当前位置: 仪器信息网 > 行业主题 > >

超快高精度射线残余应力分析仪

仪器信息网超快高精度射线残余应力分析仪专题为您提供2024年最新超快高精度射线残余应力分析仪价格报价、厂家品牌的相关信息, 包括超快高精度射线残余应力分析仪参数、型号等,不管是国产,还是进口品牌的超快高精度射线残余应力分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超快高精度射线残余应力分析仪相关的耗材配件、试剂标物,还有超快高精度射线残余应力分析仪相关的最新资讯、资料,以及超快高精度射线残余应力分析仪相关的解决方案。

超快高精度射线残余应力分析仪相关的论坛

  • 【资料】Proto X射线衍射残余应力分析系统依据的原理

    Proto X射线衍射残余应力分析系统依据的原理是晶体物质晶面间距与入射波长和波峰角衍射之间存在着以下定量关系,即布拉格定律: 2d sinθ = λ。 其中 d 为晶体的晶面间距,λ为入射X射线波长,θ为最大波峰衍射角。当晶体的晶面间距在受应力σ发生变化时,由测角仪测量θ的变化,就可以得到晶面间距变化或应变Δd,继而由物质模量得到物体所受应力。Proto iXRD——便携式残余应力分析系统是世界上最小、最轻和最快的x射线衍射应力分析系统。作为测试残余应力特性领域的先锋,Proto开发了作为该领域内经典的iXRD。 iXRD有着模块化的软件,界面友好、简单,容易操作。内置应用程序,能被连接和同步运行,允许连接四个iXRD同时运行。另外iXRD-COMBO 实验室/便携式综合应力分析系统。既可作为实验室用又可在野外用,使iXRD更具灵活性。iXRD-COMBO联合了实验室系统的便利、安全和iXRD的多种功能。世界上没有其他象iXRD-COMBO的系统。X射线衍射残余应力分析系统可用于测量残余应力、外加应力、静载应力、总应力、残余奥氏体。

  • 传统点/线探测技术和全二维面探测器技术的残余应力分析仪比较

    X射线是表面残余应力测定技术中为数不多的无损检测法之一,是根据材料或制品晶面间距的变化测定应力的,至今仍然是研究得最为广泛、深入、成熟的内应力测量方法,被广泛的应用于科学研究和工业生产的各领域。然而长期以来,大家使用的都是基于一维探测器的测量方法。Pulstec公司开发出世界首款基于全二维探测器技术的新一代X射线残余应力分析仪——μ-X360n,将利用X射线研究残余应力的测量速度和精度推到了一个全新的高度,设备推出不久便得到业界的广泛好评。 相较于传统的X射线残余应力测定仪,新一代μ-X360n具有以下优点: 更快:二维探测器一次性采集获取完整德拜环,单角度一次入射即可完成测量,全过程平均约90秒。 更精确:一次测量可获得500个数据点进行残余应力数据拟合,结果更精确。 更轻松:无需测角仪,单角度一次入射即可,复杂形状和狭窄空间的测量不再困难。 更方便:测量精度高,无需冷却水,野外工作无需外部供电。 更强大:具备区域应力分布测量成像(Mapping)功能,晶粒大小、材料织构、残余奥氏体分析等功能。应用领域: 1. 机械加工领域:测量机床、焊接、铸造、锻压、裂纹等构件的残余应力。 2. 冶金行业:测量热压、冷压、炼铁、炼钢、炼铸等工业生产构件的残余应力。 3. 各种零配件制造:测量电站汽轮机制造、发动机制造、油缸、压力容器、管道、陶瓷、装配、螺栓、弹簧、齿轮、轴承、轧辊、曲轴、活塞销、万向节、机轴、叶片、刀具等工业产品的残余应力。 4. 表面改性处理:测量渗氮、渗碳、碳氮共渗、淬火、硬化处理、喷丸、振动冲击、挤压、滚压、金刚石碾压、切削、磨削、车(铣)、机械抛光、电抛光等工艺处理后构件中的残余应力。 5. 民生基础建设领域: (1)海洋领域 :测量船舶、海洋、石油、化工、起重、运输、港口等领域设备和设施的残余应力 (2)能源领域:测量核工业、电力(水利水电、热电核电)、水利工程、天然气工程等领域的设备和设施的残余应力。 (3)基础建设工程领域:测量挖掘、桥梁、汽车、铁路、航空航天、交通、钢结构等工程领域所用材料、构件及其它相关设备设施的残余应力。 6. 国防军工领域:测量武器装备、重型装备等军工产品的残余应力。http://sciaps.gz01.bdysite.com/upload/201703/1490338019181409.jpg传统的点/线探测器技术 全二维面探测器技术——通过测量应力引起的衍射角偏移,从而算出应力大小。测量时需要多次(一般5-7次)改变X射线的入射角,并且调整一维探测器的位置找到相应入射角的衍射角——施加应力后,通过测角仪得到衍射角发生变化的角度,从而计算得到应力数据——单角度一次入射后,利用二维探测器获得完整德拜环。通过比较没有应力时的德拜环和有应力状态下的变形德拜环的差别来计算应力下晶面间距的变化以及对应的应力——施加应力后,分析单次入射前后德拜环的变化,即可获得全部残余应力信息http://sciaps.gz01.bdysite.com/upload/201703/1490338058206908.gif应用软件:http://sciaps.gz01.bdysite.com/upload/201703/1490338117148580.gif二维探测器获取完整德拜环,单角度入射,一次测量 全自动软件测量残余应力,半峰宽,残余奥氏体等数据内在定位标记和CCD相机方便样品定位,操作极其简单快捷快捷进入预设各种材料测量条件,一键执行测量

  • 【资料】iXRD便携式残余应力分析系统

    【资料】iXRD便携式残余应力分析系统

    iXRD便携式残余应力分析系统 Proto iXRD——便携式残余应力分析系统是世界上最小、最轻和最快的x射线衍射应力分析系统。作为测试残余应力特性领域的先锋,Proto开发了作为该领域内经典的iXRD。二十多年来Proto不断优化、改进让它变得更小和更轻,以便于运输和摆放;让它变得更快,一天能采集最多的测量数据,但同时对正在进行的生产造成最小干扰。iXRD有着模块化的软件,界面友好、简单,容易操作。内置应用程序,能被连接和同步运行,允许连接四个iXRD同时运行。另外iXRD-COMBO 实验室/便携式综合应力分析系统。既可作为实验室用又可在野外用,使iXRD更具灵活性。iXRD-COMBO联合了实验室系统的便利、安全和iXRD的多种功能。世界上没有其他象iXRD-COMBO的系统。[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912111546_189549_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912111546_189550_1602049_3.jpg[/img]Proto 的LXRD实验室用应力分析系统提供无法超越的测量的速度和精度。lXRD引导了一个x射线衍射应力和状态分析的新时代。LXRD独特的测角系统(专利),给操作者提供了很高的灵活性。定制的有特殊属性测角仪配合驱动器(专利申请中)一起,可以在更多零件上的更多位置上来测试残余应力的特性。另外,LXRD显示了其他残余应力分析系统无法比拟的测量速度。执行测量只需要短短的几秒,在完成初始设置后,在没有人员操作的情况下能产生令人注目的数据。 LXRD-GR有世界上残余应力分析系统最大容量的屏蔽罩,并且设计了从三个侧面都能进的简单且较大的通道。这个设备包含了一个完整的悬挂遥控设备系统,该系统有一个允许用户选择最适合测向仪的界面的模型测向仪。Proto 的LXRD实验室用应力分析系统提供无法超越的测量的速度和精度。lXRD引导了一个x射线衍射应力和状态分析的新时代。LXRD独特的测角系统(专利),给操作者提供了很高的灵活性。定制的有特殊属性测角仪配合驱动器(专利申请中)一起,可以在更多零件上的更多位置上来测试残余应力的特性。另外,LXRD显示了其他残余应力分析系统无法比拟的测量速度。执行测量只需要短短的几秒,在完成初始设置后,在没有人员操作的情况下能产生令人注目的数据。 LXRD-GR有世界上残余应力分析系统最大容量的屏蔽罩,并且设计了从三个侧面都能进的简单且较大的通道。这个设备包含了一个完整的悬挂遥控设备系统,该系统有一个允许用户选择最适合测向仪的界面的模型测向仪。[~189551~][~189552~][~189553~][~189554~]

  • 【分享】X射线衍射仪测量残余应力的原理与方法

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=20520]X射线衍射仪测量残余应力的原理与方法[/url]附件中包含两个文件:一是利用JADE5作数据拟合后,使用拟合数据计算残余应力的程序二是讲解X射线衍射仪测量材料宏观残余应力的原理与实验方法请勿转载!

  • 传统一维点,线探测器和全二维面探测器XRD残余应力仪比较

    [color=#333333]全二维面探测器残余应力仪与传统一维点,线探测器残余应力仪比较区别:[/color][color=#333333](1)传统一维点,线探测器残余应力仪——sin2Ψ 1)通过测量应力引起的衍射角偏移,从而算出应力大小。测量时需要多次(一般5-7次)变X射线的入射角,并且调整一维探测器的位置找到相应入射角的衍射角 2)施加应力后,通过测角仪得到衍射角发生变化的角度,从而计算得到应力数据(2)圆形全二维面探测器残余应力仪——基于cosα方法 1)单角度一次入射后,利用二维探测器获得完整德拜环。通过比较没有应力时的德拜环和有应力状态下的变形德拜环的差别来计算应力下晶面间距的变化以及对应的应力 2)施加应力后,分析单次入射前后德拜环的变化,即可获得全部残余应力信息 世界首款基于二维探测器和cosα分析方法的新一代X射线残余应力分析仪,将利用X射线研究残余应力的测量速度和精度推到了一个全新的高度,总体说来它比传统方法具有如下优点:1,圆形全二维面探测器残余应力仪优点: 更快: 二维探测器获取完整德拜环,单角度一次入射测量即可完成测量,全过程平均约90秒 更精确:一次测量最多可获得500个数据点,用于拟合计算应力。无应力铁粉残余应力测定的精度为±2MPa(欧美标准无应力铁粉残余应力测定的精度要求为正常±6.9MPa,最大±14MPa.) 更轻松:无需测角仪,单角度一次入射即可,复杂形状和狭窄空间的测量不再困难 更方便:测量精度高, 无需冷却水、野外工作无需外部供电 更强大:有区域应力分布测量成像(Mapping)功能,软件有晶粒大小、材料织构、残余奥氏体信息分析功能2,传统一维点,线探测器残余应力仪: 1,设备笨重,不适合检测比较大的工件或设备 2,需要测角仪,每次摄入,要多点d-sin2Ψ曝光模式,互相关法计算峰位移。增加仪器成本 3,需要水冷系统,冷却液温度过高或其它流动不畅通时机器不能工作,增加仪器使用成本。 4,操作复杂,必须专业长时间培训或有经验的人员才能操作。检测时间长,每次测量必须转角,人工误差大。 5,设备故障率高,不管是,测角仪,冷却系统或测角角度有一处故障,设备就不能正常工作。 6,价格昂贵,测角仪和冷却系统大大增加了设备成本,维修费用及高。[/color]

  • 残余应力测量

    用X射线应力测定仪测残余应力与X射线衍射仪残余应力附件测残余应力的区别?

  • X射线衍射物相分析与应力检测设备有和区别?

    用X射线做应力分析与物相分析的原理基本都是一样的,都是利用了X射线的衍射,看有资料介绍说是应力检测时会有一个特殊的附件。请问有没有了解这一块的大神能给详细的说一下。另外想采购X射线应力检测设备,有什么推荐的吗?国外有哪些品牌?国内有哪些品牌?综合权衡一下

  • 有没有用帕纳克衍射仪测残余应力的老师啊,问一个应力分析问题

    小弟最近要测试板材残余应力,实验设备是帕纳克MRD,分析软件是X’Pert stress , 看了看软件操作说明,有一点看不懂,在双轴应力分析后,得出结果是,如图,小弟学浅,看不懂结果啊,到时哪个是应力啊,另外板材应力分析一般是采用单轴应力分析还是双轴应力分析呢,个人觉得应该是双轴应力分析,但是看不懂实验结果啊,悲剧http://ng1.17img.cn/bbsfiles/images/2011/09/201109281520_319871_1634499_3.gif

  • 【讨论】关于利用荧光光谱分析残余应力

    在文献上只看到利用荧光光谱分析如Al2O3等陶瓷材料的应力,但不知道有哪位知道除了陶瓷材料,荧光光谱是不是还可以用来分析其他材料的残余应力,尤其是界面处的生长应力,或者哪位有关于这方面的好的资料,以及荧光光谱分析分析应力的原理方面的资料,希望能够不吝赐教,小弟在这里先谢过了。

  • 帕纳科Empyrean锐影X射线衍射仪

    帕纳科Empyrean锐影X射线衍射仪哪个模块能分析材料的残余应力,Data Collector该如何操作设置HighScore Plus该如何处理分析,请高手指教谢谢!!!

  • 【讨论】调质低碳低合金钢残余应力分析

    【讨论】调质低碳低合金钢残余应力分析

    [img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907121118_159608_1716979_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/07/200907121119_159609_1716979_3.jpg[/img]上面是我做的低碳低合金钢(C0.27,Cr0.5,Mo0.7,V0.08)不同调质工艺后的应力试验结果。910度水淬680度回火的铁的峰位一个是99.59545,而910度水淬730度回火的铁的峰位是99.56497,为什么会有变化呢?是因为回火温度高晶粒长大了吗?实验是用理学2500做的,然后用origin7.5中峰拟合做的,大家帮我分析一下!对了,这两个都是经过热轧制的试验(轧制比较大),我觉得会有织构,织构对分析会有什么影响?根据面积比和峰强度能分析什么?还有昨天刚下载看了黄老师的衍射仪测残余应力的资料,受益匪浅!谢谢黄老师,谢谢各位网友!

  • 【求助】判定钢铁残余应力状态定性分析

    【求助】判定钢铁残余应力状态定性分析

    热轧无缝钢管,X射线衍射仪测定铁基体(211)峰位移定性分析应力,ψ角分别取0,10,20,30,40度。结果见下图[img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912221100_191251_1614369_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/12/200912221100_191252_1614369_3.jpg[/img]

  • 【转帖】X射线衍射原理

    特征X射线及其衍射 X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用高能电子束轰击金属“靶”材产生X射线,它具有与靶中元素相对应的特定波长,称为特征(或标识)X射线。如铜靶材对应的X射线的波长大约为1.5406埃。考虑到X射线的波长和晶体内部原子面间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格方程: 2d sinθ=nλ式中λ为X射线的波长,n为任何正整数。   当X射线以掠角θ(入射角的余角)入射到某一点阵晶格间距为d的晶面上时(图1),在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布拉格方程简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格方程条件的反射面得到反射,测出θ后,利用布拉格方程即可确定点阵晶面间距、晶胞大小和类型 根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法(图2a)的理论基础。而在测定单晶取向的劳厄法中(图2b)所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布拉格方程的条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。  X射线衍射在金属学中的应用 X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是立方结构,β-Fe并不是一种新相 而铁中的α─→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面:   物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。   精密测定点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。   取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。   晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。   宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。   对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。   合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。   结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。   液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。   特殊状态下的分析 在高温、低温和瞬时的动态分析。   此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。   X射线分析的新发展 金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。 爱心捐助

  • 【转帖】便携全反射X射线荧光分析仪

    转录 请自己 google 搜索 便携全反射X射线荧光分析仪 全反射X射线荧光分析仪 等文章全反射X荧儿(TXRF)分析技术是十多年前才发展起来的多元素同时分析技术,它突出的优点是检出限低(pg、ng/mL 级以下)、用样量少(Μl、ng级)、准确高度(可用内标法)、简便、快速,而且要进行无损分析,成为一种不可替代的全亲的元素分析方法。国际上每两年召开一次TXRF分析技术国际讨论会。该技术被誉为在分析领域是最具有竞争力的分析手段,在原子谱仪领域内处于领先地位。从整个分析领域看,与质谱仪中的ICP-MS和GDMS、原子吸收谱仪中的ETAAS和EAAS以及中子活化分析NAA等方法相比较,TXRF分析在检出限低、定量性好、用样量少、快速、简便、经济、多元素同时分析等方面有着综合优势。在X荧光谱仪范围内,能谱仪(XRF)和波谱仪(WXRF)在最低检出限、定量性、简便性、准确性、经济性等方面,都明显比TXRF差。在表面分析领域内,尤其在微电子工业的大面积硅片表面质量控制中,TXRF已在国际上得到广泛应用。1. TXRF分析仪工作原理:TXRF利用全反射技术,会使样品荧光的杂散本底比XRF降低约四个量级,从而大大提高了能量分辨率和灵敏率,避免了XRF和WXRF测量中通常遇到的木底增强或减北效应,大大缩减了定量分析的工作量和工作时间,同时提高了测量的精确度。测量系统的最低探测限(MDL)可由公式计算: (2)这里, 是木底计数率,t为测量计数时间,M为被测量元素质量,l代表被测量元素产生的特征峰净计数率,S=I/M就是系统灵敏度,由公式可以看出,提高灵敏底、降低木底计数率、增加计数时间是降低MDL的有效办法。木氏低、灵敏度高正是TXRF方法的长处,因而MDL很低。

  • x射线衍射仪和荧光分析仪卫生防护标准

    x射线衍射仪和荧光分析仪卫生防护标准Radiological standards for X-ray diffraction and fluorescence analysis equipmentGBZ115-20021 范围 本标准规定了X射线衍射仪和X射线荧光分析仪的放射防护标准和放射防护安全操作要求。 本标准适用于X射线衍射仪和X射线荧光分析仪的生产和使用。2 规范性引用文件 下列标准中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版本均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡不注日期的引用文件,其最新版本适用于本标准。 GB4075 密封放射源分级 GB4076 密封放射源一般规定 GB8703 辐射防护规定 ZBY226 X射线衍射仪技术条件3 术语和定义 下列术语和定义适用于本标准。3.1 X射线衍射仪和X射线荧光分析仪 X-ray diffraction equipment and X-ray fluorescence analysis equipment X射线衍射仪 利用X射线轰击样品,测量所产生的衍射X射线强度的空间分布,以确定样品的微观结构的仪器。 X射线荧光分析仪 利用射线轰击样品,测量所产生的特征X射线,以确定样品中元素的种类与含量的仪器。 以下把X射线衍射仪和X射线荧光分析仪统称为分析仪。3.2 闭束型分析仪和敞束型分析仪 enclosed-beam analytic analytical equipment and open-beam analytical equipment 闭束型分析仪 以结构上能防止人体的任何部分进入有用线束区域为特征的分析仪。 敞束型分析仪 结构上不完全符合闭束型分析仪特征的分析仪,操作人员的某部分身体有可能意外地进大有用线束区域。3.3 射线源 radiation source 本标准中,射线源特指X射线管或能便样品受激后发出特征X射线的密封型放射性核素源(以下简称密封型源)。3.4 联锁装置 interlocking device 分析仪的一种安全控制装置,当其中相关的组件动作时可以发出警告信号,或能够阻止分析仪进入使用状态,或使正在工作的分析仪立即关停。3.5 有用线束 primary radiation 来自射线源并通过窗、光栏或准直器射出的待用射线束。3.6 受照射部件 exposed components 分析仪中受到有用线束照射的部件,如:源套、遮光器、准直器、连接器、样品架、测角仪、探测器等。3.7 源套 radiation source housing 套在射线源外部的具有一定防护效能的壳体,分为密封源套和X射线管套。3.8 防护罩 protective enclosure 敞束型分析仪中,用来屏蔽源套和所有受照射部件的一种防护设备。在防护罩的侧面,通常装有可以平移的防护窗,调试、校准等操作结束后,关闭防护窗,能够有效地防止人员受到有用线束和较强散射线的照射。3.9 遮光器 shutter 安装在有用线束出口处的可以屏蔽有用线束的器件。

  • 【原创】全铝X-射线分析仪分析铝电解质

    摘要:本文叙述全铝X-射线分析仪分析铝电解质中的Al、F、Na、Ca、Mg含量,进一步计算分子比、CaF2、MgF2、Al2O3、过剩AlF3的方法,以及每个元素及化合物谱线的选择与修正、分析参数的建立、工作曲线的绘制、样品的制备方法等。实践证明:分析结果准确可靠,精密度良好,实现了准确快速测定的目的。一 前言铝槽电解质的分子比是铝电解生产控制的重要参数之一,正确分析电解质的各项指标,直接影响铝电解的工艺控制和经济效益。目前,在国内铝工业生产中铝电解质的分析方法有热滴定法、化学法、结晶光学法和X-射线衍射法,在这些方法中,热滴定法和化学法是基础,但其分析速度慢,分析结果严重滞后;结晶光学法对于有多种添加剂和低分子比的电解质分析时误差太大。X-射线衍射法只有国内少数铝厂采用,其分析的项目较少。本文介绍全铝X-射线分析仪(X荧光+X衍射综合性仪器)分析铝电解质的方法。这是国内从瑞士ARL公司引进的最先进的仪器,经过近一年的实践,证明仪器所分析的数据准确、精密度高、速度快。为青铜峡铝厂三期13万吨200千安预焙电解槽在短时间内达产达标提供了有力的技术支持。使其在4个月内电流效率提高到92%,创造了可观的经济效益。二 实验部分1 实验原理根据邱竹贤、K. Grjotheim等人铝电解质的酸度理论,固态酸性电解质的基体是由冰晶石(Na3AlF6)、亚冰晶石(Na5Al3F14)和Al2O3组成。当加入CaF2时,增加了NaCaAlF6相,液态中增加了CaF2相;加入MgF2时,增加了Na2MgAlF7相,液态中增加了NaMgF3相;加入LiF时,增加了Na2LiAlF6相,液态中增加了Li3AlF6相。因预焙槽工艺中不加LiF,其含量可忽略。根据以上理论,用仪器的荧光部分测定电解质的Al、F、Na、Ca、Mg含量, 再用数学模型计算NaF,AlF3,CaF2,MgF2,Al2O3,过剩AlF3及分子比。2 标样的研制这种标样在实际生产电解槽中直接采取。保证基体相同及每个元素和化合物有足够的梯度。我们在实际生产的640台槽中取样,先用仪器分析其强度,发现单元素有异常的样品,立即大量取样,选取17个单元素有一定梯度的样品,经本厂化验室、郑州轻金属研究所、北京有色金属研究院、包头铝厂、中宁铝厂多家单位化学定值。综合评定,最后选取10个作为标样。3 样品制备为保证分析结果的重复性,从电解槽取样必须严格遵守取样的操作规程。新型全铝分析仪使用慢冷样品,样品中基本上没有非晶质物质存在。各标准样品的冷却条件要和实际取样时尽量保持一致。试样制备过程如下;(1) 粉碎:取电解厂房送来的铝电解质冷却试料块约30g,放入破碎机的试料容器中进行破碎。为了避免破碎时试料粘在容器壁上及压片时易于成型,破碎前滴上1-2滴无水乙醇。经实验在转速1550转/分条件下破碎20秒,可使试料达到300目以上。(2) 压片:将料环放在样托上,称取5克试样粉末倒入料环内,放入压样机,选用30吨压力静压15秒,取出压成的试样片,即可上仪器分析。注意:正常分析样品的取样冷却条件、试样的破碎程度、压样时的压力、静压时间对测量结果均有影响,尽量和标样制备时保持一致。4 选择谱线X-射线荧光是激发原子的最内层K层电子,所以每种元素的特征谱线有好几条,首选Ka谱线,理论Ka谱线与实际生产工艺中元素的谱线并不吻合,必须多做实验加以调整,衍射的谱线也应做调整,无需扣背景,具体谱线见表1。5 确定激发条件对某一种元素,其谱线、晶体、探测器、计数时间、准直器、X-光管电压、电流选择搭配不同,其分析效果也不同。必须做大量实验,总结经验,选择适合生产工艺并能准确反映元素真实含量的分析参数

  • 【讨论】普通X衍射仪可测应力吗?

    我用的是岛津X衍射仪、没带应力附件,前天与工程师谈起单位计划购买X射线应力分析仪,工程师说这台衍射仪能测拉伸、压缩应力,衍射仪附带的软件也有应力分析这一功能。请教:没带应力附件的普通X衍射仪可测应力吗?与专门的应力仪测的有什么不同呢?精度如何?

  • 【求助】理学测定残余应力

    理学D/Max2500衍射仪,没有带应力附件,我通过改offset angle设定的10度,20度,30度,40度设定的角度,想用黄老师发的共享软件测定残余应力,但是工程师说这样算出来的误差很难确定,是这样吗?哪位做过这方面工作吗?多指教!

  • X射线衍射仪技术(XRD)

    [font=黑体, SimHei][size=16px]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-14048.html[/url]射线衍射仪技术(X-ray diffraction,XRD)。通过对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。X射线衍射分析法是研究物质的物相和晶体结构的主要方法。当某物质(晶体或非晶体)进行衍射分析时,该物质被X射线照射产生不同程度的衍射现象,物质组成、晶型、分子内成键方式、分子的构型、构象等决定该物质产生特有的衍射图谱。X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。因此,X射线衍射分析法作为材料结构和成分分析的一种现代科学方法,已逐步在各学科研究和生产中广泛应用。[/size][/font][font=黑体, SimHei][size=16px]测试内容[/size][/font][font=黑体, SimHei][size=16px]1. D8 Advance X射线衍射谱中的衍射峰与晶体中的不同晶面为一一对应关系,可以标定出各个衍射峰对应的晶面指数。根据衍射峰的位置、衍射峰的强度和形状,通过索引已建立的XRD标准卡片库,可检索出样品中存在何种物相。 [/size][/font][font=黑体, SimHei][size=16px]2. 物相定性分析 结晶度及非晶相含量分析 结构精修及解析 物相定量分析 点阵参数精确测量 无标样定量分析 微观应变分析 晶粒尺寸分析 原位分析 残余应力 低角度介孔材料测量 织构及ODF分析 薄膜掠入射 薄膜反射率测量 小角散射[/size][/font][font=黑体, SimHei][size=16px]可检测范围[/size][/font][font=黑体, SimHei][size=16px]1.常用于无机物。[/size][/font][font=黑体, SimHei][size=16px]2.有机晶体单晶不合适。[/size][/font][font=黑体, SimHei][size=16px]3.角度5-80度,快扫,慢扫。[/size][/font][font=黑体, SimHei][size=16px]4.物相是定量分析,相对定量。[/size][/font][font=黑体, SimHei][size=16px][/size][/font]

  • X射线荧光分析技术应用误区分析

    一、选型误区  随着技术发展,X射线荧光分析仪的种类越来越多,商品名称也比较混乱,再加上用户对相关知识的了解有限,使得用户合理选择仪器的难度大大增加。  误区1:强调“荧光”,许多用户误认为只有用X光管作为激发源的管激发仪器才是X荧光仪,一味地强调所谓“荧光”。事实上,如前所述,无论是采用X光管还是采用放射性同位素源作为激发源,只要是由X射线激发、通过测定被测样品发出的荧光X射线得出其化学成分及含量的仪器,都是X荧光分析仪。  源激发和管激发各有优缺点。源激发类型的仪器结构简单、紧凑,特别是放射性同位素源发出X射线是自然现象,其强度是非常稳定的。虽然有着自然衰减,但这种衰减是遵循可描述的物理规律的,也就是说是我们可以准确计算出来的,而且作为商品化仪器选用的同位素源半衰期都比较长,在短周期内这种衰减几乎反映不出来。放射源的最大弱点在于,它发出的X射线强度小,能量分布不可调。因此可分析元素种类是受限制的,光路的几何布置必须非常紧凑,分析时间相对要长一些,谱线处理和定量分析计算难度较大。  管激发型仪器的激发源是X射线管。与放射性同位素源相比,最大的优点在于其可调节性。通过调节管流和高压,可以在一定范围内改变输出X射线的强度和分布,进而有选择性地提高或减小对某些特定元素的激发效率,提高分析能力。再者,X射线管的输出强度远远高于放射性同位素源,光路的几何布置受限制小,可使用准直器、滤光片、狭缝等进一步提高性能。采用X光管的最大问题在于稳定性,给X光管提供高压的高压电源稳定性必须在万分之三以下,X光管本身还需要冷却,而且环境温度、电网波动等因素都会影响X光管输出X射线的稳定性,从而影响仪器的稳定性。因此,一般来讲,管激发仪器对使用环境及外围条件的要求要比源激发仪器高得多。  误区2:重硬件轻软件和技术。任何一种分析仪器在某一领域的成功应用都是硬件、软件和分析技术有机结合的结果,三者缺一不可。毫无疑问,硬件是基础,但硬件并不能决定一切。从应用的角度来讲,硬件只有通过软件才能充分发挥作用,而分析技术涉及到仪器应用的每一个环节。一台好仪器,一定是建立在分析技术研究基础之上的,否则,它就很难适应众多用户的各种需求,这样的仪器等于没有灵魂。对于软件的考察,绝不能停留在画面的漂亮与否、花样是否齐全等表面文章上,关键要看采用的算法是否先进有效,建立在怎样的分析技术基础上,是否适应于主要被分析样品的特性,还要考虑是否适合操作人员的素质和能力。  误区3:重价格轻服务。价格当然是选购商品的重要因素,但不应当是决定性因素。分析仪器各部件质量及其价格悬殊极大,并且直接决定了仪器的售价,单纯追求价格便宜,很难保证质量。对于X荧光分析仪这样的设备来说,服务往往更为重要。这里所说的服务不仅指安装调试、备品备件供应、维修服务等,更重要的是应用技术服务。对于大多数用户来讲,是不具备自行研究分析技术并用于指导应用的,这种情况下,技术服务显得尤为重要。  误区4:听别人多,看自己少。用户在设备选型时经常会开展一些调研考察,一方面了解一些各种仪器及厂家的基本情况,作一些相互比较;另一方面会去一些与自己情况类似的用户那里考察。这当然是必要的。但最重要的还是要根据自己的实际情况和具体需求来选择。比如:以全厂质量控制为主要目的,样品种类多,需要做全分析,准确度要求高,应用环境比较好,可以考虑X荧光光谱仪;以生产过程控制为主要目的,应用环境较差则可考虑多元素分析仪、钙铁仪等源激发类仪器;原料不太好、波动大,没有预均化措施或很简陋,分析仪器要配置高一些,最好考虑在线分析仪器,在线钙铁仪加多元素分析仪或小型多道X荧光光谱仪便是很好的组合,当然,有条件的可以上中子活化在线分析仪,而原料稳定、预均化很有效,分析仪器的配置则可以低一些,多元素分析仪甚至离线钙铁仪便可以解决问题;操作人员素质较高,仪器可以选择小型多道X荧光光谱仪等功能多样、灵活性较大的,反之则应考虑选择功能单一、操作简单的源激发类仪器。二、技术指标误区  评价一台仪器好坏的技术指标是多重、综合的。用户关心和看重的主要有分析元素范围,即我们通常所说的可分析元素有哪些,分析时间长短,精确度如何等。技术指标的重要性最终还是取决于应用目的。  误区1:片面追求高指标。对于工业分析而言,被分析样品的种类是确定的,甚至是单一的,对结果的要求也是确定的。对于远远高出这些要求的指标的追求实际上是一种资源的浪费。比如:大多数水泥厂的控制分析只做钙、铁,用于率值控制需要测钙、铁、硅、铝,全分析则要求增加Na、Mg、S、K等元素,几万元的钙铁仪便可满足控制要求,如追求能测硅铝则需要约十万元的多元素分析仪,多元素分析仪完全可以满足率值控制四种主要元素分析的要求,如一定要提出更高精度和速度的要求就需要约百万元的小型多道X荧光光谱仪了。由于被分析样品的确定性,经验系数法是最有效的分析方法,如果一定要追求无标样法,便达不到经验系数法的效果。本来被测元素是确定的,而且数量有限,固定道就可以解决问题,一味追求可变道,既多花了钱,还牺牲了稳定性和分析时间;就能量色散型仪器而言,ADC道数也并非越多越好。  误区2:片面追求准确度:每当谈到仪器性能,往往会自然而然地把结果是否准确作为第一判断标准,而且在日常应用中也会把大量的精力用于判断仪器“准不准”,最常见的就是与化学分析“对结果”。准确性固然重要,但作为工业分析而言,精密度决不可忽视,首先要关注的是精密度问题,也就是说,同一样品多次测量,其结果应有良好的一致性,每一测量结果与均值的差要足够小,至于测量值与真值的差,往往属于系统偏差,是可以进行数学校正的。  误区3:不重视稳定性和重现性。所谓稳定性是指同一样品连续测量多次(通常为21次)的标准偏差,而重现性则是同一样品间隔较长时间后再次测量的结果之间的一致性。这两项指标是作为工业分析仪器的关键指标,工业分析的结果主要是用于生产过程的控制和参数调整,分析结果的相对变化直接关系着过程控制和调节。而相对变化的准确测量是建立在稳定性和重复性之上的。  误区4:分析时间越短越好。X射线测量是随机事件的统计测量,是由统计规律决定的,计数的绝对量取决于测量时间,并直接决定着测量误差的大小,足够长的测量时间是测量精度的前提条件,为了保证测量精度,必须有足够的测量时间。三、分析技术误区  分析技术是获得正确结果的保证。分析技术贯穿于仪器应用的全过程。分析方法的选择必须满足仪器应用的需要。  误区1:标样制备太麻烦,最好用无标样法。X射线荧光分析事实上是一种对比分析,特别是经验系数法,测得的X射线强度与相应元素浓度的对应关系完全是建立在标准样品的基础之上的,必须制备足够数量的标准样品,标样的质量直接决定了分析结果的可靠性。基本参数法等无标样分析法一般是用于完全未知样品的初步分析的,所谓无标样也只是不需要系列标准样而已。  误区2:标准样品可以购买别人的。由于每个用户的原料情况、配比是各不相同的,而对于X荧光分析而言,标样与被测未知样越相似,测定结果越好,因此,为了取得好的分析结果,各用户应自己配制标样。标样的配置应注意几个问题:  (1)必须主要用生产用原料配制,个别少量组份可用化学试剂;  (2)标样数目应大于被分析元素个数(至少多两个);  (3)标样中被测元素的含量范围应完全覆盖未知样品相应元素的浓度变化范围;  (4)标样中各被测元素的浓度之间不应存在相关性。  误区3:工作曲线的评价。通常对工作曲线的定量评价标准主要是相关系数和标准偏差,从数学上来讲,相关系数越接近1越好,标准偏差越小越好。但必须首先检查是否符合物理意义,斜率大小是否合适。  误区4:基体校正中元素间影响因子的设定越多越好。如不考虑物理意义就数学结果而选择影响因子,就无法保证未知样分析的正确可靠。影响因子的设定应遵循相邻元素、主元素、浓度变化范围大的元素、重元素的原则,在此基础上根据经验试设。几点建议  (一)仪器选型一定要适应本企业的实际情况,根据预想的主要用途和本企业原料、工艺乃至人员素质情况选购仪器;  (二)再好的仪器也要靠人用,应当充分重视分析技术在仪器应用中的重要作用;  (三)关于在线分析:近年来,中子活化在线分析取得的成功,使在线分析成为水泥工业分析的一个亮

  • 【资料】X射线衍射原理及应用介绍

    X射线衍射原理及应用介绍特征X射线及其衍射 X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离(10-8cm)相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布喇格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布喇格定律: 2d sinθ=nλ式中λ为X射线的波长,n为任何正整数。 当X射线以掠角θ(入射角的余角)入射到某一点阵平面间距为d的原子面上时(图1),在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布喇格定律简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布喇格条件的反射面得到反射,测出θ后,利用布喇格公式即可确定点阵平面间距、晶胞大小和类型 根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法(图2a)的理论基础。而在测定单晶取向的劳厄法中(图2b)所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布喇格条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。   X射线衍射在金属学中的应用 X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是体心立方结构,β-Fe并不是一种新相 而铁中的α─→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面:   物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。   精密测定点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。   取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。   晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。   宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。   对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。   合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。   结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。   液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。   特殊状态下的分析 在高温、低温和瞬时的动态分析。   此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。 X射线分析的新发展 金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。[color=#DC143C][size=4]希望对大家有用。[/size][/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制