当前位置: 仪器信息网 > 行业主题 > >

干涉镜

仪器信息网干涉镜专题为您提供2024年最新干涉镜价格报价、厂家品牌的相关信息, 包括干涉镜参数、型号等,不管是国产,还是进口品牌的干涉镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合干涉镜相关的耗材配件、试剂标物,还有干涉镜相关的最新资讯、资料,以及干涉镜相关的解决方案。

干涉镜相关的资讯

  • 国际首台飞秒干涉散射显微镜研制成功
    光电界面携能载流子的时空演化与能源、催化和传感等领域紧密相关,是近年来物理、化学和材料等领域的研究热点之一。载流子的迁移、分布和弛豫是影响材料功能的关键之所在,因此,利用高时空分辨成像技术观测载流子时空演化对于新型材料基础研究和应用均具有重大意义。然而,极微弱载流子信号的测量是学界公认的难题。总体而言,国内外尚无成熟的仪器装置能够有效实现瞬态信号放大,直接"看见"少量载流子仍是巨大的挑战。近日,南京大学化学化工学院生命分析化学国家重点实验室康斌/徐静娟团队结合飞秒泵浦-探测技术和干涉散射显微术,研制成国际上首台飞秒干涉散射显微镜(Femto-iSCAT),并成功获得发明专利授权(专利号:202110510123.X)。该仪器作为一个通用测量平台,实现了超灵敏、高通量观测各种材料中的载流子迁移、分布和弛豫动力学。通过干涉放大效应和空间光场调制,瞬态图像对比度相比于传统方法提升了2个数量级以上,可探测极微弱载流子信号,从而有利于揭示超导材料、二维材料及新型光电材料中的稀奇科学现象。飞秒干涉散射成像原理随后作者展示了Femto-iSCAT的一系列极具挑战的应用场景,包括常用光电器件如金属薄膜、硅基半导体和钙钛矿太阳能电池中的界面载流子/热扩散迁移,单个等离激元微纳颗粒中的不均匀热电子分布和弛豫,以及二维材料中的载流子/激子在边缘态的独特动力学。Femto-iSCAT相比于传统瞬态显微镜,极大拓展了材料的适用范围,以极高灵敏度和检测通量实现了载流子时空演化的多功能成像,助力界面能量和载流子转移等超快过程的研究。该工作以"Decrypting Material Performance by Wide-field Femtosecond Interferometric Imaging of Energy Carrier Evolution"为题,于2022年7月22日发表在Journal of the American Chemical Society(美国化学会志)。博士生吕品田为该论文第一作者,康斌副教授和徐静娟教授为论文通讯作者,陈洪渊院士对该工作的研究思想做出了重要指导。该工作得到了国家自然科学基金、南京大学卓越研究计划、南京大学生命分析化学国家重点实验室自主研究课题等资助。文章链接:https://pubs.acs.org/doi/10.1021/jacs.2c05735
  • 徐涛院士团队研制出分子尺度分辨率干涉定位显微镜
    p style="text-align: justify text-indent: 2em "Seeing is believing,光学显微镜自1590年由荷兰詹森父子创制伊始,即成为生命科学最重要的研究工具之一。进入21世纪,借助荧光分子,科学家将光学显微镜的分辨率提高了一个数量级,由约一半光波波长(250 nm)拓展至几十纳米,并兴起了超高分辨荧光成像技术,用于“看到”精细的亚细胞结构和生物大分子定位,相关工作荣膺2014年诺贝尔化学奖。/pp style="text-align: justify text-indent: 2em "9月9日,Nature Methods杂志在线发表了中国科学院生物物理研究所徐涛院士研究组与科学研究平台纪伟正高级工程师研发团队合作研究论文,题为“Molecular resolution imaging by repetitive optical selective exposure”,为超高分辨光学显微镜家族再添新成员,使显微镜分辨率进一步被突破。该工作提出了一种基于激光干涉条纹定位成像的新技术,并据此研制出新型单分子干涉定位显微镜(Repetitive Optical Selective Exposure, ROSE),将荧光显微镜分辨率提升至3 nm以内的分子尺度,单分子定位精度接近1 nm,可以分辨点距为5 nm的DNA origami(DNA 折纸)结构。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 226px " src="https://img1.17img.cn/17img/images/201909/uepic/bcbdc347-2f8b-464e-9014-787a341c1e21.jpg" title="徐涛院士组与科学研究平台研发团队实现分子尺度分辨率光学成像.jpg" alt="徐涛院士组与科学研究平台研发团队实现分子尺度分辨率光学成像.jpg" width="450" height="226" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong图1 左侧,传统质心拟合定位方法,右侧,ROSE干涉定位方法/strong/pp style="text-align: justify text-indent: 2em "所谓干涉定位,是指采用不同方向和相位的激光干涉条纹激发荧光分子,荧光分子的发光强度与其所处条纹的相位有关,该技术即是通过荧光分子强度与干涉条纹的相位关系,来确定荧光分子的精确位置。为降低单分子发光时的闪烁和漂白对亮度和定位精度产生的不良影响,研发团队对显微镜光路进行了创造性地设计,分别为:基于电光调制器的干涉条纹快速切换激发光路,基于谐振振镜扫描的6组共轭成像光路,两种光路的同步实现了高达8 kHz的分时成像,确保在相机的单次曝光时间里把每个单分子发光状态均匀分配给6个干涉条纹,有效避免了荧光分子发光能力波动对定位精度的干扰。/pp style="text-align: justify text-indent: 2em "研发团队利用该技术对不同荧光位点间距的DNA origami阵列进行验证测试,证明干涉成像分辨率达到了3 nm的分子水平,可以解析5 nm的DNA origami阵列。后续的功能性实验结果显示,该技术在免疫标记的微管、CCP(clathrin coated pits,网格蛋白有被小窝)以及较致密的细胞骨架成像时展现出良好性能,该技术将为进一步解析精细亚细胞的组分和生物大分子的纳米结构提供有力工具。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 311px " src="https://img1.17img.cn/17img/images/201909/uepic/45780611-1a95-4748-a74e-d777d33bd780.jpg" title="分子尺度分辨率光学成像.jpg" alt="分子尺度分辨率光学成像.jpg" width="450" height="311" border="0" vspace="0"//pp style="text-align: center text-indent: 0em "strong图2左侧,不同荧光位点间距的DNA origami成像,ROSE技术与传统的质心拟合方法进行对比验证。右侧,鬼笔环肽标记的微丝成像,ROSE技术与传统的质心拟合方法进行对比验证。/strong/pp style="text-align: justify text-indent: 2em "徐涛院士领衔的仪器研发团队近年来致力于显微成像仪器设备和技术方法的研究和开发,先后研制出偏振单分子干涉成像、冷冻单分子定位成像以及超分辨光电融合成像系统,开发了新的超分辨显微成像算法、探针和技术,申请有多项发明专利,上述成果被广泛应用于细胞生物学相关研究,支撑团队与合作者在该领域取得了系统性成果产出。纪伟正高级工程师所在的生命科学仪器研发中心是根据研究所发展新技术新方法的迫切需求而设立,隶属于科学研究平台,在提供技术服务的同时,聚焦生物显微成像仪器设备的研发与应用推广。/pp style="text-align: justify text-indent: 2em "徐涛院士和纪伟正高级工程师为该文章的共同通讯作者,谷陆生、李媛媛、张淑文为共同第一作者。李栋研究员、薛艳红、李尉兴参与了本课题。/pp style="text-align: justify text-indent: 2em "该工作受到中国科学院科研仪器设备研制项目、国家重点研发计划、国家自然科学基金以及北京市科技计划等项目的资助。/p
  • 首套超算合成孔径雷达干涉测量系统研制成功
    p style="text-indent: 2em "来自空天院等单位的研究人员成功研制了我国首套自主知识产权的超算合成孔径雷达干涉测量系统,并首次实现全国尺度地表形变合成孔径雷达干涉测量制图。/pp style="text-indent: 2em "作为受地质灾害影响最严重的国家之一,我国地质灾害造成的损失逐年增加。“利用空间遥感技术实现地表形变大范围监测,对开展固体地球运动研究和地质灾害调查具有重要意义。”空天院研究员王超说。/pp style="text-indent: 2em "合成孔径雷达干涉测量技术是通过利用合成孔径雷达图像中的相位信号来获取毫米级地表形变信息的技术。随着宽幅合成孔径雷达成像技术的成熟,国内外合成孔径雷达卫星数据爆炸式增长。/pp style="text-indent: 2em "在计算机存储与计算能力不断增强的背景下,针对全国尺度的地质灾害调查、监测的迫切需求,研究人员结合卫星大数据处理技术与超算硬件平台,经过2年多时间对早期独立研发的相干目标时序合成孔径雷达干涉测量处理软件进行算法改进及并行优化,研发了我国首套具有自主知识产权的超算合成孔径雷达干涉测量系统,实现了合成孔径雷达干涉测量大数据自动化、批量并行处理。基于该系统,研究人员首次获取了全国尺度的地表形变合成孔径雷达干涉测量结果。/pp style="text-indent: 2em "王超表示,该系统所提供的大尺度地表形变产品不仅可以促进地球科学的新发现,服务于板块运动、全球环境变化等地球科学领域,而且还可以提高我国遥感数据处理能力,服务于我国大范围地面沉降的地理国情监测及地质灾害普查等领域,对社会经济可持续发展具有重大意义。/ppbr//p
  • 浅谈激光干涉技术及应用现状
    激光干涉技术主要应用光波的空间相干特性。具体而言,对于两束光波或电磁波等横波,当波长相等、且相位差为2π整数倍时,合成波的振幅叠加增强至最大;当相位差为π奇数倍时,合成波的振幅抵消减小至最小。早在十九世纪下半叶,科学家们就已发明了多种原理干涉结构装置用于科学研究,其中最著名的是迈克尔逊-莫雷干涉试验,该实验采用钠光源平均谱线近似单色光进行干涉测量,从而否定了“以太”的假说。图1 迈克尔逊-莫雷干涉试验激光干涉仪的构成真正促进干涉技术巨大进步的契机是1960年激光器的发明。激光由于具有极窄的谱线,因而具有非常优秀的空间相干性。目前激光干涉仪主要的用途包括精准的尺寸和移动距离测量,测量准确度最高可以达到纳米甚至亚纳米量级。在构成上激光干涉仪最常使用的波长为632.8 nm,对于经典的迈克尔逊干涉测量原理,由激光器中出射的单色激光经过50:50半透半反的分束镜后分为2束光束,其中一束经过固定的光程后被反射镜反射,称为参考光束;另外一束光束由于存在被测对象,被反射镜反射后光程发生改变(距离或折射率变化引起),称为测量光束。当两束光被反射后在分束镜第二次合成并随后照射探测器上被接收后,将产生干涉条纹的移动。由之前的光波的叠加性可知,假设测量光路距离变化为316.4 nm,当只存在一去程一回程的情况下,此时干涉条纹相位变化2π。目前商用激光干涉仪普遍采用两去程两回程,同时采用1024倍电子细分卡,因此分辨率可达0.16 nm。图2 激光干涉仪原理构造激光干涉仪的应用现状1. 在工业领域应用随着理论研究的深入和技术的不断进步,激光干涉测量技术目前精彩纷呈,在多个领域中都得到了非常广泛的应用。 包括单频激光干涉仪、双频激光干涉仪、激光平面干涉仪、法布里-珀罗干涉仪、皮米激光干涉仪、多波长干涉测距等。 单频和双频激光干涉仪。测量具有非接触和无损检测的特点,能够在线测量长度、角度和转速等参数,因此已成为各国精密数控机床在线定位精度测量的最主要标准之一。在精密加工过程中,位置精度是机床的重要指标,激光干涉仪通过在线位置测量、实时数据处理实现机床误差修正。另外在集成电路制造中,激光干涉仪也是光刻机在线位移测量的核心部件。图3 激光干涉仪在精密机床中的应用激光平面干涉仪。激光干涉仪不仅可以用于测量长度、角度以及位移,也可以测量物体的表面形貌。测量基本原理为激光菲索(Fizeau)干涉,激光经过扩束后先后经过参考平面和待测平面,两个平面的反射光发生干涉后产生干涉条纹,通过成像系统接收。分析条纹形状即可判断是否存在缺陷。图4 激光平面干涉仪皮米激光干涉仪。现在随着微纳测量分辨率要求的进一步提高,出现了商品化的皮米激光干涉仪。皮米激光干涉仪采用包覆光纤作为激光传输介质,有效减小了空气折射率扰动对测量的影响;同时在干涉方式上干涉仪采用法布里-珀罗(F-P)干涉仪原理,是一种多倍程干涉,进一步提高了分辨率。 图5 皮米激光干涉仪多波长干涉绝对测距。采用单波长干涉测距虽然分辨率可达到纳米级,但是单波长干涉测距是相对测量,且测量时光路不能中断,而多波长干涉能很好解决这个问题。因为在干涉测距中波长就像一把量尺,但如果测量距离大于这把量尺,则需要多次拼接测量。多波长干涉能形成很长的等效波长,使量尺范围大于被测距离,实现绝对距离测量。图6 多波长干涉绝对测距光相控阵雷达。随着自动驾驶技术的高速发展,现在激光干涉技术也应用在光相控阵(OPA)激光雷达(LiDAR)中。激光雷达会产生一系列密集超短激光脉冲扫描周围物体,通过脉冲返回时长差判断距离和轮廓。光相控阵雷达利用光栅干涉原理,可以通过改变不同狭缝中入射光线的相位差来改变光栅后中央条纹(主瓣)位置,从而控制激光雷达光束的指向和转向。 图7 激光干涉技术在光相控阵雷达中的应用2. 在科学研究方面应用激光干涉引力波天文台(LIGO)。LIGO用于验证广义相对论预言的引力场扰动产生的时空扭曲。它本质上是一个超大型迈克尔逊干涉仪,由2条4千米长的互相垂直的臂构成,同时光线还会在臂内折返300次。当引力波会产生空间弯曲,干涉结果也会轻微变化。2017年美国科学家借助LIGO观测到双中子星合并引力波事件并获得了诺贝尔物理学奖。图8 激光干涉引力波天文台(LIGO)激光全息干涉测量技术。利用非共面多光束干涉可以在空间形成二维或三维周期性强度分布,从而被用来制作二维或三维光子晶体;利用全息干涉技术可用于位移及形变测量、应变与应力分析、缺陷或损伤探测、振动模式可视化及测量、晶体和蛋白质生长过程监测、流体中密度场和热对流场的观察与测量。图9 激光全息干涉测量技术作者:中国计量科学研究院副研究员 李琪
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf
  • 激光外差干涉技术在光刻机中的应用
    激光外差干涉技术在光刻机中的应用 张志平*,杨晓峰 复旦大学工程与应用技术研究院上海市超精密运动控制与检测工程研究中心,上海 201203摘要 超精密位移测量系统是光刻机不可或缺的关键分系统之一,而基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。目前应用于光刻机的超精密位移测量系统主要有双频激光干涉仪和平面光栅测量系统两种,二者均以激光外差干涉技术为基础。本文将分别对这两种测量系统的原理、优缺点以及在光刻机中的典型应用进行阐述。关键词 光刻机;外差干涉;双频激光干涉仪;平面光栅1 引言集成电路产业是国家经济发展的战略性、基础性产业之一,而光刻机则被誉为集成电路产业皇冠上的明珠[1]。作为光刻机三大指标之一的套刻精度,是指芯片当中上下相邻两层电路图形的位置偏差。套刻精度必须小于特征图形的1/3,比如14 nm节点光刻机的套刻精度要求小于5.7 nm。影响套刻精度的重要因素是工件台的定位精度,而工件台定位精度确定的前提则是超精密位移测量反馈,因此超精密位移测量系统是光刻机不可或缺的关键分系统之一[2-4]。随着集成电路特征尺寸的不断减小,对位置测量精度的需求也不断提高;同时,为了满足光刻机产率不断提升的需要,掩模台扫描速度也在不断提高,甚至达到 3 m/s 以上;此外,为了满足大尺寸平板显示领域的需求,光刻机工件台的尺寸和行程越 来越大,最大已达到 1. 8 m×1. 5 m;最后,为了获得工件台和掩模台良好的同步性能,光刻机还要求位置测量系统具备多轴同步测量的功能,采样同步不确定性优于纳秒级别[5-8]。 综上,光刻机要求位置测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程、数米每秒测量速度、闭环反馈以及多轴同步等特性。目前,在精密测量领域能同时满足上述测量要求的,只有外差干涉测量技术。 本文分别介绍外差干涉测量技术原理及其两 种具体结构——双频激光干涉仪和平面光栅测量系统,以及外差干涉技术在光刻机中的典型应用。 2 外差干涉原理 2. 1 拍频现象 外差干涉又称为双频干涉或者交流干涉,是利用“拍频”现象,在单频干涉的基础上发展而来的一 种干涉测量技术。 假设两列波的方程为 x1 = A cos ω1 t , (1) x2 = A cos ω2 t 。 (2) 叠加后可表示为(3)拍频定义为单位时间内合振动振幅强弱变化 的次数,即 v =| (ω2 - ω1)/2π |=| v 2 - v 1 | 。 (4) 波 x1、x2 以及合成后的波 x 如图 1 所示,其中包 络线的频率即为拍频,也称为外差频率。如果其中一个正弦波的相位发生变化,拍频信号的相位会发生完全相同的变化,即外差拍频信号将完整保留原始信号的相位信息。 图 1. 拍频示意图Fig. 1. Beat frequency diagram对于激光而言,因为频率很高(通常为 1014 Hz 量级),目前的光电探测器无法响应,但可以探测到两束频率相近的激光产生的拍频(几兆到几十兆赫兹)。因此拍频被应用到激光领域,发展成激光外差干涉技术。2. 2 外差干涉技术 由拍频原理可知 ,所谓外差就是将要接收的信号调制在一个已知频率信号上,在接收端再将该调制信号进行解调。由于高频率的激光信号相位变化难以精确测量,但利用外差干涉技术可以用低频拍频信号把高频信号的 相位变化解调出来,将大大降低后续精确鉴相的难度。因此,外差技术最显著的特点就是信号以交流的方式进行传输和处理。 与单频干涉技术相比,外差干涉技术的突出优点是:1)由于被测对象的相位信息是加载在稳定的差频(通常几兆到几十兆赫兹)上,因此光电探测时避过了低频噪声区,提高了光电信号的信噪比。例如在外界干扰下,测量光束光强衰减 50% 时,单频干涉仪很难正常工作,而外差干涉仪在光强衰减 90% 时仍能正常工作 ,因此更适用于工业现场 。 2)外差干涉可以根据差频信号的增减直接判别运动方向,而单频干涉技术则需要复杂的鉴相系统来 判别运动方向。单频干涉技术与外差干涉技术对比如表 1 所示。表 1. 单频干涉技术与外差干涉技术对比Table 1. Comparison between homodyne interferometry and heterodyne interferometry3双频激光干涉仪 3. 1 双频激光干涉仪原理 双频激光干涉仪是在单频激光干涉仪的基础上结合外差干涉技术发展起来的,其原理如图 2 所 示。双频激光器发出两列偏振态正交的具有不同频率的线偏振光,经过偏振分光器后光束被分离。 图 2. 双频激光干涉仪原理图Fig. 2. Schematic diagram of dual frequency laser interferometer设两束激光的波动方程为 E1 = E R1 cos ( 2πf1 t ) E2 = E R2 cos ( 2πf2 t ) , (5) 式中:ER1和 ER2为振幅;f1和 f2为频率。 偏振态平行于纸面的频率为 f1 的光束透过干涉仪后,被目标镜反射回干涉仪。当被测目标镜移动时,产生多普勒效应,返回光束的频率变为 f1 ± Δf, Δf 为多普勒偏移量,它包含被测目标镜的位移信息。经过干涉镜后,与频率为 f2 的参考光束会合,会合后光束发生拍频,其光强 IM函数为 (6) 式(6)包含一个直流量和一个交流量,经光电探测器转换为电信号,再进行放大整形后,去除直流量,将交 流量转换为一组频率为 f1 ± Δf- f2的脉冲信号。从双频激光器中输出频率为 f1 - f2 的脉冲信 号,作为后续电路处理的基准信号。测试板卡采用减法器通过对两列信号的相减,得到由于被测目标 镜的位移引起的多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为 (7) 式中:λ 为激光的波长;N 为干涉的条纹数。因此, 只要测得条纹数,就可以计算出被测物体的位移。 3. 2 系统误差分析 双频激光干涉仪的系统误差大致由三部分组成:仪器误差、几何误差以及环境误差,如表 2 所示。 三种误差中,仪器误差可控制在 2 nm 以内;几何误 差可以通过测校进行动态补偿,残差可控制在几纳米以内;环境误差的影响最大,通常可达几十纳米到几微米量级,与测量区域的环境参数(温度、压 力、湿度等)有关,与量程几乎成正比,因此大量程测量时,需要对环境参数进行控制。 表 2. 双频激光干涉仪系统误差分解Table 2. System error of dual frequency laser interferometer4 平面光栅测量系统 双频激光干涉仪在大量程测量时,精度容易受 温度、压力、湿度等环境因素影响,研究者们同样基于外差干涉原理研发了平面光栅测量系统,可克服双频激光干涉仪的这一缺点。 4. 1 基于外差干涉的光栅测量原理 众所周知 ,常规的光栅测量是基于叠栅条纹的,具有信号对比度差、精度不高的缺点。基于外差干涉的光栅测量原理如图 3 所示,双频激光器发出频率 f1 和 f2 的线偏振光,垂直入射到被测光栅表面,分别进行+1 级和−1 级衍射,衍射光经过角锥反射镜后再次入射至被测光栅表面进行二次衍射, 然后会合并沿垂直于光栅表面的方向返回。由于被测光栅与光栅干涉仪发生了相对运动,因此,返回的激光频率变成了 f1 ± Δf和 f2 ∓ Δf,其中 Δf为多 普勒频移量,它包含被测目标镜的位移信息。 图 3. 基于外差干涉的光栅测量原理Fig. 3. Principle of grating measurement based on heterodyne interference会合后的光束 f1 ± Δf 和 f2 ∓ Δf 发生拍频,其频率为 ( f1 ± Δf ) - ( f2 ∓ Δf ) = ( f1 - f2 ) ± 2Δf。(8) 式(8)的信号与双频激光器中输出频率为 f1 - f2 的 参考信号相减,得到多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为(9) 式中 :p 为光栅的栅距 ;N 为干涉的条纹数 。 因此,只要测得条纹数 ,就可以计算出被测物体的位移。 上述原理推导是基于一维光栅刻线的,只能测量一维运动。为了获得二维测量,只需将光栅的刻线由一维变成二维(即平面)即可。 4. 2 两种测量系统优缺点对比 由此可知,基于外差干涉的光栅测量原理与双频激光干涉仪几乎完全相同,主要的差别是被测对象由反射镜换成了衍射光栅。两种测量系统的优缺点如表 3 所示。表 3. 双频激光干涉仪与光栅测量系统对比Table 3. Dual frequency laser interferometer versus gratingmeasurement system5外差干涉测量在光刻机中的应用 发展至今,面向 28 nm 及以下技术节点的步进扫描投影式光刻机已成为集成电路制造的主流光刻机。作为光刻机的核心子系统之一的超精密工件台和掩模台,直接影响着光刻机的关键尺寸、套刻精度、产率等指标。而工件台和掩模台要求具有高速、高加速度、大行程、超精密、六自由度(x、y 大 行程平动,z 微小平动,θx、θy、θz微小转动)等运动特点,而实现这些运动特点的前提是超精密位移测量反馈。因此,基于外差干涉技术的超精密位移测量子系统已经成为光刻机不可或缺的组成部分。 4. 光刻机中的多轴双频激光干涉仪[10]Fig. 4. Multi-axis dual frequency laser interferometer in lithography machine[10]图 4 为典型的基于多轴双频激光干涉仪的光刻机工件台系统测量方案[10],在掩模台和硅片台的侧面布置多个多轴激光干涉仪,对应地在掩模台和硅 片台上安装长反射镜;通过多个激光干涉仪的读数解算出掩模台和硅片台的六自由度位移。 然而,随着测量精度、测量行程、测量速度等运动指标的不断提高,双频激光干涉仪由于测量精度易受环境影响、长反射镜增加运动台质量致使动态性能差等问题难以满足日益提升的测量需求。因 此,同样基于外差干涉技术的平面光栅测量系统成为了另一种选择[8]。 光刻机工件台平面光栅测量技术首先由世界光刻机制造巨头 ASML 公司取得突破。该公司于 2008 年 推 出 的 Twinscan NXT:1950i 浸 没 式 光 刻机,采用了平面光栅测量技术对 2 个工件台的六自 由度位置进行精密测量。如图 5 所示,该方案在主基板的下方布置 8 块大面积高精度平面光 栅(约 400 mm×400 mm),在两个工件台上分别布置 4 个 平面光栅读数头(光栅干涉仪),当工件台相对于平 面光栅运动时,平面光栅读数头即可测出工件台的 运动位移[2,5,9]。图 5. ASML 光刻机的平面光栅测量方案[2,5,9]Fig. 5. Plane grating measurement scheme of ASML lithography machine[2,5,9]相比多轴双频激光干涉仪测量方案,平面光栅测量方案具有以下优点:1)测量光路短(通常小于 20 mm),因此测量重复精度和稳定性对环境变化不 敏感;2)工件台上无需长反射镜,因此质量更轻、动态性能更好。 然而,平面光栅测量方案也有其缺点:1)大面积高精度光栅制造难度太大;2)由式(9)可知,位移 测量结果以栅距 p 为基准,然而受栅距均匀性限制, 测量绝对精度不高。为了获得较好的精度和线性度,往往需要利用双频激光干涉仪进行标定。 面临极端测量需求的挑战 ,Nikon 公 司 在 NSR620D 光刻机中采用了平面光栅和双频激光干涉仪混合测量的技术方案[9],如图 6 所示。该方案 将平面光栅安装在工件台上表面,而将光栅读数头安装在主基板下表面,同时增加了双频激光干涉仪,结合了平面光栅测量系统和双频激光干涉仪的 优点。在读头与读头切换时采用双频激光干涉仪进行在线校准。 图 6. Nikon光刻机混合测量方案[9]Fig. 6. Hybrid measurement scheme of Nikon lithography machine [9]6激光外差干涉系统的发展趋势 无论是双频激光干涉仪还是平面光栅测量系统,要想获得纳米级测量精度,既需要提高测量系统本身的精度,更需要从使用的角度努力,即“三分 靠做,七分靠用”。 就激光外差干涉测量系统本身而言,误差源主要来自于光学非线性误差。在外差干涉测量系统 中,由于光源及光路传输过程各光学器件性能不理想或装调有偏差,会带来两个频率的光混叠现象, 即原本作为测量信号频率 f1(或 f2)的光中混杂了频 率 f2(或 f1)的光,或原本作为参考信号频率 f2(或 f1) 的光中混杂了频率 f1(或 f2)的光。在信号处理中该混叠的频率信号会产生周期性的光学非线性误差。尽管目前主流的双频激光干涉仪厂家已经将非线性误差控制在 2 nm 以内[10- 12],但应用于 28 nm 以下光刻机时仍然需要进一步控制该误差。国内外众多学者从非线性误差来源、检测和补偿等角度出发,进行了大量研究并取得了丰硕成果[13- 17]。这些成果有望对非线性误差的动态补偿提供理论支持。 从应用角度,研究热点主要集中在应用拓展、 安装误差及其测校算法、环境参数控制及其补偿方法研究等方面。在应用拓展方面,激光外差干涉技术除了应用于测长之外,还在小角度测量、直线度、平面度、反馈测量等方面取得了应用[18- 20]。在安装误差和环境误差补偿算法方面,主要聚焦于多自由度解耦算法、大气扰动补偿等研究方向[4,21- 27]。 7 总结 阐述了光刻机对位移测量系统大量程、亚纳米 分辨率、纳米精度、高测速及多轴同步的苛刻要求。 概述了激光外差干涉技术原理,指出目前为止,激光外差干涉技术是唯一能满足光刻机上述要求的超精密位移测量技术。并综述了两种基于激光外差干涉技术的测量系统:双频激光干涉仪和平面光栅测量系统。总结了这两种位移测量系统在光刻机中的典型应用,以及激光外差干涉技术的当前研究热点和发展趋势。全文详见:激光外差干涉技术在光刻机中的应用.pdf
  • 3D 白光干涉成像技术的创新及应用
    近年来,3D检测技术发展迅速,广泛应用于工业、国防、医疗、农业等领域。根据其是否应用人造光源作为照明系统,可分为主动式3D成像技术与被动式3D成像技术。无论是哪种方法,为了获得目标的高精度3D轮廓信息,都希望检测仪器具备高精度、高帧率、算法兼容性强、环境适应性强、稳定性强、操作简便、性价比高等特点,这在实际应用中,尤其在微纳米结构检测中有着重要意义。微纳米技术,是指对微纳级材料的测量、加工制造、设计、控制等相关研究技术,它与高精尖装备制造领域的发展息息相关。微纳结构测量最为基础和重要的是表面形貌的3D测量,它包括了轮廓的测量以及表面粗糙度的测量,目前常用的微结构表面形貌测量方法分为接触式和非接触式。接触式测量是目前工业领域内应用最为广泛的测量方法。这种方法在测量时有一个微小的触针,在被测样品表面上做横向移动;在这过程中触针会随着样品表面的轮廓形状垂直起伏,然后通过传感器将这微小的位移信号转换为电信号;对这些信号进行采集和运算处理后,就可以测得表面轮廓或形貌特征。测量中可以使用的传感器有很多,如光栅式、压电式、干涉式以及普遍应用的电感式。这种方法测量量程大,结果稳定可靠,并且仪器操作简单,对测量环境要求低;缺点是触针在测量时有可能会对被测表面造成损伤,且测量速度慢。非接触式测量技术大多基于光学方法,例如干涉显微法、自动聚焦法、激光干涉法等。光学测量方法具有非接触、操作简单、速度快等优点。然而在利用光学方法进行测量时,被测表面的斜率、光学参数等发生变化会引起测量误差。例如,若被测样品表面存在沟槽或其他微细结构,它们引起的散射、衍射等现象会对测量信号造成干扰。另外,若样品表面存在灰尘、细小纤维等,光学测量方法的结果也会有一定失真;而触针式方法由于测量时与样品表面接触,会划去部分表面污染物使测量结果不受影响。因此,根据不同测量要求,每种方法都有其适用性,常用的微纳结构三维测量方法如图1所示。图1:微纳结构三维测量方法接触式检测技术(1)扫描电子显微术利用物质与电子的相互作用,当电子束轰击表面时,会产生多种形式的电子和光电现象,扫描电子显微镜(SEM)利用其中的二次电子和背散射电子与表面具有的关系进行结构分析。SEM具有大视场、大倍率、大景深等优点,但其测量样品制备复杂,种类有限,常用于微结构缺陷检测等定性分析。(2)扫描探针显微术被测样品表面的相关信息利用探针与样品的相互作用特性获得,扫描探针显微镜(SPM)及其衍生而来其他测量方法,具有较高的测量分辨力,但其测量过程需要对测量表面逐点扫描,且只有微米级别成像范围,测试效率较低。(3)机械探针轮廓术探针始终与被测表面接触,被测表面结构的变化会使探针产生垂直位移,通过位移的感知即能获得被测表面特性。该方法在工业特别是制造业领域广泛使用,也是国际社会公认的表面粗糙度测量的标准方法。但是其作为接触式测量方法,容易对被测表面造成划伤,逐点测量的办法效率较低,也难以测量复杂器件。非接触式检测技术(1)激光干涉术通过干涉条纹变化与被测物位置变化的对应关系,获得位移信息,从而达到几何量测的目的。(2)自动聚焦法基于几何光学的物象共轭关系,当照明光斑汇聚在被测面时,进一步调整检测头与表面的距离,直至光斑像尺寸最小而得到该被测位置的相对高度。该方法简单易操作,但水平分辨力受光斑大小的限制较大,且垂直高分辨力对成像分析和调节能力要求高。(3)激光共焦扫描显微术首先利用精密共焦空间滤波结构,通过物象共轭关系滤除焦点外的反射光,极大地提高成像的可见度。通过聚焦光对样品垂直扫描,样品在垂直方向被分层成像,光学切片图像经三维重构,可得到样品的三维结构。该方法一次测量过程就能实现该视场三维形貌的测量,兼具高效和高精度的优点,但其分辨率易受扫描步长和物镜数值孔径的限制。(4)光学显微干涉术传统的干涉测量方法,主要是通过观测干涉条纹的位置、间距等的变化来实现精确测量。典型方法是单色光相移干涉术和白光扫描干涉术。单色光相移干涉术的测量思路为:参考臂和测量臂的反射光发生干涉后,利用相移法引入相位变化,根据该相位变化所引起的干涉光强变化,求解出每个数据点的相位,其结果不连续,位于(-p,p]之间,因此需要对该结果进行解包裹运算,然后根据高度与相位的关系,得到被测样品的表面形貌。这种方法在测量时对背景光强不敏感,测量分辨率高;但无法确定干涉条纹的零级位置和相位差的周期数,存在相位模糊问题;若被测样品表面的相邻高度超过1/4波长则不能测准,因此只能应用于对表面连续或光滑的结构的测试。白光扫描干涉法由单色光相移技术发展而来,由于使用白光作为光源,在干涉时有一个确切的零点位置,其相干长度短,干涉条纹只出现在很小的范围内;当光程差为零时,干涉信号出现最大值,该点就代表对应点的高度信息,通过Z向扫描能够还原被测样品的整体形貌。光谱分光型白光干涉由上述方法发展而来的光谱分光型白光干涉技术,则是基于频域干涉的理论,利用光谱仪将传统方法对条纹的测量转变成为对不同波长光谱的测量。包含有被测表面信息的干涉信号,由含有色散元件和阵列探测器的光谱仪接收,通过分析该频域干涉信号来实现信息获取。相比于单色光干涉技术,光谱分光型白光干涉技术具有更大的测量范围,同时与白光扫描干涉术相比,它在测量时不需要大量的Z向扫描过程,极大提高了测量效率。利用光谱分光型白光干涉技术可以测量绝对距离、位移、微结构表面形貌、薄膜厚度等。在测量微结构三维形貌时,光谱分光型白光干涉技术,比于其他方法操作更简单,测量精度更高。在微纳测量领域,为了提高光学测量系统的水平分辨率,通常采用显微物镜放大的方法。在光谱分光型白光干涉测量系统中可以采用几种显微结构,如Michelson型、Mirau型和Linnik型,图2显示了这三种显微干涉结构的构成原理。图2:三种显微干涉结构的构成原理高精度仪器设备需求不断推动着微纳米技术向前发展,因此高精度的微纳检测技术也成为了必然需求。微纳结构测量的对象有表面形貌、电子特性、材料特性、力学特性等,其中表面形貌3D测量最为基础和重要,它包括轮廓测量(如长、宽、高等)和表面粗糙度等参数的测量。对于尺寸处于微纳米量级的微纳结构器件而言,其静电力、黏附力和结构应力等因素对其本身的影响,会随着其表面积和体积之比的增大而增加,使器件的功能和质量发生变化,从而影响器件的使用。因此,对微纳结构表面形貌的检测非常必要。光谱分光型白光干涉技术,用于测量微纳米结构三维形貌的研究及其进一步产业化,填补国内空白。光谱分光型白光干涉仪(见图3)具备高精度、高帧率、算法兼容性强、环境适应性强、稳定性强、操作简便、性价比高等优点,其在新型成像/检测系统中的应用及产业化,将打破国外垄断。图3:光谱分光型白光干涉仪整机系统原理图光源是超辐射发光二极管(SLD),从光源发出的光进入光纤耦合器,从耦合器输出的光经消色差准直器准直成平行光,使用分光棱镜将准直光分为参考光和样品光。参考光经透镜3聚焦于反射镜,样品光经XY扫描振镜和透镜4,聚焦于样品。经反射的参考光和样品光由光纤耦合器的另一端输出,进入光谱仪中。光谱仪由透镜1、光栅、透镜2以及相机组成。输出的光经透镜1准直为平行光,照射到光栅上;光栅衍射分光,经透镜2汇聚于线阵相机;线阵相机记录参考光和样品光的干涉光谱,传给电脑进行处理。该系统使用振镜代替昂贵的高精密位移台进行二维扫描,可用于位移、振动及厚度测量(点测量);线轮廓测量(线测量);表面轮廓成像(面成像)。中科行智最新研发的白光干涉仪,用于对各种精密器件表面进行纳米级测量,专业用于超高精度、高反光及透明材质的尺寸测量。该白光干涉仪采用非接触式测量方式,避免物件受损,可进行精密零部件重点部位的表面粗糙度、微小形貌轮廓及尺寸测量。目前,在3D测量领域,白光干涉仪是精度最高的测量仪器之一。中科行智重点开发的3D飞点分光干涉仪,重复精度达30nm,扫描速度70kHz,扫描范围广,最大直径可达40mm;适应性强,可适用于测量最强反射、弱反射及透明物体等;稳定性强,分光模块与光学振镜模块化设计,加入光学振镜扫描,可替代昂贵的高精密位移台。主要特点如下:大视野:采用高精度光学振镜扫描方案,实现水平方向大视野扫描,避免使用昂贵的高精度水平位移台;大景深:高分辨率光谱仪进行信号采集,经分光元件将白光分光,具备mm级测量深度特性,无需深度方向扫描装置;高精度:大测量深度高分辨率相敏谱域干涉调解算法,重复精度30nm;高速度:采用FPGA硬件加速设计,帧率70kHz;灵活性:信号采集端和接收端分离式设计,采集端安装更灵活;用户设置自定义扫描区域、扫描间隔,也可重点获取感兴趣区域;适用性:适用于透明、弱反光、高反光、狭缝等材料类型的表面形貌以及厚度检测(见图4、图5)。目前白光干涉仪相关技术处于国际领先,苏州中科行智智能科技有限公司已发布的3D飞点分光干涉仪为国内首家,可广泛应用于半导体晶片、微机电系统、精密加工表面、材料研究等领域,为国内半导体行业及高精密行业赋能,高质量解决环节价值,可趋于替代国外高精密传感器,赋能国内高精密、高价值智能制造!
  • 激光干涉测量:“聆听”宇宙的声音
    激光干涉测量助力空天探索 在空天探索领域,空间引力波探测是当前国际研究热点,作为人类观测宇宙的新窗口,引力波将为人类探索早期黑洞合并、超新星爆发等宇宙结构形成过程提供观测手段,对探索宇宙起源与演化具有重要的意义。为了探测中低频段的空间引力波,国内外研究人员计划在相距数十万乃至数百万千米的空间轨道上建立超高灵敏度星间激光干涉系统,该方法的本质是将现有的激光干涉超精密测量技术应用到外太空去,突破地面探测臂长的限制,摆脱地面各种干扰源对精密测量的影响。其关键技术是测量相距数百万公里的两个测试质量之间的间距变化,主要包括:测试质量与卫星平台之间的间距变化、两个卫星平台之间的间距变化,前者涉及到测试质量的多个自由度精密检测,探测灵敏度需要在1 mHz~1 Hz频段达到~1 pm/Hz1/2(平动)以及~1 nrad/Hz1/2(转动)水平。揭秘空间引力波探测的原理 空间引力波探测任务需要实现对测试质量皮米量级的平动测量以及纳弧度量级的转动测量,关键技术单元包括:激光外差干涉、差分波前传感以及高精度相位测量三部分,如图1所示,通过测量两测试质量之间的平动转动,获得其间距变化信息,从而探测引力波信号。图1面向空间引力波探测的激光外差干涉多自由度超精密测量技术示意图激光外差干涉 激光外差干涉测量原理如图2所示,频率相近的两束激光(测量光频率f1,参考光频率f2)合束后,合成波(频率为f1+f2)会存在一个包络,其频率为|f1-f2|,这一包络频率也被称为外差频率。 当测试质量在沿测量光传播方向上运动状态改变、或者引力波来临时,干涉仪的测量臂光程发生变化,表现为外差干涉信号的相位波动,即图2中紫色虚线部分。以经典迈克尔逊干涉结构为例,外差干涉信号相位的一个周期变化对应位移变化半波长(光程变化一个波长),有 其中,λ为激光输出波长,L为测试质量的等效位移,φ为外差干涉信号的相位变化。图2 激光外差干涉原理示意图差分波前传感 差分波前传感是一种基于激光波前相位比较的高精度角度测量方法,测量原理如图3所示。测量光与参考光合束后入射至四象限探测器表面,两束光满足干涉条件产生外差干涉信号,照射在探测器四个象限后会分别产生四路干涉信号。当测量目标平动时,四路外差干涉信号相位发生相应波动,与采用普通光电探测器的原理相一致;当测量目标转动时,测量光的波前相对参考光发生偏离,由于四象限探测器具有一定的空间间距,导致四路外差干涉信号的相位波动并不相同,通过对比不同象限的干涉信号相位差异,可以反演得到测量目标在水平方向和竖直方向上的转动角度,有 其中,θh为水平转动角,θv为垂直转动角 ФA/B/C/D为不同象限的外差干涉信号相位变化 kh/v为比例系数,由光束参数以及四象限探测器的几何参数共同决定,实验中常用偏摆镜配合自准直仪进行标定。图3 差分波前传感和四通道拍频信号波形示意图高精度相位测量 高精度相位测量可以通过锁相放大器或者相位计来实现,其基本原理如图4所示,外差干涉信号转化为电信号后与本地时钟(或外部参考)及其正交信号混频,低通滤波后分别得到Q信号(quadrature)和I信号(in-phase),计算I/Q反正切值并作相位解包裹运算得到相位差,Q信号作为相位误差信号反馈至本地可调时钟,更新本地时钟输出频率从而保持与输入外差干涉信号频率一致,形成锁相环路。图4 相位测量基本原理[1]国内外干涉仪研究进展LISA LISA (Laser Interferometer Space Antenna)是于1992年发起的一项探测1 mHz~1 Hz频段引力波信号的科学研究计划,这是最早开始、也是目前国际上发展最成熟的空间引力波探测计划,其中一项关键技术是实现测试质量的超高灵敏度多自由度测量。 2012年,德国汉诺威大学的Marina Dehne等人设计搭建了一套用于验证测试质量干涉仪噪声源及其消除技术的激光外差干涉测量系统,分析了多个噪声源(激光频率、激光强度、激光指向漂移、温度、偏振态、移频驱动边带、杂散光等)对相位读出的影响,并研究了多种噪声消减数据处理方法,在空间引力波探测目标频段成功实现了~1 pm/Hz1/2的超精密位移测量。 图5给出了LISA激光干涉平动转动测量技术发展时间线,该计划从提出开始,经历地面模拟论证、噪声源探索、技术卫星验证、光路布局优化测试等,距今已经开展了三十余年,其中用于测试质量多自由度测量的激光外差干涉技术灵敏度已经突破1 pm/Hz1/2和1 nrad/Hz1/2。目前光学干涉平台布局处于优化设计阶段,激光外差干涉超精密测量技术是否能够实现百万公里距离的两测试质量之间的皮米级平动测量并成功探测到宇宙深处的引力波,这仍然需要时间来给出答案。图5 激光干涉平动转动测量技术发展时间线(LISA)太极&天琴 2008年,我国科学家开始探讨中国的空间引力波探测计划,并于2012年正式成立了空间引力波探测工作组,2014年提出基于“日心”轨道和“地心”轨道两个独立的探测方案,即太极计划和天琴计划[2-3]。目前两者均形成了较为完备的星间激光干涉测量方案。 同LISA一样,太极和天琴于2019年分别发射了太极一号和天琴一号技术验证卫星,所搭载的光学干涉平台如图6所示,前者采用殷钢材料制作光学干涉平台基座、后者则采用光粘的方式来提高干涉装置的热稳定性,两者都包含有前端光程参考干涉仪和测试质量测量干涉仪。测试实验最新结果表明,空间激光干涉仪可以实现毫赫兹频段皮米量级的超精密位移测量,标志着我国在空间引力波探测中用于测试质量的激光外差干涉测量技术研究正逐渐走向国际前列。图6 我国空间引力波探测技术验证卫星激光干涉平台(a)太极一号[2](b)天琴一号[4] 其他 2021年,美国德州农工大学提出了一种一体式外差干涉仪,将分光镜波片等关键镜组胶粘成一个整体,提升干涉仪稳定性,并通过抽真空、被动控温、噪声建模消减等措施最终实现了33 pm/Hz1/2@0.1 Hz的平动测量。 2022年,清华大学谈宜东团队提出了一种用于测试质量五自由度测量的偏振复用双光束干涉仪,光路设计如图7所示,包含参考干涉仪(RHI)、双光束干涉仪(DBHI)和偏振复用干涉仪(PMHI),初步实验在10 mHz~1 Hz频段实现了优于10 pm/Hz1/2 以及20 nrad/Hz1/2的平动转动灵敏度测量。图7 偏振复用双光束激光外差干涉五自由度测量系统星辰宇宙,未来可期 “此曲只应天上有,人间难得几回闻”,如果说引力波是携带着浩瀚宇宙信息的乐曲,那么激光干涉超精密测试技术就是用来“听曲”的最灵敏的传声筒。在空间引力波探测领域,我国的激光外差干涉多自由度超精密测量技术相比于欧美LISA团队仍处于跟跑阶段,但未来有希望实现并跑甚至领跑。而且,空间引力波探测中涉及的外差干涉技术,可以对长度量进行高精度、大量程的超精密测量,可扩展应用于下一代高速、超精密二维或三维运动台的精确定位与运动控制,进而支撑我国超精密加工制造、IC 装备及尖端航空航天科技的发展,对于国民经济和工业建设有着重要的实际意义[5]。全文下载:空间引力波探测中的激光干涉多自由度测量技术.pdf参考文献:[1]Schwarze T S.Phase extraction for laser interferometry in space: phase readout schemes and optical testing[D]. Hannover: Institutionelles Repositorium der Leibniz Universität Hannover, 2018.[2] Luo Z R, Wang Y, Wu Y L, et al. The Taiji program: A concise overview[J]. Progress of Theoretical and Experimental Physics, 2021(5), 05A108.[3] Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical & Quantum Gravity, 2015, 33(3): 035010.[4]Luo J, Bai Y Z, Cai L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013.[5] 谈宜东, 徐欣, 张书练. 激光干涉精密测量与应用.中国激光,2021,48(15) : 1504001.作者简介 谈宜东,清华大学精密仪器系,长聘副教授,博士生导师,副系主任;基金委优秀青年科学基金获得者,英国皇家学会牛顿高级学者,教育部创新团队负责人。中国电子信息行业联合会光电产业委员会副会长、中国仪器仪表学会机械量测试仪器分会常务理事。 主要从事激光技术和精密测量应用等方面的研究工作。作为负责人承担国家自然科学基金,装发和科工局测试仪器领域关键技术攻关项目,科技部重点研发计划课题,军科委基础加强,重大科学仪器专项等项目40余项。在Nature Communications, PhotoniX, Optica, Bioelectronics and Biosensors, IEEE Transactions on Industrial Electronics等期刊发表 SCI 论文 100余篇,授权发明专利36项,在国际会议Keynote/Plenary/Invited报告40余次。先后获日内瓦国际发明展金奖,中国激光杂志社主编推荐奖,中国光学工程学会技术发明一等奖,中国电子学会技术发明一、二等奖多项。课题组介绍 清华大学精密仪器系激光技术与精密测量应用课题组,在激光器件及其物理效应、精密测量应用等方面开展了大量的工作,构成了从基础器件的设计和发明,到物理现象和效应的发现,进而在发现基础上的仪器发明,直至仪器的推广和应用这一较为完整的体系。先后研制了双折射-塞曼双频激光器及其双频激光干涉仪,实现了成果转化,成规模应用于国家02专项以及中芯国际、吉顺芯等公司进口光刻机干涉仪的替换;基于激光回馈原理的无靶镜纳米测量干涉仪,用于国家多个重点型号工程,包括:高分四号、一号以及激光聚变点火等。课题组还开展了远距离激光侦听、激光回馈调频连续波绝对测距、生化检测、pm量级灵敏度的激光干涉超精密测量技术(引力波专项)等研究。
  • 研究揭示层间拖拽输运中的量子干涉效应
    中国科学技术大学教授曾长淦、副研究员李林研究团队与北京大学教授冯济课题组合作,通过构筑氮化硼绝缘层间隔的多种石墨烯基电双层结构,首次揭示了在层间拖拽这一复杂的多粒子输运过程中存在显著的量子干涉效应。相关研究成果日前在线发表于《自然-通讯》。量子干涉效应是量子力学中波粒二象性的直接体现。在固体材料中,弱局域化、普适电导涨落和Aharonov-Bohm效应等独特量子输运现象,都源于载流子扩散路径之间的量子干涉。然而这些量子干涉行为均发生在单一导体内的载流子输运过程,可以在非相互作用的单粒子框架下很好地解释。与之相比,诸如层间拖拽效应这种路径更为复杂的多粒子耦合输运中是否会展现出类似的量子力学行为,是一个重要的基础科学问题。所谓拖拽效应,是指对于两个空间相近但彼此绝缘的导电层构成的电双层结构,在其中一层(主动层)施加驱动电流,层间载流子之间的动量/能量转移会诱导另一层(被动层)载流子移动,从而在被动层产生一个开路电压或闭路电流。此前,拖拽效应被广泛用于研究载流子长程耦合特性,发现如间接激子波色爱因斯坦凝聚等层间关联量子态。然而,对这一独特输运过程本身的外场响应特性及可能的量子效应研究还十分缺乏。石墨烯基二维电双层结构为在二维极限下深入相关研究提供了很好的平台,作为天然且理想的二维电子气,石墨烯本身载流子类型和浓度均高度可调,且利用氮化硼作为绝缘层,两层石墨烯之间的间距可以低至数纳米,从而使得在更广阔参数空间内表征层间拖拽特性成为可能。此次研究中,研究团队构筑了双层石墨烯/氮化硼/双层石墨烯(以下称双层/双层)、单层/单层以及单层/双层等多个石墨烯基电双层结构。通过系统的外磁场下拖拽响应特性测试,研究团队发现在很大的温度/载流子浓度范围内,低磁场区间内拖拽磁电阻均会明显偏离经典库伦拖拽行为,并且这种偏离的符号直接取决于石墨烯层的能带拓扑性。如对于双层/双层和单层/单层体系,拖拽电阻在电子-电子区间的修正均表现为低场的电阻峰,而对于双层/单层体系,则为电阻谷。通过对拖拽输运过程的系统性分析,研究团队发现观察到的低场修正可以很好地归因于由时间反演和镜面对称联系起来的两个层间拖拽过程之间的量子干涉,而其干涉路径则由空间分隔的两个石墨烯层层内载流子扩散路径共同组成。这种层间量子干涉的产生依赖于两层石墨烯中空间重叠的扩散路径的形成,其中中间绝缘层的杂质势散射起到至关重要的作用。研究人员认为,这一新型量子干涉效应的发现,将固体材料中的量子干涉行为,从单一导体内单一粒子输运行为,拓展到多个导体间多粒子耦合输运过程,进一步丰富了量子干涉的物理内涵。此外,相比于传统层内量子干涉导致的磁阻修正,层间量子干涉导致的拖拽磁电阻的修正显著增大,从而有望为发展新原理存储器件提供新的思路。
  • 中国科大首次实现多体非线性量子干涉
    中国科学技术大学郭光灿院士团队在多体非线性量子干涉研究中取得重要进展。该团队任希锋研究组与德国马克斯普朗克光科学研究所MarioKrenn教授合作,基于光量子集成芯片,国际首次展示了四光子非线性产生过程的干涉,相关成果于1月13日发表在光学权威学术期刊Optica上。量子干涉是众多量子应用的基础,特别是近年来基于路径不可区分性产生的非线性干涉过程越来越引起人们的关注。尽管双光子非线性干涉过程已经实现了二十多年,并且在许多新兴量子技术中得到了应用,直到2017年人们才在理论上将该现象扩展到多光子过程,但实验上由于需要极高的相位稳定性和路径重合性需求,一直未获得新的进展。光量子集成芯片,以其极高的相位稳定性和可重构性逐渐发展成为展示新型量子应用、开发新型量子器件的理想平台,也为多光子非线性干涉研究提供了实现的可能性。任希锋研究组长期致力于硅基光量子集成芯片开发及相关应用研究并取得系列重要进展:(1)国际上首次基于硅基光子集成芯片实现了四光子源的制备(Light Sci Appl 8, 41, 2019);(2)首次实现频率兼并四光子纠缠源制备(npj Quantum Inf 5, 90, 2019);(3)首次实现波导模式编码的量子逻辑门操作(Phys. Rev. Lett. 128, 060501,2022)和超紧凑量子逻辑门操作(Phys. Rev. Lett., 126, 130501,2021)等。在这些工作基础上,研究组同MarioKrenn教授合作,通过进一步将多光子量子光源模块、滤波模块和延时模块等结构进一步片上级联,在国际上首次展示了四光子非线性产生过程的相干相长、相消过程。实验结果如图1(a)所示,四光子干涉可见度为0.78。而双光子符合并未观测到随相位的明显变化,这同理论预期一致。整个实验在一个尺寸仅为3.8×0.8mm2的硅基集成光子芯片上完成,如图1(b)所示。(a)(b)   图1. (a)量子干涉测量结果;(b)用于实现四光子非线性量子干涉的集成光量子芯片。该成果成功地将两光子非线性干涉过程扩展到多光子过程,为新型量子态制备、远程量子计量以及新的非局域多光子干涉效应观测等众多新应用奠定了基础。审稿人一致认为这是一个重要的研究工作,并给出了高度评价:“The chip is well-designed and contains various integrated optical components such as entangled photon source, an interferometer, frequency filter/combiner (该芯片设计精良,包含多种集成光学元件,如纠缠光子源、干涉仪、频率滤波器/组合器)”、“This work pushes forward the research field of integrated photonic quantum information science and technology(这项工作推动了集成光子量子信息科学与技术研究领域的发展)”。中科院量子信息重点实验室任希锋教授、德国马克斯普朗克光科学研究所MarioKrenn教授为论文共同通讯作者,中科院量子信息重点实验室特任副研究员冯兰天为论文第一作者。此外,浙江大学戴道锌教授和张明助理研究员为该工作提供了技术支持。该工作得到了科技部、国家基金委、中国科学院、安徽省以及中国科学技术大学的资助。
  • 新型干涉光谱成像技术研究取得重要进展
    近日,西安光机所新型干涉光谱成像技术研究取得重大进展,以光谱室胡炳樑研究员为首的研究团队在国内率先将离轴三反光学系统应用于短波红外干涉光谱成像系统中,并成功研制了基于M-Z像面干涉光谱成像的离轴三反桌面样机系统。  面向宽覆盖、高分辨率、高光谱分辨率的要求,离轴三反加M-Z像面干涉光谱成像技术可以有效解决大视场光学系统和大尺寸干涉仪的技术瓶颈。M-Z干涉仪放置在系统会聚光路中,在减小系统体积和重量的同时,能量利用率可以达到成像仪的极限 离轴三反光学系统则能够同时实现长焦距与大视场,并且没有中心遮拦,传递函数高。但在基于M-Z像面干涉的光谱成像系统中,离轴全反射系统难以补偿会聚光路中M-Z干涉仪棱镜元件所引入的像差,为此,科研人员将校正补偿系统应用到离轴三反系统中,设计并成功研制了一种新型离轴三反成像光学系统,并针对离轴三反系统装调自由度多,结构非对称性以及离轴系统离轴量需要精确测量调整等问题,解决了离轴非球面微应力装夹、多自由度调整结构形式、离轴三反系统高精度装调等多项技术难点,为高分辨率、高光谱分辨率光谱成像技术奠定了坚实基础,并完成了必要的技术储备,使我所先进光谱成像技术达到了国内领先水平。  此次研究工作取得重大进展的过程,充分体现了我所科研人员勇于攻关、勤于奉献、努力进取的精神。由于是在国内首次开展基于干涉光谱成像的离轴三反光学系统的研究,研制难度大,时间进度紧。在所各级领导的关心支持下,项目负责人胡炳樑研究员积极牵头组织专家进行方案论证,为项目设计、加工和装调,在人员、技术、设备等多方面提供了强有力的支持 白清兰研究员、熊望娥副研究员勇于攻坚克难,通过多次与领域内专家研讨,并组织科研人员无数次的讨论、论证,最终确定了新型离轴三反光机系统的设计和初步装调方案,并亲自带领年轻科研人员赵强、赵稳庄、孙剑、李勇、李立波、邹纯波、张宏建、赵瑞萍等参与项目的设计调试工作,实现了预期的研制目标 刘学斌研究员带领王爽、皮海峰、张雯、王彩玲等年轻科研同志,加班加点顺利完成了低噪声短波红外电路的设计工作,为全系统调试的顺利进行做出了极大贡献 王忠厚研究员、白加光研究员等为项目的前期方案论证和整个过程的研制提供了大量的技术支持和帮助 系统调试过程中,在系统工程部李华主任、检测中心赵建科主任的支持下,段嘉友、张建、李智勇等与项目组密切配合,出色完成了离轴三反光学系统装调任务。  日前,短波红外干涉光谱成像系统的研究工作仍在深入进行中,科研人员将不断创新进取,力争取得更大成绩。
  • “全息干涉仪”让宇宙探测跨进量子级
    引力波模拟图  据近日美国《基督教科学箴言报》在线版文章称,德国引力波探测器GEO 600的一项奇怪发现,不但可能冲击现有宇宙理论,还引发美国费米国家实验室的科学家们开始建造一个“全息干涉仪”,将探测深入到“普朗克长度”,以便更进一步观察宇宙的时空结构及这一结构中的波动――引力波。  引力波被称为“爱因斯坦广义相对论中最后一个尚未被证明是对的组成部分”,新探测仪器的出现有可能使人们直接观测到时间的不连续性,亦将带领人们发掘宇宙起源最深处的奥秘。  激光干涉追寻时空波纹  引力波其实是爱因斯坦对于万有引力本质的理解。他认为引力场有一种跟电磁波一样的波动,是为引力波。而引力波表现为时空曲率的扰动,以行进波的形式向外传递,其传播速度等于光速。  按道理,引力波存在且无处不在,深空中的突变性事件,如超新星爆发、黑洞形成、大型天体相撞这些过程,都能辐射出较强引力波。但事实上,以往在地球上进行的引力波直接搜寻的所有努力都以失败告终。其原因在于,波动虽能造成地球上各处相对距离的变动,但当它们到达地球的时候已经变得非常弱了,对于地球上最先进的引力波探测器来说,其变动的数量级小于一颗质子直径的千分之一。因而尽管引力波毫不模糊且被公认,却一直只能是广义相对论的预言。  但科学家们可不满足于这一点。于是,基于激光干涉原理的引力波探测器被建造出来。这一类型的探测器通过测量两条激光束相遇时所形成的干涉图像的变化来探测引力波,干涉图像依赖于激光束的传播距离,当引力波穿过时激光束的传播距离会相应变化。  因为目标是非常微弱的信号,引力波探测器的敏感度需达到几乎难以想象的程度。以德国引力波探测器GEO 600来讲,其对距离上极微小的变化都非常敏锐,甚至可探测到日地距离所发生的原子半径级别的变化。不过,这种激光干涉计的探测器灵敏度要与激光传播的距离成比例的话,一般来讲其尺寸都非常可观。  “奇怪波动”挑战现有认知  德国的GEO 600并不是新产物了,其已默默工作有些时日。然而,在近期利用其搜寻引力波的过程中,物理学家偶然发现了令人迷惑的现象――这一高科技设备虽然还没有找到引力波存在的证据,但却发现了大量的噪音。  这就有必要简单描述一下这类探测器的工作过程。以GEO 600为例,其要实现功能,需要发射一束激光穿过600米的隧道,再将激光分裂成两束,经过反射的一束以及未经反射的一束均进入干涉仪。当引力波经过这部分空间的时候,两束激光之间的微小位移将会由干涉仪进行探测。即便这种距离的变化非常之微妙,但如果引力波探测器有结果,那就很可能是引力波通过时引起的。  而今GEO 600的“噪音”让研究人员无从解释,在剔除了所有人为因素的影响之后仍不得要领,他们于是向费米实验室的科学家克雷格・ 霍根寻求帮助,希望他利用量子力学上的专业知识帮助阐明这一不规则的噪音。  霍根反馈的意见让人震撼又迷惑。他说:“看上去GEO 600受到了时空微观量子级别的冲击。”换句话说,GEO 600探测到的并不是来自什么噪音源,而是时空本身发生的量子级别波动。  这一看法的深层意义在于:根据爱因斯坦对宇宙的认知,时空应该是连续平滑的,而照霍根的结论推测时空实际上是不连续的,是由一系列量子点组成。其直指爱因斯坦的理论需要修正。  全新探测器进入量子尺度  量子力学的测不准原理意味着一些基本量度如长度和时间具有测不准性。而测不准的程度由普朗克常数确定,该常数可以定出最小长度量子――“普朗克长度”,比其更短的长度是没有意义的。  现在,要证明“奇怪波动”的来源,研究人员就需要深入到“普朗克长度”――10-35米进行探测,而GEO 600实验中探测到的噪音尺度不到10-15米。因此需要提升引力波探测仪的分辨率,这导致了“全息干涉仪”的产生。  “全息干涉仪”是利用全息照相的方法来进行干涉计量,其与一般光学干涉检测方法很相似,但获得相干光的方式不同。光学干涉检测方法获得相干光的方式如前所述,一般是将同一束光的振幅分为两个部分,但全息干涉计量术则是将同一束光在不同时间的波前来进行干涉,可以看作是一种波前的时间分割法。这就使相干光束由同一光学系统所产生,可以消除系统误差。  霍根认为,GEO 600在其尺度上发现的噪音是由于宇宙“视界”(天文学中黑洞的边界,在此边界以内的光无法逃离)的全息投射造成的。霍根比喻说,这就像一张图片越放大就会越模糊甚至像素化,宇宙“视界”投射其实发生在普朗克尺度中,所以在我们所身处的时空尺度上,这一投射发生了模糊。  而要验证霍根的结论,目前最值得依赖的就是这台“全息干涉仪”。其现正由费米实验室全力打造,它必将比GEO 600探测到更小的尺度,从而进入到量子尺度。如果霍根的看法是正确的,探测器将能探测到时空结构中的量子噪声,给我们现有对宇宙的认知带来巨大的冲击。
  • 3分钟了解激光干涉仪——最精密的尺子
    本文作者:清华大学张书练教授1. 激光干涉仪的发展史做衣量身、体检量高都由尺子完成,这些日常的尺子的刻度是毫米。机械零件加工和检验都要用尺子,在机械制造企业,卡尺、千分尺随处可见,其精确度是0.1 μm,1 μm。1887年迈克尔逊(Michelson)和莫雷(Morley)研究以太[1]是否存在,使用了光。他们以光波长作尺子刻度测量了水平面和垂直面的光速之差,第一次否定了以太的存在。他们利用的是光的干涉现象,这就是光学干涉仪的诞生。注[1]:根据古代和中世纪科学,以太被称为第五元素,是填充地球球体上方宇宙区域的物质。以太的概念在一些理论中被用来解释一些自然现象,例如光和重力的传播。19世纪末,物理学家假设以太渗透到整个空间,以太是光在真空中传播的介质,但是在迈克尔逊-莫利实验中没有发现这种介质存在的证据,这个结果被解释为没有光以太存在。1961年研究人员发明了氦氖激光器,开始用氦氖激光器作为迈克尔逊干涉仪的光源,从而诞生了激光干涉仪。图1是迈克尔逊干涉仪简图。迈克尔逊干涉仪是普通物理的基本实验之一。但今天在科学研究和工业中应用的激光干涉仪出于迈克尔逊,但性能远远胜于迈克尔逊。图1 迈克尔逊干涉仪简图基本上,激光干涉仪都使用氦氖激光器的632.8 nm波长的光,橙红灿烂的光束射向远方,发散角可以小到0.1 mrad,光束截面的光斑均匀。氦氖激光器还可输出绿光、黄光、红外光,但只有632.8 nm波长的光适合作激光干涉仪的光源。其它类型的激光器,如半导体(LD)、固体激光器等的相干等性能都远不及氦氖激光器,研究人员多有尝试,但都没有成功。激光干涉仪有很多应用,但本质都是测量中学课本讲的“位移”,诸多应用都是“位移”的延伸和转化。激光干涉仪有两个主流类型:单频激光干涉仪和双频激光干涉仪。单频干涉仪能做的双频激光干涉仪都能做,但双频干涉仪能做的单频干涉仪不见得能做。由于历史、技术和商业原因,两种干涉仪都有着广泛应用。但在光刻机上,双频激光干涉仪独占市场。单频干涉仪不需要对市场上的氦氖激光器进行改造,直接可用。但双频激光干涉仪用的激光器需要附加技术使其产生双频(两个频率)。历史上,双频激光干涉仪测量位移的速度不及单频激光干涉仪,自发明了双折射-塞曼双频激光器,双频激光干涉仪的测量速度也达到每秒几米,与单频激光器看齐了。按产生双频的方法,双频激光干涉仪分为塞曼双频激光(国外)干涉仪和双折射-塞曼双频激光(国内)干涉仪。现在干涉仪的指标:最小可感知1 nm(十亿分之1 m),可以测量百米长的零件,且测量70 m长的导轨误差仅为几微米。2. 测量位移的干涉仪和测量表面的干涉仪?有几个概念的定义比较混乱(特别是有些研究发展趋势的报告),需要注意。一是“激光测距”和“激光测位移”没有界定,资料往往鹿马不分。二是不少资料所说“激光干涉仪”实际上包含两种不同的仪器,一种是测量面型(元件表面)的激光干涉仪,一种是测量位移(长度)的激光干涉仪。如海关的统计和一些年度报告往往混在一起。激光测距机发出的激光束是一个持续时间纳秒的光脉冲,利用光脉冲达到目标和返回的时间之半乘以光速得到距离,完全和光的干涉无关。尽管激光波面干涉仪和测量位移(长度)的干涉仪都是利用光干涉现象,但仪器的设计、光路结构、探测方式、应用场合几乎没有共同之处。激光波面干涉仪能够测量光学元件表面的形貌,光束直径要覆盖被测零件,在整个零件表面形成系列干涉条纹,根据测量条纹的亮度(也即相位)算出表面的形貌,其光束口径、零件直径可达百毫米;另一种则是测量位移(长度)干涉仪,光干涉发生在直径几毫米光路上,表现为只有光电探测器(眼睛)正对着射来的光线才能“看”到光强度的波动,由波动的整次数和(不足半波长的)小数算出被测件的位移。 3. 双频激光干涉仪的原理和构成当图1的可动反射镜有位移时,光电探测器光敏面会感受到的光强度正弦变化,动镜移动半个波长,光强变化一个周期。光电探测器将光强变化转化为电信号。如探测到电信号变化了一个周期,我们就知道动镜移动了半个波长。计出总周期数测得动镜的位移。 (1)式中:λ为激光波长,N 为电脉冲总数。今天的激光干涉仪使用632.8 nm波长的激光束,半波长即316.4 nm。动镜安装在被测目标上与目标一起位移,如光刻机的机台,机床的动板上。为了提高分辨力,半波长的正弦信号被细分,变成1 nm甚至0.1 nm的电脉冲,可逆计数器计算出总脉冲数,再由计算机计算出位移量S。也常用下式表示动镜的位移, (2)其中∆f为目标运动速度为V时的多普勒频移。式(1)和(2)是等价的,可以互相推导推出来,仅是表方式的不同。图2是今天的双频激光干涉仪框图。它由7个部分构成。图2 双频激光干涉仪原理框图(1) 双频氦氖激光器氦氖激光器上有磁体。磁体为筒形,激光器上加的是纵向磁场,称为纵向塞曼双频激光器。四分之一波长(λ/4)片把激光器输出的左旋和右旋光变成偏振态互相垂直的线偏振光。前文所说的双折射-塞曼双频激光器则是在激光器内置入双折射元件(图内未画出),并加图2所示的磁条。双折射元件使激光器形成双频,横向磁场消除两个频率之间的耦合。双折射-塞曼双频激光干涉仪不需使用四分之一波长片。双频激光器是双频激光干涉仪的核心,很大程度上,它的性能决定激光干涉仪的性能,要求波长(频率)精度高,功率大,寿命长,双频间隔(频差)大且稳定,偏振状态稳定,两频率之间不偏振耦合。这一问题的解决是作者较突出的贡献之一。(2) 频率稳定单元它的作用是保证波长(频率)这把尺子的精确性,达到10-8甚至10-9,即4.74×1014的激光频率长期的变化仅1 MHz左右。(3) 扩束准直器实际上是一个倒装的望远镜,防止光束发散。要求激光出射80 m,光束光斑直径仍然在10 mm之内。(4) 测量干涉光路测量干涉光路包括:从分光镜向右直到可动反射镜(实际是个角锥棱镜),向下到光电探测器2。可动反射镜装在被测目标上(如光刻机工作台上的反射镜),目标的移动产生激光束的频移Δf,Δf和目标速度成正比,积分就是目标走过的距离(位移或长度)。积分由信号处理单元完成。(5) 参考光路参考光路由分光镜-偏振片-光电探测器1实现,参考光路中没有任何元件移动,它测得的位移是“假位移”真噪声。噪声来自环境的扰动。信号处理单元从干涉光路的位移中扣除这一噪声。(6) 温度和空气折射率补偿单元干涉仪测量的目标位移可能长达百米,空气折射率(及改变)和长度的乘积成为激光干涉仪的最主要误差来源之一。用传感器测出温度、气压、湿度,信号处理单元计算出空气折射率引入的假位移,并从结果中扣除。(7)信号处理单元光电探测器1和2,分别把信号f1-(f2±∆f)和f1-f2的光束转化为电信号,±∆f是可动反射镜位移时因多普勒效应产生的附加频率,正负号表示位移的方向。电信号经放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算即可得出可动反射镜的位移量。环境温度,气压,湿度引入的折射率变化(假位移)送入计算机计算,扣除他们的影响。最后显示。相当多的应用要求计算机和应用系统通讯,实现对加工过程的闭环控制。4. 激光干涉仪的应用一般说来,激光干涉仪的主要用途是测量目标的运动状态,即目标的线性位移大小、旋转角度(滚转、俯仰和偏摆)、直线度、垂直度、两个目标在运动的平行性(度)、平面度等。无论光刻机的机台,还是数控机床的导轨(包括激光加工机床),不论是飞行物,还是静止物的热膨胀、变形,一旦需要高精度,都要用激光干涉仪测量,得到目标的运动状态。运动状态用由多个参数给出。以光刻机两维运动中的一个方向运动时为例,位移(走过的长度)、机台位移过程中的偏 转( 角 )、俯仰 ( 角 )和滚转(角)都需要测出。很多类型的设备需要测量,如各类机床、三坐标测量机、机器人、3D打印设备、自动化设备、线性位移平台、精密机械设备、精密检测仪器等领域的线性测量。图3(a)(b)(c)(d)(e)是几个应用的例子。美国LIGO激光干涉仪实验室宣称首次直接测量到了引力波(2016),使用的仪器是激光干涉仪,单程臂长4 km。见图4。图3 激光干涉仪几个应用的例子来源:(a)(b)(c)由北京镭测科技有限公司提供,(d)(e)来自深圳市中图仪器股份有限公司网页图4 LIGO激光干涉仪来源:https://www.ligo.caltech.edu/image/ligo20150731c 5. 双频激光干涉仪发展存在的问题(1)国内外单频和双频激光干涉仪的进展及问题多年来,国内外在单频和双频激光干涉仪方面进步不大,特例是双折射-塞曼双频激光器的发明。由于从国外购买的激光器不能产生大间隔的双频光,原有国内双频激光干涉仪的供应商基本停产。以前作为基础研究的双折射-塞曼双频激光器被推到前台。双频激光器是干涉仪的核心技术,走在了世界前端,也解决了国内无源的重大难题。北京镭测科技有限公司的开发、纠错,终于使双折射-塞曼双频激光干涉仪实现产品化,进入先进制造全行业,特别是光刻机。北京镭测科技有限公司双折射-塞曼双频激光器达到指标:频率间隔可在1 ~ 30 MHz之间选择,功率可达1 mW。 频率差与激光功率之间没有相互影响,没有塞曼效应的双频激光器高功率和大频率差不能兼得的缺点。尽管取得进展,但氦氖激光器的制造工艺等是个系统性技术问题,需要全面改善。特别是,国外双频激光干涉仪的几家企业的激光器都是自产自用,不对外销售,因此,我们必须自己解决问题。(2)业界往往忽略干涉仪的非线性误差很长时期以来,业界认为单频干涉仪没有非线性误差。德国联邦物理技术研究院(PTB) 经严格测试发现,单频干涉仪也存在几纳米的非线性误差,甚至大于10 nm。塞曼效应的双频干涉仪也有非线性误差,也是无法消除。对此干涉仪测量误差,大多使用者是不知情的。到目前,中国计量科学院的测试得出,北京镭测科技生产的双频激光干涉仪的非线性误差在1 nm以下。建议把中国计量科学院的仪器批准为国家标准,并和德国、美国计量院作比对。非线性误差发生在半个波长的位移内,即使量程很小也照样存在。图5 中国计量科学研究院:镭测LH3000双频激光干涉仪在进行测长比对6. 双频激光干涉仪的未来挑战本文作者从事研究双折射-塞曼双频激光器起步到成批生产双折射-塞曼双频激光干涉仪,历经近40年,建议加强以下研究。(1)高测速制造业的发展很快,精密数控机床运动速度已达几m/s,有特殊应用提出达到10 m/s的要求。目前单频激光的测量速度还没有超过5 m/s。双折射-塞曼双频激光干涉仪的测速也处于这一水平,但其频率差的实验已经达到几十MHz,有待信号处理技术的跟进发展,实现10 m/s以上的测量速度。(2)皮米干涉仪市场上的干涉仪基本都标称分辨力1 nm,也有0.1 nm的广告。需要发展皮米分辨力的激光干涉仪以满足对原子、病毒尺度上的观测要求。(3)溯源前文已经提到,小于半波长的位移是把正弦波动信号电子细分得到标称的1 nm,和真实的1 nm相差多少?没有人知道,所以需要建立纳米、皮米的标准。作者曾做过初步努力,达到10 nm的纯光学信号,还需做长期艰苦的研究。(4)提高氦氖激光器寿命在未来很长一段时间,氦氖激光器仍然是激光干涉仪最好的光源,但其漏气的特点导致其使用寿命有限,替换寿命终结的氦氖激光器导致光刻机停机,会带来巨大经济损失。因此,延长氦氖激光器寿命十分有必要。没有测量就没有科学技术,没有精密测量就没有当今的先进制造,为此作者最近出版了题名《不创新我何用,不应用我何为:你所没有见过的激光精密测量仪器》的书籍,书的主标题似是铭志抒怀,而实际内容是一本地道的学术专著,书籍内容为作者的课题组近40年做出的创新成果总结。作者简介张书练,清华大学教授,博导。曾任清华大学精密测试技术及仪器国家重点实验室主任,清华大学光学工程研究所所长,主要研究方向为激光技术与精密测量,致力于激光器特性的研究和把这些特性应用于精密测量,是国内外正交偏振激光精密测量领域的的主要创始人。
  • 能量天平激光干涉测量系统闲区长度测量方法研究
    自2019年5月20日起,新的国际单位制正式实施,其中质量的单位千克启用了基于普朗克常数的新定义。能量天平是我国自主的千克新定义复现方案,该方案由中国计量科学研究院张钟华院士提出。能量天平利用电磁力做功与电磁场能量变化之间的转换与平衡,建立普朗克常数与被测砝码质量之间的桥梁。图1 能量天平结构示意图与测量原理电磁力做功量的测量涉及电磁力大小的测量和线圈相对位移测量两方面。因此,悬挂线圈与激励磁体的相对位移测量系统至关重要。它不仅实现了能量天平对于“米”的量子化基准的溯源,而且在保证能量天平积分区间的一致性上也发挥了关键作用。能量天平采用外差激光干涉测量系统对悬挂线圈与激励磁体的相对位移进行测量(图2),但该干涉测量系统存在较大的光学闲区(图3),进而影响了能量天平在空气环境中运行时位移测量的准确性。图2 能量天平激光干涉测量系统图3 能量天平光学闲区示意图近日,发表于《计量科学与技术-中国计量科学研究院专刊(2022)》的文章“能量天平激光干涉测量系统闲区长度测量方法研究”,对能量天平干涉测量系统中闲区长度测量方法进行了分析与讨论。主要成果(1)提出了基于真空/空气环境光程差测量的光学闲区长度测量方法。该方法利用能量天平的真空系统改变光学闲区的空气折射率;利用激光干涉系统测量折射率改变过程中的光程变化,进而测得光学闲区的长度,将原毫米量级的闲区长度测量不确定度抑制至4 μm,大大提高了光学闲区长度的测量能力。(2)利用光学闲区长度表征的绝对距离,实现了对能量天平激励磁体与悬挂线圈间相对零位的测量,以保证悬挂线圈系统位于磁体的均匀区范围。该相对零位的标准测量不确定度达到了54.2 μm。此项研究得到了国家自然科学基金青年基金项目(51805507)的支持。能量天平科研团队简介重新定义千克曾被《Nature》列为世界性的科研难题。张钟华院士向这一科研难题发起了挑战,提出了基于全静态测量的能量天平方案,该方案被《Metrologia》列为国际三种千克量子化定义与复现方法之一。目前,能量天平由李正坤研究员带领的年轻团队接力攻关。该团队连续攻克了高匀场激励磁体设计、准静态磁链差测量、外磁屏蔽方法优化、真空超精密几何量测量、能量天平准直误差理论与技术、超高直线度重载驱动方法与装置等一系列科研难题,建立了第二代能量天平装置NIM-2,其实物图如图5所示。该装置于2019~2020年间,代表中国参加了千克新定义后的首次千克复现方法国际关键比对(CCM.M-K8.2019)。经国际计量局对各国的数据综合评定,能量天平的测量结果与比对参考值(KCRV)的相对偏差为1.17E-8,相对标准不确定度为4.49E-8,比对结果如图6所示。该测量数据已成功用于首个国际质量共识值(the Consensus Value)的评定,进而用于SI新定义后全球质量量值传递。能量天平的研究工作,为建立我国自主的质量量子化基准装置提供了重要的技术支撑。图5 能量天平装置实物图图6 首次千克复现方法国际关键比对(CCM.M-K8.2019)比对结果
  • 完美实现!双光子干涉或可带来量子计算新方法
    量子光学是以辐射的量子理论研究光的产生、传输以及光与物质相互作用的学科。双光子干扰是一种基本的量子光学效应,在量子信息科学中有着大量的应用。来自美国坦佩雷大学的Robert Fickler和Markus Hiekkamki,证明了利用光子的空间形状可以近乎完美地控制双光子干涉。研究结果发表在《物理评论快报》期刊上。单光子可以有高度复杂的形状,已知有利于量子技术,如量子密码、超灵敏测量,或量子增强计算任务。为了利用这些所谓的结构光子,关键是要让它们干扰其他光子。“基本上所有量子技术应用中,一个关键任务是提高以更复杂和可靠的方式操纵量子态的能力。在光子量子技术中,这项任务包括改变单个光子的性质,以及多个光子彼此干涉。”Fickler说。两位研究人员针对沿单一光束路径的多个横向空间模式的双光子干涉进行了研究。除了使用二维空间模式分流器实现Hong-Ou-Mandel干扰的模拟之外,他们还将该方案扩展到观察不同的三维和四维空间模式多端口的凝聚和反凝聚。在空间模式内的操作,沿着单一的光束路径,解除了对干涉测量稳定性的要求,为复杂的量子信息任务开辟了实现线性光学网络的新途径。研究人员下一步的目标是利用这种方法开发新的量子增强传感技术,同时探索更复杂的光子空间结构,开发利用量子态计算系统的新方法。参考资料:http://news.sciencenet.cn/htmlnews/2021/5/457119.shtm
  • 1310万!中山大学电子束离子束双束电子显微镜和多普勒干涉原子力显微镜采购项目
    项目编号:中大招(货)[2022]680号、中大招(货)[2022]689号项目名称:中山大学物理学院电子束离子束双束电子显微镜采购项目、中山大学物理学院多普勒干涉原子力显微镜采购项目预算金额:1310.0000000 万元(人民币)采购需求:1、招标采购项目内容及数量:电子束离子束双束电子显微镜,1台(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业为工业。具体内容及要求详见公告附件招标文件)。项目预算及经费来源:项目预算 7600000.00 元人民币。经费来源为财政性资金。2、招标采购项目内容及数量:多普勒干涉原子力显微镜,1套(本项目允许产自中华人民共和国关境外的进口货物投标;本项目不属于专门面向中小企业采购项目。本项目所属行业为工业。具体内容及要求详见公告附件招标文件)。项目预算及经费来源:项目预算 5500000.00 元人民币。经费来源为财政性资金。合同履行期限:收到发货通知后240日内完成交货及安装。本项目( 不接受 )联合体投标。中大招(货)[2022]680号_中山大学物理学院电子束离子束双束电子显微镜采购项目(正稿).pdf中大招(货)[2022]689号_中山大学物理学院多普勒干涉原子力显微镜采购项目(正稿).pdf
  • 亚纳米皮米激光干涉位移测量技术与仪器
    1 引 言激光干涉位移测量技术具有大量程、高分辨力、非接触式及可溯源性等优势,广泛应用于精密计量、微电子集成装备和大科学装置等领域,成为超精密位移测量领域中的重要技术之一。近年来,随着这些领域的迅猛发展,对激光干涉测量技术提出了新的测量需求。如在基于长度等量子化参量的质量基准溯源方案中,要想实现1×10−8 量级的溯源要求,需要激光干涉仪长度测量精度达0. 1 nm 量级;在集成电路制造方面,激光干涉仪承担光刻机中掩模台、工件台空间位置的高速、超精密测量任务,按照“ 摩尔定律”发展规律,近些年要想实现1 nm 节点光刻技术,需要超精密测量动态精度达0. 1 nm,达到原子尺度。为此,国际上以顶级的计量机构为代表的单位均部署了诸如NNI、Nanotrace 等工程,开展了“纳米”尺度测量仪器的研制工程,并制定了测量确定度在10 pm 以下的激光干涉测量技术的研发战略。着眼于国际形势,我国同样根据先进光刻机等高端备、先进计量的测量需求,制定了诸多纳米计量技术的研发要。可见,超精密位移测量技术的发展对推进我国众多大高端装备具有重要战略意义,是目前纳米度下测量领域逐步发展的重大研究方向。2 激光干涉测量原理根据光波的传播和叠加原理,满足相干条件的光波能够在空间中出现干涉现象。在激光干涉测量中,由于测量目标运动,将产生多普勒- 菲佐(Doppler-Fizeau效应,干涉条纹将随时间呈周期性变化,称为拍频现象。移/相移信息与测量目标的运动速度/位移关系满足fd = 2nv/ λ , (1)φd = 2nL/ λ , (2)式中:fd为多普勒频移;φd为多普勒相移;n 为空气折射率;v 和L 为运动速度和位移;λ 为激光波长。通过对干涉信号的频率/相位进行解算即可间接获得测量目标运动过程中速度/位信息。典型的干涉测量系统可按照激光光源类型分为单频(零差式)激光干涉仪和双频(外差式)激光干涉仪两大类。零差式激光干涉测量基本原理如图1 所示,其结构与Michelson 干涉仪相仿,参考光与测量光合光干涉后,经过QPD 输出一对相互正交的信号,为Icos = A cos (2πfd t + φ0 + φd ) , (3)Isin = A sin (2πfd t + φ0 + φd ) , (4)式中:(Icos, Isin)为QPD 输出的正交信号;A 为信号幅值;φ0 为初始相位。结合后续的信号处理单元即可构成完整、可辨向的测量系统。图1 零差激光干涉测量原理外差式激光干涉仪的光源是偏振态相互垂直且具有一定频差Δf 的双频激光,其典型的干涉仪结构如图2 所示。双频激光经过NPBS 后,反射光通过偏振片发生干涉,形成参考信号Ir;透射光经过PBS,光束中两个垂直偏振态相互分开,f2 光经过固定的参考镜反射,f1 光经运动的测量镜反射并附加多普勒频移fd,与反射光合光干涉后形成测量信号Im。Ir = Ar cos (2πΔft + φr ) , (5)Im = Am cos (2πΔft + φm ), (6)式中:Δf、A 和φ 分别为双频激光频差、信号幅值和初始相位差。结合式(5)和式(6),可解算出测量目标的相位信息。图2 外差激光干涉测量原理零差式激光干涉仪常用于分辨力高、速度相对低并且轴数少的应用中。外差式激光干涉仪具有更强的抗电子噪声能力,易于实现对多个目标运动位移的多轴同步测量,适用于兼容高分辨力、高速及多轴同步测量场合,是目前主流的干涉结构之一。3 激光干涉测量关键技术在超精密激光干涉仪中,波长是测量基准,尤其在米量级的大测程中,要实现亚纳米测量,波长准确度对测量精度起到决定性作用。其中,稳频技术直接影响了激光波长的准确度,决定激光干涉仪的精度上限;环境因素的变化将影响激光的真实波长,间接降低了实际的测量精度。干涉镜组结构决定光束传播过程中的偏振态、方向性等参数,影响干涉信号质量。此外,干涉信号相位细分技术决定激光干涉仪的测量分辨力,并限制了激光干涉仪的最大测量速度。3. 1 高精度稳频技术在自由运转的状态下,激光器的频率准确度通常只有±1. 5×10−6,无法满足超精密测量中10−8~10−7的频率准确度要求。利用传统的热稳频技术(单纵模激光器的兰姆凹陷稳频方法等),可以提高频率准确度,但系统中稳频控制点常偏离光功率平衡点,输出光频率准确度仅能达2×10−7量级,无法完全满足超精密测量的精度需求。目前,超精密干涉测量中采用的高精度稳频技术主要有热稳频、饱和吸收及偏频锁定3 种。由于激光管谐振腔的热膨胀特性,腔长随温度变化呈近似线性变化。因此,热稳频方法通过对谐振腔进行温度控制实现对激光频率的闭环调节。具体过程为:选定稳定的参考频标(双纵模激光器的光功率平衡点、纵向塞曼激光器频差曲线的峰/谷值点),当激光频率偏离参考频标时,产生的频差信号用于驱动加热膜等执行机构进行激光管谐振腔腔长调节。热稳频方法能够使激光器的输出频率的准确度在10−9~10−8 量级,但原子跃迁的中心频率随时间推移受腔内气体气压、放电条件及激光管老化的影响会发生温度漂移。利用稳频控制点修正方法,通过对左右旋圆偏振光进行精确偏振分光和对称功率检测来抑制稳频控制点偏移的随机扰动,同时补偿其相对稳定偏置分量。该方法显著改善了激光频率的长期漂移现象,阿伦方差频率稳定度为1. 9×10−10,漂移量可减小至(1~2)×10−8。稳频点修正后的激光波长仍存在较大的短期抖动,主要源于激光器对环境温度的敏感性,温差对频率稳定性的影响大。自然散热型激光器和强耦合水冷散热型激光器均存在散热效果不均匀和散热程度不稳定的问题。多层弱耦合水冷散热结构为激光管提供一个相对稳定的稳频环境,既能抑制外界环境温度变化对激光管产生的扰动,冷却水自身的弱耦合特性又不影响激光管性能,进而减小了温度梯度和热应力,提高了激光器对环境温度的抗干扰能力,减少了输出激光频率的短期噪声,波长的相对频率稳定度约为1×10−9 h−1。碘分子饱和吸收稳频法将激光器的振荡频率锁定在外界的参考频率上,碘分子饱和吸收室内处于低压状态下(1~10 Pa)的碘分子气体在特定频率点附近存在频率稳定的吸收峰,将其作为稳频基准后准确度可达2. 5×10−11。但由于谐振腔损耗过大,稳频激光输出功率难以超过100 μW 且存在MHz 量级的调制频率,与运动目标测量过程中产生的多普勒频移相近。因此,饱和吸收法难以适用于多轴、动态的测量场合。偏频锁定技术是另一种高精度的热稳频方法,其原理如图3 所示,通过实时测量待稳频激光器出射光与高精度碘稳频激光频差,获得反馈控制量,从而对待稳频激光器谐振腔进行不同程度加热,实现高精度稳频。在水冷系统提供的稳频环境下,偏频锁定激光器的出射光相对频率准确度优于2. 3×10−11。图3 偏频锁定热稳频原理3. 2 高精度干涉镜组周期非线性误差是激光干涉仪中特有的内在原理性误差,随位移变化呈周期性变化,每经过半波长,将会出现一次最大值。误差大小取决光束质量,而干涉镜组是决定光束质量的主导因素。传统的周期非线性误差可以归结为零差干涉仪的三差问题和外差干涉仪的双频混叠问题,产生的非线性误差机理如图4 所示,其中Ix、Iy分别表示正交信号的归一化强度。其中,GR为虚反射,MMS 为主信号,PISn 为第n 个寄生干涉信号,DFSn 为第n 阶虚反射信号。二者表现形式不完全相同,但都会对测量结果产生数纳米至数十纳米的测量误差。可见,在面向亚纳米、皮米级的干涉测量技术中,周期非线性误差难以避免。图4 零差与外差干涉仪中的周期非线性误差机理。(a)传统三差问题与多阶虚反射李萨如图;(b)多阶虚反射与双频混叠频谱分布Heydemann 椭圆拟合法是抑制零差干涉仪中非线性误差的有效方法。该方法基于最小二乘拟合,获得关于干涉直流偏置、交流幅值以及相位偏移的线性方程组,从而对信号进行修正。在此基础上,Köning等提出一种基于测量信号和拟合信号最小几何距离的椭圆拟合方法,该方法能提供未知模型参数的局部最佳线性无偏估计量,通过Monte Carlo 随机模拟后,其非线性幅值的理论值约为22 pm。在外差干涉仪中,双频混叠本质上是源于共光路结构中双频激光光源和偏振器件分光的不理想性,称为第1 类周期非线性。对于此类周期非线性误差,补偿方法主要可以从光路系统和信号处理算法两个方面入手。前者通过优化光路可以将非线性误差补偿至数纳米水平;后者通过椭圆拟合法提取椭圆特征参数,可以将外差干涉仪中周期非线性误差补偿至亚纳米量级;两种均属补偿法,方法较为复杂,误差难以抑制到0. 1 nm 以下。另一种基于空间分离式外差干涉结构的光学非线性误差抑制技术采用独立的参考光路和测量光路,非共光路使两路光在干涉前保持独立传播,从根本上避免了外差干涉仪中频率混叠的问题,系统残余的非线性误差约为数十皮米。空间分离式干涉结构能够消除频率混叠引起的第1 类周期非线性误差,但在测量结果中仍残余亚纳米量级的非线性误差,这种有别于频率混叠的残余误差即为多阶多普勒虚反射现象,也称为第2 类周期非线性误差。虚反射现象源自光学镜面的不理想分光、反射等因素,如图5所示,其中MB 为主光束,GR 为反射光束,虚反射现象普遍存在于绝大多数干涉仪结构中。虚反射效应将会使零差干涉仪中李萨如图的椭圆产生畸变,而在外差干涉仪中则出现明显高于双频混叠的高阶误差分量。图5 多阶虚反射现象使用降低反射率的方法,如镀增透膜、设计多层增透膜等,能够弱化虚反射现象,将周期非线性降低至亚纳米水平;德国联邦物理技术研究院Weichert等通过调节虚反射光束与测量光束间的失配角,利用透镜加入空间滤波的方法将周期非线性误差降低至±10 pm。上述方法在抑制单次的虚反射现象时有着良好的效果,但在面对多阶虚反射效应时作用有限。哈尔滨工业大学王越提出一种适用于多阶虚反射的周期非线性误差抑制方法,该方法利用遗传算法优化关键虚反射面空间姿态,精准规划虚反射光束轨迹,可以将周期非线性误差抑制到数皮米量级,突破了该领域10 pm 的周期非线性误差极限。3. 3 高速高分辨力相位细分技术在激光干涉仪中,相位细分技术直接决定系统的测量精度。实现亚纳米、皮米测量的关键离不开高精度的相位细分技术。相位的解算可以从时域和频域两个角度进行。最为常用的时域解算方法是基于脉冲边缘触发的相位测量方法,该方法利用高频脉冲信号对测量信号与参考信号进行周期计数,进而获取两路信号的相位差。该方法的测量速度与测量分辨力模型可表达为vm/dLm= Bm , (7)式中:vm 为测量速度;dLm 为测量分辨力;Bm 为系统带宽。在系统带宽恒定的情况下,高测速与高分辨力之间存在相互制约关系。只有提高系统带宽才能实现测量速度和测量分辨力的同时提升,也因此极度依赖硬件运行能力。在测量速度方面,外差激光干涉仪的测量速度主要受限于双频激光频差Δf,测量目标运动产生的多普勒频移需满足fd≤Δf。目前,美国的Zygo 公司和哈尔滨工业大学利用双声光移频方案所研制的结构的频差可达20 MHz,理论的测量速度优于5 m/s。该方法通过增加双频激光频差来间接提升测量速度,频差连续可调,适用于不同测量速度的应用场合,最大频差通常可达几十MHz,满足目前多数测量速度需求。从干涉结构出发,刁晓飞提出一种双向多普勒频移干涉测量方法,采用全对称的光路结构,如图6所示,获得两路多普勒频移方向相反的干涉信号,并根据目标运动方向选择性地采用不同干涉信号,保证始终采用正向多普勒频移进行相位/位移解算。该方法从原理上克服了双频激光频差对测量速度的限制,其最大测量速度主要受限于光电探测器带宽与模/数转换器的采样频率。图6 全对称光路结构在提升测量分辨力方面,Yan 等提出一种基于电光调制的相位调制方法,对频率为500 Hz 的信号进行周期计数,该方法实现的相位测量标准差约为0. 005°,具有10 pm 内的超高位移测量分辨力,适用于低速测量场合。对于高速信号,基于脉冲边缘触发的相位测量方法受限于硬件带宽,高频脉冲频率极限在500 MHz 左右,其测量分辨力极限约为1~10 nm,难以突破亚纳米水平。利用高速芯片,可以将处理带宽提升至10 GHz,从而实现亚纳米的测量分辨力,但成本较大。闫磊提出一种数字延时细分超精细相位测量技术,在硬件性能相同、采样频率不变的情况下,该方法利用8 阶数字延迟线,实现了相位的1024 电子细分,具有0. 31 nm 的位移测量分辨力,实现了亚纳米测量水平。该方法的等效脉冲频率约为5 GHz,接近硬件处理极限,但其测量速度与测量分辨力之间依旧存在式(7)的制约关系。德国联邦物理技术研究院的Köchert 等提出了一种双正交锁相放大相位测量方法,如图7所示,FPGA 内部生成的理想正交信号分别与外部测量信号、参考信号混频,获取相位差。利用该方法,可以实现10 pm 以内的静态测量偏差。双正交锁相放大法能够处理正弦模拟信号,充分利用了信号的频率与幅值信息,其测量速度与测量分辨力计算公式为vm/0. 1λ0= Bm , (8)dLm/0. 5λ0=Bs/dLc, (9)式中:Bs为采样带宽;dLc为解算分辨力。图7 双正交锁相方法测量原理可见,测量速度与测量分辨力相互独立,从原理上解决了高测速与高分辨力相互制约的矛盾,为激光干涉仪提供了一种兼顾高速和高分辨力的相位处理方法。在此基础上,为了适应现代工业中系统化和集成化的测量需求,美国Keysight 公司、Zygo 公司及哈尔滨工业大学相继研发出了光电探测与信号处理一体化板卡,能够实现高于5 m/s 的测量速度以及0. 31 nm 甚至0. 077 nm 的测量分辨力。此外,从变换域方面同样可以实现高精度的相位解算。张紫杨等提出了一种基于小波变换的相位细分方法,通过小波变换提取信号的瞬时频率,计算频率变化的细分时间,实现高精度的位移测量,该方法的理论相位细分数可达1024,等效位移精度约为0. 63 nm。Strube 等利用频谱分析法,从信号离散傅里叶变换(DFT)后的相位谱中获取测量目标的位移,实现了0. 3 nm 的位移测量分辨力。由于采用图像传感器为光电转换器,信号处理是以干涉条纹为基础的,适用于静态、准静态的低速测量场合。3. 4环境补偿与控制技术环境中温度、气压及湿度等变化会引起空气折射率变化,使得激光在空气中传播时波长变动,导致测量结果产生纳米量级的误差。环境误差补偿与控制技术是抑制空气折射率误差的两种重要手段。补偿法是修正空气折射率误差最常用的方法,具有极高的环境容忍度。采用折光仪原理、双波长法等可以实现10−7~10−8 量级的空气折射率相对测量不确定度。根据Edlen 经验公式,通过精确测定环境参数(温度、湿度和大气压等),可以计算出空气折射率的精确值,用于补偿位移测量结果,其中温度是影响补偿精度的最主要因素。采用高精度铂电阻传感器,设备可以实现1 mK 的温度测量精度,其折射率的补偿精度可达10−8量级,接近Edlen 公式的补偿极限。环境控制技术是保证干涉仪亚纳米测量精度的另一种有效方法。在现行的DUV 光刻机中,采用气浴法,建立3 mK/5 min 以内恒温、10 Pa/5 min 以内恒压、恒湿气浴场,该环境中能够实现10−9~10−8 量级空气折射率的不确定度。对于深空引力波探测、下一代质量基准溯源等应用场合,对激光干涉仪工作的环境控制要求更为严苛,测量装置需置于真空环境中,此时,空气折射率引入的测量误差将被彻底消除。4 激光干涉测量技术发展趋势近年来,超精密位移测量的精度需求逐渐从纳米量级向亚纳米甚至皮米量级过渡。国内在激光干涉仪中的激光稳频、周期非线性误差消除和信号处理等关键技术上均取得了重大的突破。在LISA 团队规划的空间引力波探测方案中,要求在500 万千米的距离上,激光干涉仪对相对位移量需要具有10 pm 以内的分辨能力。面对更严苛的测量需求,超精密位移测量依然严峻面临挑战。激光干涉测量技术的未来发展趋势可以归结如下。1)激光波长存在的长期漂移和短期抖动是限制测量精度提升的根本原因。高精度稳频技术对激光波长不确定度的提升极限约为10−9量级。继续提升激光波长稳定度仍需要依托于下一阶段的工业基础,改善激光管本身的物理特性,优化光源质量。2)纳米级原理性光学周期非线性误差是限制激光干涉仪测量精度向亚纳米、皮米精度发展的重要瓶颈。消除和抑制第1 类和第2 类周期非线性误差后,仍残余数十皮米的非线性误差。由于周期非线性误差的表现形式与耦合关系复杂,想要进一步降低周期非线性误差幅值,需要继续探索可能存在的第3 类非线性误差机理。3)测量速度与测量分辨力的矛盾关系在动态锁相放大相位测量方法中得到初步解决。但面对深空引力波探测中高速、皮米的测量要求,仍然需要进一步探索弱光探测下的高分辨力相位细分技术;同时,需要研究高速测量过程中的动态误差校准技术。高速、高分辨力特征依旧是相位细分技术今后的研究方向。全文下载:亚纳米皮米激光干涉位移测量技术与仪器_激光与光电子学进展.pdf
  • 半导体所在激子-声子的量子干涉研究中获进展
    近日,中国科学院半导体研究所半导体超晶格国家重点实验室报道了二维半导体WS2中暗激子与布里渊区边界声学声子之间量子干涉导致的法诺(Fano)共振行为,并揭示了对称性在其中的重要作用。相关研究成果以《少数层WS2中暗激子与边界声学声子的量子干涉》(Quantum interference between dark-excitons and zone-edged acoustic phonons in few-layer WS2)为题,在线发表在《自然-通讯》(Nature Communications)上。由于库伦屏蔽作用减弱,激子效应在二维层状半导体中变得更加显著。偶极跃迁允许的亮激子可通过光致发光直接进行观测,而暗激子因偶极跃迁禁介却难以被直接观测。暗激子的复合往往需要其他元激发如声子等的协助,因而共振拉曼散射是比较理想的研究暗激子的实验手段。二维半导体过渡金属硫族化物如MoS2、WS2等具有丰富的能谷结构,在布里渊区的不同位置同时具有Γ、K、Q等能谷且能量接近,并可以发生强的光-物质相互作用,是探究暗激子与声子相互作用的优异平台。研究通过不同数值孔径下的光致发光(PL)谱确认了少数层WS2中亮态A激子与自旋禁戒的暗态A激子的存在。对于多层WS2,其导带底位于Q谷,价带顶位于K谷,而Q-K之间跃迁的动量正好可由布里渊边界M点声子的波矢来补偿。因此,布里渊区边界M点的一阶声子有可能通过拉曼光谱直接进行测量,在这个过程中预期观察到由导带Q谷的电子和价带K谷的空穴形成的暗激子参与的共振散射过程。研究团队选择了与暗态A激子能量共振的激发光,进行了低温拉曼光谱的测量。如先前预期,研究在共振激发下可以观测到布里渊区边界M点的一阶声学声子的拉曼模式【TA(M), ZA(M)和LA(M)】,并发现这些拉曼模式表现为不对称的Fano线型,且与平面内剪切声子的Fano线型呈现出镜像分布的现象。特别是在双层WS2中,暗激子-声子的强耦合导致ZA(M)声学模式表现为Fano凹陷(对应相消干涉行为)而非Fano峰(对应相涨干涉行为)。一般而言,Fano共振来源于连续态和分立态之间的量子干涉。通过理论分析和系列实验佐证,研究确定了连续态来源于K谷空穴和Q谷电子所形成的暗激子态,而分立态来源于M点声子。由于暗激子的长寿命以及二维激子低的态密度,在较弱光激发下暗激子态会形成准连续态。进一步,研究通过改变激发光波长(改变激子的驰豫通道以及参与声子的模式从而破坏共振条件)和变温拉曼光谱(改变激子能量从而破坏共振条件)对上述研究进行验证。最后,研究从对称性的角度分析了平面内剪切模声子、边界声学声子和暗激子耦合的物理机制,揭示了声子振动方向以及激子对称性对激子-声子耦合的重要影响。研究工作得到国家重点研发计划、中科院创新交叉团队、国家自然科学基金等的支持。厦门大学、新加坡南洋理工大学、法国图卢兹大学等的科研人员参与研究。
  • 首个石墨烯超导量子干涉装置面世
    瑞士科学家在最新一期《自然纳米技术》杂志上发表论文称,他们利用石墨烯,制造出了首个超导量子干涉装置,用于演示超导准粒子的干涉。最新研究有望促进量子技术的发展,也为超导研究开辟了新的可能性。2004年石墨烯横空出世,自此引发广泛关注并获得大力发展。石墨烯是目前已知最薄、强度最高、导电导热性能最好的新型纳米材料。随着研究的不断深入,其更多特性也一一浮出水面。双层扭转石墨烯——两个原子层相对于彼此稍微有所扭转是近几年的研究重点。一年前,苏黎世联邦理工学院固态物理实验室的克劳斯恩斯林团队证明,扭转双层石墨烯可用于制造超导设备的基本组成部分约瑟夫森结。在最新研究中,恩斯林科研团队利用扭曲石墨烯,制造出了首个超导量子干涉装置(SQUID),用于演示超导准粒子的干涉。传统SQUID正广泛应用于医学、地质学和考古学等领域,其灵敏的传感器能够测量磁场的微小变化,但其只与超导材料一起工作,因此在工作时需要使用液氦或氮气进行冷却。新研制的石墨烯SQUID的灵敏度并不优于传统铝制SQUID,且也必须冷却至绝对零度之上2℃,“但最新研究大大拓宽了石墨烯的应用范围,此前我们已经证明石墨烯可用于制造单电子晶体管,现在又增加了超导设备。”恩斯林指出,“在量子技术中,SQUID可以容纳量子比特,因此可用作执行量子操作的元件。此外,通常情况下,晶体管由硅制成,SQUID由铝制成,不同材料需要不同加工技术,但现在它们都可由石墨烯制成。”恩斯林补充道,石墨烯内存在不同的超导相,但还没有一个理论模型来解释它们。最新成果也将为超导研究带来新的可能性,有了这些组件,也许能更好地理解石墨烯中的超导性是如何产生的。
  • 丹麦可在室温下工作的量子干涉仪问世
    日前,丹麦哥本哈根大学研究人员日前制造出一种可在室温下工作的量子干涉仪,能广泛应用于医疗、勘测、考古等多个领域。相关研究发表在最新一期的《物理评论快报》(PRL)杂志上。  量子干涉仪是应用量子力学原理制成的超高灵敏度磁传感器,可检测出非常微弱的磁场。负责该研究的哥本哈根大学尼尔斯波尔研究所的物理学家尤金波尔齐克称,与原先的超导量子干涉仪(squids)相比,新的干涉仪在室温下就能工作,并且结构更简单,造价也更为低廉。  自旋是原子的一个基本特性,这使得一个原子就像一个小磁体很容易受到外部磁场的影响。根据这一特性,科学家提出了以原子作为磁传感器的设想,但由于每个原子自旋都存在一定的不确定性,这决定了以这种方法检测外部磁场在灵敏度上存在着极限。由于作为一个整体时数十亿原子能达到的敏感度比单个原子要大得多,传统的原子磁力计一般由极为大量的原子制成。但这样一来要达到理论上最大的灵敏度就困难了很多。为了进一步提高灵敏度,研究人员在新的磁力计中只使用了一个单原子。  尤金波尔齐克举例说,为了达到这个目的,研究人员不但要避免一切可能导致仪器出现失误的因素,如广播、手机等公共通讯系统所产生的磁场波动,还要消除现有量子力学理论中可能存在的错误。最终,该仪器可测量到比地球磁场弱一千亿倍的磁通量。  由于有电流的地方就有磁场存在,该磁力计在微磁场测量、重力波测量、核磁共振、古地磁测量以及非破坏性磁检测等多个领域都有着广泛的应用前景。
  • 清华大学李星辉团队合作在超精密光栅干涉测量领域取得新进展
    近日,清华大学深圳国际研究生院李星辉团队与国防科技大学团队合作提出了一种基于反射型二维光栅的外差式三自由光栅干涉仪。团队自主设计具有高光敏度、高频差和高信噪比的双频激光系统,基于二维反射型光栅和采用创新的共光路设计,搭建三自由度位移测量系统,设计并优化外差信号相位检测算法,最终实现了亚纳米的测量分辨率和重复定位精度。这项工作将有效推动多自由度光栅精密定位技术的发展。多自由度精密定位技术在纳米计量、显微成像、精密机床、半导体制造等领域具有重要地位。以半导体制造为例,光刻机是半导体行业的“掌上明珠”,在先进制程的光刻机中,晶圆台需要亚纳米位移测量精度的六自由度超精密定位技术。当前光刻机常用激光干涉仪和光栅干涉仪对晶圆台进行多自由度超精密定位,然而激光干涉仪由于暴露在环境中的光路长、难以实现单测量点多自由度测量等限制,会引入环境噪声和阿贝误差,而以光栅栅距为测量基准的光栅干涉仪正成为光刻机晶圆台超精密定位的主流方法。(a)光刻机晶圆台中“四读数头—四光栅”的六自由度测量系统;(b)外差式三自由度光栅干涉仪基本原理针对光刻机等先进装备中的超精密定位需求,团队提出了一种新型的基于外差干涉原理的三自由度光栅干涉仪,可以实现亚纳米的测量分辨率和重复测量精度,并通过 “四读数头—四光栅”的晶圆台测量系统可以实现六自由度位移/角位移测量。该外差光栅干涉仪使用一束双频激光,通过二维反射型光栅的四束衍射光产生外差干涉,实现光栅在X/Y方向上的位移测量,通过光栅反射光与固定反射镜反射光产生外差干涉,实现光栅在Z方向上的位移测量,从而完成光栅ΔX、ΔY、ΔZ三自由位移测量。该方案创新地采用了二维反射型光栅,利于光路系统读数头的集成化和小型化,在未来应用中,可以将读数头和光栅分别安装于固定部件和运动部件上,来检测运动部件的位移,其相对于基于透射型光栅的测量方法具有更广的适用性。此外,研究团队提出并采用了自主设计的双频激光系统,相比于传统的基于塞曼效应的商用双频激光器,具备更大更稳定的频差,以及更强的激光功率,可以实现更高的光源稳定性和信噪比以及更大的外差频率,有利于提升系统的整体精度和测量速度。最终实验结果显示,该系统具备0.5 nm的分辨率,0.6 nm的重复定位精度和2.5×10-5的测量线性度。该研究提出的外差式三自由度光栅干涉测量方法有利于多自由度超精密定位技术的发展,同时对先进装备和精密仪器的发展具有指导意义,尤其是需要多轴超精密定位的纳米科学和技术。 (a)自主设计的双频激光系统;(b)外差式三自由度光栅干涉仪测量系统 (a)三轴分辨率测试结果;(b)三轴在10 nm和40 nm处的重复定位精度测试结果相关成果以“三自由度亚纳米测量反射型外差光栅干涉仪”(A Reflective-Type Heterodyne Grating Interferometer for Three-Degree-of-Freedom Subnanometer Measurement)为题,在线发表在仪器仪表领域期刊《IEEE仪器与测量汇刊》(IEEE Transactions on Instrumentation & Measurement)上。论文第一作者为清华大学深圳国际研究生院2020级硕士生朱俊豪,清华大学深圳国际研究生院李星辉副教授为通讯作者,国防科技大学为共同通讯作者单位。该研究工作得到了广东省基础与应用基础研究基金、国家自然科学基金、清华大学科研启动基金、湖南省自然科学基金、中国博士后科学基金等项目的支持。论文链接:https://ieeexplore.ieee.org/document/9913946/
  • 罗氏制药公司宣布退出RNA干涉研究领域
    罗氏公司总部位于瑞士巴塞尔,是全球最大的医药公司之一。据最新出版的《科学》杂志报道,11月下旬,罗氏宣布退出RNA干涉(RNAi)研究领域,这一决定是该公司计划裁减6%的人力即4800人的计划的一部分。  RNA干涉是一种分子生物学上由双链RNA诱发的基因沉默现象,其机制是通过阻碍特定基因的翻译或转录以抑制基因表达,阻断导致疾病的蛋白合成,因此,这种现象也被称为RNA干涉。由于在基因沉默方面具有高效性和简单性,RNA干涉有潜力应用于疾病的基因治疗,2006年的一项诺贝尔奖便授予了小RNA分子关闭特定基因的研究。  2007年7月,罗氏宣布与美国一家生物制药公司Alnyam签订总值为10亿美元的合作协议,联合开发以RNA干涉技术为基础的新药,同时,罗氏收购了Alnyam在德国的研究基地,即罗氏RNA干涉技术开发中心,获得Alnyam公司的RNA干涉技术平台的独家使用权,在4个领域开发新药,分别为肿瘤、呼吸道疾病、代谢疾病和肝脏疾病。过去3年中,罗氏在这一领域的研究投资超过了4亿美元。  《科学》的文章指出,尽管大型制药公司紧缩财政的现状并不少见,但罗氏退出RNA干涉研究的决定仍然令人震惊,因为这一领域正获得越来越多的重视。然而,虽然RNA干涉能关闭特定基因,科学家们面临的挑战是如何用恰当的剂量将它们送入生病的组织。罗氏发言人克劳迪娅施密特说,这一领域令人着迷,但不幸的是,药物的发送点是一个障碍。她指出,罗氏位于德国库尔姆巴赫的RNAi“杰出中心”有50多位雇员,绝大多数是科学家,他们一直未能克服这个绊脚石。  最近几年,RNA干涉已成为最热门的研究领域,但迄今为止还没有以该技术为基础的新药上市。与其他制药公司一样,罗氏也曾处于紧要关头,担心RNA干涉研究不会成功,而且,即使成功了,也不可能在一两年内赢利。去年,一项用于黄斑变性治疗的大型临床试验在最后阶段失败,但仍然大约有十多个临床研究在进行之中,所针对的疾病包括癌症和哮喘等。斯坦福大学的基因治疗专家马克克莱说:“人们都在看着罗氏……大家对RNA干涉的热情减少了。”他认为,罗氏的这一决定是基因治疗领域的一个挫折,但RNA干涉依然是一个有希望的领域。  虽然科学家们在努力推进,但将RNA发送到靶标组织仍十分棘手。通过化学方法改变小RNA分子双链中的一个链,可以减少非靶标效应,但这也会导致另外的问题:这取决于RNA分子的包装和它们的“运输车”会共同以危险的方式刺激免疫系统。克莱说,这一领域的研究正步入困境,问题需要时间来解决。  目前,包括默克、诺华和武田制药等在内的大型制药公司,仍在投资RNA干涉技术的研究。
  • 突破轴向分辨率极限!我国科学家研制出新型干涉定位显微镜ROSE-Z
    单分子定位超分辨显微成像技术利用特殊荧光分子的光开关特性,突破衍射极限,将荧光显微镜的分辨率提高了一个数量级,可以揭示纳米尺度下的亚细胞结构。因受定位原理的限制,该技术轴向分辨率比侧向分辨率低2-3倍(一般为50nm左右),影响了其三维解析能力和应用。在“蛋白质机器与生命过程调控”重点专项的支持下,中国科学院生物物理研究所研究人员通过研发非对称干涉光路成像方法,突破了轴向分辨率的极限。与传统的柱面镜成像方法相比,非对称干涉光路成像方法将定位精度提高了6倍以上,将单分子定位成像的轴向分辨率提升到了纳米尺度,实现了轴向的单分子干涉定位成像。研究人员据此技术研制出了新型干涉定位显微镜(ROSE-Z),利用ROSE-Z显微镜的高分辨率三维解析能力,研究团队成功实现了对细胞内微管直径中空结构的解析。同时团队在ROSE-Z显微镜的基础上扩展了多色成像以及厚样品成像功能,对细胞样品进行了纳米精度三维双色成像,并验证了细胞厚样品成像能力。这些结果证明该方法在具备优异的轴向分辨率的同时,也具备很高的可扩展性以及操作便捷性,为细胞内三维纳米结构的研究提供了有力的研究工具。研究成果近期发表在Nature Methods杂志上。
  • 应用解读:皮米精度激光干涉仪如何实现高精度实时位移反馈?
    “坐标”这个概念源于解析几何,其基本思想是构建坐标系,将点与实数联系起来,进而可以将平面上的曲线用代数方程表示。坐标的概念应用到工业生产中解决了大量实际问题,例如,坐标测量机可采集被测工件表面上的被测点的坐标值,并投射到空间坐标系中,构建工件的空间模型等诸多案例。坐标测量机还被用于产品质量控制,测量磨损,制造精度,产品形貌,对称性,角度等工业产品参数,因此需要非常高的移动精度,才能确保测量的准确性。德国attocube公司推出的IDS3010皮米精度位移测量激光干涉仪就是辅助坐标测量机提高测量精度的有力手段。图1 皮米精度位移测量激光干涉仪IDS3010IDS3010皮米精度位移测量激光干涉仪是如何帮助坐标测量机实现高精度的呢?图2 IDS3010激光干涉仪集成到坐标测量机探测臂上通常坐标测量机要求探测臂位移精度高于1微米,现在坐标测量机位移反馈大多是通过玻璃分划尺来实现的。玻璃分划尺是常用的一种位置测量的方法,分划尺在坐标测量机上位于龙门处,一般情况下,采用玻璃分划尺探测的不是探测臂本身,而是坐标测量机龙门处的位置变化。实际上, 坐标测量机的探测臂与龙门之间有一定长度的距离,它们的位置变化会因存在例如振动、位置差等而有所不同,因此只凭借龙门处位置变化来判断真实的位移反馈是不准确的,影响到实际样品的测量精度。图3 IDS3010激光干涉仪集成到坐标测量机上。坐标测量机通过干涉仪探头的配合,可反馈探测臂的位移。德国attocube公司的IDS3010皮米精度位移测量激光干涉仪通过非接触式方法测量,可以直接测量探测臂的运动,避免龙门处探测误差,实现高精度测量。如图3,激光探头位于坐标测量机侧边,M12/C7.6激光探头出射的激光可以被探测臂上的反射镜(直径3mm)反射回激光探头,IDS3010干涉仪通过分析干涉信号从而进行位置测量。探测臂能够移动0.8米距离,移动精度达到10微米。干涉仪能够实时测量该探测臂的位移以及振动等信息。图4 IDS3010实时位置测量软件WAVE测量数据。扩展图为中间区域的数据放大。IDS3010配置的软件WAVE可以实时观测与保存测量数据。如图4,坐标测量机的运动数据被测量并记录。图中所示,前15秒与终10秒间的数据是0.8m距离的往复运动。中间时间的数据看似没有变化,但通过WAVE软件的放大功能,我们发现中间时间的探测臂其实进行了10微米的步进运动。同时,通过WAVE软件我们也可以观测到步进运动的详细变化过程。每一个步进大约2秒,在运动初始的时候位移有超过,在大约0.4秒的短时间内位移被调整为10微米的步进长度。而在步进的末尾,也有小幅的位置噪音,该噪音一般是由于振动引入。这对于探测样品位移以及振动信息具有重大意义。IDS3010技术特点:IDS3010皮米精度位移测量激光干涉仪具有体积小、适合集成到工业应用与同步辐射应用中的特点,同时,测量精度高,分辨率高达1 pm,是适合工业集成与工业网络无缝对接的理想产品。除与坐标测量机结合使用外,在工业中的其他应用实例也非常广泛,包括闭环位移反馈系统搭建、振动测量、轴承误差测量等等。+ 测量精度高,分辨率高达1 pm+ 测量速度快,采样带宽10MHz+ 样品大移动速度 2m/s+ 光纤式激光探头尺寸小,灵活性高+ 兼容超高真空,低温,强辐射等端环境+ 其可靠与稳定+ 环境补偿单元,不同湿度、压力环境中校正反射率参数提高测量精度+ 多功能实时测量界面,包含HSSL、AquadB、CANopen、Profibus、EtherCAT、Biss-C等界面相关产品及链接:1、皮米精度位移激光干涉器attoFPSensor:http://www.instrument.com.cn/netshow/C159543.htm2、EcoSmart Drive系列纳米精度位移台:http://www.instrument.com.cn/netshow/C168197.htm3、低温强磁场纳米精度位移台:http://www.instrument.com.cn/netshow/C80795.htm
  • “等效原理实验用喷泉式高精度原子干涉仪”通过验收
    12月21日至22日,中国科学院武汉物理与数学研究所承担的中国科学院重大科研装备研制项目——“等效原理实验用喷泉式高精度原子干涉仪”通过了由中科院计划财务局组织的现场测试和验收。来自中科院的管理专家和来自中科院上海光机所、中国计量院、华中科技大学、武汉大学、华中师范大学的专家参加了验收会。与会领导和专家在认真听取了项目负责人王谨研究员所作的仪器研制工作报告、财务报告以及测试专家组所作的测试报告后,对取得的成果表示了充分的肯定,并就下一步如何充分利用该科研装备开展研究工作提出了很好的建议。  “等效原理实验用喷泉式高精度原子干涉仪”研制项目综合运用了超高真空、磁屏蔽、激光、磁光阱、原子喷泉等多项复杂技术,实施方案具有创新性。经过三年多的不懈努力,课题组逐项攻克各单项技术难题,完成了方案设计、部件加工、单元测试、安装调试等一系列任务。整套仪器自2010年4月28日起在原子频标实验大楼安装调试,2010年12月8日完成全部安装调试任务。经过现场测试,原子喷泉上抛高度为6米,原子干涉条纹对比度为76%,主要技术指标达到项目任务书的要求,标志着喷泉式高精度原子干涉仪在武汉物理与数学所研制成功。该仪器的整体高度为12.6米,设计的原子最大上抛高度为10米,是目前国际上最高的喷泉式原子干涉仪。  验收专家组认为,喷泉式高精度原子干涉仪的研制成功,为基于自由下落微观原子的重力加速度精确测量和等效原理检验实验提供了平台,也为利用原子干涉仪开展精密测量物理实验研究创造了条件。  据悉,在武汉建设大型喷泉式高精度原子干涉仪研究平台的最初设想,是2007年5月在中科院武汉物理与数学所学科发展战略研讨会上由冷原子物理研究组提出的,该设想于2007年10月正式付诸实施,先后得到了中科院科研装备研制项目、中科院武汉物理与数学所前沿部署项目和国家自然科学基金委仪器研制重点项目的资助。  验收会议现场  现场测试  等效原理实验用喷泉式高精度原子干涉
  • 新品 | Zygo发布“上视”结构的立式激光干涉仪
    ZYGO出新产品啦Vertical Test Station VTS“上视”结构的立式激光干涉仪!____菲索式激光干涉仪,测试时最常见为卧式配置;具有结构简单,附件少;测试适用性,灵活性好的优点。在很多场合,立式配置也很常见;立式测样具有样品装夹效率高,结构更稳定,抗振性更好的优势,非常适用于光学生产时在现场使用。ZYGO VTS 立式激光干涉仪,采用主机在下的“上视”配置,整体重心配置更加合理,稳定,装夹样品效率更高。VTS 系统整合了气浮抗振系统,以及1um分辨率,1米行程的Z轴导轨;配合ZYGO专利QPSI抗振移相技术,基于Mx软件,用于测试球面面形及曲率半径参数。___“上视”配置还有一个特殊优势,样品在夹具支撑下,得益于样品自身重力,可以保证球面干涉腔的良好“复位”性,如上图。基于这一良好位置复现特点,“上视”配置干涉仪能以类似经典“辨识样板光圈”的方式,通过比对样品和“样板”的POWER差异,高效测试曲率半径。如以上公式,先测试标准样板,尽量调整到“零”条纹;然后保持机构与夹具稳定不变,更换为样品,放置于夹具支撑之上。直接测试样品面形;基于两次测试的POWER差异,就能计算出样品相对于样板的“曲率半径误差”。这一测试,类似于经典的“样板光圈法”,将曲率半径绝对测量过程,转变为基于样板的相对测量,极大地提高了曲率半径测试效率。联系我们:https://www.instrument.com.cn/netshow/SH102493/关于翟柯翟柯(简称:ZYGO)是阿美特克集团超精密测量部门成员,专业设计与制造精密测量仪器和光学系统,基于光学干涉原理的计量检测系统能够在纳米甚至亚纳米范围内测量部件形貌和光学波面,产品广泛用于半导体、光学制造通讯、航天、汽车制造和消费电子等生产及科研领域。阿美特克是电子仪器和机电设备的全球领导者,年销售额约为50亿美金。为材料分析、超精密测量、过程分析、测试测量与通讯、电力系统与仪器、仪表与专用控制、精密运动控制、电子元器件与封装、特种金属产品等领域提供技术解决方案。全球共有18,000多名员工,150多家工厂,在美国及其它30多个国家设立了100多个销售及服务中心。
  • 使用泰伯劳干涉仪测量HED等离子体相衬像
    诊断高能量密度(HED)等离子体的特性,例如存在于惯性约束聚变(ICF)中的等离子体,对于理解它们的演化和相互作用至关重要。然而,考虑到所涉及的通常极端的温度和密度条件,以及其中一些相互作用发生的小时间和空间尺度,获得这些测量结果是具有挑战性的。干涉测量法是目前等离子体最灵敏、最成功的诊断方法之一。然而,由于最常见的干涉测量系统的设计,工作波长有限,因此可以探测的密度和温度范围受到严重限制,难以测量对于可见光波段不透明的 HED 等离子体。基于 Talbot 效应的 Talbot-Lau 干涉法,提供了将干涉测量扩展到 X 射线波长的可能性。另一方面,在光子能量从几 keV 到几十 keV 的范围内的硬 X 射线,低 z 物质的弹性散射截面远大于衰减截面,相位对比度比传统的衰减度对比对电子密度的变化更敏感。因此,在成像机制上,基于折射的方法相较于基于吸收的方法有更高的固有对比度。即,基于相位变化的 X 射线成像方法,包括 Talbot-Lau 偏折测量方法,尤其适用于低 z 生物组织、聚合物、纤维复合材料和 HED 等离子体等的表征。约翰霍普金斯大学物理与天文学系的 M. P. Valdivia 与 D. Stutman 等人提出了将TL莫尔光束偏转技术扩展到8 keV 能量,用于 HED 等离子体实验中的密度梯度测量。[http://dx.doi.org/10.1063/1.4885467]该实验采用低能 TL 干涉仪装置采用焦斑为 ~ 15 μm FWHM 的铜阳极管作为 X 射线源。当在 22 kV 下工作时,该管产生 Kα 特征线主导的光谱,在 8 keV 处有一个强峰。同时使用了 30 μm 厚度的 Ni 滤波器,进一步提高特征线与轫致辐射之间的比率。对于微周期 Talbot-Lau 光栅的设计与制造工艺,对于高能量X射线(如20~100keV),难点在于得到高厚度/深宽比的光栅结构;对于低能 X 射线(如10keV),则应在设计上更多的考虑光栅衬底的影响,即必须使用自支撑结构或者薄衬底的光栅.该实验中使用了由德国 Microworks 公司制造的基底为10 μm 厚聚酰亚胺膜的光栅。如下图所示,源光栅 G0 周期为 2.4 μm,直径有效尺寸为 7 mm,金高度为 21-24 μm;相位光栅G1的周期为 4.0 μm,直径有效尺寸为 9 mm,镍条高度为 3.0 μm。分析光栅 G2 周期为 12 μm,直径有效尺寸为 35 mm,金高度为 17-22 μm。1. Microworks GmbH 提供的 Talbot-Lau 光栅:a)源光栅;b)相位光栅;c)分析光栅该小组使用多种形状(棱柱,圆柱,球型)的多种材料(丙烯酸,铍,PMMA)作为材料进行实验验证。其中,以 PMMA 球形样品的测试结果为例:2. 直径1.5mm的 PMMA 球的 Moiré 条纹像(a)及其偏移映射图(b)结果表明,在 8 keV 下的测量足够灵敏,可以测量几到几十微弧度范围内的折射角,从而提供 10-20 到 10-21 mm&minus 2范围内的面密度。在静态模式下论证得出该技术能够为 HED 相关物体提供密度诊断。上述小组进一步改进该实验,使用短脉冲(30–100 J, 10 ps)激光轰击 Cu 箔产生 X 射线作为测量光源,由于激光的脉冲特性,使得对 HED 的时间分辨测量成为了可能。(doi: 10.1063/1.5123919)3. 超短脉冲时间分辨 X 射线 Talbot-Lau 干涉实验前端光路示意图4. Talbot-Lau X 射线干涉法诊断平台波尔多大学的 G. P´ erez-Callejo 与 V. Bouffetier,对特定靶结构在激光作用下产生的 HED 瞬时密度进行了模拟和测量,并提供了相应的干涉图像的后处理工具。(DOI: 10.1063/5.0085822)5. 等离子体靶材结构设计示意图(左);模拟轰击靶材后30ns 瞬时密度图像6. 瞬时状态下的干涉图像(a)与空光路参考图像(b)7. 经数据处理后的吸收像(a),暗场像(b)与相位像(c)相关阅读- Microworks光栅助力新冠病毒肺部诊断- 实验室X射线相衬成像技术—核心调制和探测器件技术分析(上)- 实验室X射线相衬成像技术—核心调制和探测器件技术分析(下)Microworks 德国 Microworks GmbH 基于其独特的 LIGA 技术,向广大科研用户提供定制化的微结构加工服务。其中,它的X射线透射光栅在相衬成像领域,有着极高的声誉。Microworks为X射线无损检测(NDT)提供标准化和定制产品。在微纳米技术领域,Microworks代表着高精度,其最高纵横比和精度可以远低于 1 µ m。北京众星联恒科技有限公司作为 Microworks 的中国大陆全权代理商,为中国用户提供所有的售前咨询,销售及售后服务,同时 TALINT EDU 干涉仪套件目前我们开放国内试用, 如果您想体验这款模块化、操作简易的 X 射线相衬、暗场成像套件, 欢迎联系我们。免责声明:此篇文章内容(含图片)部分来源于网络。文章引用部分版权及观点归原作者所有,北京众星联恒科技有限公司发布及转载目的在于传递更多行业资讯与网络分享。若您认为本文存在侵权之处,请联系我们,我们会在第一时间处理。如有任何疑问,欢迎您随时与我们联系。
  • 上海科技大学155.00万元采购激光干涉仪
    详细信息 上海科技大学硬X射线自由电子激光装置-斐索激光干涉仪公开招标公告 上海市-浦东新区 状态:公告 更新时间: 2023-12-29 招标文件: 附件1 上海科技大学硬X射线自由电子激光装置-斐索激光干涉仪公开招标公告 2023年12月29日 17:04 公告概要: 公告信息: 采购项目名称 上海科技大学硬X射线自由电子激光装置-斐索激光干涉仪 品目 货物/设备/仪器仪表/试验仪器及装置/其他试验仪器及装置 采购单位 上海科技大学 行政区域 上海市 公告时间 2023年12月29日 17:04 获取招标文件时间 2023年12月29日至2024年01月08日每日上午:9:00 至 11:30 下午:13:00 至 16:30(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 上海市共和新路1301号D座2楼办公室 开标时间 2024年01月19日 10:00 开标地点 交货期:合同签订后180天内 预算金额 ¥155.000000万元(人民币) 联系人及联系方式: 项目联系人 陈永亮 项目联系电话 021-66272917,18317094335 采购单位 上海科技大学 采购单位地址 上海市浦东新区华夏中路393号 采购单位联系方式 王冠群021-20684607 代理机构名称 上海中招招标有限公司 代理机构地址 上海市共和新路1301号D座2楼201 代理机构联系方式 陈永亮、唐 闽、张 佳 021-66272917,18317094335 附件: 附件1 购买标书登记表(国内标).xlsx 项目概况 上海科技大学硬X射线自由电子激光装置-斐索激光干涉仪 招标项目的潜在投标人应在上海市共和新路1301号D座2楼办公室获取招标文件,并于2024年01月19日 10点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:STC23A560 项目名称:上海科技大学硬X射线自由电子激光装置-斐索激光干涉仪 预算金额:155.000000 万元(人民币) 最高限价(如有):155.000000 万元(人民币) 采购需求: 采购1套斐索激光干涉仪,该干涉仪将用于硬线项目反射镜面形检测设备,用于3条光束线所使用反射镜检测,检测将提供被测光学元件的面形误差PV值、RMS值,具体详见招标文件。 合同履行期限:交货期:合同签订后180天内 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目专门面向中小企业的项目、节约能源、保护环境、扶持不发达地区和少数民族地区、促进中小企业发展、支持监狱、戒毒企业发展、促进残疾人就业、优先采购贫困地区农副产品等政府采购政策。 3.本项目的特定资格要求:1)近三年内(本项目招标截止期前)被“信用中国”网站列入失信被执行人和重大税收违法案件当事人名单的、被“中国政府招标网”网站列入政府招标严重违法失信行为记录名单(处罚期限尚未届满的),不得参与本项目;2)单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标包投标或者未划分标包的同一项目;3)投标人应具有ISO9000或同等质量体系认证,并提供相关证明材料。 三、获取招标文件 时间:2023年12月29日 至 2024年01月08日,每天上午9:00至11:30,下午13:00至16:30。(北京时间,法定节假日除外) 地点:上海市共和新路1301号D座2楼办公室 方式:网上购买或现场购买(详见其他补充事宜) 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年01月19日 10点00分(北京时间) 开标时间:2024年01月19日 10点00分(北京时间) 地点:交货期:合同签订后180天内 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 本项目为专门面向中小企业采购的项目。当在招标文件的发售截止时间之前实际获取招标文件的潜在投标人不足 3 家,或者通过资格审查的投标人不足 3 家时,将中止本次采购活动,并按面向所有类型的潜在供应商进行采购的方式重新组织采购活动。 现场购买:有意向的投标人可携带购买标书登记表(详见招标公告附件:购买标书登记表)、营业执照复印件(加盖公章)、法人代表授权书原件、被授权代表身份证(复印件加盖公章)至上海市共和新路1301号D座2楼办公室进行报名购买招标文件。 网上购买:有意向的投标人将购买标书登记表(详见招标公告附件:购买标书登记表)、营业执照扫描件、法定代表人(单位负责人)授权委托书原件、委托代理人身份证明(复印件加盖公章)的扫描件和购买标书登记表(详见附件)发至ba18317094335@163.com邮箱,明确投标项目名称,并将标书款汇至招标公司账上。 招标文件售价:每包件售价人民币 500 元(招标文件售后不退)。 注:我公司只接受公司转账,不接受个人转账。 开户名:上海中招招标有限公司 开户银行:中国民生银行上海虹桥支行 银行帐号:0208014210004789 摘要:STC23A560标书费或投标保证金。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:上海科技大学 地址:上海市浦东新区华夏中路393号 联系方式:王冠群021-20684607 2.采购代理机构信息 名 称:上海中招招标有限公司 地 址:上海市共和新路1301号D座2楼201 联系方式:陈永亮、唐 闽、张 佳 021-66272917,18317094335 3.项目联系方式 项目联系人:陈永亮 电 话: 021-66272917,18317094335 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:激光干涉仪 开标时间:2024-01-19 10:00 预算金额:155.00万元 采购单位:上海科技大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:上海中招招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 上海科技大学硬X射线自由电子激光装置-斐索激光干涉仪公开招标公告 上海市-浦东新区 状态:公告 更新时间: 2023-12-29 招标文件: 附件1 上海科技大学硬X射线自由电子激光装置-斐索激光干涉仪公开招标公告 2023年12月29日 17:04 公告概要: 公告信息: 采购项目名称 上海科技大学硬X射线自由电子激光装置-斐索激光干涉仪 品目 货物/设备/仪器仪表/试验仪器及装置/其他试验仪器及装置 采购单位 上海科技大学 行政区域 上海市 公告时间 2023年12月29日 17:04 获取招标文件时间 2023年12月29日至2024年01月08日每日上午:9:00 至 11:30 下午:13:00 至 16:30(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 上海市共和新路1301号D座2楼办公室 开标时间 2024年01月19日 10:00 开标地点 交货期:合同签订后180天内 预算金额 ¥155.000000万元(人民币) 联系人及联系方式: 项目联系人 陈永亮 项目联系电话 021-66272917,18317094335 采购单位 上海科技大学 采购单位地址 上海市浦东新区华夏中路393号 采购单位联系方式 王冠群021-20684607 代理机构名称 上海中招招标有限公司 代理机构地址 上海市共和新路1301号D座2楼201 代理机构联系方式 陈永亮、唐 闽、张 佳 021-66272917,18317094335 附件: 附件1 购买标书登记表(国内标).xlsx 项目概况 上海科技大学硬X射线自由电子激光装置-斐索激光干涉仪 招标项目的潜在投标人应在上海市共和新路1301号D座2楼办公室获取招标文件,并于2024年01月19日 10点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:STC23A560 项目名称:上海科技大学硬X射线自由电子激光装置-斐索激光干涉仪 预算金额:155.000000 万元(人民币) 最高限价(如有):155.000000 万元(人民币) 采购需求: 采购1套斐索激光干涉仪,该干涉仪将用于硬线项目反射镜面形检测设备,用于3条光束线所使用反射镜检测,检测将提供被测光学元件的面形误差PV值、RMS值,具体详见招标文件。 合同履行期限:交货期:合同签订后180天内 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目专门面向中小企业的项目、节约能源、保护环境、扶持不发达地区和少数民族地区、促进中小企业发展、支持监狱、戒毒企业发展、促进残疾人就业、优先采购贫困地区农副产品等政府采购政策。 3.本项目的特定资格要求:1)近三年内(本项目招标截止期前)被“信用中国”网站列入失信被执行人和重大税收违法案件当事人名单的、被“中国政府招标网”网站列入政府招标严重违法失信行为记录名单(处罚期限尚未届满的),不得参与本项目;2)单位负责人为同一人或者存在控股、管理关系的不同单位,不得参加同一标包投标或者未划分标包的同一项目;3)投标人应具有ISO9000或同等质量体系认证,并提供相关证明材料。 三、获取招标文件 时间:2023年12月29日 至 2024年01月08日,每天上午9:00至11:30,下午13:00至16:30。(北京时间,法定节假日除外) 地点:上海市共和新路1301号D座2楼办公室 方式:网上购买或现场购买(详见其他补充事宜) 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2024年01月19日 10点00分(北京时间) 开标时间:2024年01月19日 10点00分(北京时间) 地点:交货期:合同签订后180天内 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 本项目为专门面向中小企业采购的项目。当在招标文件的发售截止时间之前实际获取招标文件的潜在投标人不足 3 家,或者通过资格审查的投标人不足 3 家时,将中止本次采购活动,并按面向所有类型的潜在供应商进行采购的方式重新组织采购活动。 现场购买:有意向的投标人可携带购买标书登记表(详见招标公告附件:购买标书登记表)、营业执照复印件(加盖公章)、法人代表授权书原件、被授权代表身份证(复印件加盖公章)至上海市共和新路1301号D座2楼办公室进行报名购买招标文件。 网上购买:有意向的投标人将购买标书登记表(详见招标公告附件:购买标书登记表)、营业执照扫描件、法定代表人(单位负责人)授权委托书原件、委托代理人身份证明(复印件加盖公章)的扫描件和购买标书登记表(详见附件)发至ba18317094335@163.com邮箱,明确投标项目名称,并将标书款汇至招标公司账上。 招标文件售价:每包件售价人民币 500 元(招标文件售后不退)。 注:我公司只接受公司转账,不接受个人转账。 开户名:上海中招招标有限公司 开户银行:中国民生银行上海虹桥支行 银行帐号:0208014210004789 摘要:STC23A560标书费或投标保证金。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:上海科技大学 地址:上海市浦东新区华夏中路393号 联系方式:王冠群021-20684607 2.采购代理机构信息 名 称:上海中招招标有限公司 地 址:上海市共和新路1301号D座2楼201 联系方式:陈永亮、唐 闽、张 佳 021-66272917,18317094335 3.项目联系方式 项目联系人:陈永亮 电 话: 021-66272917,18317094335
  • Zygo 发布全新 Qualifire 激光干涉仪
    阿美特克(纽约证券交易所代码:AME)旗下Zygo公司宣布发布其最新的激光干涉仪Qualifire™。Qualifier加入了一系列高端干涉仪解决方案,该仪器旨在支持半导体、光刻、星载成像系统、尖端消费电子产品、国防等行业中最苛刻的计量应用。Qualifire将于1月30日在加州旧金山的SPIE Photonics West首次亮相。这款干涉仪在不牺牲性能的情况下,将显著的增强功能集成到一个更轻的小型封装中。Zygo 激光干涉仪产品经理 Erin McDonnell 表示:“我们很高兴将 Qualifire 推向市场,其改进的人体工程学设计使其易于使用,并且比 Zygo 的许多其他激光干涉仪更便携。使用激光干涉仪进行的测量往往对噪声、污染物和其他伪影敏感,因为该仪器能够提供纳米级精度;Qualifire上的可选模块飞点可主动减少甚至消除这些伪影,从而提高测量的可靠性和可重复性。飞点结合了Zygo最好的两种伪影减少技术:环纹和相干伪影减少。飞点在需要高精度的应用中尤其有价值,包括科学研究和先进的制造工艺。Qualifire为Zygo的激光干涉仪产品线带来这些功能和改进:Qualire激光干涉仪提供了许多新颖的新功能。智能附件接口——干涉仪可以识别任何安装的“智能附件”,并自动应用系统错误文件并执行横向校准。体积小、重量轻——最小的 Qualifire 型号重约 45 磅(20.4 千克)。 它是真正的便携式,特别是对于干涉仪必须经常移动或调整的复杂和精密应用。移相器(PMR)——PMR 是调制测试部件和参考光学器件之间干涉条纹所必需的,最终可创建定量表面图。其整体设计提供:整体机械稳定性和对准降低损坏或错位的风险确保性能一致,减少重新校准的需要改进的用户体验——方便使用的电源按钮和运动安装支脚使设置更易于使用。大型控制旋钮可实现更精确的调整,这对校准和校准都至关重要。 集成手柄确保安全可靠的操作。更易于维护—— 密封的光学系统和整合的电子元件使更换各种组件变得简单,而不会使光学元件暴露在污染物中。飞点——用于减少伪影的可选模块,包括自动对焦功能。稳定变焦——提供新变焦方法的选项,可在所有放大倍率下实现完美的图像配准和衍射限制图像采样。计量集团副总裁Kurt Redlitz 表示:“Qualifire 保持了 Zygo 在计量方面的高标准,同时提供了最高水平的精度并优化了用户体验。通过改进的人体工程学设计,它可以在不牺牲性能的情况下提高操作效率和部署灵活性。Qualifire 是一款更强大、更可靠、用户友好的仪器,可随时应付最苛刻的应用和环境——精度不容置疑。
  • Veeco于9月24号举办光学干涉表征技术研讨会
    全球领先测量仪器制造商美国Veeco公司,将于“2008中国国际轴承及其专用设备展览会”同期举办光学干涉表征技术研讨会。Veeco旗下的Wyko光学轮廓仪可提供精确的、重复性高的三维测试方案,达纳米以下的垂直分辨率,被广泛应用在精密机械加工、材料、半导体、生物、光学器件等方向。在这次的研讨会中,我们将着重介绍光学干涉测量技术在轴承制造及精密加工领域的应用,并在现场进行仪器操作演示。 欢迎致电021-68866186转123,或发送电邮至sales@veecoasia.com垂询。 敬请阁下光临我公司展台,展位号:Bd24题目:光学干涉表征技术及其在轴承领域的应用 时间:2008年9月24日 14:00-17:00 pm 地点:光大会展中心国际大酒店一层光韵厅3号,上海徐汇区漕宝路66号
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制