于250℃)自动切换4、蒸馏速率:2-4ml/min(低于250℃) 4-5ml/min(高于250℃)自动控制5、加热方式:红外线辐射加热6、初馏时间:5-20分钟(用户自定义)7、显示:12864大屏幕英汉文显示8、打印:20列点阵汉字打印 产品特点:1、智能加热管理系统,确保蒸馏速率符合实验方法要求2、记录点用户自行设定:用户可设定记录对应温度的回收体积;用户可设定记录对应回收体积的温度;自动记录国标规定的记录点。3、两种实验结束方式:温度结束:根据用户设定的温度值结束实验,并打印输出;体积结束:根据用户设定的体积值结束实验,并打印输出。
SH7550 原油蜡含量测定仪是根据中华人民共和国行业标准SY/T-7550《原油中蜡、胶质、沥青质含量测定法》规定的要求设计制造的,适用于测定水含量不大于0.5%(质量分数)的原油产品中蜡的含量。[b]性能特点: [/b]1:吸附装置:不锈钢浴槽,数显温控仪自动恒温。控温点可以任意调节水浴内置循环泵,与吸附装置相连,可以保持温度控制在要求范围之内,水浴上盖有两个加热入口,可以加热玻璃容器。2:脱蜡及过滤装置:两槽四孔不锈钢浴槽,数显温控仪自动恒温。控温点可以任意调节,并带有恒温浴搅拌装置,提高控温精度。3:两槽冷浴恒温范围:室温~-40℃ 精度:±0.5℃,控温点可以任意调节,互不影响。左冷浴恒温点:-20℃;精度:±0.5℃;有两个制冷孔方便试样制冷,右冷浴恒温点:-25℃;精度:±0.5℃,带有双电机搅拌装置用于搅拌试样,过滤装置内置在浴槽中,可以让试样在过滤过程中保持低温不变,吸滤瓶带有吸滤泵方便与吸滤。[b]技术参数[/b]1、工作电源:AC220V±10%,50Hz2、水浴加热功率:2.0kW3、水浴控温范围:室温~90℃4、工作冷槽:两槽四孔,两槽等温5、冷浴控温范围:—30℃~室温6、制冷系统:新型压缩机制冷7、控温精度:≤±0.5℃8、温度显示:LED数字显示9、环境温度:≤35℃10、相对湿度:≤85%
1.极化回路:由辅助电极、研究电极和极化电源构成,它的作用是保证研究电极上发生我们所希望的极化,因此,此回路中有极化电流通过,其极化电流大小的控制和测量在此回路中进行。2.测量回路,由参比电极、研究电极和电位测量仪器构成,它的作用是测量或控制研究电极相对参比电极的电位。为了使电位测量与控制的精度高,下述几方面的问题是必须考虑的。首先:参比电极的电位必须稳定,而参比电极电位的稳定性除了它本身的性能外,严格地说不允许有电流通过参比电极,也就是说测量回路几乎没有电流通过(电流10-7A),其目的是使参比电极不致因电流过大而被极化,从而影响参比电极电位的稳定性。
倾点测定仪、凝点测定仪、浊点测定仪、冷滤点测定仪是很多行业都会需要测定的指标,他们的共同点就是同属于低温测定仪 。在查关于国产的油品分析仪器资料发现,北京得利特公司的仪器对于这四个指标都有涉及,涉及很全面,仪器相对也是比较稳定 。其中倾点测定仪,凝点测定仪 可以集合成一台仪器,有一个A1120自动凝点倾点测定仪符合GB/T510-83及GB/T3535-2006标准用于测定变压器油、润滑油及轻质油的凝固点值倾点值,液晶屏幕中文人机对话图形显示界面,制冷深度、试油标号、检测气压、试验日期等参数具有菜单导向式输入,方便直观。汉字操作软件提示修改功能,界面清晰,易操作,打印试验数据,实现了试验全过程微机自动化,是理想的进口仪器替代产品。图形动态模拟工作过程,屏幕在现试验过程,实时跟踪油质温度的变化状态,半导体制冷,测试速度快,结果准确,可单独测试凝点、倾点值,也可同时测试,一机两用,注油、测试、放油、打印微机自动完成 配有时钟等多种参数表示。浊点测定仪则对应能找到A2180全自动浊点测定仪适应标准GB/T6986《石油产品浊点测定法》,采用现代高新微电子控制技术,采用MCS-51系列单片机作为系统控制核心。冷滤点测定仪则能找到A2030冷滤点测定仪符合SH/T 0248,适用于测定馏分燃料包括含有流动改进剂或其它添加剂的柴油发动机燃料、民用取暖装置使用燃料的冷滤点。
公司要用动态接触角测定仪,可是我还都不懂啊,[em06] [em06] [em06] 大家都来帮帮我吧,谢谢大家了
武汉地区明星仪器仪表企业武汉华德利科技公司日前宣布,公司对其明星产品回路电阻测试仪系列产品进行扩充,新推出了CTHE-600A型回路电阻测试仪。在此之前,公司已经将其产品投入到高压试验项目,测量速度更快、数值稳定、重复性好,获得用电单位的一致好评。 回路电阻测试仪测试仪适用于测量开关、断路器、变压器等设备的接地电阻、回路电阻的专用电力测试设备。华德利科技技术总监表示,CTHE-600A是我们公司致力于创新的一个典范,结合软硬件设计,采用高精密电子线路和高性能单片机,电流持续时间可达1分钟以上,实时监测高压试验现场的电阻值和电流值,无需人工调节,测量迅速精准。 CTHE-600A的技术优势无可挑剔,其携带也十分便捷(长320 mm*宽300mm*高270mm),采用大屏幕汉子显示,菜单操作,操作方便。微型打印机为热敏式打印机,速度快,表面可直接安装打印纸,十分便利。另外,通过RS232串行口对设备内的数据进行管理,实现无纸化办公。 CTHE-600A型回路电阻测试仪是华德利科技悉心研究和来自众多实用华德利产品的客户反馈的成果,希望华德利科技能用更多更好的作品问世,更好的服务于电力系统。http://ng1.17img.cn/bbsfiles/images/2013/10/201310241549_472652_2781177_3.jpg
瑞典SKF十回路齿轮泵ZM1002-S2+999是一款高性能、多功能的润滑设备,专为满足复杂工业环境中对润滑系统高要求的应用场景而设计。以下是对该产品的详细介绍: 一、产品概述 ZM1002-S2+999作为SKF旗下的一款高端齿轮泵,集成了十回路设计,能够同时向多个润滑点提供稳定、精确的润滑剂供应。该泵采用先进的齿轮泵技术和电机驱动系统,确保了在高负载、高压力工况下的稳定运行和高效能表现。 二、主要特点 多回路设计:该泵具备十个独立的润滑回路,能够灵活应对各种复杂的润滑需求。每个回路均可独立控制,确保每个润滑点都能获得适量的润滑剂,从而提高设备的整体运行效率和寿命。 高效能电机:配套的高效能电机为泵提供了充足的动力支持,能够在各种工况下保持稳定的转速和输出压力。电机的节能设计也有助于降低设备的运行成本。 精密齿轮泵:ZM1002-S2+999采用精密加工的齿轮泵体,具有优秀的耐磨性和抗腐蚀性能。齿轮间的配合紧密,确保了润滑剂的平稳输送和高效利用。 智能控制:该泵可配备智能控制系统,实现远程监控和自动调节功能。用户可通过控制面板或远程终端对泵的运行状态进行实时监控和调整,确保设备始终处于最佳运行状态。 易于维护:泵体结构设计合理,便于用户进行日常维护和保养。同时,SKF提供的专业技术支持和售后服务也为用户提供了全面的保障。 三、应用领域 瑞典SKF十回路齿轮泵ZM1002-S2+999广泛应用于各种需要集中润滑或循环润滑的工业领域,包括但不限于: 制造业:在数控机床、加工中心等高精度设备中,该泵能够确保各个关键部件的精确润滑,提高加工精度和效率。采矿与冶金:在矿山机械、冶金设备等重型设备中,该泵能够应对恶劣的工况环境,确保设备的稳定运行和延长使用寿命。能源行业:在发电站、风力发电等能源设备中,该泵为关键传动部件提供可靠的润滑支持,保障设备的长期高效运行。交通运输:在轨道交通、航空航天等交通设备中,该泵也为传动系统和关键部件提供润滑保障,确保安全可靠的运行。 四、总结 瑞典SKF十回路齿轮泵ZM1002-S2+999凭借其多回路设计、高效能电机、精密齿轮泵以及智能控制等特点,成为了工业润滑领域的佼佼者。无论是制造业、采矿与冶金、能源行业还是交通运输等领域,该泵都能为设备提供稳定、精确的润滑支持,确保设备的高效、稳定运行。同时,SKF作为全球领先的润滑系统供应商,也为用户提供了全面的技术支持和售后服务保障。
【搜狐科学消息】 据美国《连线》杂志报道,美国编码人员和神经学家正联手绘制出兔眼的超显微图像,此图像涉及每一个细胞,其大小可达20万亿字节。通过比较正常与损坏视网膜的图像,科学家从而揭示导致失明的原因,或许从中能找到治愈损伤眼睛的好办法。 这是一项伟大的创新工程,得借助专业软件、电子显微镜和特别锋利的刀才能完成。如果一切顺利,该科研组将成为第一个制作出哺乳动物眼睛的神经回路图。 罗伯特马克领导的科学家小组希望分享他们的技艺。在最新出版的《公共科学图书馆生物学》杂志上,他们罗列了用特殊工具绘制感觉器官图并用特殊工具收集数据的方法。这个软件是免费的,最终将收入大量的数据,从而使它成为一种网络应用。下面是这些视觉探索家所利用的工具以及他们所制作的一些非常令人震惊的图片。[color=#DC143C][size=4]下面就带您来揭密如何用电子显微镜描绘神经回路吧[/size][/color]
[font=宋体][size=14px]根据热电偶测温原理可以引出热电偶测温回路的5个定律,这5个定律在实际测温应用中十分重要,它们分别是:[/size][/font][color=#0080ff][font=宋体][size=14px]([/size][/font][font=&][size=14px]1[/size][/font][font=宋体][size=14px])均质导体定律[/size][/font][/color][color=#0080ff][font=宋体][size=14px]([/size][/font][font=&][size=14px]2[/size][/font][font=宋体][size=14px])中间导体定律[/size][/font][/color][color=#0080ff][font=宋体][size=14px]([/size][/font][font=&][size=14px]3[/size][/font][font=宋体][size=14px])参考电极定律[/size][/font][/color][color=#0080ff][font=宋体][size=14px]([/size][/font][font=&][size=14px]4[/size][/font][font=宋体][size=14px])连接导体定律[/size][/font][/color][color=#0080ff][font=宋体][size=14px]([/size][/font][font=&][size=14px]5[/size][/font][font=宋体][size=14px])中间温度定律[/size][/font][/color][size=14px][b][font=&]8.1 [/font][font=宋体]均质导体定律[/font][font=&][/font][/b][/size][font=宋体][size=14px]均质导体定律是指由[/size][/font][font=宋体][size=14px][color=#0080ff]一种均质导体(或半导体)组成的闭合回路,不论导体(或半导体)的截面和长度如何,以及各处的温度如何,都不能产生热电势[/color][/size][/font][size=14px][font=宋体]。根据均质导体定律可以推论以下[/font][font=&]3[/font][font=宋体]点应引起注意:[/font][font=&][/font][/size][size=14px][font=宋体]([/font][font=&]1[/font][font=宋体])[/font][/size][font=宋体][size=14px][color=#ff0000]热电偶必须由两种不同材质的导体构成[/color][/size][/font][size=14px][font=宋体]。[/font][font=&][/font][/size][size=14px][font=宋体]([/font][font=&]2[/font][font=宋体])如果热电偶是由[/font][/size][color=#0080ff][font=宋体][size=14px]两种[/size][/font][font=宋体][size=14px]均[/size][/font][/color][font=宋体][size=14px][color=#0080ff]质导体[/color][/size][/font][font=宋体][size=14px]组成,则[/size][/font][font=宋体][size=14px][color=#ff0000]热电偶的热电势仅与两接点间的温度差有关,而与热电极的粗细、长短和几何形状无关,也与沿热电极的温度分布无关[/color][/size][/font][size=14px][font=宋体]。[/font][font=&][/font][/size][size=14px][font=宋体]([/font][font=&]3[/font][font=宋体])如果热电偶的热电极是[/font][/size][font=宋体][size=14px][color=#0080ff]非均质导体[/color][/size][/font][font=宋体][size=14px],则相当于[/size][/font][font=宋体][size=14px][color=#ff0000]不同性质的热电极构成不同的热电偶,在不均匀温场测温时将会造成测温误差。[/color][/size][/font][font=&][size=14px][/size][/font][size=14px][b][font=&]8.2 [/font][font=宋体]中间导体定律[/font][font=&][/font][/b][/size][size=14px][font=宋体]从图[/font][font=&]1[/font][font=宋体]可以看出,要用热电偶进行测量,就[/font][/size][font=宋体][size=14px][color=#0080ff]必须在闭合回路中接入测量仪表及连接导线[/color][/size][/font][size=14px][font=宋体],即接入第三种金属,此时,热电偶回路中的热电势是否受第三种金属接入的影响呢[/font][font=&]?[/font][/size][font=宋体][size=14px]中间导体定律是指[/size][/font][font=宋体][size=14px][color=#0080ff]在热电偶回路中接入第三种金属材料,只要这第三种金属材料两端的温度相同,热电偶产生的热电势会保持不变,不会受到影响。[/color][/size][/font][font=&][size=14px][/size][/font][size=14px][b][font=&]8.3 [/font][font=宋体]参考电极定律[/font][/b][font=&][/font][/size][size=14px][font=宋体]参考电极是指,如图[/font][font=&]4[/font][font=宋体]所示,将[/font][/size][size=14px][color=#0080ff][font=宋体]热电极[/font][font=&]C[/font][font=宋体]作为参考电极(也称标准电极),若已知参考电极[/font][font=&]C[/font][font=宋体]与各热电极[/font][font=&]A[/font][font=宋体]和[/font][font=&]B[/font][font=宋体]组合配对的热电势[/font][/color][/size][size=14px][font=宋体],[/font][i][font=&]E[/font][/i][sub][font=&]AC[/font][/sub][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体]),[/font][i][font=&]E[/font][/i][sub][font=&]BC[/font][/sub][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])则可用下面公式求出,热电极回路中的热电势[/font][i][font=&]E[/font][/i][sub][font=&]AB[/font][/sub][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])。[/font][/size][align=center][size=14px][i][font=&]E[/font][/i][sub][font=&]AB[/font][/sub][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])[/font][font=&]=[i] E[/i][sub]AC[/sub][/font][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])[/font][font=&]-[i]E[/i][sub]BC[/sub][/font][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])[/font][font=&][/font][/size][/align][size=14px][b][font=&]8.4 [/font][font=宋体]连接导体定律[/font][/b][font=&][/font][/size][size=14px][font=宋体]连接导体定律是指热电偶回路,如图[/font][font=&]5[/font][font=宋体]所示,如果热电极[/font][font=&]A[/font][font=宋体]、[/font][font=&]B[/font][font=宋体]分别与连接导线[/font][font=&]A'[/font][font=宋体]、[/font][font=&]B'[/font][font=宋体]相接,接点的温度分别是[/font][i][font=&]T[/font][/i][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体],则[/font][/size][font=宋体][size=14px][color=#0080ff]回路的总热电势等于热电偶的热电势与连接导线的热电势的代数和[/color][/size][/font][size=14px][font=宋体],可由式([/font][font=&]5 -3[/font][font=宋体])表示:[/font][/size][size=14px][b][font=&]8.5 [/font][font=宋体]中间温度定律[/font][font=&][/font][/b][/size][size=14px][font=宋体]中间温度定律是热电偶回路中(如图[/font][font=&]5[/font][font=宋体]),若[/font][font=&]A[/font][font=宋体]与[/font][font=&]A'[/font][font=宋体],[/font][font=&]B[/font][font=宋体]与[/font][font=&]B'[/font][font=宋体]的材料相同,接点的温度分别为[/font][i][font=&]T[/font][/i][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体],其中[/font][i][font=&]T[/font][/i][font=宋体]为测量温度,[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体]为[/font][font=&]0[/font][font=宋体]℃,而[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]为中间温度。则[/font][/size][size=14px][color=#0080ff][font=宋体]热电偶在接点[/font][i][font=&]T[/font][/i][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体]的热电势[/font][i][font=&]E[/font][/i][sub][font=&]AB[/font][/sub][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])等于热电偶在接点[/font][i][font=&]T[/font][/i][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]和[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体]的两个热电势的代数和[/font][/color][/size][size=14px][font=宋体],可由下面公式表示:[/font][font=&][/font][/size][align=center][size=14px][i][font=&]E[/font][/i][sub][font=&]AB[/font][/sub][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])[/font][font=&]=[i] E[/i][sub]AB[/sub][/font][font=宋体]([/font][i][font=&]T[/font][/i][font=宋体],[/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体])[/font][font=&]+[i] E[/i][sub] A'B'[/sub][/font][font=宋体]([/font][i][font=&]T[/font][/i][sub][font=&]n[/font][/sub][font=宋体]、[/font][i][font=&]T[/font][/i][sub][font=&]0[/font][/sub][font=宋体])[/font][/size][/align]
[b]7.样品制备[/b]7.1 若没有其他要求,非挥发性石油和石油产品应按D4057(API MPMS 8.1节)和D4177(API MPMS 8.2节)取样法取样。7.2 挥发性原油和石油产品取样采用D4057(API MPMS 8.1节)方法,为减少轻组分损失而影响密度测定的准确度可使用一个体积可变的取样器。在取样后,如果没有该设备为了尽可能减少组分损失,应将试样转移至能够制冷的容器中。7.3 样品混合用于试验的混合试样尽可能代表整批测试样品。但在混样操作中,应始终注意保持样品的完整性。对含水或沉淀物或两者都含有的挥发性原油和石油产品及含蜡的挥发性原油和原油产品加热时可能会引起轻组分损失,采用(第7.3.1-7.3.4节)中给出的方法,可保持试样组分的完整性。7.3.1 RVP大于50kpa的挥发性原油和石油产品-为减少轻组分损失,样品应在原容器和密闭系统中混合。注1-在敞开的容器中混合挥发性式样将会导致轻组分的损失,从而影响试样密度值。7.3.2 含蜡原油-如果原油的倾点高于10℃或浊点(WAT)高于15℃时,在混样前要加热试样,使试样温度高于倾点9℃或浊点3℃以上,为减少轻组分损失,样品应尽可能的在原容器和密闭容器里混合。7.3.3含蜡馏分-在混样前将试样加热至浊点(WAT)3℃以上。7.3.4残渣燃料油-在混样前,把试样加热至试验要求温度(见8.1.1和注4)。7.4其他关于液体试样混合及处理方法见D5854(API MPMS 8.3节)。[b]8.测定方法[/b]8.1 试验温度8.1.1 把试样加热到能让它充分流动,但温度不能高至引起其轻组分的损失,温度也不能低到试样中的蜡析出。注2-用密度计法测定密度,相对密度或API重度,在标准温度或接近标准温度时测定zui为准确。注3-石油计量表中的体积、密度,相对密度或API重度修正值是基于大量典型物质的一般补充。同样的系数用于每一套表中,在同一温度下由测试样品常数和标准常数之间的差异可能引起的间隔zui小误差需要修正。测定温度与标准温度的差异对试验结果会造成更严重的影响。注4-要在被测样品物化特性合适的温度下获得密度计读数。这个温度接近标准温度20℃,当密度只用于散装石油计量时,在散装石油温度±3℃下来测定密度(见5.3)。8.1.2原油样品在接近标准温度下测定时,如果样品有蜡析出,则要高于倾点9℃以上或高于浊点3℃以上中一个较高的温度下测定。注5-对于原油样品,蜡析出现象用IP389可以判断,用50μl±5μl修正,用该技术要求来判定原油蜡析出温度的方法还未被确定。[b]9.仪器校正[/b]9.1密度计和温度计按ANNEX A1的方法来修正。[b]10.检测方法[/b]10.1在测定温度约±5℃下使用密度计量筒和温度计。10.2将试样转移到清洁温度稳定的密度计量筒中,转移时避免试样飞溅和气泡生成,同时减少试样中轻组分的挥发。([b]注意[/b]—易燃性蒸汽可能会引起闪火!)10.3通过虹吸或水驱动转移高挥发试样。([b]注意[/b]—用嘴吸取试样可能导致吸入样品)10.3.1含有酸或其他水溶液物质的试样用虹吸管移至量筒中。10.4在量筒中放入密度计前,用一片清洁的滤纸除去试样表面上形成的所有气泡。10.5把装有试样的量筒垂直的放在没有空气流动的地方。在整个试验期间,环境温度变化应不大于2℃。当环境温度变化大于±2℃时,应使用恒温浴保持温度稳定。10.6用合适的温度计或温度测定仪,搅拌棒作垂直旋转运动搅拌试样来确保整个量筒中试样温度、密度均匀。记录试样温度,接近至0.1℃,从密度计量筒中取出温度计温度测定仪,或搅拌棒。注6-若使用液体玻璃密度计,通常使用搅拌棒。
石油产品灰分测定仪使用注意事项 1.请详细阅读完本说明书后,再进行操作。2.在使用时,设备必须可靠接地,以免发生危险。3.第一次使用或长期停用后再次使用时,必须进行烘炉,烘炉时间共为八小时,应分别设定200℃、300℃、400℃各烘二小时。4.所接电源线、负载线要连接正确,必须要有足够的线径,并接好40A的保险。安装好后,在通电试验之前,请仔细检查炉丝接线是否牢固,尤其是绝对不能短路,也不准接壳和接地。热电偶的正负极要正确连接。如果接反,则在升温时,温度显示值下降。5.本仪器在做“灰分”、“快灰”、“罗加粘结”、“挥发分”等试验时,应根据要求按【?】键,增加进程。以使试验顺利进行。另外,也可根据试验的需要,使用【?】键和【?】键(增加和减少进程)手动调整试验进程。6.当正在开机工作时,一旦仪器产品发生故障时,应立即关闭电源,停机检查。重大故障应保护现场,以便故障分析。7.使用时,设定炉温不得超过额定工作温度,此时炉丝寿命较长。设定炉温最高不得超过最高工作温度,以免烧毁电热元件。8.热电偶不要在高温时骤然拔出,以防外套炸裂。9.禁止向炉内灌注各种液体及易熔解的金属,凡附有油质类的金属材料进行加热时,会有大量的挥发性气体将影响和腐蚀电热元件表面,使之烧毁和缩短寿命,因此,加热附有油质类的金属材料时,应做好金属材料的密封工作。10.应定期检查接线连接是否良好。11.保持炉膛清洁,及时清除炉内氧化物之类滞留物。[font=&]得利特(北京)科技有限公司专注于油品分析仪器的研发和销售活动,公司产品有:石油产品灰分测定仪、抗乳化测定仪、泡沫特性测定仪、空气释放值测定仪、氧化安定性测定仪、密度测定仪、自燃点测定仪、氯含量测定仪、微量残炭测定仪、表观粘度测定仪、机械杂质测定仪、浊点测定仪、四球机等多种燃油分析仪器、润滑油分析仪器、绝缘油分析仪器,水质分析检测仪器、气体检测仪器,型号多,质量保证,可定制。[/font]
静态容量法比表面及孔隙率测定仪在努力研发动态氮吸附仪的同时,我们也一直在关注静态容量法比表面及孔隙率仪的发展,毕竟在国外一直重点发展静态容量法比表面及孔径分析仪,而且近年来改进提高很快,目前进口仪器在我国仍然有相当大的市场占有量,为了进一步提高我国仪器的水平,尽快赶上国际先进,彼奥德从06年开始研究静态容量法氮吸附仪。说实在的,有关这方面的具体资料非常缺乏,除了原理,一切均需从头开始。经过近两年的努力,终于攻下了所有技术难关,我国自有的静态容量法比表面及孔径分析仪研制成功,并迅速进入市场,我们的静态仪器性能已经接近国际先进水平,而且具有许多自己的特色,有自己的独到之处。实事求是的看,静态容量法比表面及孔径分析仪的优点还是很多的。(1)静态容量法是在真空条件下改变氮气的压力,通过压力传感器直接测量氮压力,排除了其它因素带来的影响,而动态法要通过氮气和氦气相对量的改变以及二者流量的调节才能得到;(2)容量法样品的吸附与脱附过程是在静态下进行并达到吸附平衡,符合理想的吸附平衡条件,而动态法仅为相对的动态平衡;(3)静态容量法样品在吸附与脱附过程中,固定于液氮杜瓦瓶中,不像动态法每测一个压力点样品管都需要进出液氮杯一次,静态法不但节省了时间,而且大大减少了液氮的消耗;(4)只用氮气,不用氦气,而且氮气的消耗也极少,大大减少了测试的成本;(5)静态容量法每测一个压力点只需2分钟左右,而且可以根据需要测量很多点,例如多点BET比表面可测定6~20点以上,孔径分布测定可选25~100个点,测量的点数多有利于测量精度和可靠性的提高,相比之下,动态法多点BET比表面只测定5点左右,孔径分布测定只测10个点左右,而且在测量相同点数的条件下,静态法更节省时间;(6)在进行孔径分布测试时,静态容量法具有更显著的优势,其一,动态法受热导检测器灵敏度及流量调节精度的限制,孔径测试范围较小,一般在2~100nm,而静态容量法测试范围一般可达到0.5~400nm;其二,动态法不能测试出完整的等温曲线,而且测量的点数少,对孔径分布的分析比较粗糙,而静态容量法可以完整地测试等温吸附曲线和等温脱附曲线,实现对孔径分布比较精确的分析,而且能得到样品全面的吸附特性,进而可对样品的吸附类型和孔结构作出判断;其三,只有静态法才有可能对微孔进行定量分析;(7)静态容量法的仪器可以实现真正的全自动控制,包括不需要中途人为补充液氮,而且运行、控制、数据采集与处理、以及计算机操作,均更为简便、流畅、可靠和智能化,只要把试验条件输入计算机,试验过程全部自动完成,同步得到全部试验结果;(8)样品的预处理可同机甚至同位进行,利用主机的真空条件和单独的温控装置,使预处理更为充分,操作更为简便,测试结果更为可靠。总之,静态氮吸附仪是技术上更高一档的仪器,国产静态仪器的成功,无疑又提升了我国在这一领域的国际地位。
实验中需要准确测定回路中的交流电流,以便计算交流电流密度。但是使用的交流电流表,指针晃动无法稳定;万用表的测电流功能测不出读数。使用钳形表或互感器虽然能够测量交流电流,但是实验中的电流很小300mA,使用钳形表或互感器也无法准确测量。听说可以采用串联分流器的方法测量,但不知如何操作,请大家帮忙出出主意!
各位采购朋友,中国人做事的习惯就是这样子啦,无论办什么事都需要打点一下。我相信负责采购的朋友们都会收到供应商送来的礼物,或者是购物卡,甚至是……钱。你如何界定和判断哪种形式的礼物是贿赂呢?比如,逢年过节送来的礼物,大概不超过100元,算贿赂吗?你每次买他家的东西,他都有价值100以上的礼物相送,算贿赂吗?不管馈赠的频率如何,只要是购物卡,或者现金,这肯定算是贿赂了吗?
JJG 1052-2009 回路电阻测试仪、直阻仪
低压配电需要智能监控的应用场合越来越广泛。目前采用多功能电力监控仪表,对低压配电回路电流、电能进行遥测,对断路器的合闸、脱扣状态进行遥信和记录,并利用上位机软件通过仪表对断路器进行控制。一、技改工程现场状况根据现场技术反馈情况,改污水处理厂原有配电及控制设备成套已经运行2年,现在随着自控系统及管理水平的提高,以及从节能节排管理方面考虑,增加对每个回路的电机实时的运行状态及运行功率的监测,分析每个时断电机运行功率的大小,合理调度电机运行数量既能够完成工作量又实现节能。但考虑到技改成本的控制,我们基于现在智能网络仪表的设备采集数据平台,设计一套低成本污水处理电机实时监测系统。二、方案设计不改动原有供电电路及控制回路:增加开口式电流互感器采集每个电机控制回路的实时电流值,取电器柜或控制柜内三相四线或三相三线电压信号输入至智能仪表,智能仪表采用屏装在配电柜或控制面板上。1、开口式互感器技术参数及产品介绍开口式电流互感器又称开启式电流互感器或开合式电流互感器,主要应用于配电系统改造项目,安装方便,无须拆一次母线,亦可带电操作,不影响客户正常用电,为用户改造项目节省人力、物力、财力,提高效率。该系列电流互感器可与继电器保护、测量以及计量装置配套使用。2、主要技术指标供应HED系列智能多功能电力仪表在某污水处理厂电机(MCC)基于低网络智能电力仪表及电动机保护器实现智能化监控系统方案a.开口式CT一次电流100-6300A,二次电流5A,1Ab.额定工作电压AC0.66kV(GB/T156-2007)c.额定频率50-60Hzd.环境温度-30度~70度,最高耐温120℃e.海拔高度≤3000m;工频耐压3000V/1min 50Hz用于没有雨雪直接侵袭,无严重污染及剧烈震动的场所3、配电柜或控制面板上增加智能网络电力监控仪表;产品的设计充分考虑了成本效能化、智能性和可靠性,有以下特点:a.可直接从电流、电压互感器接入信号;b.任意设定PT/CT变比;c.仪表显示可滚动设置;d.I/O开关量,继电器报警输出,4~20mA模拟量等功能模块化设计;e.可通讯接入SCADA、PLC系统中;可与业界多种软件通讯(Intouch, Fix, 组态网等);f.方便安装,接线简单,工程量小;h.仪表采用专用失电保护电路,在失电情况下,数据保存不丢失,恢复电源后仪表继续运行;四象限电能计量,分时计费,最大需量纪录及12个月电能统计。