当前位置: 仪器信息网 > 行业主题 > >

多频超声波超临界聚合反应系统

仪器信息网多频超声波超临界聚合反应系统专题为您提供2024年最新多频超声波超临界聚合反应系统价格报价、厂家品牌的相关信息, 包括多频超声波超临界聚合反应系统参数、型号等,不管是国产,还是进口品牌的多频超声波超临界聚合反应系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多频超声波超临界聚合反应系统相关的耗材配件、试剂标物,还有多频超声波超临界聚合反应系统相关的最新资讯、资料,以及多频超声波超临界聚合反应系统相关的解决方案。

多频超声波超临界聚合反应系统相关的论坛

  • 【资料】《超临界流体萃取技术研究与应用进展》

    超临界流体萃取技术研究与应用进展赵东胜, 刘桂敏, 吴兆亮( 河北工业大学化工学院, 天津300130)摘要: 综述了超临界流体萃取的基本原理, 以及提高超临界流体萃取效率的方法, 包括加入夹带剂、利用高压电场和超声波等。并对超临界流体萃取技术在生物化工、食品、医药和环保行业的最新应用情况作了介绍。关键词: 超临界流体萃取; 萃取效率; 夹带剂; 应用中图分类号: TQ 028.8 文献标识码: A 文章编号: 1008- 1267( 2007) 03- 0010- 03下载链接:http://www.instrument.com.cn/download/shtml/155631.shtml

  • 超临界流体色谱SFC

    以超临界流体作流动相,以固体吸附剂(如硅胶)或键合在载体(或毛细管壁)上的有机高分子聚合物作固定相的色谱方法。常用流动相为超临界状态下的CO2、氧化亚氮、乙烷、三氟甲烷等。CO2最常用,因为它的临界温度低(31℃)、临界压力适中(7.29MP)、无毒、便宜,但其缺点是极性太低,对一些极性化合物的溶解能力较差,所以,通常要用另一台输液泵往流动相中添加1~5%的甲醇等极性有机改性剂。SFC所用色谱柱既有液相色谱的填充柱,又有气相色谱的毛细管柱,但由于超临界流体的强溶解能力,所使用的毛细管填充柱的固定相必须进行交联。从理论上讲,SFC既可以象液相色谱一样分析高沸点和难挥发样品,也可象气相色谱一样分析挥发性成分。不过,超临界流体色谱更重要的应用是用来作分离和制备,即超临界流体萃取。

  • 超临界流体色谱

    超临界流体色谱

    以超临界流体作流动相,以固体吸附剂(如硅胶)或键合在载体(或毛细管壁)上的有机高分子聚合物作固定相的色谱方法。常用流动相为超临界状态下的CO2、氧化亚氮、乙烷、三氟甲烷等。CO2最常用,因为它的临界温度低(31℃)、临界压力适中(7.29MP)、无毒、便宜,但其缺点是极性太低,对一些极性化合物的溶解能力较差,所以,通常要用另一台输液泵往流动相中添加1~5%的甲醇等极性有机改性剂。SFC所用色谱柱既有液相色谱的填充柱,又有气相色谱的毛细管柱,但由于超临界流体的强溶解能力,所使用的毛细管填充柱的固定相必须进行交联。从理论上讲,SFC既可以象液相色谱一样分析高沸点和难挥发样品,也可象气相色谱一样分析挥发性成分。不过,超临界流体色谱更重要的应用是用来作分离和制备,即超临界流体萃取。

  • 控制3D打印过程中的聚合反应

    日前,美国著名的迈阿密大学的科学家们发现了一种可以控制3D打印对象制定部位的化学成分以及3D位置,这对3D打印来说,又增加了一个新的纬度。迈阿密大学科学家们设计的装置可以控制光聚合混合物的3D位置和单体成分随着3D打印技术的不断发展,人们对其的认识也越来越深,克服当前3D打印的局限性成为目前行业首先面临的最大困难。如果估计不错的话,它们应该能够打印不同的聚合物并使他们聚合在一起,独立控制它们的位置,能够兼容精细的有机物和生物活性材料。据了解,这支由Adam Braunschweig领导的迈阿密大学的研究团队设计出了这样的一个系统,该西通首次使用了基于溶液的模式反应(patterning reactions)。它结合了1平方厘米的平行尖端阵列、微流体和光化学聚合反应,使刷状聚合物在玻璃表面上生长。这个工艺只需要几个步骤,无需使用高能激光束就可以达到亚微米的分辨率。另外,组成该聚合反应的几个部分--单体、光引发剂和溶剂--会流入拥有一个尖端阵列的微流控室。每个阵列大约有1.5万个聚二甲基硅氧烷的角锥状物以80微米的间隔排列,会使光线照到它们身上,这种光会启动反应,在下面的表面上制作刷状聚合物的图案。如果要用不同的化合物成分组成相邻的图案,只需移动这些尖端即可。然后再将新的单体溶液引入这些微流控室,并重复这一过程。据Braunschweig称,尖端位置控制着打印对象细部的位置,光照射时间决定着聚合反应的程度,也就是对象高度,而单体标识决定着化学成分。该项目的负责人Braunschweig认为,这种4D打印技术的发展潜力巨大,在基因芯片、蛋白质阵列和刺激相应面方面都有很好的应用前景。研究团队的最终目标是重新具有结构复杂性和化学性能的生物接口,比如大面积的细胞表面:“未来还需要走的路很长,但那是我们工作的动力。”这篇研究论文被发表在《Polymer Chemistry》杂志上,其标题为《在一个大规模并行流入式光化学微反应器里进行的4D聚合物打印优化(Optimization of 4D polymer printing within a massively parallel flow-through photochemical microreactor)》。(汶颢芯片www.whchip.com)

  • 听高大上讲座:超临界合相色谱技术的应用,赢得知识与财富哦~

    http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif超临界色谱(下)-超临界合相色谱技术的应用讲座时间:2014年7月24日 10:00 主讲人:杜振霞北京化工大学分析测试中心,教授、博士生导师。主要从事食品中农药、 兽药残留与添加剂的检测,相关技术以及药代动力学的研究等http://img3.17img.cn/bbs/upfile/images/20100518/201005181701392921.gif【简介】本讲内容主要包括如何优化超临界色谱的参数得到较高的分离度,实例应用包括分子量较大,极性较弱的聚合物添加剂的分析,表面活性剂的分析,禁用致敏染料的快速分析,长链脂肪酸的分析等。这些实例体现出超临界色谱不仅可以分析适合正相色谱的物质,同时还可以分析适合反相色谱分析的物质,但由于传质速率的大大提高,分析时间大大缩短,峰型很尖锐。工作效率的大大提高,使其具有较大的应用空间。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名并参会用户有机会获得100元京东卡一张哦~3、报名截止时间:2014年7月24 日 9:30 4、报名参会:http://simg.instrument.com.cn/meeting/images/20100414/baoming.jpg

  • 【原创大赛】超声波技术在环境监测中的应用之预处理技术

    【原创大赛】超声波技术在环境监测中的应用之预处理技术

    超声波技术在环境监测中的应用之预处理技术 超声波是频率高于20000赫兹的声波,它方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。超声波因其频率下限大约等于人的听觉上限而得名。 大家有没有留意过自己的身边有多少利用超声波分析的仪器设备呢?我初略统计了下在环境监测领域中利用超声波的样品预处理技术,和大家分享。1. 超声清洗http://ng1.17img.cn/bbsfiles/images/2012/11/201211031755_401128_1653274_3.jpg清洗的超声波应用原理是由超声波发生器发出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质,清洗溶剂中超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的微小气泡,存在于液体中的微小气泡(空化核)在声场的作用下振动,当声压达到一定值时,气泡迅速增长,然后突然闭合,在气泡闭合时产生冲击波,在其周围产生上千个大气压力,破坏不溶性污物而使它们分散于清洗液中,当团体粒子被油污裹着而粘附在清洗件表面时,油被乳化,固体粒子即脱离,从而达到清洗件表面净化的目的。在环境监测工作中,超声波清洗器常用来清洗有大量油污或盐附着的瓶子或蒸馏器。比如我们做潮汐性河流挥发酚样品后,向蒸馏瓶内加入少量水,用超声波清洗器清洗,很快上面的盐就被洗脱下来。2. 超声破碎细胞http://ng1.17img.cn/bbsfiles/images/2012/11/201211031755_401130_1653274_3.jpg超声波破碎仪相较于超声波清洗仪来说,其功率一般大挺多。原因是超声波破碎仪要对含细胞壁的藻类细胞能同样起到破碎作用,而浮游植物细胞壁的破坏需要更高的能量。超声波清洗仪在环境监测工作中不仅可以用来做叶绿素分析,还能用来做一些生物组织的分析,如鱼肝内毒性物质分析。3. 超声溶解 利用超声波加速试剂的溶解是超声波在我们工作中的另一大应用。这里使用普通的超声波清洗仪就可以。这个我使用了N次了,溶解速度提高真的不是一点点。不过前提是超声不会对试剂的组成造成影响。特别是还原性物质或易挥发物质,在超声过程中可能发生氧化作用和加速挥发,影响后续实验。4. 超声颗粒破碎超声颗粒破碎是样品预处理技术之一。在07年写的一篇论文中我曾经用过该技术。对于含大颗粒物质的水样,如果直接取样,由于污染物会随颗粒分散不均匀,导致取样的代表性比较差,这使得实验结果偏差变大。使用超声波的产生的微小气泡和空化作用,能在短时间内将大颗粒物打散成小颗粒,从而使样品匀质化。5. 超声消解 超声消解主要是利用超声波在介质中的超声空化、自由基氧化、高温热解、超临界水氧化四大效应。利用超声技术与其他技术的联用,可能更好地完成消解工作,具体在另一个原创中我会详述。6. 超声促反应对于某些反应,一定频率的超声波能促进反应的进行。比如在某些酶促反应中,超声波能起到促进作用,这点对于酶联免疫反应的分析方法来说是个很好的消息。貌似这个在现有的酶联免疫中应用还不多吧,研究研究,积累点数据

  • 如何找到聚合反应所需要的固化条件

    环氧树脂(如BPA型)+固化剂(如双氰氨)+促进剂(2MI)聚合反应,如何通过DSC模拟并找到相应的固化条件如需要多少热能固化完全?需要多少度?多长时间?以及最高温度不能超过多少等?什么时候开始反应?什么时候开始分解?

  • 超临界流体萃取

    二氧化碳超临界流体萃取概述 二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为等。目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。   二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。一. 超临界流体萃取的基本原理(一). 超临界流体定义  任何一种物质都存在三种相态-气相、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。  超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。  目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。(二). 超临界流体萃取的基本原理  超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍; 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。  在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。超临界CO2的溶解能力  超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律:1. 亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。2. 化合物的极性基团越多,就越难萃取。3. 化合物的分子量越高,越难萃取。 超临界CO2的特点  超临界CO2成为目前最常用的萃取剂,它具有以下特点:1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。 2.CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。   因此,CO2特别适合天然产物有效成分的提取本文摘自:www.wolsen.com.cn

  • 【原创】超临界色谱与红外连用技术

    超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法。所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间,是气体在一定温度和压力下成为超临界流体,物质在超临界流体中的扩散速度高于在在流体中的扩散速度约100倍,而且它不需要像液相色谱那样需要高压才能通过具有一定阻力的柱子。对于相对分子量比较大、极性强、受热易分解的分子,不能使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],利用超临界色谱可解决问题。当压力解除后,超临界流体即成为气体,极易从分析体系中除去。超临界流体色谱技术是2O世纪80年代发展起来的一种崭新的色谱技术。由于它具有[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相所没有的优点,并能分离和分析[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相色谱不能解决的一些对象,应用广泛,发展十分迅速。据估计,至今约有全部分离的25%涉及难以对付的物质,通过超临界流体色谱能取得较为满意的结果。 (l)与高效液相色谱法比较 实验证明SFC法的柱效一般比HPLC法要高:当平均线速度为0.6cm/S时,SFC法的柱效可为HPLC法的3倍左右,在最小板高下载气线速度是4倍左右;因此SFC法的分离时间也比HPLC法短。这是由于流体的低粘度使其流动速度比HPLC法快,有利于缩短分离时间。   (2)与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法比较 出于流体的扩散系数与粘度介于气体和液体之间,因此SFC的谱带展宽比GC要小;另外,SFC中流动相的作用类似LC中流动相,流体作流动相不仅载带溶质移动,而且与溶质会产生相互作用力,参与选择竞争。还有,如果我们把溶质分子溶解在超临界流体看作类似于挥发,这样,大分子物质的分压很大,因此可应用比GC低得多的温度,实现对大分子物质、热不稳定性化合物、高聚物等的有效分离。  (3)应用范围的比较 SFC比起GC法测定相对分子质量的范围要大出好几个数量级,基本与LC法相当。当然,尺寸排阻色谱法(SEC)所测分子质量范围是所有色谱法中最大的。 超临界色谱与红外联用技术显示了独特的优越性,尤其对一些高沸点、难裂解的化合物,质谱分析难以得到理想的碎片,利用超临界色谱/红外联用技术可完全解决问题。 在超临界流体色谱中,流动相为超临界或亚临界状态下的CO2或以CO2为主,扩散与传质比HPLC快得多,从而它对样品的分离速度要快得多,加上再平衡时间短,因而分析样品的典型循环时间只需1-2分钟。由于SFC流动相的粘度低,色谱柱两端压力降较小,就可以采用更长的色谱柱,还可以多根色谱柱串联。 温度31.1℃/压力7.39Mpa为CO2的超临界点。CO2在超临界或亚临界状态时,具有特别强的渗透作用,溶解能力比气体大得多,甚至超过液体;同时它粘度小,保持了近似气体的扩散能力。 SFC的部件组成与HPLC很相似,包括流动相输送系统(泵、流量缓冲器和混合柱等)、色谱分离系统(进样器、色谱柱和柱温箱等)、检测系统(检测器等)和计算机软件。制备型的超临界流体色谱还包括收集系统。 随着超临界流体色谱技术的发展,愈来愈多的检测器得到了应用,除了通用的HPLC检测器如UV、DAD、MS等等,更有象FID、NCD这样的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器可以用于SFC。这使得SFC的分离检测兼具了液相色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的优点。 超临界流体色谱仪能分离的物质范围涵盖了从高极性的有机酸碱直到低极性的烃类。色谱柱的种类从C18柱一直到极性的二醇基柱和磺酸基柱。

  • 【分享】第七届全国超临界流体技术学术及应用研讨会

    未来化学科技有限公司联合法国SEPAREX公司于2008年7月20日出席第七届全国超临界流体技术学术及应用研讨会。本届超临界流体会将全面展示、总结两年来我国超临界流体科学基础及技术应用领域所取得的最新成果和进展,深入交流和探讨超临界流体技术面临的挑战与机遇。届时,我们将展示法国SEPAREX公司生产的超临界流体设备,包括超临界萃取仪、超临界微粒设计与制备系统、超临界干燥系统、相平衡仪、超临界反应装置、超临界水氧化装置、全透明蓝宝石高压釜、各种高压釜、高压注射泵、超临界流体泵、离心循环泵、蓝宝石视窗高压池等,同时介绍超临界流体的一些应用实例。预祝本次大会取得圆满成功。更多信息欢迎登陆未来化学科技有限公司公司网站(http://www.futurechemtech.com)查询!

  • 超临界CO_2与有机溶剂混合萃取及改质煤的研究

    本文以煤的分级利用为背景,以超临界C02 (SCCO2)与挟带剂混合对煤进行萃取改质,研究了萃取过程中超临界CO2与有机溶剂的作用机理,考察了萃取物、萃余煤的物理化学特性以及萃余煤的气化性能;在半连续超临界萃取装置中使用超临界CO2与煤焦油-N-甲基吡咯烷酮(NMP)混合溶剂共改质褐煤,研究了温度、压力、溶剂配比、粒径等对[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]抽提物组成和改质煤理化特性的影响,对比了原煤和改质煤在元素组成、表面结构、气化活性等方面的差异;分别使用超临界CO2与N-甲基毗咯烷酮(NMP)混合溶剂和超临界CO2-酒精混合溶剂,对煤和石油焦进行改质,研究了温度、压力、溶剂等对改质煤理化特性的影响,考察了原煤和改质煤在元素组成、官能团结构、气化活性等方面的差异;构建了褐煤改质气化工艺系统,进行了工艺系统模拟。主要内容如下:(1)采用超临界CO2与有机溶剂混合对煤进行萃取,研究了挟带剂和超临界CO2混合溶剂的作用机理,考察了煤种、温度、压力和溶剂配比对萃取率的影响,研究了SCCO2-NMP混合溶剂条件下萃取物和萃余煤的理化特性,对比了原煤和萃余煤气化活性的差异。结果表明,实验范围内,混合溶剂的萃取率大于超临界CO2或NMP纯溶剂的萃取率,混合溶剂体积比达到1:1时,萃取率最大;萃取率随着压力升高而增加,但压力超过11MPa后,其影响逐渐减弱;萃取率随温度升高而增加,但温度超过150℃后其影响也逐渐减弱;褐煤和烟煤在SCCO2-NMP混合溶剂中的萃取率随碳含量增加有先增大后减少的趋势,碳含量达到85.12%(无水无灰基)时萃取率达到最大;萃取物中富含羟基及脂、酚、酮类等含氧官能团,超临界CO2的加入增强了溶剂对富含羟基官能团的低分子化合物的萃取效果,减弱了对芳环结构和酚类、醚类等物质的萃取能力;萃取物蒸发后的固体中有类似于原煤的微晶结构,但几乎不含有矿物质,“石墨化”程度小于原煤;与原煤相比,萃余煤的表面会变得松散破碎,孔隙结构发生变化,比表面积减小,平均孔径增大,煤微晶结构堆垛高度减小;不同煤种在混合溶剂条件下得到的萃余煤气化活性都有不同程度改善,萃取率越大,萃余煤的气化活性越高。(2)采用超临界CO2与煤焦油-NMP混合溶剂对云南小龙潭褐煤进行改质,结果表明,改质后煤样的BET比表面积和BJH吸附孔容均增大约2倍,吸附平均孔径减小约20%;改质褐煤的成浆性提高,最大成浆浓度从46%提高到56%,流变指数从0.66变化到0.55附近,煤浆的假塑性流体趋势增强,触变环面积增加了4.5倍,改质后的褐煤水煤浆稳定性良好;改质后煤样的气化活性指数增加了1倍,温度和压力的提高,促使改质煤的活性指数增大,气化特性得以改善。(3)采用超临界CO2与NMP或酒精溶剂对煤和石油焦进行改质,结果表明,超临界C02单一溶剂或混合溶剂萃取有着脱灰脱硫的作用,灰分降低5-10%,硫含量降低0.2-0.4个百分点;改质后的煤和石油焦的气化活性得到了较好的改善,金陵石油焦气化活性的改善程度比印度石油焦高,且超临界CO2-NMP溶剂比超临界C02-乙醇溶剂改质效果好;相比于石油焦,混合溶剂改质对煤的气化活性改善效果更为明显,且超临界CO2-NMP溶剂比超临界C02-乙醇溶剂改质效果好。(4)构建了褐煤改质气化工艺系统,基于小龙潭褐煤改质结果,以多喷嘴对置式水煤浆气化炉为基础,进行了工艺系统模拟,比较了原煤与改质煤气化结果的差异,考察了操作条件对气化结果的影响。结果显示,与原煤相比,改质煤气化的比煤耗降低了26%,比氧耗降低了41%,随着改质煤成浆浓度的提高,比煤耗和比氧耗下降趋势趋于平缓;每千克煤的有效气(CO+H2)产量增加26%,合成气中CO的浓度从26.32%提升到34.38%,H2的浓度从33.68%提升到37.56%,CO2的浓度从38.44%降低到26.61%。

  • 【国产好仪器讨论】之南京先欧仪器制造有限公司的微波超声波组合实验仪(XO-SM)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C127750%2Ejpg&iwidth=200&iHeight=200 南京先欧仪器制造有限公司 的 微波超声波组合实验仪(XO-SM)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 仪器介绍:微波超声波组合反应系统 产品简介:XO-SM系列超声微波组合反应系统获得国家发明专利号:200712134456.2,本产品由超声波、微波技术协同作用,具有超声和微波功率可调、可定时、温度等可控功能。适用于快速、高效、可控合成药物、有机化合物、无机化合物及纳米材料,具有化学选择性高、产物结晶度高、对无机、高分子聚合、金属纳米材料产品粒径非常均匀,而且可以有效克服有机物参与下的化学反应进行长时间反应产生的炭化现象等特点。通过本技术方案,可以使反应速度比单一微波或超声波催化方法加快许多倍,同时提高反应选择性和收率,使过去许多难以发生或速度很慢的化学反应或物理过程变得容易实现和高速完成。该设备包括超声波装置,微波装置,循环冷水机、升降装置、冷凝回流装置。超声波装置包括超声探头、超声波换能器、超声波电源、超声温度控制显示器、超声时间控制显示器、超声功率控制显示器;微波装置包括磁控管、波导、微波温度控制显示器、微波时间控制显示器、微波功率控制显示器;循环冷水机装置包括温度控制显示器(最低工作温度(-80℃)、时间显示控制器,循环泵;冷凝装置包括回流式冷凝器、三角瓶、玻璃导管、密封塞及循环保温材料。 南京先欧仪器制造有限公司【XO系列新款超声波微波组合反应系统】 型号 超声功率 超声频率 微波功率 微波频率 处理量 超声探头直径(随机) XO-SM50 0~900W 25KHZ 0~700W 2450MHZ 0.5~500ml Φ6 XO-SM100 0~1000W 25KHZ 0~1000W 2450MHZ 50~800ml Φ10 XO-SM200 0~1200W 25KHZ 0~1200W 2450MHZ 100~1500ml Φ20 XO-SM300 0~1800W 25KHZ 0~1800W 2450MHZ 300~3000ml Φ30 XO-SM400 0~2500W 25KHZ 0~3000W 2450MHZ 400~4000ml Φ40 XO-SM500 0~3500W 25KHZ 0~5000W 2450MHZ 1~12L Φ30(配两支发生器) 系统特点: ●系列超声波微波组合反映系统具有微波、超声波、微波超声波单独控制和协同功能,系统具有可灵活组合特....【了解更多此仪器设备的信息】

  • 【资料】-超临界萃取的技术原理、特点和应用

    一、超临界萃取的技术原理    超临界CO2流体萃取(SFE)分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 二、超临界萃取的特点    1、超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来;    2、使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了100%的纯天然性;    3、萃取和分离合二为一,当饱和的溶解物的CO2流体进入分离器时,由于压力的下降或温度的变化,使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取的效率高而且能耗较少,提高了生产效率也降低了费用成本; 4、CO2是一种不活泼的气体,萃取过程中不发生化学反应,且属于不燃性气体,无味、无臭、无毒、安全性非常好; 5、CO2气体价格便宜,纯度高,容易制取,且在生产中可以重复循环使用,从而有效地降低了成本;    6、压力和温度都可以成为调节萃取过程的参数,通过改变温度和压力达到萃取的目的,压力固定通过改变温度也同样可以将物质分离开来;反之,将温度固定,通过降低压力使萃取物分离,因此工艺简单容易掌握,而且萃取的速度快。 三、超临界CO2萃取技术的应用    超临界CO2萃取的特点决定了其应用范围十分广阔。如在医药工业中,可用于中草药有效成份的提取,热敏性生物制品药物的精制,及脂质类混合物的分离;在食品工业中,啤酒花的提取,色素的提取等;在香料工业中,天然及合成香料的精制;化学工业中混合物的分离等。具体应用可以分为以下几个方面:    1、从药用植物中萃取生物活性分子,生物碱萃取和分离;    2、来自不同微生物的类脂脂类,或用于类脂脂类回收,或从配糖和蛋白质中去除类脂脂类;    3、从多种植物中萃取抗癌物质,特别是从红豆杉树皮和枝叶中获得紫杉醇防治癌症;    4、维生素,主要是维生素E的萃取;    5、对各种活性物质(天然的或合成的)进行提纯,除去不需要分子(比如从蔬菜提取物中除掉杀虫剂)或“渣物”以获得提纯产品;    6、对各种天然抗菌或抗氧化萃取物的加工,如罗勒、串红、百里香、蒜、洋葱、春黄菊、辣椒粉、甘草和茴香子等。 来源:中国色谱网[em61]

  • 【转帖】超临界流体萃取技术

    1、技术原理 超临界流体萃取分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界流体萃取过程是由萃取和分离组合而成的。 2、工艺流程超临界流体萃取的工艺流程如下:3.萃取装置 超临界萃取装置可以分为两种类型,一是研究分析型,主要应用于小量物质的分析,或为生产提供数据。二是制备生产型,主要是应用于批量或大量生产。 超临界萃取装置从功能上大体可分为八部分:萃取剂供应系统,低温系统、高压系统、萃取系统、分离系统、改性剂供应系统、循环系统和计算机控制系统。具体包括二氧化碳注入泵、萃取器、分离器、压缩机、二氧化碳储罐、冷水机等设备。由于萃取过程在高压下进行,所以对设备以及整个管路系统的耐压性能要求较高,生产过程实现微机自动监控,可以大大提高系统的安全可靠性,并降低运行成本。4.超临界流体萃取的特点 超临界流体萃取与化学法萃取相比有以下突出的优点:(1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的全部成分,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来;(2)使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留溶媒,同时也防止了提取过程对人体的毒害和对环境的污染,是100%的纯天然;(3)萃取和分离合二为一,当饱含溶解物的CO2-SCF流经分离器时,由于压力下降使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取效率高而且能耗较少,节约成本;(4)CO2是一种不活泼的气体,萃取过程不发生化学反应,且属于不燃性气体,无味、无臭、无毒,故安全性好;(5)CO2价格便宜,纯度高,容易取得,且在生产过程中循环使用,从而降低成本;(6)压力和温度都可以成为调节萃取过程的参数。通过改变温度或压力达到萃取目的。压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离,因此工艺简单易掌握,而且萃取速度快。

  • 超声波对生物细胞的三种作用

    超声波是一种弹性机械波,同时,也是一种能量形式,当达到一定剂量的超声在生物体内传播时,通过它们之间的相互作用,能引起生物体的功能和结构发生变化。超声波对生物细胞的作用效应主要有热效应、空化效应和机械效应三种。1、热效应:超声在介质中传播时,由于摩擦力对超声引起的分子震动的的阻碍,使得超声波的部分能量转化为了局部热能。正常组织的临界致死温度为45.7℃,而对温度较为敏感的肿瘤组织在此温度下常常发生细胞的代谢障碍,使肿瘤组织的DNA、RNA、蛋白质等重要生物大分子的合成受到严重影响。医学上利用超声波对生物细胞的热效应而发明的超声波治疗仪即是能对癌细胞产生杀伤作用却不影响正常组织生理代谢。2、空化效应:指在超声作用下,生物体内的水分子会形成微小空泡,伴随空泡生长和破裂产生的巨大机械剪切力和高温,使肿瘤出血、组织瓦解以致坏死。另外,空化泡破裂时产生瞬时高温(约5000℃)、高压(可达500×104Pa),可使水蒸气热解离产生.OH自由基和.H原子,由.OH自由基和.H原子引起的氧化还原反应可导致多聚物降解、酶失活、脂质过氧化和细胞杀伤。3、机械效应:是超声引起的原发效应,超声波在传播过程中介质质点交替地压缩与伸张构成了压力变化,引起细胞结构损伤。超声机械效应杀伤作用的强弱与超声的频率和强度密切相关。利用超声波对生物细胞的三大作用而发明的仪器设备广泛应用于基础研究领域的细胞破碎乳化、医疗系统的疾病诊断、超声治疗等各个行业领域。

  • 【转帖】二氧化碳超临界流体萃取!

    二氧化碳超临界流体萃取概述 二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为食品添加剂等。目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。   二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的分离技术, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。一. 超临界流体萃取的基本原理 (一). 超临界流体定义  任何一种物质都存在三种相态-[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。  超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。  目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。(二). 超临界流体萃取的基本原理  超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。  在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。超临界CO2的溶解能力  超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律:1. 亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。2. 化合物的极性基团越多,就越难萃取。3. 化合物的分子量越高,越难萃取。 超临界CO2的特点  超临界CO2成为目前最常用的萃取剂,它具有以下特点:1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。 2.CO2化学性质不活波,无色无味无毒,安全性好。 3.价格便宜,纯度高,容易获得。   因此,CO2特别适合天然产物有效成分的提取。

  • 超临界萃取新技术在中药提取分离中的应用

    一、 中药产业化形势及应用新技术的意义 中药为我国传统医药,用中药防病治病在我国具有悠久的历史。由于化学药品的毒副作用逐渐被人们所认识及合成一个新药又需巨大的投资,西医西药对威胁人类健康的常见病、疑难病的治疗药物还远远不能满足临床的需要,因此,全世界范围内掀起了中医中药热。面对科学技术,特别是医药工业的迅猛发展,国际间医药学术交流活动的日益频繁以及药品市场竞争越来越激烈,实现中药现代化,与国际接轨,已成为中医药工作者的共识。改革开放到党的十五大,我国明确了中药发展的战略方向和思路,提出"科教兴业"的战略主体目标,中药的发展迈进了一大步。中药生产中的大桶煮提、大锅蒸熬及匾、勺、缸类生产器具当家的状况大为改善,进而出现不锈钢多功能提取罐、外循环蒸发、多效蒸发器,流化干燥器等设备,中成药的剂型也有较大的发展,由丸、散、膏、丹剂为主发展成为具有颗粒剂、片剂、胶囊剂、口服液及少量粉针等剂型。中药产值比1979年翻了五番,约占医药工业产值的30%以上。然而,我国现阶段创制的中成药还难以在国外注册、合法销售与使用。从目前全世界天然药物的贸易额来看,中国仅占1%左右,与天然药物主产国的地位极不相称。其原因主要是产业现代工程技术水平不高,制备工艺和剂型现代化方面还很落后;生产过程的许多方面缺乏科学的、严格的工艺操作参数,不仅导致了消耗高、效率低,而且还出现有效成分损失、疗效不稳定、剂量大服用不方便、产品外观颜色差、内在质量不稳定;同时还出现缺少系统的量化指标,大多数产品缺乏疗效基本一致的内在质量标准;许多复方制剂还难以搞清楚其作用的物质基础。"丸、散、膏、丹,神仙难辨"的状况尚未根本改变。要改变这种现状,让西方医药界接受中药,增强中药在国际市场上的竞争地位,主要途径是,以中药理论为指导,采用先进的技术,实现中药现代化。中药产品现代化的重点可简单地用8个字来描述,即"有效、量小、安全、可控"。实际上,它涉及范围十分广泛,要解决的问题比较复杂,但首先最关键的问题就是要提取分离工艺、制剂工艺现代化,质量控制标准化、规范化。为此,许多医药专家多次提出要采用超临界流体技术、分子蒸馏技术、膜分离技术、冷冻干燥技术、微波辐射诱导萃取技术、缓控释制剂技术、各种先进的色谱、光谱分析等先进技术,进行中药研究开发及产业化。在国家有关部门的主持下,1998年3月底,来自全国及香港20多个单位的60多位专家学者聚集厦门大学,探讨了中药现代化问题,特别是中药复杂体系中重大科学基础问题,超临界流体技术、分子蒸馏技术、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]等同时也被提出来。 超临界CO2萃取技术、分子蒸馏技术、超重力场技术是目前国际上较新的三大提取分离技术、采用这些技术对中药进行提取分离纯化,对实现中药现代化具有重要意义。 中国作为全球中药材大国,随着我国入世的临近,更应在推动中药现代化、成果产业化进程中发挥重要作用,使中国的资源优势转化为经济优势,并使我国中药现代化的重大举措得以实现。二、 超临界CO2流体萃取新技术在中药提取分离中的应用 超临界流体(Supercritical Fluid,简称SF或SCF)是指超临界温度(Tc)和临界压力(Pc)状态下的高密度流体。超临界流体具有气体和液体的双重特性,其粘度与气体相似,但扩散系数比液体大得多,其密度和液体相近。超临界流体对物质进行溶解和分离的过程就叫超临界流体萃取(Supercritical Fluid Extraction,简称SFE)。其基本原理为:CO2的临界温度(Tc)和临界压力(Pc)分别为31.05℃和7.38MPa,当处于这个临界点以上时,此时的CO2同时具有气体和液体双重特性。它既近似于气体,粘度与气体相近;又近似于液体,密度与液体相近,但其扩散系数却比液体大得多。是一个优良的溶剂,能通过分子间的相互作用和扩散作用将许多物质溶解。同时,在稍高于临界点的区域内,压力稍有变化,即引起其密度的很大变化,从而引起溶解度的较大变化。因此,超临界CO2可以从基体中将物质溶解出来,形成超临界CO2负载相,然后降低载气的压力或升高温度,超临界CO2的溶解度降低,这些物质就沉淀出来(解析)与CO2分离,从而达到提取分离的目的。不同的物质由于在CO2中的溶解度不同或同一物质在不同的压力和温度下溶解状况不同,使这种提取分离过程具有较高的选择性。1、 超临界CO2流体萃取技术在中药现代化中应用的优越性 用超临界CO2萃取技术进行中药研究开发及产业化,和中药传统方法相比,具有许多独特的优点。 1.1 萃取能力强,提取率高。用超临界CO2提取中药有效成分,在最佳工艺条件下,能将要提取的成分几乎完全提取,从而大大提高产品收率和资源的利用率。同时,随着超临界CO2萃取技术的不断进步,全氟聚醚碳酸铵(PFPE)的应用,把超临界CO2萃取扩展到水溶液体系,使得难以提取的强极性化合物如蛋白质等的超临界CO2提取已成为可能。 1.2 萃取能力的大小取决于流体的密度,最终取决于温度和压力,改变其中之一或同时改变,都可改变溶解度,可以有选择地进行中药中多种物质的分离,从而可减小杂质使中药有效成分高度富集。便于减小剂量和质量控制,产品外观大为改善。 1.3 超临界CO2临界温度低,操作温度低,能较完好地保存中药有效成分不被破坏,不发生次生化。因此,特别适合那些对热敏感性强、容易氧化分解破坏的成分的提取。 1.4 提取时间快、生产周期短。超临界CO2提取(动态)循环一开始,分离便开始进行。一般提取10分钟便有成分分离析出,2-4小时左右便可完全提取。同时,它不需浓缩步骤,即使加入夹带剂,也可通过分离功能除去或只是简单浓缩。 1.5 超临界CO2提取,操作参数容易控制,因此,有效成分及产品质量稳定。 1.6 超临界CO2还可直接从单方或复方中药中提取不同部位或直接提取浸膏进行药理筛选,开发新药,大大提高新药筛选速度。同时,可以提取许多传统法提不出来的物质,且较易从中药中发现新成分,从而发现新的药理药性,开发新药。 1.7 超临界CO2还具有抗氧化、灭菌作用,有利于保证和提高产品质量。 1.8 超临界流体萃取应用于分析或与GC、IR、MS、LC等联用成为一种高效的分析手段。将其用于中药质量分析,能客观地反映中药中有效成分的真实含量。 1.9 经药理、临床证明,超临界CO2提取中药,不仅工艺上优越,质量稳定且标准容易控制,其药理、临床效果能够保证或更好。 1.10 超临界CO2萃取工艺,流程简单,操作方便,节省劳动力和大量有机溶剂,减小三废污染,这无疑为中药现代化提供了一种高新的提取、分离、制备及浓缩新方法。2、 超临界CO2流体萃取技术在中药提取分离及中药现代化中的应用方式及前景 从"八五"期间国家"八五"攻关项目"超临界CO2萃取技术在中草药生产中的应用研究与开发"到"九五"期间承担多项中国重点项目(有关SFE技术研究开发中药新药)以来,包括萃取分离研究和药理毒理研究及新药的开发研究,取得了重要的科技成果:①证明了超临界CO2萃取技术可应用于中药领域;②总结了SFE在中药中应用的规律性;③提出较为适合中药萃取的超临界设备结构类型;④总结了超临界CO2萃取中药的优越性,证明了用超临界CO2萃取中药,不仅工艺上优越,而且还能保持中药本身的药理活性;⑤研究开发出一批具有较好前景的品种,有的已工业化,走向市场。根据研究开发实践,认为超临界流体萃取技术应用于中药提取分离及中药现代化,具有较大的潜力和可观前景。SFE应用于中药,结合几个典型的研究开发实例,可将其分为如下几个方面。 2.1 SFE与中药有效成分或中间原料的提取 这一方面主要是指那些已具备质量标准的单体或有效部位的提取,往往本身就是产品,只要达到标准,便可进入市场。这是SFE技术应用于该领域中的较为容易进行的一个方面。 2.1.1超临界流体萃取法从黄花中提取青蒿素(Artemisinin)的新工艺。青蒿素来自菊科植物黄花蒿(Artemisia annua)的一种倍半萜内酯类成分,是我国唯一得到国际承认的抗疟新药。然而本应属于中国的东西,中国仅占国际市场份额的0.5%。传统的汽油法存在收率低、成本高、存在易燃易爆等危险,用SFE工艺,从0.1升、5升设备小试到25升、50升设备中试放大,一直到200升设备的工业化生产证明,超临界CO2萃取工艺可用于青蒿素的生产,青蒿素产品符合中国药品标准。超临界CO2萃取工艺比传统法(如汽油法)优越,产品收率提高1.9倍,生产周期缩短约100小时,成本降低447/Kg,可节省大量的有机溶剂汽油,避免易燃易爆的危险,减少三废污染,大大简化生产工艺。该新工艺已取得发明专利证书。在最近召开的中国青蒿素成果产业化发展战略研讨会上,已初步决定推广这种新工艺,以达到占国际市场份额的3-5%的目标。 2.1.2 贯叶连翘提取物的超临界CO2萃取 贯叶连翘提取物是目前国际流行的十大植物提取物之一,主要用于治疗忧郁症。提取物是用贯叶连翘药材经水煮或醇提、浓缩、干燥而得。采用超临界CO2萃取工艺,达到出口标准,

  • 【转帖】如何选购超声波清洗机

    超声波清洗机超声波清洗是基于空化作用,即在清洗液中无数气泡快速形成并迅速内爆。由此产生的冲击将浸没在清洗液中的工件内外表面的污物剥落下来。随着超声频率的提高,气泡数量增加而爆破冲击力减弱,因此,高频超声特别适用于小颗粒污垢的清洗而不破环其工件表面。气泡是在液体中施加高频(超声频率)、高强度的声波而产生的。因此,任何超声清洗系统都必须具备三个基本元件:盛放清洗液的槽、将电能转化为机械能的换能器以及产生高频电信号的超声波发生器。换能器和发生器超声清洗系统最重要的部分是换能器。现存两种换能器,一种是磁力换能器,由镍或镍合金制成;一种压电换能器,由锆钛酸铅或其他陶瓷制成。将压电材料放入电压变化的电场中时,它会发生变形,这就是所谓的“压电效应”。相对来说,磁力换能器是用会在变化的磁场中发生变形的材料制成的。无论使用何种换能器,通常最基本的因素为其产生的空化效应的强度。超声波和其他声波一样,是一系列的压力点,即一种压缩和膨胀交替的波。如果声能足够强,液体在波的膨胀阶段被推开,由此产生气泡;而在波的压缩阶段,这些气泡就在液体中瞬间爆裂或内爆,产生一种非常有效的冲击力,特别适用于清洗。这个过程被称做空化作用。从理论上分析,爆裂的空化泡会产生超过10,000 psi的压力和20,000 ℉ (11,000 ℃) 的高温,并在其爆裂的瞬间冲击波会迅速向外辐射。单个空化泡所释放的能量很小,但每秒钟内有几百万的空化泡同时爆裂,累计起来的效果将是非常强烈的,产生的强大的冲击力将工件表面的污物剥落,这就是所有超声清洗的特点。 如果超声能量足够大,空化现象会在清洗液各处产生,所以超声波能够有效清洗微小的裂缝和孔。空化作用也促进了化学反应并加速了表面膜的溶解。然而只有在某区域的液体压力低于该气泡内气体压力时才会在该区域产生空化现象,故由换能器产生的超声波振幅足够大时才能满足这一条件。产生空化所需的最小功率被称做空化临界点。不同的液体存在不同的空化临界点,故超声波能量必须超过该临界点才能达到清洗效果。也就是说,只有能量超过临界点才能产生空化泡,以便进行超声清洗。

  • 超声波细胞破碎仪原理及用途

    超声波是物质介质中的一种弹性机械波,它是一种波动形式,因此它可以用于探测人体的生理及病理信息,既诊断超声。同时,它又是一种能量形式,当达到一定剂量的超声在生物体内传播时,通过它们之间的相互作用.超声波是物质介质中的一种弹性机械波,它是一种波动形式,因此它可以用于探测人体的生理及病理信息,既诊断超声。同时,它又是一种能量形式,当达到一定剂量的超声在生物体内传播时,通过它们之间的相互作用,能引起生物体的功能和结构发生变化,即超声生物效应。超声对细胞的作用主要有热效应,空化效应和机械效应。热效应是当超声在介质中传播时,摩擦力阻碍了由超声引起的分子震动,使部分能量转化为局部高热(42-43℃),因为正常组织的临界致死温度为45.7℃,而肿瘤组织比正常组织敏感性高,故在此温度下肿瘤细胞的代谢发生障碍,DNA、RNA、蛋白质合成受到影响,从而杀伤癌细胞而正常组织不受影响。空化效应是在超声照射下,生物体内形成空泡,随着空泡震动和其猛烈的聚爆而产生出机械剪切压力和动荡,使肿瘤出血、组织瓦解以致坏死。另外,空化泡破裂时产生瞬时高温(约5000℃)、高压(可达500×104Pa),可使水蒸气热解离产生.OH自由基和.H原子,由.OH自由基和.H原子引起的氧化还原反应可导致多聚物降解、酶失活、脂质过氧化和细胞杀伤。机械效应是超声的原发效应,超声波在传播过程中介质质点交替地压缩与伸张构成了压力变化,引起细胞结构损伤。杀伤作用的强弱与超声的频率和强度密切相关。工作原理 同时,它又是一种能量形式,当达到一定剂量的超声在生物体内传播时,通过它们之间的相互作用.超声波是物质介质中的一种弹性机械波,它是一种波动形式,因此它可以用于探测人体的生理及病理信息,既诊断超声。同时,它又是一种能量形式,当达到一定剂量的超声在生物体内传播时,通过它们之间的相互作用,能引起生物体的功能和结构发生变化,即超声生物效应。超声对细胞的作用主要有热效应,空化效应和机械效应。热效应是当超声在介质中传播时,摩擦力阻碍了由超声引起的分子震动,使部分能量转化为局部高热,因为正常组织的临界致死温度为45.7℃,而肿瘤组织比正常组织敏感性高,故在此温度下肿瘤细胞的代谢发生障碍,DNA、RNA、蛋白质合成受到影响,从而杀伤癌细胞而正常组织不受影响。空化效应是在超声照射下,生物体内形成空泡,随着空泡震动和其猛烈的聚爆而产生出机械剪切压力和动荡,使肿瘤出血、组织瓦解以致坏死。另外,空化泡破裂时产生瞬时高温、高压,可使水蒸气热解离产生.OH自由基和.H原子,由.OH自由基和.H原子引起的氧化还原反应可导致多聚物降解、酶失活、脂质过氧化和细胞杀伤。机械效应是超声的原发效应,超声波在传播过程中介质质点交替地压缩与伸张构成了压力变化,引起细胞结构损伤。杀伤作用的强弱与超声的频率和强度密切相关。超声波细胞破碎仪的原理并不是太神秘、太复杂。简单说就是将电能通过换能器转换为声能,这种能量通过液体介质而变成一个个密集的小气泡,这些小气泡迅速炸裂,产生的象小炸弹一样的能量,从而起到破碎细胞等物质的作用

  • 【原创大赛】超临界流体色谱的介绍和应用

    【原创大赛】超临界流体色谱的介绍和应用

    [align=center][b]超临界流体色谱的介绍和应用[/b][/align][align=center][b]西安国联质量检测技术股份有限公司[/b][/align][align=center][b]安平中心:薛凯路[/b][/align]超临界流体作为流动相的色谱方法,是20世纪80年代以来发展迅速的一个色谱分支,所谓超临界流体,是指在高于临界压力和临界温度时的一种物质状态。它既不是气体,也不是液体,但它兼有气体的低粘度、液体的高密度以及介于气、液之间较高的扩散系数等特性。从理论上说SFC既可以分析GC法难以处理的高沸点、不挥发性样品,又有比HPLC法更高的柱效和更短的分离时间,且可使用二者常用的检测器,也可与MS、FT-IR光谱仪等在线联接,因而可以方便地进行定性、定量分析。在中药药物分析领域已有愈来愈多的应用。SFC超临界流体色谱法在手性化合物的分析中越来越多使用。1.原理什么是超临界流体,对于某些纯物质来说,具有三相点和临界点,如图所示,从图中可以看出,物质在三相点,气、液、固三态处于平衡状态,当处于临界温度和临界压力以上时,则不论施加多大压力,气体也不会液化,此时即非气体,也非液体,而是以超临界流体形式存在。[align=center][img=,296,236]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081543_01_2904018_3.png[/img][/align]2.流动相和添加剂CO2的超临界流体性质化学反应性低, 惰性,无毒性,安全,临界点:T=31℃ , P=73 bar(1066psi),超临界CO2 理化性质类似于正己烷,易获得,成本低廉常作为弱洗脱剂。强洗脱剂一般为醇类,常用甲醇,乙醇,异丙醇。为了得到较好的峰形,有时候常常使用添加剂如:氨水等等。3. 手性柱正相直链淀粉衍生物 CHIRALPAK AD / AD-H CHIRALPAK AS / AS-H纤维素衍生物 CHIRALCEL OD / OD-H CHIRALCEL OJ / OJ -H CHIRALCEL OA, OB, OC CHIRALCEL OF, OG, OK CHIRALCEL CA-1[b]反相[/b]CHIRALPAK[sup][/sup] AD -RHCHIRALPAK[sup][/sup] AS -RHCHIRALCEL[sup][/sup] OD-RH CHIRALCEL[sup][/sup] OJ -RH[b]共价键合型-新产品[/b] CHIRALPAK[sup] [/sup]IA CHIRALPAK[sup][/sup] IB[b]其它[/b] CROWNPAK[sup][/sup] [b]CR (+), (-)[/b] CHIRALPAK[sup][/sup] OT(+), OP (+) CHIRALPAK[sup][/sup] WH, MA (+) CHIRALPAK[sup] [/sup] QD-AX CHIRALPAK [sup][/sup] QN-AX4. Thar 80 主要部件主要有进样器,溶剂泵,CO2泵,检测器,背压器等部件,具体如图所示。[align=center][img=,690,467]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081543_02_2904018_3.png[/img] [/align][align=center] [img=,437,609]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081544_01_2904018_3.png[/img][/align]5. 总结SFC仪器较特殊的两点1.保持一定温度:二氧化碳流经的管路有温控措施,将温度控制在35℃。2.保持一定压力:有一个限流器(或称备压装置)。为了保持在整个系统中二氧化碳一直保持超临界流体状态,一般反压设置为100bar。3.粘度近于气体,比液体低得多,可减少柱过程阻力,采用细长色谱柱以增加柱效 。(优于HPLC)4.扩散系数在气体和液体之间,具有较快的传质速度,使分析速度加快,峰型变窄,增加检测灵敏度 。(优于GC)

  • 【转帖】超声波清洗原理介绍

    一、超声波清洗原理 超声波清洗原理:超声波清洗机是通过超声波发生器将高于20KHz频率的有震荡信号进行电功率放大后经超声波换能器(震头)的逆压电效应转换成高频机械振动能量通过清洗介质中的声辐射,使清洗液分子振动并产生无数微小气泡。气泡沿超声传播方向在负压区形成、生长,并在正压区迅速闭合而产生上千个大气压的瞬间高压而爆破,形成无数微观高压冲击波作用于被清洗工件表面。此即超声波清洗中的“空化效应”。超声波清洗机就是基于“空化效应”的基本原理工作的,也因此,超声清洗对具有内外结构复杂、微观不平表面、狭缝、小孔、拐角、死角、元件密集等特点的工件均具有卓越的洗净能力,是其他清洗方法无可比拟的。随着超声频率的提高,气泡数量增加而爆破冲击力减弱,设备因此,高频超声特别适用於小颗粒污垢的清洗而不破环其工件表面。 二、空化泡的扩大以及爆裂(内爆) 气泡是在液体中施加高频(超声频率)、高强度的声波而产生的。因此,任何超声清洗系统都必须具备三个基本元件:盛放清洗液的槽、将电能转化为机械能的换能器以及产生高频电信号的超声波发生器。 三、换能器和发生器 超声清洗系统最重要的部分是换能器。现存两种换能器,一种是磁力换能器,由镍或镍合金制成;一种压电换能器,由锆钛酸铅或其他陶瓷制成。将压电材料放入电压变化的电场中时,它会发生变形,这就是所谓的'压电效应'。相对来说,磁力换能器是用会在变化的磁场中发生变形的材料制成的。无论使用何种换能器,通常最基本的因素为其产生的空化效应的强度。超声波和其它声波一样,是一系列的压力点,即一种压缩和膨胀交替的波。如果声能足够强,液体在波的膨胀阶段被推开,由此产生气泡;而在波的压缩阶段,这些气泡就在液体中瞬间爆裂或内爆,产生一种非常有效的冲击力,特别适用於清洗。这个过程被称做空化作用。 四、声波的压缩和膨胀 从理论上分析,爆裂的空化泡会产生超过10,000psi的压力和20,000°F(11,000°C)的高温,并在其爆裂的瞬间冲击波会迅速向外辐射。单个空化泡所释放的能量很小,但每秒钟内有几百万的空化泡同时爆裂,累计起来的效果将是非常强烈的,产生的强大的冲击力将工件表面的污物剥落,这就是所有超声清洗的特点。如果超声能量足够大,空化现象会在清洗液各处产生,所以超声波能够有效清洗微小的裂缝和孔。空化作用也促进了化学反应并加速了表面膜的溶解。然而只有在某区域的液体压力低于该气泡内气体压力时才会在该区域产生空化现象,故由换能器产生的超声波振幅足够大时才能满足这一条件。产生空化所需的最小功率被称做空化临界点。不同的液体存在不同的空化临界点,故超声波能量必须超过该临界点才能达到清洗效果。也就是说,只有能量超过临界点才能产生空化泡,以便进行超声清洗。 五、频率的重要性 当工作频率很低(在人的听觉范围内)就会产生噪音。当频率低於20kHz时,工作噪音不仅变得很大,而且可能超出职业安全与保健法或其他条例所规定的安全噪音的限度。在需要高功率去除污垢而不用考虑工件表面损伤的应用中,通常选择从20kHz到30kHz范围内的较低清洗频率该频率范围内的清洗频率常常被用于清洗大型、重型零件或高密度材料的工件。高频通常被用于清洗较小、较精密的零件,或清除微小颗粒。高频还被用于被工件表面不允许损伤的应用。使用高频可从几个方面改善清洗性能。随着频率的增加,空化泡的数量呈线形增加,从而产生更多更密集的冲击波使其能进入到更小的缝隙中。如果功率保持不变,空化泡变小,其释放的能量相应减少,这样有效地减小了对工件表面的损伤。高频的另一个优势在于减小了粘滞边界层(泊努里效应),使得超声波能够'发现'极细小的微粒。zzo9深圳侨波超声新设备有限公司提供了一系列频率的产品,有28KHz、32KHz、40kHz。 六、超声清洗的优越性 高精度:由于超声波的能量能够穿透细微的缝隙和小孔,故可以应用与任何零部件或装配件清洗。被清洗件为精密部件或装配件时,超声清洗往往成为能满足其特殊技术要求的唯一的清洗方式; 快速:超声清洗相对常规清洗方法在工件除尘除垢方面要快得多。装配件无须拆卸即可清洗。超声清洗可节省劳动力的优点往往使其成为最经济的清洗方式; 一致:无论被清洗件是大是小,简单还是复杂,单件还是批量或在自动流水线上,使用超声清洗都可以获得手工清洗无可比拟的均一的清洁度。 七、超声清洗工艺及清洗液的选择 在购买清洗系统之前,应对被清洗件做如下应用分析:明确被洗件的材料构成、结构和数量,分析并明确要清除的污物,这些都是决定所要使用什么样的清洗方法,判断应用水性清洗液还是用溶剂的先决条件。最终的清洗工艺还需做清洗实验来验证。只有这样,才能提供合适的清洗系统、设计合理的清洗工序以及清洗液。 八、清洗液的选择 考虑到清洗液的物理特性对超声清洗的影响,其中蒸汽压、表面张力、黏度以及密度应为最显着的影响因素。温度能影响这些因素,所以它也会影响空化作用的效率。任何清洗系统必须使用清洗液。 选择清洗液时,应考虑以下三个因素: 1.清洗效率:选择最有效的清洗溶剂时,一定要做实验。如在现有的清洗工艺中引入超声,使用的溶剂一般不必变更; 2.操作简单:所使用的液体应安全无毒、操作简单且使用寿命长; 3.成本:最廉价的清洗溶剂的使用成本并不一定最低。使用中必须考虑到溶剂的清洗效率、安全性、一定量的溶剂可清洗多少工件利用率最高等因素。当然,所选择的清洗溶剂必须达到清洗效果,并应与所清洗的工件材料相容。水为最普通的清洗液,故使用水基溶液的系统操作简便、使用成本低、应用广泛。然而对某些材料以及污垢等并不适用于水性溶液,那么还有许多溶剂可供选用。 九、两种由清洗液不同而区分的清洗系统 水性系统:通常由敞口槽组成,工件浸没其中。而复杂的系统会由多个槽组成,并配备循环过滤系统、冲淋槽、干燥槽以及其它附件。溶剂系统:多为超声波汽相除油脂清洗机,常配备废液连续回收装置。超声波汽相清除油脂过程是由溶剂蒸发槽和超声浸洗槽组成的集成式多槽系统完成的。在热的溶剂蒸汽和超声激荡共同作用下,油、脂、蜡以及其他溶于溶剂的污垢就被除去。经过一系列清洗工序后下料的工件发热、洁净、干燥。 十、清洗件处理 超声清洗的另一个考虑因素是清洗件的上、下料或者说是放置清洗件的工装的设计。清洗件在超声清洗槽内时,无论清洗件还是清洗件篮都不得触及槽底。清洗件总的横截面积不应超过超声槽横截面积的70%。橡胶以及非刚化塑料会吸收超声波能量,故将此类材料用于工装时应谨慎。绝缘的清洗件也应引起特别注意。工装篮设计不当,或所盛工件太重,纵使最好的超声清洗系统的效率也会被大大降低。钩子、架子以及烧杯都可用来支持清洗件。[em0815] 中国心

  • 【资料】放射性废弃物的超临界水氧化: 从反应器设计到有毒废弃物的热水处理

    放射性废弃物的超临界水氧化: 从反应器设计到有毒废弃物的热水处理 摘要: 核工业将产生混有放射性元素和有机溶剂的一些有机废弃物,通常的工艺方法无法处理,尤其是高浓度的含氯的化合物。基于以前在原子能和高压领域经验,我们进行了有前景的超临界水氧化工艺的研究:处理氯化的高污染性废物。超临界水氧化工艺有两个众所周知的局限,阻碍了非纯有机废物处理的工业化发展:腐蚀和盐阻塞。 几代反应器设计,都是为了克服这些缺点。这里介绍未来化学科技有限公司进行的策略和方法,用于获得最终的工业工艺,应用于核废物的处理。也提高了含氯和高浓度矿物盐的危险废弃物的热水处理。 废弃物处理至今仍是一个最有趣的话题。危险废弃物,如核工业产生的有毒化合物或放射性有机化合物,无法使用传统的生物处理或热处理。因而,一定要开发对人和环境无害的新方法。超临界水氧化工艺,用于有机化合物在超临界水(临界压力22.1 MPa和临界温度647 K)中进行处理,看起来是一项处理这些危险废弃物的好技术。 超临界水氧化的优点在于水在超临界条件下的特殊物理性质。超临界水的均相和高扩散使快速反应和获得高处理率成为可能。此外,氧化剂被限制并允许流出物控制。 碳氢化合物被完全氧化成CO2和水,有机化合物中的N形成分子氮N2和少量的N2O,因此气态流出物中没有污染物质,如NOx。杂环原子如氯、磷或硫的矿物酸,分别为HCl, H3PO4H2SO4。 这些酸和氧化剂产生了腐蚀环境,任何材料均会受到腐蚀的侵袭。这一现象在卤化化合物的出现时得到强化。为了防止反应器被腐蚀,经常加入碱金属作为中和试剂。这导致了无机盐的形成。一方面无机盐在常温常压水中有非常高的溶解性,另外一方面,他们在超临界条件水出是不溶的,因为超临界水的低密度和小介电常数。结果导致了盐的析出,并在管壁上结垢。腐蚀和盐析出是超临界水工艺的两个主要的局限。为了扩展超临界水氧化的应用,这些缺点必须得到克服。对于新的反应器,必须适用于处理非常危险的废弃物,如核燃料。我们未来化学科技有限公司花了几年的时间研究了合适的反应器。 目标废弃物主要包括由动力堆乏燃料后处理的液-液萃取的产物:萃取剂(如磷酸三正丁酯,TBP)、稀释液(如煤油)、以及有机流出物(如卤化溶剂)。 未来化学科技有限公司供应三种反应器:第一种是管式或高压釜式反应器;第二种是TWR专利反应器;第三种是设计用于含盐有机物或卤化核素的超临界水氧化的一种新型反应器: 既有防止釜体腐蚀的双层,又有能够获得更好传质和传热及防颗粒沉积的搅拌器。 更多信息欢迎垂询问未来化学科技有限公司!

  • 【转帖】放射性废弃物的超临界水氧化: 从反应器设计到有毒废弃物的热水处理文章摘要

    核工业将产生混有放射性元素和有机溶剂的一些有机废弃物,通常的工艺方法无法处理,尤其是高浓度的含氯的化合物。基于以前在原子能和高压领域经验,我们进行了有前景的超临界水氧化工艺的研究:处理氯化的高污染性废物。超临界水氧化工艺有两个众所周知的局限,阻碍了非纯有机废物处理的工业化发展:腐蚀和盐阻塞。 几代反应器设计,都是为了克服这些缺点。这里介绍未来化学科技有限公司进行的策略和方法,用于获得最终的工业工艺,应用于核废物的处理。也提高了含氯和高浓度矿物盐的危险废弃物的热水处理。 废弃物处理至今仍是一个最有趣的话题。危险废弃物,如核工业产生的有毒化合物或放射性有机化合物,无法使用传统的生物处理或热处理。因而,一定要开发对人和环境无害的新方法。超临界水氧化工艺,用于有机化合物在超临界水(临界压力22.1 MPa和临界温度647 K)中进行处理,看起来是一项处理这些危险废弃物的好技术。 超临界水氧化的优点在于水在超临界条件下的特殊物理性质。超临界水的均相和高扩散使快速反应和获得高处理率成为可能。此外,氧化剂被限制并允许流出物控制。 碳氢化合物被完全氧化成CO2和水,有机化合物中的N形成分子氮N2和少量的N2O,因此气态流出物中没有污染物质,如NOx。杂环原子如氯、磷或硫的矿物酸,分别为HCl, H3PO4H2SO4。 这些酸和氧化剂产生了腐蚀环境,任何材料均会受到腐蚀的侵袭。这一现象在卤化化合物的出现时得到强化。为了防止反应器被腐蚀,经常加入碱金属作为中和试剂。这导致了无机盐的形成。一方面无机盐在常温常压水中有非常高的溶解性,另外一方面,他们在超临界条件水出是不溶的,因为超临界水的低密度和小介电常数。结果导致了盐的析出,并在管壁上结垢。腐蚀和盐析出是超临界水工艺的两个主要的局限。为了扩展超临界水氧化的应用,这些缺点必须得到克服。对于新的反应器,必须适用于处理非常危险的废弃物,如核燃料。我们未来化学科技有限公司花了几年的时间研究了合适的反应器。 目标废弃物主要包括由动力堆乏燃料后处理的液-液萃取的产物:萃取剂(如磷酸三正丁酯,TBP)、稀释液(如煤油)、以及有机流出物(如卤化溶剂)。 未来化学科技有限公司供应三种反应器:第一种是管式或高压釜式反应器;第二种是TWR专利反应器;第三种是设计用于含盐有机物或卤化核素的超临界水氧化的一种新型反应器: 既有防止釜体腐蚀的双层,又有能够获得更好传质和传热及防颗粒沉积的搅拌器。

  • 【资料】超临界流体色谱法分析大豆磷脂

    [size=5]超临界流体色谱法分析大豆磷脂[/size] 来源: 作者:王学军, 赵锁奇, 王仁安 摘要:采用以CO2为流动相的超临界流体色谱方法,以含0.05%(体积分数)三乙胺的乙醇作为改性剂,对具有重要生物功能的大豆磷脂组成进行分析,获得了大豆磷脂提取物中6个重要组分的定性结果,并讨论了流动相组成、操作温度和压力对分离的影响。对其中有代表意义的磷脂酰胆碱(PC)进行了外标法定量分析,在PC质量浓度为0.020 g/L-0.075 g/L时具有较好的线性关系,PC加样回收率为96.7%( =5),重现性好。此方法可用于实际样品的分析。关键词:超临界流体色谱;磷脂酰胆碱;大豆磷脂2 实验部分2.1 仪器与试剂 所用SFC装置由本实验室设计组装而成。Rheadyne进样器配有lOμL的定量管,Spectra 100可变波长紫外检测器为美国TSP公司产品,色谱信号由色谱工作站记录。无水乙醇、三乙胺均为国产分析纯试剂。PC,PE,PI标准品购自Sigma公司大豆磷脂分别为本实验室超临界流体抽提萃取物和北京化学试剂公司产品。2.2 色谱条件 参考文献[2,7,8]所报道的内容,本实验所用色谱柱选择Sphefisorb C18 10μm(中科院大连化学物理研究所),250 mm×4.6mm i.d.不锈钢柱;流动相为超临界CO2和改性剂(体积比为10:1),其中改性剂为含0.05%(体积分数)三乙胺的乙醇溶液;流动相流速为1.1mL /min~1.3 mL/min;柱温为3O℃~60℃ ;压力为20MPa~30MPa;进样体积为10μL;经紫外扫描,选择检测波长为214nm。2.3 混合标准溶液和样品溶液的制备 称取各磷脂标准品适量,加人同一容量瓶中,加乙醇至刻度,配成标准品的混合溶液,其中每一标准品的质量浓度均在0.2 g/L到10.0 g/L之问;分别称取两种大豆磷脂样品1.0 g,并各自配成质量浓度约为50 g/L的乙醇溶液。

  • 【转帖】超临界流体定义、特点

    超临界流体定义、特点㈠定义超临界流体(supercritical fluid,简称SCF)可用临界温度和临界压力的形式来定义。气、液两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气、液两相性质非常接近。超临界流体(supercritical fluid),又称为稠密气体(dense gas)或高压气体(high compressed gas),它不同于一般的气体,也有别于一般液体,兼有液体和气体的双重特性,密度接近于液体,粘度和扩散系数接近于气体,渗透性好,与液体溶剂萃取相比,可以更快地完成传导,达到平衡,促进高效分离过程的实现。㈡特点超临界流体的溶解能力取决于它的温度和压力,通常和流体的密度呈正相关,随流体的密度增加而增加。在临界点附近,压力、温度的微小变化会引起流体密度及其对物质溶解能力的较为显著的变化。被用作超临界流体的溶剂有乙烷、乙烯、丙烷、丙烯、甲醇、乙醇、水、二氧化碳等多种物质,超临界二氧化碳是首选的萃取剂。这是因为二氧化碳的临界条件易达到(Tc=304.1 K,Pc=7.347 MPa),且无毒、无味、不燃、价廉、易精制,这些特性对热敏性和易氧化的产物更具有吸引力。超临界流体的特性① 无毒性、不燃性和无腐蚀性。超临界CO2流体无毒和不可燃,有利于安全生产,而且来源丰富,价格低廉有利于推广应用,降低成本。② 容易达到超临界条件。CO2临界温度为Tc=31.1℃ ,临界压力为Pc=7.3MPa,CO2的超临界条件与水相比(水的临界温度为374℃,临界压力为22MPa)更容易达到。

  • 超临界气凝胶干燥

    超临界气凝胶干燥 - 未来化学科技有限公司气凝胶具有非常惊人的物理性能。正如其名字所表达的,气凝胶几乎和空气一样,是目前存在的最轻的固定材料。气凝胶是由有机或无机凝胶制备而得的透明的、多空性、大表面积(1000 m2/g)材料,并具有卓越的绝热性能。正是基于以上的性质,气凝胶有着广泛的应用。如,利用气凝胶的透明和绝缘的性质,瑞典Airglass AB公司可生产60 x 60 x 2 cm3尺寸的面板。 石油工业利用气凝胶的绝缘性能,开发石油天然气井的管道等等。超临界CO2干燥法是制备气凝胶的最重要的方法,具有无可比拟的优越性。利用超临界CO2置换出凝胶中的有机溶剂,胶体的网络架构得到保留,即制得气凝胶。法国SEPAREX公司在气凝胶干燥领域做了广泛了研究,可向用户提供多种气凝胶产品。SEPAREX公司是专业的超临界气凝胶干燥设备供应商。可向用户提供实验室研究到中试、大规模工业化生产的超临界干燥设备。更多信息,欢迎您登录未来化学科技有限公司网站:http://www.futurechemtech.com/products.htm 查询!

  • 【资料】-超临界流体萃取效果的影响因素

    [b]超临界流体萃取效果的影响因素[/b]影响超临界流体萃取效果的因素主要有:(1)萃取条件,包括压力、温度、时间、溶剂及流量等;(2)原料的性质,如颗粒大小、水分含量、细胞破裂及组分的极性等。 [b]⑴萃取压力的影响[/b] 萃取过程中,SF密度的变化直接影响萃取效果。萃取压力是影响SF密度的重要参数。压力的变化能显著提高SF溶解物质的能力。根据萃取压力的变化,可将SFE分为3类:(1)高压区的全萃取。高压时,SF的溶解能力强,可最大限度地溶解所有成分;(2)低压临界区的萃取,仅能提取易溶解的成分,或除去有害成分;(3)中压区的选择萃取,在高低压之间,可根据物料萃取的要求,选择适宜的压力进行有效萃取。当压力增加到一定程度后,则溶解增加缓慢,这是由于高压下超临界相密度随压力变化缓慢所致。另外,压力对萃取效果的影响还与溶质的性质有关[b]⑵温度的影响[/b] 温度对萃取效果的影响较为复杂。,可以从两个方面来考虑:一方面,在一定压力下,升高温度;由于升高温度作为萃取剂CO2的分子间距增大,分子间作用力减小,密度降低,溶解能力相应下降。另一方面,在一定压力下,升高温度被萃取物的挥发性增强,分子的热运动加快,分子间缔和的机会增加,从而使溶解能力增大。因此,温度对超临界萃取率的影响应综合这两个因素来考虑。:升高温度,分子的热运动加快,分子的缔和的机会增加,从而使溶解度的增加起了一定的主导作用。在实际生产中,超临界CO2萃取的温度控制为大于临界温度,但不宜太高,一般为31.5℃~85℃ 是最佳操作温度。 [b]⑶萃取剂流量、萃取时间的影响[/b] 在超临界流体萃取过程中,萃取剂流量一定时,萃取时间越长,收率越高。萃取刚开始时,由于溶剂与溶质未达到良好接触,收率较低。随着萃取时间的加长,传质达到某种程度,则萃取速率增大,直到达到最大之后,由于待分离组分的减少,传质动力降低而使萃取速率降低。萃取剂的流量主要影响萃取时间。一般来说,收率一定时,流量越大,溶剂、溶质问的传热阻力越小,则萃取的速度越快,所需要的萃取时间越短,但萃取回收负荷大,从经济上考虑应选择适宜的萃取时间和流量。 [b]⑷物料性质的影响[/b] 物料的粒度影响萃取效果,一般情况下,粒度越小,扩散时间越短,有利于SF向物料内部迁移,增加了传质效果,但物料粉碎过细会增加表面流动阻力,反而不利于萃取。对于多孔的疏松物料,粒度对萃取率影响较小,菌体脂肪存在于细胞内,萃取脂肪时,应考虑使细胞破壁。水分是影响萃取效率的重要因素。物料中含水量较高时,其水分主要以单分子水膜形式在亲水性大分子界面形成连续系统,从而增加了超临界相流动的阻力,当继续增加水分时,多余的水分子主要以游离态存在,对萃取不产生明显的影响。而当含水量较低时,水分子主要以非连续的单分子层形式存在。可见,破坏传质界面的连续水膜,使溶质与溶剂之间进行有效的接触,形成连续的主体传质体系就可减小水分的影响。超临界流体的极性是影响萃取速率的又一因素。在弱极性的溶剂中,强极性物质的溶解度远小于非极性物质,可萃取性随极性增加而降低,如超临界CO2是一种非极性溶剂,因此,它非常适用于弱极性物质的萃取。通过使用不同的夹带剂来改变COz的极性,使萃取范围扩大,可萃取极性较强的物质。来源:中国色谱网[em61]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制