当前位置: 仪器信息网 > 行业主题 > >

三元液液平衡曲线测定实验装置

仪器信息网三元液液平衡曲线测定实验装置专题为您提供2024年最新三元液液平衡曲线测定实验装置价格报价、厂家品牌的相关信息, 包括三元液液平衡曲线测定实验装置参数、型号等,不管是国产,还是进口品牌的三元液液平衡曲线测定实验装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三元液液平衡曲线测定实验装置相关的耗材配件、试剂标物,还有三元液液平衡曲线测定实验装置相关的最新资讯、资料,以及三元液液平衡曲线测定实验装置相关的解决方案。

三元液液平衡曲线测定实验装置相关的资讯

  • 精馏干货第二期:汽液相平衡
    什么是汽液相平衡?汽液相平衡,即汽相与液相间的相平衡。对于二元或者多元体系的混合物,在封闭条件下,存在汽-液两相共存的现象,一定的温度和压力下,两相达到一种动态平衡时,即该混合物的汽相和液相组成趋于稳定,不随时间变化,此时这种动态平衡即为该混合物在该条件下(一定温度和压力)的汽液相平衡。为什么要收集汽液相平衡数据?1. 相平衡在自然界和工业界都是非常重要的,在石油和化工领域有重要指导意义。物质的相平衡并不是独立的,而是与空间、压力、温度和组成相关。相平衡研究从二元体系的汽液相平衡到多元体系的相平衡慢慢发展。虽然二元或者三元组分的相平衡只是实际情况的一种简化,因为在通常情况下,会有更多组分是共同存在的。但是,相关研究表明这些二元或三元组分的相平衡数据对于多元体系的相平衡研究是有代表性和指导意义的。2. 作为化工热力学的主要研究内容之一,测量、关联和推算不同体系在不同条件下的理化性质具有重大意义。其中,相平衡研究在化工热力学研究领域占有重要位置。作为化工基础数据的重要组成部分,相平衡数据具有重要的理论和实际价值。相平衡数据不仅对化工设备选型有重大意义,而且对分离单元等操作过程的设计也非常重要,如精馏、萃取和结晶等过程。相平衡数据对化工过程工艺的优化,如温度、压力等条件的选取也具有指导意义。对生产装置的设计与评估、相平衡理论的发展,这些都需建立在相平衡数据的测定和研究的基础之上。3. 二元或多元体系混合物的汽液相平衡是确定理论蒸馏级数及其他蒸馏条件的重要基础。 图1:相图与蒸馏理论塔板数的关联尽管通过文献查询、理论计算能得到大量的汽液相平衡数据,但随着化工生产的不断发展,这些数据远不能满足需求。许多物系的相平衡数据,很难由理论直接计算得到,须由实验测定分析。因此,越来越多的学者通过实验获取或验证相平衡数据。鉴于此,相平衡装置是化工实验室必备的基础设备。如何测定汽液相平衡数据?目前最常用测定汽液相平衡的方法是循环法——即在常压或减压条件下,采用玻璃制作的平衡釜,利用循环法建立体系相平衡,从而获得汽液相平衡数据。 图2:罗斯釜(Rose Kettle)1-釜液 2-加热丝 3-液相取样口 4-液相液体 5-汽液提升管 6-汽液分隔器7-温度计套管 8-汽相取样口 9-汽相冷凝液 10 -球形冷凝管 11-加料口汽液相平衡时同时进行汽相和液相双循环,从而使汽液两相的平衡时间变短,尽可能缩短实验时长,提高实验效率。汽液相平衡实验常用到的玻璃平衡釜主要为罗斯釜(如上图所示)。在工作时,罗斯釜的釜内循环为: 物料在釜内的底部被加热至沸腾→汽液相混合物通过汽液分隔器→液体完成回到釜内,完成液体循环→汽相通过球形冷凝器冷凝回到釜底,完成回流。由循环法测定汽液相平衡数据的方法有很多,我们提到的罗斯釜也是基于该原理,基本原理如下图3所示:由A到B为蒸汽循环线,B到A为液体循环流,在到达平衡时,A和B容器的组分不随时间变化,这时从中取样并进行GC分析组成,即可以得到一组汽液相平衡数据。 图3:循环法的工作原理在进行汽液相平衡实验时往往遇到以下问题:● 因样品组成沸点较高,常压条件已不能满足使用要求,要求装置配备真空系统,同时也要求装置的密封性和完整性;● 对于一些气体样品,常温常压不能进行测试,要求装置配备过压系统,也要求装置的密封性和耐压性;● 建立相平衡的速度慢,而且没有配备双循环的冷凝装置,导致汽相有可能混入小液滴,液相有可能出现返混;● 需要大量且繁琐的重复性验证实验,耗时耗力,要求装置自动化程度高;● 取样效率低,而且准确度和重复性都不好,特别是真空或者过压操作时。这些问题,Pilodist自动汽液相平衡装置VLE110统统可以解决! Pilodist 自动汽液相平衡装置VLE11001 相平衡装置配备真空操作模块、过压操作模块以及相平衡釜的伴热装置,最 低真空度到1mbar,过压操作到3bar(绝压)。02 相平衡装置需为一体化设计,集成相平衡釜、混合室、加热系统、汽液两相冷却系统等,其中相平衡釜为双层夹套设计,且外层镀银,尽可能维持绝热操作。03 仪器特有的设计,样品在进入相平衡釜之前,汽液混合物在扩展交换区强烈传质,使得汽液两相之间能迅速达到平衡,汽液分离室的设计维持液滴不会进入汽相,液相出来后不会返混。而且汽液两相可单独取样,均为液体,方便GC进样分析。 图4:VLE循环主体结构图仪器能够迅速的达到相平衡状态:这是由于体系中同时有汽相和液相两相在体系内循环,在冷凝后,同时回到混合仓内(1.1)中。在进入汽液分离室之前(1),汽液相的混合物会经过一个加长的接触区域(1.2)以保持汽液间进行强烈的传质,该汽液分离室的设计可以有效的避免液相被夹带进入汽相。随后经过各自的冷凝器,汽相和液相又会回到混合仓中。04 仪器配备相平衡控制系统,基于windows操作系统的相平衡控制软件,操作简便,过程参数可追溯,查看过程压力稳定性;可显示设置值和实际值;控制加热温度、真空度、控制电磁阀取样等。同时配备工业触摸屏,防尘和防水等级为IP65。 图5:VLE控制系统参数设置 图6:IP65工业触摸屏05 三种取样方式收集汽相、液相样品,通过控制电磁阀分别从汽相或液相取样;也可以使用气密性的注射器直接从流体循环回路中抽取汽液两相样品;针对存在混溶间隙的样品可以通过取样针取样。● 通过控制电磁阀,分别从接收器5A汽相取样,接收器5B液相取样;● 通过气密性注射器,分别从1.15汽相取样口取样,1.16液相取样口取样;● 针对不互溶体系,可以用取样针从取样口1.5汽相取样,从1.14液相取样。如果您对上述产品感兴趣,欢迎随时联系德祥科技德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了多项奖项。我们始终秉承诚信经营的理念,致力于成为优 秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!PILODIST德国PILODIST是德祥集团旗下代理品牌之一。德国PILODIST公司源自于全球实力强悍的蒸馏及精馏设备供应商。公司传承原Fischer公司专业的蒸馏及精馏设备制造技术,为全球石油化工、精细化工行业及科研院所客户提供高品质的原油蒸馏系统、精馏系统、溶剂回收系统、汽液相平衡和分子蒸馏等。
  • 赛默飞创新技术应用系列之双三元液相色谱DGLC(五)——并联/串联色谱技术
    在生物、医药、化工、食品等行业,实验室分析人员每天都会面临着纷繁复杂的分析测试工作。如果能够提高仪器的分析效率和使用率,不仅可以减轻分析人员的工作负担,提高效率,而且可以降低分析成本。赛默飞UltiMate 3000双三元液相色谱(DGLC)系统的并联色谱技术可将一台仪器做两台仪器使用,同时完成两个不同方法的分析测试任务,相当于两台独立液相色谱的功能,可谓是理想的方案。无论是快速的分析测试还是高通量的样品筛选工作,通过赛默飞UltiMate 3000双三元液相色谱的并联色谱技术,分析效率和仪器使用率均可提高1倍,堪称是分析人员最完美的解决方案。而在日常的分析测试工作中,许多样品的分析常需梯度洗脱,尤其是对具有较宽K范围的样品和保留较强的易污染色谱柱的组分更宜采用梯度方法。但在每次分析结束之后,常需较长时间重新平衡或清洗色谱柱,如图2所示。在此过程中,进样器、柱温箱和检测器则处于闲置状态,这无疑是一种资源浪费。若能将此清洗和平衡过程与分析下一个样品同时进行,则可充分利用资源并可提高分析效率。赛默飞UltiMate 3000双三元液相色谱的串联色谱技术,即可实现在线分析样品的同时离线清洗、平衡色谱柱,为您节省约20~50%的分析时间,提高分析效率,如图3所示。图1 UltiMate 3000双三元液相色谱并联色谱技术示意图(上图为基于右泵,采用方法A在色谱柱1上分析;下图为基于左泵,采用方法B在色谱柱2上分析)图2 梯度方法运行示意图图3 常规液相与采用串联色谱技术的双三元液相分析对比a)常规液相,分析、清洗和平衡过程分别在线进行,44分钟完成一次分析 b)双三元液相采用串联色谱技术实现在线分析的同时离线清洗和平衡色谱柱,44分钟完成近2次分析。并联/串联色谱技术介绍并联色谱技术并联色谱技术是运用两个不同的分析方法,通过共享自动进样器和柱温箱,额外增加一个检测器就可基于阀的灵活切换实现一台仪器做两台仪器使用的技术。系统连接如图4所示,阀1-6位连接时,右泵-自动进样器-柱温箱-Detector1构成系统1,同时左泵-柱温箱-Detector 2构成系统2,两个系统同时进行分析。在系统1完成进样后,通过添加方法命令,将自动进样器释放给系统2,达到共用自动进样器和柱温箱的目的,提高仪器的使用效率和分析通量。图4 并联色谱技术示意图 通过Chromeleon变色龙色谱数据系统可以方便地将自动进样器和柱温箱共享,两个色谱系统独立设置而互不影响,仪器配置如图5所示。 图5 并联色谱技术仪器配置串联色谱技术首先选择两根相同的色谱柱,在柱温箱上配置一个两位置十通阀,采用双三元泵的右泵作为进样分析泵,左泵作为离线的清洗平衡泵。系统连接如图6所示。在position A时,色谱柱1进行梯度分析,同时色谱柱2进行离线清洗平衡;梯度分析结束后,阀切换至position B位置,色谱柱2与进样器及检测器相连接,进行梯度分析,同时色谱柱1进行离线清洗和平衡,整个过程在密闭系统中连续不间断地进行,提高分析效率。图6串联色谱技术示意图 采用Chromeleon变色龙软件的方法设定向导(wizard)可以轻松完成串联色谱的方法编辑过程,如图7所示。图7 串联色谱方法编辑向导并联/串联色谱技术应用实例并联技术应用环境中爆炸物材料和它们的降解产物的检测越来越得到人们的重视,因为它们自身存在毒性且难以降解,而且爆炸物的存在涉及到国家安全。美国EPA规定了14种爆炸物及其相关物质的高效液相色谱-紫外检测方法(EPA Method 8330),要求使用紫外检测器来测定14种前体爆炸物及相关底物。这个方法建议使用第1根C18色谱柱来进行分离,第2根色谱柱来进行结果确认,程序较为繁琐。采用双三元液相色谱的并联技术,一根色谱柱进行分析测定的同时,另一个色谱柱进行确认,进样一次就能完成14 种爆炸物和其他相关化合物的分离确认,并且结果符合原方法的检出限和测定要求。图8 爆炸物分析结果 盐酸去氯羟嗪和格列吡嗪在中国药典二部中分别采用两种不同方法进行分析,利用双三元液相色谱的并联技术,将仪器配置成两个time-base,可同时进行两个样品的分析。分析测定过程均满足法规要求,提高了实际样品的分析效率。 AB图9 采用并联技术分析盐酸去氯羟嗪和为格列吡嗪(其中A为盐酸去氯羟嗪;B为格列吡嗪) 串联技术应用去乙酰毛花苷在2010版药典二部有关物质检查项下采用梯度洗脱方法,总分析时间(含清洗和平衡时间)为51分钟,如图10所示。采用双三元液相色谱系统的串联技术,将清洗和平衡操作离线完成,其中左右两个泵系统的程序如表1所示,在线分析时间为26分钟,较原方法节省约49%的时间,且分析结果完全满足系统适应性实验的要求。图10 去乙酰毛花苷常规液相分析结果 表1 去乙酰毛花苷串联操作梯度程序左泵(离线清洗与平衡)右泵(分析)时间(min)流速(ml/min)B%时间(min)流速(ml/min)B%01.05201.038181.052151.038191.038211.052251.038251.052 图11 去乙酰毛花苷双三元串联色谱分析结果 赛默飞双三元液相色谱系统采用独特的双泵设计,每个泵作为一个单独的体系,有各自独立的比例阀和流动相体系,可同时单独控制三种不同的流动相,在Chromeleon变色龙软件的支持下,通过共享自动进样器和柱温箱实现并联/串联色谱技术,从而完成两套分析系统的功能。无论是常规分析、微量分析或纳升级分析,通过双三元液相色谱系统的并联/串联色谱技术均能大幅提高仪器的使用效率和分析通量,可谓是您在液相系统的最佳选择。参考文献1. 并联液相色谱- 紫外测定饮用水中的爆炸物2. 并联色谱同时分析盐酸去氯羟嗪和格列吡嗪3. 双三元串联快速分析去乙酰毛花苷注射液有关物质4. 双三元液相色谱应用文集赛默飞创新技术应用系列之双三元液相色谱DGLC集锦(一)二维及全二维液相色谱分离技术应用(二)在线固相萃取技术(三)流动相在线除盐技术(四)在线柱后衍生和反梯度补偿技术(五)并联/串联色谱技术关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 赛默飞创新技术应用系列之双三元液相色谱DGLC(二)——在线固相萃取技术
    样品前处理是HPLC分析中必不可少的一部分,常需手工且需多步操作才能完成,要比HPLC分离和数据处理等花费更多的时间。其作用是去除试样中的干扰物质,使痕量组分得到富集,便于检测和分离,且不损害色谱柱。因此,在分析方法的建立和常规分析中,方法的精密度和准确性很大程度上取决于样品的前处理操作。 近年来,随着液相色谱仪技术的迅速发展,HPLC自动化程度越来越高,加之色谱柱颗粒技术的发展,使得色谱分离的时间大大缩短。无疑,样品的前处理技术实现自动化,将会为实验室人员带来极大的益处。尤其是当面临大量样品且前处理过程繁琐时,自动化无疑是理想的选择,这也与HPLC技术发展相匹配。固相萃取是当前常用的样品前处理技术,分为在线和离线两种方式,用于样品的净化、除杂和富集。离线固相萃取具有试剂用量少、节省时间、易于SOP等优点。其缺点为SPE固相萃取柱仅能使用一次,成本较高。而在线固相萃取技术(online SPE)能把活化、平衡、除杂和洗脱等过程在封闭系统内自动化完成,减少人工操作带来的误差,提高方法的准确性和精密度,不仅能加快样品的前处理过程,而且SPE柱可重复使用,总的分析成本将大大降低;更为关键的是在线SPE柱(dp5~10&mu m)比离线SPE萃取管柱效更高,分离度更好,样品更干净,更易于最终的HPLC分离。 传统实现online SPE的过程如图1所示,常需另外添加一个输液泵,系统连接复杂,灵活性和自动化程度较差。赛默飞UltiMate 3000双三元液相色谱,采用独特的双泵设计,每个泵可作为一个单独的体系,有各自独立的比例阀和流动相体系,可同时单独控制三种不同的流动相,在Chromeleon变色龙软件的支持下,结合独特的阀切换技术,通过灵活的流路连接设计,一套系统即可以轻松实现online SPE以及HPLC分离过程。见图2.图1 online SPE过程图2 赛默飞UltiMate 3000双三元液相色谱online SPE 技术 在线固相萃取技术的痕量组分富集应用饮用水中9种有机物(微囊藻毒素-LR、呋喃丹、甲萘威、百菌清、莠去津、溴氰菊酯、2,4,6-三氯酚、五氯酚和苯并芘)的分析比较复杂,对很多实验室的工作人员来说具有很大的挑战性。国标方法GB/T 5750需要复杂的样品前处理流程,如水体的富集,但使用赛默飞的双三元(DGLC)液相色谱,一套系统轻松搞定水体的富集、净化、分离与检测,不仅精简了饮用水的前处理操作,大大简化了国标方法的复杂性,而且很容易实现饮用水标准检验方法的检出限要求,使得在饮用水水质控制方面更加简单易行。同时在普及性极高的HPLC-UV-FLD仪器上实现了高灵敏度检测,可作为监测饮用水体检测上述有机物的常用方法。图3 在线固相萃取-双三元液相色谱分析原理图(A:上样,清洗,萃取;B:洗脱,分离,分析)图4 9种有机物混合标准品紫外谱图图5 9种有机物混合标准品荧光谱图在线固相萃取技术的复杂样品净化应用在线固相萃取技术的色谱柱切换法是分离和清除复杂多组分样品杂质的有效技术,可被用于去除强保留的、对色谱柱造成损坏的杂质,又可除去干扰色谱分离的物质。黄芪是常见的中药,也是中药方剂配伍及其制剂中使用频率较高的中药。其中黄芪甲苷是主要活性成分,药品标准中常将其作为质量评价指标成分。但黄芪甲苷含量较低,且黄芪基质复杂。2010版一部药典中,黄芪药材的前处理采用正丁醇萃取,经过D101大孔吸附树脂离线纯化后,再进样分析,步骤较多,回收率不高。利用赛默飞双三元液相色谱系统,采用在线固相萃取技术的柱切换净化方法结合电雾式检测器检测,对样品进行净化后再自动切换到分析柱上进行分析,取得了很好的结果。已成功应用于黄芪药材、归脾丸(浓缩丸),补肾固齿丸,益气养血口服液和颈复康颗粒等中药复方样品的分析中。系统连接方式见图5. 图6 仪器系统连接图 图7-1 黄芪甲苷对照品图7-2黄芪药材 图7-3 归脾丸 图 7-4 益气养血口服液 图7-5 颈复康颗粒 图7-6补肾固齿丸图7 黄芪及其复方分离谱图 结合限制性介质材料(RAM)柱和Turboflow技术,提高生物样品分析效率限制性介质材料(RAM)柱同时具有对大分子的体积排阻作用和对小分子的吸附作用,通过控制吸附剂合适的孔径和对吸附剂的外表面进行适当的生物兼容性修饰,使得生物样品中的大分子基质成分不能进入吸附剂的内孔中去,且生物兼容性的外表面保证了生物大分子不会发生不可逆的变性和吸附,这样大分子物质在死体积或近于死体积的情况下被洗脱除去。而Turboflow技术是利用大粒径填料使流动相在高流速下产生涡流状态,在涡流状态下,溶质分子传质加快,传质阻力减小,虽然其流速很高,但分离效率并没有随之降低很多。在这种情况下,大分子的基质成分如蛋白质等,还未能扩散进入填料颗粒内部就已被洗出柱外,而小分子的待测物则可以保留下来,与基质分离。 在用大鼠进行抗高血压联合用药氢氯噻嗪和尼群地平的药代动力学实验中,每次取血量有限,且血药浓度较低,要求最好可同时测定氢氯噻嗪和尼群地平。此两种药物同时检测的分析方法报道很少,多数是对两药分别建立分析方法。原因有两个:一、尼群地平口服吸收存在首过效应,体内血药浓度值低,大约1-50 ng/mL,在这个检测浓度条件下,多采用液质联用技术进行分析,而此两种药物在质谱工作条件下一个是正离子模式,一个是负离子模式,同时检测不方便;二、尼群地平和氢氯噻嗪极性相差较大,同时提取和分析困难较大。 利用赛默飞双三元液相色谱系统(DGLC)的online SPE技术结合紫外检测器,采用限制性介质材料(RAM)柱CAPCELL MF C8作为在线固相萃取柱。血浆样品于4℃下,10000 r/min高速离心后,取上清液,用0.22 &mu m尼龙滤膜过滤,直接进样分析,可在线去除血浆中的蛋白,又可同时对尼群地平和氢氯噻嗪进行测定,避免了样品前处理手动操作带来的误差,且样品基质干扰少,适合对血浆样品定量分析。此分析方法不仅提高了生物样品的分析效率,而且可以为进一步的药代动力学-药效学联合模型的建立提供有力支持。 图8-1 氢氯噻嗪(3.3 ppm) 图8-2 尼群地平(3.3 ppm)图9-1 大鼠血浆中氢氯噻嗪图9-2大鼠血浆中尼群地平上面这些应用实例展现了赛默飞UltiMate 3000双三元液相色谱在线固相萃取技术的多样化应用以及简便、实用、高效的特点。此外,基于灵活的阀切换技术,可以通过并联多柱模式实现高通量的online SPE过程,同时可以针对基质成分和目标物的理化性质,灵活选择多种不同的化学键合相的SPE柱,在Chromeleon变色龙软件支持下,解决实际工作中的分析难题。目前赛默飞UltiMate 3000双三元液相色谱在线固相萃取技术已广泛应用于环境化学、食品饮料、药物临床研究等领域。参考文献1、在线固相萃取技术- 高效液相色谱同时分析饮用水中的9种有机物及农残2、在线固相萃取-高效液相色谱法测定橙汁中多菌灵残留量3、在线固相萃取-高效液相色谱-荧光检测法测定食用油中多环芳烃4、加速溶剂萃取-在线固相萃取-高效液相色谱-荧光检测法快速测定谷物或食品中的黄曲霉毒素5、在线固相净化方法结合电雾式检测器测定黄芪及复方中黄芪甲苷的含量6、在线固相萃取-高效液相色谱-紫外检测法测定鼠血浆中氢氯噻嗪和尼群地平7、在线柱浓缩- 超快速液相色谱法测定水体中痕量甲萘威和呋喃丹8、双三元液相色谱应用文集赛默飞创新技术应用系列之双三元液相色谱DGLC集锦(一)二维及全二维液相色谱分离技术应用(二)在线固相萃取技术(三)流动相在线除盐技术(四)在线柱后衍生和反梯度补偿技术关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 赛默飞创新技术应用系列之双三元液相色谱DGLC(四)
    &mdash &mdash 在线柱后衍生和反梯度补偿技术 衍生化是指被测物质与相应的试剂发生化学反应,改变被测物质的化学和物理性质,提高被测物质的检测灵敏度,改善被测物质混合物的分离度,从而达到利于分析的目的。衍生化在HPLC分析中应用广泛,其中在线柱后衍生使用居多。传统的在线柱后衍生需要一个独立的泵来输送衍生试剂以实现衍生的目的,但这些额外的独立装置有时由于与液相色谱系统本身不能进行很好的联用,往往导致运行不甚理想。赛默飞双三元液相色谱系统由于具有两个独立的泵和流路,一个泵进行分析,另外一个泵可以完成如输送衍生试剂等的辅助功能,可以很好地实现在线柱后衍生应用,而且这些功能很多情况只需要一个简单的柱后三通或反应管的连接就可以实现。此外,在HPLC和MS联用时,为了增强离子化效率,需要另外的流路泵入甲酸或乙腈,使用赛默飞双三元液相色谱系统也可以简单方便地实现这样的功能。 反梯度补偿技术是指在色谱柱后进入检测器前加入另一与分析时溶剂组成相同但比例相反的溶剂,使进入检测器的溶剂浓度保持不变,从而使检测条件更加稳定,提高检测效果。当使用基于雾化机理的检测器(如电雾式检测器CAD或蒸发光散射检测器ELSD)进行梯度分析时,由于被测物质的响应值与雾化效率密切相关,而流动相的组成是影响雾化效率的重要因素,但由于梯度分析时流动相的组成在不断改变,样品中各组分的雾化效率也随着在不断变化,这将直接影响待测物质响应的一致性。使用双泵设计的赛默飞双三元液相色谱系统,通过应用反梯度补偿技术可以避免该因素对检测的影响,从而实现对目标物的准确分析。在线柱后衍生改善被测物质的检测灵敏度黄曲霉毒素(AF)是黄曲霉和寄生曲霉的代谢产物,具有极强的毒性和致癌性,可引发动物的肝癌、肾癌、胃癌等,其中B1的毒性最强。我国规定在玉米、花生、花生油、坚果和干果等食品中的最高允许含量为20&mu g/kg。1995年,世界卫生组织制定的食品黄曲霉毒素最高允许浓度为15&mu g/kg。要准确测定黄曲霉毒素的含量,需将其衍生化以提高检测灵敏度。采用双三元液相色谱系统,使用双三元液相色谱的右泵作为分析泵,左泵做衍生泵,以0.05%碘溶液作为衍生反应试剂,一套系统即可方便自动化地实现在线柱后衍生,提高黄曲霉毒素的检测灵敏度,以满足法规的检测要求。图1 黄曲霉毒素标准品测定谱图(黄曲霉毒素M1:2.5ppb;黄曲霉毒素G1、G2、B1、B2:0.75ppb)图2样品及其加标测定谱图通过系统的方法学验证表明该方法完全满足法规的测定要求,检测灵敏度较高,检出限分别为M1 0.1ppb、G1 0.04 ppb、G2 0.03 ppb、B1 0.03 ppb和B2 0.018ppb,方法准确度和重现性较好。针对雾化机理检测器的反梯度补偿技术所有基于雾化原理的检测器(如CAD,ELSD),其响应值均会随流动相中有机相比例的变化而变化,通过双三元液相色谱系统的反梯度补偿技术,可以使流动相组成保持不变,从而使相同含量的组分具有更加趋于一致的响应。电雾式检测器(Charged Aerosol Detector, CAD)为赛默飞独有的一种新型质量通用型检测器,可用于分析无(或弱)紫外吸收的不(半)挥发性成分。可对分析物提供独立于化学结构的一致的响应,无需复杂的优化即可得到可预见的结果。在药物杂质分析和天然药物多组分定量分析中,经常无法获得所有物质的对照品,却需要对所有物质进行定量或半定量分析,CAD检测器则可以解决这个难题,它可以在只有其中一种对照品的情况下实现对其他组分的定量或半定量分析。如果您配备了双三元液相色谱系统,在梯度分析过程中就可以进行反梯度程序进行柱后梯度补偿,从而可在整个梯度范围内获得一致的响应,使分析结果更加准确。仪器连接示意图见图4. 图3 双三元液相色谱系统反梯度补偿技术示意图 分析柱(Active column,紫色)按照常规使用,与右泵、自动进样器和检测器连接(本图为DAD与CAD串联分析待测化合物),并安装在柱温箱中;柱后补偿柱(Delay column,绿色)也安装在柱温箱中,且规格尺寸与分析柱一样,利用三通连接管将分析柱和补偿柱连接在入口处一端,检测器则连接在出口处一端。所有连接管线耐压且具有良好密封性。通过反梯度补偿技术使得进入CAD检测器的流动相组分比例保持恒定从而产生一致的响应信号,如图4所示。 A.未使用反梯度补偿技术 B. 使用反梯度补偿技术图4 反梯度补偿技术对响应信号的影响通过以上的介绍可知,赛默飞UltiMate 3000双三元液相色谱(DGLC)系统,采用独特的双泵设计,每个泵作为一个单独的体系,有各自独立的比例阀和流动相体系,可同时单独控制三种不同的流动相,在Chromeleon变色龙软件的支持下,可实现如在线柱后衍生和反梯度补偿等的辅助功能应用,极大地满足您对一些特殊应用的需求。参考文献1. 柱后碘衍生法测定芝麻中的黄曲霉毒素2. 双三元液相色谱应用文集赛默飞创新技术应用系列之双三元液相色谱DGLC集锦(一)二维及全二维液相色谱分离技术应用(二)在线固相萃取技术(三)流动相在线除盐技术(四)在线柱后衍生和反梯度补偿技术关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 快速平衡闭杯法闪点测定仪:实现温度控制的自动化
    A1194低温闭口闪点测定仪是按照中华人民共和国标准GB/T 5208-2008《闪点的测定 快速平衡闭杯法》规定的要求设计制造的。本仪器也符合ISO 1523 和ISO 3679标准的要求。本仪器以电子温控仪表为核心,配有适当的接口电路,实现温度控制的自动化,具有加热功率自动切换、温度自动控制等功能。本仪器操作简单,结构合理,检测准确,性能稳定,显示直观,能够满足石油、化工、涂料、油漆、铁路、航空、电力、商检及科研单位对石油产品闪点的测试。本仪器适合于闭口杯闪点在-30℃~50℃或0℃~100℃范围内的各类色漆、油漆、胶黏剂、溶剂、石油及有关产品闭口杯闪点的测试。仪器特点5.6寸彩色触摸液晶显示屏微电脑处理器,智能化设计温度补偿,优化结构,自动打印测试报告进样量少,每次仅需要2-4ml样品技术参数工作电源:AC 220V±10%, 50Hz闪点检测范围: -20℃至50℃或室温至200℃(可定做-10℃至100℃)控温精度: ±0.5℃;点火装置: 电子点火枪点火;制冷方式: 半导体制冷;电源电压: ~220V±10%、 50Hz;整机功耗: 不大于300W;环境温度: 5℃~30℃;相对湿度: 30~80RH。测量精密度: 两个实验结果之间的差值小于2℃(同一操作者)两个实验结果之间的差值小于3℃(不同操作者)仪器外型尺寸: 400mm×250mm×450mm仪器重量: 控制箱 12.5kg
  • 赛默飞创新技术应用系列之双三元液相色谱DGLC(一)
    &mdash &mdash 二维及全二维液相色谱分离技术应用 随着蛋白组学、代谢组学、相互作用组学及中药现代化研究的不断深入,复杂体系分离已成为分析化学研究的热点和难点之一。Davis和Gidding利用重叠统计学理论指出,当色谱峰的个数超过峰容量的37%时,分离度就会大大下降。随着色谱柱技术的迅速发展,采用亚二微米及表面增强核技术虽然可以大大提高色谱分辨能力,但很多样品的复杂程度远远超过了一维色谱的分离能力。在这样情况下,结合多种分离手段,能够提高系统分辨能力,增加峰容量,擅长于复杂样品分析的二维或多维色谱分离技术,成为液相色谱发展的重要方向。 在线二维或多维色谱分离的实现往往需要复杂仪器系统的配置和管路连接,并需要软件的繁琐设置和支持,等等这些原因极大地制约了二维或多维色谱分离技术的应用。赛默飞UltiMate 3000双三元液相色谱作为2006年匹兹堡金奖产品,采用独特的双泵设计,每个泵都作为一个单独的体系,有各自独立的比例阀和流动相体系,可同时单独控制三种不同的流动相,在Chromeleon变色龙软件的控制下,结合独特的阀切换技术,通过灵活的流路连接设计,可以轻松实现在线二维或多维色谱分离等高级应用,帮您解决复杂体系的分离难题。 UltiMate 3000双三元液相色谱二维色谱分析示意图Chromeleon变色龙软件方法编辑向导极大提高系统分离度,减少色谱峰重叠通过一维和二维分离选择性的差异(正交性),可以扩大分离空间,提高系统分离度,最大限度地减少色谱峰的重叠现象。系统分离度公式:其中RS为系统分离度,Rx和Ry分别为一维和二维的分离度。基于在线固相萃取技术的二维色谱分离应用苏丹红(Sudan dyes)是一种人工合成的偶氮类、油溶性的化工染料,禁用于食品着色,通常有苏丹红I、II、III、IV,四种苏丹红都有致癌毒性。国标GB/T19681-2005在分析检测苏丹红时使用正己烷萃取,碱性氧化铝净化,有机溶剂消耗量大,步骤十分繁琐,且由于氧化铝的活化程度直接影响净化效果,造成方法重现性不能令人满意。 采用二维色谱分离结合在线固相萃取技术可方便的完成辣椒油等复杂基质样品中四种苏丹红的测定。样品从左泵进样后在一维色谱柱中实现初步分离净化,去除基质干扰物质,然后分别将目标分析物中心切割至SPE小柱中浓缩,最后通过右泵的流动相体系将SPE柱中的目标物洗脱至第二维的分析柱中进行UV+MS的分析测定。系统流程图见图2. 图2. 全自动二维色谱结合在线固相萃取系统流程图(方法开发时通过流路①使用DAD检测器;检测样品时通过流路②使用MS检测器)图3辣椒油样品紫外色谱图a) 混合标准溶液(4个组分均为2 mg/mL);b) 加标辣椒油样品(苏丹红组分均为6 mg/mL);(其中1 苏丹红I,2 苏丹红II,3 苏丹红III,4 苏丹红IV,二维色谱数据采集时间10min )图4辣椒油样品的质谱总离子流色谱图(其中1 苏丹红I,2 苏丹红II,3 苏丹红III,4 苏丹红IV)a)空白(乙腈);b) 混合标准溶液(苏丹红II、III浓度为5 &mu g/L,苏丹红I、IV浓度为15 &mu g/L);c) 辣椒油样品;d) 加标辣椒油样品(苏丹红I、III浓度为10 &mu g/L,苏丹红II、IV浓度为30 &mu g/L)基于阀切换技术的二维色谱分离运用中药苦荞麦是蓼科(Polygonaceae)荞麦属(Fagopyrum Mill) 一年生或多年生草本植物,具有降血糖、降血脂、降尿糖等作用。系统的化学成分研究表明其含有很多结构类似的黄酮苷、酚苷和酰胺类化合物,采用常规分离,色谱峰容量有限,峰重叠现象严重。采用二维色谱分离技术,提高了系统峰容量,改善了系统分离度,同时对其中12个组分进行了定量,该方法对中药的质量评价具有重要意义。 首先DGLC的左泵将样品带到Hilic-10小柱中实现粗分,将保留相对较弱的成分洗脱至PAⅡ C18柱上实现分离;再把Hilic-10小柱中保留相对较强的组分洗脱至phenyl 柱中实现分离;利用分析柱后的一个2位阀实现UV检测器的共用,从而轻松完成所有组分的定量分析。 图5 仪器系统连接图图6 苦荞麦二维分离谱图在线全二维色谱分离的实现全二维色谱分离模式是指一维色谱分离的全部馏分连续的、直接的通过八通或十通阀注入到二维分离系统中;每个馏分都经过两种不同的分离方法;且在获得最佳二维分辨率的同时,第一维的分辨率维持不变。它适合复杂组分的分析,可获得更多的样品组分信息。全二维分析的数据呈现过程见图7.。 图7全二维色谱的数据呈现过程图8 典型的全二维色谱连接图 刺五加是五加科五加属的一种落叶灌木,主要的药用部分是它的根及根皮,药材名又称五加参, 是中药五加皮的一种。其系统的化学研究已比较深入,主要含有甾体类、香豆素类 、木质素类、酚类、糖类、三萜类及有机酸、微量元素等。采用全二维液相色谱分离技术结合质谱对刺五加水提取物进行系统的物质基础分析。与一维色谱分离比较,全二维色谱的峰容量大大提高。实验结果初步显示出全二维液相色谱串联质谱分离分析体系的高峰容量、高灵敏度和自动化等特点,为中药复杂体系的分离分析提供了一种可靠的方法。 图9 刺五加混合对照品和药材样品3D谱图(其中1 绿原酸;2 紫丁香苷;3 紫丁香苷;4 异嗪皮啶;5 紫丁香苷E )这些应用实例展现了赛默飞UltiMate 3000双三元液相色谱在实现二维及全二维色谱分离技术上的优势,结合Chromeleon变色龙软件的方法编辑向导可以轻松实现二维及全二维色谱操作。此外从纳升液相、常规液相、超快速液相到生物液相所有系统均可提供双三元液相色谱以满足不同的分析需求。参考文献1、二维液相色谱分析婴幼儿配方奶粉中维生素A、D、E2、二维液相色谱技术纯化和分析单克隆抗体3、2D-UHPLC分析苦荞麦中12个主要化学成分4、全自动在线固相萃取-二维高效液相与质谱联用法测定辣椒油的苏丹红5、在线全二维液相色谱串联质谱分析刺五加提取物成分6、Xiaoliang Cheng, Liping Guo, Zaiquan Li, et al. A HPLC method for simultaneous determination of 5-aminoimidazole-4-carboxamide riboside and its active metabolite 5-aminoimidazole-4-carboxamide ribotide in tumor-bearing nude mice plasma and its application to pharmacokinetics study [J]. J Chromatogr B, 2013, 915&ndash 916: 64&ndash 70.赛默飞创新技术应用系列之双三元液相色谱DGLC集锦(一)二维及全二维液相色谱分离技术应用(二)在线固相萃取技术(三)流动相在线除盐技术(四)在线柱后衍生和反梯度补偿技术 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 疫苗企业如何在利润与社会责任之间做好平衡与选择VacCon2019疫苗企业集锦
    p  strong疫苗企业如何在利润与社会责任之间做好平衡与选择VacCon2019疫苗企业集锦/strong/pp  “我们应当永远铭记,药物是为人类而生产,不是为追求利润而制造的。只要坚守这一信念,利润必将随之而来。”近期疫苗问题频发,一直牵动着国人的神经,也在疫苗从业者中引起了一丝恐慌。当下该如何重塑国产疫苗的信心呢?请跟随编者脚步了解VacCon2019疫苗质量安全论坛将会为大家带来哪些精彩分享。/pp  VacCon疫苗质量安全论坛作为第十二届中国生物产业大会的重要组成部分,将于2019年6月10-11日在广州白云国际会议中心召开,论坛邀请了在新疫苗研发领域卓有建树的大型药物研发企业专家,为大家分享如何在利润与社会责任之间做好平衡与选择。/pp  康希诺生物是专业从事高质量人用疫苗的研发、生产和商业的高科技生物制品企业。除了曾经研发埃博拉病毒疫苗并获得新药上市批准外,其同时在研品种众多:有组分百白破疫苗、肺炎球菌疫苗等创新型疫苗在研,同时二价脑膜炎球菌疫苗提交新药上市申请,四价脑膜炎球菌疫苗已完成三期临床试验。康希诺生物股份公司首席运营官巢守柏也将来到VacCon现场分享:疫苗行业质量与安全的机遇与挑战。/pp  华南疫苗致力于基因工程疫苗关键核心技术的研发,建立基因工程疫苗研发及产业化平台,主要研发方向是基于昆虫细胞杆状病毒表达系统(BEVS)的基因重组疫苗,率先在国内建立了具有完全自主知识产权的昆虫细胞-杆状病毒表达系统(BEVS)。广东华南疫苗股份有限公司董事长兼首席科学家彭涛将在VacCon疫苗会场分享:基于昆虫细胞杆状病毒表达系统的基因工程疫苗的质量研究。/pp  享有“世界上最伟大的疫苗学家之家”美誉的默沙东,过去几十年里研发出麻疹疫苗、乙肝疫苗、水痘病毒疫苗、人乳头瘤病毒疫苗等众多药物。其中国总部设在上海,同时在北京设有研发中心、在杭州设有工厂,实现了研发、制造和商业运营三擎合一。本次VacCon疫苗大会中,默沙东研发(中国)有限公司高级临床质量管理负责人朱余艳将向我们讲述:GCP下疫苗临床试验的质量管理要点。/pp  民海生物是深圳康泰旗下全资子公司,是一家以生物疫苗产品研发、生产和销售为主营业务的上市企业。公司拥有一个国内领先的新型疫苗研发中心,以及由十几个GMP生产车间组成的现代化疫苗生产基地。自主研发的产品中“无细胞百白破b型流感嗜血杆菌联合疫苗”为国内首创四联疫苗。北京民海生物科技有限公司副总经理郑景山VacCon会场将分享:疫苗生产环节中的GMP管理与质控策略。/pp  泽润生物,是沃森生物控股子公司,专注于新型重组人用疫苗产品的研发和产业化的国家高新技术企业。公司自主知识产权产品精制甲型肝炎灭活疫苗(Vero细胞),为全世界第一个Vero细胞基质培养生产的甲型肝炎灭活疫苗,提升了甲肝疫苗领域产品质量标准和安全性。上海泽润生物科技有限公司首席执行官史力VacCon会场将要分享的主题:从产品设计源头保证疫苗产品的品质,安全性,和有效性。/pp  迈科康生物主要从事新型流感疫苗、新型狂犬病疫苗、新型轮状病毒疫苗和新型老年带状疱疹疫苗等产品的研发、生产、推广和销售。拥有29项自己发明和授权的专利,开发的产品包括新型流感疫苗,新型狂犬病疫苗,新型轮状病毒疫苗,新型老年带状疱疹疫苗等均采用国内首创、国际领先的技术。迈科康生物创始人陈德祥博士将在VacCon论坛分享:佐剂开发-质控和临床前安全评价体系的重要性。/pp  部分参会企业:/pp  中国生物技术股份有限公司,中国科学院微生物研究所,首都医科大学附属北京儿童医院,北京生物制品研究所责任有限公司,中国疾病预防预防控制中心病毒病所麻疹室,上海生物制品研究所有限责任公司,长春百克生物科技股份公司,河南省疾病预防控制中心疫苗临床中心,MSD 默沙东中国,中国医学科学院医学生物学研究所,复旦大学基础医学院,陆军军医大学国家免疫生物制品工程技术研究中心,广东省疾病预防控制中心,葆元生物医药科技(杭州)有限公司,浙江普康生物技术股份有限公司,天康生物(上海)有限公司,广州源博医药科技有限公司,华北制药金坦生物技术股份有限公司,艾美疫苗集团,中国科学院广州生物医药与健康研究院,艾美汉信疫苗(大连)有限公司,浙江天元生物药业有限公司,普罗吉,武汉博沃生物科技有限公司,Komtur Pharmaceuticals,珠海恺瑞生物科技有限公司,海通创新证券投资有限公司,天河南街社区卫生服务中心,广州华农大实验兽药有限公司,武汉爱民制药股份有限公司,深圳市卫光生物制品股份有限公司,泰州赛华生物科技有限公司,北京诺禾致源科技股份有限公司,陕西省绥德县疾控中心,邯郸市肥乡区疾控中心,深圳赛诺菲巴斯德生物制品有限公司,复旦大学,三元里街社区卫生服务中心,阜南县鹿城镇卫生院免疫规划科,广州市越秀区农林街社区卫生服务中心,Union Exosomes Inc.,长春长生生物科技股份有限公司,华东理工大学,成都生物制品研究所有限责任公司,康希诺生物股份公司,中牧研究院,贵州医科大学,艾棣维欣(苏州)生物制药有限公司,阿法拉伐公司,天津威特生物医药有限责任公司,广东华南疫苗股份有限公司,广州东锐科技,广东君睿生物技术研究有限公司,拜晟生物,广东永顺生物制药股份有限公司,成都安特金生物技术有限公司,辉瑞制药,财新传媒,国药中生成都生物制品研究所有限责任公司… /pp  更多企业信息持续更新中… /pp  VacCon2019赞助席位仅剩1席!!!若您有意向合作,欢迎联系组委会。/pp  本次论坛提供限量免费入场券(仅面向疫苗研究生产的院校及企事业人员) /pp  (门票包含:两天会议入场券、会议资料 餐饮、住宿自理)。/pp  若您为疫苗技术服务提供方等其他关注疫苗行业人士,现在报名即享千元优惠(门票包含会议入场券,会议资料,会议两天自助午餐 其它食宿自理)。/pp  请扫描下方二维码,即刻获取报名通道/ppimg title="22.png" style="max-height: 100% max-width: 100% " alt="22.png" src="https://img1.17img.cn/17img/images/201905/uepic/cc384549-7416-4f47-b570-1e42fb193f20.jpg"//pp /pp  欲知更多会议详情,欢迎咨询VacCon组委会!/pp  电话:+86 18017939885/pp  邮箱:vaccon@bmapglobal.com/pp  网址:www.bmapglobal.com/vaccon2019/pp /pp /p
  • 《分析化学》正刊推出“赛默飞Ultimate 3000 DGLC 双三元液相色谱专刊”
    为加强学术交流与合作,充分分享经验与科研成果,推动我国相关科研领域的发展,《分析化学》杂志2014年第12期以正刊形式推出“赛默飞Ultimate 3000DGLC双三元液相色谱专刊”。 本期专刊收纳了如环境、食品、制药、化工等领域专家利用Ultimate 3000 DGLC 双三元液相色谱获得的研究成果20余篇,以研究报告、研究简报、评述与进展、仪器装置与试验技术等形式与读者进行学术交流和经验分享。赛默飞Ultimate 3000 DGLC 双三元液相色谱《分析化学》专刊下载链接:www.thermo.com.cn/survey826.html 随着科技的进步和研究的深入,我们遇到的问题越来越复杂,一些简单的系统和方法已经不能满足需求,赛默飞UltiMate 3000 DGLC双三元液相色谱凭借其独特的技术可迎刃而解这些复杂的问题,由此获得了很多专家学者的青睐。双三元液相色谱于2006年获得匹兹堡金奖,独特的设计开创了液相色谱新篇章。该系统采用双泵设计,每个泵作为一个单独的体系,有各自独立的比例阀和流动相体系,同时单独控制三种不同的流动相,在Chromeleon变色龙软件的支持下,结合独特的阀切换技术,通过灵活的流路连接设计,一套系统即可以轻松实现在线固相萃取、二维及全二维液相色谱分离、流动相在线除盐、在线柱后衍生和反梯度补偿、并联/串联色谱等高级应用。赛默飞Ultimate 3000 DGLC 双三元液相色谱产品详情:www.thermo.com.cn/Product6510.html 《分析化学》杂志秉承积极报道我国分析化学创新性研究成果,反映国内外分析化学学科的前沿和进展,为广大读者提供最新的分析化学理论、方法和研究进展,为分析化学工作者提供国内外最新分析仪器信息,促进学术交流和科技进步的宗旨。现特推出“赛默飞Ultimate 3000 DGLC 双三元液相色谱专刊”,旨在将先进的仪器和独特的方法与读者分享,将前沿的理念带给读者,希望借此能给读者启发,从而起到积极的作用。 详情请登陆: www.analchem.cn/index.php 专刊下载链接:www.thermo.com.cn/survey826.html 更多关于赛默飞UltiMate 3000 DGLC双三元液相色谱的详情:www.thermo.com.cn/Product6510.html ------------------------------------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于《分析化学》《分析化学》目前是我国自然科学核心期刊及全国优秀科技期刊。由中国科学院长春应用化学研究所和中国化学会共同主办, 国内外公开发行的专业性学术期刊。1999年被SCI收录至今,2012年影响因子为0.769。地址:长春市人民大街5625号《分析化学》编辑部?邮编:130022电话:0431-85262017/85262018 传真:0431-85262018
  • 众瑞新品ZR-5100型自动滤膜平衡称重系统
    超低排放新标准hj836-2017 《固定污染源废气 低浓度颗粒物的测定 重量法》已于2018年3月1日起正式实施。其中有关分析和称重部分中要求:天平在恒温恒湿设备内称量。▼▼▼ZR-5100型自动滤膜平衡称重系统 设备简介ZR-5100型自动滤膜平衡称重系统是在恒温恒湿箱体内放置高精度天平,将要称量的样品放入恒温恒湿箱体内平衡后进行自动称量。恒温恒湿条件保证了天平称量样品结果的确性和样品称量数据的稳定性,该产品可用于47mm滤膜样品及各种滤嘴样品的高精度称量。 执行标准GB/t16157-1996 《固定污染源排气中颗粒物和气态污染物采样方法》HJ618-2011 《环境空气pm10和pm2.5的测定 重量法》HJ656-2013 《环境空气颗粒物(pm2.5)手工监测方法(重量法)》HJ836-2017 《固定污染源废气 低浓度颗粒物的测定 重量法》 优点阐述■天平在高精度恒温恒温箱体内工作,称量样品在高精度恒温恒湿箱体内平衡■保证了样品称量结果的准确性。■可针对称量样品的种类放置不同样品支架。■恒温恒湿箱体采用上送风上吸风的内循环方式,保证箱体内温湿度均匀。■离子风扇有效去除样品静电。■天平工作台采用防震处理,保证天平称量的准确性。■上位机可实时监测箱体内温湿度,并可查看历史数据及动态曲线。■自动开启风罩门有效消除箱体内循环风对天平的影响。■每个样品称量前,天平自动置零,提高样品称量准确性。■自动识别47mm滤膜的条形码及二维码。 实际应用首先恭贺众瑞子公司青岛众瑞环境检测有限公司于近日成功扩项,取得固定污染源低浓度颗粒物的检测资质,ZR-5100型自动滤膜平衡称重系统已在众瑞检测的称重实验室内准备就位了。▲众瑞携手共进
  • 锂电新能源材料 | 从硫酸盐到三元前驱体,TOC把关有机物残留
    导 读电动车正以其丝滑加速、便捷操控、环保和静音等优越体验俘获着一众新老司机,大街小巷悄然增多的电动车不断刷新着新能源车销量记录。工信部官微“工信微报”1月披露,2021年,我国新能源汽车销售完成352.1万辆,同比增长1.6倍,连续7年位居全球第一。电动车的核心是电池,电池的关键是正极材料,正极材料性能的基础在于前驱体,而电池级硫酸盐是制备三元前驱体的重要原料。近年来,前驱体生产企业发现,硫酸盐原料中引入的有机物残留会显著影响前驱体的合成,引起形貌变化和振实密度降低,最终导致电池容量显著下降。通过使用总有机碳分析仪(TOC)监测硫酸盐中的有机物残留,可保证前驱体的稳定生产。 三元前驱体生产工艺三元前驱体指镍钴锰的氢氧化物,是生产三元正极材料的重要上游材料,通过与锂源混合后,烧结制得三元正极成品,其性能直接决定三元正极材料核心理化性能。 图1 三元前驱体单颗粒中Ni、Co、Mn和O元素分布(由岛津电子探针EPMA-8050G拍摄) 目前三元路线的前驱体主要以共沉淀法合成,将镍、钴、锰的硫酸盐配制成可溶性的混合溶液,然后与氨、碱混合,通过控制反应条件形成类球形氢氧化物。 三元前驱体溶液中有机残留物的影响在镍钴锰硫酸盐的提纯过程中,会使用260#溶剂油、P204和P507等萃取剂,这些有机萃取剂残留在盐溶液中,将严重影响前驱体的合成,在沉淀生成过程中导致形貌疏松,无法成球,粒度分布宽化,振实密度下降。马跃飞在《高镍多元前驱体的制备与研究》[1]中评估了类似有机物残留的“油分”指标对形貌的影响,并提出需要控制溶液中油分在5ppm以下。由华友钴业等企业起草的团体标准《T/ATCRR10-2020电池级硫酸钴溶液》、《T/ATCRR11-2020电池级硫酸锰溶液》和《T/ATCRR12-2020电池级硫酸镍溶液》中,对优等品硫酸盐溶液中油分的限值分别为0.0100g/L、0.0100g/L和0.0050g/L。 图2 料液对高镍前驱体形貌影响(沉淀时间36h)(a)油分为9.5ppm(4000倍)(b)油分为2ppm(4000倍)图片引自http://www.cbcu.com.cn/shushuo/jishu/2021031635652.html 三元前驱体溶液中有机物残留分析方案为了控制前驱体溶液中有机物残留,保证前驱体的稳定合成,精确而稳定的监测十分重要。三元前驱体溶液中盐含量非常高,通常在30%以上,因此对测试仪器的耐盐性提出了更高的要求。岛津TOC-L总有机碳分析仪,以680℃催化氧化样品中有机物,通过精确测定生成二氧化碳的量来确定总有机碳含量。TOC-L用于三元前驱体溶液中有机残留物的测试,结果精确度高、稳定性好,配合八通阀在线加酸去除无机碳和自动稀释功能测试,操作简便,分析速度快。 01方法评估在0-20ppm范围内建立标准曲线,试样6次重复测试RSD2.0%。 表1 样品重复性测定结果同时进行了加标实验,回收率为95.8%,具有良好的稳定性和准确度。 表2 样品回收率结果02耐盐性实验鉴于前驱体溶液中盐含量较高,且硫酸钴熔点仅98℃,易熔融,为了评估岛津TOC-L对前驱体溶液分析的耐受性,进行了耐盐性评估实验。对120g/L的硫酸钴(以Co计)溶液仅稀释五倍后进样,在五天内24h不间断连续分析,所得结果如图3。比较再生后的催化剂,表面附着的钴盐再生后已被清洗干净,催化剂效率无影响。图3 120g/L(Co)硫酸钴溶液中TOC重复分析结果 图4 催化剂状态 图5 催化剂表面附着元素情况(使用岛津EDX-7000分析) 结语针对前驱体溶液中有机物残留的影响,使用岛津TOC-L总有机碳分析仪建立了有机物残留量的分析方法,并考察了仪器对高盐样品的耐受性。岛津TOC-L 680℃催化燃烧法操作简便,分析速度快,重现性好,适用于锂电原材料Ni、Co、Mn高盐样品中残留有机物的分析。岛津TOC-L稳定发挥,严格监控,在锂电上下游守护三元前驱体的合成工艺。 参考文献[1]马跃飞 高镍多元前驱体的制备与研究 [J]. 当代化工研究 2018.03 P45-47 撰稿人:刘洁 *本文内容非商业广告,仅供专业人士参考。
  • 锂电新能源材料 | 从硫酸盐到三元前驱体,TOC把关有机物残留
    导 读电动车正以其丝滑加速、便捷操控、环保和静音等优越体验俘获着一众新老司机,大街小巷悄然增多的电动车不断刷新着新能源车销量记录。工信部官微“工信微报”1月披露,2021年,我国新能源汽车销售完成352.1万辆,同比增长1.6倍,连续7年位居全球第一。电动车的核心是电池,电池的关键是正极材料,正极材料性能的基础在于前驱体,而电池级硫酸盐是制备三元前驱体的重要原料。近年来,前驱体生产企业发现,硫酸盐原料中引入的有机物残留会显著影响前驱体的合成,引起形貌变化和振实密度降低,最终导致电池容量显著下降。通过使用总有机碳分析仪(TOC)监测硫酸盐中的有机物残留,可保证前驱体的稳定生产。 三元前驱体生产工艺三元前驱体指镍钴锰的氢氧化物,是生产三元正极材料的重要上游材料,通过与锂源混合后,烧结制得三元正极成品,其性能直接决定三元正极材料核心理化性能。 图1 三元前驱体单颗粒中Ni、Co、Mn和O元素分布(由岛津电子探针EPMA-8050G拍摄) 目前三元路线的前驱体主要以共沉淀法合成,将镍、钴、锰的硫酸盐配制成可溶性的混合溶液,然后与氨、碱混合,通过控制反应条件形成类球形氢氧化物。 三元前驱体溶液中有机残留物的影响在镍钴锰硫酸盐的提纯过程中,会使用260#溶剂油、P204和P507等萃取剂,这些有机萃取剂残留在盐溶液中,将严重影响前驱体的合成,在沉淀生成过程中导致形貌疏松,无法成球,粒度分布宽化,振实密度下降。马跃飞在《高镍多元前驱体的制备与研究》[1]中评估了类似有机物残留的“油分”指标对形貌的影响,并提出需要控制溶液中油分在5ppm以下。由华友钴业等企业起草的团体标准《T/ATCRR10-2020电池级硫酸钴溶液》、《T/ATCRR11-2020电池级硫酸锰溶液》和《T/ATCRR12-2020电池级硫酸镍溶液》中,对优等品硫酸盐溶液中油分的限值分别为0.0100g/L、0.0100g/L和0.0050g/L。 图2 料液对高镍前驱体形貌影响(沉淀时间36h)(a)油分为9.5ppm(4000倍)(b)油分为2ppm(4000倍)图片引自http://www.cbcu.com.cn/shushuo/jishu/2021031635652.html 三元前驱体溶液中有机物残留分析方案为了控制前驱体溶液中有机物残留,保证前驱体的稳定合成,精确而稳定的监测十分重要。三元前驱体溶液中盐含量非常高,通常在30%以上,因此对测试仪器的耐盐性提出了更高的要求。岛津TOC-L总有机碳分析仪,以680℃催化氧化样品中有机物,通过精确测定生成二氧化碳的量来确定总有机碳含量。TOC-L用于三元前驱体溶液中有机残留物的测试,结果精确度高、稳定性好,配合八通阀在线加酸去除无机碳和自动稀释功能测试,操作简便,分析速度快。 01 方法评估在0-20ppm范围内建立标准曲线,试样6次重复测试RSD2.0%。 表1 样品重复性测定结果 同时进行了加标实验,回收率为95.8%,具有良好的稳定性和准确度。 表2 样品回收率结果02耐盐性实验鉴于前驱体溶液中盐含量较高,且硫酸钴熔点仅98℃,易熔融,为了评估岛津TOC-L对前驱体溶液分析的耐受性,进行了耐盐性评估实验。对120g/L的硫酸钴(以Co计)溶液仅稀释五倍后进样,在五天内24h不间断连续分析,所得结果如图3。比较再生后的催化剂,表面附着的钴盐再生后已被清洗干净,催化剂效率无影响。 图3 120g/L(Co)硫酸钴溶液中TOC重复分析结果图4 催化剂状态图5 催化剂表面附着元素情况(使用岛津EDX-7000分析) 结语针对前驱体溶液中有机物残留的影响,使用岛津TOC-L总有机碳分析仪建立了有机物残留量的分析方法,并考察了仪器对高盐样品的耐受性。岛津TOC-L 680℃催化燃烧法操作简便,分析速度快,重现性好,适用于锂电原材料Ni、Co、Mn高盐样品中残留有机物的分析。岛津TOC-L稳定发挥,严格监控,在锂电上下游守护三元前驱体的合成工艺。 参考文献[1]马跃飞 高镍多元前驱体的制备与研究 [J]. 当代化工研究 2018.03 P45-47 撰稿人:刘洁 *本文内容非商业广告,仅供专业人士参考。
  • 赛默飞创新技术应用系列之双三元液相色谱DGLC(三)——流动相在线除盐技术
    药物中的杂质是指除药物化学体以外的任何成分,是反映药品质量和安全性的重要指标。在制药工业中,关于药物杂质的研究主要是聚焦在使用液相色谱对其进行分离、鉴别和定量上。ICH规定当药物中的杂质含量大于0.1%时,应进行定性。传统的方法是先将杂质进行分离制备,得到纯品后再通过NMR、IR及MS等仪器进行结构鉴别。此方法,一是周期长;二是分离制备成本高;三是一些含量较少且不稳定的杂质难于制备。而近年发展迅速的LC-MS联用技术,根据杂质的来源,产生条件,推测药物中可能含有的杂质,并结合药物母核的质谱裂解规律和杂质的产生原理推断杂质的结构,可以很好地解决这些缺点,已成为杂质研究的一种新理念,且该技术已被广泛应用于药物发现、开发、制造以及质量控制等各个阶段。 LC-MS联用技术中,液相色谱分离是进行质谱结构鉴别的基础,然而现有的很多液相色谱分离方法为改善分离或检测经常会使用非挥发性缓冲盐流动相(如磷酸盐缓冲溶液或离子对试剂),这显然与质谱的ESI(APCI)-MS不兼容。因此当采用LC-MS联用技术时,必须将流动相转换为适合于ESI(APCI)-MS的挥发性流动相。而摸索新的适合于LC-MS联用技术的流动相体系往往很难对杂质进行有效分离,且又耗时费力。赛默飞UltiMate 3000双三元液相色谱(DGLC)可实现在线去除流动相中的非挥发性缓冲盐,让您无需改变现有的分析方法就可轻松使用LC-MS联用技术对药物杂质进行更深入的研究。 仪器系统连接双三元梯度泵的右泵保持原来的分析流动相条件不变,各杂质成分在一维分析柱中实现分离,通过2位置六通阀将已被常规检测器检测的目标杂质峰储存至loop环中;左泵采用与MS兼容的挥发性流动相,将储存在loop环中的目标分析物洗脱至二维除盐柱中,利用质谱上固有的六通阀,将流动相中的非挥发性盐除去,再调整左泵流动相比例将目标待测物洗脱至MS中,通过子离子扫描等方式,得到杂质的裂解碎片,结合物质的裂解规律,对药物中的杂质进行逐一鉴别。系统流路连接见图1.。图1 系统流路连接示意图 最适合质谱前端使用的在线脱盐技术应用阿莫西林(Amoxicillin),是一种最常用的青霉素类广谱&beta -内酰胺类抗生素,在2010版《药典》二部中,有关物质分析采用HPLC-UV法,流动相为0.05mol/L磷酸二氢钾溶液(用2mol/L氢氧化钾溶液调节pH值至5.0) 和乙腈,梯度洗脱。样品溶液在经过碱破坏后,其分离谱图见图2.。采用双三元液相色谱的在线脱盐技术,在一维色谱保持原有分析条件并经过UV检测后,可将其中的未知杂质成分(包括降解产物)切换并储存至loop环中;二维色谱分离系统采用与MS兼容的流动相,将储存在loop环中的目标分析物洗脱至二维除盐柱中,在线去除一维流动相中的磷酸二氢钾等非挥发性缓冲盐后,利用MS进行多级碎片离子扫描,结合&beta -内酰胺类抗生素的裂解规律,推断未知杂质成分的结构。整个过程在密闭系统内自动并连续地完成,而且可对其中的多个杂质同时进行结构鉴别。图2 阿莫西林碱破坏后的样品分离谱图(UV 230nm)图3 4号杂质TIC谱图(上图为负离子模式,下图为正离子模式)图4 4号杂质特征离子谱图(左图为负离子模式[M-H]-=338.1,右图为正离子模式[M+H]+=340.1,初步推断杂质分子量=339.1) 头孢地尼(cefdinir) 也属&beta -内酰胺类抗生素,用于对头孢地尼敏感的葡萄球菌属、链球菌属等菌株所引起的感染。原标准分析方法中使用了0.25%四甲基氢氧化铵溶液(用磷酸调节pH=5.5)+0.1mol/L乙二胺四醋酸二钠溶液的非挥发性流动相,样品经过热破坏后分离谱图见图5. 在不改变原流动相条件的情况下,采用DGLC的流动相在线除盐技术,使用LC-MS联用技术对原料药中的杂质(包括降解杂质)成功进行了定性研究。且该方法可以将杂质逐一进行分析,结合已知文献,共鉴别了其中的6种杂质。 图5 样品经过热破坏后一维分离谱图(UV254 nm)图6 其中15号杂质的特征离子谱图(左图为负离子模式[M-H]-=367.9,右图为正离子模式[M+H]+=369.6,初步推断杂质分子量368.8) 药典中收载的关于杂质的分析方法很多都含有非挥发性盐类。赛默飞UltiMate 3000双三元液相色谱(DGLC)采用独特的双泵设计,每个泵可作为一个单独的体系,有各自独立的比例阀和流动相体系,可同时单独控制三种不同的流动相,在Chromeleon变色龙软件的支持下,结合独特的阀切换技术,通过灵活的流路连接设计,可以将流动相中的非挥发性缓冲盐在线去除。当您需要使用LC-MS联用技术对杂质进行进一步的深入研究时,赛默飞UltiMate 3000双三元液相色谱(DGLC)的流动相在线除盐技术,可让您永远不再为流动相中的非挥发性缓冲盐而烦恼。且该系统可同时实现在线富集、在线浓缩、在线净化等,可谓是最适合质谱使用的液相色谱仪。参考文献1、采用二维柱切换液质联用法对流动相进行在线除盐分析阿莫西林中有关物质2、采用二维柱切换液质联用流动相在线除盐分析头孢地尼中有关物质3、双三元液相色谱应用文集赛默飞创新技术应用系列之双三元液相色谱DGLC集锦(一)二维及全二维液相色谱分离技术应用(二)在线固相萃取技术(三)流动相在线除盐技术(四)在线柱后衍生和反梯度补偿技术关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 预防实验隐患——连接式废液收集装置
    “连接式” 废液收集装置在我们日常实验过程中,难免会遇到实验遗留下来的废液的处理难题,这就需要废液处理装置来进行残液的存放处理。接下来给大家介绍月旭科技的连接式安全收集装置。连接式废液收集装置主要是针对液体相关的仪器的废液处理,利用废液管将仪器和废液装置的废液桶相连接,进行安全存放。如果说你正在用液相色谱仪或其他液相仪器进样,实验结束后,那么这时我们就需要借助废液管连接到废液桶上进行集中存放处理。“接下来再具体说下废液收集装置的重要性:1.如果流出的废液随意存放,气密性的不良好会导致室内充满溶剂气味,造成环境的污染,从而影响实验人员的身体健康。2.如果把瓶口完全封死,仅通过一个废液管将仪器的流动相流入废液桶,阻断空气的流通,当废液桶内部废液收集到一定程度时,里面废液存在挥发就会导致内部压力过大,造成废液无法注入容器,甚至导致回流。3.还有就是废液盖上的孔要与废液管规格相对应,如果密封性较差,同样也会使得废液的挥发物流出,造成环境污染。想必实验室安全工作对于每个企业都是至关重要的,一个健康安全的工作环境同样也是能有效降低职工健康隐患。而月旭的连接式废液收集装置主要也是针对上面三个问题进行解决。从图片上可以看到,我们公司的连接式废液收集装置是由废液桶、废液盖、过滤器、指示器、过滤器、快速接头以及二次收集容器组成。废液桶,主要规格有5L/10/20L,当然需要其他规格,我们公司也是可以提供定制的。过滤器,其作用主要是针对废液的挥发物进行的过滤,同样也是为了防止废液桶内部压力过大,保证内外压力平衡。我们公司过滤器主要分两种:标准型过滤器、高效性过滤器。无论是标准还是高效过滤器都可以相互更换使用。各类型套装的货号●标准型10L(00839-31001)、20L(00839-30001)包含:认证HDPE废液容器一个、内外盖各一个、液相连接头一套、过滤器快速接头一套、液位指示器一个、无机或有机标准过滤器一个、防泄漏防倾倒二次容器。●高效性型10L(00839-31002)、20L(00839-30002)包含:认证HDPE废液容器一个、内外盖各一个、液相连接头一套、过滤器快速接头一套、液位指示器一个、无机或有机高效过滤器一个、防泄漏防倾倒二次容器。●智能型10L(00839-31003)、20L(00839-30003)包含:认证HDPE废液容器一个、内外盖各一个、液相连接头一套、过滤器快速接头一套、无机或有机高效过滤器一个、安全声光液位报警器一个、防泄漏防倾倒二次容器。当然,如果说客户不想使用我们的废液桶,要使用自己的,我们也是可以针对客户的废液桶进行废液盖的定制。
  • 浙江三元电子--AKF-3水分测定仪安调工作报告
    2016年6月22日,禾工技术工程师对 浙江三元电子科技有限公司进行禾工AKF-3库仑法全自动卡尔费休水分测定仪安调及培训工作。 浙江三元电子科技有限公司位于风景秀丽的杭州市萧山区,是浙江三元集团的子公司。公司成立于2003年,是一家专业从事EMI/EMC电磁屏蔽材料研发和生产的高新技术企业。 公司从国外引进先进的生产设备和技术,采用现代化管理手段与经营理念,依托三元集团雄厚的经济实力,不断推出国际先进水平EMC材料。目前,其主导产品- Saiyoo、Symc导电布系列屏蔽材料已通过相关权威部门的测试认证,其表面电阻、屏蔽效能及金属结合力等重要技术指标均达到了国际上同类产品的领先水平,其独有的导电布后加工技术使其产品在抗环境氧化、抗脏污(如手印)以及 Z 轴低电阻等方面性能卓越。 Saiyoo、Symc 导电布已广泛应用于军工、通讯、计算机及其它IT领域。 此次安调工作得到三元领导及工作人员的高度评价,对我们的工作非常肯定。
  • 戴安双三元液相色谱在“塑化剂”检测中的应用
    &ldquo 塑化剂&rdquo 产品种类多达百余种,但使用得最普遍的即是称为&ldquo 邻苯二甲酸酯&rdquo 类的化合物。DEHP系&ldquo 邻苯二甲酸(2─乙基己基)二酯&rdquo 的英文缩写,是一种有毒的化工业用塑料软化剂,属无色、无味液体,添加后可让微粒分子更均匀散布,从而增加延展性及柔软度,常作为汽车座椅、橡胶管、化妆品及玩具的原料,属于工业添加剂。 &ldquo 起云剂&rdquo 是一种合法食品添加物,经常使用于果汁、果酱、饮料等食品中,是由阿拉伯胶、乳化剂、棕榈油及多种食品添加物混合制成。但因棕榈油价格昂贵,不肖业者遂以低廉却有毒性的DEHP代替棕榈油配制的有毒&ldquo 起云剂&rdquo ,以达到类似的增稠效果。但是,业内人士指出,DEHP作为&ldquo 塑化剂&rdquo 并不属于食品香料原料。因此,DEHP不仅不能被添加在食物中,甚至不允许使用在食品包装上。 &ldquo 塑化剂&rdquo DEHP是一种环境荷尔蒙,毒性属抗雄激素活性,能够造成动物体内内分泌失调,其毒性远高于三聚氰胺,在体内必须停留一段时间才会排出,长期下来恐怕会造成免疫力及生殖力下降。香港浸会大学用白老鼠作进一步研究,发现曾经服食&ldquo 塑化剂&rdquo 的老鼠,诞下的后代以雌性为主,并会影响其正常的排卵;即使诞下雄性,其生殖器官较正常的小三分之二,而精子数量亦大减。 我国生活饮用水卫生标准GB 5749-2006《生活饮用水卫生标准》中规定水质中DEHP的含量不得高于8 &mu g/L。目前对于邻苯二甲酸酯的测定有气相色谱-质谱联用法和液相色谱法,如GB/T 22048-2008《玩具及儿童用品聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定》、GB/T 21911-2008《食品中邻苯二甲酸酯的测定》等。 食品及环境水样中的邻苯二甲酸酯的含量较低,传统的样品处理操作繁琐,有机溶剂消耗大,不利于高通量分析。 戴安公司利用独具特色的双三元液相色谱系统,采用IonPac NG1 Guard (10 &mu m,4.0 mm× 35 mm)富集柱对15mL样品进行在线富集,富集的样品可直接切换到分析系统,免去了复杂耗时的手工或半自动样品前处理过程,40 ℃条件下在Acclaim 120 C18 (5 &mu m,4.6 mm× 150 mm) 分析柱上分离,在0.5 &mu g/L~ 50 &mu g/L浓度范围内,四种邻苯二甲酸酯线性良好,线性相关系数R 0.9991,检测限(按S/N = 3)DMP为0.1 &mu g/L,DEP为0.25 &mu g/L,DBP为0.10 &mu g/L,DEHP为0.25 &mu g/L。(详见附件) 如需了解更多信息,敬请联系戴安公司市场部。戴安公司塑化剂类物质解决方案:http://www.dionex.com.cn/file/suhuaji.pdf
  • 果蔬呼吸测定仪平衡多久检测一次
    果蔬呼吸测定仪平衡多久检测一次,果蔬呼吸测定仪的平衡时间和检测频率取决于多种因素,包括果蔬的种类、储存条件、仪器的性能等。以下是对果蔬呼吸测定仪平衡时间和检测频率的清晰归纳:平衡时间仪器特点:果蔬呼吸测定仪通常可以根据果蔬的大小来选择不同体积的呼吸室,以加快平衡和测定时间。具体时间:文中未直接提及具体的平衡时间,但一般来说,平衡时间可能因呼吸室的大小、果蔬的种类和数量、环境条件(如温度、湿度)等因素而异。检测频率常规检测:在常规储存条件下(如常温、冷藏库、气调库、超市冷柜等),果蔬呼吸测定仪可用于定期检测果蔬的呼吸强度,以了解其健康状况和新鲜度。频率建议:对于需要长期储存的果蔬,建议定期(如每天或每周)进行检测,以确保储存条件的稳定性和果蔬的品质。在特殊情况下(如温度、湿度等环境条件发生显著变化时),可能需要增加检测频率,以便及时发现问题并采取措施。注意事项环境因素:储存环境的温度、湿度、气体成分等因素对果蔬的呼吸强度有很大影响,因此在进行检测时需要考虑这些因素的影响。仪器校准:为了确保检测结果的准确性,需要定期对果蔬呼吸测定仪进行校准和维护。果蔬呼吸测定仪的平衡时间和检测频率因具体情况而异。在常规储存条件下,建议定期进行检测以了解果蔬的呼吸强度和品质。同时,需要注意环境因素对检测结果的影响,并定期对仪器进行校准和维护。
  • 无压力表征三元复合物 | Dianthus助力PROTAC药物研发
    前言 /PROTAC表征难题重要靶点和候选药物的亲和力筛选非常具有挑战性。当您的亲和力筛选项目涉及到PROTAC二元和三元复合物,片段化合物库及固有无序蛋白时,需要进行样品固定的SPR技术和样品消耗量大的ITC技术的检测难度会大大增加,而这些应用则是Dianthus所擅长的。光谱位移技术(Spectral Shift)光谱位移技术是通过荧光发射光谱的蓝移或红移来检测分子间的结合。Dianthus可以为您解决哪些表征难题?Dianthus是一个基于微孔板的亲和力筛选平台,使您能够克服其他生物物理方法带来的挑战。避免这些常见的障碍,让您的PROTAC项目继续推进。1通过固定二元复合物的方法来进一步研究三元复合物,二元复合物的稳定性会受到影响。答Dianthus直接在溶液内进行检测,结合平衡状态可控。因此,在表征三元结合的过程中二元复合物可保持稳定。2在再生过程中,共价分析物几乎不可能从传感器芯片上完全去除。答在单独的孔中直接在溶液中检测分子间相互作用,使得您的亲和力分析更简单、无压力且更经济实惠。3其他检测方法难以测量warheads这样的小分子的亲和力。答光谱位移技术不依赖于分子量,因此您可以使用 Dianthus 对片段化合物进行初步筛选,还可以在后续亲和力优化中筛选PROTAC 候选物。4靶点和配体的样品量有限答使用Dianthus进行亲和力筛选无需耗费时间进行大量方法开发,检测时的样品消耗量很低,将极大节省所有的样品量。选择Dianthus表征PROTAC候选物Dianthus 是基于微孔板且无微流体系的亲和力筛选平台,您可通过 gRPC 框架轻松将其集成到任何自动化设置中。无需定期维护,您的项目不会因停机而延迟。Dianthus 随时准备好为您效劳 —— 7天24小时不间断。点击图片下载PROTAC电子书,了解更多技术难题
  • 大容量9系三元锂离子电池热失控测试
    前言9系超高镍三元锂离子电池是指正极材料元素比值为Ni:Co:Mn=9:0.5:0.5的三元锂离子电池,作为短期内已经将锂电池正极材料的潜力发挥到最大的方案,9系锂电池的理论能量密度甚至超过了300Wh/kg。由于9系锂电池具有超高的能量密度,受到了致力于提高新能源汽车续航里程的主机厂的密切关注。但高能量密度伴随着潜在的高危险性,因此获得9系电池的热失控特征参数尤为重要,但是9系锂电池的热失控过程非常剧烈,有较大概率会损伤仪器,因此9系锂电池的绝热热失控实验数据十分缺乏,电池热管理设计也缺少实验数据的支撑。本文利用杭州仰仪科技有限公司BAC-420A大型电池绝热量热仪进行了130Ah的9系NCM超高镍锂离子电池的绝热热失控测试,获得该电池热失控过程的相关热力学特征参数等信息。相关结果有助于帮助研究人员明确9系电池的热失控危害性,优化电池安全设计。实验部分1.样品准备实验样品:130Ah 9系NCM锂离子电池*1,260mm*100mm*25mm,100%SOC。2.实验条件实验仪器:杭州仰仪科技BAC-420A大型电池绝热量热仪;工作模式:HWS模式、温差基线模式;标准铝块:6061铝合金材质。图1 BAC-420A大型电池绝热量热仪3.实验过程3.1 温差基线校正:利用与电池大小形状一致的标准铝块进行温差基线模式实验,对热电偶及仪器进行校正;3.2 标准铝块HWS实验:利用标准铝块进行HWS模式实验,验证温差基线校正的效果及实验过程中仪器的绝热性能;3.3 电池HWS实验:为了防止9系电池热失控损坏炉腔,因此在电池外部增加了如图2所示的金属网防护罩,以HWS模式进行绝热热失控实验;图2 9系电池实验安装示意图及实物照片3.4 标准铝块HWS实验:电池HWS实验结束后,用标准铝块重新进行HWS验证实验,用于验证热失控后仪器功能是否正常及传感器漂移程度。实验结果图3 电池绝热热失控(a)温度-压力曲线及(b)温升速率-温度曲线如图3(a)所示,电池在82.68℃下的自放热温升速率达到了0.02℃/min的Tonset检测阈值;在131.67℃达到泄压温度Tv,泄压阀打开;随后在169.49℃达到热失控起始温度TTR (60℃/min),电池发生热失控,数秒内温度快速升高至约1090℃,最大温升速率(dT/dt)max超过40000℃/min。并且通过图4所示的抗爆箱内外部的监控画面,可以发现电池的热失控过程十分剧烈,在极短的时间内喷射出强烈的射流火及大量浓烟,同时瞬间产生的高温高压气流对实验室墙面产生了一定的冲击作用。图4 (a)防爆箱内部视频及(b)防爆箱外部视频图5 电池残骸照片通过观察电池残骸可以发现,泄压阀位置完全崩裂,同时电池残骸基本仅剩外部铝壳,内部电池材料几乎全部从泄压口喷出,热失控后电池的质量损失率达到了85.97%,也侧面表明了9系电芯的热失控剧烈程度。图6 电池热失控前(a)后(b)铝块HWS模式实验曲线在电池实验前,通过标准铝块的HWS实验验证了仪器良好的绝热性能,如图6(a),每个温度台阶铝块的温升速率均小于±0.002℃/min;电池测试后,为了确认仪器能否在承受9系锂电池的剧烈爆炸后仍然能正常使用,重新进行一次标准铝块的HWS实验。通过图6(b)可以发现,实验过程中仪器运行良好,并且每一个台阶的温升速率均低于±0.002℃/min,绝热性能依然优异,说明仪器功能完好,同时传感器未出现明显漂移。结论大容量9系超高镍NCM锂电池绝热热失控的剧烈程度高,实验室应具备足够的泄压泄爆面积(建议50平米以上),同时实验室墙面应进行加固。仰仪科技BAC-420A大型电池绝热量热仪具有优异的耐压和抗爆性,能够承受大容量超高比能电芯的热失控爆炸冲击。
  • 实验室离心机不平衡怎么办?
    实验室离心机是对混合溶液进行快速分离沉淀的专用设备,其采用无刷电机驱动、微机控制、门盖保护、不平衡保护,使您的操作更安全、更简便、更可靠。实验室离心机可广泛应用于放射免疫、生物化学、制药等科研实验室和生产单位对不同密度粒子的分离。实验室离心机注意事项:1. 对称的两只离心杯,允许不平衡量为10g之内,每套离心杯是平衡配置的,任何其他同样的离心杯也不能与本套混用。2.六只离心杯可不同时装载样品负载,但一定要对称装载样品。3.开机过程中,有异常显示时应关机待停机三分钟后开机。4.离心机在升速到600~800r/min时机器产生振动为正常。5.超过正常的异常振动,不平衡指示灯亮,蜂鸣器发声机器自动停机。6.蜂鸣器发声时,按“清除”键停止其发声。7.机器在停机降速时不能启动。8.机器一旦切断电源,必须隔三分钟,再次接通电源。克服实验室离心机动态不平衡的方法:1、由于转子中心孔与主轴轴套表面配合紧密,离心后转子会粘滞在主轴上,给拆卸带来困难。因此,在装转子前应均匀地在接触面上涂一层润滑脂。2、水平转子不能在没有管套的情况下运转,即使不装样品,也要对号挂上管套。3、水平转子管套内的离心管应轴对称地相互平衡。4、转子长期不用时,转子盖和离心管帽要上紧,以免O形密封圈变形。5、不能用蒸馏水或密度不同的溶液平衡对应离心管。6、在离心机运转过程中,除了离心机启动时的低速振动外,不应有高速振动。否则,应考虑离心管漏液、破裂和整机驱动不平衡等原因。实验室离心机是医学、生命科学、药物学、生物学、化学、农业科学、食品环保等科研生产部门使用的用于分离的重要仪器设备,且广泛满足各种科研实验的要求。广泛用于各种药物、生物制品,如血液、细胞、蛋白质,酶、核酸、病毒、激素等等。免责声明:所载内容来源互联网等公开渠道,我们对文中观点保持中立,仅供参考,交流之目的。转载的稿件版权归原作者和机构所有,如有侵权,请告知我们删除。
  • 制备色谱中的良性竞争:纯度、产率、通量的平衡术
    在制备色谱的世界中,一场良性的竞争正在悄然展开,参与者有三位不同的选手,分别是:由于这些参数彼此依赖,所以纯化分离不可能同时优化这三个参数,所以,这并非一场激烈的对抗,而是一场巧妙的平衡术,其中每个角色都在化学家的指挥下为最终的分离纯化目的而努力。 图1:制备色谱三参数关系图下面英诺德INNOTEG为大家介绍下这3个参数1.产品纯度在合成化学中,产品纯度是指合成反应产物中目标化合物的纯净度或纯度程度。这是一个衡量所得产物中所含杂质和未反应起始物的量的指标。在实验室里,红外、紫外、核磁这些仪器,都要求样品达到足够的纯度,才能得到准确的结果。除此之外合成多肽的过程中可能会产生各种杂质,例如未反应的氨基酸、副产物等。纯化步骤有助于有效去除这些杂质,保证其活性和功能的稳定性。同时,通过纯化,可以降低反应的变异性,提高实验的重复性和可重复性。2.产品产率产品产率指的是纯化得到的目标物与初始样品中目标物的比值。高产率表示分离和纯化过程较为高效,少量目标化合物丢失或被废弃。低产率可能暗示着分离步骤存在问题,导致目标化合物的损失。在色谱制备中,产率的提高通常需要优化分离条件、调整溶剂体系、选择适当的柱材料和调整流速等因素。综合考虑这些因素有助于最大程度地保留目标化合物,并提高纯化过程的效率。3.制备通量制备通量是对整个色谱制备纯化工艺的评价,尤其是成本方面的考量。这是个复杂的评价过程,主要是对成本(物料成本、时间成本、人力成本)、安全性、一致性等多个方面考量。通量的高低直接关系到整个制备过程的效率和成本效益。下面小编为大家展示三种常见的色谱图 ● 色谱图1图中所显示的制备液相分离能有非常高的通量,但两个化合物分离得不好。每个化合物都可能得到一些高纯度的产物,但是回收率,即产率却相当低。● 色谱图2图中各个峰都得到了良好分离,两个化合物的纯度和产率都很高,但是通量/实验效率非常低。● 色谱图3该图是优化的制备液相结果,对所有三个参数进行了平衡考虑。色谱峰基本上达到了基线分离,得到了较高纯度和产率,通量也尽可能大。由此结果可知,分离的目的在于保证产品纯度和收率的前提下,尽可能的提高分离效率。实现色谱分离纯化的更佳效能还有其他方式?在色谱分离和纯化中,优化参数应根据具体的实验目的和合成要求来选择。这种差异化的优化有助于在不同的实验场景中实现更佳的效能和经济效益。除此之外,先进的纯化设备在日常实验室应用中也非常重要,英诺德INNOTEG EasyPrep中高压制备色谱,替代传统手动过柱,贴心的自动化体验、多方位的实时监测、智能提升纯化效率,是您实验室的得力助手!● 英诺德INNOTEG EasyPrep MP系统是一款整合了泵、检测器、收集器等几大部件功能为一体的快速纯化制备色谱系统,能对化合物进行分离、检测和收集;● 全自动的工作站控制,帮助您从繁琐的样品制备过程中解放出来,提高工作效率;● 英诺德INNOTEG EasyPrep产品涵盖中、高压制备,满足不同的应用需求;● 提供配套的Flash柱,多种规格Flash C18柱、Flash Silica柱、Flash C8柱、Flash HILIC柱、Flash AQ C18柱可选,使整个过程更加便捷。应用场景药物化学、精细化工、生物工程、植物化学、有机合成、及生命科学等领域。中压制备优势特点介绍:1. 溶剂通道:二元、四元可选;四元中压制备可以实现正反相直接切换;2. 适配4g-800g正、反相层析柱;3. 采用高精度计量泵,耐受溶剂腐蚀,寿命长,精度高;4. 实时压力监测、超压保护功能,保障实验室安全;5. 支持多种容器收集;支持全收集、峰收集、时间收集等多种模式,并实时峰 -管对应;6. 12.1英寸大屏显示,触摸屏操作;采用全自动工作方式,只需要输入相应方法参数,系统自动切换梯度比例、分析、收集;7. 支持在线添加、修改梯度,支持手动拖拽运行梯度曲线。支持在线修改流速;8. 可将实验图谱批量生成PDF实验报告;9. 可设置开机后一键式自动清洗;支持色谱柱吹干,实验完成后可干燥色谱柱。如果您对英诺德INNOTEG EasyPrep中高压制备色谱产品感兴趣,欢迎致电400 006 9696咨询。德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了多项奖项。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!英诺德INNOTEG英诺德INNOTEG是德祥集团旗下自主研发品牌,专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。多年以来,英诺德INNOTEG致力于研发高效的实验室创新设备。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了颇有成效的研究开发工作。此外,英诺德还与各大科研院所、高校合作,积极推进科技成果项目的产业化。英诺德INNOTEG凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。
  • 红外物理国家重点实验室在纳米结构中电子非平衡特性检测方面取得突破
    p  电子被发现一个多世纪以来,人类社会对它的依赖程度越来越大,如今,它已成为微电子和光电子技术的物理基石。随着微电子器件尺度按摩尔定律不断向纳米尺度减小,对于电子运动规律的认识将面临着从平衡态理论向非平衡态理论的发展。正如美国基础能源科学顾问委员会报告中指出,当前科学上面临的5大挑战之一就是对非平衡态尤其是远离平衡态的表征和操控。/pp  按平衡态理论,人们预测在微电子器件中电流最大的位置往往会是电子温度最高的地方。中国科学院上海技术物理研究所红外物理国家重点实验室陆卫研究员和复旦大学安正华研究员的科研团队共同合作,利用非平衡输运热电子的实验检测在技术,通过散粒噪声对非局域热电子能量耗散进行空间成像研究,发现在纳米尺度结构中,电子温度最高之处并非局域在电流最大位置,而是明显地向电流的流动方向偏离了,而且电子的温度高于晶格温度很多倍。从理论和实验两方面证实了这种奇异特性就来自热电子的非平衡态特征。/pp  该研究工作的最大挑战来自于非平衡输运热电子的实验检测技术上。实验室采用了自主研发的超高灵敏甚长波量子阱红外探测器的扫描噪声显微镜(SNoiM)技术,称为扫描噪声显微镜技术。其基本机理是非平衡态电子的电流强烈涨落形成的散粒噪声会直接导致近场甚长波红外辐射,通过高灵敏的红外近场检测可实现仅测量到非平衡态电子特性,从而为直接观察在纳米结构中电子的非平衡态乃至远离平衡态的特性提供了独特的方法。/pp  相关研究成果“Imaging of nonlocal hot-electron energy dissipation via shot noise”(DOI: 10.1126/science.aam9991)已于2018年3月29日获得《Science》杂志在线发表,将对认识和操控非平衡热电子进而增强器件功能发挥重要作用。/pp  这项研究工作得到了科技部国家重点研发计划、国家自然科学基金委、上海市科委重大项目、中国科学院海外科学家计划等资助。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/a4df0693-4a72-453f-81b5-9f6fe7165ff9.jpg" title="1.jpg"//ppbr//pp  应用扫描噪声显微镜(SNoiM)进行的超高频率(~21.3THz)噪声的纳尺度成像,(A)扫描噪声显微镜的实验装置示意图。(B) GaAs/AlGaAs量子阱纳米器件的电子受限区域的SEM图。(C和D)相反偏置电压(6V)下二维实空间的近场噪声强度信号成像,近场信号由针尖高度调制模式获得,其中彩色表达了电子的等效温度。(E) 近场信号与针尖高度关系,近场信号是由电压调制模式获得。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/8edf4c2f-af08-4a76-9da3-10ee26f8f1fb.jpg" title="W020180506601359218862.jpg"//ppbr//pp  噪声强度随偏置电压增大的演变。(A-F)由针尖高度调制模式获得的二维成像图。(G)y方向(平行于[100])一维近场信号随位置变化图。(H)近场(圆和三角形点表达)和远场(方形点表达)探测到的噪声强度随着偏置电压的变化规律。/ppbr//p
  • 赛默飞发布在线固相萃取—双三元液相色谱(DGLC-UV)分析水中9 种苯胺类化合物的解决方案
    2014年7月8日,上海 ——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布在线固相萃取——双三元液相色谱(DGLC-UV)分析水中9 种苯胺类化合物的解决方案。苯胺类化合物是一种重要的有机化工原料和化工产品。环境中所含的苯胺类化合物主要来自于各种化工、染料、制药等工业废水中,一般毒性较高,少量就能引起人体中毒,其对环境的污染一直被人们所关注,美国、日本等国把苯胺类列入主要监测项目或优先监测污染物的黑名单。在我国苯胺类化合物也被列为环境中的重点污染物,并制定了最高容许排放浓度。DGLC双三元液相色谱系统 由于水体中苯胺的含量一般比较低,因此目前常用的苯胺分析方法,如HPLC、GC 和分光光度法等,均需要对大体积的水样进行前处理,后进行检测,操作比较繁琐。《GB/T 5750.8-2006 生活饮用水标准检验方法有机物指标》中采用GC 和重氮偶合分光光度法测定生活饮用水及水源水中的苯胺,其中,GC 方法需前处理10L 水样,对水样中苯胺的最低检测限为20μg/L;分光光度法需处理25 mL 水样,最低检测限为80μg/L。《水和废水监测分析方法(第四版)》中采用分光光度法和HPLC 法分别测定了5 种苯胺类化合物,检测限为0.5 ~ 1.5μg/L。赛默飞新解决方案采用双三元在线固相萃取—液相色谱法,水样只需简单过滤,即可进样。本方法直接进样2.5 mL,检出限即可达0.05 ~ 0.2μg/L。下载应用文章请点击:http://www.instrument.com.cn/netshow/SH100650/down_331133.htm 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • 三元素分析仪可检测普碳钢及低合金钢
    三元素分析仪可检测普碳钢及低合金钢 微机三元素高速分析仪是用于多元素分析的三通道光电比色分析仪。该仪器在国内外先进技术的基础上,首次采用了&ldquo 智能动态跟踪&rdquo 和&ldquo 标样曲线的非线性回归&rdquo 等先进技术,使传统比色仪的日常调整和标样曲线的建立方法起了根本性的变化。使本仪器跻身于高档分析仪器的行列。 QL-BS3型微机三元素分析仪也可以单独作为一台数据处理计算机使用,使其处理功能得到充分发挥。微机三元素分析仪主要可检测普碳钢及低合金钢,更适用于对金属等材料中的硅、锰、磷、镍、铬、铜、稀土、镁、铜、铁、铝、钒、钨、钛等多种元素的比色分析,现已大量地在冶金、机械、化工等行业,对炉前、成品、来料化验等均可使用。它是新一代比色分析仪器的理想换代产品。 南京麒麟分析仪器有限公司技术部
  • 十五周年庆典:采访北京三元基因工程陆小冬和双鹭药业许可
    仪器信息网讯 2014年12月19日,科学仪器行业门户仪器信息网在京隆重举办了&ldquo 感恩十五载,点亮新未来-仪器信息网十五周年庆典暨北京信立方成功登陆新三板庆祝活动&rdquo 。来自业界各位领导、专家、用户、仪器厂商及仪器信息网全体员工等300余人欢聚一堂,庆贺仪器信息网十五周岁生日的同时,共叙未来,共望发展。  活动期间,部分企业负责人、业内资深专家和热心网友接受了仪器信息网编辑的采访,畅谈了近年来科学仪器行业的发展情况和对仪器行业年轻人的期望。  来自北京三元基因工程有限公司的陆小冬先生和双鹭药业的许可女士是仪器信息网夫妻档版主,在本次庆典活动上,他们表示,仪器信息网不仅为他们平常工作提供了查询文献、实验方法等帮助,并且通过仪器信息网这个最大分析仪器行业平台认识了很多志同道合的朋友,充实了生活。
  • 中国科学院包西昌&李永海研究团队,三元有机太阳能电池的转化效率达19%
    【有机太阳能电池优势与发展潜力】有机太阳能电池因其轻薄灵活的特性,被视为未来可应用于便携式及可穿戴设备的更佳能源选择。但是其能量转化效率一直是技术上的瓶颈。近日,中国科学院包西昌&李永海研究团队发表最新研究成果,三元有机太阳能电池的转化效率已达19%,与传统无机太阳能电池仅有一、两个百分点的差距,被认为是有机太阳能电池商业化的重大突破。*本文使用Enlitech QE-R设备作为研究。【中国科学院实现转化效率19%突破】研究团队透过添加第三种“客体"材料,以及调整材料结构,大幅提升了三元有机太阳能电池的转化效率。研究人员表示,透过优化客体材料的结晶度和组配位置,可以扩大吸收光谱、提高传输效率并捕捉更多阳光。将客体模块与受体材料结合后,实验室内的转化效率达到19%。【未来商业化应用展望与期待】有机太阳能电池效率的突破性提升,使其商业化应用指日可待。相较于传统无机太阳能模块,有机太阳能的优势在于可印刷和柔性设计,可整合到建筑物或穿戴设备中。一旦量产化,将可大幅降低成本。业界期待有机太阳能电池能扮演绿色可持续能源的关键角色,并加速相关商业化产品的开发。图S1. PM6:LA1太阳能电池的較佳J-V图及相应的EQE曲线。图S19. 較佳二元和三元太阳能电池的EQE图。
  • 禾工发布AKF-BT2020C锂电专用卡尔费休水分测定仪新品
    HOGON新品 AKF-BT2020C锂电专用卡尔费休水分测定仪 ——追求不懈、使命发达!禾工锂电池水分仪性能再获提升! 通过连续多个大型锂电池产业链企业及第三方检测品牌企业严格测试,作为进口替代品牌的禾工AKF系列卡尔费休水分测定仪推出了全新升级型号AKF-2020C型锂电池专用卡尔费休水分测定仪。本系列产品经过数十项技术改进,性能得到了全面提升:★更简单!触摸屏人机界面,简洁明了,非专业人员也能轻松操作!★更高效!快速平衡,智能检测,极大缩短了仪器待机的平衡时间!★更精确!精确智能的电解控制技术,检测精度和分析时长大幅优化!★更灵活!增加了通用的穿刺进样模式,同时保留了全效吹扫进样模式!★更稳定!大幅升级了温控及流量控制模式,并实时显示温度与载气流量!★更安全!升级了异常终止,温度智能监测,散热槽温度显示等安全防护!AKF-BT2020C卡尔费休水分滴定仪即可以直接将样品加入滴定池快速测定常规液体原料如磷酸铁锂材料、磷酸铁、钴酸锂、锰酸锂、镍酸锂、三元材料等电解液材料的微量水分含量,也可将样品通过配套设备卡氏样品蒸发器,将样品置于密闭的顶空进样瓶中,加热到水的沸点以上,然后借助外接的干燥载气(干燥氮气或空气),将样品瓶中蒸发的水汽带到卡尔费休水分测定仪的滴定池中进行测定,由于高沸点的物质难于挥发,不会被导入滴定池中,这样滴定池中的卡尔费休试剂就避免了与样品中除水分以外的难溶类物质及其它物质的直接接触,同时避免了其它物质对卡尔费休反应的干扰。经过禾工科学仪器多年的持续改进,带有样品蒸发器的AKF系列卡尔费休水滴定仪产品在石墨材料、塑料粒子、润滑油脂、固体药品、橡胶、油品等领域得到了广泛应用机会,积累了丰富的应用经验; 并在众多知名企业中获得了良好的应用效果。 AKF-BT2020C卡尔费休水分滴定仪的性能特点① 彩色触摸屏,全数字键盘,一键启动,操作简单,无需专业人士也能轻松工作;② HOGON智能检测技术:自动平衡,自动检测、适应环境漂移自动调节检测精度;③ 全新电解控制能力,适应各种电解液,极高检测限,水分测定精度达0.01ug;④ 具有载气流量电子显示,升温曲线显示,水分含量曲线显示等功能,界面直观明了;⑤ 样品蒸发器具有恒温,程升等多种高精度温控模式,并具备智能过温保护功能;⑥ 配备可调温载气管理保温伴管,防止样品水分在载气管路中冷凝;⑦ 拥有三级用户管理权限,遵循最新的GLP规范,符合数据追溯规范要求;⑧ 可编辑、存储、调用多种不同的分析方法参数,便于适应不同的样品检测;⑨ 内设多种测定方法,同时适应气体、液体,固定样品以及高低水含量的多种检测需求;⑩ 智能状态监测、硬件智能保护、异常终止,定时停止等能力,有效延长产品使用寿命。 带样品蒸发器的AKF-BT2020C检测原理AKF-BT2020C卡尔费休滴定仪技术参数测定方法: 卡尔费休库仑法(电量法)测量范围: 水:3ug-199mg/0.01ug( 水质量)重 复 性: ≧99.7%(1000μg水)适用样品类型: 液体样品、固体样品、气体样品进样方式: 直接进样、穿刺进样、换盖吹扫进样控温范围: 室温~285℃ /0.1℃;3阶程升升温速率: 15℃/min (200度以下)测定时长: 平均50秒到十几分钟(方法有别) 输入气源: 需外接干燥空气/氮气(99.99%)载气压力: 输入限0.6Mpa,输出:0~0.4Mpa流量范围:0~100mL/min,流量精度:1ml/min样品瓶规格:10ml和20mL数据输出: RS232/USB,USB针式微型打印机仪器功率:300W;220V/50Hz尺寸重量:190×220×40AKF-BT2020C在锂电池产业链适用范围锂离子动力电池行业正负极材料及其原材料,电解液等,包括磷酸铁锂材料、磷酸铁、钴酸锂、锰酸锂、镍酸锂、三元材料,负极膜片,石墨粉等,同时适用其他不溶解固体材料的测量。附表一:某国内知名锂电企业,同等环境条件下,禾工产品和进口产品的比对结果锂电材料样品一锂电材料样品二序号禾工数据(PPM)进口数据(PPM)序号禾工数据(PPM)进口数据(PPM)198.796.11144.5139.9291.395282.978.7369.980.339583.0472.570.0477.880.35102.592.3566.282.6685.484.6698.3115.37128.2122.5774.781.08114.4116.2871.692.3988.683.9979.993.31086.682.41090.286.6附表二:用美国默克公司1%卡式加热炉标准样品验证结果序号进样量(mg)验证结果(%)序号进样量(mg)验证结果(%)119.01.0489540.21.0070235.41.0016630.61.0160334.30.9830733.81.0160444.70.9827827.51.02601.明码实价销售:禾工科学仪器每种产品均明码实价销售,无水分价格,无高价高折等暗箱操作空间: 2.享有30天无理由退换承诺:禾工主要产品均享受30天无理由退换货,详情请咨询禾工科学仪器工作人员。 3.享有12个月质量保证服务:更令您放心的是,禾工科学仪器销售的每台整机产品,在质保期间,都将享受优质的修理费用。 4.12个月延长保修服务:禾工科学仪器提供延长保质期服务,为禾工产品提供长达一年的质量保修,省去意外的修理费用。 5.24小时快速技术指导:无论何时何地,只要您拨打禾工服务热线,即有专业的工程师指导您解决仪器使用技能和产品故障。6.长期的产品维修整备服务:无论何时禾工科学仪器均为所产仪器提供整修服务,无论仪器外观,部件,应用程序损失,均可及时提供修复替换服务。创新点:更简单!触摸屏人机界面,简洁明了,非专业人员也能轻松操作!更高效!快速平衡,智能检测,极大缩短了仪器待机的平衡时间!更精确!精确智能的电解控制技术,检测精度和分析时长大幅优化!更灵活!增加了通用的穿刺进样模式,同时保留了全效吹扫进样模式!更稳定!大幅升级了温控及流量控制模式,并实时显示温度与载气流量!更安全!升级了异常终止,温度智能监测,散热槽温度显示等安全防护!AKF-BT2020C锂电专用卡尔费休水分测定仪
  • 高分子表征技术专题——同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用Characterization of Polymer Materials by Synchrotron Radiation Hard X-ray Scattering Technology: The Development and Application ofin situInstruments作者:赵景云,昱万程,陈威,陈鑫,盛俊芳,李良彬作者机构:中国科学技术大学国家同步辐射实验室 安徽省先进功能高分子薄膜工程实验室 中国科学院软物质化学 重点实验室,合肥,230026 西南科技大学核废料处理与环境安全国家协同创新中心,绵阳,621010作者简介:昱万程,男,1990年生. 2010年本科毕业于天津工业大学轻化工程专业,2015年博士毕业于中国科学技术大学高分子科学与工程系. 2015~2017年和2017~2020年分别在中国科学技术大学高分子科学与工程系,北京航空航天大学物理系从事博士后研究. 2020年9月至今,任中国科学技术大学国家同步辐射实验室特任副研究员. 主要从事利用同步辐射X射线散射技术结合原位装置在线研究高分子材料加工过程中的多尺度结构演变,同步辐射X射线散射数据高通量处理方法的开发和应用.李良彬,男,1972年生. 1994年本科毕业于四川师范大学近代物理专业,2000年博士毕业于四川大学高分子材料科学与工程系. 2000~2004年在荷兰国家原子分子物理研究所和Delft科技大学从事博士后研究,2004~2006年在荷兰联合利华食品与健康研究所担任研究员. 2006年至今,任中国科学技术大学国家同步辐射实验室研究员,兼任化学与材料科学学院高分子科学与工程系教授、博士生导师. 2013年获国家杰出青年基金资助. 担任《Macromolecules》副主编,《Polymer Crystallization》《Chinese Journal of Polymer Science》《Journal of Polymer Science》和《高分子材料科学与工程》编委. 主要从事同步辐射时间空间能量分辨技术、原位研究方法和高分子材料加工-结构-性能关系方面的研究.摘要同步辐射硬X射线散射技术是表征高分子材料晶体结构和其他有序结构的有力手段. 高时空分辨的现代同步辐射光源具备强大的实时、原位、动态和无损表征能力,在高分子材料加工和服役过程中远离平衡态的多尺度结构演变研究方面有着巨大优势. 为了充分发挥这一优势,合理设计同步辐射原位研究装置,实现原位实验过程中的样品环境控制十分关键. 本文通过结合具体的研究案例,首先介绍同步辐射原位实验的设计、原位研究装置的研制、操作技巧和数据处理等整个在线实验流程,帮助读者建立对同步辐射原位实验的基本认识. 最后,选择了若干具有代表性的高分子材料体系和样品环境,简要概述同步辐射硬X射线散射技术在表征复杂加工外场作用下高分子材料多尺度结构演变方面的应用,帮助读者加深对同步辐射原位研究装置及相关实验过程的理解,以期引发读者的思考,积极拓展同步辐射硬X射线散射技术在高分子材料表征中的应用.AbstractThe synchrotron radiation hard X-ray scattering technology is a powerful tool to characterize the crystalline and other ordered structures of polymer materials. For the high temporal and spatial resolutions, modern synchrotron radiation light sources own the powerful capability of real-time,in situ, dynamic and non-destructive characterization. Thus, it gives the synchrotron radiation hard X-ray scattering technology a huge advantage for the study of structural evolutions far away from the equilibrium during the processing and service of polymer materials. To give full play to this advantage, the reasonable design ofin situ instruments and the control of sample environments during the in situ synchrotron radiation experiments are critical. In this review, we first introduce the whole procedures of in situ experiments through a specific research case, including the design of in situ synchrotron radiation experiments, the development of in situ instruments, operation skills and data processing. We hope that the detailed introduction can help the audiences establish a fundamental cognition of the in situ synchrotron radiation experiments. Finally, we select several representative polymer material systems and the corresponding sample environments, and briefly overview the applications of the synchrotron radiation hard X-ray scattering technology in studying the multi-scale structural evolutions of these polymers under complex processing fields. We believe that these applications would inspire the audiences to think and deepen their understanding on the synchrotron radiation in situ experiments by using in situ instruments. Undoubtedly, it is beneficial to further expand the applications of the synchrotron radiation hard X-ray scattering technology on the characterization of polymer materials. 关键词同步辐射硬X射线散射技术  同步辐射原位研究装置  高分子材料加工  多尺度结构演变KeywordsSynchrotron radiation hard X-ray scattering technology  In situ instruments  Processing of polymer materials  Multi-scale structural evolutions 同步辐射是带电粒子以接近光速的速度在沿弧形轨道的磁场中运动时释放的电磁辐射. 对比普通X射线光源,同步辐射X射线光源亮度更高、光谱连续、具有更好的偏振性和准直性,并且可精确计算. 至今,我国经历了三代同步辐射大科学装置的建设、研究和发展,从第一代北京同步辐射装置、第二代合肥同步辐射装置到较为先进的第三代上海同步辐射光源[1]. 目前,我国正在积极建设和规划第四代先进光源,如北京高能同步辐射光源和合肥先进光源[2]. 同步辐射光源是前沿基础科学、工程技术和材料等领域所需的重要研究手段,是国际科学研究竞争的关键资源.同步辐射硬X射线散射技术在高分子结构表征中的应用非常广泛,例如广角X射线散射(WAXS)和小角X射线散射(SAXS)可表征高分子材料在亚纳米至百纳米尺度上的结构信息[3]. 目前,上海光源即将建成我国第一条超小角X射线散射(USAXS)线站,可进一步实现微米尺度的结构探测. 在此基础上与毫秒级分辨的超快探测器联用可以实现高时间分辨. 依托时间分辨的同步辐射WAXS/SAXS/USAXS研究平台,我们将能够同时获取高分子材料在0.1~1000 nm尺度内的结构信息,可以满足半晶高分子材料加工成型过程中多尺度结构快速演化、嵌段共聚物微相分离以及高分子复合材料研究等方面的表征需求.高分子材料制品的服役性能强烈依赖于加工工艺. 即使是相同的高分子原材料,通过不同的加工工艺,所获得的产品性能可能是完全迥异的. 例如:聚乙烯通过吹塑成型可加工成柔韧的包装膜,通过挤出成型则可制成刚韧适中的排水管道,还可通过纺丝加工成超强纤维. 高分子材料的加工参数主要包括加工温度、升降温速率、剪切和拉伸等加工外场的应变速率、应变和压强等. 因此,温度场、流动场等复杂外场、多加工步骤和参数相互耦合是高分子材料加工过程的主要特点[4,5]. 研制与多尺度表征技术联用的在线研究装备是表征高分子材料在加工过程中发生多尺度结构快速演化的重要实验手段. 高分子材料加工与服役在线研究装备类型多样,有小型的剪切和拉伸流变仪,也有模拟实际工业生产的大型原位装备,如原位双向拉伸装置和原位挤出吹塑成膜装置等. 此外,通过发展和集成与同步辐射联用的高分子材料性能表征技术,如用于光学膜的光学双折射检测系统,可建立高分子材料加工-结构-服役性能的高通量表征平台,大幅提高在多维加工参数空间中搜索最优参数的能力,以期为实际的生产加工提供理论指导.为帮助读者建立对同步辐射在线实验的基本认识,本文将以聚二甲基硅氧烷(PDMS)原位低温拉伸为具体研究实例,详细介绍同步辐射在线装置研制、实验设计和数据处理等相关知识;在此基础上,我们将简要概述本课题组多年来利用自主研制的同步辐射原位在线装置及高分子材料加工过程多尺度结构演变研究中的代表性成果. 以此引发读者的思考和共鸣,进一步扩展同步辐射硬X射线散射技术在高分子材料表征中的应用,取得更多更好的创新研究成果.1同步辐射在线实验研究方法同步辐射在线实验是指利用可与同步辐射光源联用的原位装置,研究复杂外场下的高分子合成或者加工过程中的化学或者物理问题. 在开展同步辐射在线实验前,需根据所要研究的具体科学问题,明确样品控制环境. 在充分考虑同步辐射光束线站的空间限制后,购买或研制原位装置. 样品制备完成后,利用原位装置进行样品的离线预实验. 完成以上准备工作后,在预先申请的机时时间段内,携带样品、原位装置和其他配套设备至同步辐射光束线站进行在线实验. 实验过程中需严格按照线站的规定步骤操作,最后保存好实验数据. 我们课题组长期致力于高分子薄膜加工物理的研究和相关原位研究装置的研制,并取得了系列研究成果. 下面我们以典型的硅橡胶——聚二甲基硅氧烷(polydimethyl-siloxane, PDMS)的同步辐射原位低温拉伸实验为例,详细介绍同步辐射在线实验的具体流程和操作.硅橡胶作为一种可以在低温保持高强度和韧性的弹性体,是高新技术、航天航空和武器装备等领域不可或缺的关键材料. 与天然橡胶等常规橡胶相比,PDMS具有极低的玻璃化转变温度(Tg≈-110 ℃)和结晶温度(Tc≈-65 ℃)[6]. 在拉伸和压缩等服役工况条件下,PDMS发生应变诱导结晶(stain-induced crystallization, SIC),因此其服役温度区间及性能主要受SIC而非玻璃化转变控制. 显然,结晶温度Tc的降低将缩小橡胶态的温度窗口. 已有研究表明,PDMS的应变诱导结晶行为非常复杂,在Tc以上至近Tg的范围内,存在多晶型结构并发生不同晶型间的固-固相转变行为. 在拉伸过程中,PDMS出现了α' ,α,β' 和β 4种晶型 [7],对应的WAXS二维图和方位角一维曲线积分分别如图1(a)和1(b)所示. PDMS复杂多晶型晶体结构直接影响材料的物理性质和宏观力学行为. 只有充分了解PDMS的晶体结构,掌握晶型间的转变规律,才能深入认识和理解材料的性能,实现根据服役条件和需求对材料进行改进和设计的目标. 然而,由于在线低温拉伸等研究条件的限制,PDMS应变诱导结晶行为和晶型间的相互转变的相关研究仍较少,并缺乏基础数据和定量模型. 其中,尚未完全解决的问题主要有以下2个方面:(1) PDMS可形成多种晶型,但所有晶型的晶体结构尚未完全确定;(2) 拉伸可诱导不同晶型发生固-固相转变,但目前对转变路径和机理还缺乏认识. 高时空分辨的同步辐射硬X射线散射技术为解决上述科学问题提供了可能. 我们选择以较低应变速率在低温下拉伸PDMS,实时跟踪拉伸过程中的晶体结构演化和固-固相转变. 在计算实验所需的时间分辨率后,我们选择上海光源(SSRF)BL16B1(小角X射线散射光束线站)进行同步辐射在线实验. BL16B1的技术参数和指标符合软物质材料表征需求,其能量范围为5~20 keV,光子通量达到1011 phs/s @10 keV,时间分辨率达到100 ms,X射线波长 λ=0.124 nm,可探测的空间尺度范围为1~240 nm.Fig. 1(a) The 2D WAXS patterns of polymorphous PDMS (b) The 1D azimuthal intensity curves with the azimuthal angle (ψ) ranging from 0° to 180° of diffraction peaks at 2θ=10.42° (Reprinted with permission from Ref.‍[7] Copyright (2020) American Chemical Society).在明确所要解决的科学问题后,需要解决样品环境的控制问题,即能与同步辐射硬X射线联用的低温原位拉伸装置. 通过调研,我们发现市面上早已有了商业化的低温拉伸设备,如Linkam公司配置液氮制冷系统的拉伸热台TST350以及Instron 3366型万能拉伸机. 然而,这些商业化设备都存在明显的不足,并不能满足我们的实验需求. 例如:TST350虽可实现与同步辐射联用,然而为了使得温度控制均匀并提高升降温速率,其样品空间很小,所能达到的应变空间十分有限,因此很难将具有较高断裂伸长率的橡胶类样品拉伸至大应变乃至断裂;此外,TST350采用按压式夹具,在拉伸过程中存在严重的打滑现象,即样品从夹具处滑脱. Instron 3366型万能拉伸机仅仅可以实现低温拉伸,并不能与同步辐射联用. 因此,我们转而自行研制与同步辐射硬X射线联用的低温原位拉伸装置. 在研制过程中,需要解决的主要难点问题有:(1) 单轴拉伸至断裂,即大应变的实现;(2) 低温环境的实现(室温至-110 ℃);(3) 样品的打滑现象;(4) 考虑上海光源光束线站的空间限制,在尺寸上实现与同步辐射硬X射线的联用. 我们受商业化流变仪(sentmanat extensional rheometer, SER)的启发,在研制时通过伺服电机驱动2个对向旋转的辊夹具对样品施加拉伸(如图2(a)). 如此,样品能以卷绕的方式无限拉长,可以在不增大腔体体积的前提下实现大应变,同时保证样品腔内部温度均一可控. 通过使用安川伺服电机,并配置减速机、运动控制器和MPE720控制系统,装置能够实现较宽的应变速率范围(0.0025~30 s-1). 低温环境的实现参考低温热台和示差扫描量热仪等仪器常用的降温模块,采用液氮降温的方法,使用自增压液氮罐将液氮注入低温腔体. 考虑到PDMS样品不能直接与液氮接触,需要在样品腔外部设计液氮流道. 样品腔采用导热性较好的不锈钢304,流道和样品腔采用一体式加工设计,避免焊接可能带来的缝隙. 我们利用有限元方法模拟了样品腔内温度,结果表明当环境温度为室温时,样品腔内部温度最低能够达到-150 ℃(图2(c)),可以较好地满足实验环境温度要求. 通过将样品腔内抽真空,外部采用吹氮气的方式,可以有效解决窗口结霜的问题,从而避免窗口结霜对X射线散射实验产生不利影响[8,9]. 根据锥形散射计算X射线窗口尺寸,并采用聚酰亚胺薄膜(杜邦公司Kapton系列薄膜)作为窗口材料. 为解决上海光源BL16B1线站的空间限制问题,低温原位拉伸装置的整体设计秉持小型化原则,设计效果图如图2(b)所示. 最终研制的装置实物如图2(d)所示[10].Fig. 2Schematic diagram of uniaxial stretching (a), the design of low-temperature stretching device (b), finite element simulation of temperature distribution in cryogenic chamber (c), physical image of low-temperature uniaxial stretching device combined with synchrotron radiation (d).结合本课题组多年的研究和实践经验,我们想要强调的是,在真正开展同步辐射在线实验前,离线预实验非常重要. 一方面,可以对力学曲线、装置升降温速率、保温时间等进行重复性验证,将在线实验的每个步骤都离线模拟重复,确保在有限的机时内高效执行实验计划;另一方面,在同步辐射光束线站的装置安装和校准需要丰富的操作经验,通过离线预实验,可以充分掌握装置的操作细节和常见问题的解决方法,如此方能在突发情况出现时从容应对. 此外,在进行在线实验时,需严格遵守同步辐射光束线站的管理规定,保障人身安全.同步辐射硬X射线原位实验通常在空气、氮气、溶液等环境中进行,获得的原始WAXS/SAXS数据包含空气等背底的散射. 因此,在原位实验的过程中,除了获得不同实验条件下的样品散射信号外,还需单独获得相应实验条件下的空气等背底散射信号,然后在后续的数据处理过程中扣除这些背底散射. 扣除背底散射通常是在WAXS/SAXS一维积分曲线上进行的,扣除操作恰当与否的判读标准是扣除背底后一维积分曲线的两端基线应保持水平. 同时,也要考虑原位研究装置对散射信号的影响. 为了进行数据的对比分析,通常需要对所获得的数据进行归一化处理.图1(b)为归一化处理后PDMS不同晶型的方位角一维积分曲线. 从图中可以明显看出PDMS 4种不同晶型所对应特征峰的区别:ψα=90°,ψα' =80/100°,ψβ=60°/120°,ψβ' =42°/72°和109°/138°. 从方位角峰值的变化,能够清晰地看出PDMS在低温拉伸过程中的结构演变.图3(a)给出了PDMS在-60 ℃下单轴拉伸过程中典型的二维WAXS衍射图和相应的应力-应变曲线,可以明显看到随着应变的增大,PDMS发生了应变诱导结晶.图3(b)中则给出PDMS在拉伸过程中WAXS衍射峰(2θ≈10.42°)的方位角分布演化(从拉伸方向逆时针积分). 可以看到,随着应变的增大,在ψ=60°和120°的位置首先出现2个峰,这是β晶型(011)晶面的衍射信号. 随着应变的进一步增加,2个峰合并成赤道方向(ψ=90°)的尖峰,这是α晶型(001)晶面的衍射信号. 方位角峰的转变表明晶体随着应变的增加从β晶转变为α晶. 通过多峰拟合,可以获得峰值位置(图3(b)中的红色虚线)和相应的半高峰宽(FWHM),并将二者对应变进行作图,如图3(c)所示. 当应变较低时(ε0.68),峰值位置始终位于120°附近,FWHM约为35°. 当应变增大至1.00时,峰值位置急剧变为90°且随着应变的进一步增大而几乎保持不变. 随着峰值位置的转变和应变的增大,FWHM先增加后减小. 峰值位置和FWHM的演变均表明当ε0.68时,发生β晶到α晶的固-固相转变,并在ε≈1时完成转变. 由于2种晶型的衍射峰的2θ值重叠(如图4(b)中的1D积分曲线),除了通过方位角峰位演化判断β-α型晶体结构转化,还可分别对β晶和α晶在相应的方位角范围内进行mask积分(如图4(a)所示45°倾斜Iob和赤道方向Ieq).图4(c)以归一化形式给出了结晶度(χc),Iob和Ieq随应变增大的变化关系,通过与相应的应力-应变曲线比较,从而得到拉伸诱导的β-α相变的临界应变值.Fig. 3Stress-strain (σ-ε) curve and selectedin situ 2D WAXS patterns acquired during uniaxial tensile deformation at -60 ℃(a), the evolution of the azimuthal intensity distribution of diffraction peaks at 2 θ of about 10.42° (b), and the corresponding peak position and FWHM of the characteristic peaks (c) (Reprinted with permission from Ref.[ 6] Copyright (2018) American Chemical Society).Fig. 4(a) The mask protocols of 2D WAXS patterns for integration of samples stretched toε=0.24 andε=1.36 at -60 ℃, respectively. The red enclosed area is the oblique masked (Iob) signal of (011) plane ofβform, the blue enclosed areas is the equatorial (Ieq) masked signals of (001) plane ofαform. (b) 1D diffraction intensity profiles of 2D WAXS scattering patterns at different strains. (c) The stress (σ), crystallinity (χc) and equatorial (Ieq) and oblique (Iob) masked relative crystal content curves with the normalized coordinate (Reprinted with permission from Ref.‍[6] Copyright (2018) American Chemical Society).使用同样的数据处理方法,分别得到PDMS在低温下不同晶体结构SIC和固-固相转变的临界应变,根据临界应变在温度-应变二维空间中绘制PDMS低温拉伸过程的非平衡结构演化相图.图5是不同填料含量增强的PDMS在低温拉伸下的结构演化相图. 从相图可以看出,填料的含量(纳米SiO2)对PDMS在低温拉伸过程中α' ,β' ,α和β晶型间结构转变的影响十分复杂. 结合核磁、SAXS等多尺度表征手段可以对中间态α' 和β' 到α和β的转变可能遵循的机理进行研究,如晶体滑移或旋转,分析得到晶体内部分子链螺旋结构、晶体间排列和晶体之间的结构转变机理. 通过建立对微观结构转变规律的认识,并结合宏观力学性能数据,我们可以分析出PDMS材料低温失弹的微观结构原因.Fig. 5The non-equilibrium crystallization phase diagram for SIC of PDMS with 10 phr (a), 25 phr (b), 40 phr (c), and 55 phr(d) filler in strain-temperature (ε-T) space (Reprinted with permission from Ref.[7] Copyright (2018) American Chemical Society).2同步辐射原位研究高分子薄膜加工的多尺度结构高性能高分子薄膜的制备方法和技术是工业界和学术界需要共同攻克的难题. 高分子薄膜加工包括从熔体、溶液到薄膜的固化过程和薄膜后拉伸过程,具有多步骤、多加工参数和多尺度结构演变的特点. 成膜过程的主要研究内容是流动场诱导结晶,包括加速成核和生长、诱导新晶型以及改变晶体形貌. 在后拉伸过程中,薄膜则可能发生晶体的破坏与重构、无定形区的微相分离、纤维晶形成以及微孔的成核和扩大等结构变化. 高分子薄膜加工过程中复杂的多尺度结构演化最终决定了其服役性能. 例如:干法制备聚烯烃微孔隔膜需要通过塑化挤出、风刀骤冷和流延辊高倍拉伸后才能得到初始预制膜. 在每个步骤中,环境温度、湿度、应变、应变速率、乃至挤出机螺杆长径比和口模流道的设计等因素都会对预制膜的结构与性能产生影响.通常,高性能薄膜的制备是在远离平衡态的加工条件(如高速拉伸)下进行的. 由于现有理论和实验条件的限制,非平衡问题不能简单地通过外延平衡理论解释. 高时空分辨的同步辐射硬X射线散射表征技术可以实时跟踪高分子材料在非平衡加工过程中不同尺度的结构演化,系统研究应变速率、温度等复杂外场作用下高分子材料结构与性能的关系. 通过研制贴近实际工业生产加工条件的原位研究装置,并开展同步辐射原位实验,可建立高分子材料的非平衡加工相图,从而进一步指导实际工业生产,实现高性能高分子材料的精准加工.在这里,笔者想要再次强调的是在明晰具体的材料体系和所需的实验条件后,需针对性地设计控制样品环境的原位装置,才能充分发挥出同步辐射硬X射线散射表征技术的优势. 目前,本课题组研制的同步辐射原位研究装置可分为复杂外场单轴拉伸装置和大型原位加工装置2类,前者主要模拟复杂外场下高分子材料的单轴拉伸过程,后者可以在较小的同步辐射线站空间内模拟高分子材料的实际加工过程. 依托这些同步辐射原位研究装置,可以就流动场诱导结晶、晶体的熔融再结晶、晶体固-固相转变等现象针对性地设计原位实验,加深对高分子材料加工背后基础物理问题的理解.2.1复杂外场下单轴拉伸复杂外场通常指温度场、流动场以及溶液、气压等样品环境. 通过复杂外场单轴拉伸实验可以模拟样品在实际加工中的形变过程的微观结构演化规律. 温度场的控制是高分子材料加工和服役性能的关键,聚乙烯(PE)、聚丙烯(PP)等常用塑料的加工温度窗口远高于室温(150~250 ℃),而天然橡胶(NR)、硅橡胶等弹性体其低温环境(0~-150 ℃)的服役性能更受研究者关注. 流动场包括剪切、拉伸外场,以拉伸场为例,拉伸速率对高分子材料内部结构演化规律,例如晶体的破坏、晶体结构转变等都有显著的影响. 工业中通常使用对拉的方式对样品进行单轴拉伸,而这种拉伸方式常由于拉伸比、腔体体积等原因受到限制. 因此,单轴拉伸通常根据材料和实验需要在对拉和辊拉2种方式中择优使用.图6(a)为采用对向拉伸的恒幅宽拉伸装置,装置的最大拉伸比可以达到700% (初始长度20 mm),拉伸速率范围在0~1000 mm/min,温度区间为室温至200 ℃[11,12].图6(b)为采用辊拉方式拉伸的高速拉伸装置,装置不受最大拉伸比限制,应变速率范围为10-2~102 s -1,温度范围为-40~300 ℃[13,14]. 考虑到在原位实验中的应用,装置被设计和建造得尽可能小型化. 高速拉伸装置配合上海光源高通量线站BL19U2使用Lambda 750K探测器可实现的最高分辨率为0.5 ms. 为了同步获得高速拉伸过程中的真实应变,利用时间分辨可达0.1 ms的高速CCD相机拍摄样品的拉伸过程.Fig. 6Constant width stretching device (a) and high speed stretching device with wide-temperature range (b).使用研制的复杂外场原位单轴拉伸装置主要用来研究流动场诱导结晶[15]以及后拉伸过程晶体形变与破坏. 流动场诱导高分子结晶是功能薄膜流延加工的关键,是熔体或溶液挤出口模冷却固化的过程,对于理解功能薄膜非平衡物理和指导实际工业生产具有重要意义. 流动诱导链段构象经过中间有序态发展为晶体,目前仍缺乏更多证据说明中间态结构的普适性、中间态的晶型、以及中间态的温度和流动场依赖性等问题. 为揭示详细的多步骤中间态,通过使用高时间分辨的同步辐射WAXS和SAXS联用技术,控制拉伸温度,对聚乙烯(PE)进行熔体拉伸,构建PE在温度-应力参数空间上非平衡流动场诱导结晶和熔融相图[16](图7(a)). 相图包含熔体、非晶δ相、六方(H)晶和正交(O)晶4个相区,并证实了拉伸诱导的δ相能够作为亚稳的中间相促进结晶发生,这支持了有序中间态是流动诱导结晶中的普遍规律的观点. 除了聚乙烯流动场诱导结晶的非平衡相图,针对功能膜加工的需要,工程实验室还系统构建了聚丁烯(PB)流动场诱导结晶的非平衡相图[17],如图7(b)所示,这些工作都为当前功能薄膜从感性粗放到理性精准加工积累了基础数据[18,19].Fig. 7Stretch induced crystallization non-equilibrium phase diagram of PE melt in temperature-stress space (a) (Reprinted with permission from Ref.[16] Copyright (2016) Springer Nature) and PB melt in temperature-strain rate space (b) (Reprinted with permission from Ref.[17] Copyright (2016) Wiley-VCH Verlag).在更大尺度上,即片晶和片晶间无定形的结构转变仍需要进一步研究工作. 笔者所在课题组以由高取向片晶簇构成的硬弹性聚乙烯、聚丙烯流延膜为研究对象,在室温下进行冷拉,研究取向片晶(如图8(a)和8(b))在不同拉伸外场中的结构演化与非线性力学行为的关系. 如图8(c)和8(d)所示,研究发现片晶簇的微屈曲和片晶间无定形相发生微相分离. 以α松弛温度和接近熔点为边界将温度分为3个区域,图9给出了高取向等规聚丙烯薄膜在温度-应变二维参数空间中的微观结构演化相图. 这些微观结构的演化规律解释了温度效应对材料的宏观非线性力学行为的影响[20,21]. 显然,研究形变机理对功能薄膜在后拉伸加工过程中的温度、应变及应变速率等参数的选择具有重要的指导意义.Fig. 8The structural evolution model of highly oriented lamella by uniaxial tensile (Reprinted with permission from Ref.[20] Copyright (2018) Elsevier).Fig. 9The structural evolution diagram of the highly oriented lamella in temperature-strain space (Reprinted with permission from Ref.[21] Copyright (2018) American Chemical Society).针对新能源电池隔膜加工需要,还系统构建了聚烯烃等工业预制膜后拉伸加工中的应变-温度空间或双向拉伸空间的非平衡相图[22,23],如图10所示. 通过模拟半晶高分子薄膜后拉伸加工,跟踪拉伸过程中晶体和无定形相的演化过程,不仅有助于指导高分子材料后拉伸加工中结构与性能调控,还可以为构建锂电池隔膜加工的材料基因组积累必要的结构和力学信息数据库.Fig. 10The structural diagram of processing in temperature-strain (a) (Reprinted with permission from Ref.‍[22] Copyright (2019) John Wiley and Sons) and biaxial stretch ratio (b) (Reprinted with permission from Ref.‍[23] Copyright (2019) Elsevier) spaces for PE gel film.2.2大型加工原位装置高分子薄膜的成型方法有很多,其中比较常见的有流延,吹塑和挤出拉伸(单向和双向)3种加工工艺. 目前,我国薄膜加工生产线和配套工艺主要还是依赖进口,国内生产线制造和薄膜加工企业处于成长阶段,缺乏原创高端产品. 究其原因,主要是缺乏相关基础和应用研究的支撑. 在真实的高分子加工过程中,伴随大应变、高应变速率、高温度(压力)变化等,高分子材料的结构经历复杂的非线性、非均匀和非平衡演变,相关研究极具挑战性. 当前的大多数原位研究仍处于模型化阶段,如利用低剪切水平的剪切热台、改造的流变仪等,不能反映真实加工条件下的物理行为. 因此,需要研制大型加工原位装置以最大程度地还原实际加工环境. 大型加工原位装置的研制主要的难点在于在能实现样品的复杂形变和环境温度的控制的前提下,需将产业化的装置设备缩小至能够满足同步辐射光源线站的空间限制的要求. 非常值得一提的是,上海光源即将建成开放的USAXS工业实验站(BL10U1)的空间将大大增加(长24 m,宽8 m,高6 m),可以放置大型工业应用原位实验装置. BL10U1的建成运行将大大降低对大型原位装置的尺寸限制. 下面我们以原位双向拉伸装置和原位挤出吹塑成膜装置为例,详细介绍大型加工原位装置及相关的研究应用.双向拉伸工艺可以制备具有优良服役性能的高分子薄膜(如BOPP和BOPA薄膜),其加工是一个非常复杂的过程,涉及高分子多尺度结构(分子链、晶格、片晶和球晶等)在多加工外场参数(如应力和温度)耦合作用下的协同转变. 因此,研究双向拉伸过程的结构转化动力学和机理,可以从基础原理上指导双向拉伸薄膜的加工,提高产品性能. 为实现双轴拉伸外场作用下高分子薄膜材料的多尺度结构演化在线跟踪,笔者所在课题组研制了与同步辐射技术联用的原位双向拉伸装备(见图11). 装备能够实现多种拉伸模式,其中包括受限、非受限单向拉伸,同步、异步双向拉伸. 装置的温度、速度、拉伸倍率、拉伸方式等外场参数均可独立控制,形变线速度范围为0.1~300 mm/s,双向拉伸比可达5×4,最高温度可达250 ℃. 该装备与同步辐射硬X射线光束线站联用,可实现0.1~500 nm尺度范围内的结构检测,时间分辨率为0.5 ms. 双向拉伸装置采用计算机高速控制-采集系统,控制系统采用PLC控制面板,可以远程控制电机运转,实现同步辐射光源棚屋外的控制. 该装备配备了力学信息采集系统,可同时采集拉伸过程中水平和垂直方向的力学信息,结合多尺度结构数据,可构建加工-结构-性能的关系,揭示双向拉伸外场作用下的高分子材料结构演化机理[24].Fig. 11The schematic diagram, and physical map used with synchrotron radiation of film biaxial stretching device (Reprinted with permission from Ref.[25] Copyright (2019) American Chemical Society).天然橡胶的优异力学性能通常归因于其应变诱导结晶行为. 受限于实验条件,目前大多数的研究均集中于单轴拉伸过程中的应变诱导结晶,然而接近于实际使用条件的多轴变形下的应变诱导结晶却很少报道. 本课题组采用高通量的原位同步辐射WAXS技术,结合在线双轴拉伸装置,研究了在双轴拉伸条件下天然橡胶的应变诱导结晶行为[25]. 利用同步辐射硬X射线散射研究天然橡胶双向拉伸形变过程物理,建立天然橡胶在真正服役条件下的多维外场-结构数据库.图12所示的二维WAXS结果表明,在双轴拉伸情况下,天然橡胶的应变诱导结晶行为会得到抑制:当两垂直方向的拉伸比比值为1时,室温下试样即使拉伸至断裂也不会出现结晶. 双轴拉伸阻碍了天然橡胶的SIC. 这一发现挑战了SIC在天然橡胶中在多轴变形下的自增强机制的共识.图13针对天然橡胶在多维拉伸空间的应变诱导结晶,提出了一种理论上的应变诱导结晶模型,即将构象熵和链段取向对成核位垒的贡献解耦. 将结晶度(χc)、无定形取向参数(f)和取向无定形的含量(Oa)在双向拉伸应变空间内定量化,提出模型:ΔG*f=ΔG*0−TΔSf−(TΔSori+ΔUori),其中,ΔG*f是成核位垒,ΔG*0是静态条件的成核位垒,ΔSf是构象熵减,ΔUori是取向造成的自由能变. 将几种结构参数定量化,得到应变空间内的结晶度分布. 基于该模型,二维应变空间的结晶度与实验结果高度吻合,并有助于建立更具有普遍意义的半结晶聚合物的流动诱导结晶理论模型.Fig. 122D WAXD patterns of the NR samples at the maximum planar draw ratio (λx×λy), where (a-h) denote stretch conditions of free uniaxial stretch (FS), CS, andvy=0.1, 0.2, 0.4, 0.5, 0.6, and 0.7 mm/s, respectively.vx remains constant at 1 mm/s, whose direction is given by a two-head arrow in the center (Reprinted with permission from Ref.‍[25] Copyright (2019) American Chemical Society).Fig. 13Distributions of (a) crystallinity (χc), (b) Hermans' orientation parameter of the amorphous phase (f), (c) weight portion of the oriented amorphous phase (Oa), (d) absolute value of entropy reduction (ΔSf), and (f) theoretically fitted crystallinity (χc (P)) in λx versus λy space. Gradient directions of contours for Δ Sf,f, andχc (e) (Reprinted with permission from Ref.[ 25] Copyright (2019) American Chemical Society).高分子吹膜加工是非线性、非平衡的多尺度结构快速演化过程,并伴随拉伸场、温度场和气氛环境等复杂外场,其过程模型如图14(a). 吹膜加工过程中,熔体拉伸、吹胀和降温主要发生在熔体出口模到霜线前后的阶段,这一阶段也是决定材料吹膜加工性能和薄膜使用性能最为关键的阶段. 利用同步辐射硬X射线散射技术的优势,考虑到同步辐射实验线站的空间限制条件等因素,研制了与同步辐射联用的原位挤出吹塑成膜装置(见图14(b)),并配合升降机、红外测温、高速CCD相机等其他单元形成吹膜加工原为在线检测系统[26,27],建立了吹膜加工过程原位在线检测方法[28]. 原位挤出吹塑成膜装置将工业薄膜吹塑装备小型化,实现了整个吹膜过程原位在线结构检测,吹膜过程加工参数连续可调,能够真实模拟实际加工过程. 利用同步辐射技术实现WAXS/SAXS同步采集,可获得结晶度、晶粒尺寸、取向度、片晶长周期等结构信息及其演化动力学信息,并且可以同步获得膜泡不同位置温度场及流动场信息. 基于该系统可建立吹膜加工过程原位在线研究方法并开展不同分子结构/加工参数下聚乙烯(PE)棚膜、PBAT(poly(butyleneadipate-co-terephthalate))地膜等薄膜产品的原位在线研究. 原位挤出吹塑成膜装置是高性能高分子薄膜加工领域研究方法技术的突破,有利于深入研究高分子薄膜加工物理,有效支撑了高性能薄膜产品的研发[29~31].Fig. 14The model of film blowing process (a) and the physical map of the film blowing device used with synchrotron radiation (b).通过PE材料的同步辐射在线吹膜实验总结了吹膜加工过程结构演化规律. 通过对晶体取向度、结晶度等数据的分析,根据吹膜过程的结构演化提出了相应的模型图(图15),并将结构演化过程分为4个区域. I区(霜线位置51~61 mm):拉伸诱导熔体结晶及滑移网络的拉伸. Ⅱ区(61~65 mm):晶体交联网络的拉伸. Ⅲ区(65~92 mm)及Ⅳ区(92~160 mm):不可形变网络的填充. 以上结论表明大量的晶体形成是对不可形变网络的填充,这一过程类似于静态等温结晶[32].Fig. 15The model of evolution of structural parameters during film blowing (Reprinted with permission from Ref.‍[32] Copyright (2018) American Chemical Society).基于对于吹膜过程从高分子缠结网络-晶体交联网络-晶体网络的理解,通过设计变温吹膜实验研究了温度和外部流场对不同拓扑结构的聚乙烯吹膜的影响. 研究发现不同吹胀比(12和20)的线性和长链支化聚乙烯(MPE和LPE)对温度和流动场具有不同的响应. 通过同步辐射硬X射线散射在吹膜过程中对PE的微观结构演变的进一步分析揭示了3种不同类型的网络演化(如图16):(1) 温度诱导结晶主导过程(MPE);(2) 流动诱导结晶主导过程(LPE-20);(3) 成核和生长由温度和流动的耦合效应(LPE-12)确定. 预计目前的结果将指导薄膜吹塑的加工,并为远离平衡条件下的流动场诱导结晶研究提供新的观点[33].Fig. 16The different types of the structure and network evolutions of TIC, TIC coupled with FIC, and FIC. The scale bar of SEM images is 500 μm. (Reprinted with permission from Ref.[33] Copyright (2019) American Chemical Society).基于同步辐射硬X射线散射实验结果,可以得到从缠结网络到可变形晶体网络,再到最终不可变形晶体支架的网络演化. 这些结构演化信息能够帮助完善数学模型,进一步优化和开发新的吹膜设备和方法. 吹膜过程的原位研究为高性能高分子薄膜的高效研发提供了可能的解决方案. 原位挤出吹塑成膜装置通过改变加工参数来调节链的取向,在生产具有特定性能的聚合物薄膜方面具有很大的潜力.3总结和展望同步辐射硬X射线散射技术在高分子表征中已得到广泛的应用. 研制与同步辐射联用的原位在线研究装置是用好同步辐射硬X射线散射技术的关键. 高效地使用同步辐射硬X射线技术需要我们根据不同高分子材料的特定性能,分析样品所处的外部复杂坏境,设计富有创新性的实验,再根据样品环境“量身打造”同步辐射原位表征装置. 依托高亮度的现代同步辐射光源如上海光源,配合超快探测器的使用,实现高时间、高空间分辨的多尺度结构表征.小型的同步辐射原位在线研究装置可用来研究拉伸、剪切等简单流动场和复杂外场(温度、应变、应变速率、溶液环境等)耦合条件下的结晶、晶体网络破坏等物理问题. 大型加工原位装置通过将大型加工装置小型化至可与同步辐射光束线站联用,真实反映高分子材料在实际工业加工过程中微观结构演化规律. 本文中涉及的原位研究装置均为笔者所在课题组根据研究内容自主设计并制造,大部分零部件是非标的,需要定制. 我们诚挚欢迎有相关原位研究装置需求的读者与我们联系,以期更好地发挥这些装置的作用,共同扩展它们的应用范围. 本课题组致力于发展和集成与同步辐射联用的高分子材料性能表征技术,建立高分子材料加工-结构-服役性能的高通量表征平台,大幅提高在多维加工参数空间中进行搜索最优参数的能力,从理论上切实指导实际生产加工.参考文献1Li Haohu(李浩虎),Yu Xiaohan(余笑寒),He Jianhua(何建华).Modern Physics(现代物理知识),2010,22(3):14-192Li Xiaodong(李晓东),Yuan Qingxi(袁清习),Xu Wei(徐伟),Zheng Lirong(郑黎荣).Chinese J Phys(高压物理学报),2020,34(5):3-15.doi:10.11858/gywlxb.202005543Xu Lu(许璐),Bai Liangui(柏莲桂),Yan Tingzi(颜廷姿),Wang Yuzhu(王玉柱),Wang Jie(王劼),Li Liangbin(李良彬).Polymer Bulletin(高分子通报),2010, (10):1-26.doi:10.1021/la904337z4Cui K,Ma Z,Tian N,Su F,Liu D,Li L.Chem Rev,2018,118(4):1840-1886.doi:10.1021/acs.chemrev.7b005005Chen W,Liu D,Li L.Polymer Crystallization,2019,2(2):10043.doi:10.1002/pcr2.100436Zhao J,Chen P,Lin Y,Chang J,Lu A,Chen W,Meng L,Wang D,Li L.Macromolecules,2018,51(21):8424-8434.doi:10.1021/acs.macromol.8b018727Zhao J,Chen P,Lin Y,Chen W,Lu A,Meng L,Wang D,Li L.Macromolecules,2020,53(2):719-730.doi:10.1021/acs.macromol.9b021418Li Liangbin(李良彬),Chen Pinzhang(陈品章),Zhang Qianlei(张前磊),Lin Yuanfei(林元菲),Meng Lingpu(孟令蒲).China patent, CN.ZL201810052796.3.2018-06-12.doi:10.3390/land100606319Li Liangbin(李良彬),Chen Pinzhang(陈品章),Zhang Qianlei(张前磊),Lin Yuanfei(林元菲),Meng Lingpu(孟令蒲).China patent, CN.ZL201820097340.4.2018-01-19.doi:10.3390/land1006063110Chen P,Zhao J,Lin Y,Chang J,Meng L,Wang D,Chen W,Chen L,Li L.Soft Matter,2019,15(4):734-743.doi:10.1039/c8sm02126k11Li Liangbin(李良彬),Meng Lingpu(孟令蒲),Cui Kunpeng(崔昆朋),Li Jing(李静).China patent, CN.ZL201220733325.7.2013-11-06.doi:10.3390/land1006063112Li Liangbin(李良彬),Meng Lingpu(孟令蒲),Cui Kunpeng(崔昆朋),Li Jing(李静).China patent, CN.ZL201210579459.2,2013-11-23.doi:10.3390/land1006063113Chang Jiarui (常家瑞).Structural Evolution and Mechanical Behavior of Typical Elastomer Meterials in a Wide Range of Strain Rate(典型弹性体材料在宽应变速率范围内的结构演化与力学行为).Doctoral Dissertation of University of Science and Technology of China,201914Li Liangbin(李良彬),Ju Jiangzhu(鞠见竹),Wang Zhen(王震),Ye Ke(叶克),Meng Lingpu(孟令蒲).China patent, CN.ZL201710070789.1.2017-05-31.doi:10.3390/land1006063115Wang Z,Ma Z,Li L.Macromolecules,2016,49(5):1505-1517.doi:10.1021/acs.macromol.5b0268816Wang Z,Ju J,Yang J,Ma Z,Liu D,Cui K,Yang H,Chang J,Huang N,Li L.Sci Rep,2016,6(1):1-8.doi:10.1038/srep3296817Ju J,Wang Z,Su F,Ji Y,Yang H,Chang J,Ali S,Li X,Li L.Macromol Rapid Commun,2016,37(17):1441-1445.doi:10.1002/marc.20160018518Xu Jiangli(徐佳丽),Meng Lingpu(孟令蒲),Lin Yuanfei(林元菲),Chen Xiaowei(陈晓伟),Li Xueyu(李薛宇),Lei Caihong(雷彩红),Wang Wei(王卫),Acta Polymerica Sinica(高分子学报),2015, (4):38-44.doi:10.11777/j.issn1000-3304.2015.1430319Lin Yuanfei(林元菲).Study of the Intrinsic Deformation Mechanism ofiPP Oriented Lamellar Stacks(等规聚丙烯取向片晶的本征形变机理研究).Doctoral Dissertation of University of Science and Technology of China,2018.doi:10.31219/osf.io/k7ehx20Lin Y,Li X,Meng L,Chen X,Lv F,Zhang Q,Li L.Polymer,2018,148:79-92.doi:10.1016/j.polymer.2018.06.00921Lin Y,Li X,Meng L,Chen X,Lv F,Zhang Q,Zhang R,Li L.Macromolecules,2018,51(7):2690-2705.doi:10.1021/acs.macromol.8b0025522Lv F,Wan C,Chen X,Meng L,Chen X,Wang D,Li L.J Polym Sci,Part B:Polym Phys,2019,57(12):748-757.doi:10.1002/polb.2482923Wan C,Chen X,Lv F,Chen X,Meng L,Li L.Polymer,2019,164:59-66.doi:10.1016/j.polymer.2019.01.02124Li Liangbin(李良彬),Meng Lingpu(孟令蒲),Lin Yuanfei(林元菲),Chen Xiaowei(陈晓伟),Xu Jiali(徐佳丽),Li Xueyu(李薛宇),Zhang Rui(张瑞),Zhang Qianlei(张前磊).China patent, CN.ZL201420449291.8.2014-12-10.doi:10.3390/land1006063125Chen X,Meng L,Zhang W,Ye K,Xie C,Wang D,Chen W,Nan M,Wang S,Li L.ACS Appl Mater Inter,2019,11(50):47535-47544.doi:10.1021/acsami.9b1586526Li Liangbin(李良彬),Zhang Rui(张瑞),Ji Youxin(纪又新),Ju Jiangzhu(鞠见竹),Zhang Qianlei(张前磊),Li Lifu(李立夫),AliSarmad,Zhao Haoyuan(赵浩远).China patent, CN.ZL201720215641.8.2018-01-30.doi:10.3390/land1006063127Li Liangbin(李良彬),Zhang Rui(张瑞),Ji Youxin(纪又新),Ju Jiangzhu(鞠见竹),Zhang Qianlei(张前磊),Li Lifu(李立夫),AliSarmad,Zhao Haoyuan(赵浩远).China patent, CN.ZL201710131585.4.2017-05-31.doi:10.3390/land1006063128Zhang Qianlei(张前磊).Study on Physics of Polymer Film Stretching Processing(高分子薄膜的拉伸加工物理研究).Doctoral Dissertation of University of Science and Technology of China,2019.doi:10.30919/es8d50529Zhao H,Zhang Q,Xia Z,Yang E,Zhang M,Wang Y,Ji Y,Chen W,Wang D,Meng L,Li L.Polym Test,2020,85:106439.doi:10.1016/j.polymertesting.2020.10643930Zhao H,Li L,Zhang Q,Xia Z,Yang E,Wang Y,Chen W,Meng L,Wang D,Li L.Biomacromolecules,2019,20(10):3895-3907.doi:10.1021/acs.biomac.9b0097531Zhang Q,Chen W,Zhao H,Ji Y,Meng L,Wang D,Li L.Polymer,2020,198:122492.doi:10.1016/j.polymer.2020.12249232Zhang Q,Li L,Su F,Ji Y,Ali S,Zhao H,Meng L,Li L.Macromolecules,2018,51(11):4350-4362.doi:10.1021/acs.macromol.8b0034633Zhao H,Zhang Q,Li L,Chen W,Li L.ACS Appl Polym Mater,2019,1(6):1590-1603.doi:10.1021/acsapm.9b00391原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21111&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2021.21111
  • 钱义祥&曾智强 :DSC曲线的峰谷之美
    热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡, 绝妙 ! DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡的美学理念是一个完整的美学体系。DSC曲线的峰谷之美,TG曲线的流淌之美和DMA曲线的激荡之美构成热分析曲线之美的三部曲。本篇是DSC曲线的峰谷之美。【热分析简明教程】第五章是热分析实验方法的标准与规范。差示扫描量热法DSC的标准与规范包括玻璃化转变温度测定、熔融和结晶温度、熔融和结晶焓的测定、比热容的测定、特定反应曲线温度、时间、反应热和转化率的测定、氧化诱导期的测定、结晶动力学的测定。本文以差示扫描量热法DSC的标准与规范中提及的玻璃化转变测定、熔融和结晶测定、比热容测定、特定反应测定、氧化诱导期测定、结晶动力学测定为示例,展现DSC曲线的峰谷之美。山高人为峰,脚踏幽幻谷。迈开脚步,探索DSC峰谷之美。传热学是研究由温差引起的热能传递规律的科学。热流DSC是测定热变化引起试样与参比物温差变化的研究方法。温度差既是热量变化的反映,又是引发热传导的必要条件。当试样发生热反应时,温差引起热能传递,DSC曲线上出现了吸热峰、放热峰和和台阶。约定DSC曲线Y轴的代表的热效应方向之后(例如将Y轴正向约定为放热方向),吸热效应用凹下的谷表示;放热效应用凸起的峰表示。高聚物的玻璃化转变表现在DSC曲线上是基线的突然位移,表现为正常吸热曲线的阶跃,呈台阶形。峰、谷和向吸热方向偏离的台阶是展现DSC曲线的峰谷之美的基本形态和美姿。它反映了事物变化的本质和规律。 一.玻璃化转变曲线的阶跃之美玻璃化转变测定的标准是GB/T19466.2-2004/ISO11357-2 2020。它规定了塑料玻璃化转变温度的DSC测定法。玻璃化转变研究植根于高分子化学、高分子物理和近代研究方法(热分析)的根基上。热分析研究玻璃化转变的目的就是科学认识玻璃化转变,用高分子化学、高分子物理和凝聚态物理来解析玻璃化转变曲线中的科学问题和应用问题。玻璃化转变是高聚物的基本物理转变,研究内涵极为丰富,它涉及玻璃化转变的特征温度、状态变化、热力学参数、力学性能、滞后圈、活化能测定;玻璃化转变温度的调控;玻璃化转变与蠕变、应力松弛、屈服、界面、银纹的关联;热-力历史对Tg的影响、以及玻璃化转变与高聚物结构、性能、加工、使用的相关性等。并通过分子运动揭示分子结构与材料性能之间的内联系及基本规律。用DSC方法研究玻璃化转变,当试样发生玻璃化转变时,表现为正常吸热曲线的阶跃,呈台阶形。当高聚物发生物理老化时,应力松弛过程使台阶转化为凹下的谷。我们从玻璃化转变曲线的阶跃和凹下的谷发现玻璃化转变的外在美和内在美。1. 玻璃化转变的简约之美和变化之美 玻璃化转变峰形 应力松弛引起的峰形变化 TMA压入模式测定导线双层涂层的Tg,呈双台阶式,如图所示: 玻璃化转变的峰形简洁优美,简静和谐,简约的形式却表达了丰富的内容。玻璃化转变反映了物质的状态、使用温度、相容性、老化温度区间、制品加工、材料稳定等信息。2. 玻璃化转变台阶演变之美物理老化是玻璃态高聚物通过链段的微布朗运动使其凝聚态结构从非平衡态向平衡态过渡的松弛过程。它一般发生在玻璃化温度和次级转变之间。高聚物的物理老化引起玻璃化转变台阶变异,应力松弛过程使台阶演变为凹下的谷形特征,甚至酷似DSC曲线上的吸热峰。这是玻璃化转变台阶演变之美。从宏观性能角度来看,高聚物的玻璃化转变是指非晶高聚物从玻璃态到高弹态的转变(温度从低到高),或从高弹态到玻璃态的转变(温度从高到低)。DSC是一个测定近似比热容的方法,高聚物的玻璃化转变表现在DSC曲线上是基线的突然位移,呈台阶形。玻璃化转变本质上是一个动力学问题,是一个松弛过程。当高聚物从熔体猝火到玻璃态后,再在低于Tg的温度下进行热处理,则会在Tg附近出现一个吸热峰。如图所示:具有不同热历史的从熔融态淬火聚对苯二甲酸乙二酯膜的DSC曲线(a) 分别在温度下热处理2小时;(b)在25℃下热处理不同的时间此曲线摘自【新编高聚物的结构与性能】 何平笙编著 科学出版社出版社 2009物理老化在DSC的升温测量中表呈现出来,如上图所示。当高聚物从熔体淬火到玻璃态后,再在低于Tg温度下进行热处理,Tg台阶演变为一个松弛峰,温度越高,松弛峰越高。淬火试样在25℃热处理不同时间,DSC吸热峰随处理时间延长而移向高温。研究具有不同热历史对玻璃化转变的影响,其本质是研究高聚物的物理老化。3. 和谐美(统一美)PET的DSC曲线如图所示。热分析曲线集玻璃化转变、冷结晶和熔融于一身,体现了多重转变的和谐(包容)之美。曲线似狼毫疾书,峰(锋)起峰(锋)落,流淌着玻璃化转变、冷结晶、熔融的变化轨迹。PET的DSC曲线在DSC曲线上,既有物理转变峰,也有化学转变峰;既有平坦峰,也有陡削峰;既有强峰,也有弱峰。它们和谐地融汇在一起。 4. 玻璃化转变台阶宽化之美玻璃化转变是非晶态高聚物(包括部分结晶高聚物中的非晶相)发生玻璃态≒高弹态的转变,其分子运动本质是链段发生“冻结”“自由”的转变。基于热运动强烈的时间依赖性和温度度依赖性,高聚物的玻璃化转变不是一个温度点,而是一个温度区间。因此科学认识玻璃化转变峰的寛化现象非常重要。玻璃化转变区一般宽达10~20℃,而且玻璃化转变区还明显地依赖于实验条件。某些高聚物体系的玻璃化转变区域发生加宽现象,加宽现象表明存在多种形式分子链段运动,这主要来源于交联高聚物中交联程度的微观差异、嵌段或接枝共聚物微相结构的差异、高聚物共混体系中相结构和相互作用的不同等因素。5. 玻璃化转变的双重峰之美非晶高聚物通常只有一个玻璃化温度。但高聚物也会出现双重玻璃化现象和双玻璃化温度。从热分析应用研究史来看,随着新型材料不断出现,热分析研究领域也不断扩展。科学认识双重玻璃化温度现象是以热分析实验为基础。在新材料的研究中,通常都需要测定玻璃化转变,常常会发现双玻璃化转变转变现象。归纳整理大量的热分析曲线,发现下列情况常常会出现双重玻璃化现象和双重玻璃化温度:1)许多部分结晶高聚物常表现出两个玻璃化温度;2)交联高聚物的两相球粒模型;微相分离;3)部分相容的共混高聚物;4)部分橡胶均聚物、树脂/基体体系;5)高聚物涂布在基体(尼龙纤维)上的双玻璃化温度;6)导线双层涂层的双玻璃化温度高聚物具有双玻璃化温度,它的DSC曲线将出现二个玻璃化转变的台阶。摘抄几个具有双玻璃化转变的高聚物:DMA也可以测定玻璃化转变,如交联高聚物的两相球粒模型和交联高聚物中的双玻璃化转变现象如图所示:交联高聚物的两相球粒模型和交联高聚物中的双玻璃化转变现象 高交联微球分散在低交联基体中的两相结构中。一个对应于高交联球的玻璃化转变,另一个对应于低交联基体的玻璃化转变。DMA和DSC是测定到双玻璃化现象和双玻璃化温度的常用方法。6. 玻璃化转变的可逆之美 玻璃化转变是一个可逆过程。从宏观性能角度看,高聚物的玻璃化转变是指非晶高聚物玻璃态转变为高弹态(温度从低到高),或从高弹态转变为玻璃态(温度从高到低)。通常,玻璃化转变测量是进行升温实验。但严格来说,玻璃化过程应是从高弹态转变为玻璃态(温度从高到低),由降温曲线求得玻璃化温度更合理。非晶高聚物由玻璃态转变为高弹态(温度从低到高)是解玻璃化过程。非晶高聚物的升温与降温的DSC曲线如图所示: 非晶高聚物的升温与降温的DSC曲线7. 玻璃化温度的调控之美物质的热变化是可调控的,玻璃化温度也是可以调控的。解读特定材料玻璃化转变的热分析曲线,研究它的特征和变化规律,进而对玻璃化温度进行调控,优化材料热物性参数、状态和特性,服务于材料研发、生产和使用,使热变化沿着确定的研究方向发展。你欲调控材料的玻璃化温度,你就要知道哪些因素会影响材料的玻璃化温度。调控玻璃化温度依赖于你对影响玻璃化温度因素的认知。高分子物理告诉我们:玻璃化温度是高分子的链段从冻结到运动(或从运动到冻结)的一个转变温度,而链段运动是通过主链的单键内旋转来实现的,因此,凡是能够影响高分子链柔性的因素,都对Tg有影响。减弱高分子链柔性或增加分子间作用力的因素,如引入刚性基团或极性基团、交联和结晶都使Tg升高,而增加高分子柔性的因素,如引入增塑剂或溶剂,引进柔性基团等都使Tg降低。基于高分子物理对玻璃化转变的认知,改变玻璃化温度的手段有:增塑、共聚、交联、结晶及改变相对分子质量可以使高聚物玻璃温度在一定范围内连续地变化。如不同结构的聚苯并噁嗪,Tg 在107 ℃—368 ℃宽的温度范围内变化;N-羟甲基丙烯酰胺(NMA),参与共聚的EVA乳液的 Tg 值可以在 -30~30℃之间调控;偏二氯乙烯与丙烯酸酯共聚,可制备得到不同Tg的两种乳液:低Tg(-50~0℃)的乳液和高Tg(0~30℃)的乳液;用于粘接水晶的 UV 固化胶,添加增塑剂来降低 Tg , 增加胶的柔韧性。8. 科学认识玻璃化转变中的“未知”人的认知是不断提高的,常常用已知来解释未知。探索未知的利器是丰富完善自身的知识体系,完善的知识结构包括雄厚的知识储备和系统、灵活地运用这些知识的科学方法。几十年来,我们已科学认识了玻璃化转变中的许多“未知”,但还有很多的“未知”需要继续探索。探索未知的前提是你要有求索的觉醒。如果一个人的思维被禁锢,视野和认知就会变狭隘,认知也就停止不前了。玻璃化转变研究中最大的“未知”是人们还是无法回答玻璃态的本质是什么这一基本问题。玻璃态本质的研究一直是凝聚态物理及软物质领域的重要内容,也是至今悬而未决的难题。迄今为止没有一个理论能解释玻璃化转变过程中的所有现象,已有的理论也只是在某些特定的过冷区间和特定的体系中才与实验或模拟结果吻合。诺贝尔奖获得者Andcrson在文章中展示了他对玻璃化转变问题的兴趣,并预言玻璃化转变问题将在21世纪得到最终解决。对玻璃化转变机制的研究,正在不断深入并逐渐逼近正确,对它的研究,既是挑战也是机遇,并将继续吸引科学家们研究下去。经过科学家们持续不断的努力,玻璃及玻璃化转变的物理本质之谜最终一定会解开!热分析方法研究高聚物材料已有几十年的历史,它不仅为材料提供了热物性参数,还为探索玻璃化转变的实验特征(玻璃化转变过程的热力学行为、动力学特征)、实验技术表征和玻璃化转变理论的演变积累了大量的数据,是探索玻璃化转变理论的实验基础。它在玻璃化转变理论研究中的作用不容忽视。热分析方法表征高聚物材料需要玻璃化转变理论指导,研究玻璃化转变理论也需要近代科学方法(包括核磁共振、热分析等)的实验基础和实验证据。玻璃化转变研究在进行中,玻璃化转变的峰谷之美将在不断研究中绽放得更灿烂。二、熔融-结晶的峰谷之美熔融和结晶温度、熔融和结晶焓测定的标准是GB/T 19466.3-2004/ISO 11357-3 2018。它规定了塑料熔融与结晶的DSC测量法。可用DSC方法测定结晶或部分结晶聚合物的熔融和结晶温度及其熔融和结晶热。1. 冷结晶、热结晶、等温结晶之美结晶或部分结晶聚合物的非等温结晶有冷结晶和热结晶之分。试样以适当的速率升温,熔融后淬火,淬火试样以相同速率升温,DSC曲线上的结晶峰称为冷结晶峰。把开始结晶的温度与Tg之差 ∆Tg 作为非等温冷结晶速率的度量,初略地说,∆Tg越大,则冷结晶速率越慢。 聚合物升温熔融与降温结晶的DSC曲线如图所示;可以用过冷度∆Tc来分析非等温实验数据。过冷度 ∆Tc定义为升温DSC曲线熔融峰温与降温DSC曲线开始结晶温度之差,用线性方程式中截距表示聚合物所固有的结晶能力。∆Tc随降温速率而变。 2. 熔融-结晶峰的峰、岭、谷之美DSC方法测定结晶或部分结晶聚合物的熔融和结晶温度及其熔融和结晶热。高聚物的DSC曲线显现结晶高聚物的熔融与结晶过程。升温测量高聚物的结晶-熔融过程,假设DSC图中约定Y轴正方向代表放热,那么冷结晶曲线呈峰的形式,熔融曲线呈谷的形式。降温测量热结晶,热结晶曲线呈峰的形式。PTFE熔融的DSC曲线如图所示:PTFE不同升温速率的DSC曲线PTFE熔融峰的峰形与升温速率有关。随升温速率的提高,熔化峰变宽,河谷越来越深。熔融峰好似平原上的河谷。结晶度高的部分结晶聚合物熔融峰的谷坡陡峻、狭而深,似大峡谷;结晶度低的结晶或部分结晶聚合物熔融峰的谷坡浅而宽。熔融双峰呈现谷—谷相连突起的“岭”,似水中的暗礁或小岛。如图示意:熔融双峰的双谷和暗礁或岛屿的示意结晶峰好似独立高耸的山峰。结晶双峰呈现山峰相连的岭和狭窄低凹的山谷。如图示意:结晶双峰的峰、岭、谷的示意3. 等温结晶峰的变化之美 结构相当规整的聚合物在玻璃化温度Tg和熔融温度Tm所限定的温度范围内出现结晶作用。结晶速率随温度而变,所以采用恒温法测定高聚物的结晶过程,结晶峰的峰形是随结晶温度而变。不同结晶温度的DSC曲线如图所示。它显现了高聚物结晶速率对温度的依赖性,也显现了不同结晶温度下结晶峰形的变化之美。PBS熔融后分别在80℃、81℃、83℃、85℃、88℃等温结晶的DSC曲线部分结晶高聚物是晶相和非晶相的混合体系。晶相最重要的特征温度是熔点Tm。非晶相最重要的特征温度是玻璃化转变温度Tg 。部分结晶高聚物结晶温度范围正是在Tg与Tm之间。实现结晶的途径有两条:一是将熔体或溶液冷却到Tg与Tm之间的温度使之结晶,称为热结晶;二是先将熔体骤冷到Tg以下形成过冷液体(即玻璃),然后再升温到Tg与Tm之间的温度下使之结晶,称为冷结晶。高聚物结晶速率对温度的依赖性取决于成核速率和晶体生长速率的温度依赖性。随温度的下降,成核速率逐渐增大;晶体生长速率的温度依赖性取决于高分子链段向晶核扩散并作规整排列的速度。温度越低,熔体黏度越大,晶体生长速率越小。因此,高聚物的结晶速率随温度的变化不是单调上升,也不是单调下降,而是在某一温度下达到最大值。在结晶温度略低于熔点时,结晶速率因成核速率很低而很慢;在接近玻璃化转变温度时,结晶速率因晶体生长速率很低而很慢;而结晶温度在(0.80 ~ 0.85)Tm附近时,因成核速率和晶体生长速率都较高,结晶速率达到极大。等温实验得到多条等温结晶曲线,绘制等温温度-等温结晶时间下的关系曲线,如图所示:等温结晶温度和结晶时间的关系由等温结晶温度-等温结晶时间下的关系曲线方便地选择等温结晶温度,具有选择之美。U字形曲线显现结晶温度和结晶时间相关性之美。三.比热容曲线的线性美及松弛峰特征比热容的DSC测定法的标准是ISO11357-4 2021和ASTM E 1269-11(2018)规定了比热容的DSC测定法。比热容是指单位温升所需的热量(热容C)除以质量m,单位为J / kg. K 。比热容的DSC曲线如图所示: 显现玻璃化转变和应力松弛特征的比热容曲线通常,比热容与温度的关系是线性增大。当试样发生玻璃化转变且有应力松弛时,比热容曲线会出现台阶和松弛峰峰形。四.特定反应的特征/特性之美 特定反应曲线温度、时间、反应热和转化率测定标准是ISO11357-5。它规定了特征反应曲线温度、时间、反应热与反应程度的DSC测定法。热分析研究特定的反应,热分析曲线就是这种特定反应的特定的形象。DSC研究的特定反应泛指氧化、还原、固化、热降解、热氧降解等。用DSC曲线来表征特定反应曲线温度、时间、反应热和转化率,也可进行剩余热的测量。依实验目的可以采用升温法或恒温法。特定反应的DSC曲线峰谷具有特定反应的特征和特性,呈现特定反应特有的特性之美。特定反应的美是建立在反应本身固有的特征和特性基础上,人们从研究特定反应中得到了快乐,为什么能从中得到快乐呢?因为特定反应的DSC曲线的峰谷具有特定反应的特性之美。特定反应的美是建立在特定反应本身,如DSC研究胶粘剂的固化反应。胶粘剂的固化反应是一个高分子化学问题。高分子链之间通过化学键连接起来形成相对分子质量无限大的三维网络,称之为交联。交联固化过程不是按化学反应平衡方程式来表示,而是以一种不均一的状态存在,交联高分子的网络结构可以是规则的,也可以是不规则的。因此固化反应的DSC曲线常出现双峰峰形和多峰峰形,如图所示。交联固化的DSC曲线示意玻璃化温度(Tg)的测定这是一个高分子物理问题,通过测定Tg来研究交联高分子网状结构和宏观性能(玻璃化转变)的相关性。胶粘剂的固化反应出现双峰,表明固化产物以不均一的状态存在。那么固化产物的DSC峰就会出现双玻璃化转变现象。限于篇幅,其它特定反应曲线温度、时间、反应热和转化率测定就不介绍了。五.氧化诱导期的蓄势之美氧化诱导期的测定标准是ISO11357-6 2018。它规定了聚合物材料氧化诱导期的DSC测定法。氧化诱导期是指稳定化材料耐氧化分解的一种相对度量。是由DSC测量材料在某一特定温度、常压氧气气氛下起始氧化放热的时间间隔来确定的。典型的热氧化稳定性曲线如图所示:热氧化稳定性曲线(切线分析法)t1氧气流切换点 t2氧化起始点 t3切线法起点 t4氧化峰时间氧化诱导期是用起始氧化放热的时间间隔来确定的。在某一特定温度下等温,试样吸附氧,是一个蓄势过程,当物理吸附和化学吸附氧的量蓄聚达到某一个值时,试样突然氧化放热,出现一个氧化放热峰。DSC方法测定聚乙烯的氧化诱导期是典型的实例。试样在氧化气流中200℃或210℃下等温,吸附氧气,蓄势诱导,氧化放热直冲峰顶。润滑油的氧化诱导期是采用压力差示扫描量热法(PDSC)。美国试验与材料协会于1998年将PDSC法测定润滑油的氧化诱导期列为ASTM D6186标准(最近版本发布于2013年。润滑油是液体,易挥发,使用PDSC法测定润滑油的氧化诱导期,试验数据重复性好。氧化起始温度是另一个表示材料氧化分解的概念。动态测定是由DSC测量材料在程序升温下、常压氧气气氛下起始氧化放热的温度来确定的。典型的氧化起始温度的DSC曲线如图所示:两种不同HDPE的氧化起始温度(动态OIT)测试由DSC曲线的氧化放热峰分别求出反应起始温度、外推起始温度、最大反应速率温度、外推终止温度和反应终止温度。氧化诱导时间和氧化起始温度都是稳定化材料耐氧化分解的一种相对度量。氧化诱导时间(等温OIT),氧化诱导温度(动态OIT)分别表示开始出现氧化放热的时间或温度。氧化诱导时间与氧化起始温度是二个不同的概念。要证明材料耐氧化的时间,采用氧化诱导时间来表示;要证明材料耐氧化的温度,采用氧化起始温度来表示;氧化诱导时间长,并不表示氧化起始温度高。反之亦然。六.结晶动力学的测定 结晶动力学测定的标准是ISO11357-7 2022。它规定了利用差示扫描量热法研究部分结晶聚合物结晶动力学的等温和非等温两种方法。该方法可应用于已熔融的聚合物。如果测试过程中聚合物的分子结构有所改变,此法不适用。上面我们用图形和文字展现了差示扫描量热法DSC的标准与规范中提及的玻璃化转变测定、熔融和结晶测定、比热容测定、特定反应测定、氧化诱导期测定、结晶动力学测定的DSC曲线的峰谷之美。峰谷之美的源泉是什么?源之温差引起的能量传递的热传导过程。温差引起的能量传递的热传导过程是峰谷之美的源泉。傅立叶定律是传热学中的一个基本定律,也称为热传导定律。傅立叶热传导定律与差示扫描量热法有一定的内在渊源。传热学是研究由温差(temperature difference)引起的热能传递规律的科学。热流DSC是测定由于热变化引起试样与参比物温差变化的研究方法。DSC热力学体系因温差引起热传导现象,热传导现象与能量的传递相联系,热传导过程就是热量热传递(流动)的过程。DSC测量流入(流出)试样和参比物的热流与温度或时间的关系,得到了热流随温度或时间变化的轨迹,DSC曲线上出现了吸热峰、放热峰和和台阶。热流DSC的理论基础是傅立叶热传导定律,应用傅立叶热传导理论解析热流DSC曲线的热传导现象,展现DSC曲线的峰谷之美。峰谷之美从温差、能量传递和热传导过程中绽放。人们发现美的同时,DSC曲线的峰谷也给人以美的享受。 下面我们继续探索DSC曲线的特性参数转折之美、曲线变异之美、峰-峰、谷-谷、峰-谷连绵之美。托宽思路,探索古陶瓷DSC曲线的远古之美和空间材料的遥远之美。七.特性参数转折之美DSC可以测定比热容、导热系数;TMA可以测定膨胀系数;导热仪可以测定导热系数。比热容、膨胀系数、导热系数在玻璃化转变温度的转折如图所示: 比热容、膨胀系数、导热系数在玻璃化转变前后的转折由图可以看出:比热容、膨胀系数、导热系数峰值都在玻璃化转变温度出现峰值。比热容、膨胀系数、导热系数在高聚物玻璃化转变温度出现转折点是特性参数转折之美。聚合物的比热容、热膨胀、导热系数与分子活动性直接相关。不同物质的比热容、膨胀系数、导热系数各不相同;相同物质的比热容、膨胀系数、导热系数与其结构、密度、湿度、温度、压力等因素有关。八.曲线变异之美 曲线变异是指与定势思维相侼的DSC曲线。热分析实验中出现DSC曲线变异是常见的事。如高聚物玻璃化转变峰出现应力松弛峰;固化反应的DSC曲线出现双峰或多峰时,在固化产物的DSC曲线上就会出现相应的双玻璃化现象。当测试到变异峰时,一定要溯源曲线变异的原因。避免将变异的热分析曲线当作异常峰处理,产生误读与误判。进化的基本机制是变异与选择。求异思维的逻辑内核是“敏于生疑,敢于存疑,勇于质疑”。思维的求异或求异意识是指敢于向权威或传统观念挑战,从已有思路或从相异、相逆的思路去思考变异的DSC曲线,获得新的认知。。物质世界中,唯一不变的是变化,变化是永恒的。人类对变化的认知虽然不断演进,但变化自身的哲学内涵远比我们对变化所能理解的更为深邃。人类对热变化的探索无止境,当你遇到变异的热分析曲线时,潜心研究变异的曲线。运用热变化中的哲理解析变异的热分析曲线。开智悟理,悟而生慧、悟得智慧。科学研究中,常常悟生于常规、传统、标准、经典之外,探索前行。由“悟”而后产生变则通思维具有必然性。“悟”出变幻无常的曲线变异之美是对热变化的认识深化。玻璃化转变是高聚物的一个基本转变,它常常会发生变异。如物理老化引起玻璃化转变曲线变异。物理老化使玻璃化转变峰的峰形由台阶式峰形变异为松弛峰峰形。MDSC可将可逆的玻璃化转变和不可逆的应力松弛分离。 通常,水合氧化铝脱水形成低温氧化铝(γ、δ、η、κ-Al2O3), 低温氧化铝于1250℃转型生成高温氧化铝(ɑ-Al2O3)。测试某一样品,偶然发现高温氧化铝(ɑ-Al2O3)的生成放热峰提前到1050℃。经溯源,峰的变异是由样品中加入了矿化剂之故,使转相温度提前了200℃。玻璃化转变的宽化现象和双重玻璃化现象也是DSC曲线变异的实例。探索曲线变异的原因是认识的深化。变异的DSC曲线呈现峰谷变异之美。DSC曲线的峰谷在变异中越变越美。九.峰-峰、谷-谷、峰-谷连绵之美用凹下的谷表示吸热效应;用凸起的峰表示放热效应;用向吸热方向偏离的台阶表示玻璃化转变。峰、谷和台阶是展现DSC曲线的峰谷之美的基本形态。是对事物本质和规律的反映。DSC曲线中,常常出现峰-峰、谷-谷、峰-谷相连的现象。座座山峰相连称为岭,两峰之间狭窄低凹处称为谷。峰美!谷美!峰-峰相连的山岭美!狭窄低凹的山谷美! 1. 峰-峰连绵之美Al-ZrO2体系的DSC曲线如图所示:不同升温速率下Al-ZrO2反应过程的DSC曲线Al-ZrO2体系在一定条件下(不同升温速率下)发生化学反应。图中两个放热峰分别对应于两个分步反应:Al + ZrO2 → ɑ-Al2O3 + [Zr][Zr] + Al → Al3Zr 两个分步反应在不同升温速率下的峰顶温度Tm是不同的,两个放热峰相连形成不同形状的山岭和山谷。DSC曲线因峰冠雄,因峡显幽。DSC曲线显现放热峰相连的山岭美!显现狭窄低凹的山谷美!2. 谷-谷连绵之美不同升温速率的PET的熔融双峰如图所示: 不同升温速率下PET的DSC曲线PET的结晶比较慢,因此不同的热历史可以造成不同的结晶和熔化过程。在慢速升温过程中,由于PET形成的片晶部分熔化,未熔化部分似作成核点,形成熔融再结晶,这种结晶可以在更高的温度熔化,从而形成熔融双峰。如果用TMDSC的话,还可以测到再结晶过程的放热峰。还有一种观点是,结晶过程中形成了两种不同稳态的晶体,热稳定性差的在较低温度熔化,热稳定性高的在较高温度熔化,从而形成熔融双峰。如果在120-140℃长时间退火,将试样降温到室温后再升温,DSC曲线在140℃以上还会出现第三个小峰。聚乳酸一次升温的DSC曲线如图所示: 161.0℃和167.4℃是聚乳酸的熔融峰,这个双峰现象有几种解释:1)熔融再结晶;2)晶型转变;3)分子量分布宽,片晶厚度不同。聚乳酸的熔融双峰具有紧紧相依之美。3. 3.谷-峰衔接之美 Al2O3与ZnO反应过程的DSC曲线如图所示: 图中表明:Al(OH)3脱水谷与AL2O3.ZnO生成的放热峰光滑衔接、谷-峰相连。好似造山运动,Al(OH)3脱水反应使曲线下降,形成脱水谷,AL2O3.ZnO生成的放热反应使曲线突然上升,形成雄伟的山峰。真是一幅因峡显幽,因峰冠雄,绝壁长崖的山水图。 Al2O3与B体系的DSC曲线如图所示:Al-B反应过程DSC曲线Al的熔融吸热峰形成显幽之谷,液态Al与B反应生成ALB2, 放热峰使曲线上升,熔融吸热峰与放热峰光滑衔接,谷-峰相连。好似地壳下沉后又突然升高,绝壁长崖直冲峰顶。4. 台阶与应力松弛峰的组合之美 高聚物的玻璃化转变在DSC曲线上的特征是基线的突然位移,表现为正常吸热曲线的阶跃,呈台阶形。当高聚物在玻璃化转变温度和次级转变温度之间发生物理老化时,应力松弛过程使台阶转化为凹下的谷。 十.迷人材料热分析(DSC)研究的诗意和美“迷人的材料”是英国人马克.米尔多尼克所著。对构建现代世界的物质做了美好的描述,从细微中发现诗意和美, 是一部材料科学的颂歌, 也是对人类智慧的赞颂。“迷人的材料”是《物理世界》2014年推荐的最佳科普书。书中展现了人类需求和欲望的材料,带领人们走进神奇的材料世界。本书介绍了“迷人的材料”:钢、纸、混凝土、巧克力、发泡材料、塑料、玻璃、碳材料、瓷器、长生不死的植入物等材料。介绍迷人材料的资料还有:未来最有潜力的新材料;有能力改变整个世界的超级材料及地球上十大神奇的极端物质。如石墨烯、气凝胶、碳纳米管、富勒烯 、非晶合金、泡沫金属、离子液体、纳米纤维素、纳米点钙钛矿、3D打印材料、柔性玻璃、自组装自修复材料、可降解生物塑料、钛碳复合材料、超材料、超导材料、形状记忆合金、磁致伸缩材料、磁(电)流体材料、智能高分子凝胶。美国材料研究学会在每次年会上进行图片比赛,通过显微镜人们看到了如艺术品一般的材料组织,发现材料既有外在美,又有内在微观世界的神奇,微观世界与宏观世界具有异曲同工之妙。用热分析研究迷人的材料,可以提供许多有用的参数。DSC在材料研究中有着广泛的应用,展现了材料DSC曲线之美。 1.石墨烯的DSC曲线之美2.锂电池的的DSC曲线之美3.含能材料瞬变反应的新奇美 4.古陶瓷DSC曲线的远古之美以古陶瓷研究为例,古陶瓷是火与土的艺术,运用近代科技方法研究釉陶的的物理—化学过程,对古陶瓷样品的显微结构、物相结构进行深入研究,为推测古陶瓷的烧制工艺、揭示我国古代名瓷的呈色机理、再现我国古代名瓷的制作奥秘提供有力的数据支撑。应用近代科技方法(含热分析方法)研究古陶瓷是将今论古,今为古用,呈现远古之美。 现代陶瓷研究:先驱体裂解转化制备陶瓷,突破了火与土的传统,是突破之美。先驱体裂解转化制备陶瓷是利用有机先驱体聚合物裂解制备陶瓷材料的新方法。人们已用热分析方法(DSC方法)探索先驱体裂解转化制备陶瓷工艺中的合成过程、交联过程和裂解过程。 陶瓷反应体系Al-TiO2的DSC曲线及反应结果的X射线衍射花样如图所示: 陶瓷反应的DSC曲线的包容性陶瓷反应体系Al-TiO2的DSC曲线主要有三个峰和谷:第一个谷为吸热峰,发生在667℃,对应于Al液化吸热过程;随着温度升高,在950℃左右时出现了第二个峰,为放热峰,表明试样中发生了以下化学反应:4Al + 3TiO2→ 2ɑ-Al2O3 + 3[Ti]反应产生的活性[Ti]原子随后又与Al原子结合生成Al3Ti ,该反应为强放热反应,峰顶温度1000℃左右。因此,Al-TiO2体系在升温过程中依次经历了一个物理转变(Al的熔融)和两个化学反应,分别产生两种增强体 ɑ-Al2O3陶瓷和Al3Ti金属化合物。反应结果的X射线衍射花样进一步说明了这一点。Al-TiO2体系反应过程的DSC曲线具有强大的包容性。它包容了物理转变(Al的熔融)吸热峰的谷和两个化学反应放热峰及峰-峰相连形成的山岭和山谷。以上多图均摘自【材料科学研究与测试方法】朱和国 王新龙编著 东南大学出版社 2013 5. 空间材料DSC曲线的遥远之美国际空间站的微重力实验:空间条件下集成热分析的先进管式炉(ADV、TITUS)进行材料生长实验。最高工作温度1250℃,采用炉体移动的方式进行材料生长,其最主要的技术特点是该设备在进行材料生长实验的同时,也进行了材料的差热分析(DTA)测试。该实验即为空间材料科学与微重力下的热分析的诌型。在地球万有引力下,单晶硅生长由于重力的作用,生长单晶硅区浮液桥的直径不能超过8 mm。微重力环境实现无容器过程,增大浮区的直径没有限制,生长出比8 mm粗得多的硅单晶。结晶研究表明:具有高体积分数的样品,在有重力的地面上经过一年也不能结晶化的样品,在微重力条件下(10-6g),不到两周就全部晶化了。发挥DSC研究晶体的潜能,应用DSC开展微重力下的晶体生长实验成为可能。 空间生长的GaSb单晶(左、中)与地面生长的GaSb单晶(右)对比图微重力环境下高聚物的结晶研究:微重力环境下的结晶是为制备太空高聚物材料而进行的研究。模拟太空条件下的高真空微重力下对尼龙11、聚偏氟氯乙烯、间同聚苯乙烯、全同聚丙烯(i-PP)等做了等温结晶,发现不少与常规重力下不同的结晶现象。美国国家航空航天局在航空飞机的实验中测出了比热奇异性的趋势,验证了理论物理的预言。比热奇异性的实验曲线如图所示: 空间LPE实验的比热测量结果实线为地面的实验结果;点划线为空间微重力实验结果;虚线为重整化群理论预期结果比热测量时的相变温度控制在10-9 K以内,液体在相变点处的比热为无穷大。由于地面的重力作用使实验温度达不到要求的精度,测量不出比热奇异性。微重力环境提供了高精度的物理实验条件,测出了比热奇异性的趋势。空间LPE实验的比热测量结果如图。红框内即为比热奇异性。值得注意的是温度坐标为纳度nK。 以上均摘自【微重力科学概论】 胡文瑞等著 科学出版社 2010 十一.DSC曲线峰谷群像图DSC曲线的形态犹如地球的地貌特征,独立高耸的山峰和座座山峰相连的岭、两峰之间狭窄低凹的山谷和幽幻的大峡谷,低缓的丘陵、广阔的平原及谷坡陡峻、狭而深的河谷。山峰、山岭、山谷、丘陵、平原及河谷的特征构成了DSC曲线峰谷群像图。DSC曲线与地理地貌的相似性形象,增添了曲线的天然美(自然美)。 DSC方法研究材料的转变和热物性参数,得到各种各样的DSC曲线。DSC曲线的峰谷呈现物质变化规律之美。DSC曲线群像中,既有共性,又有特性,还有变异性。曲线有相像、相似、类似的形象;也有截然不同的形象,以及曲线变异的形象。转变峰的形状、大小、位置似水无常形,变化万千,借助文字和图形的阐释能力,揭示曲线峰谷蕴含的意义。DSC曲线与地理地貌的相似性形象图: 从DSC曲线与地理地貌的相似性形象,领略DSC曲线峰-谷的天然美。 DSC曲线转变峰群像如图所示: 从DSC转变峰群像图中看出:DSC曲线峰谷变幻无穷、群像纷呈。读懂、读透DSC曲线的峰谷不容易,那是你的理解能力。解析DSC曲线的峰谷并被别人读懂也不容易,那是你的表达能力。清乾隆蘅塘退土孙洙对《唐诗三百首》的题词是:“熟读唐诗三百首,不会做诗也会呤”。解读DSC曲线亦如此。熟读经典的DSC曲线和群像图中的应用曲线,认知DSC曲线的峰谷之美。发现美!欣赏美! 如何认知群像图中DSC曲线峰谷呢?人类学习与机器学习方法相结合。传统的方法是人类学习方法。人类对事物的认知路径经是从原始数据出发,凭借人脑拥有的科学知识去认知DSC曲线峰谷的内涵。面对同样的原始数据,拥有不同知识的人将得出不同的认知;同样,拥有相同知识的人,面对没有数据、有少量数据、有大量数据以及有充分数据等不同情况时,也将得出不同的认知。知识的拥有者占据上风。机器学习方法是一种全新的思维方式。机器学习的本质是跳出“知识”的束缚,建立原始数据与认知之间的直接映射,“数据”价值连城。机器学习方法直接建立“数据—认知”关系库,以更加深邃、更加贴近物质本来面貌的视角去认知DSC曲线的峰谷。机器学习方法已在化学、材料科学和高分子玻璃化研究中得到应用。如中国科学院长春应用化学研究所徐文生研究员和美国北达科他州立大学夏文杰教授基于在高分子玻璃化领域的多年研究经历,综述了机器学习方法在高分子玻璃化领域的研究进展。杨镇岳,聂文建,刘伦洋,徐晓雷,夏文杰,徐文生撰写了机器学习方法在高分子玻璃化研究中的应用。此文刊登于高分子学报2023,54(4)409-427运用人类学习和机器学习方法探索DSC曲线峰谷之美是人的需求。山高人为峰,脚踏幽幻谷,迈开脚步,探索DSC峰谷之美,以人为主导。科学的美是客观存在的,人对美的追求,是自然科学发展的源动力。DSC研究物质受热时发生的物理变化和化学变化,并以峰谷的外在美呈现物质变化的内在美。人,怀着对热分析的情感,自由地鉴赏DSC曲线峰谷的美感,发现美,享受物质变化之美。美使人感到愉悦的同时,也揭示了隐含在曲线中的物质热变化规律。
  • 化繁为简|在线柱切换—反相液相色谱法测定食品中维生素D的含量
    国家卫生健康委员会、国家市场监管总局联合发布了85项食品安全国家标准和3项修改单的公告,其中包括了GB 5009. 296-2023《食品安全国家标准 食品中维生素D的测定》(以下称新标准)。新标准代替GB 5009.82-2016《食品安全国家标准食品中维生素A、D、E的测定》中第三法“食品中维生素D的测定液相色谱串联质谱法”和第四法“食品中维生素D的测定高效液相色谱法”。新标准最大的变化便是增加了在线柱切换反相液相色谱法。在此背景下,为了进一步促进维生素D检测工作的交流与合作,仪器信息网特别发起“维生素D新标准解读与应对”话题。本文邀请到科诺美(北京)科技有限公司液相色谱产品经理公敬欣分享相关的技术及解决方案。 01 引言维生素D是机体维持正常代谢和调节机能所必须的脂溶性维生素,主要包括维生素D2(麦角钙化醇)和维生素D3(胆钙化醇),具有促进肠道对钙、磷的吸收和在骨骼中沉积,维持骨骼的正常生长与发育的作用,因此维生素D的准确测定对于产品质量控制具有重要的意义。在维生素D的测定中,由于添加量相对较低,且样品基质复杂,存在脂肪、蛋白等干扰物。现行标准GB 5009.82-2016中第四法中,在对样品进行皂化、提取、洗涤、浓缩后,通过正相液相色谱净化,浓缩复溶后再通过反相色谱法分离检测。该方法分析单个样品的时间较长,降低了分析效率,并且过于繁琐的前处理操作,也会对回收率的结果产生较大影响。因此,在即将生效的《GB 5009.296-2023食品国家安全标准 食品中维生素D的测定》中,将在线柱切换-反相液相色谱法作为该标准的第二法,优化了样品前处理流程,提升检测灵敏度,更快速地获取分析结果,提高了样品的检测效率。面对新标准的即将实施,科诺美的技术应用团队制定了符合标准要求的解决方案。本方案采用Chromai Lotus C8作为一维色谱柱,Lotus PAH作为二维色谱柱,基于Chromai Leaps双三元二维液相色谱平台,建立了在线柱切换-反相液相色谱测定食品中维生素D的方法,并通过实际样品的测试,确认该方法稳定可靠。 02 实验方法2.1 仪器Chromai Leaps高效液相色谱系统(1)一维、二维泵:Leaps双三元梯度泵(P60)(2)自动进样器:Leaps标准型自动进样器(带制冷)(A10C)(3)柱温箱:Leaps 标准加热型柱温箱(1个两位六通+1个两位10通)(C10V6)(4)检测器:Leaps紫外-可见检测器(D10)Leaps紫外二极管阵列检测器(D20)2.2 色谱柱一维色谱柱:Chromai Lotus C8(4.6*100 mm, 5 μm)二维色谱柱:Chromai Lotus PAH(4.6*150mm, 5 μm)富集柱:Chromai Louts TC C1(4.0*10mm,5 μm)2.3 软件Eyoulab CDS企业版2.4 色谱条件流动相一维流动相:A:水,B:乙腈/甲醇(75/25,V/V),梯度洗脱,流速:1 mL/min二维流动相:A:乙腈/水(95/5,V/V),B:甲醇,等度洗脱,流速:0.6 mL/min梯度洗脱及阀切换程序一维梯度洗脱程序二维等度洗脱阀切换程序检测波长264 nm进样量100 μL 03 实验结果3.1 标准曲线的测定将不同浓度的标准系列工作溶液分别进样100 μL,得到维生素D2和维生素D3标准曲线结果见表3。在2.5 -100 μg/L浓度范围内,维生素D2和维生素D3线性良好,线性相关系数均大于0.999。表3 维生素D2和维生素D3标准曲线测定结果图1 维生素D2和维生素D3标准曲线图图2 维生素D2和维生素D3标准溶液(2.5 ng/mL)二维液相色谱图3.2 实际样品测定参考GB 5009.296-2023第二法对样品进行皂化、液液萃取等前处理操作,得到样品溶液后上机分析,计算得到样品含量结果见表4。图3 某婴配粉样品1和2测定二维液相色谱图表4 某婴配粉样品测定结果 04 结论本解决方案采用科诺美自主研发的Leaps双三元液相色谱系统,参考GB 5009.296-2023第二法在线柱切换-反相液相色谱法,实现了维生素D测定中高效的样品前处理,检测效率显著提高。Leaps双三元液相色谱系统模块式组装,仅使用一个双三元泵就可以实现二维液相操作,避免了两组泵模块组装占地面积大或者仪器系统高度过高、操作不便的弊端,该系统可作为维生素D测定的首选配置。对于需要一次进样实现样品中维生素A、维生素D及四种维生素E异构体的同时测定分析,科诺美也可以提供在线前处理—二维液相色谱的完整解决方案。该方案灵敏度高、专属性强,可以有效去除样品中的杂质对维生素A、D、E的分析干扰。供稿人:科诺美(北京)科技有限公司液相色谱产品经理 公敬欣科诺美(英文:Chromai),是中国领先的从事分析检测仪器与医疗诊断研发、生产、销售和服务的高科技技术企业。是中国仪器仪表学会、中国分析测试协会、中国医疗器械行业协会会员。公司旗下设立北京研发中心、苏州供应链中心等多家子公司。科诺美公司一直致力于脂溶性维生素测定方法的研究与应用,除了食品中维生素的测定外,Chromai二维液相色谱系统已经取得二类医疗器械注册证(苏械注准20222222069),该系统已经成功应用于血清中脂溶维生素的测定。
  • 热分析耄耋老人钱义祥:DMA曲线激荡之美
    DMA曲线激荡之美热分析耄耋老人 钱义祥引言:“DMA曲线激荡之美”是一篇短文。短文诠释(解读)了黏弹性材料的DMA曲线的显信息以及蕴含在DMA曲线中的滞后圈。展现了黏弹性材料在正弦交变应力作用下的激荡之美。近日,和耐驰公司市场与应用副总经理曾志强博士切磋热分析中的美学问题。曾志强博士语出金句:热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡!妙 ! 我将他的金句镶嵌进“热分析中的美学”论文中,增辉!今以DMA曲线激荡之美为题,撰写了以下短文:一.试样在振动中呈现激荡之美激荡是汉语词语,是指事物受到激发而动荡。强迫非共振法DMA以设定频率振动,使试样处于振动状态,呈现激荡之美。二.激荡的DMA曲线蕴含的信息1. 显信息和隐信息强迫非共振法DMA就是测量应力—应变(同频正弦信号)信号的相位差,其滞后圈即为李萨如图形。由试样在振动中的应力与应变幅值以及应力与应变之间的相位差,直接计算得到储能模量、损耗模量、损耗角正切等性能参数。DMA测量应力—应变(同频正弦信号)信号的相位差,但在DMA曲线中并没有显现相位差信息,它是DMA曲线的隐信息。 DMA曲线中显现的储能模量、损耗模量、损耗角正切等性能参数是显信息。它由试样在振动中的应力与应变幅值以及应力与应变之间的相位差直接计算得到。非晶高聚物的DMA曲线(温度谱)非晶高聚物的DMA曲线(频率谱)2. 一个震荡周期的滞后参数DMA实验要设定振动频率,让试样在一定的频率下振动。一个振动周期即为一个实验点。无数个振动周期构成了DMA曲线。DMA曲线中,每一个振动周期的应力-应变曲线相位差、Tanδ、滞后圈和能量损耗是不一样的。一个震荡周期得到的滞后参数如下图: 3. 损耗角正切Tanδ蕴含的信息:DMA曲线中的Tanδ线如图所示: 损耗角正切Tanδ反映材料的阻尼特性,是DMA曲线的显信息。Tanδ中δ是一个震荡周期的相位差,是DMA曲线的隐信息。从三角函数表中由Tanδ值得到相位差δ。DMA曲线中,损耗角正切Tanδ蕴含哪些信息呢? 1) 显信息Tanδ以DMA曲线形式显现黏弹性材料的阻尼特性,可以从DMA曲线上直接读出每个振动周期的Tanδ。Tanδ表示每周期振动所消耗的能量与最大应变能的比值,是能量损耗和阻尼能力的直接量度。2) 潜信息-相位差相位差:DMA是测量应力—应变(同频正弦信号)信号的相位差。相位差无量纲,用弧度rad表示。李萨如滞后圈:李萨如滞后圈是隐藏在Tanδ曲线内的应力-应变曲线,单位是焦耳j。3)关联Tanδ和简谐振动的能量损耗。4. 诠释DMA曲线:DMA曲线显现显信息,潜藏隐信息。下图诠释了DMA曲线的显信息、隐信息:三.滞后圈的变化美滞后圈的形状多种多样,变化无穷,具有变化之美!黏弹性材料的应力-应变曲线,由于粘性的作用形成滞后圈。DMA计算的理论基础是线性粘弹性,要求施加在试样上的动态应力或动态应变落在应力-应变曲线的初始线性范围内。当试样是线性粘弹性材料(处于线性粘弹性区域),施加的应力是正弦波,则滞后圈为一椭圆形。滞后圈的形状在直线和圆之间变化,如图: 如果是非线性粘弹性材料(处于非线性粘弹性区域),滞后圈的形状是不规则的,如图所示: 滞后圈变异反映了材料的特性,不是怪异,不是丑,而是变化之美!滞后圈变异已经广泛应用于阻尼材料的振动疲劳特性、应力—时间疲劳测试曲线、位移—时间疲劳测试曲线、振幅对阻尼材料的振动疲劳的影响、温度对阻尼材料振动疲劳的影响、频率对阻尼材料振动疲劳的影响、长周期振动的疲劳性能等方面。从滞后圈上可以获得的信息:1. 储能模量、损耗模量、损耗角正切等性能参数。强迫非共振法DMA以设定的频率振动,测定试样在振动中的应力与应变幅值以及应力与应变之间的相位差,直接计算实验得到储能模量、损耗模量、损耗角正切等性能参数。2. 滞后圈形态封闭回线:粘弹性阻尼材料滞后圈是应力、应变所经过的路径形成的封闭回线。滞后圈的形状有椭圆形和不规则图形。椭圆形:如果是线性粘弹性材料(区域),施加的应力是正弦波,则滞后圈为一椭圆形。椭圆的变形:圆形—δ越大,链段运动越困难,越跟不上应力的变化,椭圆越圆;扁形—δ越小,应变落后越小,椭圆越扁。椭圆长轴的斜率等于复模量。不规则图形:如果是非线性粘弹性材料(区域),滞后圈的形状是不规则的。3. 滞后圈面积阻尼材料的动态变形生热现象。由于滞后的存在,每一循环周期中都有能量的损耗,即内耗。消耗的功以热能形式散发,内耗越大,吸收的振动能也越多。 滞后圈面积只表示振动循环一个周期的能量损耗。一个周期中能量收支不平衡,其差值就是椭圆面积 ,表示能量的耗损ΔW,ΔW为阻尼大小的量度。滞后圈面积的变化:振动疲劳试验中,滞后圈随阻尼性能下降而变小。由滞后圈面积的变化得到不同疲劳周期的能量损耗和阻尼衰减特性。4. 损耗因子曲线下的面积:5. 疲劳破坏的周数当材料内部出现疲劳裂纹时,滞后圈发生突变或无法对试样继续加载试验应力,疲劳试验就此终止。结束语:材料的动态力学行为是指材料在交变应力(或应变)作用下的应变(或应力)响应。试样在正弦交变应力作用下呈现材料动态的激荡之美。致谢:曾志强博士提出热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡的美学理念, 绝妙! “DMA曲线的激荡之美”一文是受曾志强博士的美学理念启迪撰写而成,特此致谢!2023-01-06
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制