当前位置: 仪器信息网 > 行业主题 > >

单细胞力学特性可视化分析系统

仪器信息网单细胞力学特性可视化分析系统专题为您提供2024年最新单细胞力学特性可视化分析系统价格报价、厂家品牌的相关信息, 包括单细胞力学特性可视化分析系统参数、型号等,不管是国产,还是进口品牌的单细胞力学特性可视化分析系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单细胞力学特性可视化分析系统相关的耗材配件、试剂标物,还有单细胞力学特性可视化分析系统相关的最新资讯、资料,以及单细胞力学特性可视化分析系统相关的解决方案。

单细胞力学特性可视化分析系统相关的资讯

  • 让单克隆细胞成活率更高!单细胞可视化分选培养系统-isoCell重磅来袭
    近年来,随着单细胞组学、单细胞克隆研究的持续走热、循环肿瘤细胞研究的不断深入,如何高效、准确地分选单细胞成为研究工作中的桎梏。作为单细胞分选与培养领域领先者,英国iotaSciences公司推出了单细胞可视化分选培养系统-isoCell,不仅确保分选所得的样品中只有单个单细胞,分离效率高达100%,更进一步实现了将挑选出的单个细胞自动化地、直接地培养成单克隆细胞系,且分选与培养过程全程可验证、可追踪,保证每一个单克隆细胞系均来自单细胞。Quantum Design中国作为iotaSciences公司的战略合作伙伴进一步将单细胞可视化分选培养系统引进中国,为中国研究人员提供可靠且功能强大的单细胞分选与培养技术和解决方案。 单细胞可视化分选培养系统-isoCell iotaSciences公司特有的网格式单细胞腔室技术(GRID技术)是单细胞可视化分选培养系统-isoCell自动化分离和培养单细胞解决方案的核心。该技术每个腔室尺寸微小、光学清晰度卓越且无边缘效应(如下图所示),可以清晰地查看腔室内的细胞数量与形态。设备创新性的将GRID技术与可视化分选相结合,确定腔室内只有单个细胞,通过自动化地微流控技术从GRID腔室挑选出单个细胞用于下游应用,也可以在GRID腔室内将单个细胞直接培养成单细胞系,单克隆细胞系成活率高。 单细胞的分选与培养操作流程高度自动化保证了单细胞的高活性与单克隆细胞系的高成活率,且全流程可视化监控确保了每一个单克隆细胞系均来自单个细胞。单细胞可视化分选培养系统-isoCell的优势:☛ 全自动化流程☛ 操作条件温和,对单细胞无损伤☛ 全培养、分析流程可追踪☛ 单细胞分离效率高达100%☛ 单克隆细胞系构建成活率高☛ 直接转移到PCR管或96孔板☛ 结构紧凑,体积小 文献举例: 单细胞可视化分选培养系统-isoCell已在Cell、Advanced Science、Small Methods、Nature Communications 等知名期刊发表多篇文章,如下摘引了近年三篇具有代表性的文献和大家分享。 Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验: 为更好地服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师垂询!用户名单 用户评价路易莎埃姆斯,研究科学家:The Native Antigen Company(LGC 临床诊断集团旗下公司)”使用 isoCell 进行单细胞克隆工作从一开始就简单可靠,并且已无缝地融入我们的流程中。 该程序对细胞很温和,我们看到非常好的存活率,可以筛选大量克隆。 我们收到的客户服务是优质的。“
  • 高效构建hiPSC系的全自动化神器,单细胞可视化分选培养系统,让单细胞培养不再复杂!
    人类诱导多能干细胞 (hiPSC) 是一类通过基因编辑技术(如 CRISPR-Cas9)对已经高度分化的人体细胞重新逆分化得到的多能性干细胞。hiPSC的出现为科学家构建复杂的疾病模型和推进药物发现提供了有利的工具。 然而,传统的hiPSC细胞系的构建与培养过程往往操作复杂且耗时耗力。特别是从异质编辑细胞池中构建的克隆hiPSC系的培养受到了传统细胞培养方法的桎梏,很难构建一个高效的hiPSC构建与培养工作流程。此外,现有的单细胞分离和培养方法通常对细胞的处理条件苛刻,操作步骤繁琐,不能充分保证单克隆性。 为应对hiPSC细胞系构建与培养过程中的诸多挑战,IotaSicences公司采用了以GRID技术为核心的高度自动化的单细胞可视化分选培养系统isoCell来构建 hiPSC系的分选与培养平台,并在不同培养基条件下对hiPSC进行了单细胞分选与培养研究。图1 单细胞可视化分选培养系统isoCell实物图 以isoCell为核心的hiPSC细胞分选与培养平台 isoCell是一款基于GRID技术的高度自动化细胞分选与培养平台。GRID是指在细胞培养基上采用FC40液体分隔出的网格小室,体积小,光学透明度高,可以容纳细胞在内生长,且各个小室之间物质不流通。isoCell系统配备了荧光和成像系统,用于在整个克隆工作流程中记录 GRID 小室的图像(见下图)。isoCell 可自动执行所有液体处理步骤,包括构建 GRID、将单细胞注射到GRID小室中以及交换培养基和收获单克隆集落。并且,isoCell可在整个工作流程中自动检测每一个 GRID 小室,并确保每一个单克隆hiPSC细胞系来源于单个细胞。 图2 GRID实物图 材料与方法 在分别铺了Laminin-521、Vitronectin-N和iMatrix 细胞培养基质的60毫米培养皿上制备的GRID网格以待使用。制备hiPSC的单细胞悬浮液,并使用 isoCell全自动地将细胞铺在GRID上(种植)。 使用isoCell自带的显微镜鉴定每个GRID室并标记每个包含单个细胞(第 0 天)的室,将该培养皿放入培养箱培养。在第3天,将标记的含有单个细胞的GRID小室加满600 nl培养基。从第5天开始,每天观察标记单细胞的GRID小室,并对选中的GRID小室补充培养基。最后,使用isoCell观察并标记构成了hiPSC单细胞群落的GRID小室,使用isoCell全自动收获标记的GRID小室中的hiPSC细胞(通常在 6-8 天之间)。 图3 以isoCell为核心的hiPSC细胞分选与培养平台工作流程图 高效的hiPSCS细胞分选与培养平台 按照上述的工作流程,利用三种不同的培养基质(包括 VTN-N、LMN-521 和 iMatrix)构建并培养了两个独立的hiPSC细胞系,并评估所得细胞的克隆效率。如图4所示,两个不同的hiPSC测试系在不同培养基质条件下,均在GRID室中显示出非常高的克隆效率,这表明采用GRID小室低容量培养方法和细胞的自动化温和处理可产生非常适合单细胞高效生长的培养环境。 图4 GRID中的单细胞 hiPSC 克隆效率(克隆效率表示培养第5天时单细胞长成细胞群落数占第0天单细胞数的百分比) 结论 以isoCell构建的hiPSC细胞分选与培养平台可以对hiPSC细胞进行全自动化且温和地单细胞分选与培养。通过isoCell特有的GRID小室网格技术与可视化分选相结合,可以确保每一个单克隆hiPSC细胞系均来自单个细胞,且isoCell的分选与培养条件温和,hiPSC单克隆细胞系成活率高。 单细胞可视化分选系统isoCell的优势:- 全自动化流程- 操作条件温和,对单细胞无损伤- 全培养、分析流程可追踪- 单细胞分离效率高达100%- 单克隆细胞系构建成活率高- 直接转移到PCR管或96孔板- 结构紧凑,体积小 单细胞可视化分选培养系统-isoCell已在Cell、Advanced Science、Small Methods、Nature Communications等知名期刊发表多篇文章,如下摘引了近年五篇具有代表性的文献和大家分享。 Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608. 样机体验 为更好地服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师垂询! 用户名单 用户评价 路易莎埃姆斯,研究科学家:The Native Antigen Company(LGC 临床诊断集团旗下公司) “使用 isoCell 进行单细胞克隆工作从一开始就简单可靠,并且已无缝地融入我们的流程中。 该程序对细胞很温和,我们看到非常好的存活率,可以筛选大量克隆。 我们收到的客户服务是优质的。”
  • 单细胞可视化分选技术全新来袭,分离效率高达100%!
    近年来,随着单细胞组学、单细胞克隆研究的持续走热以及循环肿瘤细胞研究的不断深入,如何高效、准确地进行单细胞分选成为研究工作中的桎梏。传统单细胞分离手段无法保证所得的样品内只有一个单细胞,导致下游的实验出现误差。英国iotaSciences公司经长期的技术积累研发推出的新型单细胞可视化分选系统-isoPick,可确保分选所得的样品中只有一个单细胞,分离效率高达100%,且结果可验证、可追踪,有效化解了单细胞分选的难题。 近日,Quantum Design中国与IotaSciences公司正式成为战略合作伙伴,将单细胞可视化分选系统-isoPick引进中国,旨在为中国研究人员提供一个可靠且功能强大的单细胞分选平台和全新的解决方案!单细胞可视化分选系统-isoPick 单细胞可视化分选系统-isoPick基于创新的网格式单细胞腔室技术(GRID技术),可实现高通量、高自动化的单细胞可视化分选。分选过程非常温和,能够确保更高的单细胞存活率,达到更佳的克隆生长效果。isoPick也可将单细胞样品按照特定的体积直接转移到96孔板或PCR管中,无缝衔接到单细胞下游应用,确保后续单细胞组学信息完整性。单细胞可视化分选系统的优势:全自动化流程操作简单 对细胞无损伤结果可追踪分离效率高达100%直接转移到PCR管或96孔板结构紧凑,体积小巧部分发表文献:单细胞可视化分选系统已发表于Cell、Advanced Science、Small Methods、Nature Communications等期刊,如下为具有代表性的文献:Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.用户名单:样机试用:为更好地服务中国科研工作者,Quantum Design 中国引进了单细胞可视化分选系统-isoPick样机,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师预约参观试用!
  • 连发3篇hiPSC文章,单细胞可视化培养系统颠覆传统,分离效率高达100%!
    人类诱导多能干细胞 (hiPSC) 是通过基因编辑技术(如 CRISPR-Cas9)对已经高度分化的人体细胞进行重新逆分化得到的多能干细胞。传统的hiPSC细胞系构建与培养过程操作复杂、耗材昂贵且费时费力。特别是对于异质编辑细胞池中构建的克隆hiPSC系的培养,受到了传统细胞培养方法的桎梏,很难构建一个高效的hiPSC构建与培养工作流程。此外,现有的单细胞分离和培养方法通常对细胞的处理条件要求苛刻,操作步骤繁琐,无法充分保证单克隆性。为应对hiPSC细胞系构建与培养过程中的诸多挑战,iotaSicences公司采用了以GRID技术为核心的高度自动化的单细胞可视化培养系统isoCell,构建了用于 hiPSC细胞系培养的平台。该平台采用全自动化流程,操作条件温和,对单细胞无损伤,具有高通量、自动化、高成活率等优势,可确保分选出的细胞100%为单细胞。柏林医学大学多能干细胞和类器官研究中心的Harald Stachelscheid团队使用isoCell在Stem Cell Research期刊上发表了三篇构建不同功能的hiPSC细胞系的科研应用文章,展示了isoCell在hiPSC细胞系构建和培养方面的优势。图1 单细胞可视化培养系统isoCell实物图 1. 以isoCell为核心的hiPSC细胞培养平台isoCell系统组成的细胞培养平台是基于GRID技术的高度自动化的实验平台。GRID是指在细胞培养基上采用FC40液体分隔出的网格小室,体积小(耗材少),光学透明度高,可以容纳细胞在内生长,且各个小室之间物质不流通。isoCell系统配备了荧光和成像系统,用于在整个克隆工作流程中记录 GRID 小室的图像(见下图)。图2 GRID实物图 isoCell 可自动执行所有液体处理步骤,包括构建 GRID、将单细胞注射到GRID小室中以及交换培养基和收获单克隆集落,在整个工作流程中自动检测每一个 GRID 小室,并确保每一个单克隆hiPSC细胞系来源于单个细胞。图3 isoCell操作流程图 2. 生成具有 SLC16A2:G401R 或 SLC16A2 敲除的 iPSC系X染色体相关的AHDS综合征的发病特点是由编码甲状腺激素转运蛋白MCT8(单羧酸转运蛋白8)的SLC16A2基因突变引起精神运动发育严重受损。该团队使用CRISPR/Cas9技术(靶向 SLC16A2 的外显子3)将AHDS患者错义变体G401R和新型敲除缺失变体 (F400Sfs*17) 引入男性健康供体的hiPSC系(BIHi001-B)。通过isoCell培育成功地获得了SLC16A2基因敲除的hiPSC单克隆细胞系(BIHi001-B-7)和(BIHi001-B-8),并证明了这些新细胞系在模拟 MCT8 缺陷对人类神经发育的影响方面的实用性。文章以Generation of iPSC lines with SLC16A2:G401R or SLC16A2 knock out为题发表于Stem Cell Research期刊上。图4 WB验证SLC16A2 敲除的hiPSC系无法表达SLC16A2蛋白 3. 生成 THRB-GS(E125G_G126S) 和 THRB-KO 人类 iPSC 系以研究非典型甲状腺激素信号传导THRB是一种依赖甲状腺激素 (TH) 结合来调节基因表达的核受体。相同的受体也可以介导细胞质中信号通路的激活。目前尚无法区分这两种机制中的哪一种是造成 TH 生理效应的原因。该团队结合基因编辑与isoCell的单细胞培养基技术,成功建立了一种在 THRB DNA 结合域中具有两个突变 (E125G_G126S) 的hiPSC 细胞系(BIHi001-B-2/3),该突变消除了THRB的核受体作用,因此可以用该细胞系专门研究THRB的信号通路激活作用。该团队还生成了 THRB 敲除细胞系(BIHi001-B-6)以消除所有 THRB 效应。通过比较WT结果和这两种细胞系,将甲状腺激素的影响归因于潜在的机制。文章以Generation of THRB-GS(E125G_G126S) and THRB-KO human iPSC lines to study noncanonical thyroid hormone signalling为题发表于2024年2月的Stem Cell Research期刊上。图5 基因测序验证BIHi001-B-2/3和BIHi001-B-6细胞系敲除或突变了对应基因 4. 使用 CRISPR-Cas9 生成了两个 BAX/BAK 双敲除人类诱导多能干细胞系 (iPSC)脑缺血损伤很多是由于脑缺血状态下细胞凋亡导致的。Bcl-2基因相关的X 蛋白 (BAX) 和BCL2 拮抗因子(BAK)是 BCL2 家族的两个促凋亡因子,BAX 和BAK是线粒体凋亡的执行基因,与细胞凋亡密切相关。该团队使用 CRISPR-Cas9技术构建了两个 BAX/BAK 双敲除人类诱导多能干细胞BIHi005-A-17和BIHi250-A-1,并通过isoCell培养获得了对应的hiPSC单克隆细胞系。所得细胞系核型正常,具有典型的形态并表达未分化状态的典型标记,并通过基因技术验证了细胞系已敲除BAK基因。在后续的研究中,研究人员就可以将该BAX/BAK 双敲除的hiPSC细胞系广泛应用于脑缺血等细胞凋亡相关领域的发病机制与治疗干预机制研究中。文章以Generation of two human induced pluripotent stem cell lines with BAX and BAK1 double knock-out using CRISPR/Cas9为题发表于2024年4月的Stem Cell Research期刊上。图6 通过基因测序及WB验证BIHi005-A-17和BIHi250-A-1以敲除BAK与BAX基因 5. 结论以isoCell构建的hiPSC细胞培养平台可以对hiPSC细胞进行全自动化且温和地单细胞培养。通过isoCell特有的GRID小室网格技术与可视化分选相结合,可以确保每一个单克隆hiPSC细胞系均来自单个细胞,且节省培养耗材。isoCell的培养条件温和,在以上案例中协助科研人员构建了多个基因改造hiPSC单克隆细胞系,成活率高。 单细胞可视化培养系统isoCell的优势:✔ 全自动化流程✔ 操作条件温和,对单细胞无损伤✔ 全培养、分析流程可追踪✔ 单细胞率高达100%✔ 单克隆细胞系构建成活率高✔ 结构紧凑,体积小,节省耗材单细胞可视化分选培养系统-isoCell已在Cell、Advanced Science、Small Methods、Nature Communications等知名期刊发表多篇文章,如下摘引了近年三篇具有代表性的文献和大家分享。Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验:为更好地服务中国科研工作者,Quantum Design 中国也建立了样机演示实验室,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师通过拨打电话010-85120280、发送邮件info@qd-china.com、点击此处或扫描下方二维码参观试用!扫描上方二维码/点击此处,即刻咨询/体验! 用户名单用户评价路易莎埃姆斯,研究科学家:The Native Antigen Company(LGC 临床诊断集团旗下公司)“使用 isoCell 进行单细胞克隆工作从一开始就简单可靠,并且已无缝地融入我们的流程中。 该程序对细胞很温和,我们看到非常好的存活率,可以筛选大量克隆。 我们收到的客户服务是优质的。”相关产品1、单细胞可视化分选培养系统—isoCellhttps://www.instrument.com.cn/netshow/SH100980/C551413.htm
  • 广东省微生物研究所:铁还原菌研究新突破——可视化单细胞分选技术大显身手
    p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/735cf0d8-fb76-4678-915f-0201f136b0e9.jpg" title="image001.jpg" alt="image001.jpg"//pp style="text-align: justify text-indent: 2em "2020年11月,广东省微生物研究所许玫英与a href="http://www.gdim.cn/yjdwp/gjsbjrc/201708/t20170810_379484.html" target="_blank" title="杨永刚研究员"杨永刚/a研究员团队在期刊《Appl Environ Microbiol》上发表文章“Visualizing and isolating iron-reducing microorganisms at single cell level”,论文第一作者为助理研究员甘翠芬。该论文在线后被环境微生物学领域著名专家DR Lovley教授评为“One of the most exciting papers in microbial iron reduction of 2020 ”/pp style="text-align: justify text-indent: 2em "i原文链接:/i/pp style="text-align: justify text-indent: 2em "ihttps://aem.asm.org/content/early/2020/11/02/AEM.02192-20.long/i/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong一、研究背景/strong/span/pp style="text-align: justify text-indent: 2em "在自然环境中,铁还原是细菌胞外电子传递的主要形式之一。铁还原菌(FeRM)不仅在矿物和腐殖质的还原中起关键作用,而且还参与硫化合物和有机物的氧化。此外,FeRM在废水处理、生物修复和生物电化学系统等许多工程过程中至关重要。铁还原菌在系统发育上普遍存在,目前还没有合适的16S rRNA或基于功能基因的检测方法对其进行检测。本文章作者合成了一种对Fesup2+/sup具有高灵敏度和选择性的耗氧Fesup2+/sup特异性荧光化学探针(FSFC)。该FSFC可以从纯培养、不同细菌共培养或含沉积物样品中选择性地鉴定和定位活性FeRM。FSFC的荧光强度可以作为细菌培养物中Fesup2+/sup浓度的指标。与单细胞分选技术相结合,该探针可以帮助从丰富的沉积物群落中识别和分离FeRM。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong二、实验设计/strong/span/pp style="text-align: justify text-indent: 2em "首先作者设计合成了一种对Fesup2+/sup具有高灵敏性和选择性的特异性荧光探针(FSFC),FSFC能够定位和鉴定具有活性的FeRM,其荧光强度能够作为细菌培养物中Fesup2+/sup浓度指示。将FSFC荧光探针与单细胞分选技术结合,实现可视化识别和分选铁还原菌。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong三、结果与讨论/strong/span/pp style="text-align: justify text-indent: 2em "1. FSFC的灵敏度、选择性和稳定性/pp style="text-align: justify text-indent: 2em "由于碲原子对萘二甲酰亚胺荧光团的重原子作用,在没有Fesup2+/sup的情况下,FSFC是非荧光的,Fesup2+/sup可以触发FSFC的脱氢反应并引起强烈的荧光,研究表明不同浓度Fesup+/sup对FSFC荧光强度具有影响,并且荧光强度与Fesup2+/sup浓度呈现线性关系,因此,对于大多数环境和实验样品,FSFC可以作为Fesup2+/sup或铁还原菌的指示剂。接下来作者验证FSFC的选择性,实际环境中其他金属离子可能会影响FSFC对Fesup2+/sup的荧光影响,通过实验表明所有被测金属分别对FSFC没有显著的影响效应。并且稳定性测试实验表明FSFC在5h内保持较好的稳定性,优于经典的邻菲罗啉法。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/be4d5bbf-7af1-42ff-86a2-520b7327e82c.jpg" title="image002.jpg" alt="image002.jpg"//pp style="text-align: justify text-indent: 2em "Fig.1 FSFC对Fesup2+/sup溶液中的灵敏度、选择性和稳定性。(A) FSFC荧光光谱对不同浓度Fesup2+/sup的响应。(B) Fesup2+/sup浓度与荧光强度FI的关系为对数关系。(C) FSFC对Fesup2+/sup的选择性测试。(D) FSFC与传统邻菲罗啉法的相对稳定性。/pp style="text-align: justify text-indent: 2em "strong2. 活性FeRM还原可溶性和固态Fe3+的荧光成像。/strong/pp style="text-align: justify text-indent: 2em "前人的研究已经广泛证实了Shewanella和Geobacter的还铁能力。此外,有报道称,在用FeRM法还原铁的过程中,磷酸亚铁和碳酸亚铁在细胞表面聚集。实验结果表明与非铁还原菌相比S12和MR-1细菌表面的Fe2+浓度高很多。使用S. decolorationis S12、S. oneidensis MR-1、G. sulfurreducens PCA三种模式铁还原菌进行可溶性柠檬酸铁还原时发现细胞荧光强度与二价铁浓度呈良好的线性关系(图2 A-E, G)。/pp style="text-align: justify text-indent: 2em "Fe在自然界中主要以固体的形式存在,本研究发现上述模式菌在还原无定形水铁矿的过程中的Fesup2+/sup浓度也与荧光强度呈一致性变化趋势。值得关注的是,在用于Geobacter无定形铁还原测试时,仅有接触铁颗粒的细胞呈现荧光,而未接触铁颗粒的细胞几乎无荧光(图2F),与该菌依赖直接接触的铁还原方式一致,表明FSFC具有判断细菌细胞是否正在进行铁还原的能力。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/noimg/6d579aca-b93d-4be4-9643-9d99c0370c93.gif" title="image003.gif" alt="image003.gif"//pp style="text-align: center text-indent: 0em "Fig.2 FSFC在氧、可溶性Fesup3+/sup或固态Fesup3+/sup为电子受体的情况下对菌株PCA的荧光响应。/pp style="text-align: justify text-indent: 2em "strong3. 评价不同细菌的铁还原能力。/strong/pp style="text-align: justify text-indent: 2em "除铁还原能力外,不同属细菌通常具有不同的形状、表面性质和代谢物,这些都可能影响FSFC的荧光。为了进一步分析FSFC的选择性,我们使用FSFC对5个盲菌标本进行了检测。从沉积物中分离出五种还原铁性能未知的细菌。/pp style="text-align: justify text-indent: 2em "实验表明,与预期的结果一样, S12和 MR-1显示荧光,阴性对照无荧光。在5个盲样细菌中,只有P. motobuensis Iβ12有荧光,但FI低于S12。其余细菌均无荧光(图4A-G),所以不同细菌的贴还原能力差异较大,且FSFC探针对不同菌的评价结果与经典邻菲罗啉法一致。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/b5d8b25b-3456-4565-bb50-22cc2784bada.jpg" title="image004.jpg" alt="image004.jpg"//pp style="text-align: justify text-indent: 2em " span style="text-indent: 2em "Fig.4/spanspan style="text-indent: 2em ":/spanspan style="text-indent: 2em "FSFC/spanspan style="text-indent: 2em "对含有柠檬酸铁的不同细菌培养物的荧光图像。/spanspan style="text-indent: 2em " (A)/spanspan style="text-indent: 2em " Ciceribacter/spanspan style="text-indent: 2em " sp. F217, (B) /spanspan style="text-indent: 2em "S. hydrophobicum /spanspan style="text-indent: 2em "C1, (C) /spanspan style="text-indent: 2em "Bacillus /spanspan style="text-indent: 2em "Iβ8, (D) /spanspan style="text-indent: 2em "L. varians/spanspan style="text-indent: 2em " GY32, (E) /spanspan style="text-indent: 2em "P. motobuensis/spanspan style="text-indent: 2em " Iβ12, (F) /spanspan style="text-indent: 2em "S. decolorationis/spanspan style="text-indent: 2em " S12, (G)/spanspan style="text-indent: 2em "基于邻菲罗啉法的不同菌株的铁还原测定。/span/pp style="text-align: justify text-indent: 2em "strong4. FeRM与其他细菌共培养/strong/pp style="text-align: justify text-indent: 2em "FeRM和与其他功能的细菌共培养是了解FeRM与其他细菌之间相互作用的重要方法。/pp style="text-align: justify text-indent: 2em "为了测试FSFC是否可以在共培养系统中鉴定出FeRM,作者使用乳酸作为电子供体共培养了丝状非FeRM 菌株GY32和杆状菌株S12。如图5A所示,杆状菌株S12显示出强荧光,而丝状细菌GY32在相同的铁还原培养物中没有荧光。可以看出,FSFC可以选择性地选择微生物样品中的FeRM。为了评价FSFC在更复杂环境下的可行性,用FSFC在含柠檬酸铁的灭菌底泥中共培养GY32和S12。图5C显示在没有共培养的沉积物中,只有少数颗粒显示荧光,这可能是由于这些沉积物颗粒上固有的Fe sup2+/sup引起的,而没有细菌样颗粒显示出荧光。 结果表明,FSFC在沉积物中的背景荧光很小,沉积物中非活性微生物不能触发FSFC的荧光。 在共培养系统中,如图5D显示,S12表现出显著的荧光,而丝状细菌GY32没有荧光,表明FSFC在含沉积物的环境中可视化FeRM的可行性。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/3534320c-0a4f-426a-94e3-70939477874e.jpg" title="image005.jpg" alt="image005.jpg"//pp style="text-align: center text-indent: 0em "Fig.5 S12和GY32共培养的荧光图像/pp style="text-align: justify text-indent: 2em "strong5.可视化并从混合物中分离单细胞FeRM/strong/pp style="text-align: justify text-indent: 2em "除了可视化FeRM外,从多物种样品中分离FeRM对于了解铁相关的生物地球化学过程是一个普遍而重要的需要。作者结合FSFC和PI来标记富铁还原反应中的生物膜。CLSM显示,活跃的FeRM细胞主要位于生物膜的外层,而内层生物膜细胞活性较低,FSFC荧光较少,如图6A. 7个有荧光的单细胞和6个没有荧光的单细胞通过单细胞分选仪从沉积物富集的菌群中分离出来(图6)。其中有3个分离的荧光单细胞被成功培养,它们都可以使用醋酸盐作为电子供体来还原柠檬酸铁(图6G),进一步证实了FSFC在FeRM分选中的可靠性。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/924c636f-7b10-41e0-8442-f58cacdcffd0.jpg" title="image006.jpg" alt="image006.jpg"//pp style="text-align: center "span style="text-indent: 2em "Fig.6 /spanspan style="text-indent: 2em "基于/spanspan style="text-indent: 2em "FSFC/spanspan style="text-indent: 2em "可视化单细胞分选铁还原菌。/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong四、结论/strong/span/pp style="text-align: justify text-indent: 2em "这项研究报告了一种方法,该方法可以将FeRM可视化并从含有多物种甚至沉积物的细菌培养物中分离出来。FSFC对Fesup2+/sup具有很高的灵敏度,选择性和稳定性,并且在液体和沉积物环境中均具有低背景荧光。 在含有FeRM的纯培养物或共培养物中,FSFC可以选择性地观察活性FeRM。通过与单细胞分选技术相集成,可以从单细胞水平的样品中有效地获得目标FeRM。 这种新颖的方法可能是获得新的FeRM以及深入了解FeRM在不同环境中的生物地球化学作用的有力工具。/pp style="text-align: justify text-indent: 2em "辰英科仪自主研制的单细胞分选仪PRECI SCS具有独特的可视化分选功能,所见即所得,精准实现目标细胞的逐一分离。采用独特的激光与物质相互作用原理,对于复杂生物样本中形态各异的细胞,可实现非标记状态下的精准分离。对于百纳米级的单个微生物细胞也同样适用。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/c0eadba6-93d6-4b69-b71a-ae5f74d17143.jpg" title="image007.jpg" alt="image007.jpg"//pp style="text-align: center text-indent: 0em "单细胞分选仪HOOKE PRECI SCS/pp style="text-align: justify text-indent: 2em "HOOKE S3000采用先进的三条纹转盘共聚焦成像技术,结合稳定的Z向超快速扫描平台,极大提高成像速度,满足细胞实时动态研究需求。设备采用LED面光源激发,光线均匀,光毒性及光漂白大大降低,适合连续观测。LED光源可应对全谱段检测应用,覆盖常见荧光染料的光谱范围。紧凑的新型共聚焦光路设计,可灵活耦合在多款显微镜上,满足不同应用需求。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/775a38a0-8b79-4a40-ae0b-435a76e039c2.jpg" title="image008.jpg" alt="image008.jpg"//pp style="text-align: center text-indent: 0em "HOOKE S3000/pp style="text-indent: 0em "br//p
  • 单细胞电学特性流式分析方法及分析仪器研究取得进展
    近日,中国科学院微电子研究所健康电子中心研究员黄成军、副研究员赵阳团队,在单细胞电学特性流式分析方法及高通量实时分析仪器研究方面取得重要进展。 单细胞电学特性生物传感与分析技术为单细胞生物物理学研究提供了新维度。该技术已被证明在全血分析、肿瘤细胞分型和免疫细胞状态评估方面具有重要的应用潜力。然而,现有的电学检测方法难以实现高通量实时性分析,限制了需要大量系统实验的单细胞电学特性研究的开展。 面该团队提出了快速并行物理拟合求解器,仅需0.62 毫秒即可在线求解出单个细胞膜比电容和细胞质电导率。与传统求解器相比,在不损失准确度的前提下,速度提升了27000倍,且不需要任何数据预采集和预训练过程,进一步实现了基于物理模型信息的实时阻抗流式细胞分析仪(piRT-IFC)(图1)。该技术可在50分钟内实时表征高达100902个单细胞,具有高稳定性、高通量、实时化和全流程自动化等特点。作为示范应用,该团队对药物处理后HL-60中性粒细胞脱粒现象这一典型的快速变化的生物过程进行实时表征分析。与普遍采用的神经网络辅助加速方法对比研究表明,piRT-IFC具有速度快、准确度高和泛化能力强的优势,具备广泛的应用潜力。 相关研究成果以piRT-IFC: Physics-informed real-time impedance flow cytometry for the characterization of cellular intrinsic electrical properties为题,发表在《微系统与纳米工程》(Microsystem and Nanoengineering)上。该研究由微电子所和计算技术研究所合作完成。近年来,该课题组面对单细胞物理特性检测存在敏感机理不明和技术实现困难等关键技术瓶颈,开创性提出了基于微流控技术的“交叉压缩通道”敏感新原理和单细胞电学模型,建立了基于微流控芯片的单细胞电学特性高通量定量检测方法,检测参数包括细胞膜比电容和胞浆电导率,通量比膜片钳等常规方法高10000倍,并进一步研发出实时高通量单细胞电学特性流式分析仪(图2)。仪器入选中国科学院自主研制科学仪器名录,与首都医科大学宣武医院、首都医科大学附属北京胸科医院、计算所等单位合作,成功用于脑卒中动物模型、癌症病人样本、药物模型等领域的多种细胞的分析,为肿瘤/脑卒中等精准诊断、药物筛选等提供了有力工具,并发现了新型标志物,验证了相关药物候选分子的作用、获得授权专利。研究工作得到科学技术部、国家自然科学基金委员会、北京市、中国科学院的支持。阻抗流式细胞分析仪(piRT-IFC)原理样机、核心微流控芯片、设备交互界面、典型结果和自动化实时数据处理流程 图2. 基于微流控芯片技术的单细胞电学特性活体单细胞分析仪(左)及核心微流控芯片(右)
  • 诱导多能干细胞克隆效率低?这台温和、自动化的单细胞分选系统帮您搞定,分离效率高达100%!
    人类诱导多能干细胞(hiPSCs)是一类可用于疾病建模、药物开发和组织工程领域的多能诱导干细胞。与CRISPR-Cas9等功能强大的基因编辑技术结合后,可根据不同患者的特性进行疾病相关遗传变异的研究和识别。 然而,培养hiPSCs的步骤较为繁琐,细胞对异常的处理和操作非常敏感,任何操作的问题都有可能导致细胞和遗传毒性应激的积累,进而导致不良分化和多能性丧失。基因编辑建立单细胞衍生的hiPSC克隆过程中常用的技术往往过于复杂或粗暴,导致单细胞克隆效率低下。此外,它们在确保衍生培养物单克隆性方面存在局限性。为此,英国iotaSciences公司推出了可实现100%单细胞分离的isoPick单细胞可视化分选系统,有效解决了培养hiPSCs单克隆过程中的困难。 如右上图所示,单细胞可视化分选系统isoPick采用纳升级的网格式单细胞腔室技术(GRID技术),可实现高通量、高自动化的单细胞可视化分选;确保分选所得的单细胞样品中只有一个单细胞,结果可验证、可追踪;分选过程非常温和,能够确保更高的单细胞存活率,达到更佳的克隆生长效果。单细胞可视化分选系统isoPick可全自动进行单细胞的分选、拾取并转移1.5 µ l至200 µ l的液体至PCR管或96孔板中。 使用isoPick从GRIDs内分选hiPSC单细胞置于Laminin-521,Vitronectin-N, Synthemax和iMatrix (Laminin-511)4种不同基质且含有培养基的96孔板中。以第7-10天内的时间计算得出的单细胞克隆效率可以发现,无论使用的包被基质或hiPSC细胞系,平均克隆效率均70%(上图),明显高于其他通常使用的方法(包括FACS),表明isoPick对敏感单细胞的温和处理,能够确保细胞的高存活率和更好的克隆生长效果。 isoPick使用户能够以快速、高效、自动化的方式从多样、异质的细胞群体中分离单个细胞。GRID腔室非常适合用于观察和记录单个细胞的分离过程。 用户可将单个细胞分离并直接置入96孔板用于细胞克隆。相比传统方法,这种方法用简单的线性工作流程,显著提高了细胞分离与克隆效率,操作流程高度自动化,可以将样品无缝衔接单细胞组学的后续操作。单细胞可视化分选系统的优势:全自动化流程操作非常简单 对细胞无损伤结果可追踪分离效率高达100%直接转移到PCR管或96孔板结构紧凑,体积小巧文献举例: 单细胞可视化分选系统相关文献发表于Cell、Advanced Science、Small Methods、Nature Communications 等期刊,如下摘引了近年三篇具有代表性的文献和大家分享。Soitu C, Stovall‐Kurtz N, Deroy C, et al. Jet‐Printing Microfluidic Devices on Demand[J]. Advanced Science, 2020, 7(23): 2001854.Gangoso E, Southgate B, Bradley L, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion[J]. Cell, 2021, 184(9): 2454-2470. e26.Deroy C, Nebuloni F, Cook P R, et al. Microfluidics on Standard Petri Dishes for Bioscientists[J]. Small Methods, 2021, 5(11): 2100724.Deroy C, Wheeler J H R, Rumianek A N, et al. Reconfigurable microfluidic circuits for isolating and retrieving cells of interest[J]. ACS Applied Materials & Interfaces, 2022, 14(22): 25209-25219.Oliveira N M, Wheeler J H R, Deroy C, et al. Suicidal chemotaxis in bacteria[J]. Nature Communications, 2022, 13(1): 7608.样机体验: 为更好地服务中国科研工作者,Quantum Design 中国引进了单细胞可视化分选系统-isoPick样机,将为大家提供为专业的售前、销售、售后技术支持,欢迎各位老师参观试用!
  • 基于质谱成像技术对芦笋的可视化分析
    p style="text-align: justify text-indent: 2em line-height: 1.75em "摘 要:/pp style="text-align: justify text-indent: 2em line-height: 1.75em "随着近年来人们对功能性食品的关注度越来越高,芦笋被认为是对抗高血压比较有效的一种食物。芦笋中所含的Asparaptine是抗高血压的有效成分,但是目前还没有其在芦笋内的分布信息的相关研究。我们利用基质辅助激光解吸质谱成像(MALDIMSI)技术阐释了Asparaptine 在芦笋内的分布情况。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 230px " src="https://img1.17img.cn/17img/images/202006/uepic/f446df0a-84bd-404c-a084-cecaa126ce76.jpg" title="1.png" alt="1.png" width="300" height="230" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "1. 背景介绍/pp style="text-align: justify text-indent: 2em line-height: 1.75em "已有研究表明芦笋粗提取物有降低血压的功效。长期以来芦笋的降压功效一直被认为是来源于其中所含有的某些含氮化合span style="text-indent: 2em "物,但近些年来,一些研究认为,芦笋的降压功效应该来源于其中的某些含硫化合物而非含氮化合物。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在这种背景下,2015年的一项研究发现了一种由精氨酸和芦笋酸组成的新物质——Asparaptine1)。这项研究提出,Asparaptine的降血压功效来源于其对血管紧张素转化酶(ACE)的抑制作用。Asparaptine的发现使芦笋作为功能性食品更受欢迎,因而对其也需要进行更加详细的研究。作为研究此物质的一种方法,我们尝试阐释芦笋中Asparaptine的定位信息。近些年来,MALDI-MSI作为一种可直接用肉眼观察到各化合物定位信息的方法而备受关注。这种方法可以通过单次分析实现对大量分子信息的成像,并且由于其具有可区分靶向目标和代谢物的能力,目前已经被广泛应用于诸如神经递质可视化2)和药代动力学成像3)的研究中。此外,除了在医药领域,MALDI-MSI技术也已经被应用于食品领域,涉及食品样品的范围非常广泛,从作为日本的主要粮食的大米4),到土豆5)和草莓6)。提供“可视化”信息,比如功能性化合物的分布信息,可以从增加食品附加值的角度来吸引消费者。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "图1展示了MALDI-MSI的标准操作流程。使用冷冻切片机将冷冻样品切成厚度在10 μm至30 μm之间的切片。将冷冻切片放置span style="text-indent: 2em "在导电板上,例如涂有氧化铟锡(ITO)的载玻片。之后将作为辅助电离试剂的基质涂敷于样品表面,然后进行质谱分析。在MALDI-MSI过程中,我们可以确定被测区域和测量点之间的距离,得到每个测量点的质谱和位置信息。通过选择目标分子在每个测量点的质谱中的质荷比,我们可以从每个测量点的强度数值得到目标分子在样品中的分布信息。在本研究中,我们按照上述流程进行实验,以明确Asparaptine的定位信息。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/38b7a373-f224-416d-96f0-1ca09b8eba71.jpg" title="2.png" alt="2.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "图1 MALDI-MSI的实验流程/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2. 实验部分/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2.1 样品及样品冷冻方法/pp style="text-align: justify text-indent: 2em line-height: 1.75em "将芦笋按照尖部、中部和下端切成三份,使用切片机(CM1950)将三部分分别制成20μm厚度的切片。芦笋的侧面有三角形的叶片,称为鳞片,其作用是保护枝杆(图2A)。在这项研究中,对这四个部位均进行了成像。目标成分是之前已经描述过的Asparaptine。在MALD-MSI中,样品的冷冻是影响成像结果的一个重要过程。在本研究中,我们将对液氮冷冻法和真空密封袋冷冻法两种方式进行比较(图2B)。前一种冷冻方法是将芦笋包裹在铝箔中,放入液氮中冷冻。后一种方法是将芦笋放入真空袋中,将袋中抽成真空,然后在-80° C的冰箱中慢慢冷冻。为了比较这两种方法,我们使用甲苯胺蓝染色对组织切片进行检查。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2.2 基质喷涂/pp style="text-align: justify text-indent: 2em line-height: 1.75em "我们通过喷涂的方式将α-氰基-4-羟基肉桂酸(CHCA)加载于样品表面,基质溶液是10mg/mL的浓度(30%乙腈,10% 2-丙醇,0.1%甲酸)进行配制的。使用喷笔(PS-270)将400 μL基质溶液喷涂于样品切片表面,喷枪的尖端与组织表面之间的距离保持在10 cm。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2.3 MSI分析条件/pp style="text-align: justify text-indent: 2em line-height: 1.75em "我们使用iMScope TRIO™ (图3)来进行MALDI-MSI分析。配置355nm Nd:YAG激光光源,激光频率1000 Hz,每点激光照射次数100,每个像素点累积次数为1次。激光光斑直径为25μm,强度为47,样品电压和检测器电压分别设为3.5 kV和2.1 kV。采集模式为正离子模式,采集范围m/z 100-350, 并以Asparaptine的质子加和产物m/z 307.09作为前体离子进行二级质谱分析。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 270px " src="https://img1.17img.cn/17img/images/202006/uepic/35c9f0fd-485f-47e8-8c46-d661f6a0528a.jpg" title="3.png" alt="3.png" width="600" height="270" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "3. 结果与讨论/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.1 样品冷冻方法比较/pp style="text-align: justify text-indent: 2em line-height: 1.75em "将通过液氮冷冻和真空密封袋冷冻两种方式进行冷冻的样品切成20 μm 厚的切片,并将切片用甲苯胺蓝染色,然后使用光学显微镜进行检查(图4)。如图4A 中所示,使用真空袋冷冻的样品制备切片有可能不损害样品形态。另一方面,样品经液氮冷冻后,由于在冷冻过程中会产生裂纹,使得样品切片难以保持其形貌。样品冷冻在真空密封袋里,也同样可以保持组织细胞的形态,而用液氮冷冻的组织细胞会被破坏,可观察到很多包含裂缝的部分(图4B)。真空密封袋冷冻的样品之所以能够保持细胞组织形态,其重要原因是高压冷冻法原理发挥了作用7)。通常情况下,当水结成冰时细胞内就会形成冰晶8)。然而,在高压冻结方法中,通过在冻结过程中对样品施加高压(一般在2000 atm 左右),水的熔点会降低,粘度会增加,所以通过这种方法可以抑制导致细胞组织破坏的冰晶的形成。在本实验中,虽然没有施加2000 atm 的压力,但样品可能在外力的作用下,产生了不同于常压下冻结状态的现象。另一方面,在使用液氮冷冻时,样品本身可能会由于水的膨胀而产生了裂纹。同时,由于样品在液体中沸腾,在样品周围形成一层氮气层。一旦这种现象发生,冷冻效率将被极大降低。此外当使用高压冷冻方法时,水以非晶形态冻结的深度是5 到20 μm,而以液态氮冷冻时,这个深度可达5 到200 μm9)。这种现象在诸如芦笋这样的体积较大且含有大量水分的样本中尤为明显。根据上述原理,真空span style="text-indent: 2em "密封袋冷冻是一种又好又简单的方法,它可以在冷冻植物样品时保持样品组织的形态。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/92efb3ee-ebd0-486c-96dc-c20258228867.jpg" title="4.png" alt="4.png"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/fedec6ff-3915-4260-816d-5f99173c4594.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.2 Asparaptine 定位信息的可视化分析/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在本实验中,首先通过成像质谱来进行Asparaptine定位信息的可视化分析。如图5A所示,代表Asparaptine的m/z 307.09的质谱峰被检测到。然后通过在离子阱中的一级质谱筛选出m/z 307.09的碎片,再通过飞行时间质谱分析二级碎片离子信息,从而确认是否m/z 307.09的碎片来源于靶向物质。图5B所示的质谱图是由二级质谱获得的,我们成功检测到来自一级前体离子m/z 307.09的碎片离子m/z 248.05。由于m/z 248.05是Asparaptine结构可以产生的碎片离子,因此m/z 307.09被认为是Asparaptine的质谱峰。因此,采用m/z 248.05碎片离子对Asparaptine进行成像,结果如图6所示。分析结果表明,Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDIMSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/bf3940c1-723a-4252-a89f-9bb061662a51.jpg" title="6.png" alt="6.png"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/caab745a-1d80-44fb-888a-503a995397e9.jpg" title="7.png" alt="7.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "4. 结 论/pp style="text-align: justify text-indent: 2em line-height: 1.75em "在本研究中,我们首次使用iMScope TRIO 对芦笋中的Asparaptine 进行了定位分析。我们还发现冷冻法在植物样品分析中具有重要的意义。通过借助MALDI-MSI 这种有力手段,我们可以通过可视化的定位信息来获得全新的发现,甚至对于那些合成机理和功能尚未明晰的物质也是如此。今后,把MALDI-MSI 应用于植物和食品样品将有助于我们明确样品中成分的定位信息,并有望在功能性食品的高效开发、目标物质合成机理的阐释等方面得到更多应用。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "5. 参考文献/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1) R. Nakabayashi et al., J. Nat. Prod., 78, 1179 (2015)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2) Enomoto Y. et al., Anal. Sci., 34(9), 1055 (2018)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3) Ohtsu S. et al., Anal. Sci., 34(9), 991 (2018)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4) N. Zaima et al., Rapid Commun. Mass Spectrom., 24, 2723 (2010)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "5) S. Taira et al., Int. J. Biotechnol. Wellness Industry, 1, 61 (2012)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "6) Anna C. Crecelius et al., J. Agric. Food Chem., 65, 3359 (2017)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "7) H. Moor, U. Riehle, Proc. 4th Eur. Reg. Conf. Electron Microsc., 33 (1968)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "8) H. Moor, Cryotechniques in Biological Electron Microscopy, 175 (1987)/pp style="text-align: justify text-indent: 2em line-height: 1.75em "9) Y. Ito, Plant Morphology, 25, 35 (2013)/ppbr//p
  • 清华大学张奇伟、张新荣团队合作开发单细胞空间代谢组分析新方法
    多细胞生物由复杂的层次性机制来维持稳态。在组织层面上,这种稳态通常由细胞内基因调控网络和细胞外环境中各种信号介导的相互作用共同维持。因此,具有空间分辨率的单细胞组学技术对理解组织微环境具有重要意义。现在国际上已有多种空间组学方法(如转录组、蛋白组)来测量单细胞级别的空间信号分布,但是仍然缺乏空间代谢组的分析方法。  SEAM方法采用高空间分辨质谱成像结合机器学习算法,实现了组织原位代谢异质性可视化、单细胞核图像识别、代谢特征信息提取以及单细胞的聚类、差异化分析,从而能够让研究者系统的解析组织中单细胞的“代谢指纹图谱(metabolic fingerprint)”(图1)。由于器官或组织中的单个细胞的代谢物图谱存在明显的空间分布的异质性,因此,定位单个细胞在组织网络中的位置、区分相关代谢物的指纹图谱差异、确定重要代谢物的分子组成有重要意义。  图1.SEAM在单核分辨率下捕捉到空间代谢异质性  为了验证新方法,清华大学张奇伟、张新荣团队解析了野生型小鼠肝脏组织中的空间代谢异质性,发现了肝细胞代谢异质性亚群。这一发现和前人通过蛋白或者基因表达所验证的肝组织分区现象(Liverzonation)有着高度一致(图2),有效证明了SEAM方法的可靠性和准确性。  图2.SEAM在小鼠肝脏中通过代谢指纹图谱分析发现Liverzonation现象  作者还对人肝纤维化中的代谢异质性进行了空间代谢组和空间转录组联合分析。发现在肝纤维化样本中存在有两种代谢差异的肝细胞亚群,它们和纤维化区域的距离在不同样本间存在有统计学差异(图3)。通过代谢组和转录组的共同分析,发现其中的存在有谷丙酰胺的上调以及其对应代谢相关的跨膜转运蛋白的基因表达上调。虽然单细胞转录组的研究已经取得长足进展,与转录组及其表型研究密切相关的代谢组研究在单细胞水平目前还缺少方法。本文提出的“SEAM”方法,系统解析了组织空间中的单细胞代谢组,对于整个单细胞技术领域的进步具有重要的推进作用。  图3. SEAM在人类肝纤维化样本中发现代谢极性  相关成果以“SEAM是一个研究组织微环境的单细胞核空间代谢组学方法”(SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment)为题于10月4日发表于《自然方法》(Nature Methods)。论文第一单位是清华大学自动化系。共同通讯作者是清华大学北京信息国家研究中心、医学院张奇伟教授,清华大学化学系张新荣教授,清华大学原副研究员陈阳(现中国医学科学院基础医学研究所研究员)。共同第一作者为清华大学自动化系博士生原致远、生命科学学院博士生周启明、化学系博士生蔡乐斯。中日友好医院潘林教授在本工作中参与了病理切片相关实验指导和细胞类型鉴定。北京协和医院郑永昌教授提供了临床样本。清华大学北京市中医药交叉研究所李梢教授为项目研究提出积极建议。项目由国家重点研发计划,国家自然科学基金以及北京信息国家研究中心基金等项目提供经费支持。  论文链接:https://www.nature.com/articles/s41592-021-01276-3
  • ​基于HOOKE单细胞分选平台的嗜冷电活性微生物的mini-metagenome分析研究
    2020年11月,哈尔滨工业大学城市水资源与环境国家重点实验室邢德峰教授团队应用辰英核心产品——拉曼单细胞分选仪HOOKE PRECI SCS-R300,在期刊《Science of the Total Environment》上发表文章“Mini-metagenome analysis of psychrophilic electroactive biofilms based on single cell sorting”。相关文章链接一、研究背景微生物群落的活性对生物电化学系统(BES)中的细胞外电子转移(EET)过程具有重要影响,而了解这些复杂的微生物代谢相互作用是一个巨大的挑战。温度是影响细菌活性和胞外电子转移效率的主要环境因素之一。嗜冷电活性细菌的代谢功能对于研究低温(4-15℃)下细胞外电子转移(EET)机制具有重要意义。本研究采用拉曼细胞分选耦合高通量测序技术,准确获得嗜冷细菌群落的基因信息。首次通过拉曼光谱聚类分析,精准识别出杆菌属目标类群,并通过mini-metagenome测序分析,获知生物膜群落中膜运输功能基因ftsEX的相对丰度较高,说明其对低温的适应有助于电活性细菌在低温下生存;基础代谢如柠檬酸循环和糖酵解途径为胞外电子转移过程提供电子,高丰度铁(iii)转运系统基因的鉴定表明它们存在于电子转移过程的主动代谢反应中,细胞色素c(coxA和cox1)可能参与胞外电子转移。本研究揭示了嗜冷地杆菌在低温下具有细胞色素c介导的有效EET。二、实验设计mini-metagenome具有单细胞分辨率、低复杂度和高通量等优点,非常适合环境样本。在本研究中,作者通过单细胞拉曼分选获得了嗜冷微生物Geobacter,通过MDA扩增获得mini-metagenome。通过结合SCS和宏基因组测序,进而对嗜冷EABs的代谢功能有了更深入的了解。三、结果与讨论1. 单细胞分选和分类鉴定嗜冷微生物燃料电池(MFC)的电压持续时间曲线如图1A所示,峰值电压达到0.419~0.448 V。对运行至300天的嗜冷MFC中的微生物群落进行了基于16S rRNA基因的扩增子高通量测序,分析了嗜冷阳极生物膜的细菌群落结构。分析表明,大多数优势种群属于地杆菌属 Geobacter(相对丰度为68.29%)(图1B)。Fig.1 嗜冷MFC的电压持续时间曲线(A)和原始生物膜的群落结构(B)。结合拉曼光谱对35个具有短杆状形态的细菌细胞进行了检测,并通过依照其拉曼图谱进行的聚类分析将它们分为3个聚类组别(图2A和B)。单细胞拉曼分选后,目标菌从分选芯片上调入接收器中,其他菌保持不变(图2C和D)。Fig.2 基于拉曼光谱的嗜冷微生物单细胞聚类分析。不同簇的拉曼光谱(A)和聚类分析图(B),分选前(C)和分选后(D)。分离菌成功获得基因组DNA,并通过16S rRNA基因扩增验证(图3)。Fig.3 分选细胞的基因组扩增(A)和PCR验证(B)。通过16S rRNA基因测序确定了mini-metagenome(聚类组别)的群落组成。从三个拉曼聚类组别样本中获得了超过100,000个高质量的16S rRNA基因有效reads。 Chao1以及Shannon和Simpson多样性指数表明,Cluster2的丰富度和物种均匀度比其他簇最低(Table 1)。Table 1. 16S rRNA基因测序分析不同类群的群落多样性在纲水平上确定的主要菌群是Cluster1中的Alphaproteobacteria(94.41%)和Cluster2中的Deltaproteobacteria(99.97%),而在Cluster3中,GammaProteobacteria(53.16%)和Deltaproteobacteria(46.56%)占主导地位(图4A)。此外,在属水平上,不同簇之间的微生物群落组成存在实质性差异(图4B和C)。在Cluster1和Cluster2中,主要属为Sphingomonae(94.41%)和Geobacter(99.97%),而在Cluster3中,Geobacter(46.56%)和Polaromonas(44.25%)是两种主导菌属。在Cluster1和Cluster3中,本研究感兴趣的Geobacter的相对丰度分别为5.43%和46.56%。这些结果表明,Cluster2是目标细菌的准确选择,因为Geobacter的相对丰度为99.97%。随后,对Cluster2进行了宏基因组测序,以生成微型宏基因组,以研究嗜冷细菌的潜在代谢活性。Fig.4 (A)和(B)不同簇的微生物群落结构,基于OTU(C)的PCA和基于微型宏基因组(D)中代表性回收细菌的基于16S rRNA基因的系统树。2. 嗜冷微生物的mini-metagenome分析基于16S rRNA基因的系统发育研究表明,基于单细胞分选回收得到的mini-metagenome与Geobacter thiogenes 和 Geobacter lovleyi的基因组相似(图4D)。 与KEGG数据库匹配的mini-metagenome序列显示了嗜冷细菌的代谢网络和功能的概述。这表明,膜运输(membrane transport)功能在mini-metagenome中占主导地位(图5A)。Fig.5 mini-metagenome中KEGG注释基因的数量(A)和特定基因的相对丰度(B)。此外,有大量的基因参与细胞运动(cell motility)、信号转导(signal transduction)、转运(translation)和碳水化合物代谢(carbohydrate metabolism),也有很多占比的未知功能基因。为了进一步表征嗜冷EAB的潜在代谢途径,列举了一些重要代谢途径(翻译、膜运输、电子转移和能量代谢物)的功能基因(图5B)。其中,与膜转运相关的基因afuAB和ftsEX的丰度相对较高(12%)。其他相对丰度较高的基因序列包括核糖体蛋白编码基因rpsDEKM(0.33%)和rplFTOQR(2.10%),编码cox1的细胞色素c氧化酶亚基1(1.36%),柠檬酸循环(TCA循环)或与糖酵解相关的korABD (0.51%) icd(0.50%)和pckA(1.31%)。此外,鞭毛蛋白(fliEOZ)、电子转移黄蛋白β亚基(fixA)和细胞色素c氧化酶亚基I (coxA)相关基因的相对丰度也较低。四、结论采用单细胞分选、层次聚类分析和群落结构高通量测序、宏基因组测序相结合的方法,深入研究了嗜冷EAB的代谢功能。成功地表征了地杆菌属Geobacter的生理信息和胞外电子传递的潜在代谢途径,并实现了准确的分离。mini-metagenome表现出嗜冷MFC群落结构对低温的适应和对电位电子转移过程的主动代谢反应。细胞色素c等关键基因在低温嗜冷EAB的EET中起重要作用。文章中提到的相关仪器:辰英科仪自主研制的单细胞分选仪PRECI SCS具有独特的可视化分选功能,所见即所得,精准实现目标细胞的逐一分离。采用独特的激光与物质相互作用原理,对于复杂生物样本中形态各异的细胞,可实现非标记状态下的精准分离。对于百纳米级的单个微生物细胞也同样适用。单细胞分选仪HOOKE PRECI SCSPRECI SCS具有可视化、精准、广泛适用等特点。分选过程不依赖标记,可与形态、拉曼、荧光等多种识别方式结合,多种机型可选,满足不同应用需求。搭载潜心研制的HOOKE IntP智能软件,实现单细胞图像智能识别、一键自动分选、全自动细胞获取等。设备操作流程简易,为单细胞测序、未培养微生物开发、工程细胞筛选、细胞图谱绘制等研究提供完美解决方案,助力前沿科学研究。拉曼单细胞分选仪HOOKE PRECI SCS-R300PRECI SCS具有可视化、精准、广泛适用等特点。分选过程不依赖标记,可与形态、拉曼、荧光等多种识别方式结合,多种机型可选,满足不同应用需求。搭载潜心研制的HOOKE IntP智能软件,实现单细胞图像智能识别、一键自动分选、全自动细胞获取等。设备操作流程简易,为单细胞测序、未培养微生物开发、工程细胞筛选、细胞图谱绘制等研究提供完美解决方案,助力前沿科学研究。
  • Nature Methods | 张奇伟/张新荣团队合作开发出单细胞空间代谢组分析新方法
    2021年10月4日,清华大学北京信息国家研究中心/医学院张奇伟教授(美国德州大学达拉斯分校客座教授)与清华大学化学系张新荣教授团队合作在Nature Methods杂志上在线发表论文:SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment ,提出一种在单细胞分辨率下进行空间代谢异质性分析的新方法。SEAM方法采用高空间分辨质谱成像结合大数据算法,实现了组织原位代谢异质性可视化、单细胞核图像识别、代谢特征信息提取以及单细胞的聚类、差异化分析,从而能够让研究者系统的解析组织中单细胞的“代谢指纹图谱(metabolic fingerprint)”。由于器官或组织中的单个细胞的代谢物图谱存在明显的空间分布的异质性,因此,定位单个细胞在组织网络中的位置、区分相关代谢物的指纹图谱差异、确定重要代谢物的分子组成有重要意义。为了验证新方法,作者解析了野生型小鼠肝脏组织中的空间代谢异质性,发现了肝细胞代谢异质性亚群。这一发现和前人通过蛋白或者基因表达所验证的肝组织分区现象(Liver zonation)有着高度一致,有效证明了SEAM方法的可靠性和准确性。作者还对人肝纤维化中的代谢异质性进行了空间代谢组和空间转录组联合分析。发现在肝纤维化样本中存在有两种代谢差异的肝细胞亚群,它们和纤维化区域的距离在不同样本间存在有统计学差异。通过代谢组和转录组的共同分析,发现其中的存在有谷丙酰胺的上调以及其对应代谢相关的跨膜转运蛋白的基因表达上调。虽然单细胞转录组的研究已经取得长足进展,与转录组及其表型研究密切相关的代谢组研究在单细胞水平目前还缺少方法。本文提出的“SEAM”方法,系统解析了组织空间中的单细胞代谢组,对于整个单细胞技术领域的进步具有重要的推进作用。该论文的共同通讯作者是清华大学张奇伟教授、清华大学张新荣教授、原清华大学陈阳副研究员(现中国医学科学院基础医学研究所研究员)。共同第一作者为清华大学自动化系、北京信息国家研究中心博士生原致远、清华大学生命科学学院、生命科学联合中心博士生周启明、清华大学化学系博士生蔡乐斯。中日友好医院潘琳教授在本工作中参与了病理切片相关实验指导和细胞类型鉴定。北京协和医院郑永昌教授提供了临床样本。清华大学北京市中医药交叉研究所李梢教授为项目研究提出积极建议。
  • “力”所能及——多功能单细胞显微操作系统FluidFM BOT在单细胞力学实验中的创新应用
    瑞士Cytosurge公司的多功能单细胞显微操作系统FluidFM BOT,是将原子力系统、微流控系统、纳米位移台系统合为一体的单细胞操作系统,能够在单细胞水平上为研究者提供很大的便利,可应用于单细胞力谱、单细胞质谱、单细胞基因编辑、细胞系构建、药物研发、医疗等领域。本文将从单细胞实验方法和多功能单细胞显微操作系统FluidFM BOT结构出发,详细介绍多功能单细胞显微操作系统FluidFM BOT在单细胞力学实验中的应用。 一. 单细胞实验方法简介 在细胞生物学实验中,由于细胞的异质性,每个细胞互相之间都存在一定差异,因此在单细胞层面研究细胞性质可以获得更加准确的结果。近年来,多种单细胞研究技术不断涌现,应用于医学诊断、组织工程和药物筛选等领域。 对于细胞力学测定,原子力显微镜(AFM)能够对单个细胞或生物分子进行高分辨成像和力谱测定,但是细胞与探针的结合过程不可逆,无法实现连续、快速的检测。 对于细胞分离/分选技术,可选的有玻璃细管、光镊、流式细胞分选和磁珠分选等方法,然而有的从表面分离细胞时容易损伤细胞,有的无法从同类细胞群中分离出单个细胞。 对于细胞注射与提取,可选用纳米喷泉探针、纳米针和碳纳米管等,然而这些方法无法实现飞升以下量的含量注射,且注射时间较长。 多功能单细胞显微操作系统FluidFM BOT,针对细胞力学测量、分离/分选、注射与提取等应用,在结合以上技术的优势的同时克服了这些技术固有的问题,是一套多功能的单细胞研究系统,在单细胞研究领域发挥着巨大作用。 二. 多功能单细胞显微操作系统FluidFM BOT结构 简单来说,多功能单细胞显微操作系统FluidFM BOT是AFM与微流控的结合,主要由AFM扫描头、压力控制器与微流控探针组成(图1)。AFM扫描头装载于倒置显微镜上,整体结构大致与普通AFM相同,主要区别是探针中间有微流通道,后端连接液体池,前端探针有一小孔,用于液体的流入流出。微流通道内径小于细胞,防止细胞进入堵塞;探针则有多种不同孔径和不同的弹性,可根据不同应用以及不同样本更换所需探针。图1 FluidFM BOT系统图示。(a)微流控系统与AFM的结合应用;(b)(c)(d)探针的特殊设计。 三. 单细胞力学应用 传统AFM用于单细胞力学测量时,需要对探针进行一定处理以粘附细胞,后再与需要和细胞相互作用的表面、分子或其他细胞相结合,有时会产生多个细胞粘附,且反复测力会导致细胞被破坏,使得每次测量都必须准备新的探针,实验效率较低。 多功能单细胞显微操作系统FluidFM BOT通过将AFM与微流控相结合,使单细胞力学实验更高效,更简洁。对于已经结合在表面的固定细胞,可根据细胞尺寸安装适用的探针,从上方接触需要测量的细胞,通过微流控系统施加负压吸起细胞,获得力-距离曲线;也可以吸取悬浮细胞,与表面或其他固定细胞接触后,测量力-距离关系。这种方法能够提供远比蛋白结合牢固的多的吸附力,能够将细胞牢固的固定在探针上面,因此能够用于直接从基质上分离;另一方面,由于没有生物处理,这种方法不会改变任何细胞表面的通路,从而能够得到接近细胞原生的数据。 单个细胞测量完成后可移动探针至细胞板其他孔内,施加正压将其释放,再回到实验孔吸取下一个细胞,意味着单个探针可以进行多次测量。 细胞粘附是许多生理过程的重要步骤,细胞粘附力的测定可以为组织形态发生、胚胎发育、肿瘤、免疫反应和微生物膜等研究提供重要信息。多功能单细胞显微操作系统FluidFM BOT支持真核和原核细胞与细胞板/培养皿表面、抗菌/粘性/抗体包被的表面或其他细胞的粘附力测量(图2)。图2 不同细胞在不同环境下的粘附力-距离曲线。(a)探针接近、暂停、吸取并拉伸细胞的过程中探针偏转随时间的变化;(b)Hela细胞与纤连蛋白包被的表面的粘附力-距离曲线;(c)不同接触时间下大肠杆菌与PLL表面的粘附力-距离曲线;(d)大肠杆菌与PLL表面的分离距离与接触时间的关系;(e)酿脓链球菌与玻璃表面的粘附力-距离曲线,表示多个球菌的连续分离;(f)单个细胞与单细胞层的粘附力-距离曲线。 Sankaran等人[1]使用多功能单细胞显微操作系统FluidFM BOT来研究在共价和非共价的表面整合素受体对细胞粘附力的影响。通过测定发现两者均可有效增加细胞的粘附能力,并且效果近似(图3)。图3使用FluidFM BOT测定共价键与非共价键的整合素受体之间RGD的区别。(a)实验示意图;(b)粘附力测定前后示意图;(c)粘附力-距离曲线;(d)大粘附力。 多功能单细胞显微操作系统FluidFM BOT还可用于测量细胞的应力以研究细胞骨架的性质。Sancho等人[2]将10μm的小胶球吸附于探针上,之后使用探针去压细胞直到探针压力达到2 nN,通过压痕曲线来分析细胞骨架变化。通过对比发现过量表达MSX1的细胞硬度显著高于普通细胞(图4)。图4 使用FluidFM BOT测定HUAEC中MSX1过表达对细胞骨架的影响。(d)实验示意图;(e)吸附10μm珠子;(f)下压时空白细胞的力学谱线;(g)下压时MSX1过表达细胞的力学谱线,凹陷更深、斜率更高,表示其刚度相对更高;(h)胶体压痕法的测量结果。 四. 其他应用 多功能单细胞显微操作系统FluidFM BOT可用于细胞内注射与提取(图3),通过力学测量,可以控制探针刺入细胞质或细胞核内进行飞升别含量的液体注射或提取。此外,FluidFM BOT系统还可用于细胞分离以及细胞延展性研究。图5 FluidFM BOT系统的细胞内注射过程。(a)探针对准细胞;(b)探针刺破细胞膜,注入含荧光染料的目标液体;(c)探针与细胞分离,注射完成。 多功能单细胞显微操作系统FluidFM BOT克服了现有单细胞技术的短板,将多种单细胞应用相结合,高通量、高效率地获取单细胞层面的详细数据,研究多种细胞性质,尤其适合应用于医疗、单细胞生物学、单细胞质谱、单细胞基因编辑、药物研发等领域。 多功能单细胞显微操作系统FluidFM BOT在Quantum Design中国子公司与北大生科院共建实验室成功安装,为了更好的服务客户,Quantum Design中国子公司提供样品测试、样机体验机会,还等什么?赶快联系我们吧! 电话:010-85120277/78 邮箱:info@qd-china.com,期待与您的合作! 参考文献:[1]. Cell Adhesion on Dynamic Supramolecular Surfaces Probed by Fluid Force Microscopy-Based Single-Cell Force Spectroscopy, ACS Nano 2017, 11, 4, 3867–3874.[2]. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci Rep 7, 46152 (2017).
  • 活细胞也能进行细胞器操纵?多功能单细胞显微操作FluidFM技术首次实现活细胞间线粒体移植
    摘要:线粒体和复杂的内膜系统是真核细胞的重要特征。到目前为止,对活细胞内的细胞器进行操纵仍然十分困难。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。近期,Julia A. Vorholt课题组使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪,作者发现与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。该篇文章以” Mitochondria transplantation between living cells.”为题,发表在BioRxiv.上。 结果:1. 从活细胞中提取线粒体为了检测FluidFM探针对单细胞细胞器采样的能力。作者使用了两种探针,分别是锥型探针(A=1.2 um2)和圆柱型探针(A=1.6 um2)(图1B)。实验结果表明,使用这两种探针都可以对线粒体及单个线粒体进行提取或大量抽提。作者对内质网(ER)和线粒体提取后的细胞活力进行了检测,发现细胞仍保持较高的细胞活力 (95%)。为了进一步确保FluidFM提取方案在探针插入时不会破坏细胞质膜,作者使用荧光探针(mito-R-GECO1)监测细胞培养基中可能发生的Ca2+内流。实验显示,在操作过程中和操作后都没有Ca2+流入,表明细胞器提取过程中细胞质膜的完整性。本研究还发现暴露在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。 其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构终被拉断,并在悬臂中呈现为球状线粒体(图2E)。进一步探究显示,施加FluidFM负压后,力诱导的形状转变沿线粒体小管在毫秒到秒的范围内传播了数十微米。形状转变沿这一方向均匀传播,而外层线粒体膜(OMM)保持了初的完整性。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生立的球形线粒体,而管状结构的其余部分放松并恢复。结合线粒体牵引实验和线粒体定位的钙流实验,结果证明线粒体的串上珍珠表型的形状转变以及随后细胞质内的线粒体裂变是不依赖钙的。 图1:(A) 示意图:使用FluidFM技术进行细胞器提取。通过调整悬臂探针中的负压(-Δp)进行提取。(B) 通过调节孔径大小和流体作用力的适用范围,选择性地提取不同的细胞器成分。1行:用悬梁臂探针提取单细胞细胞器的示意图。2行:不同孔径的悬臂扫描电镜图。3行:FluidFM悬臂探针孔径与对应的流体力范围。(C) 示意图:使用FluidFM技术进行细胞器注射。通过调整悬臂探针中的正压(+Δp)进行将探针中的细胞器注射到受体细胞内。 图2:(A) FluidFM悬臂探针的扫描电子显微镜图像。具体尺寸参数是:L = 200 μm, W = 35 μm, H = 1 μm。Scale bar = 5 μm。(B) 提取线粒体后的FluidFM悬臂的荧光显微镜图像。由于折射率不同,可以看到提取物和悬臂探针填充物之间的边界。Scale bar = 10 μm。(C) 是图(B)的示意图,提取物的体积是1170 fL。(D- F) 活细胞器提取的延时图像和提取后金字塔悬臂图像。黄框表示细胞内的悬臂的位置。(D) 对表达su9-BFP(线粒体)和Sec61-GFP (ER) 的U2OS细胞进行提取。箭头表示ER区域。使用孔径为0.5µm2的悬臂梁探针。Scale bar = 10 μm。(E) 从表达su9-BFP的U2OS细胞中提取单个线粒体。使用1µm2孔径的悬臂梁探针。Scale bar = 10 μm。(F) 从表达su9-BFP的U2OS细胞中提取数个线粒体。使用1µm2孔径的悬臂梁探针。Scale bar = 10 μm。 2. 线粒体移植至新细胞研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了两种可能性方案:方案一、用FluidFM技术直接提取线粒体而后注入到新的宿主细胞中;方案二、将从细胞中分离纯化的线粒体回充入FluidFM探针,然后注射(图3A-D)。作者比较了两种方法,为了实现可视化的线粒体的转移,作者在供体和受体细胞中分别对线粒体进行了差异化标记 (图3E-F 供体细胞线粒体su9-mCherry和受体细胞线粒体su9-BFP)。当使用FluidFM直接将线粒体从一个细胞移植到另一个细胞时,成功率高达95%,而且保持了细胞活力(图3G, 41个移植细胞中有39个)。在注射纯化线粒体后,作者观察到46%的样本(19/41)发生了线粒体转移且保持了细胞活力(图3G)。移植的定量结果显示,这些实验中移植的线粒体数量从3到15个线粒体每个细胞不等(图3H)。两种替代方案的不同成功率可以由线粒体分离获取的条件差异来解释。在评估线粒体提取方案时,作者观察到部分提取的线粒体外膜发生破裂。线粒体的不可逆损伤导致细胞内降解,细胞色素C释放可能导致细胞凋亡。虽然线粒体的细胞间移植降低了通量,但它的优点是细胞外时间短(1分钟),并且通过FluidFM采样的线粒体大限度地集中在原生细胞质液中,完全避免了人工缓冲液的使用。在提取和移植之前,作者通过在探针中填充不混溶的C8F18来确保提取液在提取过程中保持在孔径附近。因此,只有很小的体积(0.5 - 2pL)被注入到宿主细胞中(图3B)。除了标记供体细胞的线粒体(su9-mCherry)外,还标记了受体细胞的线粒体(su9- BFP),这样就能够观察移植细胞线粒体网络的实时状态。在上述两种移植方案(移植和纯化后注射)中,宿主-线粒体网络的管状状态不会因注射过程而产生影响。此外,标记可以让作者可视化地监测线粒体地移植,观察线粒体地融合。 无论移植方法是细胞到细胞(图3I),还是注射纯化线粒体(图3J),都可以观察到这些过程。实验跟踪了22个细胞的移植命运:18个细胞显示移植的线粒体完全融合,4个细胞的线粒体发生降解。多数细胞样本(18个细胞中的14个)在移植后30分钟内次观察到融合事件。如上所述,细胞间移植即方案一的效率高,并可以直接观察单个移植线粒体的命运。为了展示这一点,作者将标记好的线粒体(su9-mCherry)从HeLa细胞移植到差异标记的U2OS细胞(su9-BFP)中,这种细胞通常用于研究动态线粒体行为。高灵敏度相机可以用于追踪受体细胞内的单个线粒体(图3L)。作者观察到荧光线粒体基质标签在移植后23分钟的发生初始融合而后扩展到线粒体网络。综上所述,作者建立了两种将线粒体转移到单个培养细胞的方法。 一种方法是活细胞间移植。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。二种方法是大量纯化线粒体并将其注射到受体细胞中。 注射速度相当快,但不可避免地损害线粒体和细胞功能。图3:(A) 方案一示意图(活细胞间线粒体移植):通过FluidFM吸入法提取线粒体。 随后,将带有提取物的悬臂探针移至受体细胞插入并注入提取物。(B) 方案一预填充C8F18的FluidFM悬臂梁的图像,被移植线粒体通过su9-mCherry标记,提取量~0.8 pL。Scale bar = 10 μm。(C) 方案二示意图(纯化线粒体注入细胞):使用标准线粒体纯化方案纯化的线粒体进行线粒体移植的方案。 将纯化的线粒体重悬在HEPES-2缓冲液中,直接填充到FluidFM探针中并对细胞进行注射。(D) 方案二由su9-mCherry标记的FluidFM悬臂充满线粒体的图像。Scale bar = 10 μm。(E) 通过方案一(活细胞间线粒体移植)进行线粒体移植后的宿主细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(F) 通过方案二(纯化线粒体注入细胞)进行线粒体移植后的受体细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(G) 通过光学成像对两种方案注射的细胞进行评估。每种方法评估了40个细胞。(H) 两种方案的线粒体的计数评估。每种方法评估了22个细胞。(I) 方案一移植线粒体后,对移植线粒体(su9-mCherry)和宿主线粒体网络(su9-BFP)使用不同的荧光标记进行成像,融合。Scale bar = 5μm。(J) 方案二注入纯化线粒体后移的融合状态,标记方案同(I)。Scale bar = 5 μm。(K) 移植线粒体发生降解,分裂成多个更小的荧光囊泡(su9-mCherry),荧光与标记的宿主细胞线粒体网络(su9-BFP)没有重叠。Scale bar=5 μm。 (L) 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。 讨论单细胞的操纵一直是细胞生物学领域的热点和难点,尤其是在不损害细胞活力的情况下从细胞中提取细胞器或将外源物质直接导入到细胞中。截止到目前,尽管单细胞技术有了较大的发展,但要实现将细胞器从一个细胞移植到另一个细胞,除了更大的卵母细胞外,几乎是不可能实现的。线粒体是细胞中的能量转换的核心,与细胞代谢和信号通路以及细胞命运紧密联系在一起。线粒体含有自身的遗传成分(mtDNA),通常是严格垂直遗传给子细胞的。目前将线粒体地转移到细胞的手段有限,对于线粒体移植后的剂量-反应关系分析更是十分困难,这样我们就很难从机制上了解健康或疾病细胞的线粒体移植后的生物学效应。本文使用的FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。 多功能单细胞显微操作系统- FluidFM OMNIUM参考文献[1].C. Gäbelein, Q. Feng, E. Sarajlic, T. Zambelli, O. Guillaume-Gentil, B. Kornmann & J. Vorholt. Mitochondria transplantation between living cells. (2021). BioRxiv.
  • ibiPore可视化的Transwell:可实时观察流动、剪切力作用下细胞迁移、侵袭、细胞间相互作用
    德国ibidi的ibiPore可以实时观察流动、剪切情况下的细胞侵袭、迁移、细胞相互作用等实验。对实验结果进行观察统计时,不需要将膜取下,也不需要将另一边的细胞擦掉(经常将膜擦破,导致实验失败),可直接将μ-Slide放于显微镜下观察统计。细胞可以通过两种方式,选择贴壁于氮化硅膜的上下两侧。可以把细胞种植在膜下边,避免自由落体的说法,大大提高了实验的准确性。21世纪注定是一个生命科学的世纪,科研工作者们如果想在这个世纪去决胜,能做到一点,不仅要好的idea,领先的技术,更需要得心应手的好工具。所谓工欲善其事必先利其器,今天为大家介绍德国ibidi的μ-Slide ibipore SiN (图1), 一款具有多孔氮化硅膜的μ-Slide载玻片,可用于实时观察流动、剪切力条件下的细胞侵袭、迁移以及细胞相互作用的可视化的“ transwell ”,更多应用请参阅文中(Intended Use的相关内容)。图1. ibipore及ibipore SiN氮化硅膜培养细胞的染色结果。图片背景为在ibipore氮化硅膜上培养细胞的荧光染色结果,规则排布的白色圆点为氮化硅膜的孔隙ibipore有上下两个独立的通道(见图2),两个通道 overlap 的区域由一个孔径大小均一的氮化硅膜隔离开(见图3)。两个通道可以分别培养细胞,通过两种方式,细胞可以贴壁于氮化硅膜的上下两侧。在细胞侵袭实验中,普通的transwell只能将细胞培养在上侧,这样所得到的实验结果并不能明确的说明是由于重力作用还是侵袭能力本身造成的。而ibipore考虑到这一因素,建议实验者在氮化硅膜的下侧进行细胞培养,检测细胞向上侧通道进行迁移的能力,进而巧妙的排除了重力作用对侵袭实验的影响。配合ibidi流体剪切力系统以及加热孵育系统,可以在流动、剪切力条件下实时的观察细胞的侵袭以及迁移等实验。德国ibidi公司为满足不同实验的需求设计了不同孔径的氮化硅膜(见图4)。ibipore与传统的transwell实验最大区别有三点:①. ibipore可以在上下两个通道中培养细胞,这样可以观察细胞向上的侵袭情况,排除以往实验中重力作用的影响;②. ibipore中间的氮化硅膜具有良好的光学特性,可以实时成像观察侵袭情况,也可以进行免疫荧光染色实验;③. ibipore可以配合ibidi流体剪切力系统,观察淋巴细胞等在流动状态下的侵袭情况。ibipore产品介绍ibipore产品特点:* 透过薄而多孔的薄膜获得卓越的光学性能* 有着广泛的应用,细胞可完全粘附到顶部-基底* 对于不同细胞类型有多种孔径大小可以选择应用:1.流动状态下跨内皮细胞迁移2.2D或3D凝胶内细胞层的共培养和传输分析3.顶部-基底细胞极性分析4.顶部-基底梯度的细胞屏障模型分析5.细胞迁移分析(例如,用于研究肿瘤侵袭或转移)在μ-Slide ibiPore IV型胶原涂层3μm孔径中人类内皮细胞的免疫荧光染色,相位对比度、DAPI(蓝色)、VE钙粘蛋白(绿色)和F肌动蛋白(红色)的叠加图像。技术特点:1.SiMPore的微孔氮化硅膜2.中间具有多孔光学膜的跨通道结构3.优异的光学性能,堪比盖玻片4.孔径大小0.5μm,3μm,5μm,8μm供选择5.中间膜0.4µ m(400 nm)6.使用工作距离0.5mm的物镜7.与ibidi泵系统(流体剪切力系统)完全兼容8.下部通道中明确的剪切力和剪切速率范围µ -Slide ibiPore SiN工作原理µ -Slide ibiPore SiN由插入两个通道之间的水平多孔膜组成。上部通道是膜上方的静态储液池。下部通道是灌注通道,用于对附着在膜上的细胞施加限定的剪切应力。上部通道和下部通道仅通过隔膜彼此连通。图2. ibipore组成示意图多孔膜由氮化硅(SiN)制成,这种材料具有非常高的化学和机械稳健性。400nm厚的氮化硅膜非常适合成像和显微镜观察,没有任何自发荧光或透明度问题(如玻璃)。SiN材料可以直接用于贴壁细胞培养,也可以选择用ECM蛋白包被。应用建议:孔径 & 孔密度什么是孔密度孔密度是指膜的空隙体积分数。是孔隙的体积除以膜的总体积。下面的图形为采用相同的放大倍数。图3. 不同孔径的氮化硅膜不同应用的建议孔径:不同的细胞大小和直径不同,根据具体实验请选择不同孔径图 4. 为不同应用推荐的不同孔径的氮化硅膜Intended Use经证实的应用这些应用已由ibidi研发团队或者我们的用户进行过试验。Endothelial Barrier Assays内皮屏障分析在膜一侧培养单层细胞。细胞可以在静止或者流动剪切力条件下培养。Co-Culture and Cell Barrier Assay共培养和细胞屏障分析在膜的两侧分别培养单层细胞。通过这种方法可以进行信号传递、共培养以及迁移实验(例如,分析药物通过上皮或内皮屏障的传递)。Apical-Basal Cell Polarity Assays顶端-?基底端细胞极性分析3D凝胶基质中的化学因子可以导向在膜另一侧培养的单层细胞的极性发生。Potential Use潜在应用以下示例将讲述该产品进一步的潜在应用。ibidi仍需在内部测试这些应用,因此我们无法提供特定的实验方案。但是,从技术角度来看,这些应用应该是可行的。Trans-Membrane Migration in 2D/2D跨膜迁移在膜的一侧培养单层细胞。可以观察悬浮的白细胞在流动状态下的滚动、粘附以及侵袭情况。Cell Transport in a 3D Gel Matrix细胞在3D凝胶基质中的传递3D凝胶基质中的细胞迁移:在流动状态下,观察白细胞的滚动、粘附以及向3D凝胶基质中肿瘤细胞方向的迁移情况。Application Examples 应用实例MDCK和NIH-3T3细胞的相差显微镜观察Madin-Darby犬肾(MDCK,左)和NIH-3T3(右)细胞在μ-Slide ibiPore SiN,孔径0.5μm的玻片中,无蛋白质包被。接种后,将细胞在静态条件下在培养箱中保持20小时。相差显微镜,4倍物镜。请注意,这张图像中的中心多孔区域看起来更暗,因为0.5μm的孔隙无法用低分辨率物镜分辨。流动条件下HUVECS的相差显微观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN中,孔径3μm的玻片中,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。固定后的相位对比显微镜,10倍物镜。流动下HUVECs F肌动蛋白细胞骨架的荧光显微镜观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN,孔径5μm玻片中的免疫荧光染色,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。绿色:肌动蛋白(鬼笔肽),蓝色:细胞核(DAPI)。荧光显微镜,20倍物镜。选择指南:ibidi跨膜分析实验解决方案参考文献:Salvermoser, Melanie, et al. "Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation." Blood, The Journal of the American Society of Hematology 131.17 (2018): 1887-1898. 10.1182/blood-2017-10-811851Rohwedder, Ina, et al. "Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration." Haematologica (2019). 10.3324/haematol.2019.225722Non-Recommended Applications不建议的应用因技术原因,本产品不适用于以下应用,应避免使用.本产品不适用于:1.上通道灌流2.两个通道的灌流3.跨膜流动4.筛选应用订购信息
  • 共探单细胞技术在微生物领域发展,长光辰英第二届微生物功能单细胞分离研讨会在杭州顺利召开
    p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/ec296395-275f-46fc-bea1-5b15c8fc0771.jpg" title="image001.jpg" alt="image001.jpg"//pp style="text-align: justify text-indent: 2em "strong仪器信息网讯 /strong2020年12月22日,由长春长光辰英生物科学仪器有限公司分公司长光辰英(杭州)科学仪器有限公司主办的“2020年第二届微生物功能单细胞分离研讨会”在杭州顺利召开。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/1ea571b9-7b49-4024-8683-59d48132155a.jpg" title="合影 单细胞02.jpg" alt="合影 单细胞02.jpg"//pp style="text-align: justify text-indent: 2em "本次会议以“微生物拉曼分选技术与应用”为主题,以科学性、专业性、前瞻性为特色,汇聚了来自北京、广州、上海、江苏、南京等地的微生物领域知名专家学者与青年学生六十余人。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/3eca1e8a-a8f1-4b15-96ff-058dcecea113.jpg" title="image003.jpg" alt="image003.jpg"//pp style="text-align: justify text-indent: 2em "会议深入探讨了单细胞技术在微生物领域的最新研究成果及应用需求与前景,旨在进一步推动单细胞技术及国产高端光学装备在微生物研究领域的创新应用,促进科研成果转化。/pp style="text-align: justify text-indent: 2em "会议开始,上海交通大学特聘教授、中国微生物学会环境微生物学专业委员会主任周宁一教授进行了精彩的开幕致辞,并围绕“环境微生物学研究进展与存在的问题”做了大会主旨报告。在环境微生物研究中,传统方法(如培养法、宏基因测序等)存在一定的局限性,单细胞技术可逐一表征微生物细胞在其原生微生物群落中的特性,为研究未/难培养微生物提供了一种新方法。周宁一教授回顾了自首届微生物功能单细胞分离研讨会(2019年6月)以来,多个研究团队应用单细胞拉曼光谱技术与可视化分选技术的最新研究成果,认为在单细胞层面对微生物群落进行研究将是未来的重要科研方向。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/6be1efe8-3d26-4a8b-8260-1277e4bb7713.jpg" title="image004.jpg" alt="image004.jpg"//pp style="text-align: center text-indent: 0em "周宁一教授开幕致辞/pp style="text-align: justify text-indent: 2em "会议学术报告环节分别由南京农业大学生命科学学院院长蒋建东教授及上海交通大学唐鸿志教授主持。广东省微生物研究所杨永刚研究员、浙江大学沈超峰副教授、复旦大学全哲学教授、中科院长春光机所李备研究员、浙江大学吕镇梅教授、中科院苏州生物医学工程技术研究所宋一之研究员、中国水产科学研究院东海水产研究所迟海副研究员分别作了精彩的学术报告,分享了各自的研究进展及所在领域对单细胞技术的应用需求,引起了与会者的热烈交流与讨论。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/ec0449eb-f231-4a9c-91b6-f6803362d802.jpg" title="image005.jpg" alt="image005.jpg"//pp style="text-align: center "span style="text-indent: 0em "蒋建东教授主持学/spanspan style="text-indent: 0em "术报告/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/efe09b16-1349-4cd5-bb5a-930852eba356.jpg" title="image006.jpg" alt="image006.jpg"//pp style="text-align: center text-indent: 0em "唐鸿志教授主持学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/0f1204c5-3c23-4261-af9f-15720b2bd03c.jpg" title="image007.jpg" alt="image007.jpg"//pp style="text-align: center text-indent: 0em "杨永刚研究员做题为《胞外电子传递功能菌的单细胞示踪和挑选》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/c9ef28d0-5a24-4c1d-9408-bbf232fc1e39.jpg" title="image008.jpg" alt="image008.jpg"//pp style="text-align: center text-indent: 0em "沈超峰副教授做题为《基于拉曼光谱分析休眠状态下的多氯联苯降解菌》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/95470f83-d423-43ef-9743-dea80b5e6750.jpg" title="image009.jpg" alt="image009.jpg"//pp style="text-align: center text-indent: 0em "全哲学教授做题为《基于拉曼光谱技术在微生物学研究中的应用》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/8a8c8e62-113f-4159-9608-b3212913967e.jpg" title="image010.jpg" alt="image010.jpg"//pp style="text-align: center text-indent: 0em "吕镇梅教授做题为《污染物降解混合菌群中功能菌的发现与分选》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/a1b431f9-30ca-4e26-b38a-34ec9feca4bc.jpg" title="image011.jpg" alt="image011.jpg"//pp style="text-align: center text-indent: 0em "宋一之研究员做题为《单细胞表型分析与分选在微生物研究中的应用》的学术报告/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/dd8c68a8-45f6-4540-b3d3-fc6957bf749b.jpg" title="image012.jpg" alt="image012.jpg"//pp style="text-align: center "span style="text-indent: 0em "迟海副研究员做题为《水产品中副溶血性弧菌快速检测技术研究》的学术报告/span/pp style="text-align: center"br//pp style="text-align: justify text-indent: 2em "会上,李备研究员介绍了单细胞拉曼分选技术在微生物领域中的作用与意义,重点介绍了自主研制的拉曼分选系统在病原菌鉴定、微生物代谢监测、肠道菌群分析、深海微生物的原位观测等方向的应用进展。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/429e94b6-e9a4-4158-9974-9f9a2a9eded0.jpg" title="image013.jpg" alt="image013.jpg"//pp style="text-align: center text-indent: 0em "李备研究员做题为《拉曼光谱技术在微生物学研究中的应用》的学术报告/pp style="text-align: justify text-indent: 2em "在随后开展的圆桌讨论环节中,各位专家学者围绕对单细胞拉曼分选的个性化需求、单细胞分选在环境微生物领域的实际应用价值、微生物拉曼数据库构建的方式及意义、共聚焦三维成像在微生物研究中的应用需求等具体问题进行了深入探讨,指出了微生物领域对单细胞研究技术的共性需求,认为免标记单细胞原位识别技术与适应微生物单细胞形态特征(尺寸小、形态各异等)的分离技术的缺乏,是目前微生物单细胞研究领域的限制因素。将共聚焦拉曼光谱系统与可视化单细胞精准分选系统相结合,对接后续微生物单细胞培养组、基因组、代谢组等研究,将为复杂环境下微生物生态、菌群互作、代谢机制及功能研究提供有力工具。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/fe99a60c-569a-4937-850f-c610e746958b.jpg" title="image014.jpg" alt="image014.jpg"//pp style="text-align: center text-indent: 0em "圆桌会议讨论/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/9b851baa-b912-47a1-9783-006a06725222.jpg" title="image015.jpg" alt="image015.jpg"//pp style="text-align: justify text-indent: 2em "会议茶歇环节,与会者参观并试用了辰英科仪的单细胞领域系列产品,包括可视化单细胞分选仪、拉曼单细胞分选仪、超快共聚焦三维成像系统等。工作人员重点讲解了仪器性能、优势以及应用方案,并针对来宾关注的问题进行了现场解答,得到了到场专家及同学们的一致好评。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/341de611-dbe6-411b-abff-3003eea43ae7.jpg" title="image016.jpg" alt="image016.jpg"//pp style="text-align: center text-indent: 0em "辰英科仪副总李文杰向专家介绍仪器/pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202012/uepic/3a57c3a7-fedc-4ef9-88f3-2be0cb7e5778.jpg" title="image017.jpg"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202012/uepic/6b4139da-8dc5-4be2-b30d-efe413118d6a.jpg" title="image018.jpg"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/202012/uepic/bb45fa5b-c11a-4b7a-ab63-763dbb9db6ef.jpg" title="image019.jpg"//pp style="text-align: justify text-indent: 2em "未来,单细胞拉曼分选技术与应用研讨会将陆续在其他省份举办,届时欢迎更多各领域的专家学者参与到大会研讨中来,共同推进前沿光学技术与生物应用的创新融合。希望各位专家老师给予我们更多的意见与支持,辰英科仪将始终致力于国产原创性生物医学高端仪器的研发与制造,为探索生命科学提供有力工具,为共同推动人类健康事业发展贡献力量。/pp style="text-align: justify text-indent: 2em "strong关于长光辰英(杭州)科学仪器有限公司/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/309fe1e5-616e-4e1f-b087-0f8c3baba387.jpg" title="image020.jpg" alt="image020.jpg"//pp style="text-align: justify text-indent: 2em "长光辰英(杭州)科学仪器有限公司成立于2020年11月18日,是由辰英科仪与杭州长光产业技术研究院联合创办的企业,注册资金3000万。/pp style="text-align: justify text-indent: 2em "辰英(杭州)将建设单细胞创新技术平台,为长三角及全国的科研工作者提供前沿单细胞系列装备及技术服务。/p
  • 技术线上论坛|6月8日《科学家首次实现单个活细胞中细胞器的操纵!多功能单细胞显微操作技术是如何做到的?》
    [报告简介] 单细胞的操纵一直是细胞生物学领域的热点和难点,尤其是在不损害细胞活力的情况下从细胞中提取细胞器或将外源物质直接导入到细胞中。截止到目前,尽管单细胞技术有了较大的发展,但要实现将细胞器从一个细胞移植到另一个细胞,除了更大的卵母细胞外,几乎是不可能实现的。 线粒体和复杂的内膜系统是真核细胞的重要特征,是细胞中能量转换的核心,与细胞代谢和信号通路以及细胞命运紧密联系在一起。线粒体含有自身的遗传成分(mtDNA),通常是严格垂直遗传给子细胞的。到目前为止,对活细胞内的细胞器进行操纵十分困难,将线粒体地转移到细胞的手段有限,对于线粒体移植后的剂量-反应关系分析更是十分困难,这样我们就很难从机制上了解健康或疾病细胞的线粒体移植后的生物学效应。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。 本报告分为两部分:1. 来自ETH的Dr. Christoph G. Gäbelein使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪发现被移植线粒体与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。本次报告Dr. Christoph G. Gäbelein将对上述文章和数据进行详细分享。2. 2020年9月,国内套FluidFM多功能单细胞显微操作系统在北京大学生命科学学院顺利安装并交付使用。期间,在北京大学生命科学学院公共仪器中心光学成像平台覃思颖老师和Quantum Design中国工程师胡西博士的帮助下,成功举办多场workshop,FluidFM多功能单细胞显微操作系统助力北大发表多篇paper。本次报告中,覃思颖老师将分享多功能单细胞显微操作系统FluidFM技术的实验操作案例与运行维护经验。[直播入口]请扫描下方二维码进入FluidFM单细胞显微操作技术群,届时会在微信群中实时更新直播入口,无需注册!扫码进群,即刻获取直播链接,无需注册![报告时间]06月08日 下午15:00-16:00 [主讲人介绍]Christoph G. Gäbelein,ETHChristoph是一名来自ETH的青年科学家,科研中他一直致力于将FluidFM单细胞显微操作技术应用于更多的生命科学场景中。在过去两年间,他以一作或参与者的身份发表了FluidFM多篇文章:2022 Mitochondria transplantation between living cells2022 Injection into and extraction from single fungal cells.2021 Single cell engineering using fluidic force microscopy.2021 Genome-wide molecular recording using Live-seq.Christoph对于FluidFM技术的应用具备丰富而完善的经验,文章也是高产的,目前Christoph已经成为了FluidFM技术领域的专家。本次Webinar,Christoph将介绍他应用技术的新成果,并详细阐述从活细胞中提取、注射线粒体,将定量的线粒体移植到细胞中,同时保持它们的活力的技术细节。Christoph的座右铭是:Curiosity-driven young scientist interested in fundamental cell biology 覃思颖,北京大学生命科学学院公共仪器中心光学成像平台工程师。2016年于北京大学获得生物物理学博士学位,博士期间以作者在Nature Materials发表论文,博士后期间入选届北京大学博雅博士后项目。2019年加入北京大学生科院公共仪器中心,负责原子力显微镜、多功能单细胞显微操作系统、共聚焦显微镜等大型仪器的技术支持与运行管理,在多尺度生物样品的原子力制样与成像力学检测、单细胞注射与分离等显微操作、生物荧光成像与图像处理分析等方面有着丰富的经验,为校内外100余课题组提供技术服务,辅助课题组在Nature、Cell、Nature Cell Biology等国际期刊发表论文30余篇。本次报告将分享多功能单细胞显微操作系统FluidFM技术的实验操作案例与运行维护经验。[应用简介]1. 从活细胞中提取线粒体 为了检测FluidFM探针对单细胞细胞器采样的能力。作者使用了两种探针,分别是锥型探针(A=1.2 μm2)和圆柱型探针(A=1.6 μm2)(图1B)。实验结果表明,使用这两种探针都可以对单个线粒体及多个线粒体进行提取或大量抽提。图1:(A) 示意图:使用FluidFM技术进行细胞器提取。通过调整悬臂探针中的负压(-Δp)进行提取。(B) 通过调节孔径大小和流体作用力的适用范围,选择性地提取不同的细胞器成分。1行:用悬梁臂探针提取单细胞细胞器的示意图。2行:不同孔径的悬臂扫描电镜图。3行:FluidFM悬臂探针孔径与对应的流体力范围。(C) 示意图:使用FluidFM技术进行细胞器注射。通过调整悬臂探针中的正压(+Δp)进行将探针中的细胞器注射到受体细胞内。 对线粒体提取后的细胞活力进行了检测,发现细胞仍保持较高的细胞活力 (95%)。为了进一步确保FluidFM提取方案在探针插入时不会破坏细胞质膜,作者使用荧光探针(mito-R-GECO1)监测细胞培养基中可能发生的Ca2+内流。实验显示,在操作过程中和操作后都没有Ca2+流入,表明细胞器提取过程中细胞质膜的完整性。 本研究还发现暴露在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。 其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构终被拉断,并在悬臂中呈现为球状线粒体(图2E)。进一步探究显示,施加FluidFM负压后,力诱导的形状转变沿线粒体小管在毫秒到秒的范围内传播了数十微米。形状转变沿这一方向均匀传播,而外层线粒体膜(OMM)保持了初的完整性。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生立的球形线粒体,而管状结构的其余部分放松并恢复。结合线粒体牵引实验和线粒体定位的钙流实验,结果证明线粒体的串上珍珠表型的形状转变以及随后细胞质内的线粒体裂变是不依赖钙的。图2(A) FluidFM悬臂探针的扫描电子显微镜图像。具体尺寸参数是:L = 200 μm, W = 35 μm, H = 1 μm。Scale bar = 5 μm。(B) 提取线粒体后的FluidFM悬臂的荧光显微镜图像。由于折射率不同,可以看到提取物和悬臂探针填充物之间的边界。Scale bar = 10 μm。(C) 是图(B)的示意图,提取物的体积是1170 fL。(D- F) 活细胞器提取的延时图像和提取后金字塔悬臂图像。黄框表示细胞内的悬臂的位置。(D) 对表达su9-BFP(线粒体)和Sec61-GFP (ER) 的U2OS细胞进行提取。箭头表示ER区域。使用孔径为0.5 µm2的悬臂梁探针。Scale bar = 10 μm。(E) 从表达su9-BFP的U2OS细胞中提取单个线粒体。使用1 µm2孔径的悬臂梁探针。Scale bar = 10 μm。(F) 从表达su9-BFP的U2OS细胞中提取数个线粒体。使用1 µm2孔径的悬臂梁探针。Scale bar = 10 μm。 2. 将线粒体移植至新细胞 研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了两种可能性方案:方案一、用FluidFM技术直接提取线粒体而后注入到新的宿主细胞中;方案二、将从细胞中分离纯化的线粒体回充入FluidFM探针,然后注射(图3A-D)。作者比较了两种方法,为了实现可视化的线粒体的转移,作者在供体和受体细胞中分别对线粒体进行了差异化标记 (图3E-F 供体细胞线粒体su9-mCherry和受体细胞线粒体su9-BFP)。当使用FluidFM直接将线粒体从一个细胞移植到另一个细胞时,成功率高达95%,而且保持了细胞活力(图3G, 41个移植细胞中有39个)。在注射纯化线粒体后,作者观察到46%的样本(19/41)发生了线粒体转移且保持了细胞活力(图3G)。移植的定量结果显示,这些实验中移植的线粒体数量从3到15个线粒体每个细胞不等(图3H)。两种替代方案的不同成功率可以由线粒体分离获取的条件差异来解释。在评估线粒体提取方案时,作者观察到部分提取的线粒体外膜发生破裂。线粒体的不可逆损伤导致细胞内降解,细胞色素C释放可能导致细胞凋亡。 虽然线粒体的细胞间移植降低了通量,但它的优点是细胞外时间短(1分钟),并且通过FluidFM采样的线粒体大限度地集中在原生细胞质液中,完全避免了人工缓冲液的使用。在提取和移植之前,作者通过在探针中填充不混溶的C8F18来确保提取液在提取过程中保持在孔径附近。因此,只有很小的体积(0.5 - 2pL)被注入到宿主细胞中(图3B)。 除了标记供体细胞的线粒体(su9-mCherry)外,还标记了受体细胞的线粒体(su9- BFP),这样就能够观察移植细胞线粒体网络的实时状态。在上述两种移植方案(移植和纯化后注射)中,宿主-线粒体网络的管状状态不会因注射过程而产生影响。此外,标记可以让作者可视化地监测线粒体地移植,观察线粒体地融合。 无论移植方法是细胞到细胞(图3I),还是注射纯化线粒体(图3J),都可以观察到这些过程。实验跟踪了22个细胞的移植命运:18个细胞显示移植的线粒体完全融合,4个细胞的线粒体发生降解。多数细胞样本(18个细胞中的14个)在移植后30分钟内次观察到融合事件。 如上所述,细胞间移植即方案一的效率高,并可以直接观察单个移植线粒体的命运。为了展示这一点,作者将标记好的线粒体(su9-mCherry)从HeLa细胞移植到差异标记的U2OS细胞(su9-BFP)中,这种细胞通常用于研究动态线粒体行为。高灵敏度相机可以用于追踪受体细胞内的单个线粒体(图3L)。作者观察到荧光线粒体基质标签在移植后23分钟的发生初始融合而后扩展到线粒体网络。 综上所述,作者建立了两种将线粒体转移到单个培养细胞的方法。 一种方法是活细胞间移植。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。二种方法是大量纯化线粒体并将其注射到受体细胞中。 注射速度相当快,但不可避免地损害线粒体和细胞功能。图3(A) 方案一示意图(活细胞间线粒体移植):通过FluidFM吸入法提取线粒体。 随后,将带有提取物的悬臂探针移至受体细胞插入并注入提取物。(B) 方案一预填充C8F18的FluidFM悬臂梁的图像,被移植线粒体通过su9-mCherry标记,提取量~0.8 pL。Scale bar = 10 μm。(C) 方案二示意图(纯化线粒体注入细胞):使用标准线粒体纯化方案纯化的线粒体进行线粒体移植的方案。 将纯化的线粒体重悬在HEPES-2缓冲液中,直接填充到FluidFM探针中并对细胞进行注射。(D) 方案二由su9-mCherry标记的FluidFM悬臂充满线粒体的图像。Scale bar = 10 μm。(E) 通过方案一(活细胞间线粒体移植)进行线粒体移植后的宿主细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(F) 通过方案二(纯化线粒体注入细胞)进行线粒体移植后的受体细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(G) 通过光学成像对两种方案注射的细胞进行评估。每种方法评估了40个细胞。(H) 两种方案的线粒体的计数评估。每种方法评估了22个细胞。(I) 方案一移植线粒体后,对移植线粒体(su9-mCherry)和宿主线粒体网络(su9-BFP)使用不同的荧光标记进行成像,融合。Scale bar = 5μm。(J) 方案二注入纯化线粒体后移的融合状态,标记方案同(I)。Scale bar = 5 μm。(K) 移植线粒体发生降解,分裂成多个更小的荧光囊泡(su9-mCherry),荧光与标记的宿主细胞线粒体网络(su9-BFP)没有重叠。Scale bar=5 μm。 (L) 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。 讨论 FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。 该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。
  • MALDI质谱成像首次用于单细胞3D化学成像
    近日,美国爱荷华州立大学的研究人员,用高空间分辨率基质辅助激光解吸电离(MALDI)- 质谱成像(MSI)来绘制和可视化了新受精的斑马鱼胚胎单细胞中磷脂类——磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)以及磷脂酰肌醇(PI)的三维空间分布。这是MALDI-MSI首次应用于单个细胞的三维化学成像。相关研究成果已经发表在Scientific Reports上。斑马鱼(Danio rerio)原产于东南亚,是一种小型热带观赏鱼。由于体外受精和光学透明,受精斑马鱼胚胎可在发育的所有阶段进行观察和操作。此外,斑马鱼很容易获得,价格低廉,健壮,易于护理,并且每周可以产下数百个卵。这些独特的遗传特点与实验胚胎优势相结合,使得斑马鱼成为研究早期发育的理想选择。斑马鱼已被广泛用作脊椎动物系统模型,用于研究脂质代谢、脂质在疾病中的作用以及胚胎发育中的脂质动力学。最近,Fraher等人使用LC-MS法进行脂质组学研究,结果显示胆固醇、磷脂酰胆碱(PC)和甘油三酯是斑马鱼胚胎中最丰富的脂质。他们证明,在调动到胚胎体之前,脂质在蛋黄内被加工。电喷雾电离质谱(DESI-MS)也被用于直接的MS分析和单个斑马鱼胚胎中脂质的成像、跨胚胎发育(受精后0,24,48,72和96小时)。研究人员对斑马鱼中的代谢组学和脂质组学研究非常感兴趣,因为这些化合物具有关键的生物学功能,例如作为能量储存源、参与细胞信号传导、并作为细胞膜的必要成分。探索如何调节代谢物和脂质是理解生物系统中发生的生物途径和发育过程的关键。传统分析方法研究小代谢物和脂质需要大量的样品制备、费力的提取、衍生化以及先期对目标化合物的了解。由于样品制备方案和仪器的发展,质谱成像(MSI)已成为这些研究中广泛使用的分析工具。MSI可实现生物分子空间分布的二维可视化,而无需提取、纯化、分离或标记分析物。此外,单个MSI实验可以同时检测许多不同类别的化合物,包括未知物,这使得其可以高分辨率和高通量方式直接对生物分子进行细胞或亚细胞作图。由于生物学在三维生物体中发生,3D成像对生命科学中的许多挑战产生了值得注意的影响并不奇怪。最近,使用质谱成像对完整生物分子进行成像已扩展到3D分析,以确定组织样本、琼脂平板和3D细胞培养物中的体积分子分布。使用质谱法最常见的3D成像方法包括收集样品的连续部分,使用传统的二维质谱成像分别分析每个部分,然后使用计算方法从多个二维集合堆叠和重建最终的3D成像MS数据集等步骤。美国爱荷华州立大学的研究小组(以下简称“研究小组”)开发了高空间分辨率的基质辅助激光解吸电离(MALDI)-MSI,分辨率低至5μm,并将其用于植物代谢物的细胞或亚细胞水平成像。在这里,研究小组利用这种高空间分辨率呈现了新受精的个体斑马鱼胚胎的3D MALDI-MSI。这是用MALDI获得的单个细胞的3D MSI的首次演示,揭示了各种脂质化合物的亚细胞水平定位。(a)受精斑马鱼胚胎在单细胞阶段的奇数编号光学图像。 (b)PE(22:6-16:0)在m / z 762.509和(c)PI(18:0-20:5)在m / z 883.535处的假彩色二维MALDI-MS图像。 通过覆盖所有2D图像,右侧显示投影图像。 所有物种均被检测为去质子化的[M-H] - 。在此分析中,研究小组通过获取62个连续横截面组织切片交替的正离子和负离子模式的MS成像数据,对单个斑马鱼受精卵进行3D MALDI-MSI。这可以对单个细胞中全面的脂质种类进行3D可视化。研究结果显示,所有三种磷脂类都存在于胚盘内的对称分布,以及蛋黄的边界,但每种都显示出不同的区域;PE显示在胚盘中心高度丰富的异质亚细胞区域,除了胚盘外,PC分子种类存在于蛋黄内部,而蛋黄中的PE和PI种类大多不存在。另外,还比较了四种不同的归一化方法以确定当将2D MSI与3D体积重建进行比较时,这些方法中的哪一种可以提供更具代表性的结果。此外,在不同细胞阶段(1-,2-,4-,8-和16-细胞阶段)获得胚胎的全扫描MSI和MS / MS,以研究斑马鱼成长早期阶段磷脂分布的变化。TOF-SIMS已报道被用于单个细胞的3D MSI,特别是结合深度剖析作为实现z方向信息的方式。然而,由于显著的碎裂,可以通过TOF-SIMS分析的高质量化合物主要限于外源性药物化合物。该研究小组所述的研究工作首次证明高分辨率MALDI-MSI可应用于单个细胞的三维化学成像,他们未来的研究将集中在揭示胚胎发育的细节,具有更高的空间分辨率和小代谢物的可视化,以及荧光显微镜的多模态成像等。在MALDI质谱成像方面,融智生物于2017年推出QuanTOF质谱成像系统,该系统集合了新一代宽谱定量飞行时间质谱平台QuanTOF,拥有5,000-10,000Hz长寿命半导体激光器,自主开发的数据采集软件。2018年7月,融智生物宣布实现可达500像素/秒的成像速率,提升MALDI-TOF MS成像速率达10倍以上,普通样本成像只需几十分钟,使得质谱成像实现了“立等可取”。 经过进一步的研发,目前QuanTOF质谱成像系统已经实现高达1000像素/秒的成像速率,5-10微米的高空间分辨率,且仍然保持了极高的灵敏度,使得质谱成像真正可使用于临床病理分析、术中分析等应用。
  • 墨卓生物“牵手”百奥智汇,专注单细胞测序技术
    6月24日,第六届清华校友三创大赛健康医疗全球总决赛天使组一等奖——墨卓生物与百奥智汇达成战略合作,两家校友企业基于“利用前沿技术,服务人类健康”的共同价值追求,充分发挥各自优势,为用户及合作伙伴提供高质量的服务和解决方案,共同推动单细胞测序技术在生物医学领域的应用与临床转化。墨卓生物今年4月15日已发布了高稳定、高性价比的MobiNova单细胞解决方案,方案包括MobiNova-100自动化仪器、MobiCube单细胞转录组试剂盒和生信分析软件,全面覆盖单细胞测序上游实验和数据质控需求。MobiNova-100平台上将搭载单细胞(核)转录组、免疫组、ChIP-seq、微生物单细胞等多组学解决方案。MOBINOVA-100单细胞测序建库系统(点击查看)百奥智汇凭借国际领先的单细胞大数据分析挖掘及强大的算法开发与运用能力,建立了国际上先进的单细胞组学数据库OmniDatasets、一站式单细胞数据分析软件OmniAnalyzer Pro及单细胞大数据可视化分析&挖掘平台OmniBrowser™ ,可提供全球领先的单细胞测序技术一站式解决方案。基于本次合作,墨卓生物和百奥智汇整合双方优势,共同为全球范围内的科研用户提供从实验到数据分析的单细胞测序全流程科研服务。同时,百奥智汇成为墨卓生物全球首席数据分析战略合作伙伴。未来,双方还将利用单细胞测序技术,共同发起国际单细胞研究领域的合作项目,用单细胞测序技术助力人类健康研究。墨卓生物创始人兼CEO裴颢博士表示:“百奥智汇在单细胞数据分析方面拥有超强技术实力和丰富的经验,通过我们的测试发现一站式单细胞数据分析软件OmniAnalyzer Pro产品操作简单,功能齐全,分析结果可靠,可以完美复现CNS文章结果,在很大程度上解决了广大科研用户的分析困扰。此次非常荣幸能有机会与百奥智汇深度合作,百奥智汇在单细胞数据分析方面的深厚积累和墨卓优越的单细胞测序平台的联合,一定将会让单细胞测序技术更好的助力人类健康、造福社会。”百奥智汇联合创始人、首席运营官洪涛先生表示:“百奥智汇在单细胞数据分析与大数据挖掘方面拥有核心竞争力,一直致力于将单细胞机理研究平台与生物信息学大数据/AI平台应用于人类疾病的诊断与治疗,为单细胞测序技术走向临床做先锋探索。”关于墨卓生物墨卓生物的单细胞产品性能优越,同时能显著降低单细胞测序成本,未来更将兼容FFPE样本。墨卓生物的微生物单细胞测序技术,也将在肠道微生物临床领域有巨大应用潜力。墨卓和百奥的合作能够发挥彼此在单细胞研究领域的优势,创造1+12的效果,为科研、临床工作者提供更强大的技术支持。”墨卓生物创立于美国波士顿,落地中国浙江,汇集了由国际一流科学家和跨国医疗器械公司高管等组成的一批优秀人才。墨卓致力于用创新微流控和单细胞测序技术赋能科学研究与精准医疗。目前已经成为拥有微流控、测序、生化、硬件开发、生信等关键技术,推出单细胞测序与数字PCR双技术平台,在液体活检、伴随诊断、生命科学研究等多领域并行发展的科研+IVD解决方案领跑者。关于百奥智汇百奥智汇是一家生命科学技术公司,致力于将单细胞机理研究平台和生物信息学大数据/AI平台充分应用于癌症等重大人类疾病的诊断和治疗。通过创建人类疾病的精准细胞图谱,充分利用自身强大的科研能力、自有平台和数据,百奥智汇将寻找具突破性的疾病诊断和治疗靶标、开发颠覆性的治疗方法。
  • iCCA2023报告摘要|单细胞分析技术专题
    全日程更新|8月30日开播!31位嘉宾云聚第六届细胞分析网络会议iCCA2023(点击查看)8月31日,第六届细胞分析网络大会(iCCA2023)特设【单细胞分析技术】专题会场,12位嘉宾在线分享!在线免费向听众开放报名,欢迎报名参会!报名链接: https://www.instrument.com.cn/webinar/meetings/icca2023  (点击报名)分会场设置日期上午下午08月30日类器官与器官芯片08月31日单细胞分析技术(上):微流控/质谱单细胞分析技术(下):测序/代谢组学09月01日细胞治疗产品的CMC质量控制分析细胞成像分析技术iCCA 2023 交流群 精彩报告 速览 微流控芯片质谱联用细胞药物代谢分析方法研究林金明 清华大学 教授【摘要】细胞是生物体结构和功能的基本单位。了解细胞的组成、结构和功能,探索细胞的生命活动,对于人类认知与掌控生物体生命活动的基本规律有着十分重要的意义。微流控芯片技术,结合先进的质谱检测、分子成像、生物信息学等技术,为细胞生物学研究提供了强有力的研究平台,也为改变细胞生物学的研究方式提供了可能。本次讲座将结合我们研究组近期的科研工作,简要介绍微流控芯片质谱联用技术在细胞药物代谢领域的进展和研究成果,探讨微流控芯片技术在中药的代谢分析研究中所面临的挑战和发展方向,为扩大其在生物医学领域的研究和应用提供参考和可能的思路。 基于有源数字微流控的单细胞分选和操控系统马汉彬 中国科学院苏州生物医学工程技术研究所 研究员【摘要】 相对于传统数字微流控,有源矩阵数字微流控基于薄膜半导体技术,其阵列规模、样本体积和操控精度均有指数级提升。该平台能够高效的生成大规模微滴阵列,无需借助微纳结构,便可实现单细胞微滴样本生成,并在二维平面内进行样本的可编程控制。高通量单细胞分泌分析技术研究陆瑶 中国科学院大连化学物理研究所 研究员【摘要】分泌是细胞的基本行为,介导通讯、免疫保护等功能。由于细胞存在异质性,往往只是细胞群中的小部分细胞主导分泌相关功能,群体细胞检测无法分辨这些多功能性细胞,必须发展单细胞分析工具进行相关研究、应用。但传统单细胞分泌分析技术存在检测信息不全面的不足,难以满足研究、应用需求。基于此,我们利用微流控芯片发展单细胞分泌因子多维、动态、互作等创新分析技术,显著提高了当前活体单细胞分泌分析技术检测能力,在药物/疫苗开发、疾病诊断、免疫学研究等领域具有重要的科学意义和十分广阔的应用前景。实时单细胞多模态分析仪的应用丁琳 江苏瑞明生物 高级产品经理【摘要】实时单细胞多模态分析仪的应用案例 (1)助力药物开发和药物载体开发; (2)检测细胞代谢标志物,信号分子和酶活为生物传感器开发提供表征工具。。单细胞结构脂质组学及生物医学应用马潇潇 清华大学 长聘副教授【摘要】单细胞分析是揭示细胞间异质性的关键技术,对基础生物学研究,疾病标志物筛查及新药研发均有重要意义。目前,单细胞脂质组分析仍面临诸多技术挑战。本报告介绍本团队在单细胞结构脂质组技术及应用方面的最新研究进展。单细胞固有电学特性高通量流式分析技术研究赵阳 中国科学院微电子研究所 副研究员【摘要】面对单细胞固有电学特性测不快、传感原理不明等难题,我们提出一种基于交叉压缩通道的检测方法,将检测通量提升了1万倍。并设计了一种基于物理模型快速求解器的实时阻抗流式细胞分析仪(piRT-IFC),实现了“细胞进,结果实时出”的全流程自动化处理能力,并验证其在未知细胞样本上具有相较神经网络加速方法更好的泛化能力。基于单细胞测序的肿瘤免疫研究:从机制到疗效预测胡学达北京百奥智汇科技有限公司 副总裁【摘要】 靶向 CTLA4、PD-1 和 PD-L1 等免疫检查点抑制剂(Immune Checkpoint inhibitor, ICI)的发现和临床应用彻底改变了癌症临床治疗的局面。免疫治疗为抗肿瘤带来突破,但只有部分患者发生响应,建立响应与持久性精准预测体系是目前该领域最关键的科学与临床问题。通过单细胞组学研究ICI治疗过程中肿瘤微环境免疫细胞动态演化规律与互作特征,能够发现具有抗肿瘤特异免疫响应驱动作用的细胞类型与分子标记。我们鉴别了不同患者对PD-1治疗不同耐药机制,寻找在响应或耐药患者中差异富集的细胞类型和特征表达基因,作为克服PD-1单抗耐药的治疗靶点创新智造助力单细胞组学标准化和规模化左亚军 深圳华大智造科技股份有限公司 产品市场中心产品经理【摘要】 创新智造助力单细胞组学标准化和规模化 1. MGI 单细胞组学全流程解决方案 2. 单细胞行业进入湿实验标准化时代 3. DNBelab C系列单细胞新品和应用案例。新一代中通量FISH技术、自动化仪器开发及其在精准诊断中的运用曹罡 深圳理工大学 教授【摘要】生物大分子(蛋白质、DNA、RNA等)在组织、细胞内的精确定位对生命体维持正常功能扮演着重要角色。在单细胞水平高通量的检测生物大分子的原位空间组学新技术对理解生命的重要生理功能及疾病的发生发展有着重要意义。目前从一代测序到高通量基因测序技术和单细胞测序都需要从细胞、组织提取核酸,丢失基因的空间位置与病理、组织学特征等信息,只能获得一个维度的基因序列信息。空间基因原位测序与原位检测技术可以整合基因序列信息与空间位置信息,必将对基因测序与病理诊断有着巨大的推动作用!近年来我们实验室开发了相关的高通量单细胞生物大分子(蛋白质、DNA、RNA等)空间组学和新一代FISH解析技术的开发及其仪器开发。此外,我们也将这些技术运用到肿瘤精准诊断中,以期推动肿瘤的精准治疗。单细胞核酸编码扩增分析赵永席 西安交通大学生命分析化学与仪器研究所 教授【摘要】团队开发的肿瘤类器官精准药物芯片筛选(Tumor Organoid Precision Medicine On-chip Screening Platform, TOPMOS)平台可在短时间内高通量培养出大小可控、均一性高的肿瘤类器官,实现高仿生化模拟体内微环境和高精度模拟体内药代动力学,能与现有常规检测设备匹配,实现多药物多浓度的快速药敏测试。单细胞转录组学解析前列腺管腔干细胞身份属性以及谱系可塑性郭旺昕 深圳湾实验室 博士后(高栋课题组)【摘要】前列腺成体干细胞身份属性的解析对研究前列腺组织的损伤修复和肿瘤起始都具有重要的意义。然而正常前列腺成体干细胞的身份属性存在巨大的争议,是前列腺研究领域悬而未决的重要科学问题。因此,我们利用单细胞转录组测序技术系统分析了35129个正常成年雄性小鼠前列腺细胞,发现前列腺管腔细胞可以分为Luminal-A、Luminal-B和Luminal-C三个细胞亚群。进一步阐述了Luminal-C细胞通过自我更新和分化维持前列腺管腔细胞谱系,证实了Luminal-C细胞可以作为前列腺肿瘤的起始细胞。单细胞测序技术与应用解析崔淼 深圳湾实验室 工程师/测序平台负责人【摘要】近几年来,单细胞测序技术发展迅速,与传统测序方法相比起来,其对解决生物材料的低获取量和生物异质性等问题尤为重要。凭借这一技术,研究者们可在单细胞水平上面研究生物进程和一些疾病的发生发展,包括肿瘤进化和癌变、早期胚胎发育、神经细胞异质性等。本次报告将从多方面逐一介绍单细胞测序技术:包括单细胞测序技术概念及发展历程、单细胞测序技术原理及实验设计、单细胞测序技术操作流程及注意事项、单细胞测序条件选择、单细胞测序技术应用等。温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。
  • 自带“可视化功能”的成像技术,让你的分析更有“深度”
    仪器信息网讯 基质辅助激光解吸电离飞行时间质谱成像技术(MALDI-TOF Imaging),作为直观反映组织器官中分子水平化合物的空间分布与变化的可视化方法,目前已在基础与临床医学研究中受到广大科研工作者的关注。   岛津的成像质谱显微镜(Imaging Mass Microscope, iMScope TRIO ),前端是搭载高分辨光学显微镜的大气压基质辅助激光解吸电离源(Atmospheric Pressure -MALDI),后端配置离子阱和飞行时间串联质谱仪(IT-TOF)。iMScope TRIO 是光学与成像质谱分析完整融合的独特技术,拥有领先的5μm高空间分辨率,可进行高精度多级质谱结构解析,为未知物的结构解析提供丰富的碎片信息,是具备高端性能的革新性分析系统。   成像质谱分析保留样品组织的位置信息的同时,可以直接使用质谱仪测定生物体分子和代谢物,既可以对样品进行形态学上的细微观察,也可以得到样品上特定部位的化学信息。因此,除了在医学和药学领域中的应用外,近年来在农业、食品安全、中药、环境以及特殊类型样品中也得到了广泛的应用。   岛津公司于2014年推出成像质谱显微镜 iMScope TRIO 以来,在诸多领域发挥其独有的高清晰度成像、光学图像融合、定性定位分析的特长。本文介绍了岛津日本合作实验室大阪大学Shimma教授基于iMScope TRIO 在领域拓展方面开展的部分工作。   1.姜黄素在姜黄干样品中分布的可视化分析:通过观察轴向和径向切片,对姜黄素的分布进行了详细的分析。发现姜黄具有非常规则的内部结构,而姜黄素就被封闭在管状结构中。 轴向切片中姜黄素具有线性分布特征,具有管状结构分布在植物体内的可能性   2.芦笋中抗高血压有效成分Asparaptine的分析:使用iMScope TRIO 对芦笋中的Asparaptine 进行了定位分析。Asparaptine的分布方式是从中心向外扩展,从下端向尖端扩展。同时在鳞片和维管束周围分布有大量的Asparaptine。通过借助MALDI-MSI技术,我们成功实现了对一种此前尚不明晰其分布的物质的详细定位信息的分析和确认。 芦笋的尖部、中部、下端和鳞片中的Asparaptine 分析   3.果蝇质谱成像方法建立以及脑部GABA成分的空间分布:首次对果蝇这种特殊样品建立了成像方法,可应用于昆虫体内杀虫剂成分可视化分析。使用上述方法,对果蝇脑部的γ─氨基丁酸(GABA)分布进行可视化,为神经递质的研究提供更可靠的空间分布信息。给药后的果蝇腹部检测出大量吡虫啉成分果蝇脑部GABA成分的分布   4.马毛中药物成分的直接检测:通过负离子模式分析,成功在马毛中检测出目标药物。给药后的马毛样本中,在距毛囊16.48 mm 位置处观察到较强的药物信号。根据马毛的平均生长速度。可推算出给药时间,大约在24-25天前。由于磷酸酯可在体内迅速代谢,直接在毛发中检测到未变化药物同样是一项十分重要的成果。 给药后的马毛中DexaSP 分布检测结果   iMScope TRIO 通过叠加不同检测原理的图像进行分析,为成像分析提供了强大的工具,并提高研究水平。   基于此,2020年7月9日,岛津“镜质合璧,还原真实”新品发布会将在仪器信息网举办,届时岛津将携新一代iMScope 成像质谱显微镜产品首次与中国用户见面。   届时尽请关注!
  • 化学所印刷微生物可视化检测芯片方面取得进展
    细菌、病毒、真菌等与生命健康相关。临床常用的细菌检测方法是平板计数法,需要将菌液培养1-2天,操作繁琐,费时费力,亟待发展快速灵敏的细菌检测新方法,这是纳米生物检测领域的重要目标之一。中国科学院化学研究所绿色印刷院重点实验室宋延林课题组在纳米光子结构的印刷制备、光学性质调控、机理研究和生物检测应用等方面取得了系列进展(Angew. Chem. Int. Ed., 2021, 60, 24234;Chem. Rev., 2022, 122, 5, 5144–5164;Matter, 2022, 5, 1865-1876;Adv. Mater. Interfaces, 2022, 9, 2102164;Sci. Bull., 2022, 67 , 1191–1193;ACS Nano, 2022, 16, 10, 16563–16573)。科研人员利用绿色印刷技术精确地控制纳米光子结构的组装过程,通过周期性地排列结构单元实现了显著的光子共振增强效应,为超灵敏可视化检测生物标志物提供了新途径。近日,该课题组将一维纳米结构的光学信号放大作用与蒸发过程中毛细力驱动的颗粒预富集相结合,设计出快速超灵敏的微生物检测芯片。研究以聚苯乙烯微球悬浮液为墨水,在基底上印刷制备了大面积的一维纳米光子结构,并利用聚苯乙烯微球表面大量的羧基高效偶联抗体,特异性地识别待检测样本中的致病菌。研究发现,将毛细力诱导的咖啡环效应引入微生物检测,可在基底上对目标病原体进行预富集,提高检测效率。除了捕获细菌,纳米光子结构还具有强的光场局域能力,可显著增强细菌的散射光信号,提高检测灵敏度,能够在单细胞水平上对其物理特征如生理环境、活性、繁殖状态进行可视化分析。进一步,研究实现了连续监测水、血清、尿液以及蔬菜等样本中的细菌情况。这种生物检测芯片制备简单、成本低,能够结合普通的商业显微镜或者手机直接获取检测结果,在医疗诊断、食品安全、环境监测和农业等领域具有广阔的应用前景。相关研究成果发表在Advanced Materials上。研究工作得到国家自然科学基金、科技部、中科院和北京市的支持。基于一维纳米光子结构生物芯片快速、超灵敏检测细菌感染
  • 293万!BD中标单细胞荧光分析系统
    一、项目编号:2022-JL13(03)-W10004(招标文件编号:2022-JL13(03)-W10004)二、项目名称:单细胞荧光分析系统招标公告2022-JL13(03)-W10004三、中标(成交)信息供应商名称:重庆九州合康医疗器械有限公司供应商地址:重庆中标(成交)金额:293.0000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 重庆九州合康医疗器械有限公司 单细胞荧光分析系统 BD BD FACSAria Fusion 1 2930000
  • 北京基因组所发布癌症单细胞表达图谱数据库CancerSCEM
    近日,中国科学院北京基因组研究所(国家生物信息中心)国家基因组科学数据中心开发的癌症单细胞表达图谱数据库CancerSCEM上线。该研究成果以CancerSCEM: a database of single-cell expression map across various human cancers为题在国际学术期刊Nucleic Acid Research在线发表。  单细胞分辨率的全转录组测序技术(scRNA-seq)具有研究细胞异质性的显著优势,已成为研究肿瘤微环境、癌症发病机制、转移与侵袭以及各类癌症治疗与诊断不可或缺的手段。截至2021年11月,PubMed已有超过1300个癌症相关的单细胞转录组学研究,极大提升了人们对人类癌症发生发展的理解,推动了癌症临床诊断与治疗的进程。大规模癌症scRNA-seq数据在过去十年中呈现爆炸式增长,迫切需要对这些数据进行规范化整合与处理,对各类癌症的肿瘤微环境进行深入挖掘与比较分析。为应对这一需求,该研究团队开发了CancerSCEM数据库。  CancerSCEM 1.0版本整合分析了208个癌症scRNA-seq数据集,涵盖肺腺癌(LUAD)、结肠直肠癌(CRC)、恶性胶质瘤(GBM)等在内的20种人类癌症类型。通过标准化分析流程处理,获得了精确的细胞类型注释信息。在此基础上,团队还开展了一系列附加分析,包括不同细胞类型间基因差异表达分析(可为新型标志物筛选提供参考)、细胞表面受体-配体基因对表达谱、样本内细胞互作网络构建等,可为用户提供更加丰富的肿瘤微环境相关信息,并开展了基于TCGA表达数据与临床信息的生存分析。  数据库为用户提供浏览、多重检索、在线分析及下载等服务功能,用户可采用首页快速检索、词云及精确检索等途径查询感兴趣的癌症单细胞数据集或样本。如点击词云里的基因名“HLA-A”或通过搜索框输入,均可触发数据库查询功能,并实时获得目标基因的详细信息及其在单细胞层面与细胞群体(组织)层面的表达分布信息。为方便临床相关用户的使用,团队共审编获得36个常用免疫检查点分子(如PDCD1、CTLA4、LAG3、HMGB1),并提供专门的搜索列表,以帮助各类癌症的临床免疫治疗研究寻找更优的治疗靶点。  数据库还配备了一个交互式综合在线分析平台,共集成2个分析模块与7个分析功能。通过基因分析模块,用户可开展4个方面的实时分析及可视化展示:样本内目标基因的整体表达概况;样本内基因在不同细胞类型间的表达比较;基因表达相关性计算及筛选;208个样本中单细胞或bulk层面的基因表达比较。通过样本分析模块,用户可进行样本间细胞组成比较、样本内细胞互作网络构建以及基于TCGA的生存分析。该分析平台将为用户开展个性化的癌症scRNA-seq数据挖掘提供友好的增值服务。  该研究工作得到中科院战略性先导科技专项、国家自然科学基金、国家重点研发计划等项目资助。  论文链接
  • 厦门大学杭纬教授课题组LA-ICP-MS技术新进展:实现单细胞质谱成像分析
    近日,厦门大学化学化工学院杭纬教授课题组在单细胞质谱成像研究方面取得进展,相关成果以“Single-Cell Mass Spectrometry Imaging of Multiple Drugs and Nanomaterials at Organelle Level”为题发表于ACS Nano(DOI: 10.1021/acsnano.1c02922)。  探究化学物质在生物组织甚至单细胞内的位置分布是生命科学研究的重要方向之一。特别是随着金属元素组学和元素标记技术的发展,对于元素的分析检测显得愈加重要。电感耦合等离子体质谱(ICP-MS)技术是最常用的元素检测手段之一,通过与激光剥蚀(LA)采样方法的联用,使得这种传统的溶液进样质谱技术具有了原位分析和化学成像的能力。但是,由于衍射极限以及透镜数值孔径等因素的限制,这种激光采样方法的空间分辨能力仍然停留在微米级别,难以应用于单/亚细胞水平上的成像研究。  杭纬课题组首次设计了具有三通结构的样品剥蚀池,从而将微透镜光纤激光采样技术与ICP-MS相结合,搭建了LA-ICP-MS成像平台,该装置可以实现低至400纳米空间分辨率的质谱成像,对生物组织和单细胞内的多种化学物质进行可视化探测,还易于实现可调分辨率的成像模式。以同一片小鼠小肠剖面组织为研究对象,获得了从500纳米至10微米空间分辨率的药物分布成像图片。利用高分辨模式的成像,能够更直观、精准地描绘出小肠组织内微小的细节和药物的分布,从而揭示小肠对药物的吸收和作用机理。  这种高空间分辨率的LA-ICP-MS成像装置也可以在细胞器水平上实现对单细胞的成像分析。课题组将HeLa细胞与金纳米棒、卡铂等药物同时培养,而后将在石英片上贴壁生长的细胞放入样品剥蚀池内进行成像检测。结果表明金纳米棒主要位于细胞的溶酶体内,而金纳米棒上修饰的不同基团会影响细胞对纳米材料的摄取量、细胞的形貌以及活性产生 而卡铂药物被癌细胞摄取后主要分布在细胞核内,通过与核内DNA的相互作用诱导癌细胞凋亡。这种纳米级空间分辨的元素成像有望在生物学与医学等多领域获得应用,在纳米尺度下揭示待测物的化学物质分布。  该工作是在杭纬教授指导下完成的。实验部分主要由该院2017级博士研究生孟一凡(已毕业)完成,高超鸿、陆桥等参与了论文的研究工作。研究工作得到国家自然科学基金(项目批准号:21974116、21521004、22027808)的资助和支持。  论文链接: https://doi.org/10.1021/acsnano.1c02922
  • 最新!瑞明生物单细胞分析仪加入PerkinElmer生命科学产品序列
    今年1月1日起,江苏瑞明生物科技有限公司的实时单细胞多模态分析仪正式加入PerkinElmer生命科学产品序列!江苏瑞明 实时原位单细胞生化分析仪(点击索取报价参数)实时单细胞多模态分析仪功能概述单细胞研究对于理解细胞的组成、生理行为与功能的多样性具有重要意义,基因组、转录组、蛋白组、代谢组学等分析技术为单细胞研究提供了有力工具。实时单细胞多模态分析仪可以实时、连续、定量检测单个活细胞的小分子含量及酶活性。核心特点主要性能实时单细胞多指标检测:实时检测单个活细胞内小分子含量(如葡萄糖、乳酸、ATP、胆固醇、Ca2+、K+等)及酶活性 (葡萄糖苷酶、鞘磷脂酶、乳酸脱氢酶等),可匹配160余种商品化试剂盒;实时亚细胞原位检测:在亚细胞水平(胞质、胞核、胞膜)实时连续、原位检测;超微量提取、注射:单细胞水平提取细胞器(如溶酶体、线粒体)、胞质进行质谱或其它平台的联用分析;单细胞注射药物、代谢剂等,并进行药效评估;活体水平检测:活体水平实时检测生化指标(用药前后、中医药针灸刺激前后)的变化。技术原理电信号检测通过电探头对细胞释放的电活性物质进行检测,如过氧化氢、一氧化氮、多巴胺、超氧阴离子等物质。通过试剂盒的量化级联反应产生的过氧化氢等电活性物质,实现单细胞小分子含量或酶活性的检测。荧光信号检测光探头传输激发光激发预染色细胞,通过光学检测系统收集细胞发射的荧光信号,荧光信号强弱反映细胞预染色指标的含量,可实现细胞整体或亚细胞激发检测。通过单细胞超微量提取注射,向单个活细胞注射荧光检测试剂盒,光探头传输激发光激发细胞的生化反应产物而产生荧光,荧光信号强弱反映细胞内相应的小分子含量或酶活。经典应用肿瘤细胞代谢肿瘤细胞异质性研究,包括糖代谢、脂代谢、蛋白代谢相关的小分子和酶活分析;结合抑制实验,研究肿瘤细胞代谢过程中关键激活酶,为抗癌药物研发提供理论基础;通过抗癌新药直接刺激细胞或配合专用探头实现细胞内送药,评估其对单细胞内代谢参数指标的影响。代表文献1) Zheng XT, Yang HB, Li CM. Optical detection of single cell lactate release for cancer metabolic analysis. Anal Chem. 2010 Jun 15 82(12):5082-7. (DOI: 10.1021/ac100074n)2) Pan R, Xu M, Jiang D, Burgess JD, Chen HY. Nanokit for single-cell electrochemical analyses. Proc Natl Acad Sci USA. 2016 Oct 11 113(41):11436-11440. (DOI: 10.1073/pnas.1609618113)3) Zheng XT, Li CM. Single living cell detection of telomerase over-expression for cancer detection by an optical fiber nanobiosensor. Biosens Bioelectron. 2010 Feb 15 25(6):1548-52.. (DOI:10.1016/j.bios.2009.11.008)4) Zheng XT, Hu W, Wang H, Yang H, Zhou W, Li CM. Bifunctional electro-optical nanoprobe to real-time detect local biochemical processes in single cells. Biosens Bioelectron. 2011 Jul 15 26(11):4484-90.(DOI:10.1016/j.bios.2011.05.007)新药研究新药研究离不开细胞学实验,实时单细胞多模态分析仪在药物研究中的常见应用:药物的极性和分子量会影响其透过细胞膜的效率,如果药物的细胞膜透性较低或未知,可以单细胞内定点注射药物并实时检测药效相关指标(Ca2+和ROS等),可以反映药物发挥作用的潜在位置;为了理解药物作用机制,需要预先判断可能的转运体、药物靶点、及涉及到的关键代谢酶,然后通过实时单细胞多模态分析仪进行验证,由于是实时的,可以添加相关抑制剂或增强剂直接进行判断验证;用于单细胞亚细胞水平的定向给药及实时原位检测药物作用效果,提供亚细胞水平药物-细胞相互作用研究的重要工具,实现单细胞层面药物保护性研究和抑制性研究,可为药物载体的单细胞层面载药能力研究和亚细胞层面的定位提供选择性平台。代表文献1)Xin T Z , Peng C , Chang M L . Anticancer Efficacy and Subcellular Site of Action Investigated by Real‐Time Monitoring of Cellular Responses to Localized Drug Delivery in Single Cells[J]. Small, 2012, 8(17):2670-2674. (DOI: 10.1002/smll.201102636)2)Yuning Han, Bin Hu, Mingyu Wang, Yang Yang, Li Zhang, Juan Zhou*, Jinghua Chen*. pH-Sensitive Tumor-Targeted Hyperbranched System Based on Glycogen Nanoparticles for Liver Cancer Therapy, Applied Materials Today, 2020, 18, 100521.(DOI: 10.1016/j.apmt.2019.100521)神经领域应用单细胞胞质的超微量抽提,和质谱平台联用完成递质成分的分析;纳米级探头实现单个神经细胞或脑组织的小分子电化学检测。代表文献1)Molecular profiling of single axons and dendrites in living neurons using electrosyringe-assisted electrospray mass spectrometry[J]. Analyst, 2019, 144 2) Development of Au Disk Nanoelectrode Down to 3 nm in Radius for Detection of Dopamine Release from a Single Cell[J]. Analytical Chemistry, 2015, 87(11):5531.3)Electrochemically Probing Dynamics of Ascorbate during Cytotoxic Edema in Living Rat Brain[J]. Journal of the American Chemical Society, 2020, 142(45):19012-19016.活体研究中医药领域,可对特定穴位血清素(5-羟色胺)、一氧化氮、乙酰胆碱、抗坏血酸等关键指标的实时监测,可配合组织解剖学实验,研究不同组织类型的指标差异,辅助针灸机理研究;活体动物模型在体检测,辅助肿瘤疾病药物研究。代表文献1)Li, YT., Tang, LN., Ning, Y. et al. In vivo Monitoring of Serotonin by Nanomaterial Functionalized Acupuncture Needle. Sci Rep 6, 28018 (2016). (DOI: https://doi.org/10.1038/srep28018)2)Tang, L., Li, Y., Xie, H. et al. A sensitive acupuncture needle microsensor for real-time monitoring of nitric oxide in acupoints of rats. Sci Rep 7, 6446 (2017). (DOI: https://doi.org/10.1038/s41598-017-06657-3)3)Tang, L., Du, D., Yang, F. et al. Preparation of Graphene-Modified Acupuncture Needle and Its Application in Detecting Neurotransmitters. Sci Rep 5, 11627 (2015). (DOI: https://doi.org/10.1038/srep11627)关于江苏瑞明(点击进入在线展位)江苏瑞明生物科技有限公司是一家集研发、生产与销售单细胞检测仪及其它高端生物化学检测设备的高科技企业。公司坐落于风景宜人的江苏省宜兴经济技术开发区光电子产业园。公司目前的主要产品为纳米光电生化检测仪,该设备采用世界首创且具有自主知识产权的技术,将精密光、电探测与纳米加工有机的结合为一体,实现了对单个活细胞在亚细胞水平的实时在线同时检测,填补了国内在此单细胞检测领域的空白。此设备在生命科学、医学、药理学或毒理学、农业、食品科学、生物能源等领域有着广泛的应用。公司目前主要产品有四大类,仪器设备、耗材、试剂和微流控及生物芯片。公司已有发明专利十几项,高新技术产品多项。(更多详情点击查看)
  • 650万!山东大学质量标记单细胞多维分析系统采购项目
    项目编号:SDJDHF20220589-Z355项目名称:山东大学质量标记单细胞多维分析系统采购项目预算金额:650.0000000 万元(人民币)最高限价(如有):650.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1质量标记单细胞多维分析系统 1台详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:山东大学地址:山东大学中心校区明德楼联系方式:王老师 0531-883697972.采购代理机构信息名称:海逸恒安项目管理有限公司地址:山东省济南市历下区华润置地广场A5-6号楼27层联系方式:李雨莹 0531-82661997;139641595153.项目联系方式项目联系人:李雨莹电话:053182661997山东大学质量标记单细胞多维分析系统采购项目公开招标公告(1).pdf
  • Cytek 发布全新台式高维细胞分选仪,助力超高分辨单细胞分析
    仪器信息网讯 6月7日,Cytek Biosciences宣布推出全新的台式高维细胞分选仪- Cytek Aurora CS。全新台式流式细胞分选仪发布,实现超高分辨细胞分析Cytek Aurora CS流式细胞分选系统据了解,该流式细胞分选仪采用Cytek独特的全光谱分析技术(Full Spectrum Profiling, FSP™ ),Aurora CS可在单细胞水平提供超高分辨率的数据结果,帮助科学家和研究人员将复杂实验简单化,轻松解决最具挑战性的细胞分析,如高自发荧光的细胞分析、或关键生物标志物表达水平低的细胞分析等。使用Aurora CS,研究人员可以从微孔板或试管中轻松分选活细胞或其他颗粒,用于下游分析实验,如单细胞RNA测序、蛋白质组学和细胞生物学研究等。Cytek于2017年首次推出了其旗舰级产品-Aurora流式细胞分析系统,Aurora系统利用突破性的Cytek FSP™ 技术,采集来自多个激光器激发的荧光素全光谱信号,轻松分辩单细胞上的多种荧光标记,显著提高了高参数细胞分析的灵敏度,极好的解决了流式检测受技术局限的问题。Aurora CS基于同样的FSP™ 技术,保持了与Aurora一致的优秀特性和强大功能。独特的光学设计和解析方法能让使用者体会到更高的灵活性, 不仅可广泛选择大量新的荧光染料,且无需为每个应用重新设置仪器。先进的光学系统和低噪音电子系统,带来超强灵敏度和卓越分辨率的细胞分析体验,包括分析那些高自发荧光或关键生物标志物表达水平低的细胞。Cytek Aurora分析系统和Aurora CS分选系统,利用Cytek独有的FSP™ 技术,可以检测标记在每个细胞上的多种荧光探针的全光谱信号,在单管样本中,即可完成高度复杂方案(40色方案)的分析和分选,使科学家们能够更深入更完整的了解生物系统。结合FSP™ 技术和高端分选特性,Aurora CS为研究人员提供了一个可应用于多种生物学场景和分选条件的解决方案。搭配SpectroFlo CS软件,在更短的设置时间下,即可轻松实现6路分选、自定义分选、自动液滴延迟和分选液流监控等操作,满足各种科学研究与应用的需求。网络会议预告 点击报名参会
  • 肿瘤细胞分离检测中微流控芯片系统的应用有哪些?
    作为液体活检的重要标志物之一,循环肿瘤细胞(CTCs)在外周血中的含量可以用来辅助判断患者的癌症病发状况。除此以外,CTCs对于肿瘤细胞转移行为等基础研究也具有非常重要的意义。然而人体血液中的CTCs含量极其稀少,通常仅有0~10个/mL,与之相对,红细胞、白细胞和血小板的含量则分别达到5×109 个/mL、4×106 个/mL和3×108 个/mL,而且肿瘤细胞在转移过程中可以通过上皮-间质转化(EMT)和间质-上皮转化(MET)来不断地改变自身的特征。正是由于其稀缺性和异质性,以及血液中复杂基质的干扰,CTCs的精准检测成为巨大的难题。 由于常规的光学分析手段在检出限和灵敏度上均难以达到直接检测的要求,因此通常在进行外周血中CTCs的检测之前,要通过一些样品前处理方法来实现其分离和富集。常采用的样品前处理方法可以分为物理法和化学法,物理法主要根据细胞在物理特征上的差异来进行分离,例如膜过滤分离和密度梯度离心,就是分别依据细胞的大小和密度来完成筛选。化学法则主要依靠生物大分子的特异性识别作用,例如抗原抗体相互作用,核酸适配体与靶标的选择性结合。  上述样品前处理方法虽然能够在不同程度上实现CTCs的分离富集,但也存在着一定的缺陷。由于这些方法都是非连续性的,在吸附、洗脱和转移的过程中难免会造成细胞的丢失,加之CTCs本身的稀缺性,很容易导致假阴性结果的产生。利用微流控芯片功能集成的特点则可以很好地解决这一问题,CTCs的捕获、释放、计数及检测等操作均可在芯片上完成,连续的自动化处理可以有效减少人为误差的干扰。此外,微流控芯片所需要的进样量非常小,可以大大减少珍贵样品和试剂的消耗,降低检测成本。并且在微尺度下表面力的作用会明显放大,可以有效提高物质混合和反应的效率,实现快速高效的分离分析。因此,近年来多项研究尝试利用微流控芯片平台开展CTCs分离检测工作,取得了良好的效果。本文对微流控芯片技术用于CTCs分离检测的相关研究进展进行了综述,将采用的分离方法主要分为物理筛选和生物亲和两大类,同时囊括正向富集和反向富集两种策略。此外,对于近期发展的芯片原位检测CTCs新方法也进行了介绍。  1、CTCs分离芯片研究进展  作为商品化较为成功的CTCs分离检测系统,强生公司的CellSearch产品采用的是基于上皮细胞黏附分子(EpCAM)抗体特异性识别肿瘤细胞的方法,类似的方法在CTCs分离芯片中也被广泛使用,可以视作利用生物亲和作用进行CTCs分离富集的代表。  另一方面,依据细胞在物理性质方面的差异,无须生物标志物的条件下即可实现CTCs的筛选,其中有无外力介入的被动分离方法,例如利用微尺度下流体力学中的惯性效应和黏弹性效应来进行筛分。  也有外加物理场的主动分离方法,诸如介电泳、表面声波和光镊技术等。除了直接对CTCs进行特异性识别实现正向富集外,也可以通过选择性结合诸如白细胞等干扰,再将其排除,从而达到反向富集的效果。  2、、芯片原位CTCs检测  对于CTCs的检测,通常采取先进行细胞染色,再用荧光显微镜观察的方法,但该方法在灵敏度上有待提高,且重现性较差,需要手动操作和人工计数。  此外,以荧光光谱为代表,一些常见的光谱检测手段也被广泛应用在芯片上CTCs的检测中。  除了光学分析方法外,研究人员通过使用传感元件实现了CTCs芯片检测结果的数字化直读或可视化分析。  3、总结与展望  本文对CTCs分离微流控芯片的技术原理、分离策略和研究进展进行了综述。其技术原理主要分为物理筛选和生物亲和两大类,分离策略分为正向富集和反向富集两个方向。同时,介绍了CTCs芯片原位检测的主要技术方法和优化策略。随着微流控芯片技术的快速发展,其微尺度流体操控、微结构加工和集成传感检测能力得到极大提升,进一步推动了CTCs分离微流控芯片技术的发展。多项研究显示,以微流控芯片为平台来分离检测外周血中的CTCs,可以充分发挥芯片本身微量、高效、易于自动化和集成化的优势,最终实现对临床血液中CTCs的快速精准分析,在肿瘤早期诊断、复发与转移监测以及抗肿瘤药物评价等多个领域具有重要的应用空间。  现阶段,CTCs芯片在筛选精度和筛选效率方面仍存在较大的提升空间。针对这一挑战,由于精准与高效二者难以兼得,未来的芯片设计应该更专注于单个目标的实现。一方面,针对基础研究,应当注重于提高CTCs筛选的细胞纯度及细胞活性。可以先利用惯性效应对血液进行粗分离,筛分出尺寸较大的白细胞和CTCs。再采用液滴分选的方法,通过免疫磁性分离实现CTCs的精确筛选。液滴分选技术能够达到单细胞分析的精度,利用液滴分选进行肿瘤细胞筛选也已有文献报道。另一方面,针对临床检测领域,研究重点则在于实现临床样本的高通量分析。可以采用电分析方法,依据不同种类细胞的比膜电容和细胞质电导率差异来设置恰当的阈值,对流经检测窗口的CTCs实现快速分析。此外,微流控芯片技术属于多学科交叉领域,CTCs芯片的发展同时也受益于微机电系统(MEMS)、材料学、流体力学和生物医学等研究领域的技术突破。随着相关领域研究技术的发展,CTCs芯片未来有望成为肿瘤基础研究和癌症早期临床诊断的重要平台。
  • 采用改进质谱流式|斯坦福大学表征人B细胞特征单细胞图谱
    前言B 细胞具有产生针对多种靶标的抗体的独特能力,可提供针对感染的保护,同时还有助于免疫失调环境中的发病机制。人类 B 细胞分为五个群体:过渡、幼稚、非转换记忆、转换记忆和浆细胞。识别和分类人类 B 细胞的功能亚群,阻碍了作者在自身免疫中选择性靶向致病性 B 细胞和在疫苗接种中诱导记忆反应的能力。为了表征外围成熟的人类 B 细胞,本文作者开发了一种高度复用的单细胞筛选方案,通过使用大规模细胞术来量化 351 个表面分子的共表达。基于作者的研究结果,作者提出了一种分类方案,将来自外周血、骨髓、淋巴结和扁桃体四个组织的的 B 细胞分为 12 个独特的亚组,并构建了具有表面表型、代谢、生物合成活性和对免疫激活的信号反应特征的广泛单细胞图谱。这个人类 B 细胞身份图谱将使研究能够在稳态、疫苗接种、感染、自身免疫和癌症的背景下进一步确定 B 细胞亚群的功能。本篇为斯坦福大学研究团队在 Immunity期刊(IF:43.474)发表的题为 “An Integrated Multi-omic Single-Cell Atlas of Human B Cell Identity”的研究成果,采用改进的质谱流式细胞仪、流式细胞术等研究方法,成功量化了百万级人类B 细胞上 351 种表面分子的共表达模式。通过鉴定了差异表达的分子,对比VDJ 序列、代谢谱、生物合成活性和信号反应。提出了新的 B 细胞分类方案:在四种淋巴组织中鉴定出 12 个独特的亚群,包括 CD45RB + CD27 -早期记忆群体、类别转换的 CD39 +扁桃体常驻群体和有效响应免疫激活的 CD19 hi CD11c +记忆群体。该分类框架和基础数据集为进一步研究人类 B 细胞身份和功能提供了资源。技术流程研究结果1.高度多重的单细胞表面筛选揭示了人类 B 细胞表面蛋白质组为了识别区分 B 细胞亚群的分子,作者开发了多重筛选的方法,并量化了健康人类 B 细胞上 351 种表面抗原上的共表达模式(图1A)。通过设计了 12 个质谱抗体组,每个组由 9 个用于子集的保守分子和 30 个对每个组独特的可变分子组成。门策略可以实现四个典型 B 细胞亚群:过渡、幼稚、非转换记忆和转换记忆(图1B)。在设置了一个严格的阈值(图 1 C)后,作者确定了 98 个在人类 B 细胞上表达的表面分子(图 1D)。作者的单细胞筛选策略实现了对人类 B 细胞表达的表面分子的可靠鉴定。图1 |高度多重的单细胞表面筛选揭示了人类 B 细胞表面蛋白质组a)实验概述 (n = 2 个捐助者)。b)典型种群的代表性门控。c)屏幕上分子阳性的代表性阈值。d)总 B 细胞(顶行)的百分比阳性和 B 细胞表达的分子子集(底行)的中值表达。2.差异表达分析揭示了幼稚 B 细胞的无反应特性通过规范门控策略识别组织B 细胞的成熟状态:从过渡到幼稚、非切换和切换记忆。为了探究在整个过程中发生的蛋白质组学变化,作者评估了所有分子的子集中每个成对组合之间的表达差异。作者绘制了 61 个差异表达分子(图2A )。正如预期的那样,未成熟的同种型 IgD 和 IgM 在过渡和幼稚亚型中富集,而经典记忆分子 CD27 在记忆细胞中富集。CD305在抗原缺乏经验的细胞中比记忆细胞富集, CD45RB (RB) 是 CD45 的同种型,优先在记忆细胞中表达。作者绘制了幼稚细胞与其他子集的比较(图2B),作者发现幼稚细胞表达的与运输相关的分子数量少于任何其他子集,这表明它们对刺激的反应较小。事实上,幼稚细胞对 16 种转运分子的中位表达值最低,在所有 46 种转运分子中平均表达最低(图 2C)。作者探索了这种趋势在 GO 术语中是否一致,并发现幼稚细胞在 30 个术语中的 19 个具有最低的平均表达值(图 2 D)。事实上,当对所有 98 个分子的中位表达值进行平均时,幼稚细胞的平均值最低,这表明它们比其他 B 细胞亚群处于更无反应的状态。这些发现证实了幼稚 B 细胞的无反应特性。图2 | 差异表达分析揭示幼稚 B 细胞a)子集的每个成对比较的中值表达差异。所有非白色瓷砖都是显著的(p 0.005)。b)比较的火山图,与 GO 术语“运输”相关联。框中列出的显著不同的分子按表达差异幅度的递减排序。c)转运分子 (颜色) 的中值表达。所有转运分子的中位表达平均值(黑色)。d)与 GO 术语相关的分子的中值表达平均值 (颜色)。所有分子的中值表达的平均值(黑色)。e)在幼稚细胞中表达更高的六种分子的表达 (p 0.005)。3.CD45RB 标记人类记忆 B 细胞并识别早期记忆群体为了找到唯一识别不同 B 细胞的标记,作者以无偏方式分析了所有 B 细胞中分子的共表达模式。作者生成了统一UMAP图,通过使用所有 12 个试管的供体汇集数据来展示保守分子的表达(图 3A)。作者绘制了与保守分子相关的分子,并按功能和相关保守标记进行展示(图 3 B)。在 UMAP 坐标上叠加规范门控标签,尽管表型相似,但细胞被规范门控视为不同的子集(图 3C)。大多数 CD27 +细胞也是 RB +,而 RB + CD27-群体包含 25% 未封闭的细胞(图 3 D 和 3E)。鉴于 RB + CD27 -细胞和 CD27 +细胞在 UMAP 上的共定位,作者假设这些细胞代表在当前分类方案下未被识别的记忆细胞群。为了评估 RB 和 CD27的记忆细胞谱,作者前瞻性地从健康的人类 B 细胞(n = 2 个供体)中分离出 CD27 × RB双阳细胞,并通过下一代测序对 IgH 基因座进行测序(图 3 F)。作为抗原暴露的代表,作者测量了互补决定区 3 (CDR3) 之外的 IgH 基因座中核苷酸的供体汇集突变频率(图 3 G)。正如预期的那样,CD27 +细胞具有相对较高的突变负担,在接触抗原后通过体细胞超突变 (SHM) 获得。作者量化了四个种群在一系列多样性顺序中的多样性并发现 RB - CD27 -细胞的多样性最高,而 RB + CD27 +细胞的多样性最低(图 3 H)。作者进一步探索来自一个群体的细胞是否倾向于与来自任何其他群体的细胞克隆相关(图 3 I)。作者发现来自四个群体中的每一个的细胞都更有可能与来自同一群体的细胞共享克隆谱系,而不是来自不同群体的细胞(图 3J)。这表明 RB 和 CD27 的表达在克隆谱系中是高度协调的,正如对响应抗原结合而表达的两种分子所预期的那样。总之,这些发现提供了强有力的证据,表明 RB 的表达是外周血记忆 B 细胞的指示,并且与 CD27 的缺失相结合,可用于对早期记忆群体进行分类。图3 | CD45RB 标记人类记忆 B 细胞并识别早期记忆群体4. 将 B 细胞分为表型和同型不同的亚群系统筛选了数十种在 B 细胞中差异表达的分子,因此作者假设作者可以将 B 细胞分类为更细粒度的亚群。作者对新鲜、健康的人类外周血 B 细胞(n = 3 名供体)进行了染色,细胞降维成十个不同的群体,包括两个幼稚和六个记忆子集(图 4 B)。表面表达谱提示成熟顺序排列(图4B)。七种不同分子的特征表达以手动门控每个群体,因此也用于标记该方案中的群体:CD11c、CD73、CD95、CD27、CD38、RB 和 CD19(图 4 C D)。子集倾向于在图上形成独特的岛屿,为作者的分类方法提供正交验证 (图 4 D)。为了评估子集之间的表型相似性,作者计算了中值表达谱之间的成对欧几里得距离(图 4 E)。对于每个群体,作者量化了表型最相似的子集。RB + CD27 -记忆和 RB + CD27 + CD73 -彼此最相似,进一步验证了 RB + CD27 -细胞作为记忆子集的状态。在汇总数据(图 4 F)中, 组织 B 细胞也会导致跨个体供体存在同种型。通过规范门控,30% 的 IgG +细胞和 20% 的 IgA +细胞由于缺乏 CD27,这表明 CD27 单独作为记忆分子的不足(图 4 G)。相比之下,作者的方法正确地将超过 99% 的 IgG +和 98% 的 IgA +细胞分类为记忆细胞。已知 Ig 同种型的使用会影响下游效应器功能和分化模式。因此,作者还在同种型的基础上组织了 B 细胞,并观察到BCR 复合物的两种成分的不同表达模式:表面 Ig 和 CD79b(图4H)。鉴于这些趋势,作者探索表型或同种型是否对预测表面 Ig 和 CD79b 的表达量贡献更大。作者创建了单细胞多元线性回归模型,其中细胞的表型标记和同型标记用于预测 CD79b 或表面 Ig 的表达(图4H)。尽管两者都提供了丰富的信息,但细胞的同种型对预测两种分子的表达的贡献超过了细胞的表型。总而言之,这些发现表明,作者的高维分类将外周血 B 细胞组织成十个表型不同的亚群,比典型的门控策略更准确地划分细胞。此外,这些表型分区显示出同型限制,这进一步有助于 B 细胞的身份。图4 | 将 B 细胞分为表型和同型不同的亚群5. B 细胞亚群功能的研究提示了不同的代谢、生物合成和免疫信号活性特征为了研究作者改进的 B 细胞分类方案的功能特性,作者探索表面蛋白是否表示其他潜在功能细胞过程的差异。作者对来自其他供体(n = 9 个供体)的健康人外周血单核细胞 (PBMC) 进行了染色,并使用质谱仪组来探索 B 细胞代谢谱、生物合成活性和免疫信号传导特征(图 5A)。作者量化了与四种代谢途径相关的八种酶的表达:糖酵解或发酵、ATP 感应、氧化磷酸化和脂肪酸氧化 (图5B )。幼稚细胞在所有亚群中的表达最低,而 RB + CD27 -记忆细胞具有介于幼稚和记忆亚群之间的中间代谢特征。这些通路使用的差异可能是由于不同的功能作用,因此不同的代谢需求。通过将 5-溴尿苷 (BRU) 和嘌呤霉素标记与质谱仪相结合,量化从头RNA 和蛋白质合成以及功能和表型特征。作者发现转录活动几乎不能解释在翻译活动中观察到的差异 (图 5 C),突出了这两个过程的差异调节。CD19 hi CD11c +记忆细胞具有最高的中位转录活性,其次是 CD73 +幼稚细胞,其具有最低的中位翻译活性(图 5D)。发现转录活性浆细胞中的翻译活性和 CD184 表达高于转录lo浆细胞(图 5E)。这种转录活跃的群体可能是长寿命的浆细胞,而转录不活跃的群体可能是短寿命的浆细胞。为了评估亚群之间免疫激活敏感性的差异,作者用不同剂量的 BCR 交联剂和 CD40 配体刺激 B 细胞 10 分钟,然后用包含抗B 细胞信号传导固有的磷酸化靶标(图 5A)。作者测量了脾酪氨酸激酶 (pSYK) 和下游磷脂酶 Cγ2 (pPLCγ2) 的磷酸化(图 5F)。作者在双轴等高线图上可视化了 BCR 复合信号级联中两个分子 SYK 和 PLCγ2 的磷酸化状态变化,并发现子集之间的分布变化存在鲜明对比(图 5 H)。为了量化信号响应,作者计算了推土机在基线细胞和受刺激细胞之间的距离,发现这两个记忆群体以及浆细胞比所有其他子集的响应性明显更高(图 5 I)。作者量化了表型和同种型使用的相对贡献,以预测代谢途径表达、生物合成活性和信号响应的表达(图 5J)。总的来说,这些发现表明作者的表型分类捕获了代谢途径使用、生物合成活性和对免疫激活的信号反应的功能差异。图5 | B 细胞亚群功能的研究揭示了不同的代谢、生物合成和免疫信号活性a)实验工作流程 (n = 9 捐助者)。6. 淋巴组织特异性 B 细胞群的表征为了将人类 B 细胞分析的范围扩大到外周血之外,作者分析了来自外周血的骨髓 (n = 3)、扁桃体 (n = 3)、淋巴结 (n = 1) 和其他外周血样本 (n = 4)一个新的健康捐赠者队列(n = 11),通过大规模细胞术(图 6A)。为了探索组织之间 B 细胞表达的整体差异,作者评估了所有分子的供体组织表达差异。作者确定了至少一对组织之间存在差异表达 (p 0.005) 的 21 个分子,并绘制了它们的分布,按功能组织(图 6 B)。淋巴结也明显偏向未成熟同种型(图 6 C)。然而,扁桃体没有富集任何抑制分子(图 6 B),主要由具有记忆表型的细胞组成(图 6 C 和4 G)。为了评估组织内 B 细胞表型的组成,作者绘制了子集比例图,并且根据同种型数据,作者发现淋巴结大量富含 CD73 +幼稚细胞(图 6 D)。为了评估组织的差异性,作者根据子集组成计算了每个组织之间的成对曼哈顿距离(图 6 E)。作者确定了外周血中不存在的两个亚群:生发中心 (GC) B 细胞,存在于扁桃体和淋巴结中,以及一个 CD39 +扁桃体群(图 6 D)。GC 细胞是 CD38 +和 CD32 - (图 6 F)。图6 | 淋巴组织特异性 B 细胞群的表征a)实验工作流程 (n = 11 捐助者)。b)分子的小提琴图在至少两种组织中显著差异表达 (p 0.005)。研究讨论为了探究原代细胞的深层表型多样性,作者开发了一种高度多重的单细胞表面筛选,并将其应用于识别可以分离人类 B 细胞亚群的分子。这种方法使作者能够区分四种淋巴组织中的 12 个 B 细胞亚群并关联它们的功能特征。作者确定了六个记忆群体,证实了先前关于小鼠和人类抗原识别后表型多样化的报道。作者还确定了一个 CD19 hi CD11c +记忆群体,它与在自身免疫、感染和衰老背景下描述的几个群体具有一些共同特征。卡内尔等人,2017)。在这个群体中,作者通过 CD27 表达分离细胞,发现 T-bet 和 PD-1 在 CD27 - CD19 hi CD11c +记忆细胞中富集,类似于在 T 细胞中看到的效应记忆表型。在这里,作者通过对健康个体中多组学整合进行的深度表型分析揭示了新的、更细的B群体确定,全面映射了人体血液和淋巴组织中的 B 细胞身份。对几个细胞过程中表型与同种型使用的贡献的定量评估突出了对超越谱测序和同种型身份进行分析以了解人类 B 细胞免疫功能的必要性。研究结果作为未来研究在疫苗接种或疾病背景下研究体液免疫反应的资源,描述的群体和分子可能对于理解 B 细胞介导的发病机制或保护至关重要。
  • 稳态瞬态荧光光谱仪在力学存储/可视化行为的自充能、可持续力致发光的应用研究
    自充能、可持续力致发光力致发光是指材料在力学刺激下产生的一种发光行为。由于其独特的力学-光学响应特性,力致发光为实现力学传感及其可视化提供了新思路和新途径。目前发现的力致发光材料多数仅表现出动态力学刺激下的瞬态发射行为,极大地限制了其在力学的可视化显示和成像方面的应用。可持续力致发光材料能够在力学刺激停止后继续保持发光行为,对可持续力致发光材料的开发是应对上述问题的有效方式。此前,研究人员通过陷阱工程设计,在特定材料体系中获得了力学刺激后可持续的力致发光现象。然而,该类可持续力致发光材料在使用前必须经历预辐照,在其结构内部预先储存能量,这不仅增加了实际应用时操作的难度,也难以实现该类材料的循环稳定使用。因此,实现无需预辐照的自充能、可持续力致发光成为当前研究的热点之一。中国科学院兰州化学物理研究所王赵锋团队在国际知名期刊Advanced Science上发表的题为“Self‐charging persistent mechanoluminescence with mechanics storage and visualization activities”的研究论文。本文研制出一种自充能、可持续力致发光材料——Sr3Al2O5Cl2:Dy3+/PDMS(SAOCD/PDMS),该材料在力学的刺激下,无需预辐照即可产生明亮的长寿命力致发光,有效避免了此前材料在使用时的预辐照需求,极大提升了长寿命力致发光材料的应用便利性。本工作通过将SAOCD (SAOCD) 粉末复合到PDMS基质中,创建了一种新型的力致发光材料,即自充能、可持续力致发光材料。无需任何预辐照,所制备的SAOCD/PDMS弹性体可以直接在力学刺激下表现出强烈且持久的力致发光,这极大地促进了其在力学照明、显示、成像和可视化中的应用。通过研究基体效应以及热释光、阴极发光和摩擦电特性,界面摩擦起电诱导的电子轰击过程被证明是机械刺激下SAOCD中自充能能量的原因。基于独特的自充电过程,SAOCD/PDMS进一步展现出力学存储和可视化读取行为,为机械工程、生物工程和人工智能领域 处理力学相关问题带来了新颖的思路和方法。 自激活、长寿命力致发光材料的设计制备与性能研究 图1 SAOCD/PDMS复合弹性体的制备流程、性状及力致发光性能 当施加拉伸、摩擦、压缩等力学刺激时,复合弹性体呈现出直接的自激活力致发光,不需要额外的预辐照(图1c)。复合弹性体的力致发光性能随SAOCD颗粒中Dy的含量增加呈现出先增后减的趋势(图1d)。随着施加应变的增加,SAOCD/PDMS弹性体的ML强度随之增加,其在应力/应变传感方面表现出良好的应用价值。此外,该复合弹性体的力致发光还表现出良好的热稳定性(图1f)。图2 (a)SAOCD的力致发光和余辉示意图;(b)SAOCD/PDMS复合弹性体在拉伸、摩擦、压缩条件下的力致发光和余辉照片;(c)不同浓度Dy离子掺杂SAOCD/PDMS复合弹性体的摩擦余辉光谱图。 该材料在力学的刺激下,无需预辐照即可产生明亮的长寿命力致发光(图2),有效避免了此前材料在使用时的预辐照需求,极大提升了可持续力致发光材料的应用便利性。图3 SAOCD的自激活力致发光及余辉机理明确了SAOCD/PDMS的自激活力致发光和余辉的物理过程,即在外力刺激下SAOCD与PDMS产生界面摩擦电作用,SAOCD的电子转移到PDMS表面,SAOCD与PDMS间形成高能电场,PDMS表面电子被加速,轰击SAOCD,使得SAOCD中的电子受激从价带跃迁至导带,一部分直接和发光中心结合产生力致发光,另一部分被陷阱捕获,外力撤除后自发释放转移至发光中心产生余辉。机械力学信息的存储与可视化读取器件研究图4 (a)力致发光复合材料的应力存储和可视化读取示意图;(b)SAOCD/PDMS复合弹性体对机械力学信息的存储、读取原理及功能展示。 通过利用SAOCD/PDMS材料中特有的自充能物理过程,进一步发展出了一种力学信息的存储与可视化读取技术(图4)。在机械刺激下,力学信息将会以陷阱捕获载流子的方式在材料内部进行存储,随后,在热刺激下,所存储的力学信息将以可视化的形式得到读取,所存储和读取的力学信息主要包括力学强度、发生时间及其空间分布等。作者简介王赵锋简介:中国科学院兰州化学物理研究所研究员,博士生导师,2006年毕业于兰州大学材料化学专业,获理学学士学位,2011年毕业于兰州大学材料物理与化学专业,获工学博士学位。2011年至今,先后于中国科学院兰州化学物理研究所固体润滑国家重点实验室、美国德克萨斯州立大学化学与生物化学系、美国康涅狄格大学材料科学研究所进行科学研究。主要研究方向为摩擦/力致发光材料及应用,在Nat. Commun., Angew. Chem. Int. Ed., Adv. Funct.Mater., Nano Energy, Mater. Horiz., Adv. Sci.等期刊发表论文100余篇(被引用5000余次,h因子40),编写书籍章节两部,申请/授权国家发明**10余项,研究成果被国内外知名媒体如中国科学报、中国科普博览、人民日报、中科院之声、New Scientist、Nanowerk、Science Trends等专题报道。现为国内知名期刊《稀土学报(英文版)》、《材料导报》、《发光学报》青年编委,以及中国机械工程学会表面工程分会青年学组特邀专家。2015年获美国环境保护署P3提名奖,2017年获甘肃省自然科学二等奖,2018年获中科院高层次人才计划择优支持,2020年获甘肃省杰出青年基金支持,所带领的研究团队获2021年度甘肃省“青年安全生产示范岗”荣誉称号,2022年获中科院区域发展青年学者称号。相关产品推荐 本研究的力致发光光谱数据采用卓立汉光搭建的组合荧光系统采集,配置Omni-λ300i系列“影像谱王”光栅光谱仪对光谱进行分光。目前,该组合荧光系统已经升级为OmniFluo900 系列稳态瞬态荧光光谱仪,如需了解该产品,欢迎咨询。 免责声明 北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。 如果您认为本文存在侵权之处,请与我们联系,会*一时间及时处理。我们力求数据严谨准确, 如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制