当前位置: 仪器信息网 > 行业主题 > >

各式固高运动控制平台视觉识别

仪器信息网各式固高运动控制平台视觉识别专题为您提供2024年最新各式固高运动控制平台视觉识别价格报价、厂家品牌的相关信息, 包括各式固高运动控制平台视觉识别参数、型号等,不管是国产,还是进口品牌的各式固高运动控制平台视觉识别您都可以在这里找到。 除此之外,仪器信息网还免费为您整合各式固高运动控制平台视觉识别相关的耗材配件、试剂标物,还有各式固高运动控制平台视觉识别相关的最新资讯、资料,以及各式固高运动控制平台视觉识别相关的解决方案。

各式固高运动控制平台视觉识别相关的资讯

  • 宁波材料所研制出高精度机器视觉检测平台
    近日,宁波材料所所属先进制造技术研究所机器视觉团队研制出高精度机器视觉检测平台。该平台的优异性能使其在各种精密电子、仪器仪表、晶圆科技、刀具、塑胶、精密零件、弹簧、冲压件、接插件、模具、五金塑胶、PCB板、导电橡胶、粉末冶金、螺丝、钟表零件、手机、液晶、医药工业、光纤器件、汽车工程、航天航空、军工等领域具有广泛应用空间。  高精度机器视觉检测平台采用了轴式直线电机,相对于传统电机和第一、第二代直线电机,轴式直线电机的磁场利用率高达100%,具有永磁体用量少、推力大、运行平稳结构简单、免维护寿命长等特点。另外,直线电机不需要使用机械传动部件,在国内机械传动部件制造水平相对落后的现状下,利用轴式直线电机可实现精密可靠的运动平台。  在轴式直线电机运动平台的基础上,机器视觉团队利用其自身的优势,开发了快速、准确、易用的测量软件。其先进的相机标定、校准技术可保证实现微米级精度的非接触式测量 先进的自动特征检测定位算法可以准确、快速地定位用户预先设定的测量点,并按用户预订的测量需求进行自动的大批量重复测量,所需的人工操作可简化到一次鼠标操作。  我国精密测量技术和仪器的现状仍然远远不能满足国内机械装备制造业迅速发展的需求,通过发展精密的自动测量系统,必将推动国内机械装备制造业的发展,缩短与国外先进水平的差距,进一步推动国产装备向高附加值方向发展。
  • 机器视觉技术在工业智能化生产中的应用
    引言随着我国工业持续发展,工业主导地位不断提高,我国的工业生产结构产业结构从劳动密集型逐渐转向技术、知识密集型,产业发展的动能也逐渐从要素驱动转向效率驱动和创新驱动。与此同时,随着5G网络时代的到来,人民的生产生活将愈来愈智能化。为建设现代化强国,提高工业生产的作业效率和经济效益,实现国家经济增长再创新的高度。我国工业生产的智能化水平仍然是工业领域的一个重要的研究点,未来工业智能化的发展尤为重要。近年来,随着工业智能化的迅速发展,具有便捷性、精确性、迅速性、智能化等优点的机器视觉技术被广泛应用于工业生产各领域,其作为一种现代化检测手段,越来越受到人们的重视。机器视觉技术涉及计算机科学、人工智能、信号处理、图像处理、机器学习、光学、自动化等多个领域。机器视觉通过光学设备和传感器获取到目标物体的图像信息,然后将图像信息转化成数字化信息,进而通过计算机分析数据显示在电子屏幕上或者通过控制单元指导机器完成任务。机器视觉偏重于信息技术工程化和自动化,但又构建在计算机技术视觉效果方法论的基础上,它的重点是感知目标物体的位置信息、大小形态、颜色信息及存在状态等数据信息。本文主要通过论述机器视觉技术在工业生产智能化中的应用,分析机器视觉的优点及现如今存在的问题,并针对问题提出解决性的方法,进而剖析机器视觉技术在工业智能化生产上的发展趋势及方向,期望能为现代化的智能工业生产的发展提供借鉴。1 机器视觉的研究与发展机器视觉的概念始于20世纪50年代,最先应用于“机器人”的研制。通过机器视觉传感器采集图像信息并处理,进而通过计算估计下一步的位置来控制机器人运动。20世纪50年代:机器视觉的研究主要集中在二维图像的简单分析和识别上,像字符,工件、图片的分析和处理等,多用于航天、工业的制造与研究。20世纪60年代:利用计算机程序从数字图像中提取出诸如立方体、楔形体、棱柱体等多面体的三维结构,提出基于机器视觉的多面体零件特征提取技术,进而为识别三维物体和三维计算机视觉研究打下坚实的基础。20世纪70年代:这个时期才有人首次提出较为完整的机器视觉理论,也陆续出现了一些视觉应用系统.简单的视觉应用系统小部分的代替人工生产,让工业生产逐步向自动化方向发展。20世纪80年代:机器视觉技术在这个时期获得蓬勃发展,随着一些新概念、新方法、新理论的不断涌现。机器视觉技术也不断和其他技术相结合,产生新的生产方式应用于工业生产中,机器视觉也逐渐被人们熟知和应用,使其工业生产中掀起新的生产浪潮。20世纪90年代:机器视觉技术开始应用于零部件的装配。同时,这一时期有人提出将机器视觉和神经网络技术相结合,实现了对机械零件表面粗糙度的非接触测量。这一技术的实现让众多机械零件表面的检测得到了应用,代替了人工检测,提高了工业生产效率,让众多工人的双手和双眼从工厂生产中解放出来。21世纪:现如今,机器视觉的发展已相对成熟,很多企业借助机器视觉的优点将其大量应用于工业生产中。现如今的时代是智能化的时代,现代工厂的生产也不断追求自动化以及机械化,倡导将传统的人工生产解放出来,越来越多的产业已经在工业生产智能化方面做的相当出色。机器视觉技术作为工业智能化生产中的关键技术,也不断的被人们改进。由此可见,机器视觉技术一步步地发展到现阶段,已经相对成熟,并且在各个领域都大规模是使用,尤其在工业领域发挥了至关重要的作用。但是国内的机器视觉技术相对起步较晚,相比国外还有一定的差距,还需要在技术、算法等方面努力跟进。2 机器视觉在工业机器人中的应用工业机器人是现代科技的主要代表技术,工业机器人以其方便精确,省时省力,而被广泛应用于家电、电子、服装、汽车、食品、等行业。随着现代科技的高速发展,高标准、高效率已经成为众多企业追求的目标,在这种发展背景下,工业机器人应运而生。其中让笔者印象深刻的就是京东自动化机器人仓库,硕大的仓库里面成千上万的机器人不停地在货架之间来回运动,将物品分类、投放、运输。在工业机器人领域中机器视觉具有如下功能。(1)定位和控制。现代工厂生产要求机器视觉系统能够快速,准确地找到目标物并确认其位置。然后使用机器视觉进行定位,并引导机械手臂去准确地抓取。(2)识别。主要利用机器视觉获取图像,然后对图像进行处理、分析和理解,以识别各种状态的目标和对象,用于跟踪和收集数据。一般的机器识别系统借助照相机完成。(3)检测。检测生产线上产品的质量,这也是取代人工最多的环节。在工业领域,主要检查包括尺寸大小检测,瓶子外观缺陷检测,瓶口缺陷检测,残次品检测等。(4)高精度检查。在工业生产中,一些精密的电子设备零件需要较高的精度,例如计算机、手机上高度集成的电子电路板,有些可达到精度0.01mm甚至μm级,人眼无法识别这些小的元器件,因此必须使用机器来完成。(5)分拣与搬运。现代工业生产与运转过程中,不可避免都会有一些分拣的工作,而传统利用人力进行分拣工作的方式存在较大局限,但视觉机器人的应用可以极大地提高工业生产的效率及工作精确度,进而解放了人们的双手。机器视觉系技术在机器人的应用中起到一个核心内容的作用。机器视觉中最关键的一项就是:怎样让机器人对运动目标物进行准确识别。视觉系统技术可以解决这一难题,加入视觉系统技术,可以使机器人对目标物进行实时的运动跟踪与检测,进而准确的确定目标物的位置与方向,确保机器人对其的准确定位。机器人视觉系统的工作主要分为4个部分:相机定位、图像分析与处理、目标物状态识别及机器人的动作操控。先利用相机定位对目标物建立运动坐标系,获取物体坐标;然后将获取的目标物分图像进行分析和处理;状态识别以图像分析为基础,对目标物的状态进行分析和处理,从而根据图像处理与分析的结果操控机器人的动作行为。工业机器人的使用是现代工业相对于传统工业的伟大进步与发展,其解决了传统工业成本高、效率低、耗时长等缺点,将人们双手解放出来,让现代化的工业生产更加自动化、智能化。3 机器视觉在工业控制领域的应用现代化的工业生产大多倾向机械一体化,例如,薯片的生产,从土豆的清洗,到最后薯片的装袋、封口,都不需要人为参与。当然有的人要说这样生产出来的东西没有人情味,但是我想说机械一体化的生产方式或许将是未来所有工业生产的大趋所示,其优点不在赘述。那么,怎么才能控制机械化生产呢?这就要用到机器视觉技术来控制机器生产。机器视觉控制器,因其具备出色的处理能力,可在10s以内高速完成最多128个点的检测,强大的处理能力可以直接影响可运行的算法以及视觉系统做出决策的速度。为了减少图像处理的时间,一些工厂现在使用同构处理来运行视觉算法。另外,现在的一些机器视觉控制器还具有用于网络连接的专用以太网端口以及用于连接外部数据存储器的端口。通过工厂连接功能,工作人员可以实现在办公室检测产品生产,查看图像,还可以实时回放,极大的方便了工厂的生产。这种直接进行工业一体化生产的方式在慢慢的取代传统生产方式,相信在未来的工业发展中,一大部分工厂将利用机器视觉控制实现工厂一体化生产。4 机器视觉在工业质量检测中的应用在现代化工业生产过程中,目标检测多种多样,市场需求相对较大。比如,检测机械零件大小是否达标、辨别条形码或包装条码、测试商品的外表缺陷、瓶口缺陷、打印缺陷等等。这些应用均需大批量测试,并且都是高精度的测试,人眼识别在这些检测中处于劣势,如果仅仅通过人工,耗时可想而知。在啤酒瓶的生产过程中,瓶子大小以及外观是否有缺陷等这些都需要经过质量检测。一些工厂一天就会生产成千上万的啤酒瓶,如果都利用人工来处理,是让人无法胜任的。而且一般人眼一直盯着同样的物体检测,时间长了,会造成视觉疲劳,进而导致残次品率高,工作效率低下。不仅如此,一些工厂还要花费大量成本聘请人力检测,这种落后的生产方式已经不再适合现代化生产。利用机器视觉技术可以有效的解决这一问题,用机器检测代替了传统的人工,大批量检测可以快速完成,加快了工厂的产品生产速度;另外,减少了工厂的生产成本,提高了产品的生产效率。机器视觉技术的应用,使工业生产不在受限于人眼识别的缺陷,提高了工业检测的精度和效率,使工业生产更加的自动化和智能化。5 机器视觉中的关键技术通俗来说,机器视觉的作用是代替了人眼来做测量和判断,机器视觉系统利用照相机和照明设备获取图像信息,然后传送给图像处理系统,图像处理系统将图片进行颜色、亮度处理,然后将图像信息转换成数字信号,最后通过计算机进行处理、分析。机器视觉中的两大关键技术:图像采集和图像分析与处理。(1)图像采集图像的获取是机器视觉技术中至关重要的一步,他是后续图像处理的保障。利用摄像头进行图像捕捉,摄像头的选择因功能而异;有时,图像的质量优劣还与光线强度有关,因此,会添加照明功能辅助图像采集。图像采集工作涉及到图像传感器的使用,一般灵敏度高、像素大、动态范围大、功耗低的图像传感器较受人们欢迎。目前市场上普遍使用的传感器是CCD,其灵敏度高、读取噪声低,因此在图像传感器占据一定的市场。日常生活中常见的图像采集有数码相机、手机、各式各样的摄像头、多媒体等,图像采集的速度、质量直接影响到后面图像的处理以及机器的控制。(2)图像分析与处理图像分析一般利用数学模型对图像的色彩、透明度、色差进行分析,进而提取出有用的图像信息。主要包括图像信息识别与读取、图像的存储、图像数据变换、图像分割、模型匹配以及解释。图像分析步骤如图1所示。图1 图像分析步骤对于分析好的图像信息,下一步就需要进行处理。一般的图像处理方法是数字处理,主要技术和方法包括去噪、增强、复原、提取特征等。图像处理所需的硬件有数字图像采集器以及图像处理计算机,主要的图像处理操作,还是要通过图像处理软件来完成。涉及的算法有傅里叶变换、正余弦变换、沃尔什变换,微分计算、滤波处理等。图像是机器获取和信息交流的主要来源。通过图像的获取、分析与处理,将外界信息转化成可供计算机分析的数字信号,进而通过分析系统传输给控制系统,发出下一条动作的指令,控制机器完成任务。6 机器视觉技术在工业应用中的发展趋势机器视觉技术的优点:可以利用机器进行非接触测量,可以利用机器实现在人无法工作和到达的区域完成对目标物的检测;机器比人眼对光更加敏感,可检测人眼看不见的红外及微弱光检测测量,解决了人眼的缺陷,扩大了人眼的视觉范围;机器不会产生疲劳,可以长时间的稳定工作,机器视觉可以进行长时间工作、分析、处理与操纵;利用了机器视觉解决方案,可以节省大量劳动力资源,有效降低企业生产成本,为现代化工业生产带来可观利益。现在科技技术发展较迅速,机器视觉技术的应用也相对成熟,但是还是存在诸多问题:当工业生产车间现场的噪声很大时,机器视觉系统往往会受到干扰,会造成设备灵敏度的降低或设备的损坏;另外工业生产现场有的处于高温,有的处于低温,这就要求机器设备要有一定的抗干扰能力和稳定性。图像的采集有时还会受光照强度的影响,当光线昏暗时,就会影响目标物图像的提取、识别及分析,进而有可能造成生产产品次品率上升,影响生产的精度及效率。如何解决这些问题并提高机器性能,进行有效的图像识别,使机器视觉技术在工业智能化生产中得到高效的利用,是当下研究的关键。(1)研发出高效率的图像处理软件和硬件。图像采集部分的快慢主要依赖于硬件的速度,高质量的硬件可有效减轻主机的负担,提高系统的对图像的分辨效率、采集效率、图像处理的速度及处理分析效率。高质量的软件也尤为重要,质量高的软件可以让机器的命令执行速度更加高速有效。(2)开发适用性强、高效、稳定、实时的智能算法。智能、高效、稳定化的智能算法可有效提高系统的分析处理速度,并且改善复杂环境下系统抗干扰能力较差的缺点,使系统有较强的即时性、鲁棒性、稳定性、抗干扰性以及环境适应性。7 结语由此可见,机器视觉技术在工业制造有着广泛的需求,在工业领域有着较大的发展空间。机器视觉技术的利用可有效的降低生产成本,节约劳动力,提高生产效率,降低产品次品率;另外,还可以实现非接触测量。机器视觉技术的优点如此之多,因此,对制造业领域智能化的发展也具有较大的影响。但是,现在的机器视觉技术还有待提高,许多技术难题还亟待解决,当下任务应着力解决机器视觉技术在工业生产上的智能化、自动化应用,以便以后全面投入工业领域生产,进而为我国的现代化强国建设做出贡献。本文作者:北京信息科技大学信息与通信工程学院 孙郑芬 吴韶波
  • 皖仪打造全新视觉形象识别系统
    11月1日,安徽皖仪科技股份有限公司新VIS(企业视觉形象识别系统)正式对外发布:  旧logo(已停用)   正式更改为     新logo以皖仪英文WAYEE为主要设计元素。是WAY(英文原意为道路,这里特指皖仪的科技之路)、Electron(电子)和 Ecology(生态环保)的综合体,后两个”E”代表了皖仪的主营发展方向。另,”EE”更是Excellent(卓越优秀)和Eqilibriun(平衡和谐)的综合体,寓意公司有优秀的人才,卓越的产品性能以及和谐的发展理念。  新VI的启用,有利于精细与延升皖仪形象,提升品牌竞争力 有利于规范形象使用,构建皖仪的品牌模式:有利于重新树立企业文化,凝聚团队向心力;有利于促进社会公众认同,统一公众形象 有利于突出差别性和识别性,提高竞争力。          VIS(Visual Identity)通译为视觉形象识别系统,是CIS系统中最具传播力和感染力的层面。 它是指在企业经营理念的指导下,利用平面设计等手法将企业的内在气质和市场定位视觉化、形象化,是企业作为独立法人的社会存在与其周围的经营及生存的经济环境和社会环境相互区别、联系和沟通的最直接和常用的信息平台。公司从2010年4月开始着手企业VIS的规范与新形象的设计,公司新logo于今年8月定稿,全套VIS设计规范于今年10月底全部完成并在全公司内投入使用。公司VIS系统详细规范了企业标志制作与运用规范、企业专用字体制作与运用规范、企业标准色与辅助图形制作与运用规范,各种组合制作与运用规范,以及在企业办公用品、公共关系赠品、员工服饰、标识符号指示、商品包装、广告宣传等方面的运用规范与示例。自本月起,公司将根据VIS标准逐步规范所有视觉载体的运用,VIS系统的规范运用将更有利于公司企业文化的建设与推广,打造优秀品牌形象。
  • 基于拉曼光谱技术的自动反馈补料控制策略在高接种密度培养平台的应用
    01背景这篇文竟是关于拉曼自动化反馈控制多种补料成分以实现高接种密度增强型fed-batch平台过程的研究论文。该研究旨在开发控制策略,通过在线拉曼光谱法监测和调整代谢物浓度,以实现高接种密度下的细胞培养过程中的高产量和稳定性。具体使用了增强型high inoculation density (HID)高接种密度培养fed-batch平台过程来培养五个不同谷氨酰胺合成酶piggyBac中国仓鼠卵巢细胞CHO克隆。通过在线拉曼光谱法连续监测残余glucose葡萄糖、phenylalanine苯丙氨酸和methionine 甲硫氨酸的浓度变化,开发了partial least squares models偏最小二乘模型。通过持续监测残余代谢物浓度,自动调整三种补充成分的补料速率,从而保持葡萄糖、苯丙氨酸和甲硫氨酸在期望的设定点上,并确保其他营养物质浓度在所有培养的克隆中保持在可接受的水平。02材料与设备细胞系与培养使用了Lonza HID平台的 GS piggyBac CHO clones细胞系,共有5个克隆体。采用了100*105的初始接种密度,在1L或者5L的体积进行培养。模型建立使用了SIMCA v16分别对glucose, phenylalanine and methionine进行建模处理。首先是光谱区域的选择,主要是基于了在纯水中他们各自的特征光谱范围。其次,通过 first derivative, Savitzky-Golay smoothing and standard normalvariate normalization (SNV) 的方法对原始光谱进行了预处理。建立的模型结果如Table 1所示。参考已知的文献并结合所建模型的R2以及root mean squared error of estimation and cross-validation (RMSEE/RMSECV) ,初步判断模型可用。分对于glucose, phenylalanine, and methionine,如果RMSEPs 是 1 g/L, 100 mg/L and 100 mg/L,则判断结果模型结果是可用的。03光谱采集与样品分析在线拉曼光谱的收集使用了来自于Endress +Hauser的RXN2 system系列,有着 785 nm的光源并内置了Runtime 6.2的操作系统。探头使用了220 mm和420mm(分别在1L和5L的培养体积)的BioOptic探头。采用了5sx150 scan的曝光时间和曝光次数,总时长大约是12.5min。对于glucose, phenylalanine和methionine在线监测数据,首先通过OPC的方式传输到Delta-V(Emerson),再在Delta-V对三个参数分别建立基于PID算法和on–off的控制回路,在监测值低于目标值的时候,可以自动添加SF1, SF2和 SF3。SF1, SF2, and SF3对别对应了glucose, phenylalanine and methionine的补料。离线的样品是每日从HID的培养中取出送样检测。使用了来自于Nova Biomedical的Bioprofile FLEX2分化分析仪。对于氨基酸以及最后产物的分析分别使用了high-performanceliquid chromatography (HPLC)和Tridex Protein Analyzer (IdexHealth Sciences)04结果 上诉三个图分别为glucose, phenylalanine和methionine的自动控制情况以及SF1, SF2, and SF3在5个clones分别的添加总量。glucose的平均RMSEP是0.49 g/L (limit 1 g/L), phenylalanine的平均RMSEP是40.72 mg/L (limit 100 mg/L) ,methionine的平均RMSEP是42.01 mg/L (limit 100 mg/L),都是在可以接受的标准之内的。除此之外,文章还对其他的组分进行了监测,以探究在HID平台的自动回路控制培养模式对细胞生长代谢的影响。具体对比了培养体系中的histidine组氨酸、leucine亮氨酸、threonine苏氨酸和ryptophan色氨酸的变化,以评估拉曼自动回路控制对残留氨基酸浓度的影响。可以看出,利用拉曼自动回路控制的方式,通过动态提供培养物所需的氨基酸,有助于降低克隆间代谢的差异性。此外,为了进一步验证拉曼自动控制的HID培养的效果,研究人员通过Peak VCC、Harvest VCC、 Harvest viability、Harvest lactate、Harvest NH4、Harvest product concentration六个维度来评估对细胞生长和产量的实际影响。可以看出,在HID平台上培养的所有克隆均获得较高的Peak VCC(320.5±32.3×105) cells/ mL),且直到收获当天,大多数HID培养保持在以上200.0×105 cells/mL(4/5clones)。总的来说,除2 clone号外,在HID工艺上培养的所有克隆在收获时都有很高的活力(2clone的收获活力较低,是因为在培养结束时无意添加了碱基,导致VCC下降)。除2 clone,收获时培养存活率均大于85%。在HID培养过程中使用的自动培养策略的另一个好处是代谢副产物的低水平。乳酸和铵是代谢副产物,其积累与抑制细胞生长有关。总体而言,在HID工艺下培养的所有克隆的平均乳酸收获浓度(0.8±0.5 g/L)和铵收获浓度(0.07±0.02 g/L)均较低,这表明以该种控制策略培养,不仅对氨基酸副产物的积累影响很小,而且对其他常见抑制副产物的积累影响也很小。最后,本研究使用的5个clone在HID培养过程中获得了较高的收获产物浓度(6.5±1.2 g/L)。相比之下,本研究中获得的收获产物浓度平均略高于之前所报道的(6.5±1.2 g/L)。也可以得出结论,在本研究中观察到的较高的产品浓度,部分原因是由于提出的自动化策略可以维持高接种密度培养的营养需求,从而实现所需要补料操作的自动化,减少了危险副产品的积累。05结论该研究通过应用在线拉曼监控技术和自动化反馈控制策略,实现了高接种密度下的增强型细胞培养过程的稳定和高产量。这为生物制药行业开发更高效、成本更低的生产过程提供了新的思路和方法。Webster, T.A., Hadley, B.C., Dickson, M., Hodgkins, J., Olin, M., Wolnick, N., Armstrong, J., Mason, C. & Downey, B. 2023, "Automated Raman feed-back control of multiple supplemental feeds to enable an intensified high inoculation density fed-batch platform process", Bioprocess and biosystems engineering
  • 台式电镜技术发展助力食品质量控制
    台式电镜正在食品质量控制和食品安全当中发挥着越来越重要的作用。  扫描电镜能够揭示显微性质和颗粒的变化信息,这些变化对于食品的结构性质会产生影响。扫描电镜所能获取的信息包括化学成分、形态及污染物鉴定。扫描电镜常常和X射线能谱仪(EDS)联用来进行Mapping及污染分析。SEM产生的信号信息包括二次电子和背散射电子,二次电子成像能够获取样品表面的高分辨率图像,分辨率一般小于1nm。背散射电子成像对于提供样品中不同元素的分布信息是特别有用的,因为背散射电子信号的强度与样品的原子数密切相关。  先前,大多数台式电镜都是低真空仪器,因为许多材料都是非导电、真空敏感和电子束敏感的。此外,早期的台式电镜只有一种加速电压,因此限制了分辨能力。目前,随着技术的进步,台式电镜可以提供3种不同的加速电压,具备低真空和高真空模式,可以检测二次电子和背散射电子。这些特征使得用户可以使用台式电镜分析范围更广的样品,并获取高分辨率的图像,技术的进步对于食品分析也带来了特别的优势。例如,利用新型台式电镜分析花生酱可以揭示样品的形态特征,如花生大小的一致性,或罐装产品中的气孔。  试样的最大尺寸和可移动范围是同等重要的因素。普通的扫描电镜可以用来分析和鞋子一样大的样品。早期的台式电镜仅仅可以分析直径不超过25mm的样品,但是新型台式电镜能够容纳直径达70mm、厚度达50mm的样品。随着对样品尺寸限制的减小,台式电镜可分析的样品种类也有很多了,并减少了样品制备的时间。仪器制造商也提供了更大的样品移动范围,允许仪器操作人员控制样品台在X/Y轴方向的移动,以便能够观察到更大的样品区域。  在食品分析领域,食品包装分析依然是一个十分重要的组成部分,并且显微镜是分析食品包装材料的常用工具,并经常结合其他技术来检测缺陷,包括分析包装罐的腐蚀、泄露,或分析多层膜材料。由多层膜材料组成的塑料包装经常依靠热封技术来封装产品。科学家能够利用偏光显微镜和傅里叶变换红外光谱及热台技术来分析不同的膜层。利用扫描电镜分析包装材料,能够放大观察其微观性质的变化,以及对包装性质产生影响的颗粒。目前台式电镜能够提供从10倍到6万倍的放大倍数,分辨率在30nm。  对样品本身所含的元素进行鉴定及污染物质的鉴定同样重要。X射线能谱仪(EDS)到目前还只能在普通电镜上使用,当前台式电镜完全整合了硅漂移探测器(SDD),能够进行元素分析。用户只要按一个按钮,就能获得元素定量分布图,生成光谱数据和检测相对浓度变化。这些功能使科学家能够充分分析他们的样品并立即获取结果。在食品分析领域,EDS是鉴定产品当中无机元素的有力工具,并在检测物理污染物方面颇具优势。  质量控制实验室进行快速、定性观察的能力对于提高效率至关重要。对于所有的材料和食品,任何在形态上的微小变化,都会影响产品的流变性和效用。目前台式电镜性能的提升使质量控制实验室能够快速准确的在各种环境条件下进行样品成像,使得科学家能够立即进行质量评估,节省时间和成本。在分析监测中收集的数据可以马上用来改进制造工艺,防止今后发生类似的问题。(编译:秦丽娟)
  • 2023拥抱AI视觉时代:机器视觉的机会与挑战
    机器视觉与AI的机会近年来,传统科技公司和新创公司竞相将机器视觉与人工智能/机器学习结合,使其能够超越传感器像素数据,从而在各种应用中开创新的机会。这一结合的潜力巨大,相关的新创公司在交通运输、制造业、医疗保健和零售等各个市场中筹集了数十亿美元的资金。然而,要充分实现其潜力,这项技术需要应对许多挑战,包括提高性能和安全性,以及设计灵活性。从根本上讲,机器视觉系统是软件和硬件的结合,可以以数字像素的形式捕捉和处理信息。这些系统可以分析图像,并根据其编程和训练来采取相应的行动。典型的视觉系统包括图像传感器(摄像头和镜头)、图像和视觉处理组件(视觉算法)以及SoCs(片上系统)和网络/通信组件。无论是静态图像还是视频数字相机,都包含图像传感器。汽车感测器(如激光雷达、雷达、超声波)也能以数字像素形式提供图像,尽管分辨率可能不同。尽管大多数人对这些类型的图像都很熟悉,但机器也能够“看见”热和音频信号数据,并分析这些数据以创建多维图像。Synopsys公司的战略市场经理Ron Lowman表示:“在过去几年中,CMOS图像传感器取得了显著的改进。传感器的带宽不再优化用于人类视觉,而是用于提供人工智能的价值。例如,主导视觉传感器接口的MIPI CSI不仅提高了带宽,还增加了智能ROI(Region of Interest)和更高的颜色深度等人工智能功能。虽然这些颜色深度增加对人眼来说无法察觉,但对于机器视觉来说,它可以大大提高服务的价值。”机器视觉系统的基本组成机器视觉系统由软件和硬件组成,其中关键的组件是图像传感器。在过去几年中,CMOS图像传感器取得了显著的改进,这使得传感器的带宽不再仅仅优化于人类视觉,而是为了提供人工智能的价值。MIPI CSI作为主要的视觉传感器接口,不仅增加了带宽,还增加了智能ROI(Smart Region of Interest)和更高的颜色深度等人工智能功能。虽然这些颜色深度的增加对人眼而言无法察觉,但对于机器视觉来说,它可以大大提高服务的价值。除了图像传感器外,机器视觉系统还包括图像和视觉处理组件以及片上系统和网络/通信组件。这些组件协同工作,使机器能够理解和解释图像数据。图像和视觉处理组件包括视觉算法,它们能够分析图像并根据其训练和编程进行相应的处理。此外,片上系统和网络/通信组件则负责数据处理和传输,以实现机器视觉系统的功能。图 1:机器视觉系统包括用于执行图像处理和分析的硬件、软件和芯片。 AI 通常是解决方案的一部分,并且 MV 通常连接到云。 来源:Arcturus 网络机器视觉与计算机视觉的区别机器视觉是计算机视觉的一个子集,两者在很大程度上依赖于对图像数据的观察来推断信息。然而,机器视觉更加强调在工业或工厂环境中的“检测类型”应用。Cadence公司的Tensilica Vision and AI DSPs的产品管理、市场营销和业务拓展总监Amol Borkar指出,机器视觉在感测方面高度依赖摄像头。然而,“摄像头”这个词是个负面词,因为我们通常熟悉的是一个能够产生RGB图像并在可见光谱范围内运作的图像传感器。不过,根据应用的不同,这些传感器可以在红外线下运作,包括短波、中波、长波红外线或热成像等多种变体。最近还引入了对运动非常敏感的事件相机。在装配线上,线扫描相机是与典型的快门相机略有不同的一种变体。当前的汽车、监控和医疗等大多数应用都依赖于这些传感器中的一个或多个,通常结合使用以实现比单个摄像头或传感器更好的感测融合结果。机器视觉的优势机器视觉相较于人类有着更出色的视觉能力,这使得机器视觉在制造业中能够提高生产力和品质,降低生产成本。与自动驾驶辅助系统(ADAS)结合使用时,机器视觉能够接管部分驾驶功能。此外,搭配人工智能,机器视觉能够协助分析医学影像。应用机器视觉的好处包括更高的可靠性和一致性,以及更大的精确度和准确度(取决于摄像头的分辨率)。而且,与人类不同,机器在获得例行维护的前提下不会感到疲劳。视觉系统的数据可以在本地或云端存储,需要时进行实时分析。此外,机器视觉通过检测和筛选出有缺陷的零件,降低生产成本。同时,通过OCR(光学字符识别)和条码扫描读取,提高了库存控制的效率,从而降低整体制造成本。如今,机器视觉通常与人工智能结合使用,大大增强了数据分析的能力。在现代工厂中,自动化设备,包括机器人,与机器视觉和人工智能结合,以提高生产力。机器视觉(MV)和人工智能(AI)是密切相关的领域,它们通常以各种方式进行交互。机器视觉利用摄像头、传感器和其他设备捕捉图像或其他附加数据,然后将其进行处理和分析,以提取有用的信息,而人工智能则使用算法和统计模型来识别模式并基于大量数据进行预测。AI/ML与MV的交互作用这还可以包括深度学习技术。Arteris IP公司的产品市场副总裁Andy Nightingale表示:“深度学习是人工智能的一个子集,它涉及使用大量数据对复杂的神经网络进行训练,以识别模式并进行预测。”机器视觉系统可以使用深度学习算法来提高其在图像或视频中检测和分类对象的能力。机器视觉和人工智能之间的另一种交互方式是通过使用计算机视觉算法。计算机视觉是机器视觉的一个超集,它使用算法和技术从图像和视频中提取信息。人工智能算法可以分析这些信息并预测场景中正在发生的事情。例如,计算机视觉系统可以使用人工智能算法分析交通模式并预测何时某个十字路口可能会拥堵。机器视觉和人工智能还可以在自主系统(如自动驾驶汽车或无人机)中进行交互。在这些应用中,机器视觉系统用于捕捉和处理来自传感器的数据,而人工智能算法则解释这些数据并对环境进行导航等决策。AI/ML在自动驾驶中的应用人工智能在现代车辆中扮演着越来越多的角色,但其中两个主要的角色是感知和决策制定。Siemens Digital Industries Software公司的混合和虚拟系统副总裁David Fritz表示:“感知是通过车辆内部和外部的感测器阵列来理解周围环境的过程。决策制定首先需要理解周围环境的状态和目标,例如向目的地移动。然后,人工智能根据控制方向盘、制动、加速等车辆内部致动器的方式来决定最安全、最有效的路线。”这两个关键角色涉及到非常不同的问题。从摄像头或其他感测器获得的原始数据,AI算法将使用这些数据进行目标检测。一旦检测到目标,感知系统将对目标进行分类,例如该目标是否是汽车、人或动物。训练过程非常冗长,需要大量的训练集来展示不同角度的目标。在训练完成后,AI网络可以加载到数字孪生体或实体车辆中。一旦检测到并分类了目标,另一个训练有素的AI网络可以进行决策,控制方向盘、制动和加速等。使用高保真度的数字孪生体来虚拟验证这个过程已被证明比纯粹使用实地测试更安全、更有效。开发人员经常问到需要多少AI/ML。在现代工厂的情况下,机器视觉可以仅用于在装配线上检测和筛选出有缺陷的零件,或者用于组装汽车等工序。后者需要更高级的智能和更复杂的设计,以确保装配过程中的时机、精确度、运动和距离的计算等。Flex Logix公司的首席执行官Geoff Tate观察到:“机器视觉和机器人在现代工厂中提高了生产力,许多应用中使用了人工智能。一个简单的应用,例如检测标签是否正确贴上,不需要太多智能。另一方面,进行复杂、精密的三维运动的机器人手臂需要更多的GPU算力。在第一个应用中,一个AI IP的核心将足够,而在第二个应用中可能需要多个核心。拥有灵活且可扩展的AI IP将使机器视觉和机器人的设计更加容易。机器视觉的应用机器视觉的应用几乎没有限制,只受想象力的限制。只要需要视觉和图像处理的工业和商业领域,机器视觉都可以应用其中。以下是部分应用领域的例子:交通领域(自动驾驶、车内监控、交通流量分析、违规行为和事故检测);制造和自动化领域(生产力分析、质量管理);监控领域(运动和入侵检测);医疗领域(影像学、癌症和肿瘤检测、细胞分类);农业领域(农场自动化、植物病害和昆虫检测);零售领域(顾客追踪、货架缺货检测、盗窃检测);保险领域(通过图像进行事故现场分析)。还有许多其他应用。以饮用水或软饮料瓶装为例。机器视觉系统可以用于检查填充水平,这通常由高效的机器人完成。但是机器人偶尔会犯错。机器视觉可以确保填充水平一致,并确保标签正确贴上。检测任何偏离测量规范限制的机器零部件也是机器视觉的一项工作。一旦机器视觉根据规范进行了训练,它可以检测出超出规范限制的零部件。机器视觉可以检测均匀的形状,如正方形或圆形,以及奇形怪状的零部件,因此它可以用于识别、检测、测量、计数,并与机器人一起进行抓取和放置。最后,通过结合人工智能,机器视觉可以实现轮胎组装的精确和高效。如今,原始设备制造商(OEM)使用机器人自动化车辆组装的过程之一是安装四个轮胎。利用机器视觉,机器人手臂可以检测正确的距离,并施加适当的压力,以防止任何损坏的发生。机器视觉的类型机器视觉技术根据处理的图像维度可以分为一维(1D)、二维(2D)和三维(3D)。这些不同的类型在应用中具有各自的特点和优势。一维机器视觉系统主要用于条形码和二维码的识别和读取。它们通常使用扫描设备,按行扫描产品上的条形码或二维码,并从中提取信息。这种技术被广泛应用于零售行业、物流和运输领域,以实现快速且准确的产品识别和追踪。二维机器视觉系统可以用于更复杂的图像处理任务。它们使用摄像头逐行扫描物体,形成一个区域或二维图像。这种技术可以应用于图像分类、目标检测、人脸识别等各种任务。在工业自动化中,二维机器视觉系统可以用于检测和验证产品的外观特征,确保产品符合设计和质量要求。三维机器视觉系统通常使用多个摄像头或激光传感器来捕捉物体的三维形状和结构。这种技术可以实现对物体的精确定位和测量,对于需要进行三维分析和处理的应用非常重要。例如,在机器人导航和自动化领域,三维机器视觉系统可以用于对环境进行三维建模和障碍物检测,实现更精确和安全的运动控制。除了以上提到的类型,还有其他形式的机器视觉技术,如超光谱影像和热像仪等。超光谱影像可以捕捉物体的不同光谱特征,拥有更丰富的信息,广泛应用于农业、食品安全和医疗诊断等领域。热像仪则可以检测物体的热能分布,用于温度监测、火灾检测等应用。每种机器视觉类型都有其特定的应用场景和优势。根据不同的需求,选择适合的机器视觉类型可以提高系统的性能和效果,实现更准确、高效和可靠的图像处理和分析。MV设计的挑战训练机器视觉系统仍然存在一些挑战。MV的准确性和性能取决于其训练程度,因此需要大量的标注数据和强大的计算能力。MV设计所面临的挑战包括:首先,检测的范围可能涵盖方位、表面变化、污染程度以及直径、厚度和间隙等精度容限。当检测到化妆品和服务变化效应时,3D系统通常比1D或2D系统表现更好。然而,在遇到不寻常的情况时,人类可以借助其他领域的知识,而机器视觉和人工智能可能无法具备这种能力。其次,数据流管理和控制是当今的关键挑战之一,特别是在具有实时延迟要求(例如汽车应用)的情况下,同时需要保持带宽的最小化。在基于摄像头的系统中,图像质量(IQ)至关重要。这要求硬件设计支持超宽动态范围和局部色调映射,同时还需要进行IQ调整,传统上需要由人类专家进行主观评估,使得开发过程冗长且成本高昂。然而,对于机器视觉而言,这种专业知识可能不一定能获得最佳系统性能,因为感知引擎可能会根据任务的不同而更喜欢以不同于人类和其他机器之间的方式看待图像。此外,确保机器视觉的安全性也是一个重要问题。随着网络攻击不断增加,确保产能不受干扰或遭受来自威胁行为者的干扰至关重要。尤其在关键应用中,如自动驾驶等,保证机器视觉的安全性至关重要。"安全对于确保机器视觉技术的输出不受破坏至关重要," Arm的Zyazin表示。"汽车应用是展示硬件和软件安全性重要性的一个很好的例子。例如,从机器中处理和提取的信息会影响到制动或车道保持辅助等决策,如果处理不当,可能对车辆内部的乘客构成风险。"总结来说,训练机器视觉系统的过程面临着一些挑战。为了提高准确性和性能,需要丰富的标注数据和强大的计算能力。同时,确保机器视觉的安全性也是一个重要问题,特别是在关键应用如自动驾驶中。这些挑战需要在系统设计和实施中得到充分考虑,以实现可靠和高效的机器视觉应用。新兴的MV创业公司和创新新兴的机器视觉(MV)创业公司和创新技术正推动着机器视觉的应用和发展。像是Airobotics、Arcturus Networks、Deep Vision AI、Hawk-Eye Innovations、Instrumental、lending AI、kinara、Mech-Mind、Megvii、NAUTO、SenseTime、Tractable、ViSenze、Viso等公司,正在开发新的机器视觉解决方案,其中一些已成功筹集了超过10亿美元的资金。在运输领域,保险公司可以利用机器视觉来分析事故场景的照片和视频,进行财务损害评估。基于人工智能的机器视觉还可以用于安全平台,分析驾驶行为,提升道路安全性。在软件领域,创业公司正在开发无需编程知识的计算机视觉平台,使更多人能够使用机器视觉技术。机器视觉身份验证软件也是市场上的一个创新解决方案。体育产业也在探索人工智能、视觉和数据分析的潜力,以向教练提供有关选手在比赛中的决策过程的洞察。此外,有一家创业公司通过将人工智能和机器视觉结合到无人机设计中,提出了一种节省成本的监视方案。机器视觉和人工智能都在快速发展,其性能,包括准确度和精确度,不断提高。高性能GPU和机器学习能力的成本也有望降低,推动新的机器视觉应用的应用。Arteris公司的Nightingale表示,随着硬件(如传感器、摄像头和处理器)的进步以及算法和机器学习模型的改进,机器视觉系统的准确性和速度将得到进一步提高。深度学习算法尤其在近年来推动机器视觉技术的进步方面发挥了重要作用,并有望在未来扮演更重要的角色。这些算法能够自动学习数据的特征和模式,从而提高准确性和性能。机器视觉系统将具有更强大的能力,能够快速而准确地处理和分析大量的数据,从而开展更为复杂和智能的应用。此外,预计机器视觉和人工智能将与其他技术相结合,提供更多高性能、实时的应用。Nightingale指出,机器视觉技术已经与机器人技术和自动化等其他技术整合,这一趋势有望持续发展,我们可能会看到更多机器视觉在医疗保健、交通和安全等领域的应用。此外,对于需要实时处理的应用,机器视觉技术已经被广泛应用,例如人脸识别和物体追踪。未来,我们可能会看到更多需要实时处理的应用,例如自动驾驶汽车和无人机。结论机器视觉(MV)的设计涉及芯片(处理器、存储器、安全芯片)、IP核、模块、固件、硬件和软件的结合。芯片组件和多芯片封装的推出将使这些系统能够更容易、更快速地进行组合,添加新功能,提高系统的整体效率和能力。Winbond的DRAM经理Tetsu Ho表示:“已知良好晶片(KGD)解决方案可以提供成本和空间效率高于有限接触点和线材的封装产品的替代方案。”这有助于提高设计效率,提供增强的硬件安全性能,特别是产品上市的时间。这些晶片经过100%热激测试,测试程度与离散部件相同。需要KGD 2.0来确保2.5D/3D组件和2.5D/3D多芯片设备的末端良率,以实现带宽性能、功耗效率和面积等PPA的改进,这是由边缘计算和人工智能等技术爆炸所推动的迷你化趋势。这将为机器视觉在新旧市场中开拓新的选择。它将用于在自动驾驶中协助人类,帮助机器在制造业中实现精确高效,并通过无人机进行监控。此外,机器视觉将能够探索对人类而言危险的地方,并为保险、体育、交通、国防、医疗等众多领域提供数据输入和分析。随着技术的不断发展和应用的扩大,机器视觉将继续成为推动自动化、智能化和数字化革新的关键技术之一。机器视觉系统的进一步提升和创新将为我们的生活和工作带来更多的便利和效益。无论是在工业生产、医疗保健、交通运输还是其他领域,机器视觉的应用都将继续拓展,为未来的科技发展带来更多的可能性。
  • 纺织品色彩管理解决方案—台式色差仪
    颜色不仅仅是纺织品的一个视觉属性,它在纺织品行业中的意义深远,占据着举足轻重的地位。首先,颜色是纺织品质量的重要标志,它直接关联到消费者的第一感受和购买决策。一个准确并吸引人的颜色可能是某个产品在市场上脱颖而出的关键因素。对于制造商来说,颜色的准确性意味着高水准的生产控制和质量保障。生产过程中颜色的偏差可能导致大量的浪费,而且可能需要重新染色或生产,增加成本并浪费资源。消费者对于颜色的感知和期望也在不断增长。在今天的时尚和消费品市场中,颜色是一个关键的购买决策因素。消费者越来越倾向于选择那些颜色鲜艳、持久、并且与他们的审美和个性相一致的产品。因此,纺织品的颜色质量成为了制造商和消费者都极其关注的点。在纺织品行业,颜色管理的精确性和效率至关重要。台式色差仪的出现帮助很多企业解决了颜色色彩管理方面的问题。从染色到成衣加工,它提供了一整套颜色开发流程,大大提高了工作效率。采用先进的色彩采集技术,可以准确地虚拟化外观特性,确保每次的色彩沟通都是精确且有效的。此技术不仅提高了生产效率,还显著减少了资源浪费,助力企业实现绿色、可持续的生产。爱色丽Ci7800台式色彩色差仪很好的帮助企业解决这方面的问题,这款色差仪在设计灵感、配制、生产和质量控制上都可以实现精准的色彩一致性。该积分球式台式色彩色差仪的多孔径设计使其能够测量复杂的样本,既可以进行反射测量也可以进行透射测量。Ci7800台式色彩色差仪配备5个反射孔径和4个透射孔径,支持从上、下和前方多角度测量样品的色彩及外观。其兼容多种附件,适用于测量纹理材料、特异形态、液体、粉末和凝胶。并通过3个UV滤光镜有效控制纺织品、塑料、油漆、涂料和纸张的荧光增白剂效果。Ci7800台式色差仪支持11种语言,包括中文和英文,满足多国用户的使用需求,确保在全球范围内的应用普及。兼容多种颜色数据格式,如JB5、QTX、EXP、XML、CXF(PANTONE 数据标准格式)等,为用户提供了广泛的选择和应用可能性。采用以工作(.jb5文件)为导向,将颜色数据保存在标准格式中,方便供应链中的所有参与者查看和传递,确保一致的颜色决策结果。支持预定义模板(.jt5文件),固定了通用的流程和设置,包括标准、公差、光源、参数和界面等,从而确保操作的一致性。不仅如此,Ci7800台式色差仪还可以轻松地分享数据到企业的ERP系统和与颜色相关的各个部门,实现数据的无缝整合。能快速地将数据拷贝到Excel表格中,方便将各种颜色数据如L*、a*、C*等录入其他软件。与PantoneLive系统完美结合,为用户提供方便的Pantone数据调用功能。在纺织行业中,色彩管理超越了简单的颜色挑选与搭配,它是一个涉及众多环节的精准流程。Ci7800台式色差仪作为这一流程中的核心技术,不仅极大地提升了生产效益,还助力企业提高产品品质,从而赢得竞争上的优势。随着行业对色彩管理重视程度的加深,这类先进设备的市场需求预期将持续增长。“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • Nat. Mater.:电场控制位错运动!
    位错和位错运动是材料学、固体力学、凝聚态物理中的一个重要课题。位错运动对晶体的很多性能和表现有着重要的影响,比如力学性能,电学性能,光学性能,热学性能, 相变等等。自20世纪30年代位错理论被提出以来,普遍认为位错移动需要受到应力驱动,并且从理论和实验上对应力加载下的位错动力学进行了广泛和深入的研究。但是驱动位错移动最主要的是外加应力,很少有报道只通过一个非应力场来控制位错移动。在1950-1980年有很多人做过离子晶体的电塑性问题——比如材料在应力下再加一个非常的大的电场下(几千伏的电压加到几毫米厚的材料上)材料的强度会小幅降低、塑性会提高。但是目前为止没有真正直接观察到单独用电场(不加应力的情况下)直接让位错运动和材料变形的,也没有高分辨的图像提供带电位错证据,所以具体机理也并不是很清楚。由于缺少直观的实验证据,位错在非应力场下动力学特点也不清楚。2023年6月19日发表在Nature Materials的一篇题为 “Harnessing dislocation motion using an electric field” 报道了加拿大多伦多大学材料科学与工程系邹宇 (Yu Zou) 教授课题组与北京大学物理学院高鹏教授、美国爱荷华州立大学安琪 (Qi An) 教授、加拿大达尔豪斯大学肖鹏昊 (Penghao Xiao) 教授合作的最新工作。这项研究实现了仅仅通过外加电场控制的位错移动(不外加应力),为非应力场下的位错动力学提供了新的认识和最直接实验证据。该文章第一作者为多伦多大学博士生Mingqiang Li, 第二作者和第三作者分别是爱荷华州立大学博士生Yidi Shen和博士后Kun Luo。在这篇文章中,该合作团队利用以单晶半导体材料硫化锌ZnS为例作为研究对象(图1),观察到位错线可以来回移动,受到外加电场的大小和方向控制 (图2、视频2)。当加载电压为正时,位错线向右侧运动。当加载电压为负时,位错线向左侧运动。这个结果为电场控制的位错移动提供的直接的证据。图1. 实验中所用的单晶硫化锌ZnS和结构表征。图2.电场驱动单个位错移动。(a)实验装置示意图,通过金属针尖加载电压。(b)位错线的初始位置。(c)加载电压达到102 V时,位错线向右运动。(d)加载电压达到-90 V时,位错线向左运动。位错线往复运动,受到外加电场的大小和方向控制。该团队基于离子晶体带电位错理论解释了电场如何驱动位错移动。他们通过直接成像表征了位错核的原子结构,然后结合密度泛函理论计算分析了位错核的电子结构。图3a展示了一个位错核的原子结构。较亮的圆斑是Zn原子列,较暗的圆斑是S原子列。通过测量伯氏矢量,他们确定这是一个30° S位错(ZnS中的一种部分位错)。理论计算表明带负电的30° S位错比电中性状态更加稳定,因此认为ZnS中的位错是带电的。图3b展示了外加电荷(e-)在位错核附近的分布。这种带电位错使得电场可以通过库仑力相互作用调控位错。图3c展示了位错在带电状态以及在外加电场下的滑移势垒变化趋势。他们也分析了ZnS中另外三种类型的位错,发现电场可以降低位错的滑移势垒。这个降低的滑移势垒从能量角度解释了电场控制位错移动的机制。另外,该团队还排除了其他影响因素,比如焦耳热、电子风力和电子束辐照。在加电场但是关闭电子束的情况下,仍然可以看到位错移动 (图4)图3.位错原子结构以及滑移势垒分析。(a)30° S位错的原子结构图像。(b)外加负电荷在30° S位错附近的分布。(c)位错滑移势垒在带电状态和电场下的变化趋势。图4.在电子束关闭的情况下外加电场仍然可以驱动位错移动这篇文章的亮点包括以下几个方面:1.直接观察到新的实验现象:该研究工作利用原位透射电镜在没有外力的情况下观察到外加电场驱动位错移动,位错可以随着电场方向变化往复运动。2.对电场下位错动力学新的理解:该研究工作清晰的表征了带电位错核结构,并且利用密度泛函理论解释了电核和外加电场不仅提供位错移动的驱动力,并且降低了位错移动的能垒。该工作还排除了焦耳热、电子风力、和电子束对于位错移动的主要影响。3.潜在应用:这个工作实现了电场控制的位错移动。不仅为电场下位错动力学提供了直接的实验证据,也为调控位错相关的晶体性质提供了新的可能,比如仅仅通过电场让材料塑性变形加工,通过电场去除半导体材料里的位错缺陷。然而需要指出,相比于应力场下的位错移动,非应力场下的位错移动研究还处于比较模糊的阶段。为了更好地理解非应力场下的位错动力学特点,需要更多深入和系统的探索。希望这个工作可以为材料缺陷的多场耦合相关方面的基础研究提供一些参考,以及半导体领域的加工和缺陷控制提供理论和实验上的依据。
  • 新品速递|Z-Theta双轴控制运动系统全新上市
    Haydonkerk Pittman最新推出了一款高效、精确、紧凑的双轴控制运动系统“Z-Theta”,该系统可以在超小空间中同时实现直线+旋转双轴运动,产品设计充分考虑了系统的集成性,与传统设计(需要多个供应商和复杂组装配件)不同,Z-Theta 是一个模块化设计的系统, 客户可以直接使用,给OEM 厂家的集成提供了极大的便利。Z-Theta双轴控制运动系统将ScrewRail花键轴、 螺杆和导轨集成在了一个细长的同轴管中,结合独特且紧凑的Haydonkerk双运动电机系统,实现了直线+旋转双轴运动。与其他方案相比,该系统减少了50%~80% 空间,更加紧凑,并且性价比更高,也更可靠。Z-Theta双轴控制运动系统 的优点:• 空间紧凑,尺寸小• 易于设备系统中集成• 模块集成化设计减少了采购成本和时间• 对于特殊应用可优化配置性能• 可兼容大部分驱动器和控制器Z-Theta双轴控制运动系统具有性能优越,使用寿命长且运行平稳、静音等优点,使得其在医疗仪器,实验室设备,机械自动化、半导体和轻工业自动化等应用中具有绝对优势。该系统支持客户个性化定制,包含多种螺杆导程、自由式或消间隙螺母、步进电机、多种分辨率的光学编码器等多种配置可选。Haydonkerk Pittman产品研发经理Join Keith Knight表示:“Z-theta 是一款高速、精确、尺寸紧凑、高性价比的双轴运动控制系统,Z-theta 双轴控制运动系统开发设计时特别考虑了实验室的自动化设备,适用于例如自动取样器、分析仪器、DNA测序仪等需要精密且高速运动的应用场景。随着实验室设备中的化学提取和分析工艺的进步,样品和流体部分的运动控制正在成为设备中越来越重要的一部分,设备体积越来越小是实验室设备发展的趋势。”Haydon Kerk Pittman在动控制应用和行业方面有丰富的经验,再加上对运动控制组件的专业了解,可以成为您下一个运动控制项目的合作伙伴。关于Haydonkerk PittmanHaydon Kerk Pittman是由精密运动控制领域3个品牌的组合,分别是Haydon、Kerk和Pittman。作为阿美特克精密运动控制(AMS)部门成员,Haydon Kerk Pittman (HKP)供应各种精密直线和旋转运动产品,被公认为是精密梯形丝杠和消隙螺母组件、直线步进电机、直线导轨和导向系统、有刷和无刷电机以及完全定制系统的领先制造商。HKP在全球范围内为实验室自动化、医疗仪器、半导体制造、运输、楼宇自动化和工业自动化等苛刻市场提供高性能的解决方案和产品。阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 专家谈机器视觉检测技术【1】:研究背景+典型系统组成
    《产品外观缺陷机器视觉在线检测技术及设备开发》一文由合肥工业大学仪器科学与光电工程学院卢荣胜教授投稿分享,包括自序、研究背景、典型系统组成、成像技术及实现策略、关键核心单元部件、缺陷识别与分类、结束语、致谢几个部分。由于篇幅较长分为四篇发布,以下为第一部分:自序、研究背景、典型系统组成。1.自序本人1985年大学毕业后在量仪厂从事量具、刃具、工装、专机与机加工工艺开发等技术工作,于1992年从师费业泰教授攻读硕士与博士学位,从事精密机械热变形误差、精密仪器精度理论方面研究, 1998年末博士毕业后又拜师天津大学叶声华教授,从事机器视觉在线检测方面的博士后研究,研究方向随之聚焦于机器视觉与光学精密测量领域。之后在香港城市大学、英国帝国理工学院和哈德斯菲尔德大学进行了为期6年的三维机器视觉、自动光学检测和光学测量技术研发工作,于2006年5月返回母校合肥工业大学任教。回国后继续从事机器视觉与光学测量方面的研究,坚持面向平板显示、新能源、软性电路板、半导体等先进制造产业,注重技术的应用开发。先后主持了国家自然科学基金项目3项、863专项1项、国家科技支撑项目1项、国家重大科学仪器设备开发专项1项、国家重点研发课题1项、以及其它省部级项目和产学研合作项目10余项,在机器视觉与光学测量领域已培养硕士和博士研究生100余人。鉴于在机器视觉技术研究及应用开发方面20余年的研究积累,2021年无锡市锡山区政府与我们科研团队合作,联合创立了一个新型科技研发机构——无锡维度机器视觉产业技术研究院,采用实体化运营模式,面向先进制造产业链,从事机器视觉与光学精密测量方面产业共性关键技术研究与产业化开发。研究内容与产业化业务范围涉及机器视觉缺陷在线检测、三维机器视觉精密测量、机器人视觉引导、半导体检测、机器视觉关键零部件开发等。开发的视觉系统与仪器已经在平板显示、光伏、锂电池、软性电路板、半导体等行业得到成功应用。鉴于篇幅问题,本文重点聚焦于产品外观缺陷视觉在线检测技术,归纳了我20多年来在这些方面的科学研究与产业化开发的进展情况与心得体会。2.研究背景在产品制造过程中,由于生产环境不理想、制造工艺不规范等各种原因,零部件和产品外观难免会含有多种缺陷,如印制电路板上出现孔位、划伤、断路、短路和污染,液晶面板的基板玻璃和滤光片表面含有针孔、划痕、颗粒,带钢表面产生裂纹、辊印、孔洞和麻点,铁路钢轨出现凹坑、鼓包、划痕、擦伤、色斑和锈蚀,等等。这些缺陷不仅影响产品外观,更重要的是影响产品性能,严重时甚至危害生命安全,对用户造成巨大经济损失,因此,现代制造业对产品的表面质量控制非常重视。产品外观缺陷在线检测最传统的方法就是采用人工目视检测法,目前高端制造工厂大部分都采用自动化生产,但人工目视检测岗位仍占据工厂整体人员的15%-30%。鉴于人工目视检测存在对人眼伤害大、主观性强、准确率低、不确定性大、易产生歧义和效率低下等缺点,已很难满足现代工业对产品质量及外观越来越高的严格要求。随着电子技术、图像传感技术和计算机技术的快速发展,利用基于图像传感技术的视觉在线检测方法已逐渐成为外观缺陷检测的重要手段,因为这种方法具有自动化、非接触、速度快、准确度高等优点。目前,外观缺陷视觉在线检测技术已经广泛应用于工业、农业、生物医疗等行业,尤其在现代制造业,如平板显示、光伏、锂电池、半导体、汽车、3C电子(计算机、通讯和消费电子产品)等领域,对能够实现机器换人的外观缺陷视觉检测技术需求越来越旺盛。3.典型系统组成产品外观缺陷机器视觉检测是基于人眼视觉成像与人脑智能判断的原理,采用图像传感技术获取被测对象的信息,通过数字图像处理增强缺陷目标特征,再通过Blob(Binary large object)分析、模板匹配或深度学习等算法从背景图像中提取缺陷特征信息,并进行分类与表征。在工业应用领域,外观缺陷视觉检测系统实际上是一种智能化的数字成像与处理系统,即采用各种成像技术(如光学成像)模拟人眼的视觉成像功能,用计算机处理系统代替人脑执行实时图像处理、特征识别与分类等任务,最后把结果反馈给执行机构,代替人手进行操作,执行产品的分类、分组或分选、生产过程中的质量控制等任务。(左)6代线液晶阵列和彩色滤光片缺陷检测仪 (中)8.5代线玻璃基板缺陷检测仪 (右)ITO导电膜表面缺陷检测仪图 1 高世代液晶面板关键工艺节点缺陷视觉在线检测系统图 2 表面缺陷视觉在线检测系统组成原理图图1为我们在国家重大科学仪器设备开发专项的资助下,针对6代线和8.5代线液晶面板显示器制程中关键工艺节点,开发的三种缺陷视觉在线检测系统。该系统能很好地揭示一个视觉在线检测系统的各个组成部分、关键技术难点,以及所需的关键零部件。主要技术参数为:待测幅面大小≤1800x2200mm, 快速发现缺陷分辨率10μm, 复检显微分辨率0.5μm, 并行图像处理与缺陷识别系统采用CPU+FPA+GPU 主从分布式异构并行处理架构,检测时间节拍20s。系统组成与关键零部件单元可用图2示意图来清晰地描述,它由精密传输机构、光源、相机阵列、显微复检、并行处理、控制、主控计算机、服务器等单元模块,以及与工厂数据中心互联的工业局域网组成。图 3 展示了我们开发的手机液晶显示屏背光源模组缺陷转盘式多工位视觉在线检测系统的结构组成,该检测系统包括自动上料、编码、对准、检测、分选、返修识别等几个部分。图 3 背光源模组在线自动光学检测系统3.1 自动上料机构自动上料机构包括装配线上传输来的背光源模组位姿探测、电动与气动机构抓取、位置校正、送料等部分组成。工作原理如下:1. 在装配线传输带工位(1)的上方放入一个监视相机,当前道工序组装系统装配好背光源模组传输到工位(1)后,监视相机拾取到有待测模组时,计算模组在工位(1)处的位置与模组姿态信息,并发出工作同步指令给后续上料与检测系统。2. 监视相机发出工作同步指令后,气动与电动缸组成的送料系统把工位(1)处的背光源模组从传输带上吸起来,然后在气动滑台的带动下,把工位(1)处的背光源模组搬运到工位(2)处。在放到工位(2)上之前,计算机根据工位(1)上方的相机拍摄到的模组位置与姿态,发出指令给真空抓取吸盘角度校正电缸,初步校正背光源模组在空间的角度。当背光源模组运送到工位(2)后,模组在工位(2)处由4个气动滑缸从四边向中间对中,校正模组的位置,然后背光源模组下方的相机,对模组成像,识别待检背光源模组喷码序列号,作为有缺陷模组在返修过程中,从缺陷数据库中自动调出缺陷信息,指导返修任务。3. 在工位(1)处吸盘抓取背光源模组的同时,右边的吸盘在工位(2)处把已经校正好的模组吸起来,然后在气动滑台的带动下,把校正后的模组输送检测转盘工位(3)处。至此,一个上料循环完成。3.2 检测机构检测机构由间隙转动工位转盘、上料位置对准探测、异常检测、画面检测和外观检测工位组成。工作原理如下:1. 背光源模组被自动送料机构传输到工位(3)后,转盘在控制系统的控制下,转到工位(4)。在工位(4)的上方安装一个相机,检测背光源模组定位是否正常,模组LED灯工作是否正常,并把信息传给主控计算机。如果一切正常,则后续检测工位按预定的方案进行检测;如果不正常,后续检测对该模组不检测,然后传送到工位(9),由分选机构抓取,传送到不良品传输带上。2. 当模组转到工位(5)~(8)处后,缺陷扫描成像系统对画面缺陷进行扫描检测,缺陷扫描成像系统由高速扫描相机、一维滑动台、光栅、伺服系统、调整机构组成。由于外观检测项目较多,一个工位难以不够,故把工位(7)和(8)两个工位作为外观检测机构。3.3 分选机构分选机构由良品与不良品气动抓取机构、间隙运动传输带组成。结构布局参看图 3 所示,其工作原理如下:1. 如图 3 所示,画面(外观、异常等)缺陷检测完毕后,模组继续向下道工位转动,当模组运动到工位(9)后:分选机构左边的气动吸盘抓取工位(9)上的模组,传输到工位(11)处。2. 如果该模组是不良品,在分选机构向工位(9)移动的过程中,不良品传输带向前移动一个工位,把工位(11)清空,等待放置下个模组。3. 如果是良品,在下一个时刻分选机构抓取工位(9)上的模组时,右边的吸盘同时抓取工位(11)上的模组,在分选机构左吸盘把模组放到工位(11)处时,右吸盘把良品模组放置到良品传输带上工位(12)处,然后良品传输带向前移动一个工位,清空工位(12)等待放置下个模组。传输带之所以作间隙运动,一方面可以节省空间,另一方面考虑到不良品只是少数,这样可以让不良品按顺序一个一个经凑地排列在传输带上,不需要有人监视,返修人员只要传输带上放满了不良品后取走返修。3.4 复检与不良品返修对于检测到的不良品,再采用人工目视复检,并对不良品进行返修。在返修工作台上放置一个电脑,并安装一台成像系统,拾取不良品背面的编码。返修显示电脑通过工业以太网与缺陷数据库服务器相连,相机在电脑的控制下,获得带返修的不良品编码后,根据编码从服务器中调用缺陷信息,显示在屏幕上,导引返修人员对不良品进行合理的返修。
  • 中科科仪控股公司中科科美研制的高精密镀膜装置在先进光源技术研发与测试平台正式运行
    在庆祝中国共产党百年华诞之际,由国家发改委立项支持、中科院高能物理研究所承建的高能同步辐射光源(HEPS)首台科研设备于6月28日上午安装,为其提供技术研发与测试支撑能力的先进光源技术研发与测试平台(PAPS)启动试运行。其中,中科科仪控股公司中科科美研制的直线式劳埃透镜镀膜装置及纳米聚焦镜镀膜装置也于同一天正式投入使用。直线式劳埃透镜镀制装置及纳米聚焦镜镀制装置可实现各类高能物理装置聚焦镜、单色镜、劳埃镜、纳米聚焦镜等膜层制备。在两装置研制过程中,中科科美突破了多项先进制造技术:精密加工制造技术,实现大型真空腔室及复杂运动系统精密加工与装配、减震及超洁净等严苛设计指标;大型真空系统超高真空获得技术,实现结构复杂、内部零部件放气量大的大型真空腔室系统极限真空度达到10-6Pa;高精度直线运动控制技术,实现长距离导轨运行平行度达到微米量级、运动系统速率稳定性控制在千万之一以内;复杂镀膜工艺技术,实现高精度纳米量级万层镀膜工艺,膜厚精度控制在0.1纳米以内。经相关主管部门和院所专家委员会现场测试,高精密镀膜装置结构设计合理、制造工艺先进、主要性能指标达到国际同类产品水平,填补了该领域内多项国内技术空白。直线式劳埃透镜镀制装置HEPS是国家“十三五”重大科技基础设施项目之一,该项目于2019年6月29日开工建设,建设周期6.5年。建成时,HEPS将成为中国第一台高能量同步辐射光源之一,为基础科学和工程科学领域原创性、突破性创新研究提供重要支撑平台。中科科仪控股公司中科科美凭借在真空系统集成领域深厚的专业技术积淀、强大的整体方案解决能力和一站式服务能力参与到该项目中,为国家重大科技基础设施项目实施和技术攻关贡献了力量。
  • 在线近红外+人工智能实现废旧纺织品自动识别分拣——寻找光谱仪器“创新的力量”系列约稿
    《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》把创新放在了具体任务的第一位,全文160余次提到了“创新”关键词。2022年第十三届全国人民代表大会第五次会议上,国务院总理李克强所作的政府工作报告中,亦明确指出要坚持创新驱动发展。对科学仪器产业而言,“创新”更是至关重要。近年来,我国对科学仪器的创新和研发高度重视,先后设立了“科学仪器基础研究专项”、“国家重大科研仪器设备研制专项”和“国家重大科学仪器设备开发专项”等科研计划等。2021年11月,北京“十四五”规划也指出要支持开展关键仪器设备研发,支持挖掘一批服务于重大科技基础设施的定制化科学仪器和设备,重点突破研发新一代光谱等关键技术。不断高攀的前沿研究是创新,差异化的产品发展也是创新。为了展现光谱仪器的创新成果,分享光谱仪器研发和应用中的创新思维,共同促进光谱仪器产业化的创新发展,仪器信息网特别策划《寻找光谱仪器创新的力量》活动。本期,我们特别邀请了北京服装学院/塔里木大学龚龑教授,给大家分享创新成果,并探讨创新的方法和思维。北京服装学院/新疆大学龚龑教授仪器信息网:您认为目前近红外光谱仪器技术及应用有哪些创新的研究方向? 龚龑:近红外光谱仪器技术的创新主要体现在以下几个方面:(1)近红外光谱数据库的建立及更新。校准模型的预测性能直接决定了近红外光谱定量和定性分析的能力,而校准模型往往需要针对不同的样本类型单独建立,需要花费大量的人力物力。比如,已有一个地区的苹果水分含量分析的近红外光谱校准模型,这个模型适用于同一地区的苹果,却不适用于不同地区苹果的水分预测。解决这个问题的方法是扩充苹果近红外光谱数据库。如果能获得全世界苹果的近红外光谱和水分属性,那么所建立的校准模型的涵盖性就会非常强,适用于任何地区的苹果水分分析。(2)近红外光谱仪的创新。校准模型的预测能力充分依赖输入的近红外光谱数据,而光谱数据通常不一致。要获得一致的光谱数据,需要测量光谱的光谱仪长期保持性能的稳定。然而,在实际的应用中,光谱仪器件会随时间老化,测量人员的操作也会对光谱数据的一致性产生影响,这些因素都会使得已建立的校准模型失效。同时,光谱仪之间测量的偏差也会导致对同一被测物定量定性分析的失败。(3)提高检测精确度。在近红外的波段区域,含氢化合物的吸收系数较小,所以尽管使用高效的化学计量学软件建立分析模型,其最终定量分析的预测结果也始终无法达到真实值。检测限较高,通常达到0.1%左右。为了克服检测限高的问题,可采用样本预处理方法(比如固相微萃取等富集方法)提高精检度,但如此操作会使近红外光谱分析技术失去其优点和特色,反而不是最佳的分析方法。仪器信息网:近红外光谱与拉曼光谱相比,在废旧纺织品分拣中有哪些优势?龚龑:近红外光谱技术是目前世界上发展非常迅速的分析技术,它具有无损、快速,应用广泛等优点,在化工、农业、环境、医药等领域发展极为广泛。与化学计量学软件、光谱仪和应用模型结合,拓展了近红外光谱仪的应用领域。近红外光谱仪目前在过程分析技术中发挥着极其重要的作用,发展飞快。近红外光谱分析技术在几十年的发展中,不断扩大其涉足领域以及应用的实效性,除应用于农业和食品分析外,还涉及生物、高分子、制药、石油化工、纺织、纤维等学科,只要是对有机物检测分析的行业基本上均可使用近红外分析技术。在我国,近红外光谱分析研究始于20世纪80年代初,现已逐步涉及谷物等农产品分析、饲料分析、石油化工、药物分析、疫情疫病诊断等方面,并伴随出现在专著出版、仪器制造和软件开发中。随着软硬件的更新换代,NIR还有望应用于其他更多方面。拉曼光谱具有无损、快速、制样简单、可微区分析、操作简便等优点,因此,拉曼可以对实验过程进行实时监测。拉曼光谱在鉴别时,为了提升鉴别准确率,样品需要进行预处理。拉曼光谱对环境要求不高,而且非接触式稳定性高,但是在纺织领域还有待探索,在以后的废旧纺织品鉴别研究中都可以进行研究。图1 训练过程中损失值,训练精度和测试精度变化图图2 不同成分比例废旧聚酯/粘胶混纺织物近红外光谱仪器信息网:贵课题组有哪些创新的成果?最突出的创新体现在哪里?龚龑:我们课题组为突破废旧纺织品资源再生循环发展利用的瓶颈,与新疆乌鲁木齐海关、深圳海关、新疆大学、北京服装学院等单位合作,采用近红外光谱仪设计了一套废旧纺织品自动识别分拣设备(如图3所示)。该设备实现废旧纺织品从输送、检测、分拣、回收利用等生产过程中的自动化、智能化。全面提升纺织行业废旧纺织品检测、分拣的自动化水平,降低废旧纺织品带来的环境影响,以及资源的浪费,缓解劳动力紧张的局面,为推动纺织业健康可持续发展具有重要意义。图3 废旧纺织品分拣设备该设备是基于近红外光谱来识别纺织品中的纤维种类和含量。在研发过程中我们克服了算法自主编写以及工控机对接的难题,最终开发一种废旧纺织品自动识别分拣系统。该系统利用自行开发的在线近红外光谱分析装置,建立了一个在线近红外(NIR)光谱库,包括聚酯、棉花、羊毛等十几种常见纺织品。我们将人工智能技术引入到废旧纺织品的识别和分拣中,利用卷积神经网络(CNN)废旧纺织品的在线近红外定性识别模型,有效提高废旧纺织品中不同纤维成分的检测准确性水平和速度,从而提升产业化加工效率。图4 废旧纺织品检测试验仪器信息网:人工智能与废旧纺织品分拣有什么联系?龚龑:人工智能分拣设备主要通过云端大数据、人工智能算法、融合传感器(分为触觉、视觉传感系统,目前普遍应用的为视觉传感系统)、机器臂/喷气设备等软硬件配合开展工作。具体构成及运作原理如下:(1)云端大数据:采集各种各样纺织样品的图片,包含废纺织品、旧纺织品、混纺织物等各种状态下图片,形成云端数据库。(2)人工智能算法:设备中内置的人工智能算法通过云端海量图像数据对机器人进行训练。前期海量数据的采集保证了无论废旧纺织品是何种状态、是否被遮挡,机器人都可以识别。(3)融合传感器:利用计算机视觉扫描快速移动的物体,通过CCD视觉、激光视觉、近红外视觉等识别传感系统相耦合,综合判断目标物的外部特征(颜色、形状、结构等)与内部特征(材质),实现废旧纺织品精准定位与细分判别。然后将识别结果传输给协作机器,控制机器臂/喷气设备运动。(4)机器臂/喷气设备:机器臂/喷气设备从传送带上准确地抓取要回收的纺织品,投放到相对应的分类收集箱中。人工智能软件识别与机器臂/喷气设备相结合,类似于人脑的神经网络系统和人的双手相结合,具备了识别和执行的能力。(5)数据回传:分拣完成后,设备将相关的数据再返回云端,与部署在各地的智能分拣设备实现数据共享和远程智能提升。例如,部署在某纺织分拣中心的智能设备可以向部署在全国各地不同智能设备,不同设备还可以互相继承废弃物识别的经验。该数据还能用于帮助项目运营方了解设备状况及并进行产量、工作量、效益等运营维度的统计。仪器信息网:您对未来光谱仪的创新发展有什么样的展望?有哪些值得期待的技术或者应用?龚龑:从微电子机械系统(MEMS)制造工艺、大数据、深度学习算法、云计算平台、物联网等技术的发展可以看到其对近红外光谱分析技术的推动力量,从工农业生产、服务业和人们日常生活等方面的发展可以看到其对近红外光谱分析技术的需求、牵引力量。在这两种力量的作用下,未来一段时期内,近红外光谱技术将会得到加速发展,以近红外光谱为核心的商业产品将在不同业务领域进一步提供深化和细化的服务,近红外光谱有望成为与时代发展特征(如大数据、云计算和物联网等)最相关的一项分析技术。尽管近红外光谱分析技术的应用前景广阔,但仍有一些技术壁垒和难题需要攻克。例如,目前光谱数据库或模型的仪器供应商依赖(Vendorlock-in)问题,即各厂商的仪器之间存在的台间差异,使其普适性的应用迁移变得困难,需要从仪器标准化、算法和软件等多方面协同努力方能得以解决。再例如,无论是传统的机器学习算法还是深度学习算法,都是在有监督学习的框架下建立定性或定量分析模型。所谓有监督学习就是每个训练集样本是带有标签的,即每个样本的光谱对应着一组参考值(真实的浓度值或类别)。随着近红外光谱技术的广泛应用,将产生大量无标签的光谱资源,这些光谱没有对应的参考值,因此,如何充分利用大量无标签的样本信息进行半监督或无监督分析模型的构建,有可能是未来很值得研究的新方向。仪器信息网:基于光谱仪的发展现状,您在产学研的道路上开展了哪些工作?龚龑:近年来,我负责并结项了一些相关课题,包括2019年的“用于食源性致病菌快检的增强拉曼散射微流控系统关键技术与应用研究”和2020年新疆兵团科技攻关计划项目“棉纺筒纱智能分拣包装关键技术装备研发与示范应用的研究”等,同时还有一些横向课题“运用拉曼光谱技术针对纺织行业气体污染与有毒物质进行快速检测的方法应用”、“城市废旧纺织品成分快速鉴别、分拣与再利用技术”等等,都是运用光谱技术进行了应用与创新。我培养的研究生也在光谱领域进行了探索,在《The International Journal of Life Cycle Assessment》、《上海纺织科技》、《毛纺科技》等发表相关论文,在第六届、第七届中国国际“互联网+”大学生创新创业大赛中荣获一银一铜。我觉得在产学研的道路上我们还要继续前进,现阶段的学生培养模式还需继续探索,在探索的过程中,找到适合当前产学研的一种新模式。团队介绍:北服检测215实验室成立于2008年,在龚龑教授的带领下,团队主要致力于纺织服装标准的制定以及光谱分析技术。制定纺织服装标准可以加强人们的环保意识,使企业也越来越重视环保纺织品的研发、生产和加工。随着光谱学的不断发展,不同的光谱分析方法也相继建立,并出现相应的光谱分析仪器。光谱分析方法在定性、定量、结构分析方面有着优越的表现,并已广泛应用于生命科学、医学、食品、化工、医药、环境、纺织、空间探索等领域。团队近两年联合南京中拓科技有限公司在研发废旧纺织品分拣设备,运用近红外光谱进行定性分析,研发分类算法以及装备设计及制造,实现废旧纺织品从输送、检测、分拣等生产过程中的自动化、智能化,全面提升纺织行业废旧纺织品检测、分拣的自动化水平,达到废旧纺织品的再利用,降低资源对环境影响及资源浪费的目标。
  • 浅谈视觉坐标测量系统(CMM)发展及应用
    一、CMM简介CMM是坐标测量机(Coordinate Measuring Machine)的简称,俗称“三坐标”,最早于50年代由欧洲人发明,知名厂商包括海克斯康和蔡司等,起初用于军工领域,随后广泛应用于各类制造型企业。国内生产三坐标的厂家包括思瑞、雷顿、爱德华等。 图1 坐标测量机(CMM)示例初代CMM由花岗岩平台、精密光栅尺、运动控制系统等部件组成,精度可达到1~3um级别,但是它对环境温度的要求较高,且特别笨重。人们为了测量更加便捷,之后又发明了关节臂CMM、激光CMM、视觉CMM三个品类的坐标测量机。关节臂CMM是由六轴或七轴关节组成,在关节处有高精度旋转编码器可测量关节的角度,精度可达到20~50um级别,重量较轻,对环境温度的要求不像三坐标那么高。但它的测量范围受限于机械臂的臂长,臂越长精度越低。图2 关节臂CMM示例激光CMM是指激光跟踪仪,由激光干涉测距模块、高精度旋转编码器、运动控制模块、全反射靶球等组成,高端设备甚至还集成了视觉定姿模块,精度可达到15um+6um/m,测量范围可达100m左右。 图3 激光跟踪仪示例(中间是激光反射靶球)视觉CMM主要由高分辨率相机和光笔组成,其中相机用于跟踪定位,而光笔又由标志点、探针组成。这类设备的重量最轻,使用时最为灵活省力,精度通常能达到20~50um级别。视觉CMM的分类、发展和应用,将在下文中详述。 图4 视觉CMM示例(跟踪器和光笔)二、视觉CMM的发展视觉CMM是基于数字摄影测量和计算机视觉原理的坐标测量仪器,该领域的学者把相机抽象成一个小孔成像设备,利用“共线方程”这一基本原理,推导出了相机标定、前方交会、后方交会、相对定向、绝对定向、极线对应等解析法理论,表述的是“物-像”几何关系。在视觉CMM中,被观测的目标(光笔)通常是一组标志点,可以是玻璃微珠反光材料的,也可以是LED自发光的,从原理上标志点的数量至少应为3个,但为了更好的精度和可靠性,厂家通常会设计10个左右的标志点。标志点的三维坐标是事先测定过的已知值,相机对标志点进行拍照,得到标志点的成像,利用“物-像”几何关系求解被观测目标(光笔)的位置和姿态。视觉CMM根据相机的数量和使用方式的不同,可以分为单目跟踪CMM、双目跟踪CMM、单目反向定位CMM、单目主动跟踪CMM四种类型,下文逐一介绍。 图5 不同位置下光笔的成像图6 单目跟踪和双目跟踪原理示意图2.1 单目跟踪CMM单目CMM是利用单个相机对被观测目标(光笔)进行跟踪定位,其原理在摄影测量中称为单片空间后方交会,测量精度与相机分辨率、拍摄距离远近、目标的尺寸大小等因素有关。为了保证足够的测量精度,如图6所示,被跟踪的目标张角需要足够大,因此其配套使用的光笔的尺寸一般都很大(图7)。 图7 单目跟踪视觉CMM示例2.2 双目跟踪CMM双目CMM是利用两个相机对被观测目标(光笔)进行跟踪定位,其原理在摄影测量中称为前方交会和绝对定向。虽然市面上也有三个相机以上的跟踪系统,但其原理等同于两个相机。如图6所示,双目CMM不需要大的张角,它只需要较大的夹角,因此其配套的光笔尺寸可以比较小,更加有利于手持使用。 图8 双目跟踪视觉CMM示例2.3 单目反向定位CMM单目反向定位CMM的跟踪原理与单目跟踪CMM类似,但是其探针的安装位置是在相机上,而不是在被测目标(标志点载体)上。这样做的优势是,标志点载体不需要移动,可以把它做的非常大,并且可以把标志点的数量做的非常多,来提升跟踪定位的精度。标志点数量增多对软件的计算能力要求也更高,这是一种新颖的CMM设备。在国内由中观最早提出了这一独创性的产品设计,并诞生了代表性产品——MarvelProbe便携式反向定位CMM,它可以借助固定墙体或便携支架上的标志点,灵活进行反向定位,实现接触式测量功能,同时还兼具独立的摄影测量功能。图9 单目反向定位CMM示例2.4 单目主动跟踪CMM单目主动跟踪CMM,是指相机是活动的,它的相机视场角非常小,且相机会在电机的带动下主动跟踪目标的位置。它不同于激光跟踪仪的特征是没有激光反射靶球。 图10 单目主动跟踪CMM示例三、视觉CMM的应用视觉CMM的特点是轻便灵活,测量范围较大,精度可满足亚毫米级别的需求,在诸如汽车制造、骨科手术等领域有较为广泛的应用。另外,视觉CMM单点测量的精度较高,结合三维扫描仪配套使用,可以提升三维扫描的基准对齐精度,这种做法在三维检测中也较为常见。3.1 汽车制造在汽车制造的装配环节之前,对孔、槽、形面以及缝隙等特征进行检测,是保证顺利装配的前提。图11 视觉CMM对汽车白车身、汽车零部件进行检测3.2 骨科手术传统的骨科手术靠医生的主观判断来确定操刀的位置,而现代手术机器人依靠双目跟踪CMM来实现对骨骼、手术器械的精准定位,降低手术风险。图12 视觉CMM用于骨科手术的引导3.3 结合三维扫描使用三维扫描可以获得形面特征的高密度连续的三维数据,但是对一些边界特征(如孔槽)难以实现完整、精确的测量。而视觉CMM恰好适合对关键特征进行高精度测量。图13 视觉CMM结合三维扫描使用四、结语视觉CMM的优缺点是较为明显的,其优点是手持端的重量较轻,操作更为灵活,测量范围也较大,不受机械运动范围的限制,对环境的要求也较低,另外,视觉CMM的价格通常也较低。其缺点是测量精度不如三坐标和激光跟踪仪,在未来随着相机分辨率的不断提升,视觉CMM的精度还有一定的改进空间。(武汉中观自动化科技有限公司王晓南供稿)
  • 3.67亿元!238台!天津工业大学高端分析测试平台设备更新项目批复(附设备清单)
    7月4日,天津市发展和改革委员会发布了《关于天津工业大学高端分析测试平台设备更新项目可行性研究报告的批复》。经委托天津国际工程咨询集团有限公司组织专家评审,原则同意该项目可行性研究报告,项目建设主体为天津工业大学,项目代码:2405-120000-89-03-406182。该项目位于天津市西青区宾水西道399号天津工业大学现址内。主要建设内容及规模:主要购置设备238台(套),主要为基于USRP的大规模MIMO试验系统平台、低温强磁场扫描探针显微镜、纤维纳米红外光谱仪等设备;替换原有老旧设备132台(套),主要为低压透射电镜、真彩色共聚焦显微镜、冷场发射扫描电镜等设备(购置设备清单详见附件)。总投资金额为36675万元,通过申请中央资金和学校自筹等多种渠道解决。附件天津工业大学高端分析测试平台设备更新项目设备清单表序号仪器设备名称数量(台/套)1热电性能测试系统12光纤光栅解调仪13全息微观透视成像分析系统14全波段光学材料表征系统15多功能湿法纺丝制备及评价系统16阻抗分析仪17多物理场摩擦、磨损原位测试系统18人体步态体态分析系统19穿戴式身体姿态评估系统110便携式代谢测试系统111肌电与多通道生理信号测试系统112纳米级气溶胶粒子分选计数测试台113多通道薄膜压力测量及手持式自定位三维白光扫描系统114动态水蒸汽吸附分析仪115纺织材料界面风速流场测量仪116织物表面多功能电信号测量仪117多功能高分子材料成型仪118液相色谱仪119气相色谱仪120氧气透过率测试系统121可生物降解测试系统122流阻结构参数测试系统123纺丝-熔喷一体化试验机124霍尔效应测试仪125单向透湿膜材料制备及评价系统126耐高温、高精过滤材料评价系统127滤料测试及仿真模拟平台128热激励去极化电流测量系统129锥形量热仪130能源采集及测试系统131材料高频电磁参数测试系统132Materials Studio 模拟计算系统133全自动比表面积及微孔分析仪134高温燃料电池测试平台135纤维电学力学综合性能测试仪136功能材料电学综合测试系统137高温快速导热仪138头模压力及腕戴产品测试系统139红外运动分析测试系统140智能穿戴人因实体实时采集及综合分析系统141柔性电子原位测试系统142服装内热流场动态测量仪143功能纺织品润湿性评价系统144热界面材料分析仪145纺织元宇宙互动同步实训教学装置1 46纺织知识图谱与教学系统1 47柔性织物微带天线测试系统1 48纤维纳米红外光谱仪1 49基于运动学多参数生物力学采集和分析系统1 50双波长显微拉曼光谱仪1 51产业用纺织品及复合材料力学性能测试系统1 52应力动态分布可视化与裂纹预警测量系统153高性能纤维材料制备与理化环保性能测试系统15464通道无线脑电采集系统155多导睡眠/脑电监测系统156电脑测色及颜色信息管理系统157织物舒适性评价体系实验教学套装158功能纺织面料制备与性能分析实验教学套装159纤维着色与染料分散状态分析测试实验教学设备160机油滤清器流量阻力试验台161滤清器高低温脉冲试验台162滤清器效率和寿命试验台163数字化小样新型纺纱与纱线质量评定虚拟仿真系统164新型浆纱织造生产与质量检测设备系统165气囊式接触压力测试仪166纺织复合材料界面性能测试系统167热电性能分析系统168织物风格测试实验套装系统169转矩流变仪170旋转流变仪171原位X射线衍射仪172织物型水电解隔膜测试系统173纳米静电纺制备与测试系统174电极材料应力原位检测系统175落锤冲击试验机176动态和疲劳试验系统177无损检测仪器178飞秒瞬态吸收光谱系统179高低温万能材料试验机180VTC-600-3HD三靶磁控溅射仪181电动固体表面分析仪182Instron毛细管流变仪183低温强磁场扫描探针显微镜184差分式反射式高能电子衍射仪185激光解吸飞行时间质谱仪186双组份高速纺丝试验机187原位变温相位调制型光学性能分析仪188动态光散射粒度分析仪189光场耦合低温磁电输运测量仪190紫外光刻联用光学显微镜系统191高温真空磁场退火炉192激光测振仪193接触式振动试验台194纺织数据分析平台195自旋转移力矩-铁磁共振测量仪器196频谱分析仪197矢量网络分析系统198四探针测试仪199缺陷测试仪1100光谱椭偏仪1101键合丝推拉力测试机1102基于USRP的大规模MIMO试验系统平台1103高速误码率分析扫频仪1104高性能频谱仪1105故障电机系统测试台架1106电机定子测量仪1107高速电机测试平台1108电机系统振动检测设备1109电机系统局部放电检测设备1110高速高精度传感平台1111高性能多分踪录波平台1112先进电力电子器件动静态测试系统1113多通道高精度功率分析仪1114X射线CT层析仪1115功率磁件性能与损耗测试设备1116高电压局部放电测试系统1117高温栅极偏压测试系统1118高温高湿反偏测试系统1119多芯片智能贴装定位机1120器件封装强度测试仪1121热阻抗网络特性与老化测试机1122纤维面料扫描仪1123电工电子训练全过程智能检测及行为识别系统1124工业智能检测实验平台1125纺织智能制造用纱量检测及自动上纱系统1126彩色3D数据采集系统1127法学智能数据模拟分析平台1128虚实多人云协同测绘系统1129无人船载水域物理及水质分析系统1130水下三维建模系统1131空天地大尺度环境污染监测系统1132高光谱成像系统1133智慧城市实景三维测绘建模系统1134地质灾害实时监测系统1135河湖快速三维建模系统1136耕地质量野外快速监测系统1137环境专业综合训练系统1138纺织行业资源循环与污染控排分析系统1139快速金属元素分析系统1140总有机碳分析仪1141流式细胞仪1142全功能近红外光谱分析仪1143核磁共振变温分析仪1144钨灯丝扫描电子显微镜1145CGS-MTD智能材料光电气湿多场传感特性动态检测系统1146多靶位超高真空磁控溅射仪1147新型光电传感特性分析仪1148示波器1149中红外超短脉冲测量仪1150短波显微拉曼/荧光光谱仪1151柔性电子制备检测平台1152近红外超短脉冲测量仪1153脑电采集设备及运算服务器3154大规模图像数据处理设备4155极端环境医疗器械可靠性测试与评价平台1156脑电信号采集与调控平台1157动物活体成像系统平台1158三色多通道活体光纤记录系统平台1159脑重症无创快速成像系统平台1160生理教学显微成像平台1161分子束光电离飞行时间质谱仪1162发动机部件非线性振动测试系统1163叶片性能分析试验系统1164极端高压物性测试系统1165大数据智能分析实验平台1166眼动分析系统1167面部表情分析系统1168机器视觉图像处理实验平台1169小动物成像仪1170稳态瞬态荧光光谱仪1171单四级杆液相色谱质谱联用仪1172化学生物学专业实验室建设1173基础化学实验创新平台1174基础化学实验虚拟仿真系统1175高效液相色谱仪1176蛋白质纯化仪1177流式细胞仪1178全自动高通量高性能比表面及孔径分析仪1179超高速落地离心机1180高气密性自动在线光催化分析系统1181物理化学测试系统1182模块化智能高级流变仪1183综合化学实验创新平台1184细胞代谢呼吸动态分析仪1185生物分子成像仪1186在线原位光谱检测系统1187在线高通量气体吸脱附系统1188圆二色发光仪器1189手性气-质联用仪1190在线圆二色显微成像仪1191超分辨转盘共聚焦显微镜1192圆二色发光仪器1193药物在线原位分析系统1194药物质量监测与评价系统1195小角X射线散射仪1196低压透射电镜1197真彩色共聚焦显微镜1198冷场发射扫描电镜1199全自动气体吸附仪1200自动进样器的差示扫描量热仪2201Zeta电位及粒度分析仪1202X射线衍射仪1203综合热分析1204傅里叶变换红外光谱仪1205电子背散射衍射仪1206激光导热仪1207原子分辨率球差校正透射电镜1208电感耦合等离子体原子发射光谱仪1209单晶X射线衍射仪1210全自动元素分析仪1211凝胶渗透色谱仪1212与热裂解联用的气相质谱仪1213热电双倾原位透射电镜样品杆1214高效液相色谱-静电场轨道阱高分辨质谱联用仪1215透射电镜旋进电子衍射及纳米晶体分析系统1216原位电化学拉曼光谱仪1217电子万能试验机1218复合材料内部缺陷检测系统12194D显微原位CT系统1220高温RTM试验系统1221复合材料振动测试系统1222四自由度缠绕试验系统1223圆二色光谱仪(Circular Dichroism)1224台式吸收精细结构谱仪 (XAFS)1225微区电化学振幅测试系统1226比表面分析仪1227气质联用仪1228多晶合金制备系统1229蛋白质液相分析仪1230全自动耗散型压电界面分析仪1231多功能酶标仪1232高温偏光荧光显微镜1233原子力显微镜控制器及附件1合计238
  • 齿轮视觉检测仪器与技术研究进展
    齿轮视觉检测仪器与技术研究进展石照耀 1*,方一鸣 1,王笑一 2 1 北京工业大学北京市精密测控技术与仪器工程技术研究中心,北京 100124; 2 河南科技大学河南省机械设计及传动系统重点实验室,河南 洛阳 471003摘要:相对于接触式测量,机器视觉检测这种非接触式测量具有效率高、信息全、稳定性好、可识别缺陷等优点,在齿轮检测领域得到越来越广泛的应用。近十年来出现了影像仪、闪测仪、CVGM仪器、在线检测设备等多种基于机器视觉技术的齿轮检测仪器,它们既可以实现齿轮综合式测量,又可以实现齿轮分析式测量。回顾了齿轮视觉检测仪器的发展历程和特点,分析了齿轮视觉检测中边缘检测、亚像素定位、特征提取和模式识别等算法的研究和应用进展,总结了机器视觉在齿轮精度测量和齿轮缺陷检测两个方面的技术发展,并指明了齿轮视觉检测仪器与技术的发展前景。关键词:机器视觉;齿轮测量;齿轮视觉检测仪器;齿轮精度测量;齿轮缺陷检测1 引言齿轮是应用广泛的基础件,其质量直接影响齿轮传动系统的承载能力和寿命等。齿轮检测是分析齿轮加工误差来源、提高齿轮加工精度、保证齿轮产品质量的必备手段。齿轮测量可分为接触式测量和非接触式测量。由于齿轮形状复杂,精度要求高,传统的非接触式测量方法难以满足齿轮测量精度要求,因此传统的齿轮检测设备通常采用接触式测量方式。应用广泛的齿轮测量中心和齿轮双啮检查仪分别是齿轮分析式测量设备和综合式测量设备,均为接触式测量方式。随着计算机技术和视觉测量技术的进步,机器视觉测量精度逐渐提高,在一些场合已经可以满足齿轮检测的需求。相对于接触式测量,机器视觉测量具有效率高、信息全、稳定性好、可识别缺陷等优点,在齿轮测量领域应用越来越广泛。近年来出现了影像仪、闪测仪、computer vision gear measurement(CVGM)仪器、在线检测设备等多种基于机器视觉技术的齿轮检测仪器,它们既可以实现齿轮综合式检测,又可以实现齿轮分析式测量,更能进行齿轮缺陷检测。接触式测量属于串联测量模式,通过测量齿面上一系列点来完成某种测量目标,测量效率较低,大批量齿轮的在线全检是个挑战。此外,接触式测量方法只能测量齿轮的尺寸和精度,难以进行齿轮缺陷检测。目前齿轮产品的外观缺陷主要依靠肉眼筛查,一些细微缺陷还要借助放大镜、工具显微镜等辅助设备进行识别,这些设备检测效率低、误检率高,且无法对缺陷进行准确分类和溯源。齿轮视觉检测属于并联测量模式,一次测量可获取整个区域内的几何要素和外观缺陷数据,检测速度得到极大提升,可以用于大批量齿轮的全检;更重要的是能同时进行齿轮精度测量和齿轮缺陷在线检测。基于视觉的齿轮精度测量是齿轮精度理论与机器视觉技术的有机结合,作者将我国首创的齿轮整体误差理论融入齿轮视觉检测技术中,大大拓展了对齿轮误差的分析能力。齿轮缺陷在线视觉检测技术可实现对大批量齿轮的100% 全检,柔性和自动化程度高,既能实时反映生产状态,及时预警,也方便管理者掌控一定周期内产品质量变化,还可以根据大数据做进一步的质量评估、产能分析和工艺优化。2 齿轮视觉检测仪器如图1 所示,齿轮视觉检测仪器由工业相机、镜头、光源、计算机等几个主要部分组成。常用两种照明方式:图1(a)采用背光光源从待测齿轮下方照明,采集到的是齿轮投影图像,齿轮边缘锐度高、噪声小,此方式适用于齿轮精度测量;图1(b)采用正光光源从待测齿轮上方照明,采集到的是齿轮端面图像,能够凸显齿轮表面缺陷特征,此方式适用于齿轮表面缺陷检测。图1 齿轮视觉检测仪器构成(a)齿轮精度测量系统;(b)齿轮缺陷检测系统几十年来,齿轮视觉检测仪器经历了从只能“离线抽检”齿轮的“个别尺寸”,到结合齿轮精度理论做出齿轮“精度评定”,再到可以在生产现场“在线检测”的越,从通用仪器演变为专用仪器。常见的通用仪器有影像仪、闪测仪等,专用仪器有CVGM 仪器、齿轮在线检测设备等。2.1 影像仪影像仪(VMM)是小零件行业应用广泛的通用视觉检测仪器,可用于测量齿轮外径、孔径等几何尺寸。影像仪有手动式和自动式之分。手动式影像仪的成本较低,但调光、对焦、选点、修正等都依赖人工操作;测量齿轮时,需要人工取点来拟合齿顶圆、齿根圆等几何要素。世界上第一台由电机驱动的自动影像测量系统是1977 年由美国View Engineering 公司研发的“RB-1”系统。目前,国内外有众多企业生产自动式影像仪,典型有瑞典海克斯康、德国蔡司、日本三丰、深圳中图仪器、贵阳新天光电、苏州天准科技等。自动式影像仪在工作台的X、Y 和Z 轴方向可以精确移动,能够实现自动对焦,测量精度更高。通过示教或编程可以实现齿轮测量中的自动取点,但操作过程较为复杂,对操作人员要求高。自动式影像仪一般没有齿轮测量专用软件,能够测量的齿轮指标不全,不能进行精度评价和分析。传统影像仪视场一般较小,为了获取整个齿轮端面轮廓,需要进行图像拼接。手动式影像仪进行图像拼接时效率低、难度大,精度也较差。自动式影像仪可以实现图像的自动拼接,效率较高,但拼接成的图像存在亮度、对比度不均匀的现象,尺寸测量精度同样受到影响。2.2 闪测仪近年来,市面上出现一种新型的一键式影像测量仪(闪测仪),视场范围大,可以一次测量多个零件。日本基恩士的IM-8000 闪测仪可在数秒内同时完成最多100 个目标物、300 个部位的测量,可以任意摆放工件,一键自动识别,自动匹配测量。独特的亚像素处理技术可使图像分辨率达0. 01 pixel,测量精度达±2 μm。深圳中图仪器的VX8000 系列闪测仪也可实现同等级的测量精度。此外,闪测仪还可导入CAD 图,通过“比较测量”识别缺陷,如将实际齿廓图像与标准CAD 图的齿廓对比,可以得到缺齿、断齿等缺陷信息。闪测仪的测量效率相比传统影像仪显著提升,但价格昂贵,同样缺少齿轮精度评价专门功能。2.3 CVGM 仪器1980年代,日本和我国开始了齿轮激光全息测量技术研究。基本原理如图9所示,以单频的氦氖激光器为光源,首先在干涉测量系统获得参考标准齿面的全息图像,然后将标准齿面替换为被测齿面放置于干涉测量系统中,同时将已经拍摄到的全息图像置于系统中。测量时,激光经分光棱镜分光扩束后分为了测量光路和参考光路,其中测量光照射到被测齿面上。两束光线同时照射在全息图上,形成了被测齿面和参考齿面间的干涉条纹,并投影在接收屏幕上。在对条纹图像进行数据处理后,可以得到被测齿面相对于标准齿面的形状误差。在测量光与全息图像之间放入平行平晶,用来调整测量光的相位。对于模数0. 2 mm 以下的小模数齿轮,难以使用接触式方法测量齿廓、齿距、公法线长度等关键参数;现有影像式测量设备不能给出齿轮精度评价报告。如图2所示,CVGM 仪器专用于解决小模数齿轮测量难题,可在1 s内自动计算出齿廓、齿距、径向跳动、公法线长度、齿厚变动量、内孔尺寸、实际压力角等关键精度信息,自动根据齿轮精度标准ISO-1328对齿轮误差进行评级,输出完整的齿轮精度检测报告,并做出OK/NG 判断。CVGM 仪器的齿廓偏差测量精度为±3 μm,齿距偏差测量精度为±2 μm,具有强大的分析功能,可测量双向截面整体误差曲线(SJZ 曲线)。图2 CVGM 小模数齿轮测量系统(a)CVGM 软件;(b)CVGM 系统如图3 所示,CVGM 仪器使用齿轮整体误差曲线作为齿轮单项误差计算的中间体,即先由齿轮轮廓生成齿轮整体误差曲线,再由齿轮整体误差曲线计算出各单项误差;并以SJZ 曲线方式表达测量结果,大大提升了齿轮误差分析能力。图3 基于视觉的齿轮整体误差分析2.4 齿轮在线检测设备齿轮视觉在线检测设备一般都具有分选功能,根据检测结果把被测产品分成合格品、不合格品,或按齿轮精度等级分类,或按缺陷类型分类。该类设备结构形式有三种:直接集成在齿轮产品传送带上方,结构较简单;使用专用上下料机械手和其他辅助机构,结构最复杂;采用玻璃转盘式结构,应用最广泛。图4位于传送带上方的齿轮视觉在线检测设备,优点是占用空间小,但传送带运动不平稳和易磨损,产品摆放角度不固定,导致检测精度难以提高。由于传送带不透光,该设备无法获取齿轮与传送带接触面的图像,不能实现双面测量。图4 传送带式齿轮视觉检测系统图5 所示设备采用了机械手、导轨、转盘等部件,结合专门设计的自动检测装置完成齿轮上下料、检测、分选和摆盘等一系列操作。这类检测设备功能较强,但结构复杂,成本较高。图5 使用机械手和自动装置的齿轮视觉检测设备本团队研制了玻璃转盘式的注塑齿轮在线检测分选系统,如图6 所示,该系统已应用于注塑齿轮生产线,工作稳定,取得了突出的使用效果。玻璃转盘由伺服电机和精密减速器驱动,带动待检齿轮通过视觉检测工位,可保证图像采集过程中齿轮匀速平稳运动。转盘采用高透明玻璃材质,不需翻转就可得到产品底部的检测图像。由光电传感器定位齿轮在转盘上的位置,使用气动执行器将OK/NG 的齿轮吹入相应的存储盒实现自动分拣。该系统能够实现注塑齿轮黑点、毛刺、缺齿、断齿、翘曲变形等外观缺陷检测,也能完成常规几何尺寸和形位误差的测量,并能根据缺陷阈值、尺寸公差实时分选出合格品和不合格品,且具备报警功能。该系统对齿轮端面的检测时间小于0. 3 s,满足生产节拍的需求,特别是具有齿轮轴向测量功能。图6 玻璃转盘式齿轮视觉检测分选系统图7 为注塑齿轮在线检测分选系统软件界面。该软件具有自主知识产权,在软件数据库中贮存了常见齿轮型号及对应的尺寸公差和配置参数,包括CPK 分析和XR 图分析,提高了参数输入效率。注塑齿轮在线检测分选系统兼具精密测量与缺陷检测功能,包括齿轮轴向高度、齿距、公法线、同心度等与齿轮精度相关的检测,齿轮外观缺陷识别准确率能满足注塑齿轮大批量在机检测需求。图7 注塑齿轮在线检测分选系统软件界面3 齿轮视觉检测技术齿轮视觉检测技术是齿轮视觉检测仪器的核心,涉及光学、电子学、计算机图形学、齿轮几何学等多个学科,内容覆盖光学成像、图像处理、软件工程、工业控制、传感器、齿轮精度理论等。近几年,与齿轮视觉检测技术相关的新技术、新理论、新方法大量出现,在多个核心问题上取得了重要的研究进展。齿轮视觉检测技术既有一般视觉检测的共性问题,又有齿轮视觉检测中的特殊问题。齿轮视觉检测的工作流程包括图像采集、图像预处理、边缘检测、齿轮精度评定或齿轮缺陷分析等,其中图像采集、图像预处理、特征提取、图像分割、边缘检测、亚像素算法等属于通用的视觉检测技术,而齿轮精度评定和齿轮缺陷识别属于齿轮视觉检测技术的个性问题。这里先从图像采集系统(硬件)和图像处理算法(软件)两个方面综述与齿轮视觉检测技术相关的共性问题的研究进展,然后从齿轮精度测量和齿轮缺陷检测两个方面介绍齿轮视觉检测技术中个性问题的研究进展。3.1 图像采集系统图像采集系统一般由计算机(主机)、图像采集卡、工业相机、镜头、光源等组成。工业相机按照传感器芯片种类可分为CCD 相机和CMOS 相机两种,传统上CCD 相机效果更好,但随着技术的发展,目前在一般应用场合CMOS 相机基本已经取代了CCD 相机。相机数据接口常见的有GigE 接口、USB 接口(USB2. 0和USB3. 0)、Cameralink 接口等。其中采用GigE 或USB 接口的工业相机可以直接通过线缆与主机通讯,不需要数据采集卡;而其他接口如Camerlink 接口的相机则需要配备图像采集卡才能与主机通讯。常用的工业镜头按等效焦距分类主要有广角、长焦、中焦、远心、微距镜头等。一般远心镜头的畸变更小,景深更大,可以消除“近大远小”的测量误差,更适合进行高精度的尺寸测量,因此在齿轮视觉检测领域使用最多的镜头为远心镜头。但远心镜头通常价格较高,对精度测量要求不高时,可用普通镜头替代。视觉检测领域常用的光源有点光源、面光源、条形光源、环形光源、穹顶光源、同轴光源等类型,其作用主要有强化特征和弱化背景、突出测量特征、提高图像信息、简化算法、降低系统设计的复杂度、提高系统的检查精度和效率。在齿轮精度测量领域常用的光源主要是面光源,面光源的光线具有更好的方向性,均匀性更好,齿廓更清晰;在齿轮缺陷检测领域主要使用穹顶光源、环形光源和同轴光源等,这些光源可使整个齿轮端面图像的照度十分均匀,突出缺陷特征。齿轮视觉检测的核心问题是测量精度和检测效率,这两个问题都与图像采集系统密切相关。为了提高测量精度,应当选用分辨率更高的相机;为了提高检测效率,需要选择分辨率低的相机,以减少需要处理的数据量,提高软件计算速度。精度和效率是一对矛盾,通过选用运算能力更强的计算机和改进图像处理算法的效率,可以部分地解决精度和效率的矛盾问题。无论是为了提高检测精度还是为了提高检测效率,选用精度更好的镜头和更加稳定的光源都可以改善整体的性能指标。3.2 图像处理算法齿轮视觉检测技术中用到的图像处理算法有图像预处理、边缘检测、亚像素定位、特征提取和模式识别等。其中图像预处理方法与机器视觉其他应用场合的预处理方法基本相同。3.2.1 边缘检测算法齿轮视觉检测中常采用的边缘检测方法有经典微分算子、小波变换和数学形态学。边缘检测算法能够把齿轮二维端面图像中的关键轮廓提取出来,得到轮廓像素点的坐标集合。根据轮廓点的坐标信息和相机标定参数就可以精确计算出齿轮的特征尺寸,包括齿顶圆直径、齿根圆直径、内孔直径、齿高、齿厚和齿距等。1)经典微分算子图像边缘一般是图像灰度变化率最大的位置,因此可用一阶/二阶导数来检测边缘,由此诞生了一系列经典微分算子。根据微分的阶数可以将经典微分算子分为两类:一类是通过寻找图像灰度值的一阶导数极值点来确定边界的一阶微分算子,有Roberts 算子、Prewitt 算子、Sobel 算子、Canny 算子;另一类是根据图像二阶导数的零点来寻找边界的二阶微分算子,有Laplacian 算子、LoG(Laplacian-of-Gaussian)算子、DoG(Difference-of-Gaussian)算子。对这些经典微分算子在齿轮边缘检测中的性能进行了比较,如表1 所示。表1 经典微分算子在齿轮边缘检测中的性能比较Canny 算子采用双阈值和非极大值抑制策略提升对噪声的抗干扰性,具有滤波、增强、检测多个阶段的优化,是性能最优良的微分算子。对于齿轮图像,采用Canny 算子提取的齿廓信息最完整,最接近实际齿廓,如图8 所示。图8 基于Canny 算子的齿廓提取2)小波变换小波变换具有良好的时频局部化特性和多尺度特性。良好的时频局部化特性使其特别适用于检测突变信号,而图像中的突变信号对应边缘,因此小波变换也适用于图像边缘检测。利用Harr 小波函数对齿轮图像进行重构,再结合Canny 算子提取重构图像的齿廓,比单独采用Canny 算子有更优的效果。多尺度特性使其能很好地抑制噪声。图像中的噪声和边缘都属于高频分量,经典微分算子引入各种形式的微分运算后必然对噪声较为敏感,而随着尺度的增加,噪声引起的小波变换的模的极大值迅速减小,而边缘的模值不变,这一特性可以很好地抑制图像噪声。提出一种基于Curvelet 变换的尺度与方向相关性联合降噪方法,该方法对齿轮图像进行降噪处理,在继承小波变换多尺度降噪的基础上,同时进行尺度内方向相关性降噪,可以为齿轮边缘检测提供高质量的输入图像。因此,小波变换是一种齿轮图像边缘提取的有效方法。3)数学形态学数学形态学是基于积分几何和几何概率理论建立的关于图像形状和尺寸的研究方法,其实质是一种非线性滤波方法,通过物体形状集合与结构元素之间的相互作用对图像进行非线性滤波。由于数学形态学提取边缘时容易造成间距小的低灰度轮廓的错位和合并,因此常将其与微分算子提取出的轮廓加权融合。相关文献就提出了一种融合Canny 算子和数学形态学的含噪声齿轮图像边缘检测算法,分别采用改进的Canny 算子和多尺度多结构元素灰度形态学边缘检测算子提取边缘;然后对两幅边缘图像进行了小波分解,得到各层子图像;最后对子图像进行自适应加权融合,并使用小波逆变换重构图像得到最终的边缘检测图像。相关文献采用数学形态学中的四邻域腐蚀法提取出边缘宽度,并将其作为单个像素的轮廓,测量分度圆直径为5 mm 以下的齿轮的齿顶圆直径和齿根圆直径,与千分尺测量结果差值的绝对值在2 μm 以内。3.2.2 亚像素定位算法数字图像是以离散化的像素形式存在的,传统边缘检测算法的测量分辨率只能达到一个像素级,提取出的边缘由像素块构成,边缘定位精度不高,如图9(c)所示。亚像素定位算法是在像素级边缘检测的基础上逐渐发展而来的,首先需要经过像素级边缘检测粗定位,然后利用粗定位边缘点周围邻域内的像素数据进行边缘点的亚像素级精确定位,如图9(d)所示。图9 亚像素边缘处理亚像素定位算法主要有三类:矩方法、插值法和拟合法。1)矩方法矩方法计算简便,应用于齿轮边缘检测可以减小测量误差。相关文献提出一种利用前三阶灰度矩进行亚像素边缘定位的算法,这是文献中最早提出的矩方法。随后基于空间矩、Zernike 正交矩的方法也相继被提出。相关文献利用基于Zernike 矩的齿廓边缘检测算法,对齿顶圆直径为49. 751 mm、齿数为23 的齿轮测得的齿顶圆直径、齿根圆直径的相对误差在0. 02% 以内,齿距累积总偏差的相对误差约5. 15%。相关文献提出一种基于灰度矩的亚像素边缘检测算法,该算法以邻域窗口的灰度均方差积表示边缘强度,灰度重心所在的方向表示灰度变化的方向,在初始边缘的基础上按求取的灰度变化方向划分为八个区域,构建一维灰度矩模型解算亚像素边缘位置,对于噪声系数为0. 005 的模拟图像,该算法的绝对定位误差为0. 013 pixel。相关文献提出了一种复合亚像素边缘检测方法,该方法基于orthogonal Fourier-Mellin moment(OFMM),可为后续齿廓缺陷检测提供精确的齿廓形状。2)插值法插值法运算速度快,应用于齿轮在线检测设备能够满足生产节拍的要求。插值法的核心是对像素点的灰度值或灰度值的导数进行插值,以增加信息。德国MVtec 公司开发的著名机器视觉算法包Halcon 在工业领域应用广泛,其中的亚像素边缘检测算子采用的就是插值法。相关文献基于Halcon 算法包中的亚像素边缘检测算子,开发了一套齿轮测量应用程序,可以得到齿廓亚像素点集合,并设定条件剔除假边缘,最终得到齿顶圆直径等参数。3)拟合法拟合法对噪声不敏感,适用于噪声较多的齿轮图像,但求解速度较慢。拟合法是通过对像素坐标和灰度值进行理想边缘模型拟合来获得亚像素边缘的。相关文献提出一种基于高斯积分曲面拟合的亚像素边缘定位算法,可最大限度地消除噪声的影响,与原有高斯拟合算法相比,该算法通过坐标变换简化了曲面拟合问题,计算速度提高1 倍,可以满足五级精度的渐开线直齿圆柱齿轮的齿廓偏差测量要求。3.2.3 特征提取和模式识别算法缺陷检测算法一般由图像预处理、图像分割、特征提取和模式识别等步骤组成,其中特征提取和模式识别是缺陷检测的关键环节。特征提取的有效性对后续目标缺陷识别精度、计算复杂度、检测鲁棒性等均有重大影响。常用的特征提取算法可以分为三种,分别是基于纹理、颜色和形状的特征提取算法。提取完特征后,还需采用模式识别算法对缺陷进行区分。模式识别算法主要有匹配识别和分类识别两类。齿轮缺陷检测常用的匹配识别算法有FAST 和SIFT 算法等,常用的分类识别算法有基于人工神经网络或支持向量机的算法。相关文献提出了一种基于FAST-Unoriented-SIFT 提取算法和BoW(Bag-of-Words)模型的行星齿轮故障识别方法,该方法将原始振动信号转换为灰度图像后,通过FAST-Unoriented-SIFT 算法直接提取灰度图像中的特征。FAST-Unoriented-SIFT 算法结合了FAST 和SIFT 算法的优点,忽略了特征的方向。最后在提取的特征的基础上建立BoW 模型,该方法对齿轮故障的整体识别率达98. 67%。相关文献提出了一种改进的GA-PSO 算法,称为SHGAPSO算法,先经过图像分割算法提取齿轮的几何形状、纹理和颜色特征,再重建BP 神经网络,并使用SHGA-PSO 算法优化结构和权重。SHGA-PSO 算法对坏齿、划痕、磨损和裂纹4 种不同的齿轮缺陷样本的识别正确率在94% 以上。相关文献基于YOLO-v3 网络实现了对金属齿轮端面凸起、凹陷和划痕三种缺陷的快速检测和定位,对每幅图像的平均检测时间为77 ms,对三种缺陷的平均精确度(AP)和平均召回率(mean recall)分别为93% 和91%,检测效果如图10 所示。图10 齿轮缺陷特征提取与模式识别3.3 齿轮精度测量齿轮形状复杂,精度要求高。为保证齿轮产品质量,需要控制的齿轮精度指标有齿距偏差、齿廓偏差、螺旋线偏差、齿厚、齿圈跳动等,其中除螺旋线偏差外,其他精度指标都可以用齿轮端截面轮廓数据进行计算。齿轮精度测量主要有两个问题需要解决,一是通过图像处理获得被测齿轮的精确的端面轮廓信息,二是根据齿轮精度理论和相关齿轮精度标准计算齿轮各项偏差值并给出齿轮精度评定结果。通过齿轮精度等级,可以确定对视觉检测系统的测量精度要求。以齿数20、模数1 mm、5 级精度的直齿圆柱齿轮为例,其齿距累积总偏差为11 μm,齿廓总偏差为4. 6 μm。按测量仪器精度为被测指标允差的1/3~1/5 估算,测量5 级精度齿轮的测量仪的精度应优于1. 6 μm。这对视觉测量而言,是非常困难的。齿轮视觉测量精度依赖于测量系统的硬件和数据处理算法。由于所用相机、镜头等图像采集系统硬件和图像处理算法等软件的不同,以及被测对象齿轮的尺寸参数和精度要求不同,齿轮视觉检测系统的测量精度的差异很大,但在齿轮被测项目评定方面,都是根据齿轮精度相关标准进行的。相关文献依据齿轮精度标准ISO1328-1,给出了视觉测量齿距偏差和齿廓偏差的评定方法,对模数为0. 5 mm 的8 级精度直齿轮测得的齿距偏差、齿廓偏差与齿轮测量中心的测量结果差值最大为4 μm。相关文献采用视觉测量方法测量模数为2 mm、齿数为90的齿轮,齿廓总偏差5 次测量的标准差为0. 028 μm,取得了很好的测量重复性。相关文献提出了视觉测量齿轮的公法线长度的方法,其测量精度能够满足工程应用要求。齿轮精度视觉测量方面,国外研究进展与国内基本相当,研究内容类似。值得指出,Werth 公司推出的基于光纤测头的微小模数齿轮测量设备采用了接触式测量和视觉检测技术相结合的方法,该方法既具有视觉测量的特点,可借助视觉引导实现对微小齿槽的测量;又具有接触式测量的特点,需要用光纤测球扫描齿轮轮廓,测量精度较高但效率较低。由于仪器价格高,这种基于光纤测头的齿轮测量仪器实际应用较少。除了齿廓偏差、齿距偏差、齿厚等轮齿精度指标外,齿轮视觉测量技术还可以获得齿轮的形位误差。GB/T 1182—2018 规定齿轮图纸中通常要标注内孔圆度、端面跳动或垂直度、分度圆跳动等的形位公差,这些都可以通过视觉测量完成。此外,近年来出现了基于视觉方法的齿轮表面粗糙度测量研究。有文献提出一种基于卷积神经网络(CNN)建立粗糙度参数Ra 与处理后的齿轮感兴趣区域(ROI)图像之间关系的方法,该方法可以在无需人工参与的情况下自动检测齿轮表面粗糙度,平均测量时间约为0. 5 s,比使用接触探针测量齿面粗糙度的方法快40 倍。我国科技工作者在1970 年前后首创的齿轮整体误差测量技术可快速获取包含被测齿轮全部齿廓误差信息的双向截面整体误差曲线(SJZ),进而方便地分析出齿廓偏差、齿距偏差、齿厚变动量等齿轮误差项目,可以直观地对齿轮加工质量和使用性能进行分析和评价,具有测量效率高、信息全的优点。但由于作为测量元件的跳牙蜗杆制造困难、通用性不好,传统上齿轮整体误差测量技术通常只适用于大批量生产的齿轮产品。与齿轮整体误差测量技术类似,齿轮视觉测量技术也可以快速获得被测齿轮的全部齿廓信息,因此也可以使用齿轮整体误差曲线进行测量结果的表达、分析与处理。CVGM 视觉齿轮测量软件中就采用双向截面整体误差曲线作为全部齿廓测量结果的表达方式。图11 为CVGM 获取的SJZ 曲线,其中最外圈为左齿面整体误差曲线,其次为右齿面整体误差曲线,最内圈为齿轮内孔圆度误差曲线。图中可见被测齿轮具有中凸齿廓,整体几何精度较好,但在个别轮齿交替时(左齿面2-3 齿交替、3-4 齿交替)会产生较为明显的啮合冲击。其中,该被测齿轮作为被动齿轮在左齿面2 齿、3 齿啮入时会产生刚性冲击,作为主动齿轮在左齿面2 齿、3 齿啮出时会产生柔性冲击。从双向截面齿轮整体误差曲线还可以看出各轮齿齿距、齿厚的变化规律[9]。通过与齿轮视觉检测技术相结合,齿轮整体误差测量技术和齿轮整体误差理论又获得了新的发展机会。图11 CVGM 获取的双向截面整体误差曲线为提高测量精度,CVGM 创新性地提出了基于“ 虚拟样板”的齿轮测量软件精度标定方法。在CVGM 系统中,测量精度是分为两个环节进行保证‍‍‍的:首先通过测量标定片对图像采集系统的精度进行标定;其次使用虚拟齿轮样板对测量软件算法的精度进行标定。图12(a)为对标定片进行测量的结果,标定片上各个圆点的直径理论值为0. 5 mm,标定片的图形制造误差小于等于1 μm,CVGM 计算出的各个圆点的直径误差均在1 μm 以下。图12(b)为采用CAD 软件绘制的无误差的标准齿轮图像,图片像素大小与实际图像采集系统CVGM-12H 的像素大小相同,均为3. 668 μm。CVGM 对无误差齿轮图像进行测量时,由图像处理算法和齿轮精度评定算法引入的齿廓偏差小于等于2 μm,齿距偏差小于等于1 μm。试验中CVGM 系统测量重复性误差为±1μm,可以满足齿数为20、模数为1 mm、5 级精度的直齿圆柱齿轮的精度测量要求。此外,CVGM 软件还可以自动计算内孔圆度、齿圈跳动、公法线长度等误差项目。图12 CVGM 图像采集系统标定和“虚拟齿轮样板”图(a)标定片;(b)虚拟齿轮样板3.4 齿轮精度测量制造过程中由于材料、设备和工艺等问题,会产生齿轮缺陷。齿轮缺陷视觉检测技术的关键指标是缺陷识别的准确率和效率。图13 为齿轮的常见缺陷,包括毛刺(披锋)、缺料、裂纹、收缩、变形、穿孔、流纹、烧胶、凹痕、色差、坏齿、凸起、气泡和溢边等。齿轮视觉检测系统采集并处理齿轮表面图像,利用图像分割、特征提取和模式识别等算法获取缺陷的特征信息,实现对缺陷的定位、识别、分类和统计。图13 齿轮缺陷种类1)齿廓缺陷检测齿廓缺陷检测是齿轮缺陷检测研究中的重点,齿廓好坏与齿轮传动性能密切相关。齿廓具有固定的形状特征,一旦出现缺陷就意味着形状改变。因此,齿廓缺陷检测通常需要先用边缘检测算法提取齿廓边缘,再利用基于局部灰度特征统计或形状特征提取的方法对齿廓边缘的每个亚像素点进行几何特征分析来识别齿廓缺陷。相关文献通过连通域标记算法对每个连通域进行细分区域灰度值分析,对灰度值分析结果进行阈值判别从而提取齿轮缺角、缺齿缺陷。相关文献针对彩色塑料齿轮图像,采用基于决策树的局部阈值方法对图像进行分割来检测齿轮的缺齿情况。有文献提出“虚拟圆扫描法”,通过对一系列相关交点之间的距离比值与设定的比值系数进行比较,确定齿廓是否合格。当齿廓缺陷随机性较强时,可采用机器学习算法来提高识别的正确率。相关文献采用支持向量机来构造齿轮缺陷识别模型,模型识别齿廓缺陷的正确率达97. 8%。2)毛刺检测毛刺是齿轮在生产过程中出现的一些飞边、棱边、尖角等,是齿轮最为常见的缺陷。齿轮毛刺是齿轮制造工艺不当引起的,尺寸细小,肉眼难以发现,出现位置随机,较为频发,是齿轮缺陷检测中的必检项。由于毛刺常出现于齿轮轮廓边缘,因此通常需要进行边缘检测,再根据齿轮的几何特征来判别和定位毛刺。本团队针对注塑齿轮的中孔披锋(毛刺)缺陷,先采用亚像素定位算法精确定位中孔轮廓,再计算轮廓上各点到齿轮中心的径向距离,根据径向距离的异常值判定是否存在中孔披锋。3)表面异物检测齿轮的表面异物缺陷包括油污、黑点、材料中的杂质等。这类缺陷通常会构成图像上的连通域,通过图像分割、Blob 分析等方法可以得到连通域的质心坐标、面积、圆形度、凹凸度和惯量比等几何形状特征,从而获取表面异物的个数、位置和大小等信息。4)裂纹与流纹检测裂纹是金属齿轮的一种外观缺陷,与裂纹类似,流纹是注塑齿轮特有的一种外观缺陷。针对这两种缺陷的检测方法一般分为两个步骤:一是检测齿轮表面是否存在裂纹/流纹;二是提取裂纹/流纹。合格的齿轮产品表面较为光滑,灰度变化均匀;裂纹/流纹则与周围灰度值有明显差异,具有明显的纹理特征,因此常采用基于统计的灰度特征或阈值分割法进行提取。5)翘曲变形检测翘曲变形是注塑齿轮的常见缺陷类型,体现为塑料齿轮的几何形状与模具型腔的形状发生了偏离,超出了公差范围。通常可以通过测量塑料齿轮的特征尺寸(如齿距、齿厚)来识别。本团队选取斜齿轮齿厚标准差或直齿轮齿厚最小值作为特征值,利用支持向量机分类器进行翘曲变形缺陷判别,成功检测出200 个样品中的19 个存在翘曲变形缺陷的齿轮。6)多缺陷融合检测当齿轮表面缺陷特征较多时,通常要通过基于机器学习的目标分类算法来进行判别。如有文献提出一种改进的YOLO-v3 网络,用DenseNet 代替YOLOv3网络中的DarkNet-53 网络,对塑料齿轮的污痕和缺齿缺陷进行检测,误检率为1. 3%。相关文献采用基于CNN 的两种分类方法Naïve 法和fine-grained 法对齿轮的划痕、凸起、孔蚀、块状不对称缺陷进行识别,Naïve 法处理时间更少,平均时间为0. 09 s,准确率为92%,而fine-grained 方法在准确性方面更好,准确率为96. 5%,平均时间为0. 67 s。本团队研制的注塑齿轮在线检测分选系统能够实现对注塑齿轮材料杂质、黑点、油污、烧胶、毛刺、气泡、水口穿孔、缺齿、断齿、收缩、翘曲变形等多缺陷的融合检测,还可以测量齿轮几何尺寸和形位误差,特别是具有齿轮轴向测量功能,可实时分选出合格品和不合格品,具备报警功能,检测效率高、功能全,是目前注塑齿轮视觉在线检测专用设备。4 结束语特大齿轮(直径大于3000mm)测量和微小齿轮(直径小于2mm或模数小于0.1mm)测量属于“绝端测量”范畴。过去20年,对齿轮极端测量技术的研究取得了系列成果,有些已应用于实际齿轮测量中。随着齿轮视觉检测技术的发展,齿轮视觉检测仪器已经可以实现齿轮精度评价和齿轮缺陷检测,已在众多小模数齿轮生产企业得到应用,可以有效地管控产品质量、改进加工工艺、提高产能,取得了较好的使用效果。在齿轮视觉检测技术发展过程中,软件算法是技术壁垒和核心竞争力的集中体现。相对于齿轮精度测量,面向齿轮缺陷检测的技术较为成熟。目前,齿轮机器视觉测量仪器和技术的研究和应用主要集中在小模数齿轮领域的原因如下:在机器视觉测量中,测量精度和测量范围(视场范围)是一对矛盾,现有的机器视觉测量仪器难以同时满足中、大模数齿轮对视场范围和测量精度的要求;小模数齿轮的齿槽宽度小、轮齿刚性差,常规的接触式测量仪在测量小模数齿轮时效率低、测量困难,不能满足小模数齿轮的测量需求。但齿轮机器视觉测量技术也有不足。除了固有的测量精度相对较低的缺点外,由于轮齿遮挡问题,齿轮机器视觉测量技术目前不能实现对圆柱齿轮的螺旋线测量和对锥齿轮、斜齿内齿轮等特殊齿轮的测量,限制了齿轮机器视觉测量技术的推广和应用。在齿轮精度测量研究方面,提高视觉测量精度仍将是难点和着力重点;在齿轮缺陷检测研究方面,目前对齿轮缺陷检测的研究不够深入,可检的缺陷种类不全,提高缺陷识别准确率和效率是着力重点。随着人工成本的增加和产业升级需求的提升,在大规模齿轮生产过程中齿轮视觉在线检测设备的应用越来越多。齿轮视觉在线检测设备的特点有:耦合于生产线上,可高效测量批量齿轮的尺寸精度,实时监测齿轮质量,自动剔除不合格品,形成“生产-检测-分选”自动化流水线;对齿轮外观缺陷进行识别和分类,实现大批量齿轮的“应检尽检”,用“大数据”手段分析齿轮工艺问题,与生产管控系统互联,及时调整工艺参数,减少损失;实现齿轮质量长期监测,及时发现齿轮质量的异常变化;可实现网络化监管和远程监控,即使在千里之外也可以监控整个生产过程,把握生产动态。在未来,齿轮视觉检测技术必将纳入更多先进的科学技术,齿轮视觉检测仪器也将集成更多新技术,并充分发挥各项技术的优点,提升检测效率和精度。三维视觉检测技术、视觉检测设备的复合化、微型化和智能化将是齿轮视觉检测技术的发展趋势。未来每条齿轮产线的生产动态都可以集成到一个软件中进行分析,检测数据实时存储到云端,长期积累的庞大数据将为齿轮生产工艺带来巨大的变革。毫不夸张地说,视觉检测技术将会带来齿轮检测领域的革命,现在还仅仅处于入门口。(省略参考文献51篇)
  • 我国建立科研用试剂核心技术标准和质量控制平台
    日前,中国计量科学研究院承担的“十一五”国家科技支撑计划课题《科研用有机试剂标准规范的制定及工程化研究》通过了科技部科研条件与财务司组织的课题验收和国家质检总局组织的成果鉴定。鉴定意见认为,该课题部分研究成果达到国际先进水平,试剂标准化、质量控制等相关技术填补了国内相关领域空白,对提高我国科研用试剂生产和质量控制具有重要意义。   科研用试剂是科学研究中的必需和关键物质基础,在生命科学、新药创制、新型材料、新能源、食品、环境等重点领域科学研究有广泛需求,是科技创新发展的重要支撑和保证。科研用试剂种类多,应用广,质量要求高,更新换代快,工程化和标准化难度大。我国科研用试剂总体水平与国外先进水平有较大差距,核心基础有机科研试剂仍然大量依赖进口。  为此,中国计量科学研究院于2010年承担了国家科技支撑计划重点项目“科研用有机试剂标准规范的制定及工程化研究”,联合天津康科德科技有限公司、天津博纳艾杰尔科技有限公司、中国原子能科学研究院、北京化工大学等4家单位对科研用基础和核心试剂标准规范的制定及工程化进行研究。  该课题在“十一五”国家科技支撑计划项目《科研用高纯有机试剂核心单元物质及共性关键技术的研制与开发》成果基础上,以“质量控制标准化、共性关键技术规范化、产业化基地工程化、产学研用联盟机制化”为核心目标,以开展我国高纯有机试剂质量及标准规范研究,提高高纯有机试剂产品质量为主要内容,深入研究高纯有机试剂制备关键技术,开展有机试剂工程化研究及特殊包装储运过程质控评估体系研究。  据中国计量科学研究院化学所所长李红梅研究员介绍,通过技术攻关和机制、模式的创新,课题组重点解决了科研用有机试剂标准规范的制定及工程化研究,首次建立了农残级乙腈、光谱级乙腈、质谱级乙腈、农残级乙酸乙酯、农残级乙醇、光谱级乙醇、色谱级正己烷、农残级正己烷等8种高纯有机试剂分析方法体系 建立了有机试剂、无机同位素试剂产品的包装物及储运质控和评价体系各1套 建立了有机同位素试剂质控和评价体系1套 建立了科研用高纯有机试剂的产学研用相结合的良性机制模式。  课题组还创新性地建立了“超精细实时在线精馏控制、农残级溶剂中超痕量目标杂质去除”等关键制备技术,申报了包括5项国家标准在内的25项标准,为31种科研用高纯有机试剂产品化过程中的质量控制、技术转化和推广奠定了良好基础。  课题研究成果具有较高的应用价值,所建立的科研用试剂核心技术标准和质量控制平台,打破了我国高纯有机试剂长期依赖进口的局面,降低了对国外的技术依存,为提高我国高纯试剂质量和市场竞争力发挥了重要作用。
  • 深圳先进院提出针对微型仿鱼磁驱动机器人的复杂运动学习控制方法
    近日,中国科学院深圳先进技术研究院副研究员徐升和研究员徐天添团队合作,提出了一套针对微型仿鱼磁驱动机器人的复杂运动学习控制方法,通过宽度学习网络训练获得了可控磁场变化与仿鱼机器人多种动作基元之间的关系规律,实现了仿鱼机器人的复杂运动,而且该方法无需复杂调参,并具有优异鲁棒稳定性,保障了运动过程不受外界扰动影响。相关研究成果以A Robot Motion Learning Method Using Broad Learning System Verified by Small-scale Fish-like Robot为题发表在《IEEE控制论汇刊》(IEEE Transactions on Cybernetics)上。   微型仿鱼机器人由于构型合理、尺度很小,可以更为灵活地在复杂狭小空间内穿梭作业,在微孔探查、靶向治疗等小尺度操作领域具有巨大的应用潜力。但是,受磁场与机器人运动之间的强非线性影响,机器人按要求轨迹运动控制十分具有挑战性。此外,在复杂场景中(如人体内),理想目标轨迹的准确坐标往往不便获取,限制了追踪控制策略的应用。体内环境迂曲复杂,存在频繁方向改变,控制器反复调整计算复杂繁琐,存在重复性。因此,有必要将微型机器人的底层运动封装为基本运动,例如直走、直角弯、S形弯、C形弯等,并将这些基本运动作为高层运动指令库的基元,便于在后续的宏观运动路径规划中按需调用,可降低实时控制指令的解算复杂度。研究团队结合宽度学习理论,对磁控仿鱼机器人的运动基元开展训练学习,完成了多种复杂运动。   研究团队设计了以宽度神经网络为主体的微型机器人基本运动控制器;基于李雅普诺夫稳定理论,推导了保障机器人运动稳定的控制器网络参数约束,简化了不同运动基元的控制器参数训练学习过程;提出了以磁场参数变化与机器人速度矢量变化为所需数据的控制器网络参数训练方法,使用者只需通过改变训练数据的种类即可获得多种运动基元,而且考虑了稳定约束的训练算法可以保证所获得的控制器的稳定性。   通过仿真及实验,研究团队运用提出的学习控制方法获得了锐角弯、J形弯、S形弯等多种运动基元的微型机器人控制器,并开展了仿鱼机器人避障运动实验。在机器人运动过程中,研究人员通过人为摇晃容器、暴力碰触机器人模拟了真实场景中可能存在的复杂扰动,机器人在复杂环境中,直接调用C形弯、S形弯等运动基元实现高效避障,通过使用所提方法机器人均可以抵达最终指定区域,验证了所提方法的强抗扰能力。该成果符合高层运动指令规划的思想,大幅简化了实时控制指令解算复杂度,为微型机器人的多机集群运动或无参考轨迹最优运动规划打下了基础,同时还可推广至无人机、无人车以及工业机器人的复杂运动控制。   相关研究工作得到国家重点研发计划、国家自然科学基金、广东省自然科学基金、中国科学院青年创新促进会、深圳市等科技项目的资助。图1 基于宽度神经网络的微型仿鱼机器人运动基元学习控制方法图2 微型仿鱼机器人结构及运动原理,磁驱动实验系统图3 机器人多次执行“S”形避障实际效果图4 机器人强抗扰能力验证(暴力阻拦、容器振动)
  • 4.16亿元!天津工业大学一流学科群和高能级研发创新平台设备更新项目批复(附设备清单)
    7月4日,天津市发展和改革委员会发布了《关于天津工业大学一流学科群平台和高能级研发创新平台设备更新项目可行性研究报告的批复》。经委托天津国际工程咨询集团有限公司组织专家评审,原则同意该项目可行性研究报告,项目建设主体为天津工业大学,项目代码:2405-120000-89-03-702469。该项目位于天津市西青区宾水西道399号天津工业大学现址内。主要建设内容及规模:主要购置设备280台(套),主要为非织造智能工厂平台模拟系统等;替换原有老旧设备279台(套),主要为复合纺丝机、真空镀膜机、半导体及光学薄膜制备系统等设备(购置设备清单详见附件)。总投资金额为41587万元,通过申请中央资金和学校自筹等多种渠道解决。附件天津工业大学一流学科群平台和高能级研发创新平台设备更新项目设备清单表序号仪器设备名称数量(台/套)1柔性薄膜制备系统12天然木质素染料提取浓缩干燥专用设备13连续长丝3D成型系统14计算机基础教学与创新实验平台15图形图像实训系统设备16人工智能计算平台17人工智能实训与创新平台18纳米纤维智造平台19CAD/CAM数字化智能教学实训系统110户外功能性服装智能缝制系统111多通道超声波细胞粉碎机系统112超大隔距双针床经编机113柔性电极印刷系统114软包电池产线系统115生理参数模拟人台系统116呼吸综合模拟系统117纺织服装数智化实验教学系统118双面无缝成形针织小样机119染料-助剂-纤维界面作用与影响实验教学套装120转移印花与数码印花实验教学套装121熔喷纳微纤维水刺复合实验线122溶液喷射/微射流纳微纤维实验机123非织造成网固网系统124立式熔喷机125针织经纬编衬纱编织机126多功能全成型电脑横机127静电可调针织钩编系统128数字化小样纺纱精梳系统129环锭纺细纱自动接头机130单面高速提花无缝针织内衣机131双面全成形经编机132红外摄像机133紫外-可见-近红外分光光度计134多功能生物3D打印机135高真空电阻蒸发镀膜机136多结构复合纤维熔融纺丝实验线137动态纸页成型器138非织造智能工厂平台模拟系统139功能性纳米颗粒修饰改性微纳米纤维的制备体系140材料微纳米结构激光加工设备141超薄切片机142复合材料老化机组143纺织装备系列仿真软件144高精度视线交互系统145纺织关键工况物理模拟系统146数字工程师培训考核平台247二维材料制备系统148高真空多靶磁控溅射系统149HVPE沉积机台150服务器151电输运与磁致伸缩测量系统152布里奇曼定向凝固炉153高真空单辊旋淬及喷铸与电弧熔炼及吸铸系统154雾化气相外延沉积机台155物理气相沉积机台156晶圆表面修整抛光机157晶圆键合机158晶圆清洗湿法刻蚀机159虚拟仪器项目式实践与机器视觉平台160信号与系统综合实验平台161数据通信实验平台262软件无线电创新平台163光纤通信技术综合实验系统164大载重多功能无人机与四轴消防无人机系统165多旋翼搜救与测绘无人机群166多用途垂直起降固定翼无人机467大负载长续航物流运输无人机468智能双轴机械手缆控无人潜航器169无人机应急指挥调度平台170机载通信装备171无人系统教学仿真系统172共直流母线变频电源173电机结构虚拟化开发平台174高性能电机控制系统快速原型开发平台175现代电机系统教学实验平台176DSP教学实验平台177超声金属电极键合机178高频变压器179功率半导体器件互连烧结机180综合展示系列设备181多功能五合一绣花机182SLA系列光固化打印机183视觉成像系统184服装数字化教学系统185服装智能制造教学系统186服装综合性教学系统187微机原理实验平台188电路实验平台189电工学电子技术实验平台190电工学电工技术实验平台191实验教学数字化平台192电工电子多功能实训平台193电子类竞赛综合实训平台194数控车铣实验平台195纺织智能制造成品码垛实训平台196数字化设计与制造实训教学平台197非遗工艺创新-非金属激光加工系统198多材料金属3D成型机199激光钣焊成型系统1100数控加工智能制造生产线1101机器人创新实训平台1102传统机械加工实训平台1103精密铸造实训平台1104智能制造产线孪生教学系统1105虚拟现实元宇宙教学系统1106面向实验室安全监测的智能巡检机器人1107陶瓷粉末快速成型机1108高温连续碳纤维3D成型设备1109全彩树脂3D成型机1110高分子材料烧结快速成型机111110激光器超大SLA3D成型机1112金属激光加工系统1113教学(外语)视听设备及数据存储设备1114数字经贸融合创新教学平台1115数智化企业仿真创新教学平台1116金融科技智能融合创新教学平台1117交互式教学平台12118外语教学系统7119数字人系统8120工作站软件3121桌面工厂(设计版)4122化工原理及专业实验平台1123化工过程实训平台1124人工智能数学大模型平台11256寸半自动光刻机2126光刻预制处理实验平台1127高性能工作站11281940nm光纤激光器1129多工位有机无机蒸发镀膜系统11301910nm光纤激光器1131拉曼光纤激光器2132通用人工智能大模型训练设备4133手眼耳脑具身智能机器人集群系统1134人工智能专业课程实践平台1135医学大数据处理平台1136医工融合新工科创新育人平台1137高性能超精密航空航天金属构件复合加工平台1138高精度空天集群博弈位姿定位系统1139航空发动机燃烧室流场重构-燃烧诊断系统1140GPU服务器2141三维扫描建模系统1142惯性三维运动捕捉系统1143AIoT实验实训系统5144智能网联车实验平台1145深度学习开发平台1146智能复合机器人2147面向工业智能应用的算力租户科研服务平台1148高性能AI算力云资源管理平台1149生物制药实践教学平台1150药物制剂与新释药技术教学平台1151核心路由器2152核心交换机5153智能空间管理系统1154视觉管理设备4155视觉借还设备1156智慧管理服务平台1157AI学科馆员与咨询设备1158复合材料高压成型系统1159智能缝合系统11603D多层织物织造系统1161高性能碳纤维超薄织物织造系统1162复合材料连续纤维3D打印设备1163复合材料特种热压机1164碳碳复合材料制备系统1165磁控溅射镀膜系统(Magnetronsputteringdepositionsystem)1166飞秒激光器(Femtosecondlaser)1167台式超速离心机1168氮化物分子束外延生长系统1169紫外激光晶圆划片机1170科研通风设备1171能量转换设备8172能量转换设备20173电驱动离心式冷热高效交换机组2174大型双曲线横流自然通风水冷冷却器5175一体化高效节能冷温水传递系统18176冷冻水式高效组合空气换热处理设备机组1合计280
  • 高光谱机器视觉感知技术正走向普及应用
    人类获取的信息83%都来自视觉,由听觉、触觉和其他的渠道获取信息的占比仅有17%,所以视觉对于人类的重要性溢于言表。而机器视觉作为机器人的“高精密眼睛”,其之于机器人的作用就像视觉之于人类一样重要。近日,中国工程院院士王耀南在2022世界VR产业大会关键共性技术主题论坛上围绕“高光谱机器视觉感知技术应用及发展趋势”发表演讲。他指出,高光谱机器视觉技术正在迅速普及,在制药行业的产品检测、食品生产的安全识别、建筑材料的质量控制、医学成像等场景中广泛应用,但距离真正实现“高精准、看得清、更好用”仍面临挑战。智能机器人的“高精密眼睛”在日常生活中,人们通常是通过视觉器官(眼睛)获取信息,再通过大脑来分析、处理这些信息,从而识别出物体。而高光谱成像的目标是获得包括从可见光到长波、红外光谱的精细光谱“指纹”,精确反映物质独特的光谱特性。作为智能机器人的“高精密眼睛”,高光谱机器视觉的发展对机器人的控制具有重要作用。受不同生物的感光细胞具有差异启发,高光谱成像与感知可将丰富的、不同波段的图像信号映射到数字世界,是机器智能的重要支撑技术。“高光谱图像能够精准反应出物质特征的光谱信息,这是它最大的优势,”王耀南表示,“近几年,高光谱的发展非常迅速。过去高光谱主要是在遥感应用里面,今天我们把高光谱用到机器视觉,使机器人装上了明亮精准的眼睛,可以感知到可见光、红外光。”据了解,机器人的高光谱视觉研究主要包含两部分内容,一部分是成像感知,另一部分是自动的光谱信息分析。成像技术实质上是感光元件把光信息转化为数字图像信息,最早的光谱成像来自感光设备,目前低成本、小体积、高速率、低功耗的感光元件成为发展趋势。近年来高光谱机器视觉的发展态势从感知智能进入到了认知智能,从过去的 RGB 图像变成今天的光谱图像,已然进入到一个计算智能成像的时代。目前高光谱相机及其相关技术已成为智能机器视觉领域研究的前沿方向。高光谱机器视觉仍面临挑战分析与认知能力是机器人能否对环境中的有效信息加以处理与理解的重要标志,是智能化发展的必经途径。王耀南认为,高光谱机器视觉分析与认知面临着三大挑战,主要涉及图像特征提取、语义知识理解和自主适应学习。“首先要突破图像特征的提取,过去我们主要是像素特征的提取,今天扩展至边缘、纹理、光谱等空间几何等方面;第二,它已经走向了图像的推理,涉及语义知识的理解、语义的描述、高维的图像特征等技术的突破。第三,要突破自适应的学习,传感器要具有学习性、能感知,还要能理解、能分析,让人工智能真正融入到机器视觉里。”王耀南说道。近年来,通过大量研究,高光谱视觉传感器的发展突破了两项关键技术。第一项技术面向成像系统,成像系统围绕复杂的目标,能够解决在多空间、大尺度下的成像问题,可以同时捕捉三维空间和光谱维度的成像。第二项技术面向三维光谱数据分析,比如空间-光谱联合分析、大数据分析和处理等。快速突破这两项关键技术,有助于实现高光谱机器视觉技术的广泛应用。“高光谱广泛装载在机器视觉以后,不仅能应用到工业、农业,还能应用到无人驾驶、机器人、新药研发、新产品质量检测等领域。”王耀南表示。比如为了加速工业检测速度,我们开发了高光谱图像处理的硬件系统,研制了工业高光谱仪器,包括高光谱的成像,成像仪器的处理特征识别等。再比如,高光谱机器视觉也被用在异物检测方面,应用于疫苗生产的柔性智能化工厂。而不同的应用场景对高光谱成像的复杂性、多样性提出了更大的挑战。未来首先要解决数据传输与处理问题王耀南指出:“随着科学技术的进步,未来高光谱机器视觉的发展首先需要解决的,也是最重要的一个问题,就是数据传输与处理。”比如,高光谱仪器是联网的,如此庞大规模的光谱图像信息怎么同时传输,这就是一个需要解决的难题。第二是光谱成像高分辨率问题。高光谱最大的弱点就是分辨率比较低,不像可见光成像的分辨率比较高。合成孔径雷达图像的分辨率也比较低,但是它的探测精度比较高。每一种传感器都有优点和缺点,因此未来一个重要的研究方向就是新的成像方法和机理探索。第三个是所有的高光谱成像仪器都向小型化和高可靠性转变,要能够装载在不同的设备上,从单一的传感器进入到多传感器信息融合,从数据处理方面到光谱数据处理,从模型驱动向数据驱动、知识驱动的方向发展。
  • 汽车行业的色彩内外饰的重要性—爱色丽色彩控制解决方案
    色彩不仅是视觉体验的核心元素,更是汽车行业的重要卖点。随着消费者对汽车外观和内饰色彩的关注度不断增加,精准的色彩测量和控制变得至关重要。爱色丽公司凭借其在定量颜色测量和视觉分析领域的深厚积淀,提供了全面的色彩解决方案,助力汽车制造商实现色彩的精准再现和一致性管理。一、色彩测量的重要性在汽车行业,色彩不仅是消费者个性和品位的表达,更是品牌形象的重要组成部分。色彩测量的准确性直接影响到汽车产品的市场竞争力和用户满意度。爱色丽的色彩测量解决方案在以下几个关键领域发挥着重要作用:1. 产品开发色彩开发是汽车设计的第一步,涵盖了车身面板、配件及新的涂装体系。通过精确的色彩测量,设计师能够确保所选色彩在实际应用中的准确性和一致性。2. 多来源均一性现代汽车制造过程中,零部件往往来自不同的供应商。确保不同来源的零部件色彩匹配,对于剔除色彩偏差或瑕疵至关重要。爱色丽的解决方案能够实现不同厂家或供应商之间的色彩一致性,避免因色差引起的质量问题。3. 材料的色彩波动性随着新型涂料的应用,特别是具有特殊效果的表面处理,对色彩测量仪器的精密度提出了更高要求。爱色丽的多角度分光光度仪能够捕捉和测量这些特殊效果表面,确保色彩的精确匹配。4. 售后产品内外饰售后件的配色与原车的协调一致至关重要。通过爱色丽的色彩测量工具,售后产品的色彩能够达到与原车相同的标准,提升整体产品质量。二、爱色丽的色彩控制解决方案爱色丽提供了一系列创新的色彩控制解决方案,从硬件仪器到软件系统,覆盖了汽车制造过程中的各个环节。1. 色彩仪器设备手持式积分球分光光度仪:能够测量包括高反光表面在内的各种颜色。台式积分球分光光度仪:适用于不透明、透明和半透明材料的反射和透射测量。多角度分光光度仪:特别适用于捕捉和测量具有特殊效果的表面。在线解决方案:实时监测生产过程中产品的色彩,及时提醒操作人员调整。2. 软件系统配色软件:通过智能化的配色引擎减少修色步骤,提升配色效果。质量控制软件:确保整个供应链的色彩一致性和准确性。3. 视觉评估工具数字色彩&外观标准:简化材料数据库的创建,捕捉逼真的产品渲染。实体色彩标准:通过视觉参考标准和公差指南,确保所选色彩在最终装配时分毫不差。灯箱:复制不同照明环境,确保色彩在各种光源下的一致性。标准光源室(FFR):在受控照明条件下评估色彩,确保装配后的色彩协调。视觉评估工具:评估人员的色彩辨识能力,确保质量控制过程中的一致性。仪器性能软件:优化色彩测量设备的性能,减少台间差。三、汽车外饰与内饰的色彩应用1. 外饰外饰色彩不仅仅是保护汽车,更是体现创新设计和美学的重要元素。爱色丽的色彩测量工具能够全面表征色彩、闪烁度和颗粒度,确保汽车外饰从保险杠到油箱盖、车门把手等部件的色彩一致性。配色:建立严格的色彩标准,全面表征汽车漆面效果,设置并以数字化形式交流容差。质量控制:评估和控制金属涂料,实时监测供应链的色彩匹配度,提供数据支持工艺改进。视觉QC:降低人为误差,加快产品上市速度,提升整体质量。2. 内饰内饰色彩不仅影响车内的美学,更直接关系到乘坐的舒适性和体验。爱色丽的测色仪器确保内饰色彩的精准协调,使设计感、舒适性和功能性完美融合。配色:实现严格的容差,提供准确的着色剂配方,确保与客户提供的色彩标准一致。质量控制:按照色彩标准进行准确测量,提供色彩质量审计跟踪,适用于光滑和带纹理表面的测量。视觉QC:消除主观性,标准化照明和视觉评估条件,提升整体产品质量。色彩美学在汽车工业中的重要性不容忽视。爱色丽通过其先进的色彩测量和控制解决方案,帮助汽车制造商实现色彩的一致性和精准性,提升产品的市场竞争力和用户满意度。这些解决方案不仅在技术上具有前瞻性,还通过减少浪费和提高生产效率,为企业带来了显著的经济效益。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 科研攻坚不停歇!华东师大袁小兵/潘逸萱课题组揭示先天恐高反应神经机制
    沃的研究所这是一档关注“生命科学行业变化”的专题栏目。我们将从合作伙伴入手,每一期研究和解读一家科研机构或科研课题组、实验室的背后故事、相关方法论、使用的工具等等,帮助科研从业者获得启发和思考。本期【沃的研究所】对话主人公:尚蔚,博士研究生,华东师范大学生命科学学院袁小兵/潘逸萱课题组重要成员,本篇论文第一作者。恐高,其实跟我们每个人都息息相关。恐高反应会发生在每一个人身上,而恐高症患者会表现出对高度的非理性恐惧,即使暴露在很低的高处或者仅联想到高处时都会表现出对高度的非理性恐惧,这可能会对日常工作及生活带来一定的影响。那恐高反应究竟是如何产生的?科学界是如何解释这一现象?又该如何克服呢?2024年5月3日,华东师范大学生命科学学院袁小兵/潘逸萱团队在国际权威学术期刊Nature Communications 发表题为 A non-image-forming visual circuit mediates the innate fear of heights in male mice 的研究论文,他们对先天恐高反应开展研究,意外发现小鼠大脑中的非成像视觉系统诱发了恐高反应。 本期【沃的研究所】,我们将对话文章的第一作者尚蔚博士,一起深入了解小鼠先天恐高反应背后的神经机制。 逐层攻破技术瓶颈为探索恐高神经机理寻找靶点 尚蔚博士所在的课题组选择了广泛存在的生理视觉高度失衡的恐高来开展,他们首先建立行为学范式,细致观察小鼠在高台上的表现。曾有心理物理学家提出过这样一个假说,认为当人在高处时,随着人体与最近的静止物体之间的距离不断地增加,此时视觉提供的平衡信息会与前庭和躯体感觉系统提供的信息发生冲突,个体就容易出现晕眩的感觉,同时此时身体摆动幅度的增大,个体也会更容易感受到坠落,而这种对坠落的害怕会诱发个体的恐高情绪。根据心理物理学家的假说,尚博所在的课题组对视觉前庭和躯体感觉系统的作用进行了探究,发现视觉在恐高反应中发挥了主导作用。小鼠在高台上会出现类似于人类的恐高反应 课题组又参考了与视觉相关的先天恐惧行为学范式,通过视觉刺激(Looming Visual Stimuli )来寻找可能参与调控恐高的核团。最后通过光纤记录和化学遗传等手段来调控目标核团和神经环路连接,观察小鼠在行为学实验中的表现是否会有所不同,进一步发现小鼠大脑中存在两条神经环路,在调控先天恐高反应中发挥相反的作用。这项研究成果的发表有利于帮助人们理解人类的恐高现象,并为后续恐高反应的神经机制研究提供了思路,也为后续药物开发提供了一些帮助。但由于目前神经科学领域对“恐高”的研究还十分有限,已有的研究主要集中在流行病学调查和影像学方面。尚博介绍道:“刚开始的时候我们完全不知道到底要怎么来研究恐高,以及如何建立一个比较可靠的行为学范式,而且提出评估恐高程度的指标也是经历了不断的修改,基本一切都是未知的;另一方面,我们组确实不是做行为和神经环路机制的,所以对技术和思路也不熟,包括研究过程中有一部分是需要去做前庭系统,我对前庭系统非常陌生。”为了观察小鼠的恐高表现,他们需要多次制作高台,尚博笑着说:“那段时间我们不是在买亚克力,就是在买亚克力的路上,淘宝的订单截图可以拉很长。”为了了解前庭系统,尚博甚至鼓起勇气联系了交大六院耳鼻喉科的师兄,后又经过导师的介绍,到上海交大交流学习了一段时间,才慢慢克服了这些技术难题。“在我看来,合作真的是非常重要,这项研究也是大家共同努力的结果!”尚博说。截至目前,这项研究还在继续。 无心插柳,顺应偶然性机遇蕴含在变化之中 谈及当时是怎么想到要研究这个课题,尚博笑言:“这还真的挺有趣的,确实是无心插柳柳成荫的故事。”说起来,尚博所在的课题组主要的研究方向其实是孤独症谱系障碍以及神经发育。尚博最开始加入团队的时候,主要对孤独症谱系障碍风险基因的神经机制展开研究。可是当时的课题进展并不顺利,实验结果也不稳定。但也正是在这一次次的挫败中,课题组偶然间发现,实验小鼠在旷场实验中的自发运动量和焦虑水平都没什么变化,在高架O迷宫中却表现得特别焦虑,对高度的刺激非常敏感。他们又开始查阅文献、探究基因突变小鼠异常恐高的原因……“确实没想到当初那个课题能发展到现在这样。”尚博说。一次偶然,课题组开始了对恐高症的研究;又一次机缘巧合,课题组开始了与瑞沃德的合作。“其实在第一轮投稿的时候,我们已经通过化学遗传的方法发现了腹侧外侧膝状核(vLGN),特别是其中的抑制性 GABA 能神经元,还有 vLGN 到下游中央导水管周围灰质(Periaqueductal gray, PAG)参与调控恐高。但因为化学遗传没能实时观察到神经元对高度刺激的响应,所以审稿人明确提出希望我们可以补充光纤记录的实验。”说来也巧,刚好在补实验阶段,实验室就有一台瑞沃德的光纤记录系统。尚博所在实验室里的瑞沃德光纤记录系统 “我们用瑞沃德光纤记录系统做了对照实验,发现确实取得了很好的结果。而且我们原来第一轮投出的内容,它使用到的技术其实比较单一,在后面补实验增加了光纤记录这样在神经环路领域比较常用的技术,得到了导师的认可,这也对于我们这一项成果的发表有很大的帮助。”尚博在交谈中也对瑞沃德光纤记录系统表达了认可:“瑞沃德的光纤系统操作简单,使用方法也比较容易学习,分析软件也十分方便,可以快速给出想要的图,同时还可以计算线下面积、叠加不同个体的数据,对我们的实验有很大的帮助。”“在我看来瑞沃德是国内做得很好的品牌了,我也很开心看到国产的仪器近年来做得越来越好了,大家就有更多的选择。”该研究使用光纤记录检测了腹侧外侧膝状核(vLGN)脑区GABA能神经元和外侧/腹外侧导水管周围灰质(l/vlPAG)脑区谷氨酸能神经元的钙信号变化 “其实我们还挺幸运的,文章只返修了一轮。”尚博感慨道。采访过程中,尚博不止一次说起:“我认为自己一直都是一个比较幸运的人。”在尚博的自述中,她说到,高考、考研都比较顺利,父母愿意支持自己的选择,师兄会手把手带着她做实验、交流科研思路,师妹们会鼎力支持课题的进展,导师们也会在大家做实验情绪爆炸的时候给予足够的鼓励……“所以我真的觉得自己是很幸运的人。”尚博课题组合照(从左到右依次为尚蔚、袁小兵教授、谢双翼、潘逸萱副研究员、冯文博) 发现了吗?伟大的成就,其实并没有所谓的可复制的成功脚本,它们往往没有经过周密的计划便诞生。不管是做实验,还是生活,我们不时地顺应偶然性,也不见得是坏事。就像尚博所说的:“意外真的常有发生,一切都在你的计划之内,是非常小概率的事件,所以你要时刻地根据实际情况来灵活调整自己的方案或者计划,多一些Plan B。”不管是“无心插柳”,还是“有心栽树”,幸运会不断出现在你努力的路上!我们也祝福尚蔚博士及团队在自己热爱的领域里勤耕不辍! 如果您想了解尚蔚博士课题组同款瑞沃德多通道光纤记录系统长按识别下方二维码进行预约我们将会有专业人员与您联系▽
  • 大咖云集,汇聚郑州——机器视觉与传感技术专场活动顺利举办!
    2021年11月2日,由中国科学技术协会、河南省人民政府主办,中国仪器仪表学会、河南省科学技术厅、智汇工业、OPC基金会承办的2021世界传感器大会分场活动之机器视觉与传感技术专场活动在郑州国际会展中心轩辕堂顺利举办。机器视觉与传感技术专场活动现场本次会议围绕国内外机器视觉产业发展情况、在智能制造中关键技术,图像获取、图像预处理、图像分割、图像识别、检测、视觉图像技术等关键技术与产品;机器视觉的发展问题与市场机会,以及机器视觉在智能制造中的应用解决方案等。邀请来自高校、科研院所专家与企业代表近两百余人共同分享全球的机器视觉标准的最新发展和应用。会议主持人河南工业大学石庆升教授会议在河南工业大学教授石庆升的主持下正式开始,来自河南省科学技术厅二级巡视员郭遂臣为本次论坛进行了致辞。河南省科学技术厅二级巡视员郭遂臣致辞河南省科学技术厅二级巡视员郭遂臣出席会议并致辞,他表示河南省科学技术厅认真贯彻落实中央和省委省政府的部署,全面贯彻新发展理念,落实高质量发展要求,深入实施创新驱动发展的战略。中国工程院院士、中国科学院上海技术物理研究所研究员方家熊团队研究员刘大福中国工程院院士,中国科学院上海技术物理研究所研究员方家熊团队刘大福代表方院士带来了《短波红外焦平面探测器应用技术》。他认为,短波红外辐射自身的特点决定了其在成像领域有着不可替代的重要作用。经过多年的研究探索,短波红外焦平面探测器作为先进的短波红外成像器件逐步发展壮大,在越来越多的领域得以实际应用。随着短波红外探测器材料研究的进展和短波红外焦平面探测器制备工艺的不断改进和创新,短波红外焦平面探测器将向更大面阵规模、更宽的光谱响应范围发展,将会在更多的领域得到重视和应用。大英帝国佐勋章获得者、英国皇家工程院院士 肯尼斯格拉坦大英帝国佐勋章获得者、英国皇家工程院院士肯尼斯格拉坦教授以VCR形式带来《基于光纤的可持续传感技术》。他聚焦在光纤传感器并分析它们如何成为这一领域的驱动因素。他认为光纤传感器技将对实现零排放、保护社区和自然栖息地等目标的实现发挥关键的作用,关于可持续未来的关键是需要我们共同努力实现的目标。河南工业大学机电工程学院副院长、博士生导师曹毅教授河南工业大学机电工程学院副院长、博士生导师曹毅教授分享了《智能制造中的机器视觉技术发展及应用》。他认为,智能制造是全球工业的终极目标,工厂都可以实现智能自动化。作为人工智能技术发展的重要分支,机器视觉是通过图像传感器接收和处理真实物体的图像,以获得所需信息或控制机器人运动的技术。随着工业自动化技术向着智能化方向演进,工业场景对机器视觉技术的需求持续推进着工业机器视觉技术的发展。杭州海康机器人技术有限公司业务经理 刁栋柱杭州海康机器人技术有限公司业务经理刁栋柱作了《机器视觉与移动机器人技术助力智能制造》主题报告。他提到,从工业相机到算法平台,机器视觉产品为智能设备赋予“慧眼”,大幅提升工作效率及准确率,在智造变革之际重塑企业的生产力。从仓储物流到生产物流,移动机器人系统将为厂内物流化繁为简、降本增效,用智慧领航内物流变革。百度智能云河南服务中心解决方案工程师 班海旭百度智能云河南服务中心解决方案工程师班海旭带来了《云智一体在机器视觉中的应用》。他讲到,百度“云智一体”的战略,对“云”和“智”进行了充分融合与特殊调优,进而满足中小企业转型的所有需求;云智一体核心在于:帮助中小企业实现数字化转型与智能化升级的一步到位,并给出了“云为底座,飞桨为核,生态为翼”的系统性方法论,以百度智能云工业互联网“开物”在内的平台。福禄克测试仪器(上海)有限公司技术支持工程师 杨凯福禄克测试仪器(上海)有限公司技术支持工程师杨凯分享了《压力传感器工艺过程中的校准应用》。他介绍到,福禄克计量校准部提供构建压力传感器校准方案所需的设备和资源,福禄克解决方案能够帮助您解决压力传感器校准业务面临的困难,提高客户的投资回报。四川菲罗米特仪表有限公司技术总监杨安勇四川菲罗米特仪表有限公司技术总监杨安勇带来了《用新型超声波换能器实现气体流量的精准计量》。他介绍到,公司一直专注于气体超声流量计领域的自主研发与制造,是一家集智能燃气仪表自主研发、生产、销售及技术服务的科技型企业,致力成为燃气运营商气体计量整体解决方案的专业供应商,同时详细介绍了换能器及其在实际中的应用。会议在热烈的气氛中圆满成功,各位与会嘉宾认为机器视觉具有高度自动化、高效率、高精度和适应较差环境等优点,将在工业自动化的实现过程中产生重要作用。各行各业对图像和机器视觉技术的工业自动需求将越来越大,但真正高端的应用还很少,机器视觉在未来制造业中将会有很大的发展空间,如何掌握行业的发展趋势,还需要深度探讨。
  • 机器视觉检测设备商征图新视重启IPO
    近日,证监会披露了东吴证券关于征图新视(江苏)科技股份有限公司(简称:征图新视)首次公开发行股票并上市辅导备案报告。值得提及的是,这并不是征图新视第一次冲击IPO。早在2021年6月,征图新视便向上交所科创板提交了IPO招股书,并获得受理。不过,今年1月,该公司最终撤回申请资料。据了解,征图新视的主营业务为机器视觉检测设备及自动化制造设备的研发、生产、销售,主要产品包括:消费电子检测设备、印刷检测设备、其他行业检测设备、自动化制造设备、智能制造软件系统等。该公司自主开发机器视觉软件、人工智能、常规算法、光学成像机制、运动控制、3D 视觉等核心技术,构建了完整的机器视觉同源技术平台,在消费电子、印刷、农产品、交通等多元化行业实现了以外观检测为主的多项机器视觉功能,并不断向更广泛的行业领域和应用场景拓展。公司拥有完整的自主知识产权,包括专利 182 项(其中发明专利 33 项),软件著作权 75 项。征图新视经过十余年行业经验积累与技术沉淀,客户跨越消费电子、印刷、农产品、交通等各个行业,包括苹果、立讯精密、日东电工、瑞声科技、业成科技、蓝思科技、上海烟印、云南侨通等知名厂商,公司产品获得跨行业客户的广泛认可,体现了公司具有较强的跨行业复制能力。从股权结构来看,和江镇直接持有公司 633.09 万股股份,占公司总股本的 21.10%;王岩松直接持有公司 584.78 万股股份,占公司总股本的 19.49%;方志斌直接持有公司 482.17 万股股份,占公司总股本的 16.07%,三人合计直接持有公司1,700.04 万股股份,占公司总股本的 56.67%。此外,三人还通过征图投资间接持有公司 1.47%的股份。和江镇、王岩松、方志斌三人已于 2014 年 6 月 20 日签署了《一致行动协议书》,约定了三人应当在决定公司重大决策事项时共同行使股东权利,特别是行使召集权、提案权、表决权时采取一致行动,因此三人共同为公司的控股股东、实际控制人。
  • 赋能智能制造 机器视觉产业有多大的想象空间?
    ul class=" list-paddingleft-2" style="list-style-type: disc "lih3强强联合! 光电子博览会牵手机器视觉产业联盟/h3/li/ulp style="text-align: justify "  2019年8月5-7日,第十一届光电子· 中国博览会暨“适用于航空航天领域的机器视觉产品供需对接会”将在北京国家会议中心盛大启幕。该展会由中国光学工程学会“牵手”中国机器视觉产业联盟共同举办,强强联合实现资源共享。会议将聚集数百家机器视觉生产企业携新品参加,将为您呈现一场盛大的机器视觉技术盛宴。/pp style="text-align: justify "  机器视觉就是用机器代替人眼来做测量和判断,因此备受欢迎。纵观我国产业发展历程,机器视觉相关产业起步较晚,超过50%的市场份额来源于电子及半导体行业。另外,机器视觉在包装行业、玻璃生产与加工、电子元器件及设备、钢铁与金属业、光学与精密工程、汽车、印刷、航空航天等行业需求大幅增长,也同时带来包括机器视觉在内的自动化产品的需求增长。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 477px height: 459px " src="https://img1.17img.cn/17img/images/201907/uepic/89fc9092-ca59-4873-aa1f-720ea1fb54ec.jpg" title="2.jpg" alt="2.jpg" width="477" height="459"//pp  本届展览会将通过学术交流会、供需对接会等多样化的特色会议形式与展览模式,链动人工智能、智慧城市、大数据、机器人等资源配套,全方位展示机器深度学习、机器视觉集成系统、集成设备、3D视觉、VR技术、人脸识别等高端机器视觉相关产品,引领中国机器视觉发展潮流,促进中国智能化水平迈上新台阶。/pul class=" list-paddingleft-2" style="list-style-type: disc "lih3独具“慧眼”,助力航天航空场景应用/h3/li/ulp  机器视觉是工业机器人的感知系统,通常由光源、镜头、工业相机、图像采集卡、处理器控制器等零部件组成,用来对图像进行识别、储存和处理,而安装了“眼睛”的机器人,能够完成图像识别、图像检测、视觉定位、物体测量、物体分拣等功能。/pp  近年来,我国的制造业加快升级,各种加工工序精密度提高,同时企业普遍追求更高的良品率,在切割、焊接、钻孔、成型、塑模、去除、装配等主要的工艺中,都陆续增加机器视觉的辅助功能,因此带动我国机器视觉市场高速增长,中国正成为世界机器视觉发展最活跃的地区之一。数据显示,2018年中国机器视觉市场规模首次超过100亿元。随着行业技术提升、产品应用领域更广泛,未来机器视觉市场将进一步扩大,预计2019年市场规模将近125亿元。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/fbeb8483-75c0-4705-ae21-3cca37043eee.jpg" title="3.jpg" alt="3.jpg"//pp  机器视觉的作用主要体现在智能识别和精密检测,在智慧医疗、精密加工制造等领域具备重要作用,在无人驾驶、航空航天领域里也常常能看到其身影。第十一届光电子· 中国博览会暨机器视觉产业对接会则将重点聚焦其在航天航空领域的应用。/pp  航空航天产品制造具有尺寸大、结构复杂、性能指标精度高、载荷重、环境洁净度高以及材料特殊等特点,在材料抗高温、抗高压和抗气流等都有特殊要求,而且无论是民航客机还是外太空航天器,每一个组装部件都是超精密的。一旦出现事故将造成较大的安全事故,例如不久前的一架埃航的737客机坠毁,事件起因是一个零部件异常。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/e8790585-588f-4ef6-a673-98da4774fc87.jpg" title="4.jpg" alt="4.jpg"//pp  机器视觉系统最基本的特点就是提高生产的灵活性和准确度,能及时发现误差,大大降低不良率,军事、航天等领域等军利用了机器视觉相关技术。在装备了机器视觉成套系统后,航空航天产品在制造过程成型中,每一个工序得到实时监控,每一个工艺得到检测并反馈,对出现误差的效果实行视觉追踪。在一些不适于人工作业的环境或者人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉。还有无人驾驶汽车、月球勘探机器人等都是可以采用上机器视觉技术。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 486px height: 324px " src="https://img1.17img.cn/17img/images/201907/uepic/5c0f1b72-c83f-405a-89ce-8bab343cc53e.jpg" title="5.jpg" alt="5.jpg" width="486" height="324"//pul class=" list-paddingleft-2" style="list-style-type: disc "lih3产业需求加码释放 机器视觉精彩不断/h3/li/ulp  工业4.0离不开智能制造,智能制造离不开机器视觉。未来,随着3C、航天航空等领域的需求不断释放,行业内上游及配套企业不断加大对机器视觉新产品的研发及投入,更多企业将纷纷抢占布局高端机器视觉市场。/pp  发力智慧未来,助力中国智能制造步伐!2019年机器视觉北京展览会期间,各行各业领域的机器视觉综合服务商将齐聚一堂,他们将带给我们怎样的惊喜和经验?诠释怎样硬核的新科技?中国光学工程学会特联合机器视觉产业联盟,将于2019年8月5日-7日第十一届光电子· 中国博览会盛大召开期间,特别举办“适用于航空航天领域的机器视觉产品供需对接会”。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 599px height: 353px " src="https://img1.17img.cn/17img/images/201907/uepic/1141138d-76ef-4185-8d77-092b33366c39.jpg" title="1.png" alt="1.png" width="599" height="353"//pp  作为国内规模较大的国际机器视觉产业盛会,我们将期待通过光电子博览会,展示机器视觉从核心部件到系统集成全产业链,让整个行业的资源彼此链接,相互赋能,为中国智造贡献自身最大的力量。“机器视觉产品供需对接会”将是机器视觉进入光电子博览会的一小步,诚邀您八月相聚北京国家会议中心!/ppbr//pp  strong联系方式/strong/ppstrong  机器视觉产品供需对接会组委会/strong/pp  联系人:徐晓丹 010-62650570-804/pp  联系邮箱:xxd@china-image.cn/pp  strong光电子博览会组委会/strong/pp  服务热线: 010-83739883/pp  展会网址:http://www.cipeasia.com//pp  宣传合作: 010-83739885/pp  联系邮箱:zhanjiahe@csoe.org.cn/ppbr//p
  • 中药浸膏制剂Brix值检测-固形物含量
    近日,ATAGO(爱拓)工作人员对上海的用户做客户回访并交流仪器使用心得,工程师对某药厂2002年购买的ATAGO(爱拓)PRM-85在线折光仪用于浓缩工艺管道Brix值检测进行售后维护工作。 从生药原料到制造浸膏制剂的工艺流程 根据提取工艺的升温、提取时问、加入溶剂比饲的探讨,浓缩工艺、干燥工艺及制剂化工艺的各 种试验数据,设定各工艺的制造设备和制造条件.然 而,如今现代化快速的社会,服用汤剂具有操作麻烦,药物长时间存放出现稳定性降低等不便或缺点。ATAGO(爱拓)的自动台式折光仪正好满足现今中药浸膏制剂制作过程中的各种数据的验证,中药浸膏制剂Brix值的检测更加充分肯定ATAGO(爱拓)产品的性能以及应用领域的发展。中药浸膏制剂的制造工艺流程: 生药&mdash 切裁-称重-调和-提取液-浓缩-干燥-浸膏粉 在提取液和浓缩工艺对药液中固形物含量及糖度的控制非常重要,也是品质监控必检项目,检测固形物含量和糖度国标规定可以用折光的方式来检测。客户实用举例:某药厂购买ATAGO(爱拓)PR-101a做取样测量某药厂购买ATAGO(爱拓)自动台式折光仪RX-5000a用于控温测样 RX-5000a特点:RX-5000&alpha 是能够内部设定测量温度的自动折射仪,能够快速地测量折射指数、糖度或各式液体的浓度,以下为本产品的特性:&bull 因为RX-5000&alpha 具有电热模块以控制温度,所以不需要恒温水箱。&bull 在样本达到目标温度之后,测量会自动开始。&bull 在目标温度下,折射指数与糖度会快速显示&bull 可取得高糖度 ± 0.03% 与折射指数 ± 0.00004 准确度。&bull RX-5000&alpha 会显示您所设的控制范围的高低界线。&bull 如果测量值与您的标准液体值或其它折射仪测量的不同,将能做部分调整。&bull 根据您的样本,能够输入60种使用者标度。&bull RX-5000&alpha 能够显示最少30个最近的测量值。某药厂2002年购买的ATAGO(爱拓)PRM-85在线折光仪用于浓缩工艺管道糖度检测ATAGO(爱拓)工程师身旁的PRM-85在线浓度计 2011年ATAGO(爱拓)将PRM-85升级为PRM-100a,高精度在线浓度计PRM-100&alpha 由检测部件(传感器)与显示部件构成,与其前身PRM-85相比,其测量范围更加广泛( Brix 0.00 至 100.00% ),精度更高( 折射率± 0.00010, Brix ± 0.05 ),可以选择最小标度来显示。在线折射仪能够提供给制造工厂、混和设备与清洗设备一起使用以持续测量各式液体的浓度。适用于混和、浓缩、发酵的控制与水性和碱性清洁剂等的浓度控制。PRM-100a特点:★大幅降低工人劳动强度、生产安全保证 ★显著提到产品质量 、无滞后监测 ★产品质量始终如一性 ★自动化程度高 ATAGO(爱拓)为您提供100种以上物质浓度检测方案,欢迎您的咨询。您可以通过以下方式联系我们:官方网站:http://www.atago-china.com企业QQ:800064900广州分公司电话:86-20-38108256/38106065/38106057上海办事处电话:86-21-61131991/61131992/61131993
  • 机器视觉检测设备商思泰克IPO即将上会
    近日,厦门思泰克智能科技股份有限公司(以下简称“思泰克”或公司)更新了上市招股书,公司拟在深交所创业板上市,将于11月18日上会。此次IPO,公司拟发行2582万股,计划募集资金4亿元,主要用于思泰克科技园项目、研发中心建设项目与营销服务中心建设项目,以及补充流动资金。据了解,思泰克主营业务为机器视觉检测设备的研发、生产、销售及增值服务,公司是一家具备自主研发和创新能力的国家高新技术企业。公司主要产品包括3D锡膏印刷检测设备及3D自动光学检测设备,产品主要应用于SMT生产线中,并广泛运用于消费电子、汽车电子、半导体、通信设备等电子信息制造业领域。专注机器视觉检测设备 主营产品应用行业广泛自设立以来,思泰克深耕于机器视觉检测设备领域,通过在 3D 光源技术、图像处理底层及应用层算法、AI人工智能算法、高精密三轴机械平台等机电光一体化技术领域不断的自主研发及技术创新,在机器视觉领域构建了领先的技术储备。思泰克以成为视觉人工智能领导者为愿景,持续深耕机器视觉领域, 紧密围绕公司产品涉及的计算机科学、图像处理、精密制造、人工智能等领域的最前沿发展方向和电子制造的最新发展需求,坚持自主创新,对现有技术产品不断迭代更新,并在相关领域取得了多项技术成果,形成45项授权专利和21项软件著作权。公司将可编程结构光栅投影技术,CPU 和 GPU 混合的三维表面轮廓测量算法、红绿蓝(RGB)三色 LED 光源算法、高低曝光技术、SMT 生产线数据互联及分析技术、基于三点照合技术的产品品质控制体系、AI 人工智能算法、10 微米级别的 XYZ 三轴移动精密平台等软、硬件核心技术进行有机结合,实现了机电光技术一体化。领先的产品力为公司积累了极为丰富和亮眼的客户资源。目前,公司直销及终端客户包括富士康、海康威视、弘信电子、大华股份、臻鼎科技、立讯精密、德赛电池、欣旺达、珠海紫翔、VIVO等行业知名企业或其代工厂商,优质客户的加持也进一步巩固了思泰克的行业领先地位。同时,公司产品已出口至中国台湾、越南、印度、马来西亚等地。机器视觉行业内企业的发展速度取决于下游客户的质量,优质客户持续的技术迭代有助于思泰克保持领先行业的技术优势和地位。营收净利连年增长 经营质量明显提升“十四五”时期,我国已转向高质量发展阶段,将进一步深化产业结构调整,推进制造水平提升,由“制造大国”向“制造强国”转型。随着工业自动化、智能化转型的深入以及民用产品对智能化需求的不断提升,机器视觉作为工业自动化、智能化转型的核心技术,有望形成更具规模化的产业,未来发展空间广阔。机器视觉检测设备在电子制造业的应用逐步由选配走向标配。一方面,制造业竞争加剧、人工成本高企不下,迫使下游企业陆续采用机器替人策略。另一方面,机器视觉技术也极大提高了下游企业生产的柔性和智能化,极大提高了生产效率,减少生产过程中的错误,就生产管理和质量管理而言,都大有裨益,也是下游企业实施机器替人的内在驱动使然。随着技术的快速发展,我国机器视觉迎来高速发展时期,机器下游领域不断拓展,逐渐渗透到3C电子、汽车、半导体、锂电、包装、食品、医药等多个行业。思泰克生产的3D SPI 及 3D AOI等3D检测设备提供了较2D检测设备更为智能、精准及多样化的检测内容及检测效果,响应下游客户对提高良品率,降低生产成本的需求,并形成具有企业特色的品牌效应,促进了传统制造业与新技术、新产业、新业态、新模式深度融合。花香蝶自来,梧高凤必至,凭借优秀的产品质量及服务优势,思泰克在行业内已树立良好的品牌形象,形成广泛的客户基础,并取得较高的市场地位。招股书显示,2019年至2022年上半年,思泰克各期营收分别为22648.91万元、25304.20万元、35614.79万元、19128.95万元,年均复合增长率达25.81%。公司主业的盈利水平也长期保持较高水平。上述同期,公司主营业务毛利率分别为55.35%、55.37%、55.84%和54.19%,其中主要收入来源于3D SPI产品,占主营业务收入的比重均在90%以上。在公司核心业务持续增长之下,其研发投入力度却有增无减。上述同期,公司研发费用分别为1008.77万元、1383.44万元、1986.06万元和758.65万元,研发投入呈现稳步增长。同期,公司研发费用率分别为4.45%、5.47%、5.58%和3.97%,总体保持较高水平。募资提升企业竞争力 加速迈入发展快车道根据前瞻产业研究院调研数据,2015 年至 2020 年我国机器视觉市场规模由 26 亿元增长至 79 亿元,年均复合增长率达到 24.89%。未来随着国内企业自主研发水平的提高及下游应用领域的进一步拓展,我国机器视觉行业规模将持续增长。此次IPO正是思泰克高瞻远瞩的战略性举措。近年来,国家对于智能制造和高端装备制造业发布了多项利好政策。随着思泰克业务规模的扩大,增强新产品研发、丰富产品结构、扩大产能已经成为其加速发展的迫切需求。技术创新是人类社会永恒的主题,是时代进步的重要标尺,未来,思泰克将继续把握电子信息制造业产业升级、工业互联网建设、5G 建设等行业发展机遇,专注于机器视觉检测领域,围绕客户需求,不断加大公司在产品所涉及的各项科技领域的投入,保持公司现有产品的持续技术竞争力。同时,公司将以现有核心技术为中心,围绕 SMT 生产线机器视觉检测领域,持续完善 3D SPI 及 3D AOI 等现有产品,并积极研发 X-Ray 检测设备等新产品,为客户提供 SMT 生产线检测领域的整体解决方案,推动业务的多元化和高质量发展。
  • 国内首个半导体微组装设备与材料创新平台成立
    目前以混合键合(Hybrid bonding)工艺为代表的异质异构集成技术正推动下一代2.5D/3D封装技术的快速发展,与此密切相关的半导体微组装设备与材料产业创新也变得愈发重要。近日,苏州艾科瑞思智能装备股份有限公司在国内率先搭建了集战略规划、国内外标准化、关键技术研发、产业链协同布局的半导体微组装设备与材料创新研发平台——艾科研究院。该创新研发平台将重点面向高性能IC的高精度混合键合、存储类堆叠芯片微组装、SiP模块微组装、车规级功率模块微组装等半导体行业关键设备进行技术攻关研发,同时制定行业技术路线图与关键技术节点、指标与测试验证方法,推动微组装设备行业的质量、工程师职业等级等标准工作,以及组建艾科研究院首届产业专家咨询顾问委员会,并邀请专业机构SEMI全球副总裁居龙先生出任研究院名誉院长。同时,艾科研究院的培训课程体系也将融入SEMI中国英才计划,作为培训方面的一个专业板块,为业界培养输送更多的优秀人才。作为首家被全球领先半导体封测厂商批量采用的国产半导体点胶装片设备供应商,艾科瑞思已打破国际厂商在该领域三十年的产品垄断,完全实现进口替代,并在今天率先构建艾科研究院这一产业研究平台,汇聚国内外知名专家学者,以国际化视野战略布局并助推国产半导体微组装设备与材料产业发展与创新,提升中国半导体装备产业技术水平,搭建可持续发展产业生态。在应对晶圆制造、芯片封装、微组装设备与材料等创新型企业所面临的当下诸多技术挑战,艾科研究院将联合国内外半导体产业组织、标准化制定机构、产业伙伴等进行协同技术攻关,重点在高性能直驱电机、超大焊头力控装置、超高精度视觉定位系统、减振隔振等技术领域进行产学研协同创新,也将大力推进艾科瑞思在半导体微组装产业的国内外竞争力与深度战略布局。在艾科研究院启动仪式上,SEMI国际半导体产业协会全球副总裁、中国区总裁居龙先生应艾科瑞思董事长王敕先生邀请,与艾科瑞思管理及研发相关负责人就中国国产半导体微组装设备与材料产业的发展与创新等议题进行了深入探讨与交流。居龙先生肯定艾科瑞思在半导体微组装设备领域所取得的产业成绩,以及对半导体装备行业发展做出的贡献。他表示,中国半导体产业发展面临着前所未有的机遇,中国半导体设备企业经过多年的发展积累,尤其是过去3-5年快速发展,在某些产品领域已有所斩获,一定会崭露头角。苏州艾科瑞思智能装备股份有限公司成立于2010年,专注于高性能半导体装片机的研发、设计、制造和销售,重点开发高速、高精准、更智能的半导体封装设备,为集成电路、微波组件、高速光模块、MEMS传感器、摄像头模组、IGBT模块领域客户提供优秀封装解决方案。艾科瑞思的核心技术优势包括领先的机器视觉和运动控制技术、丰富的半导体封装工艺制程经验(包括异质集成、晶圆级扇出型封装、IC封装、多芯片封装、摄像头模组封装、高精度点胶等)以及全面的质量管控系统。艾科瑞思致力于成为半导体封装成套解决方案供应商,为客户提供更好的产品与服务并不断创造新的价值。至今,艾科瑞思已有慧芯、智芯、精芯、悦芯、睿芯、麒芯、敏芯、慧瞳等八个系列在内的50多种机型,产品成功进入业内一流客户。公司和国内领先客户建立了战略合作伙伴关系,公司在苏州和深圳均设有销售与售后分部,为中国客户提供更快捷,更优质的服务。
  • 香港中文大学张立教授课题组《Advanced Materials》:软体机器人平台用于复杂生物运动的解耦和重编程
    由于自然界中生命的演变,生物往往表现出对复杂环境的高度适应性,例如超快运动、伪装和群体合作。生物运动的研究对仿生机器人以及医疗设备构建等工程领域具有重要启示作用。基于此,人们致力于开发新的仿真工具、物理模型和实验平台来模拟和研究这些自然运动模式。然而,许多不同尺度的生物表现出非常复杂的运动步态,例如多种基本运动的耦合。这些步态难以用现有的软体机器人平台模拟,而且这些平台通常缺乏解耦复杂生物行为的策略,使得理解生物运动的机制具有挑战性。 近日,香港中文大学张立教授课题组联合北京计算科学研究中心丁阳教授课题组以及美国卡耐基梅隆大学Carmel Majidi教授课题组提出一种磁性软体机器人平台用于重建和解耦复杂生物运动。该磁性软体机器人可以通过模板法或者3D打印工艺制造。该工作中使用了面投影微立体光刻技术(nanoArch S130, 摩方精密)打印一种节肢型的水凝胶磁性机器人,机器人身体由磁性段(由掺杂磁性颗粒的聚丙烯酰胺水凝胶制成)和非磁性段(由聚丙烯酰胺水凝胶制成)组成。机器人的尺寸为长度5 mm、长宽比11:1。采用时变磁场来诱导软体机器人的敏捷运动。通过该软体机器人平台以及可编程的磁场输入,该研究团队可以重建出摇蚊的幼虫所启发的运动步态并对这类型的生物运动步态进行系统的解耦研究。相关研究成果以“Decoupling and reprogramming the wiggling motion of midge larvae using a soft robotic platform” 为题发表于国际著名期刊《Advanced Materials》。 通过构建的磁性软体机器人系统,该研究团队揭示了机器人身体卷曲和旋转的相互耦合在其推进中起着关键作用,以这种仿生推进方式游动可以诱导与自然生物一致的流场结构,并在中等雷诺数状态下实现优异的运动性能。此外,磁性软体机器人能够在流动的环境中逆流而行,通过切换其运动模式来适应三维环境,以及实现其他功能,包括越障能力和在狭窄空间中的运动能力。与通过磁场梯度直接将机器人驱动到指定位置的磁力控制策略相比,软体机器人可以灵巧地控制其变形和运动模式。 总结而言,这项工作提供了一个磁性软体机器人平台,使其能够对无脊椎动物的复杂运动进行解耦和重新编程,并掌握它们的基本机制。这也为设计具有复杂耦合步态的游动软机器人提供了新的思路。图1. 软体机器人的磁场控制和运动分析。(A)机器人的模板辅助磁化方式;(B)沿着机器人中心线的磁通密度分布;(C)软体机器人在不同静态磁场下的变形和转向;(D)用于控制软体机器人的动态磁场;(E)软体机器人在一个周期内的运动序列。 图2. 软体机器人的流场动力学模拟和流场可视化分析。(A)在一个周期内软体机器人的瞬时速度;(B)软体机器人质心轨迹的实验和模拟结果;(C)在一个运动周期内施加到机器人身体上的净流体力;(D)流场结构的可视化。图3. 软体机器人平台用于解耦复杂生物运动。(A)机器人身体卷曲和旋转之间的相位差对运动性能的影响;(B)机器人身体的转动角度对运动性能的影响;(C)磁场强度对机器人运动性能的影响;(D)磁场频率f2/f1 对机器人运动性能和前进速度的影响;(E)磁场频率feq对机器人运动性能的影响。(F)机器人运动方向和磁场方向角的关系。图4. 软体机器人的多模态运动。(A)机器人沿着五角星轨迹的可控运动;(B)机器人在动态环境中的运动;(C)机器人的三维游动和避障行为;(D)机器人在狭窄空间内运动;(E)机器人通过多种模式运动探索三维空间。原文链接:https://doi.org/10.1002/adma.202109126
  • 牛津仪器X-Pulse获奖访谈:不断追逐高场核磁的台式核磁技术
    p style="text-indent: 2em "span style="text-indent: 2em "2020年5月20日,2019年度科学仪器“优秀新品奖”首次云端揭晓。共有22台新品仪器获此殊荣。科技部高技术研究发展中心研究员刘进长为盛典致开幕辞。国家生物医学分析中心医学工程室主任赵晓光公布了化学分析仪器类获奖榜单,其中,牛津仪器宽带多核台式核磁共振谱仪X-Pulse在列。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 193px " src="https://img1.17img.cn/17img/images/202006/uepic/b908625e-89e6-4928-8c64-3e9c07f6e6cb.jpg" title="" alt="" width="600" height="193" border="0" vspace="0"//pp style="text-indent: 2em "奖项揭晓后,仪器信息网第一时间采访了牛津仪器NMR中国区大区经理储岳森、牛津仪器NMR应用专家文祎,请两位分享了本次获奖X-Pulse的研发背景,牛津仪器为何选择切入台式核磁市场,以及相比高场核磁共振产品技术,台式核磁共振产品技术的市场优势、技术发展趋势与市场前景。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202006/uepic/b1b2a463-c3b8-4902-899c-dc85cb6f7e2f.jpg" title="" alt="" width="450" height="300" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "a href="https://www.instrument.com.cn/netshow/C368934.htm" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "宽带多核台式核磁共振谱仪X-Pulse/span/a/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "“科学仪器优秀新品”评审委员会创新点评/span:与以往产品相比有显著改进,进步表现在:用户可根据需要轻松调整核(从29Si-31P),适用于摄氏20度-60度之间的变温流动化学研究,以了解反应历程和反应动力学。总之,它既能为科研机构探索发现官能团、分子链和分子中原子核的化学环境等独特的结构信息提供支持,也可以满足高校老师现场教学的需求。/pp style="text-indent: 2em "strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "牛津仪器核磁共振业务近50年传承/span/strong/pp style="text-indent: 2em "早在20世纪七十年代,牛津仪器就已经是台式磁共振(NMR)开发的先驱,并在全球安装了上千台第一代连续波(CW)技术的磁共振仪器,许多这些早期的仪器至今仍然在用于巧克力的脂肪测量、油籽中含油检测以及航空燃料中的含氢检测等。/pp style="text-indent: 2em "随着脉冲核磁共振技术替代连续波磁共振技术上的进步,牛津仪器相应推出QP20、QP20+和MQA系列仪器始终走在行业发展的前列;随后结合实验室仪器不同用户需求,推出更高共振频率23MHz永磁体的MQC和多种不同规格的样品探头,新一代MQC+样品仓尺寸高达直径26mm;2013年,在英国推出台式磁共振波谱仪PulsarTM,将高端智能化核磁共振波谱技术带进常规实验室中。/pp style="text-indent: 2em "秉承近50年在台式磁共振行业的经验,本次获奖的X-Pulse则是在PulsarTM的基础上实现全面升级,真正在一台仪器上实现多核检测功能,同时具有流动在线、变温、常规数据库及毒品数据库等多种选择满足不同的用户需求。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 160px " src="https://img1.17img.cn/17img/images/202006/uepic/40383fee-c5d5-47cf-bed8-84346359388d.jpg" title="牛津仪器核磁产品系列.png" alt="牛津仪器核磁产品系列.png" width="600" height="160" border="0" vspace="0"//pp style="text-indent: 2em "截至目前,牛津仪器核磁共振业务产品组合包括:X-Pulse台式宽带核磁共振系统,食品、农业、聚合物和化工领域广泛使用的QC测量用MQC+系列台式分析仪,以及用于石油勘探领域样品检测的GeoSpec岩芯分析仪。/pp style="text-indent: 2em "span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strong牛津仪器为何切入台式核磁共振?/strong/span/pp style="text-indent: 2em "牛津仪器之所以选择切入台式核磁市场,主要有两方面原因:/pp style="text-indent: 2em "一方面,从用户采购、安装和使用成本来讲,高场核磁成本更高,也需要专门的安装场地及低温的维护等。而台式核磁也有许多应用领域,这些领域不需要很高的分辨率,更适合于成本更低的永磁型这种不需要低温超导技术的台式核磁。这些领域主要为工业质量控制等,而本次获奖产品X-Pulse则可以同时兼顾一些科研及教学领域。/pp style="text-indent: 2em "另一方面,台式核磁虽然不能替代高场超导核磁,但却是高场超导核磁一个很好的补充。比如,做一些流动在线检测,在高场超导核磁上是非常困难的,而台式核磁因为体积小巧,可以放在桌面上,实时在线监测化学反应。另外,高场核磁由于设备昂贵,高校院所等平台测试需要预约排队,而对于分辨率要求没那么高的实验及课题组,则可以方便的采购台式核磁,放在自己的反应器旁边,现场就可以完成对绝大多数化合物分子的快速检测。台式核磁可以作为高场超导核磁的一个补充,两者并不冲突。/pp style="text-indent: 2em "strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "X-Pulse研发背景:弥补高场核磁昂贵背景下广泛需求/span/strong/pp style="text-indent: 2em "台式核磁并不是一个很新的技术,该技术始于60余年前,实际上第一台商业核磁共振波谱仪就是采用永磁体,不过该技术后来被逐渐淘汰。主要是因为超导磁体技术的出现,可以提供更高的磁场强度,获得更高的分辨率。/pp style="text-indent: 2em "此后,核磁共振这项技术便一直朝着更高的磁场、更高的共振频率发展。就如同牛津仪器另一个低温超导业务部门,他们追求与技术竞争方向都是一直希望有一个更高的磁场强度,从而获得更高的共振频率。/pp style="text-indent: 2em "从上个世纪50年代,有了第一台的商业化的磁共振产品以后,相关技术就一直是朝着超导这个方向发展,这也就导致在有机四大谱分析仪器中,核磁共振仪的普及率是最低的。因为磁场强度越高,设备的成本随之增高,然后越少用户能够用得起。/pp style="text-indent: 2em "在此背景下,2008年,牛津仪器在高校院所用户中进行了系列调研,发现一直以来,核磁共振技术并没有被普及到本科生层面,甚至研究生也很少能够接触到核磁共振或直接的操作机会,可能整个学校只能配置一到两台高档的核磁共振仪。这种情况下,广大用户就急需一类成本没那么高、学生和广大的科研工作者都可以有机会接触的核磁共振波谱技术和产品。于是,牛津仪器便想到开发这种没有低温超导的、永磁型的台式核磁共振仪。/pp style="text-indent: 2em "span style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "strongX-Pulse产品创新点解读/strong/span/pp style="text-indent: 2em "X-Pulse在前一代产品PulsarTM的基础上,增加了许多创新功能,也解锁了一些高场核磁共振的功能,如梯度、形状脉冲等,从而可以做一些比较复杂的实验,比如压制水峰和溶剂峰,选择性激发,以及多线编辑的反相实验等。归结而言,X-Pulse的创新点主要包括四方面:多核、变温流动化学、高分辨率、高稳定性。/pp style="text-indent: 2em "strong宽带多核/strong——X-Pulse是一款带有宽带功能的台式核磁共振仪,即一台仪器就可以做不同原子核的各种核磁共振实验。这一特性大大拓展了台式核磁的应用领域。比如在浸润剂领域,,一些用户研究偶联剂时,需要同时观测H、C、Si谱,以往仪器上,只能做到H和C ,用户需要在一些高场核磁平台上做Si的测试。而X-Pulse则可以检测从Si到P的所有原子核,这对于偶联剂性能的评估、配方成分开发等都十分便利。/pscript src="https://p.bokecc.com/player?vid=BDA5850AE3630AE09C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/scriptp style="text-indent: 2em "再如,在锂电池行业,液态电解质通常包含锂盐以及有机溶剂。X-Pulse可以同时检测Li、P、F、B等,可用于电解质的配方分析和质量控制。利用X-Pulse,用户可以测定Li离子的扩散系数,识别并定量降解产物,分析电解质的浓度和纯度等,在一台仪器上即可实现对所有成分的表征。/pp style="text-indent: 2em "strong变温流动化学/strong——独特的流动池和变温探头,可在20° C到60° C之间连续监测动态化学反应,帮助用户详细了解反应过程和动力学。尤其是在有机合成方面,可以帮助用户优化温度、浓度等条件参数,以达到更短时间获得更高的反应转化率。/pscript src="https://p.bokecc.com/player?vid=9890E8C5BEF3D0269C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/scriptp style="text-indent: 2em "以往的仪器需要多次取样,多次检测,而X-Pulse只需要一个流动池,让这个反应在进行过程中不断的进入到我们这个仪器里面,实时检测,提高效率。/pp style="text-indent: 2em "strong高分辨率/strong——前一代产品分辨率是半峰宽0.5Hz,底部线形是20Hz。这款新品的分辨率有了显著提升,半峰宽小于0.35Hz,底部线形小于10 Hz。那么它意义在哪里?比如说一些化合物的分子量大一些、复杂一些,那么它的谱峰重叠的可能性就会比较大,这对表征结构会带来困难。当分辨率提升以后,谱峰更窄,裂分更清楚,将更有利于识别这些谱图。/pp style="text-indent: 2em "strong高稳定性/strong——X-Pulse采用了经典的磁体设计,具有高热容量的磁体,无论是检测静态还是流动的样品,对温度变化都不敏感,从而消除了样品温度假峰。/pp style="text-indent: 2em " 想要获得高质量的核磁谱图,对磁场稳定性要求是比较高的。如果磁场保持均一稳定的状态,谱峰信号会很尖锐,裂分峰型也会很漂亮。如果仪器稳定性不好,磁场漂移厉害,那么可能本来能看到的分裂峰,最后变成一个包,这样也会给用户带来一些误导信息。/pp style="text-indent: 2em "strongspan style="background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "台式核磁技术的一个发展趋势:追赶高场核磁的分辨率和灵敏度/span/strong/pp style="text-indent: 2em "与高场核磁一样,台式核磁技术的发展方向也是发展更高的磁场强度,以达到更高的分辨率和灵敏度。/pp style="text-indent: 2em "目前台式核磁共振而言,X-Pulse磁场强度是1.4Tesla,对应的氢共振频率是60M,即便与一般所讲高场核磁最低的200M相比,无论是分辨率还是灵敏度,都还有一定的差距,从这个角度讲,台式核磁的一个永远的发展方向就是追赶高场核磁的分辨率和灵敏度。/pp style="text-indent: 2em "磁场强度方面,台式核磁共振不能像高场核磁共振那样,通过低温超导磁体来不断提高磁场强度。而台式核磁对应永磁体提高磁场强度是有极限的,因为随着磁场强度提高会导致永磁体越来越重,而且到了一定程度也存在极限。/pp style="text-indent: 2em "分辨率方面,比如PulsarTM刚发布时分辨率是1.5Hz,随后提高到1.3Hz,后来又提高到1.0 Hz、0.7 Hz,然后是0.5 Hz,目前这款获奖新品X-Pulse的分辨率是0.35 Hz。虽然磁场强度一样,牛津仪器一直在通过其他技术手段来实现台式核磁的分辨率的不断提高。/pp style="text-indent: 2em "灵敏度方面,牛津仪器主要是在通过探头上下功夫,通过改进的探头技术和一些电子设计,能够把灵敏度不断提高。牛津仪器最早期产品,灵敏度只有大概20:1,后来提高到40:1,然后是100:1,目前可以做到120:1,单氢探头超过180:1。/pp style="text-indent: 2em "总之,在磁场方面牛津仪器将尽可能提高台式核磁共振的磁场强度,当然最终的目的还是提高分辨率和灵敏度,牛津仪器也将在今后不断实施开发和改进的计划。/p
  • 西光所高分辨率X射线像增强器视觉系统研制成功
    5月16日,由中科院西安光学精密机械研究所与该所投资企业西安中科麦特电子技术设备有限公司共同承担完成的“高分辨率X射线像增强器视觉系统”通过了成果鉴定。高分辨率X射线像增强器视觉系统是一项具有自主知识产权、设计先进、操作简便、使用安全的工业X射线检测系统,它可广泛应用于电子工业生产装配中出现的短路、开路、冷焊和焊点空洞等质量问题,适用于BGA、CSP、Flip Chip 集成电路内部以及多层电路板的质量检测,亦可用于其他领域的X射线检测。高分辨率X射线像增强器视觉系统采用密封型微焦斑X光管,无需抽真空,可以轻易穿透带散热片的芯片,并且实现了大视场浏览和局部细节观测两种检测需求的快速切换,提升了检测效率。同时采用自主研发的高分辨率X射线增强器图像及专用的图像处理软件使得图像更加清晰。该系统所有操作可通过计算机独立完成,高稳定性的运动平台可在X、Y、Z方向大行程运动,倾斜检测模式可使用户更为准确地实施产品质量的检测。专家认为,高分辨率X射线像增强器视觉系统设计先进、综合技术处于国内领先水平,具有广阔的应用前景和较好的经济效益,并建议进一步加强对系统的产业化开发,以拓展产品在更多领域的应用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制