当前位置: 仪器信息网 > 行业主题 > >

注射针针座与护套分离力试验仪

仪器信息网注射针针座与护套分离力试验仪专题为您提供2024年最新注射针针座与护套分离力试验仪价格报价、厂家品牌的相关信息, 包括注射针针座与护套分离力试验仪参数、型号等,不管是国产,还是进口品牌的注射针针座与护套分离力试验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合注射针针座与护套分离力试验仪相关的耗材配件、试剂标物,还有注射针针座与护套分离力试验仪相关的最新资讯、资料,以及注射针针座与护套分离力试验仪相关的解决方案。

注射针针座与护套分离力试验仪相关的资讯

  • 注射针尖穿刺力测试仪----原理与应用解析
    注射针尖穿刺力测试仪在制药与包装行业中,注射针尖作为药物传递的直接媒介,其性能的稳定与安全性直接关系到患者的健康与安全。随着医疗技术的不断进步和药品包装的多样化发展,注射针尖在各类薄膜、复合膜、电池隔膜、人造皮肤乃至药品包装用胶塞、组合盖、口服液盖等材料的穿刺应用日益广泛。这些材料不仅需要具备良好的阻隔性以保护药品免受外界污染,还需在针尖穿刺时展现适宜的力学特性,以确保药物输送的顺畅与安全。注射针尖在制药包装行业的应用概述在制药过程中,注射针尖常被用于穿透药品包装材料,以实现药物的精准注入或抽取。无论是液体药品的密封瓶、预充式注射器,还是复杂的医疗装置,都离不开注射针尖的高效与准确。同时,随着环保和可持续性理念的深入人心,制药包装材料正逐步向轻量化、可降解方向发展,这对注射针尖的穿刺性能提出了更高的要求。为何需要注射针尖穿刺力测试仪鉴于注射针尖在制药包装中的核心作用,其穿刺性能的优劣直接影响到产品的使用体验和药品的安全性。因此,对注射针尖在不同材料上的穿刺力进行测试显得尤为重要。注射针尖穿刺力测试仪应运而生,它专为评估针尖在穿透各种材料时所需的力值及拔出时的阻力而设计,能够有效帮助制造商、质检机构及研究人员评估材料的适用性,优化产品设计,确保产品质量。广泛应用领域注射针尖穿刺力测试仪广泛应用于质检中心、药检中心、包装厂、药厂、食品厂等多个领域,成为保障产品安全与质量的重要工具。通过精确测量不同材料在穿刺过程中的力值变化与位移情况,可以深入了解材料的物理特性,为材料选择、工艺改进及质量控制提供科学依据。测试原理详解注射针尖穿刺力测试仪的测试原理基于力学原理与精密测量技术。测试时,首先将待测样品装夹在仪器的两个夹头之间,通过精确控制两夹头的相对运动,使标准要求的穿刺针以设定速度刺入样品。在穿刺过程中,仪器会实时记录并显示穿刺力及拔出力的变化曲线,同时监测针尖的位移情况。这些数据不仅反映了材料对针尖的抵抗能力,还能揭示材料内部的力学结构特性,为材料性能评估提供全面而准确的信息。
  • 从首针国产2价HPV疫苗注射看疫苗质量控制
    p style="text-align: justify "  span style="color: rgb(255, 0, 0) "strong回顾HPV疫苗研发和使用/strong/span/pp style="text-align: justify "  2020.5.18 湖北武汉10岁女孩“可可”首例国产“2价”HPV疫苗接种;/pp style="text-align: justify "  2020.4.21 厦门万泰沧海HPV疫苗(馨可宁,Cecolin)获得CFDA的生物制品批签发证明;/pp style="text-align: justify "  2019.12.31 国家药监局批准首个重组HPV疫苗(馨可宁)上市;/pp style="text-align: justify "  2019.4–7 香港“水货”MSD九价疫苗事件;/pp style="text-align: justify "  2018.4.20 MSD公司佳达修sup® /sup9(Gardasilsup® /sup9)在CFDA药品审评中心申请获批;/pp style="text-align: justify "  2018.4.10 广东深圳将HPV疫苗纳入医保支付(二价和四价疫苗);/pp style="text-align: justify "  2017.7.31 山东德州20岁女孩中国内地首例HPV疫苗接种;/pp style="text-align: justify "  2017.7 GSK公司Cervarixsup® /sup(希瑞适)批准在国内上市;/pp style="text-align: justify "  2016.3.30 我国HPV融合蛋白疫苗即将进入临床试验阶段;/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 183px height: 92px " src="https://img1.17img.cn/17img/images/202005/uepic/59ca7654-5f34-411d-93e7-f36cad02f144.jpg" title="佳达修.png" alt="佳达修.png" width="183" height="92"//pp style="text-align: justify "  2014.12 美国食药局(FDA)批准MSD 9价HPV(Gardasilsup® /sup9)疫苗上市;/pp style="text-align: justify "  2011 厦门万泰公司HPV疫苗进入临床实验阶段;/pp style="text-align: justify "  2006.8.28 澳大利亚昆士兰一对姐妹世界首例HPV疫苗接种;/pp style="margin-bottom: 15px text-align: justify "  2002 中国首个宫颈癌疫苗研制项目启动;厦门大学、厦门万泰沧海生物技术有限公司、北京万泰生物药业股份有限公司联合研制。/pp style="text-align: justify "  span style="color: rgb(255, 0, 0) "strong宫颈癌与HPV疫苗问世/strong/span/pp style="text-align: justify "  宫颈癌在女性中的发病率仅次于乳腺癌,其中由人乳头瘤病毒(HPV)感染所致占大多数。迄今,已分离出HPV亚型达100多种,其中至少14种亚型有致病性。而根据统计,大多数的宫颈癌可以检测出中可测出高危型HPV16和18亚型,其中HPV16感染占所有宫颈癌发生的70%。低危型HPV6和11亚型与尖锐湿疣和复发性呼吸道乳头状瘤关系密切。/pp style="text-align: justify "  2006年,世界上第一支HPV疫苗上市。该疫苗是MSD公司生产的佳达修sup® /sup4价HPV疫苗,覆盖了最危险的16型以及6型、11型和18型。后来,GSK研发上市了希瑞适sup® /sup2价HPV疫苗。“2价苗”的推荐注射年龄最广,可用于9–45岁的女性。2014年,MSD公司上市了佳达修sup® /sup9九价HPV疫苗,该产品可以预防90%以上的宫颈癌和其他由HPV引起的相关疾病。再加上我国厦门万泰研发的馨可宁sup® /sup2价HPV疫苗,目前一共有4款疫苗可供使用。/pp style="margin-bottom: 15px text-align: justify "  值得一提的是,我国生产的“2价苗”对9–15岁女性只需免疫2针,价格是329元/支。且根据临床实验研究结果,国产疫苗与进口疫苗对HPV病毒的抵抗能力相近。对于这16、18两个亚型来说,9价苗的效果与2价苗相近。/pp style="text-indent: 2em text-align: justify "span style="color: rgb(255, 0, 0) "strong疫苗与注射剂质量控制和仪器/strong/span/pp style="margin-bottom: 15px text-align: justify "  HPV疫苗按照作用分为预防性疫苗和治疗性疫苗。预防性疫苗主要通过诱导机体内B细胞介导的体液免疫产生中和抗体抵抗HPV感染;治疗性疫苗主要通过T细胞介导的细胞免疫清除病毒感染或已变异的细胞。已经上市的MSD、GSK和万泰公司的4个品种都属于预防性疫苗。HPV融合蛋白疫苗属于治疗性疫苗,2016年开始在临床研究中。/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 294px height: 360px " src="https://img1.17img.cn/17img/images/202005/uepic/e0a44c84-0779-490a-a6c7-7039c711ecb0.jpg" title="说明书.png" alt="说明书.png" width="294" vspace="0" height="360" border="0"//pp style="text-align: justify margin-bottom: 15px "span style="font-size: 14px "strong(图为GSK二价HPV疫苗希瑞适sup® /sup说明书截图)/strong/spanbr//pp style="margin-bottom: 20px text-align: justify "  《中国药典》通则(0102 注射剂)规定:“注射剂系指原料药物或与适宜的辅料制成的供注入体内的无菌制剂。注射剂可分为注射液、注射用无菌粉末与注射用浓溶液等。包括溶液型、乳状液型或混悬型等注射液。可用于皮下注射、皮内注射、肌内注射、静脉注射、静脉滴注、鞘内注射、椎管内注射等。span style="color: rgb(0, 112, 192) "strongbr//strong/span/pp style="text-indent: 2em text-align: justify "strongspan style="color: rgb(0, 112, 192) "HPV疫苗为肌肉注射的注射液,其中的质量控制环节以及使用的仪器如下:/span/strongspan style="color: rgb(0, 112, 192) "strongbr//strong/span/pp style="text-indent: 2em text-align: justify "span style="color: rgb(255, 0, 0) "strong(点击图片链接可以进入相关专场)/strong/spanspan style="color: rgb(0, 112, 192) "strong/strongstrongbr//strong/span/pp style="margin-bottom: 10px text-indent: 0em text-align: justify "span style="color: rgb(0, 0, 0) "【装量】span style="color: rgb(0, 0, 0) background-color: rgb(251, 213, 181) "重量除以相对密度计算装量。/spanstrongspan style="color: rgb(0, 176, 80) "由于疫苗或者注射剂的体积可能较小/span/strong,可以采用精密称供试品内容物的重量,除以供试品相对密度得出相应的装量。相对密度可以使用2020版《中国药典》四部(草案)通则里面新提出的“span style="color: rgb(0, 112, 192) "strong振荡型密度计法/strong/span”进行测定。/span/pp style="text-align:center"a href="https://www.instrument.com.cn/zc/177.html" target="_blank"img style="max-width: 100% max-height: 100% width: 193px height: 178px " src="https://img1.17img.cn/17img/images/202005/uepic/fc393907-ed46-44c1-a9ee-b2999df79c9e.jpg" title="METTLER超越系列密度计D6.png" alt="METTLER超越系列密度计D6.png" width="193" height="178"//a/pp style="text-align: center " strongspan style="font-size: 14px " (图为METTLER超越系列密度计D6)/span/strong/pp style="margin-bottom: 15px text-align: justify "  预装式注射器和弹筒式装置的供试品:span style="color: rgb(0, 176, 80) "strong标示装量不大于2 mL者,取供试品5支(瓶)/strong/span;2 mL以上至50 mL者,取供试品3支(瓶)。供试品与所配注射器、针头或活塞装配后将供试品缓慢连续注入容器(不排尽针头中的液体),按单剂量供试品要求进行装量检查,应不低于标示量。/pp style="text-align: justify "【pH值】应该与体液相近,体液约为7.4,所以注射剂的pH应在4–9之间。可以使用span style="color: rgb(0, 112, 192) "pH计/span来测量。/pp style="text-align: center "a href="https://www.instrument.com.cn/zc/109.html" target="_blank"img style="max-width: 100% max-height: 100% width: 233px height: 233px " src="https://img1.17img.cn/17img/images/202005/uepic/c6dfc27c-ffa2-48c5-81b1-6775a2beafa3.jpg" title="雷磁PHSJ-6L型 pH计.jpg" alt="雷磁PHSJ-6L型 pH计.jpg" width="233" height="233"//a/pp style="text-align: center margin-bottom: 15px "  span style="font-size: 14px "strong(图为雷磁PHSJ-6L型 pH计)/strong/span/pp style="text-align: justify "【渗透压摩尔浓度】注射剂的渗透压应与人体血液等渗。正常人体血液的渗透压摩尔浓度范围为285–310 mOsmol/kg,0.9%氯化钠溶液或5%葡萄糖溶液的渗透压摩尔浓度与人体血液相当。可采用span style="color: rgb(0, 112, 192) "strong渗透压摩尔浓度测定仪/strong/span利用冰点下降的原理设计的测量。/pp style="text-align: center "a href="https://www.instrument.com.cn/zc/959.html" target="_blank"img style="max-width: 100% max-height: 100% width: 197px height: 197px " src="https://img1.17img.cn/17img/images/202005/uepic/6c9c72ce-5929-46bc-bb07-ba5da764fe39.jpg" title="ADVANCED OsmoTECH 渗透压仪.jpg" alt="ADVANCED OsmoTECH 渗透压仪.jpg" width="197" height="197"//a/pp style="text-align: center margin-bottom: 15px "  span style="font-size: 14px "strong(图为ADVANCED OsmoTECH 渗透压仪)/strong/span/pp style="text-align: justify "【可见异物】(通则0904)在规定条件下应看不到不溶性物质(粒度或长度大于50 μm)。可见异物检查法有灯检法和光散射法。一般常用灯检法,该方法不适用深色透明容器包装或液体色泽较深(一般深于各标准比色液7号)的品种;光散射法不适合混悬型、乳状液型注射液和滴眼液。可使用span style="color: rgb(0, 112, 192) "strong可见异物检测仪/strong/span。/pp style="margin-bottom: 15px text-align: justify "  混悬注射液粒径质量要求:原料药物粒径应控制在15 μm以下,含15–20 μm(间有个别20–50 μm)者,不应超过10%,若有可见沉淀,振摇时应容易分散均匀。混悬型注射液不得用于静脉注射或椎管内注射。/pp style="text-align: justify "【不溶性微粒】(通则0903)本法系用以检查静脉用注射剂(溶液型注射液、注射用无菌粉末、注射用浓溶液)及供静脉注射用无菌原料药中不溶性微粒的大小及数量。本法包括光阻法和显微计数法。当光阻法测定结果不符合规定或供试品不适于用光阻法测定时,应采用显微计数法进行测定,并以显微计数法的测定结果作为判定依据。/pp style="text-align: center "a href="https://www.instrument.com.cn/zc/1137.html" target="_blank"img style="max-width: 100% max-height: 100% width: 202px height: 202px " src="https://img1.17img.cn/17img/images/202005/uepic/f0451f87-607e-464d-902f-43d562eb93b3.jpg" title="ProteinSimple MFI5100微流成像颗粒分析系统.jpg" alt="ProteinSimple MFI5100微流成像颗粒分析系统.jpg" width="202" height="202"//a/pp style="text-align: center margin-bottom: 15px "  span style="font-size: 14px "strong(图为ProteinSimple MFI5100微流成像颗粒分析系统)/strong/span/pp style="text-align: justify "【无菌】照无菌检查法(通则1101)检查,应符合规定。无菌检查法系用于检查药典要求无菌的药品、生物制品、医疗器具、原料、辅料及其他品种是否无菌的一种方法。无菌检查应在无菌条件下进行,试验环境必须达到无菌检查的要求,检验全过程应严格遵守无菌操作,防止微生物污染,防止污染的措施不得影响供试品中微生物的检出。可以使用span style="color: rgb(0, 112, 192) "strong四联培养器/strong/span或者span style="color: rgb(0, 112, 192) "strong微生物限度检测仪/strong/span。/pp style="text-align: center "a href="https://www.instrument.com.cn/zc/1657.html" target="_blank"img style="max-width: 100% max-height: 100% width: 286px height: 169px " src="https://img1.17img.cn/17img/images/202005/uepic/3491de3c-b4e6-4be6-8282-6d86c551bf3f.jpg" title="广东环凯MFS微生物限度检测仪.png" alt="广东环凯MFS微生物限度检测仪.png" width="286" height="169"//a/pp style="text-align: center margin-bottom: 15px "  span style="font-size: 14px "strong(图为广东环凯MFS微生物限度检测仪)/strong/span/pp style="text-align: justify "【细菌内毒素】(通则1143)本法系利用鲎试剂来检测或量化由革兰阴性菌产生的细菌内毒素,以判断供试品中细菌内毒素的限量是否符合规定的一种方法。包括即span style="color: rgb(0, 112, 192) "strong凝胶法span style="color: rgb(0, 112, 192) "/span/strong/span和span style="color: rgb(0, 112, 192) "strongspan style="color: rgb(0, 112, 192) "/span光度测定法/strong/span,后者包括浊度法和显色基质法。供试品检测时,可使用其中任何一种方法进行试验。当测定结果有争议时,除另有规定外,以凝胶限度试验结果为准。/pp style="text-align: center "a href="https://www.instrument.com.cn/zc/1129.html" target="_blank"img style="max-width: 100% max-height: 100% width: 166px height: 178px " src="https://img1.17img.cn/17img/images/202005/uepic/599eeeff-6232-4798-954c-e7b20268e486.jpg" title="美国Endosafe细菌内毒素快速检测系统.jpg" alt="美国Endosafe细菌内毒素快速检测系统.jpg" width="166" height="178"//a/pp style="text-align: center margin-bottom: 15px "  span style="font-size: 14px "strong(图为美国Endosafe细菌内毒素快速检测系统)/strong/span/pp style="text-align: justify "【热原】(通则1142)本法系将一定剂量的供试品,静脉注入家兔体内,在规定时间内,观察家兔体温升高的情况,以判定供试品中所含热原的限度是否符合规定。实验室中,可以使用span style="color: rgb(0, 112, 192) "strong纯水机/strong/span过滤除去热原。/pp style="text-align: center "a href="https://www.instrument.com.cn/zc/478.html" target="_blank"img style="max-width: 100% max-height: 100% width: 221px height: 229px " src="https://img1.17img.cn/17img/images/202005/uepic/806ef129-dab3-4454-8714-46614dddd613.jpg" title="上海瑞枫超纯水系统RephiLe Direct-Pure Genie“国产好仪器”.png" alt="上海瑞枫超纯水系统RephiLe Direct-Pure Genie“国产好仪器”.png" width="221" height="229"//a/pp style="text-align: center "  span style="font-size: 14px "(图为上海瑞枫超纯水系统RephiLe Direct-Pure Geniespan style="color: rgb(255, 0, 0) "strong“国产好仪器”/strong/span)/span/pp style="text-align: justify "【安全性】异常毒性、过敏反应、溶血与凝聚以及降压物质等。/pp style="margin-bottom: 20px text-align: justify "【重金属及有害元素残留量】strong总重金属不得超过百万分之十,砷盐不得超过百万分之二。/strong除另有规定外,中药注射剂照铅、镉、砷、汞、铜测定法(通则2321)测定,按各品种项下每日最大使用量计算,铅不得超过12 μg,镉不得超过3 μg,砷不得超过6 μg,汞不得超过2 μg,铜不得超过150 μg。可以使用a href="https://www.instrument.com.cn/zc/39.html" target="_blank"span style="color: rgb(0, 112, 192) "strongICP-AES/strong/span/a进行分析。/pp style="text-indent: 2em text-align: justify "span style="color: rgb(255, 0, 0) "strong疫苗生产与运输的质量控制/strong/span/pp style="text-align: justify "  疫苗生产过程控制的基本要求:全过程质量控制,批间一致性的控制,目标成分及非目标成分的控制。疫苗生产用种子批系统包括生产用菌毒种及基因工程疫苗生产用细胞株,应符合本版药典的相关要求。/pp style="text-align: justify "  1. span style="color: rgb(0, 112, 192) "生产用毒种种子批的检定项目/span:【血清学、全病毒或部分特征性序列测序】、【外源因子】、【病毒表型】、【遗传稳定性】等。/pp style="margin-bottom: 15px text-align: justify "  种子库保藏一般可采取液体超低温冷藏或液氮等方式保藏,以保证其稳定性。种子库检定时应证明表达系统的遗传稳定性、目的基因表达稳定性和生产稳定性等。主细胞库需进行全面检定,工作细胞库重点检测外源因子污染。/pp style="text-align: justify "  2. span style="color: rgb(0, 112, 192) "中间产物/span:中间产物是从起始材料开始,通过一个或多个不同工艺如发酵、培养、分离以及纯化,添加必要的稳定剂等各工艺过程所获得的产物。/pp style="margin-bottom: 15px text-align: justify "  span style="text-decoration: none "【病毒滴度】、【活菌数】、【抗原活性】、【蛋白质含量】以及【比活性指标】的检测,并需考虑对后续工艺阶段无法检测的项目,如【纯度】、【残留物】等进行检测。/span/pp style="text-align: justify "  3. span style="color: rgb(0, 112, 192) "半成品/span:应按照批准的配方将所有组分按配制均一混合制成半成品。span style="color: rgb(0, 176, 80) "strong半成品配制完成后,应尽快分装,特别是铝佐剂吸附的疫苗/strong/span。span style="color: rgb(0, 112, 192) "strong(HPV疫苗属于此类)/strong/span/pp style="margin-bottom: 15px text-align: justify "  span style="text-decoration: none "【无菌检查】、【细菌内毒素检查】、【残留有机溶剂】、【防腐剂】等项目,铝佐剂疫苗应进行【吸附率】和【铝含量检测】。/span/pp style="text-align: justify "  4. span style="color: rgb(0, 112, 192) "成品(分装)/span:是指通过分装设备将半成品疫苗均一地分配至规定的终容器的过程。分装持续的时间、分装环境的温度和湿度等进行控制。分装设备应经验证,以确保温度控制系统和内容物分装量均一性等装置可靠。/pp style="text-align: justify "  span style="text-decoration: none "【鉴别】、【理化测定】、【纯度】、【效力】、【异常毒性检查】、【无菌检查】、【细菌内毒素检查】、【佐剂】、【防腐剂及工艺杂质残留物检测】等。/span/pp style="margin-bottom: 15px text-align: justify "  span style="color: rgb(149, 55, 52) "strong工艺杂质/strong/span主要包括以传代细胞生产的病毒性疫苗中宿主细胞蛋白质和DNA残留,以及生产过程中用于培养、灭活、提取和纯化等工艺过程的化学、生物原材料残留物,如牛血清、甲醛和β-丙内酯等灭活剂、抗生素残留等,由于制品特性无法在成品中检测的工艺杂质,应在适当的中间产物取样检测,其检测结果应能准确反映每一成品剂量中的残留水平。/pp style="text-align: justify "  5. span style="color: rgb(0, 112, 192) "稳定性评价/span:疫苗稳定性评价包括实时条件下的研究,加速研究,极端条件研究,热稳定性研究。根据疫苗运输过程可能脱冷链及震动等情况,结合span style="color: rgb(0, 176, 80) "strong理化分析/strong/span和span style="color: rgb(0, 176, 80) "strong生物学方法/strong/span进行稳定性检测。也可以根据疫苗的种类做主要参数的span style="color: rgb(0, 176, 80) "strong效力试验/strong/span。span style="background-color: rgb(219, 229, 241) "strongspan style="background-color: rgb(219, 229, 241) color: rgb(149, 55, 52) "br//span/strong/span/pp style="text-align: justify text-indent: 2em "span style="background-color: rgb(219, 229, 241) "strongspan style="background-color: rgb(219, 229, 241) color: rgb(149, 55, 52) "理化分析:/span/strong/span也可作为稳定性研究的一部分,如一般安全性、聚合物程度、pH、水分、防腐剂、容器以及密封程度,内包材的影响因素等等。/pp style="text-align: justify "  span style="color: rgb(149, 55, 52) background-color: rgb(198, 217, 240) "strong生物制品质量检定原则:/strongspan style="color: rgb(149, 55, 52) background-color: rgb(255, 255, 255) "strongspan style="color: rgb(0, 0, 0) "/span/strongspan style="color: rgb(0, 0, 0) "应尽可能采用理化分析方法或体外生物学方法取代动物试验,以减少动物的使用。检定用动物,除另有规定外,均应采用清洁级或清洁级以上的动物;小鼠至少应来自封闭群动物。/span/span/span/pp style="text-align: justify text-indent: 2em margin-bottom: 15px "span style="color: rgb(149, 55, 52) background-color: rgb(219, 229, 241) "strong效力试验/strongstrong:/strong/span不同疫苗可采用不同形式进行该项检测。(如减毒活疫苗采用感染性试验、多糖蛋白结合疫苗可检测结合的多糖含量等)。补充数据:抗原降解图谱、结合疫苗的载体蛋白解离、佐剂与抗原复合物的解离等。/pp style="text-indent: 2em text-align: justify "span style="color: rgb(255, 0, 0) "strong严格的疫苗管理法规/strong/span/pp style="margin-bottom: 15px text-align: justify "  自从山东济南非法经营二类疫苗、长春长生生物疫苗质量等事件以后,《药品管理法》对于疫苗等生物制品的生产、销售和使用进行了更加严格的管理。/pp style="text-align: center margin-bottom: 10px "img style="max-width: 100% max-height: 100% width: 359px height: 162px " src="https://img1.17img.cn/17img/images/202005/uepic/94108f03-9c83-467f-b66d-402623efee81.jpg" title="成品贮存.png" alt="成品贮存.png" width="359" height="162"//pp style="text-indent: 2em text-align: justify line-height: 1.5em "如上图HPV说明书。贮存过程应设定适宜的温度,通常为2–8℃;应避免冰点温度保存。除另有规定外,不得冻存,尤其是液体剂型的疫苗,特别是含span style="color: rgb(0, 112, 192) "strong铝佐剂/strong/span的疫苗。/pp style="text-align: justify line-height: 1.5em margin-bottom: 20px "  2005年实施的《疫苗流通和预防接种管理条例》中明确规定,药品零售企业不得从事疫苗的经营活动;2016年国务院修改了上述条例,药品批发企业也不得从事疫苗的经营业务。对于国家规定的免费提供的“第一类疫苗”,实行采购单位与疫苗生产企业签订采购合同直接购买的方式。并且不得向其他单位或个人提供。/pp style="text-align: justify "  span style="color: rgb(255, 0, 0) "strong美国疫苗研究跳步?/strong/span/pp style="margin-bottom: 15px text-align: justify line-height: 1.5em "  目前,COVID-19疫情依然没有得到完全控制。在没有特效药的情况下,疫苗注射就是做好隔离以外最有效的防控措施了。在这样的情况下,美国一些制药公司竟公然发布:span style="background-color: rgb(255, 255, 0) "“欲跳过动物实验,直接进行人体临床试验。”/spanspan style="color: rgb(0, 112, 192) "strong动物实验/strong/span是疫苗研究的“金标准”,没有临床前研究就直接上临床,安全性如何保证?再者说,从医学伦理的角度而言,没有代替实验就直接进入人体的实验,实验志愿者的安全是否可以得到保证?/pp style="text-align:center"img style="max-width: 100% max-height: 100% width: 244px height: 214px " src="https://img1.17img.cn/17img/images/202005/uepic/13ac1cb5-15cd-48eb-a09c-d71284d37a3f.jpg" title="动物成像.png" alt="动物成像.png" width="244" height="214"//pp style="text-align: center "strongspan style="font-size: 14px "(图为小动物活体成像实验研究)/span/strongbr//pp style="margin-top: 20px text-align: justify "  回顾HPV疫苗在我国的研究历程。从2002年厦门万泰公司立项,到2020年馨可宁在武汉首剂注射,经过了整整18年!而不管进口HPV疫苗还是万泰,在临床实验阶段前就至少进行了10年的时间。可见,疫苗研究的艰辛和成本是难以想象的。美国人疫苗的研究也绝不能因为美国人自己防疫的疏忽而“跳步”。/pp style="text-align: justify "  如今,优质的国产二价HPV疫苗已经问世,宫颈癌的strongspan style="color: rgb(0, 112, 192) "一级预防/span/strong在中国可以得到很好的解决。而且疫苗的质量通过各种检测仪器保障,可以确保安全。当然,也相信我国的科研团队可以尽快研制出治疗“新冠”的疫苗,让我们远离COVID-19。/p
  • 数字PCR新势力,振动注射数字PCR仪了解一下
    p style="text-indent: 2em "微流控技术的发展成果正在为医学检测领域注入新的活力。思纳福医疗科技利用振动注射技术(Vibrant Injection)自主研发了一款全自动化数字PCR一体机。/pp  strongspan style="color: rgb(0, 112, 192) "何为振动注射技术(Vibrant Injection)?/span/strong/pp  微流控技术的发展成果正在为医学检测领域注入新的活力。尤其是微液滴技术,能够在更加精细的层面上完成生物样本的处理和检测分析。大幅度减少所需样本量的同时,能够提供更加准确全面的检测分析结果。在单细胞测序,核酸定量,高通量育种等诸多领域展现了广阔的应用前景。虽然基于微流控技术的微滴生成方法已经成熟,但是其技术本身带来的高昂成本以及复杂的转液手工操作使用户苦不堪言。振动注射技术的研发初衷就是要开发出全自动化,低成本,高可靠性的微滴生成方法。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/74854737-d943-447a-a360-d32c6e6ad858.jpg" title="1.jpg" alt="1.jpg" width="600" height="400" border="0" vspace="0" style="width: 600px height: 400px "//pp  振动注射技术的核心是一个特制的加样枪头。枪头浸入油相中,水相反应液匀速排出枪头,在进入油相的过程中,枪头前端进行匀速的摆动,从而产生均一的微液滴。采用振动注射技术,一方面可以通过控制流速,振动频率来灵活调整微滴体积的大小,另一方面该方法可以直接整合到自动化加样工作站流程中,无需昂贵的微流控耗材。/pp  strongspan style="color: rgb(0, 112, 192) "振动注射技术的优势在哪里?/span/strong/pp  显然,振动注射技术无需微流控芯片耗材,能够直接在多孔板中生成微滴,在低成本的同时实现了液滴生成全流程的自动化。同时,振动注射技术对油相粘度不敏感,无需特殊的温控环境就能够产生均一可控的微滴。以下分别测试了在枪头残差(表现为耗材出口端有毛刺——耗材缺陷)管道微渗漏(表现为耗材与仪器密封不紧密,有微渗漏——耗材缺陷)和正常情况下(合格耗材)微滴生成的均一性情况。测试结果显示,在正常情况下,液滴的体积标准偏差可以控制到3%以内。即使在极限情况下(耗材出现残次品),液滴生成依旧具有较好的均一性。展示了该技术出色的稳定性。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/8f9df9ab-820c-4f77-a7be-c46918a9df77.jpg" title="2.jpg" alt="2.jpg" width="600" height="400" border="0" vspace="0" style="width: 600px height: 400px "//pp  strongspan style="color: rgb(0, 112, 192) "思纳福开发了哪些产品?/span/strong/pp  围绕振动注射技术,思纳福开发了针对单细胞分析的“微滴工作站”。该产品能够在一小时内将96个样本实现单细胞微滴化包裹,全流程自动化,无需任何人工参与。为单细胞文库制备,高通量菌株和细胞株的培养筛选等需求提供全新的解决方案。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/700c7af8-7616-4fd0-b81d-b188e051de9f.jpg" title="3.jpg" alt="3.jpg" width="300" height="200" border="0" vspace="0" style="width: 300px height: 200px "//pp  针对核酸定量需求,我们开发了全自动化数字PCR一体机。该产品能够全自动化实现数字PCR从液滴生成、核酸扩增到最终检测的全流程操作。用户体验与qPCR一致。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/uepic/c59ee7ea-0f71-4e08-a7a9-73ae76074635.jpg" title="4.jpg" alt="4.jpg" width="300" height="200" border="0" vspace="0" style="width: 300px height: 200px "//pp  需要指出的是针对于科研用户和试剂开发用户,我们还可以提供基于数字PCR平台的升级产品,用户可以升级“大规模平行实时探测”功能以及“融解曲线分析”功能。通过该两项功能用户能够实现对每一个微滴进行扩增曲线分析和融解曲线分析,从而打开数字PCR技术扩增过程中的黑箱,深入研究核酸在微小体系下扩增的动力学特性。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/noimg/61944519-822a-4e8c-8ee4-63502abec285.gif" title="001.gif" alt="001.gif"//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201902/noimg/272dac8a-2d7d-4ec8-b3a9-f7920ee0af8d.gif" title="002.gif" alt="002.gif"//pp  strongspan style="color: rgb(0, 112, 192) "产品的研发进度如何?何时上市?/span/strong/pp  目前思纳福已经完成了液滴工作站的小试工作,配套的耗材生产和质控设备也已逐步上线,该产品将会在2019年上半年正式推向市场。一体式数字PCR仪的样机验证和测试工作也已完成,投放测试用样机已经进入生产流程。2019年上半年正式启动第一批客户的内部投放试用工作,预计2019年下半年开始逐步推向市场。/pp style="text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "关于思纳福医疗科技/span/strong/pp style="text-indent: 2em "span style="text-indent: 2em "思纳福医疗科技有限公司(Sniper)成立于2018年4月,以微液滴技术为根基,专注于下一代精细化分析医疗仪器的研发。团队来自于北京大学,北京航空航天大学等知名高校和企业,曾从事高端科研设备的定制化服务,客户覆盖航天、核能、医疗、新材料等领域,积累了丰富的新技术工程化和量产化经验。团队开发了具有全球化自主知识产权的微滴生成方法——振动注射技术(Vibrant Injection),于2018年4月由凯风创投领投,华进知识产权跟投,完成天使轮融资,正式成立思纳福医疗科技有限公司,着手该技术在医疗检测领域的产品研发。/span/p
  • 耐高温高压腐蚀的蓝宝石热电偶保护管替代刚玉热电偶保护管和陶瓷热电偶保护套管
    孚光精仪公司欧洲工厂采用全球专利一次成型技术的高纯度蓝宝石热电偶保护管成功下线,一期工程年产能力达到50万米,并被德国热电偶制造商批量订购,成为替代刚玉和陶瓷的热电偶保护套管新型材料。蓝宝石热电偶保护管和蓝宝石热电偶保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石热电偶保护管和蓝宝石热电偶保护套管相比于刚玉热电偶保护管和陶瓷热电偶保护管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域,是替代刚玉热电偶保护管的理想热电偶保护套管。详情浏览:http://www.f-opt.cn/lanbaoshi/lanbaoshiguan.html蓝宝石热电偶保护管已经取代了无法抵御金属扩散的热电偶陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石热电偶保护管和蓝宝石热电偶保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等蓝宝石热电偶由外部密封刚玉保护套管和内部热电偶毛细管组成,又称为蓝宝石热电偶。由于蓝宝石套管,蓝宝石保护套管具有良好的光学透明性和单晶材料的非多孔性,这种蓝宝石套管,蓝宝石保护套管热电偶具有良好的耐高温性,并具有屏蔽环境温度对热电偶影响的能力。蓝宝石套管,蓝宝石保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石套管,蓝宝石保护套管保护套管相比于刚玉陶瓷管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域。蓝宝石套管,蓝宝石保护套管已经取代了无法抵御金属扩散的陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石套管,蓝宝石保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等
  • 医用注射器滑动性能测试仪的应用与重要性
    医用注射器滑动性能测试仪的应用与重要性在制药包装行业中,医用注射器作为一种不可或缺的医疗器械,扮演着至关重要的角色。它们被广泛用于临床医学中,通过吸入并注射药品至患者体内,以实现治疗目的。医用注射器的使用不仅需要确保药品的精确剂量,还需保证其在使用过程中的安全性和可靠性。因此,对医用注射器进行严格的性能测试,特别是滑动性能测试,显得尤为重要。医用注射器的应用与用途医用注射器通常由针管、活塞(芯杆)、针座、活塞柄、护帽和胶塞等部分组成,其设计精巧,操作简便。在制药包装行业中,医用注射器被用于封装各种药品,如注射液、疫苗等,以便安全、有效地传输给患者。其精确的剂量控制和密封性能,使得医用注射器成为临床治疗中不可或缺的工具。滑动性能测试的必要性为了确保医用注射器的使用质量,国家标准《GB15810-2001使用注射器》对其活塞滑动性能做出了严格规定。滑动性能是指活塞在注射器内移动时的顺畅程度,直接关系到注射过程中药品的推送效果和患者的感受。如果注射器的滑动性能不佳,可能会导致药品推注不畅、注射阻力过大或泄漏等问题,进而影响治疗效果和患者安全。因此,进行医用注射器滑动性能测试,是保障其使用质量、确保患者安全的重要措施。通过测试,可以评估注射器的滑动性能是否符合标准要求,及时发现并解决潜在问题。医用注射器滑动性能测试仪及其测试方法医用注射器滑动性能测试仪是一种专门用于检测注射器滑动性能的仪器。该仪器通过模拟实际使用过程中的推拉动作,对注射器的芯杆施加一定的力,并在一定速度下测量其试验拉力和试验推力。具体测试方法如下:固定器身:首先,将注射器的器身固定在测试仪上,确保其在测试过程中不会移动。施加力并测量:然后,给芯杆一端施加一个力,并设定测试仪的速度(通常为100mm/min±5mm/min)。在此速度下,测试仪将记录芯杆与注射器身之间的试验拉力和试验推力。数据记录与分析:测试仪将自动记录施加的力、芯杆的运动情况以及相应的拉力和推力数据。通过这些数据,可以分析注射器的滑动性能是否符合标准要求。值得注意的是,济南三泉中石实验仪器生产的注射器滑动性测试仪还配备了定制注射管夹具,可以精确测定注射时的初始力、滑动力以及保持力等参数。在拉伸和压缩技术试验模式下,控制横梁的上下移动模拟液体的注入和射出过程,生成相关数据,并计算分析报告初始、平均、最大和最小力等关键指标。综上所述,医用注射器滑动性能测试仪在制药包装行业中具有广泛的应用和重要的意义。通过严格的性能测试和评估,可以确保医用注射器的使用质量符合标准要求,保障患者的安全和治疗效果。
  • 关注:头孢唑林注射剂严重不良反应
    日前,国家食品药品监督管理总局发布第五十九期《药品不良反应信息通报》,提醒关注头孢唑林注射剂严重不良反应。  头孢唑林为&beta -内酰胺类广谱抗生素,为第一代注射用头孢菌素。该药对大多数敏感的革兰阳性球菌与常见的革兰阴性杆菌均有较强抗菌作用。目前,我国批准的头孢唑林注射剂有注射用头孢唑林钠和注射用五水头孢唑林钠两种。  2013年,国家药品不良反应病例报告数据库共收到头孢唑林注射剂严重病例报告349例。严重不良反应/事件累及系统排名前三位的依次为全身性损害、呼吸系统损害、皮肤及附件损害,具体不良反应表现以过敏性休克和严重过敏样反应最为突出。同时头孢唑林注射剂临床不合理用药问题依然存在,其中以超适应症用药、单次用药剂量过大表现最为明显。  根据病例报告数据库信息分析情况,国家食品药品监督管理总局提示:  1、有关药品生产企业结合品种实际修改完善说明书相关内容,加强上市后药品不良反应监测,做好安全用药宣传和培训,指导临床合理用药。  2、医护人员关注头孢唑林注射剂严重不良反应和临床合理用药问题,严格按照药品说明书使用,避免超适应症用药、避免单次用药剂量过大等。建议基层医疗机构加强对医务人员临床用药和急救知识的培训,促进合理使用抗生素,保障公众用药安全。  如需了解详细信息,请登陆国家食品药品监督管理总局网站(http://www.sfda.gov.cn)或国家药品不良反应监测中心网站(http://www.cdr.gov.cn)。  小贴士:  1.头孢唑林是什么药品?主要治疗什么疾病?  头孢唑林是第一代头孢菌素,抗菌谱广,适用于治疗敏感细菌所致的支气管炎及肺炎等呼吸道感染、尿路感染、皮肤软组织感染、骨和关节感染、败血症、感染性心内膜炎、肝胆系统感染及眼、耳、鼻、喉科等感染,也可作为外科手术前的预防用药。不宜用于中枢神经系统感染,对慢性尿路感染,尤其伴有尿路解剖异常者的疗效较差,不宜用于治疗淋病和梅毒。国家食品药品监督管理总局批准的头孢唑林制品有注射用头孢唑林钠和注射用五水头孢唑林钠两种,现有数据无法判断二者在安全性上有明显差别。  2.头孢唑林的严重不良反应主要是什么?  头孢唑林注射剂严重不良反应/事件系统损害以全身性损害、呼吸系统损害、皮肤及其附件损害为主,具体不良反应表现以过敏性休克最为突出。过敏性休克一般累及多个器官系统,发展迅速,若不及时处理,常可危及生命。故在用药过程中应密切监测,如病人出现皮疹,瘙痒、心悸、胸闷、血压下降、意识模糊等过敏性休克的症状,应立即采取有效的急救措施。  3.头孢唑林注射剂为什么要每日分次使用?  头孢唑林属于时间依赖性抗菌药物,其抗菌效果主要取决于血药浓度超过所针对细菌的最低抑菌浓度(MIC)的时间,血药浓度在体内代谢达到最高后慢慢下降,当降至无效浓度时就进行下一次用药,可尽量延长药物在体内的有效浓度时间,起到较好的治疗作用。说明书中规定本品应分次给药,目的是缩短给药间隔时间,使24小时内血药浓度高于致病菌的最小抑菌浓度时间超过60%。  鉴于头孢唑林达到最小有效浓度后再增加药物浓度也不会提高其抗菌效果,如一次即给予一日总用药量,不仅会使药效降低,还会造成血药浓度过高,增加代谢负担,导致用药风险增加。故在应用本品时,应严格按照说明书要求分次使用。
  • 高精密3D打印技术解决透皮给药微针的加工难题
    行业背景一直以来,我们常用的临床医疗给药方式有口服药剂、注射针剂、外用涂抹等。不同的给药方式会各有优劣。口服药剂服用方便,需要首先通过肠胃吸收,这样药效会有所降低,并且对肝脏等器官产生较强的副作用;注射针剂存在使用不便、产生疼痛、制备成本高、过程复杂等特点。外用涂抹膏药因为皮肤的隔离,药物的吸收效率低,并且给日常生活行动带来不便。临床上一般不同的药物有效成分会根据自身的理化性质、药理学等因素而采用不同的给药医疗方式。随着科技的发展,研究人员逐步开发了一种新型的医疗给药方式——微针透皮给药,它既能实现有效给药,又操作简单并且让患者获得良好体验。上世纪90年代,世界上第一个微针是用硅材料制备而成的。由于硅材料具有脆性,且不适合作为模具来大批量复制,因此近年来微针的制备材料研究的重点逐步转移到金属、陶瓷以及聚合物材料。目前微针透皮给药已经在药物治疗、美容祛斑、整形植发等消费市场领域获得应用推广,并且市场上已经出现一批规模化量产的公司,中国的微针市场给药系统产品主要是国外品牌,医疗方面的以欧美国家居多,美容方面以日韩品牌为主。国际上有3M、Zosano Pharma、Corium、Becton-Dickinson(BD)等;国内有中科微针(北京)、揽微医疗、纳通生物、和心诺泰等。加工方法由于表皮厚度高达1500μm,因此针长度达1500μm足以将药物释放到表皮中。长度较大且直径较粗的针可深入真皮层,容易损伤神经并引起疼痛。微针长度大多数150-1500μm,直径50~250μm,尖端宽度为1~25μm。微针常见的形状是圆锥形、圆柱形、三棱锥、四棱锥等。微针根据种类不同(固体型,包被型,中空型、溶解型等)以及材料的需求,制作的工艺也不一样,硅材料常见加工方法有硅蚀刻;金属材料常见的加工方法激光切割;陶瓷材料加工方法陶瓷烧结光刻。而聚合物材料常用的加工方法是微立体光刻3D打印技术。近些年来3D打印技术获得快速发展,相对于传统加工工艺,3D打印技术能够灵活、自由的设计各种复杂三维的结构。目前市场上普通3D打印技术(SLA、FDM等)加工的精度低,表面粗糙,远远满足不了微针加工技术要求。而双光子激光直写(TPP)3D打印技术,虽然加工的精度高,但是加工幅面小、速度极慢,对于大幅面、规模化生产显然不太适宜。面投影微立体光刻(PμsL)3D打印工艺能够加工并兼顾快速、高精度、大幅面的特点,可以满足上述微针尺寸要求,并且加工出来的微针表面光滑程度高,为微创、无痛的微针治疗效果提供技术支持,也为快速、高效产业化生产提供可行性方案。目前,已经和国内多所科研高校、相关企业进行合作。面投影微立体光刻(PμsL)工艺助力微针的制备面投影微立体光刻(PμsL)基于数字DMD(Digital Micromirror Device)芯片作为动态掩模,通过精密的光路投影系统,在树脂液面进行整面曝光打印。因此,与普通的微立体光固化工艺相比,除了成型精度高以外,打印的速度得到大大提升。由于微针需要具有良好的力学性能和生物相容性才能满足其应用的安全性要求,所以微针的选材、结构设计及其相应的制备技术直接关系到微针的效能。一般而言,微针的表面越光滑,微针才能更好的发挥安全、无痛以及定量释放的优势。下图是深圳摩方材料科技有限公司基于面投影微立体光刻(PμsL)工艺的3D打印系统nanoArchS130设备加工的阵列微针结构,该微针底部直径0.198mm,高度0.572mm,针尖的最尖端宽度仅0.006mm!加工的微针表面光滑,针尖细节更加明晰。该微针打印材料属于丙烯酸聚合物类固体型微针,通常研究人员使用该聚合物打印出针尖形态阳模,通过二次倒模形成实际需要的医用聚合物材料针尖结构,比如形成溶解型微针。最近,国外研究机构美国罗格斯大学Howon Lee和意大利比萨大学Giuseppe Barillaro合作团队从寄生虫的微钩,蜜蜂的尾刺针,豪猪的针毛研究发现一种具有高组织粘附力的微观倒刺结构。这些复杂的微观结构对于传统加工工艺而言是一种巨大的挑战。研究人员通过4D打印技术制造具有后向曲面倒钩以增强组织附着力的仿生微针。通过系列实验测试发现该种倒刺结构的仿生微针的组织附着力是普通微针的18倍!在组织中具有持续、定量释放药物的行为。文章链接地址:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201909197结论尽管目前微针在药物治疗、美容祛斑、整形植发等获得广泛应用,并且衍生一批产业化公司。但是微针治疗市场竞争较为混乱、竞争格局并不明晰、技术水平良莠不齐。我们经常会在一些公共场所见到微针治疗的相关广告。未来随着微加工技术的发展和相关的药理学研究的进展,微针治疗会获得广泛的认可,市场规模扩大、市场竞争更加规范。而高精密3D打印作为一种具有复杂三维、灵活自由、快速设计的微细加工技术,目前已经被众多前沿的科研机构以及知名规模化企业所采用,进一步深化课题研究程度,提高了企业的创新性及生产效益。
  • 高精密3D打印技术解决透皮给药微针的加工难题
    行业背景一直以来,我们常用的临床医疗给药方式有口服药剂、注射针剂、外用涂抹等。不同的给药方式会各有优劣。口服药剂服用方便,需要首先通过肠胃吸收,这样药效会有所降低,并且对肝脏等器官产生较强的副作用;注射针剂存在使用不便、产生疼痛、制备成本高、过程复杂等特点。外用涂抹膏药因为皮肤的隔离,药物的吸收效率低,并且给日常生活行动带来不便。临床上一般不同的药物有效成分会根据自身的理化性质、药理学等因素而采用不同的给药医疗方式。随着科技的发展,研究人员逐步开发了一种新型的医疗给药方式——微针透皮给药,它既能实现有效给药,又操作简单并且让患者获得良好体验。上世纪90年代,世界上第一个微针是用硅材料制备而成的。由于硅材料具有脆性,且不适合作为模具来大批量复制,因此近年来微针的制备材料研究的重点逐步转移到金属、陶瓷以及聚合物材料。目前微针透皮给药已经在药物治疗、美容祛斑、整形植发等消费市场领域获得应用推广,并且市场上已经出现一批规模化量产的公司,中国的微针市场给药系统产品主要是国外品牌,医疗方面的以欧美国家居多,美容方面以日韩品牌为主。国际上有3M、Zosano Pharma、Corium、Becton-Dickinson(BD)等;国内有中科微针(北京)、揽微医疗、纳通生物、和心诺泰等。加工方法由于表皮厚度高达1500μm,因此针长度达1500μm足以将药物释放到表皮中。长度较大且直径较粗的针可深入真皮层,容易损伤神经并引起疼痛。微针长度大多数150-1500μm,直径50~250μm,尖端宽度为1~25μm。微针常见的形状是圆锥形、圆柱形、三棱锥、四棱锥等。微针根据种类不同(固体型,包被型,中空型、溶解型等)以及材料的需求,制作的工艺也不一样,硅材料常见加工方法有硅蚀刻;金属材料常见的加工方法激光切割;陶瓷材料加工方法陶瓷烧结光刻。而聚合物材料常用的加工方法是微立体光刻3D打印技术。近些年来3D打印技术获得快速发展,相对于传统加工工艺,3D打印技术能够灵活、自由的设计各种复杂三维的结构。目前市场上普通3D打印技术(SLA、FDM等)加工的精度低,表面粗糙,远远满足不了微针加工技术要求。而双光子激光直写(TPP)3D打印技术,虽然加工的精度高,但是加工幅面小、速度极慢,对于大幅面、规模化生产显然不太适宜。面投影微立体光刻(PμsL)3D打印工艺能够加工并兼顾快速、高精度、大幅面的特点,可以满足上述微针尺寸要求,并且加工出来的微针表面光滑程度高,为微创、无痛的微针治疗效果提供技术支持,也为快速、高效产业化生产提供可行性方案。目前,已经和国内多所科研高校、相关企业进行合作。面投影微立体光刻(PμsL)工艺助力微针的制备面投影微立体光刻(PμsL)基于数字DMD(Digital Micromirror Device)芯片作为动态掩模,通过精密的光路投影系统,在树脂液面进行整面曝光打印。因此,与普通的微立体光固化工艺相比,除了成型精度高以外,打印的速度得到大大提升。由于微针需要具有良好的力学性能和生物相容性才能满足其应用的安全性要求,所以微针的选材、结构设计及其相应的制备技术直接关系到微针的效能。一般而言,微针的表面越光滑,微针才能更好的发挥安全、无痛以及定量释放的优势。下图是深圳摩方材料科技有限公司基于面投影微立体光刻(PμsL)工艺的3D打印系统nanoArchS130设备加工的阵列微针结构,该微针底部直径0.198mm,高度0.572mm,针尖的最尖端宽度仅0.006mm!加工的微针表面光滑,针尖细节更加明晰。该微针打印材料属于丙烯酸聚合物类固体型微针,通常研究人员使用该聚合物打印出针尖形态阳模,通过二次倒模形成实际需要的医用聚合物材料针尖结构,比如形成溶解型微针。最近,国外研究机构美国罗格斯大学Howon Lee和意大利比萨大学Giuseppe Barillaro合作团队从寄生虫的微钩,蜜蜂的尾刺针,豪猪的针毛研究发现一种具有高组织粘附力的微观倒刺结构。这些复杂的微观结构对于传统加工工艺而言是一种巨大的挑战。研究人员通过4D打印技术制造具有后向曲面倒钩以增强组织附着力的仿生微针。通过系列实验测试发现该种倒刺结构的仿生微针的组织附着力是普通微针的18倍!在组织中具有持续、定量释放药物的行为。文章链接地址:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201909197结论尽管目前微针在药物治疗、美容祛斑、整形植发等获得广泛应用,并且衍生一批产业化公司。但是微针治疗市场竞争较为混乱、竞争格局并不明晰、技术水平良莠不齐。我们经常会在一些公共场所见到微针治疗的相关广告。未来随着微加工技术的发展和相关的药理学研究的进展,微针治疗会获得广泛的认可,市场规模扩大、市场竞争更加规范。而高精密3D打印作为一种具有复杂三维、灵活自由、快速设计的微细加工技术,目前已经被众多前沿的科研机构以及知名规模化企业所采用,进一步深化课题研究程度,提高了企业的创新性及生产效益。官网:https://www.bmftec.cn/links/10
  • 仪真分析与SEAL Analytical(水尔)达成连续流动注射分析仪独家合作协议
    2023年12月5日,上海仪真分析仪器有限公司(以下简称仪真分析)与SEAL Analytical水尔分析仪器有限公司(以下简称水尔)达成最新的独家合作协议,涵盖水尔全线产品,进一步扩大了双方合作的领域。仪真分析将全面负责水尔旗下包括连续流动分析仪、全自动间断化学分析仪和机器人分析系统产品的所有产品在中国(包含香港地区)指定市场的推广宣传、销售、技术支持和售后服务等工作,详细如下:连续流动分析仪(除烟草、农业、土壤、植株和肥料外的所有市场)全自动间断化学分析仪(除烟草、农业、土壤、植株和肥料外的所有市场)机器人分析系统(所有市场)全自动消解系统(所有市场) 水尔是以优良技术著称的连续流动注射分析仪器厂家,十年前收购了德国著名品牌德国布朗卢比BRAN+LUEBBE流动注射,在德国和中国均拥有生产基地, 多年来为中国客户提供优质的仪器,品牌深得客户信赖。仪真分析与水尔在全自动消解产品已有十余年的默契合作,同时在环境检测、食品安全、石油化工和临床检测等领域拥有广泛的客户积累,更有强大的技术支持团队支撑,其上海的研发实验室具备方法开发和验证能力。此番强强联手将为国内新老用户提供更加优质的产品和服务! 水尔公司旗下产品包括:关于SEAL Analytical水尔公司是全球专业环境科技集团Porvair plc的全资子公司,专门从事连续流动分析仪、全自动间断化学分析仪、机器人分析仪以及全自动消解系统的设计、开发和制造,尤其对于在环境领域的应用和样品处理设备方面具有丰富的经验和优势。水尔公司的分析仪在水质检测(水、废水、自来水、海水)、土壤和植物中的养分检测、以及工业产品、食品、肥料和烟草的质量控制等方面被广泛的使用和认可。 关于仪真分析仪真分析是专业从事于仪器研发、生产、销售、服务于一体的现代化企业,为环境监测、食品安全、石油化工和临床检测等分析实验室提供样品前处理到分析测试全方位解决方案。由多位留学博士、硕士和具备专业技能的人才组成的技术开发及服务团队,为中国客户提供多方位的技术服务。我们致力于市场研究与应用开发,将世界领先的分析技术及行业标准与中国发展相结合,开发出本土化的解决方案。
  • 缅怀方肇伦院士:中国流动注射分析技术奠基人,为民族科学仪器事业殚精竭虑
    方肇伦(1934年8月16日—2007年11月12日),祖籍浙江定海。1957年毕业于北京大学化学系。中国流动注射分析技术研究的开拓者和奠基人,在流动注射在线分离浓集技术、流动注射与原子吸收光谱联用检测技术等领域的研究取得重要突破。中国微流控分析研究的先行者,为推动微流控分析技术在中国的发展做出重要贡献。先后在国内外期刊发表论文300余篇,出版英文专著2部、中文专著和译著6部。研究成果获国家自然科学奖三等奖、教育部自然科学奖一等奖、辽宁省自然科学奖一等奖、中国科学院自然科学奖二等奖、中国科学院科技成果奖二等奖、辽宁省科技成果奖二等奖等多项国家和省部级奖项。曾任中国科学院林业土壤研究所副所长。1996年调入东北大学,任理学院分析科学研究中心主任。1997年当选为中国科学院院士。1999年兼任浙江大学教授,建立了浙江大学微分析系统研究所并任首任所长。曾任中国科学院化学部常委、中国化学会理事等职,入选英国皇家化学会会士。曾担任10余种国内外分析化学期刊的编委或顾问编委。方肇伦是我国流动注射分析技术研究的开拓者,在流动注射在线预浓集技术研究、流动注射与原子吸收光谱联用检测技术的理论和实验技术研究方面取得重要突破,使中国在该领域的研究进入国际领先行列。方肇伦率先在国内开展了微流控分析系统的研究,为微流控分析技术在中国的发展做出了重要贡献。 胸怀理想踏上了科学研究路 20世纪50年代初期,我国的科学研究事业刚刚起步,百废待举。中国科学院林业土壤研究所成立,急需大批科学研究人才。方肇伦从北京大学化学系毕业后,怀着报效国家、献身科学的理想和激情,来到当时坐落于沈阳东南郊的中国科学院林业土壤研究所。研究所当时正承担着包括中苏黑龙江流域土壤考察、辽河流域和松花江流域规划中的土壤调查在内的我国东北地区的土壤资源调查任务,这是我国在东北地区首次进行的规模较大、系统全面的土壤学研究工作。手工操作的土壤理化分析难以满足工作需求,所里购进了当时比较先进的Q-24中型发射光谱仪器,急需科技人员操作,土壤中微量元素的光谱测定方法有待建立。方肇伦利用大学期间学到的分析化学知识、深厚的外语基础和文献检索能力,与研究室其他科技人员一起努力,建立了土壤和人类头发中14种微量元素含量的发射光谱分析新方法。他又对Q-24发射光谱仪手工摄谱操作进行了改进,建立了半自动摄谱法,克服了手工摄谱操作速度慢的缺陷,显著地提高了工作效率,圆满地完成了东北地区和内蒙古东部地区各类土壤中14种微量元素含量的测定,在此基础上还编制了上述地区1∶100万微量元素含量分布图。这些工作成果后来获得1978年辽宁省科学大会重大科学成果奖。为了使大多数科技人员掌握土壤仪器分析方法,方肇伦亲自担任教师,为全所理化分析人员系统讲授分析化学基础理论和仪器操作相关知识,显著地提高了分析人员的基础理论和实际操作能力。方肇伦时刻注意跟踪国际上分析测试技术的新进展、新趋势。20世纪70年代,他开展了原子吸收光谱(AAS)和电感耦合等离子体发射光谱(ICP)分析技术的研究,带领课题组研制和组装了原子吸收分光光度计和ICP光谱仪,建立了土壤、植物、水、粮食和人发中的微量元素含量以及土壤有效态元素含量的AAS和ICP光谱分析新方法,填补了我国在生物土壤仪器分析领域的空白。他们将其用于土壤普查的营养诊断研究,取得了良好的效果。在此期间他领导课题组承担了多项重大课题的研究和测试工作,他承担的环境污染物分析方法及其标样研制,以及主持的水土粮食中铍的原子吸收光谱法测定技术研究,分别获1985年国家科技进步奖三等奖和1979年中国科学院科技成果奖三等奖。1973年中国科学院林业土壤研究所分析测试技术研究室成立,方肇伦作为第一任室主任组建了无机分析、有机分析、生物化学分析、环境化学分析和电子显微技术实验室,开展了上述领域的研究测试工作,使测试技术研究室逐渐发展为以分析化学、环境化学、生物化学和电子显微技术为基础,以现代科学技术为手段,面向社会,研究与服务并重的综合性测试中心。1974年,方肇伦还参加了林业土壤研究所的科研小分队,与东北制药总厂的工人们共同完成了醋酸氢化泼尼松联合发酵新工艺项目,使该工艺达到国际先进水平。1975年,在沈阳市重金属镉的检测任务中,他和课题组人员首先发现该市于洪区张士灌区镉的含量超标及镉污染严重,引起了上级有关部门的高度重视,及时采取了有效的控制措施。在1977年11月召开的辽宁省科学技术大会上,他被授予辽宁省先进科技工作者荣誉称号。由于方肇伦在科学研究和科技服务工作中的突出贡献,同年破格晋升为副研究员。1980—1984年,在担任林业土壤研究所副所长期间,他发现研究所内课题组和研究室之间由于体制条块分割、重复购置仪器设备等原因,研究经费浪费现象时有发生。为了提高大型仪器使用效率,从全所战略出发,他提出了加强所内大型科学仪器管理工作的意见和措施,变分散管理为集中管理,大大提高了大型分析仪器的使用效率。这一科学管理方法后来被推广到中国科学院整个沈阳分院系统。在繁忙的工作之余,方肇伦于1983年出版了第一部学术专著《仪器分析在土壤学和生物学中的应用》。 开辟中国流动注射分析新领域 自1977年以来,方肇伦为流动注射分析技术在我国的发展进行了大量的开拓性工作,在理论上和实验技术上取得了多项重要成就。他在该领域先后发表论文150篇,出版英文专著2部、中文专著1部、译著2部,发表的论文被SCI(Science Citation Index)引用超过1000次。他在流动注射在线分离浓集及流动注射与原子吸收光谱联用分析等领域的研究达到国际领先水平。他在该领域的研究成果“流动分析联用新技术研究”获2008年教育部自然科学奖一等奖,“流动注射—石墨炉原子吸收联用系统的研究”获2001年辽宁省自然科学奖一等奖,“流动注射分离及联用新分析方法研究”获1995年国家自然科学奖三等奖,“流动注射分离浓集技术研究”“流动注射—原子吸收光谱联用系统研究”分别获1993年和1990年中国科学院自然科学奖二等奖,“高效流动注射仪研制”获1993年辽宁省科技进步奖三等奖,“流动注射分析技术的研究”获1982年中国科学院科技成果奖二等奖,“流动注射分析仪的研制”获1981年辽宁省科技成果奖二等奖。1980年开始,方肇伦开始研制我国早期的流动注射分析仪,并将研制成功的仪器用于土壤和水中氮、磷等元素的测定。1982 年,方肇伦赴瑞典隆德大学参加了第二届国际流动注射分析大会。报告的两篇论文《催化光度流动注射分析法测定μg/L级的钼元素》和《水及土壤浸出液中硝酸根和亚硝酸根的流动注射分光光度同时测定》获得广泛好评。在这次会议上,方肇伦结识了流动注射分析的创始人 J.Ruzicka 和 E.H.Hansen,以及国际原子光谱分析领域专家B.Welz等,与他们进行了广泛的学术交流,为后来的国际合作打下了良好基础。1983年10月,方肇伦来到流动注射分析的诞生地——丹麦技术大学化学系,在Ruzicka和Hansen的实验室进行合作研究,提出并建立了流动注射在线离子交换分离浓集系统,促进了流动注射与原子吸收光谱联用技术的发展。相关的技术进展在1985年首届北京分析测试学术报告会暨展览会(BCEIA)上得到广泛好评。随后,方肇伦多次参加相关领域的国际学术会议,并作大会报告或邀请报告,其中包括三届国际流动分析会议、三届国际光谱学会议及1995年在英国举行的国际分析化学会议(SAC95)和1997年在美国举行的 Pittcon 会议(匹兹堡分析化学和光谱应用会议暨展览会)。为了更快地促进流动注射分析技术在中国的发展,方肇伦率先在国内发起流动注射分析的学术交流,酝酿成立流动注射分析促进会,于1986年召开了首届全国流动注射分析促进会成立大会并进行了学术交流。流动注射分析技术的创始人之一、丹麦技术大学Hansen受方肇伦邀请参加了此次会议。在方肇伦的推动下,随后分别在沈阳(1987年5月)、沈阳(1989年10月)、北京(1991年8月)、武汉(1993年4月)、青岛(1996年5月)和西安(1999年9月)召开了第一至六届全国流动注射分析学术报告会,均取得了圆满成功。为进一步提高我国流动注射分析技术的研究水平,方肇伦多次邀请该领域国际著名学者参加上述会议,包括日本东京都立大学铃木繁桥、冈山理科大学桐荣恭二、Perkin Elmer仪器公司德国分部B.Welz、丹麦技术大学 E.H.Hansen、委内瑞拉光谱学家Burguera、英国赫尔大学 A.Townshend(Analytica Chimica Acta 主编)等。1986年,适逢国家自然科学基金委员会建立,方肇伦申请首批国家自然科学基金项目获得全额资助,随后,还陆续获得国家自然科学基金的资助,其中以中国科学院沈阳应用生态研究所为依托单位的基金项目有“流动注射—原子吸收光谱联用系统研究(1985—1988年)”“流动注射分离浓集技术研究(1990—1992年)”“流动注射石墨炉原子吸收联用系统的研究(1993—1995 年)”“智能化流动注射过程分析系统的研究(1994—1996年)”。在国家自然科学基金以及1989年以来国际合作项目“流动分析新技术研究”的资助下,方肇伦领导的研究组在流动注射分析技术研究方面取得显著进展,其主要研究成果“流动注射分离及联用新分析方法研究”获1995年国家自然科学奖三等奖。该成果是流动注射分析及联用技术发展的成功范例,是以流动注射分析的核心——热力学非平衡条件下的自动化分析观念为主导,从流动注射分析的根本优势出发进行的一系列代表分析化学前沿领域的开拓性研究。1996年5月,方肇伦调入东北大学工作。他在流动注射特别是顺序注射分析领域的研究逐步深入,将流动注射和顺序注射技术与毛细管电泳技术结合,又开辟了一个新的研究领域。他在国际上率先提出流动注射与毛细管电泳分析联用技术,使毛细管电泳技术实现了无干扰连续样品引入,在Analytica Chimica Acta杂志上发表相关系列论文9篇。在此期间,他出色地完成了国家自然科学基金面上项目“顺序注射分离及光学检测在过程分析中的应用”和仪器研制专项基金项目“微型流动分析仪器的研制”。1999年,他出版了专著《流动注射分析法》。全书理论、概念论述清晰,全面阐述了流动注射分析的理论和技术的发展过程,系统介绍了流动注射分光光度法、流动注射原子光谱法、流动注射电化学分析法、流动注射酶分析法、流动注射荧光及化学发光法、流动注射免疫分析法、流动注射在线分离浓集及在线消解等操作方法和技术关键。 推动我国微流控分析技术发展 20世纪90年代初,方肇伦敏锐地意识到国际上刚刚提出的微全分析系统概念,这将意味着一个全新研究领域的诞生。微全分析系统又称芯片实验室,它是通过化学分析设备的微型化与集成化,最大限度地把分析实验室的所有功能集成到便携的分析设备或微芯片中,实现分析系统的集成化和自动化,成百倍地提高分析效率,降低消耗和成本。自微全分析系统的概念提出以来,微流控芯片分析一直是其主要研究方向。1995年,方肇伦及课题组即开始尝试进行玻璃材质的微流控芯片加工技术的研究。1996年,他调入东北大学化学系工作后,开始着手正式组建从事微全分析系统研究的课题组,这是国内最早从事该领域研究工作的课题组之一。1997年,方肇伦第一次给出了“microfluidic chip”的中文译名“微流控芯片”。由于当时研究经费不足和国内微流控芯片加工技术尚处于起步阶段等原因,方肇伦课题组提出一种不需要光刻技术,制作方便、成本低廉的简易芯片加工方法,称为“H通道型微流控芯片”,并利用该芯片进行了大量的微流控基础研究工作,取得微流控分析自动进样、液芯波导荧光检测、生物样品自动分离分析等多项研究成果。为加速开展微流控芯片的研究,充分利用多学科交叉的优势,方肇伦在1999年底到浙江大学兼职,建立了我国第一个以微流控芯片分析系统为研究目标的研究所——微分析系统研究所。方肇伦亲自设计,为研究所的发展拟定了详细的路线图。研究所成立仅一年,即在玻璃芯片的加工、激光诱导荧光检测和多触点电泳高压电源等微流控芯片系统的平台技术研究方面取得了突破性的进展。在此基础上又全面开展了多项研究,包括微流控芯片加工,芯片试样的引入、前处理和反应,毛细管电泳分离,荧光、吸收光度和电化学检测系统,芯片系统在氨基酸和单细胞分析等方面的应用等。在我国微流控分析发展初期,包括芯片加工在内的各种基础技术平台严重制约了微流控分析技术在我国的快速发展,为此,方肇伦带领研究组成员进行了开拓性的基础研究工作,先后在国内率先研制出玻璃微流控芯片、有机玻璃芯片、程控多路芯片专用高压电源和微流控芯片专用激光诱导荧光检测器等,这些平台技术的推广应用,加快了微流控分析系统在我国的研究进展。他还创造性地提出应将微观芯片体系和宏观世界联系起来的新思想,在这一思想的指导下,他和研究组对芯片的自动进样系统进行了卓有成效的探索研究,提出多种连续样品引入技术,提高了样品引入效率和自动化程度,解决了微流控分析样品引入的瓶颈问题。2003年,方肇伦组织浙江大学课题组研究人员撰写并出版了国内首部微流控分析学术专著《微流控分析芯片》,在书中系统阐述了微流控芯片的加工方法、微流体控制技术和方法、微流控芯片毛细管电泳技术、微流控芯片试样引入和预处理、微流控芯片检测技术、微流控分析芯片的应用等内容。2005年又组织东北大学课题组研究人员出版了另一部学术著作《微流控分析芯片的制作与应用》。国家自然科学基金委员会重大项目以及其他相关项目的顺利实施,有力地促进了我国微流控芯片研究事业的发展,相关领域的研究工作突飞猛进,得到国际同行的高度关注。国际上规模最大的微全分析系统国际会议先后邀请方肇伦担任会议组织委员会委员和学术委员会委员。 为民族科学仪器事业殚精竭虑 现代科学仪器是知识创新和技术创新的前提,科学仪器事业对经济社会发展、国家安全及人民健康等将发挥战略性保障作用。面对我国的科学仪器与装备在研究和制造方面与发达国家的明显差距,以及长期以来在关键科学仪器装备上对发达国家过度依赖的状况,方肇伦曾多次向国家有关部门提交相关建议,呼吁重视科学仪器的创新和民族科学仪器事业的发展。2005年5月,他和陈洪渊受中国科学院化学部常委会委托,在杭州主持召开了科学仪器发展战略咨询专家会议,20余位工作在科学仪器研制和生产领域的专家学者和企业家参加了会议,共同研讨中国科学仪器的发展战略问题。根据会议讨论成果,由方肇伦、金钦汉和范世福等执笔撰写了“关于大力加强我国科学仪器的自主研发和产业化能力,实施‘张衡工程’的建议”。此后,中国科学院以正式文件定名为“张衡工程”的建议并上报国务院,建议国家尽快启动以“张衡工程”命名的重大科技专项工程,以振兴我国科学仪器事业,为加强我国科技原始创新能力、提升重大装备制造业能力提供强大支撑。同时,中国科学院还将此上报文件在一定的范围内分发各处。“张衡工程”的目标是在10~15 年,实现我国使用的关键科学仪器70%以上由本国生产,掌握核心知识产权,尽快改变我国长期以来在关键科学仪器装备上对发达国家过度依赖的状况,实现我国科学仪器科技和产业的振兴。此外,方肇伦还身体力行,自1980年以来主持或参加研制了6种不同型号的流动注射分析仪器,并与厂家合作,进行生产技术指导与组织协调工作,大大促进了流动注射分析技术在我国的普及推广及实验室分析工作的自动化。由于方肇伦和同事们的不懈努力,我国自行研制的流动注射分析仪器基本满足了国内科研、教学、生产检测的需要,使国外同类产品驻足国门之外,为国家节省了大量外汇。在微流控分析仪器研制方面,方肇伦积极促成东北大学课题组与北京吉天公司、浙江大学课题组与上海光谱公司的产学研合作,推动微流控分析仪器的产业化研究工作。方肇伦从事科学研究和高等教育工作 50 年来,孜孜不倦、勤奋耕耘,研究成果丰硕。在科学研究中,他善于准确把握学科前沿,勇于探索、不断创新;在人才培养中,他治学严谨、无私奉献,为国家培养造就了一大批优秀的分析化学人才。他为人正直,宽厚平和,用一生谱写爱国华章!参考文献[1] 赵彦.微全分析:我的第二次“激动”:中国科学院院士方肇伦自述[J].光谱学与光谱分析,2001(3):372-386.[2] 钱伟长,白春礼.20世纪中国知名科学家学术成就概览化学卷第二分册[M].北京:科学出版社,2012.
  • 王建华:"流动注射"20年的坚持与守望——访东北大学王建华教授
    日前,在第19届国际流动注射分析及相关技术大会上,因在流动分析方法学及样品预处理等方面的突出成就,东北大学理学院王建华教授获得了&ldquo 流动注射分析科学奖&rdquo 。  其实,在90年代后期的时候,中国做流动注射分析(FIA)研究的人已经明显减少了,中国的FIA全国性学术会议也在1996年之后停办,种种迹象表明,FIA 已经不再是科研的热点领域,目前研究人员多是将FIA作为一种工具进行相关的科学研究。那么,王建华教授是如何与FIA结缘、并且20多年来一直坚持、如今取得了哪些让自己自豪的成果、以及是如何看待FIA的发展呢?  &ldquo 好容易学会了一种东西,舍不得扔。并且一直研究下来,越发觉得FIA挺有意思,用处多、也挺重要,&rdquo 王建华笑到。&ldquo 我有幸成为今年的两名获奖人之一,并参加了在日本福冈举行的第19届国际流动注射分析及相关技术大会和颁奖仪式。这应该感谢国际同行对我本人所作的一点贡献的认可和肯定,&rdquo 王建华介绍,&ldquo 我个人觉得这不能算是多大的成功,我们只是在流动注射分析领域中进行了一些个人或课题组成员感兴趣的研究,我一直认为,在流动系统中进行样品预处理的尝试是十分有意义的。&rdquo 东北大学王建华教授  结缘&ldquo 流动注射&rdquo   王建华教授与FIA结缘可以说是件意料之外又顺理成章的事情,&ldquo 本科和硕士研究生期间,我学的是无机合成,后来才转行到分析化学领域的。&rdquo 王建华教授谈到如何进入FIA领域时说到,&ldquo 我在1990年开始接触FIA时,有一个梦想&mdash &mdash 到流动注射的发祥地跟FIA的创始人学习。做过了一些FIA研究之后,机缘巧合,居然&lsquo 梦想成真&rsquo ,不仅到FIA发祥地学习,而且还直接师从FIA创始人 Elo Harald Hansen教授。&rdquo Hansen教授对中国十分友好,王建华在他的系统指导下完成了自己的博士论文,并跟随他进入了国际流动注射分析研究的前沿领域,也因此与国际同领域中的顶尖学者有了接触和交流,包括流动注射分析的创始人Jarda Ruzicka教授等。  方肇伦先生是我国流动注射分析研究领域的主要开创人,在1992年的全国FIA学术会议上,王建华认识了方肇伦先生; 2003年,在Hansen教授的推荐、方肇伦先生的&ldquo 感召&rdquo 下,王建华&ldquo 一激动&rdquo 就留在了东北大学。&ldquo 自从我来到东北大学分析科学研究中心,就一直得到方先生的关怀,我学到了方先生宽厚待人的为人之道,更领略了他严谨的治学态度。这对于我后来的科学研究和指导研究生极为重要。&rdquo 谈起方先生,王建华就滔滔不绝起来,&ldquo 方先生做人做事非常低调,科学研究耐得住寂寞。他从90年代初开始研究微流控分析技术,经过了长时间的探索奠定了研究基础,直到五六年之后才发表了第一篇微流控分析的文章。&rdquo   虽然在90年代后期,国内对流动注射分析的关注已经减弱,但是王建华认为,流动注射尤其是顺序注射和阀上实验室作为一种进样技术具有独到的优点,是在线分析的理想手段。在过去的20多年间,王建华一直将在线分析技术和在线样品预处理作为主要研究方向之一。并且,坚持了20多年,如今王建华教授和他的课题组在FIA研究领域取得了一系列成果。  其中让王建华自己满意、认为比较有意义的研究也有不少,如建立了一些在线样品预处理方法,包括对生命样品中DNA和蛋白质的分离富集,以及对环境样品中金属及其形态的分离分析 还建立了一些专用于特定组分分析的顺序注射在线检测系统,仪器公司在他们研究的基础上将其产业化后在环境检测领域有较好的推广应用 另外,实现了在阀上实验室中进行微珠注射及微填充柱的在线表面更新,并用于固相萃取,这对于后来阀上实验室技术的发展具有积极的意义 与方肇伦先生一起提出了&lsquo 介观流控&rsquo 分析系统的概念,即介于微流控和常规流动系统之间的流动分析模式,可成为常规样品引入与微流控系统进样的桥梁。  不过遗憾的是,尽管目前FIA的相关理论已经相对成熟,但由于在实际应用中还存在稳定性不足等局限,使得FIA在常规检测和生产实践中的应用还远远没有达到理想的程度。王建华教授说到,&ldquo 总的来说,流动注射及相关技术在我国的产业化还不太广泛,我们课题组在这方面也只是进行了一点探索,离真正的实际应用还有差距。&rdquo   谈到下一步研究工作,王建华说,&ldquo 在流动注射分析方面,我们课题组在今后一段时间内仍将持续目前的研究,即加强在流动系统样品预处理方面的探索,特别是对生命样品的预处理。同时继续进行基于流动系统的微型化仪器研究。&rdquo   流动注射与原子光谱&ldquo 微型化&rdquo   王建华教授在不断研究流动系统中样品预处理技术的同时,也探索了基于第三代FIA技术&mdash &mdash 阀上实验室技术的微型化原子光谱系统。如建立了介观流控-分离富集-原子荧光微型集成系统、报道了基于阀上实验室的微型化原子荧光光谱分析系统、利用介质阻挡放电技术(DBD)发展了微型化原子荧光光谱及原子发射光谱分析系统&hellip &hellip   这里所说的&ldquo 微型&rdquo 比微流控系统中的&ldquo 微型&rdquo 装置要大,但又显著小于常规的分析系统,且在样品消耗、废液排放等方面也位于二者之间。王建华教授课题组在阀上实验室-介观流控系统中集成了样品预处理单元和检测装置,建立了小型化仪器装置,包括原子光谱系统。  &ldquo 这种微型化仪器系统与大型仪器的原理一样,只是利用了阀上实验室技术,在阀上加工了一些模块,包括流路、微型填充柱、光学检测系统等。不过,这些研究成果后续并没有产业化,只是在原理上论证了在那样小的系统中可以做原子光谱分析。在产业化之前还有很多技术问题需要解决。&rdquo   王建华指出,&ldquo 目前这种微型化原子光谱的应用还受到一些限制,比如样品通常需要以蒸汽状态引入,而液相直接进样尚有待研究&hellip &hellip .。总之,基于这些原理的微型化原子光谱仪器在实现真正的产业化之前还需要深入系统的研究。目前国内有数个课题组和仪器公司也正在进行相关瓶颈问题的攻关。&rdquo   在采访的最后,王建华教授说到,&ldquo 我本人认为,基于流动注射的进样技术今后在中国仪器分析领域仍有较大的潜力,在未来的一段时间内,它仍将是一种有效的进样技术,与此相关的在线分析仪器的应用也将不断扩大。&rdquo   采访编辑:刘丰秋  附录1:王建华教授简历  王建华本科毕业于南开大学,于吉林大学获硕士学位,导师为徐如人院士和冯守华院士,获丹麦科技大学博士学位。  现为东北大学理学院院长,教授,博士生导师。  担任TALANTA(ELSEVIER)副主编(2005年起),英国皇家化学会《Journal of Analytical Atomic Spectrometry》编委(2007-2010)、《分析化学》、《光谱学与光谱分析》、《分析试验室》、《分析科学学报》等编委,还担任中国仪器仪表学会分析仪器分会原子光谱专业委员会副主任委员。  在Angew Chem、Anal Chem、Chem Commun、Chem-Eur. J、Lab Chip等期刊上发表SCI论文150余篇。近年主持过国家杰出青年科学基金、国家自然科学基金重点项目2项、重大国际合作项目1项、面上项目3项等。2005年被评为全国化工优秀科技工作者,2006被评为沈阳市优秀科技工作者、2008年被评为辽宁省优秀科技工作者,并获教育部自然科学一等奖,2009年获中国化学会分析化学基础研究梁树权奖,并被评为辽宁省优秀教师,2014年被评为沈阳市劳动模范。  附录2:流动注射分析科学奖  流动注射分析(Flow Injection Analysis,简写为FIA)是1974年丹麦化学家茹奇卡(Ruzicka J)和汉森(Hansen E H)提出的一种新型的连续流动分析技术,其发展经历了三代,即第一代流动注射分析,第二代顺序注射分析,第三代阀上实验室。国际流动注射分析及相关技术大会(ICFIA)是FIA领域内的系列国际学术会议,迄今已成功举办了19届。&ldquo 流动注射分析科学奖&rdquo 是用来奖励在国际FIA及相关技术研究领域中做出过相应贡献的学者的专有奖项,流动注射分析技术的创始人--美国华盛顿大学Jarda Ruzicka和丹麦科技大学Elo Harald Hansen教授均获得过此奖。
  • 吉天仪器为您配齐流动注射土壤检测方案
    概述:流动注射(FIA)技术已被广泛应用于很多分析领域,使用流动注射分析仪不仅可以大大提高检测分析的效率,并且具有检测精度高、可靠性好、稳定性强等特点,所以在土壤检测方面同样具有广泛的应用。本文采用聚光科技(杭州)股份有限公司下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)土壤样品经过批量处理后使用流动注射分析仪进行检测,根据检测项目的不同对土壤样品进行不同方法的样品处理,本文介绍了使用流动注射分析仪检测土壤中“氮”和“磷”含量的样品前处理方法。一、土壤中全氮的测定(HJ 717-2014):  1.1方法原理:  该方法基于改进的贝特洛反应,氨氯化生成一氯胺,一氯胺与水杨酸盐反应生成5-氨基水杨酸盐,接下来的氧化和氧化偶合反应生成了绿色的络合物,该络合物在660nm有最大吸收峰。  1.2试样的制备:  将土壤样品置于风干盘中,平摊成2~3cm厚的薄层,先剔除植物、昆虫、石块等残体,用铁锤或瓷质研磨棒压碎土块,每天翻动几次,自然风干。  充分混匀风干土壤,采用四分法,一份留存,一份用研磨机研磨至全部通过2mm(10目)土壤筛。取10g~20g过筛后的土壤样品,研磨至全部通过0.25mm(60目)土壤筛,装于样品袋或样品瓶中。  1.3还原剂的制备:  将五水合硫代硫酸钠(Na2S2O35H2O)研磨后过0.25mm(60目)筛,临用现配。  1.4催化剂的配置:  将200g 硫酸钾(K2SO4)、6 g 五水合硫酸铜(CuSO4?5H2O)和 6 g 二氧化钛(TiO2)于玻璃研钵中充分混匀,研细,贮于试剂瓶中保存。  1.5样品处理(HJ717-2014):  称取适量上述土壤样品(3.2)0.2000g~1.0000g(含氮约 1mg),精确到0.1mg,放入凯氏氮消解瓶(容积50ml或100ml)中,用少量水(约 0.5ml~1ml)润湿,再加入4ml 浓硫酸(H2SO4),瓶口上盖小漏斗,转动凯氏氮消解瓶使其混合均匀,浸泡8小时以上。使用干燥的长颈漏斗将0.5g 还原剂(3.3)加到凯氏氮消解瓶底部,置于消解器(或电热板)上加热,待冒烟后停止加热。冷却后,加入1.1g 催化剂 (3.4),摇匀,继续在消解器(或电热板)上消煮。消煮时保持微沸状态,使白烟到达瓶颈 1/3 处回旋,待消煮液和土样全部变成灰白色稍带绿色后,表明消解完全,再继续消煮1h,冷却。在土壤样品消煮过程如果不能完全消解,可以冷却后加几滴高氯酸后再消煮。  注 1:消解时温度不能超过400℃,以防瓶壁温度过高而使铵盐受热分解,导致氮的损失。  1.6样品处理(非标准方法):  称取上述土壤样品1.5g(精确至0.1mg)于50ml的消化管中(每个样品3次重复),每支消化管中加入2.0g加速剂(m硫酸钾:m五水合硫酸铜=10:1)和5ml浓硫酸(H2SO4),然后将样品和空白试剂置于远红外消解炉消解,直至土壤样品为蓝绿色或灰白色(颜色较浅)。待溶液冷却后,定容至50ml,摇匀过滤,滤液用于样品氮含量的测定。  1.7应用案例:  使用吉天仪器最新全自动流动注射分析仪iFIA7进行土壤中全氮含量测定。图1 iFIA7全自动流动注射分析仪-全氮分析通道  1.7.1:标准曲线的测定:表1 土壤中全氮标准曲线标准样品浓度(mg/L)吸光度峰高吸光度峰面积回算浓度(mg/L)00.00020.03340.07520.10.00340.74590.15250.250.00911.99040.28760.50.01914.2120.528610.03928.62791.007720.078917.30181.948850.201744.17124.8642100.414890.69.9017200.8449184.449920.0844图2土壤中全氮标准曲线分析图图3 土壤中全氮方法工作曲线  1.7.2土壤有效态成分分析标准物质全氮的测定:  采用中国计量科学研究院的土壤有效态成分分析标准物质(GBW07414,标准值0.094%,不确定度0.005%, GBW07417,标准值0.076%,不确定度0.004%),对方法及仪器进行检验,测定结果如下。表2 土壤有效态成分分析标准物质全氮含量测定结果样品名称已知含量(%)回算含量(%)GBW074140.094±0.0050.095GBW074170.076±0.0040.078 二、土壤中氨氮的测定(HJ 634-2012):  2.1方法原理:  氯化钾溶液提取土壤中的氨氮,在碱性条件下,提取液中的氨离子在有次氯酸根离子存在时与苯酚反应生成蓝色靛酚染料,在630?nm波长具有最大吸收峰。在一定浓度范围内,氨氮浓度与吸光度值符合朗伯-比尔定律。  2.2试样的制备:  将采集后的土壤样品去除杂物,手工或仪器混匀,过样品筛。在进行手工混合时应戴橡胶手套。过筛后样品分成两份,一份用于测定干物质含量,测定方法参见HJ613;另一份用于测定待测组分含量。  2.3样品处理:?  称取40.0g试样(1.2),放入500ml聚乙烯瓶中,加入200ml氯化钾溶液(1mol/L),在20±2℃的恒温水浴振荡器震荡提取1h。转移约60ml提取液于100ml聚乙烯离心管中,在3000r/min的条件下离心分离10min。然后将约10ml上清液转移至10ml样品管中。三、土壤中硝酸盐氮/亚硝酸盐氮的测定(HJ 634-2012):  3.1硝酸盐氮方法原理:  氯化钾溶液提取土壤中的硝酸盐氮和亚硝酸盐氮,提取液通过还原柱,将硝酸盐氮还原成亚硝酸盐氮,在酸性条件下,亚硝酸盐氮与磺胺反应生成重氮盐,再与盐酸N-(1萘基)乙二胺偶联生成红色染料,在波长543nm处具有最大吸收峰,测定硝酸盐氮和亚硝酸盐氮总量。硝酸盐氮和亚硝酸盐氮总量与亚硝酸盐氮含量之差即为硝酸盐氮含量。  3.2亚硝酸盐氮方法原理:  氯化钾溶液提取土壤中的亚硝酸盐氮,在酸性条件下,亚硝酸盐氮与磺胺反应生成重氮盐,再与盐酸N-(1萘基)乙二胺偶联生成红色染料,在波长543nm处具有最大吸收峰。在一定浓度范围内,亚硝酸盐氮浓度与吸光度值符合朗伯-比尔定律。  3.3试样的制备:同2.2  3.4样品处理:同2.3四、土壤中全磷的测定(GB 9837-88):  4.1方法原理:  土壤样品与氢氧化钠熔融,使土壤中含磷矿物及有机磷化合物全部转化为可溶性的正磷酸盐,用水和稀硫酸溶液熔块,在规定条件下样品溶液与钼锑抗显色剂反应,生成磷钼蓝。  4.2样品的制备:  取通过1mm孔径筛的风干土样在牛皮纸上铺上薄层,划分成许多小方格。用小勺在每个方格中提取出等量土样(总量不少于20g)与玛瑙研钵中进一步研磨,是全部通过0.149mm孔径筛。混匀后装入磨口瓶中备用。  4.3溶样(样品处理):  准确称取风干样品0.25g(精确到0.1mg)小心放入镍(或银)坩埚,切勿粘在壁上。加入无水乙醇3~4,滴润湿样品,在样品上平铺2g氢氧化钠(NaOH)。将坩埚(处理大批样品时暂放入大干燥器中以防潮吸潮)放入高温电路,升温。当温度升至400℃左右时,切断电源,暂停15min。然后继续升温720℃,并保持15min,取出冷却。加入80℃的水10ml,待熔块溶解后,将溶液无损失地转入100ml容量瓶内,同时用3mol/L的硫酸溶液和10ml水多次洗坩埚,洗涤液也一并移入该容量瓶。冷却,定容。用无磷定性滤纸过滤或离心澄清。同时做空白式样。五、土壤中有效磷的测定(HJ 704-2014):  5.1方法原理:  用0.5mol/L碳酸氢钠溶液(pH=8.5)浸提土壤中的有效磷。浸提液中的磷与钼锑抗显色剂反应生成磷钼蓝,在波长880nm处测量吸光度。在一定浓度范围内,磷的含量与吸光度值符合朗伯-比尔定律。  5.2干扰和消除:  砷(V )、铌、钽、锆、钛和钼酸铵产生同主反应类似的杂多酸,砷大于2mg/L干扰测定,1μg砷同0. 35 μg磷相当,当水样中砷含量超过磷时,应采用硫代硫酸钠掩蔽。对铌、钽、锆、钛的影响可通过萃取或加氟化物来避免。硅和钼酸铵产生同主反应类似的杂多酸,干扰测定,使结果偏高,在微酸性(pH4-6)的条件下,加入酒石酸可消除干扰。铁含量为20mg/L,使结果偏低5%,在大于30mg/L以上会使钼蓝退色, 可加入过量抗坏血酸抑制。亚硝酸影响钼兰显色,显色液中亚硝酸盐达数毫克会使显色液褪色,可在加入钼酸铵前加入0.05g氨基磺酸(NH2SO3H)以防干扰。六价铬大于50mg/L有干扰,可用亚硫酸钠去除。硫化物含量大于2mg/L有干扰,在酸性条件下通氮气可去除。强氯化剂及铬酸盐使生成钼蓝褪色,高亚硝酸盐也有褪色作用,可在加入钼酸铵前加入0.05g氨基磺酸(NH2SO3H)以防干扰。  5.3浸提剂的制备c(NaHCO3)=0.5mol/L:  称取42.0g碳酸氢钠溶于约800ml水中,加水稀释至约990ml,用氢氧化钠溶液(10%)调节至pH=8.5(用pH计测定),加水定容至1L,温度控制在25±1℃。贮存于聚乙烯瓶中,该溶液应在4h内使用。  注1:浸提剂温度需控制在25±1℃。具体控制时,最好有1小间恒温室,冬季除室温要维持25℃外,还需将去离子水事先加热至26~27℃后再进行配制。  5.4样品采集与保存:  按HJ/T 166的相关规定进行采集和保存土壤样品。  5.5试样的制备:  试样的制备按NY/T 395-2012《农田土壤环境质量监测技术规范》进行土壤处理和制备。  5.6干物质含量的测定:  准确称取适量试样(5.5),参照HJ 613测定样品干物质的含量。  5.7样品处理:  称取2.50g试样(5.5),置于干燥的150ml具塞锥形瓶中,加入50.0ml浸提剂(5.3),塞紧,置于恒温往复振荡器上,在25±1℃下以180~200r/min的振荡频率振荡30±1min,立即用无磷滤纸过滤,滤液应当天分析。  注2:浸提时最好有1小间恒温室,冬季应先开启空调,待室温达到25℃,且恒温往复振荡器内温度达到25℃后,再打开振荡器进行振荡计时。  5.8应用案例:  使用吉天仪器最新全自动流动注射分析仪iFIA7进行土壤中有效磷含量测定:  5.8.1标准曲线的测定:表3土壤中有效磷工作曲线标准样品浓度(μg/L)吸光度峰高吸光度峰面积回算浓度(μg/L)00.00010.01236.0100.00170.315212.6200.00340.639619.6500.01041.942747.91000.02284.141195.72000.04938.7410195.65000.137022.8786502.6图4土壤中有效磷标准样品分析图图5土壤中有效磷方法工作曲线  5.8.2土壤中有效态成分分析标准物质有效磷的测定:表4 土壤中有效态成分分析标准物质有效磷含量测定结果样品名称已知浓度mg/kg回算浓度mg/kgGBW0741413.8±2.314.2GBW0741413.8±2.313.6GBW0741413.8±2.313.6GBW0741614.8±3.114.9GBW0741614.8±3.115.0GBW0741614.8±3.115.0GBW0741748±348.0GBW0741748±347.8GBW0741748±347.6  5.8.3 土壤中有效态成分分析标准物质土壤有效磷加标测定:表5 土壤中有效磷加标回收率实验样品名称样品浓度(mg/kg)加标前浓度(mg/kg)加标浓度(mg/kg)加标后浓度(mg/kg)回收率(%)GBW0741413.8±2.313.9 20.0 32.392.0GBW0741614.8±3.1 15.0 10.0 24.9 99.0GBW0741748±3 47.8 20.0 67.799.5
  • 前沿合作 | 2D-LCMS-QTOF法对注射用头孢美唑钠的未知杂质进行结构解析
    岛津中国创新中心与北京阳光诺和药物研究股份有限公司和中国食品药品检验研究院合作,采用岛津二维高效液相色谱串联四极杆飞行时间质谱法(2D-LC-QTOF),对头孢美唑钠热降解的未知杂质进行了定性鉴定。 背景介绍β-内酰胺类抗生素,主要包括头孢菌素类、青霉素类和碳青霉烯类。头孢美唑是第二代半合成的头孢类抗生素。2020版《中国药典》,美国药典(USP43)和日本药典(JP17)都收录了注射用头孢美唑钠。在注射用头孢美唑钠的质量研究中,发现其对热比较敏感,头孢美唑内酯(cefmetazole lactone)和1-甲基-5-巯基四氮唑(1-methyl-5-mercaptotetrazolium)在高温条件下均有明显增加,主峰后出现3个明显的未知杂质。 某仿制药和参比制剂样品中实际检出的未知杂质含量超过了ICH Q3B规定的鉴定阈值(头孢美唑日用最大剂量为4g,对应的杂质鉴定阈值为0.10%;部分样品中如图1所示杂质3的量超过0.10%),故尝试对注射用头孢美唑钠检出的未知杂质进行结构分析。图1给出了注射用头孢美唑钠热解样品的一维(图1A)和3种目标杂质(杂质1-3)的二维(图1B)紫外色谱图。图1 注射用头孢美唑钠热解样品的一维(1A)和3种目标杂质(杂质1-3)的二维(1B)色谱图 解决方案岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030 基于二维液相色谱-高分辨质谱系统,采用中心切割技术将在一维中采用含非挥发性盐的流动相中分离得到的目标未知物导入二维色谱,在二维色谱中采用质谱兼容的挥发性流动相,进而采用高分辨质谱对未知物进行定性鉴定。一维色谱采用《中国药典》中注射用头孢美唑钠的有关物质检查方法,流动相中含不挥发的磷酸盐和离子对试剂(四丁基氢氧化铵,TBAH)。二维色谱采用C18色谱柱,利用磷酸盐在色谱柱上不保留,TBAH在高比例水相下不易洗脱等性质,通过阀切换技术和改变流动向比例等方法洗脱导入废液,避免质谱污染。 表1 头孢美唑钠中杂质的分子式、加和离子和误差 在结构解析中,通过比较头孢美唑钠和未知降解杂质的母离子及特征碎片离子的相关性,结合文献报道的头孢类抗生素及杂质的裂解规律,对头孢美唑钠中的三种未知杂质进行科学合理的定性分析。表1列出了三种未知杂质的分子结构和误差。以杂质2为例,在正模式下的一级质谱图(见图2A):主要离子为m/z 488.0320,m/z 372.0160,m/z 505.0586。m/z 488.0320与m/z 505.0586相差17,可推断m/z 505.0586为m/z 488.0320的[M+NH4]+峰。m/z 488.0320的二级产物离子质谱图(见图2B)。推测杂质2的结构和裂解规律(见图3),杂质2可能为7-甲巯基头孢美唑。同时,7-甲巯基头孢美唑也是一种常见的头孢美唑杂质。 图2 杂质2在正模式下的扫描离子(2A)和m/z 488.0320的产物离子质谱图(2B) 图3 杂质2可能的结构和质谱裂解规律 结论本研究对头孢美唑中的3种未知杂质进行了科学合理的定性分析,对于头孢美唑的质量控制及安全性评价具有重要意义。本分析方法适用于β-内酰胺类抗生素中未知杂质的分离和定性,具有很强的通用性,同时可对化学药物、天然产物、多组分生化药等复杂组成体系进行定性鉴别,从而提供可靠的质量控制分析方法。 本工作基于创新中心搭建的专属性中心切割二维反相色质谱联用分析平台(2D-LC-QTOF)和开发的《抗生素杂质数字化标准品数据库》,该数据库收录了β-内酰胺类抗生素的一般杂质和聚合物杂质的色谱和高分辨质谱数据,还登录了抗生素相关杂质的液相色谱-三重四极杆质谱分析方法。该分析平台不仅为企业客户大大降低了企业研发成本,同时也为企业的工艺改进、剂型研发、品质提升等方面提供技术参考。 参考文献:《采用二维高效色谱-串联四级杆飞行时间质谱法对注射用头孢美唑钠的未知杂质进行结构解析》《中国药学杂志》中图分类号:R917 文献标识码:A 文章编号:1001-2494(2022) 08-0645-06 doi: 10.11669/cpj.2022.08.009
  • 瑞士Tecan Cavro Centris注射泵提供绝佳选择和更高灵活性
    来自瑞士帝肯(Tecan)的可配备多种玻璃注射器和塑料阀门的Cavro Centris注射泵具目前业已正式推出,本产品拓展了以现有耐用陶瓷组件为基础的产品线,可以使客户具有更广泛的材料选择空间,将Cavro Centris注射泵的先进性引入客户的仪器开发设计,为客户提供一系列的精准液体处理应用方案。Cavro Centris注射泵设计紧凑,配备有UL-recognized(UL-已认可)注射泵模块,适用于OEM实验室设备。本产品具有卓越的液体样本处置能力&mdash &mdash 流速调节可从5 nl/s提升至5 ml/s&mdash &mdash 这树立了业界准确性、可靠性、精密度的新标杆。Cavro Centris注射泵的一大特点是其设计上的精妙性和稳健的驱动机制,从而使其能够应对从单一注射器尺寸开始的一系列动态尺寸规模。拥有突出高性价比一直是用户的夙愿,现在,玻璃注射器和塑料阀门这一高性价比的创新设计终于横空出世。这些高质量玻璃和塑料配件已经在Tecan的Cavro配件中获得了广泛应用,业已证明它们在Cavro Centris注射泵上一直保持着优异的工作性能。同时由于无需选用耐久性陶瓷液体通路,因此降低了装配费用。如今,您能够比以往更加体会到帝肯CavroCentris注射泵为您的设备设计和应用方案带来的强大好处!更多关于帝肯Cavro Centris 注射泵详情,敬请访问www.tecan.com/components 。帝肯Cavro Centris注射泵为您提供玻璃或陶瓷注射器选择更多详情,欢迎您联系: 帝肯(上海)贸易有限公司Libby ZhuTel: 021 2206 3206 / 010 8511 7823Fax:021 2206 5260 / 010 8511 8461infotecancn@tecan.comwww.tecan.com 关于帝肯瑞士Tecan是全球领先的生命科学与生物制药、法医和临床诊断领域自动化及解决方案供应商。公司成立于1980年,总部设在瑞士Mä nnedorf,分别在瑞士、北美和奥地利设有自己的研发和生产基地,目前公司主要经营的产品有三大类:全自动化液体处理平台 ( Liquid Handling & Robotics )、多功能酶标仪(Multimode Reader)和OEM组件。销售服务网络遍布世界52个国家,客户覆盖制药企业、生物技术公司、科研院所、法医、医院、血站系统和疾病控制中心(CDC)等。其液体处理技术已拥有行业经验32年,在全球处于领先地位,备受世界领先生命科学实验室的青睐。作为原始设备制造商(OEM),Tecan同样在OEM设备和组件开发和生产方面占有世界领先地位。2011年,Tecan创造了3.77亿瑞士法郎(即4.24亿美元;或3.06亿欧元)的销售业绩。Tecan集团的注册股票在瑞士证券交易所交易 (TK: TECN/Reuters: TECZn.S/ ISIN: 12100191)。欲了解更多信息,请浏览公司网站: www.tecan.com。关于帝肯中国瑞士Tecan于2004年在北京开设代表处,正式进驻中国市场。2008年4月在上海浦东成立帝肯(上海)贸易有限公司, 作为Tecan集团在亚太地区(日本及韩国除外)总部,全面负责Tecan集团在中国的所有商业活动,包括销售、市场活动与合作、以及客户支持。帝肯(上海)目前拥有一支专业的售前和售后服务团队,在科研、制药、公安刑侦、医院、血站、CDC和CIQ领域构建了良好的经销和售后服务网络,并以&ldquo 力求比客户期望做的更好&rdquo 的服务理念,给广大的终端用户提供专业的服务。我们致力于成为包括客户在内的所有合作方的首选合作伙伴(Partner of Choice)。
  • ETT-01薄膜拉力试验机除了测试注射器活塞的推拉力还能测试注射器的哪些物性
    在医疗行业中,注射器作为一种常见的医疗器械,其质量和性能直接关系到患者的安全和治疗效果。因此,对注射器的各项物性指标进行严格测试显得尤为重要。近年来,ETT-01薄膜拉力试验机凭借其高精度和多功能性,在注射器物性检测领域大放异彩。除了能够准确测量注射器活塞的推拉力外,它还能测试注射器的哪些物性呢?推拉力测试:测试注射器活塞的推力和拉力,确保其在规定范围内。穿刺力测试:评估注射器针头的穿刺能力,这对于确保药物能够准确注入至关重要。滑移力测试:测量注射器活塞在筒体内的滑动摩擦力,以保证注射器的顺畅使用。破坏性测试:通过施加超过正常使用范围的力,测试注射器的耐用性和可靠性。ETT-01薄膜拉力试验机能够对注射器的材料强度进行精确评估。通过模拟实际使用过程中的拉伸和压缩情况,试验机可以测量出注射器外壳、活塞以及密封件等部件的拉伸强度、压缩强度等关键参数。这些参数是评价注射器材料性能的重要指标,有助于确保注射器在使用过程中能够承受足够的压力,不易发生破裂或变形。此外,ETT-01薄膜拉力试验机还能对注射器的密封性能进行量化检测。密封性能是注射器的重要性能指标之一,直接关系到药液是否会发生泄漏。通过模拟实际使用中的压力变化,试验机可以测试出注射器各部件之间的密封效果,从而判断其是否满足使用要求。除了强度和密封性能外,ETT-01薄膜拉力试验机还能对注射器的摩擦性能进行测试。摩擦性能是指注射器在使用过程中各部件之间的摩擦情况,它直接影响到注射器的操作顺畅度和使用寿命。试验机可以模拟注射器在实际使用中的摩擦情况,测量出各部件之间的摩擦系数,为改进注射器的设计提供重要依据。此外,ETT-01薄膜拉力试验机还具有高度自动化的特点,可以大大提高测试效率。试验机配备了先进的传感器和控制系统,能够自动记录测试数据并生成测试报告,极大地方便了测试人员的工作。同时,试验机还具有操作简便、稳定性好等优点,能够满足不同用户的使用需求。综上所述,ETT-01薄膜拉力试验机在注射器物性检测领域具有广泛的应用前景。它不仅能够测试注射器活塞的推拉力,还能对注射器的材料强度、密封性能和摩擦性能进行全面评估。随着医疗技术的不断发展,相信ETT-01薄膜拉力试验机将在未来的注射器物性检测中发挥更加重要的作用,为保障患者安全和提升医疗质量贡献力量。
  • 新型模式生物的新宠-斑马鱼,兰格皮升泵了解一下?
    斑马鱼 (Danio rerio) 许多医学研究都依靠动物模型来加深对动物和人类疾病成因的了解,并促进创新疗法的发展。尽管啮齿动物是全球使用最广泛的研究模型,但在最近几十年中,斑马鱼模型的使用已呈指数增长。这是因其生理、发育和代谢与哺乳类动物高度相似,和人类基因有着87%的高度同源性。因为能可靠模拟和预测人类生理、病理过程,斑马鱼模型目前已广泛应用于药物安全性评价领域。此外,它也被用于测试新的治疗剂,例如新疫苗的安全性,有助于实验室减少研究和分析时间并降低成本。 相比实验室小白鼠,斑马鱼由于养殖方便、繁殖周期短、产卵量大、胚胎体外受精、体外发育、胚体透明,便于实验室开展大规模研究。显微注射技术显微注射是斑马鱼研究中最常用的一项技术。在显微镜下,通过显微操作系统将一定的化学试剂或核酸、核酸衍生物导入到斑马鱼胚胎中。显微注射系统斑马鱼显微注射整套系统包括:皮升泵、脚踏开关、显微镜、显微操纵器、持针器等。 皮升泵利用可调节气压脉冲注入皮升级体积的实验材料; 持针器用于固定注射过程中使用的注射针,并将它与皮升泵的空气管相连; 持针器通常装在显微操纵器上,该装置使得研究人员可以轻松地操纵注射针头在胚胎的不同位置进行注射; 皮升泵可与脚踏板相连,研究人员在使用他们双手的同时还可以激活压力脉冲,将实验材料注射入胚胎; 显微镜能让研究人员在显微注射过程中看到胚胎并对注射针所在的位置聚焦。 这些配件互相配合,在斑马鱼早期胚胎的注射过程中缺一不可,共同配合完成一系列完整的显微注射动作。 皮升泵是斑马鱼显微注射实验中重要仪器之一。兰格皮升泵LPP01-100通过调节注射气体压力和注射时间,将注射物料的体积控制在皮升级,并可配合脚踏开关或通过手动按键操作,来完成注射动作产品特性 采用压缩气体(氮气或其他惰性气体)作为动力源,通过电子、机械控制技术,及先进的元器件、零部件,通过调节气体压强、释放时间、注射针头的直径和锥度来控制注射液体体积; 提供两路气液通道,一路为注射通道,用于吸取、注射液体,并提供平衡功能用于平衡毛细现象造成的液体吸入;一路为保持通道,用于吸附被注射细胞; 能通过按键,脚踏开关,外控完成小液量注射; 具有清除功能可以使用高压的瞬时清除堵塞的吸液管; 兰格皮升泵通过空气压力脉冲来控制液体的流动,通过匹配其它配件可协助实验操作人员轻松完成斑马鱼胚胎的各种注射操作。
  • iFIA7全自动多参数流动注射分析仪-独具匠心,初心永恒
    别出心裁,名称外观尽显仪器之不凡  2017年10月10日,第十七届北京分析测试学术报告会暨展览会(BCEIA2017)在国家会议中心拉开帷幕,聚光科技下属子公司北京吉天仪器有限公司(以下简称“聚光科技”)携多款产品重装亮相本届BCEIA,并同期举行了新品发布会,其中“全自动多参数流动注射分析仪(iFIA7)”摘得BCEIA金奖。 iFIA7 BCEIA2017金奖  新一代iFIA7流动注射分析仪,在命名上延续吉天仪器FIA6000+的“FIA”,代表“流动注射方法(Flow Injection Analyzer)”;此外,吉天人匠心独运,不落俗套,在“FIA”的基础上前置一个“i”,代表“intelligence”,重点着眼于研发智能化的流动分析平台。 iFIA7全自动多参数流动注射分析仪  为打破实验室国产仪器与进口仪器相比,外观的第一眼就相形见绌的劣势印象;此次在iFIA7的外观设计上,吉天仪器也是煞费苦心。仪器机身采取流线形的设计,流畅的线条、精致的细节、大气低调的配色,再加之通电时的蓝色呼吸灯,使得仪器由内而外彰显十足的科技感;质感的外观与智能化的理念,相得益彰。  iFIA7全自动多参数流动注射分析仪,首创智能化流路控制系统,拥有强大的多参数分析能力。仪器采用流动注射-分光光度检测技术,快速自动化测定水、废水中挥发酚、氰化物、阴离子表面活性剂、总磷、总氮等几十种物质。同时可以扩展紫外、电极、火焰光度计等不同类型检测器,对土壤、食品、烟草中氮、磷、钾等提取液进行检测。  该仪器高度集成的分析体系,智能化的人机交互,以及强大的自诊断、维护能力,可以减少用户操作,避免人为误差,让化学分析进入智能分析时代。广泛的应用扩展,可以满足不同行业检测需求,为提高实验室检测能力助力。继往开来,精益求精打造民族品牌  吉天仪器与流动注射的渊源由来已久。早在21世纪初,吉天仪器推出FIA 6000全自动流动注射分析仪,打破国外的长期垄断,彻底改变了中国流动分析仪的市场格局。作为流动注射分析仪的第一家民族品牌,吉天仪器品质至臻,盛誉满载,十几年来,获得了专家的赞赏和用户的信赖。 FIA 6000全自动流动注射分析仪  如今,iFIA7全自动多参数流动注射分析仪,以“智能化”为突破点,精诚研发,开拓进展,用创新赢得未来。此后,吉天仪器流动分析产品线前进的脚步愈发铿锵,将继续深挖用户使用的痛点,使得民族品牌代表国际先进水平,引领流动分析仪的变革。
  • 锐拓溶出系统应用研究案例——纳米注射剂的体外释放度研究
    纳米注射剂可显著改善药物不良的理化性质和药代动力学特征,提高药物稳定性,增加药物在靶组织的有效积累和靶向释放,是近年来药物研发的热点。纳米注射剂的类型主要有:脂质体、纳米胶束、纳米混悬剂、纳米乳等。目前,共有29种纳米注射剂经美国 FDA或欧洲药品管理局批准用于癌症、贫血、真菌感染、黄斑变性等疾病的治疗和诊断。根据《化学药品注射剂(特殊注射剂)仿制药质量和疗效一致性评价技术要求》,体外释放度是一项关键质量属性。纳米注射剂的体外释放试验通常从透析膜法、流池法、Franz 扩散池法、样品分离法、连续流动法等体外释放测试方法中选择合适的方法进行研究。本文将分享某种纳米注射剂的体外释放度研究结果,希望能跟您带来启发和帮助。实验方法的选择本次体外释放度研究的实验方法将从透析膜法、流池法、Franz 扩散池法进行筛选:透析膜法:锐拓RT6 普通溶出系统(配备:透析管适配器)流池法:锐拓RT7 流池法溶出系统Franz 扩散池法:锐拓RT8 透皮扩散系统在对比测试中,三种方法的实验参数尽量保持一致,例如:使用相同的释放介质,流池法和Franz 扩散池法使用相同的膜系统等。体外释放结果显示,本次研究的纳米注射剂在透析膜法和Franz 扩散池法的测试条件下释放速度过于缓慢,并不符合本注射剂释放时间的设计预期。流池法更加适合样品的体外释放度研究。 方法优化进一步地,针对流池法的实验参数进行优化,以获得更有重复性和区分力的测试数据。实验结果显示,优化后的流池法能够区分不同生产工艺的两批待测样品,且测试数据的重复性良好。 结果讨论在纳米注射剂研发过程中,应该对生产工艺过程和工艺参数进行全面研究。例如,粒径及其分布对纳米注射剂生物学特性影响较大,其微小变化可能改变给药后血液循环中纳米制剂的表面属性等理化性质,显著影响纳米粒的稳定性、体内分布和药物释放。通过合适的方法考察纳米注射剂的体外释放行为,可以有效地评估不同工艺过程和参数对药物释放的影响,并能一定程度上预测其生物利用度,对产品的质量控制、生产工艺优化以及生物等效性研究意义重大。
  • 北京吉天2011年第一期流动注射分析仪培训班通知
    北京吉天公司2011年第一期流动注射分析仪培训班通知尊敬的女士/先生:您好! 首先感谢您选购和使用北京吉天仪器有限公司生产的流动注射分析仪系列产品! FIA-6000系列流动注射分析仪是一个功能强大、自动的管道型连续流动分析系统,可以检测挥发酚、氰化物、氮、磷等20多种水质污染常规监测项目。由于采用了国际先进的流动技术-流动注射分析(FIA),不仅提高了分析速度和分析精度,而且大大减少了试剂与样品用量,分析速度快,结果准确。系统可以在实际分析之前实现复杂的样品制备,比如在线蒸馏、在线紫外消解、在线萃取等。简化了繁琐的样品前处理步骤,为客户提供了快速、高效、准确的溶液化学解决方案。迄今获得了科技成果奖、自主创新金奖、以及BCEIA金奖等多项荣誉,也得到了广大用户和专家的认可,已广泛应用于水质、疾控、食品、农林畜牧业、水利、海洋等行业的多个项目的分析和检测。 公司经过询访众多用户,了解到用户由于购置仪器的时间不同、部分操作人员工作变动,以及新采购仪器的操作人员不熟练,在实际检测中出现一些问题。我公司本着客户第一,服务至上的原则,将举办本年度第一期流动注射分析仪以及相关技术培训班,培训内容将邀请专家和仪器设计工程师主要讲解分析流动注射分析仪的各项目在线分析技术原理,届时还安排上机实操,并介绍仪器最佳实验条件选择、配件更换技巧,以及常见问题的处理和排除方法等。欢迎您的光临和指导!北京吉天仪器有限公司2011年2月 ² 培训班日期: 2011年3月27日报到)月27日&mdash &mdash 4月2日(3月27日报到)² 报到地点: 北京市朝阳区花家地东路3号中国民航管理干部学院(专家楼)² 参加人员:各用户单位的代表1~2人,凡有意向参加培训的用户请和下面联系人联系获取具体培训安排及费用情况² 联 系 人:刘永利,64377759-528, 13801196040² 乘车路线: 北京站: 乘420路到望京医院。 北京西站:乘387路安贞里转乘运通104,201路到望京医院 北京南站: 乘特8路三元桥转乘403路到丽都饭店 北京机场:乘机场巴士至中国民航管理干部学院.² 培训地点:乘967路到文化广场,516路到酒仙桥东路南口下车,朝阳区酒仙桥东路1号M6座西4 层 请到北京吉天仪器有限公司网站(www.bjtitanco.com)&ldquo 下载中心&rdquo 下载&ldquo 北京吉天2011第一期流动注射分析仪培训班通知&rdquo ,其中包括&ldquo 学习班回执确认单&rdquo 和&ldquo 用户培训调查表&rdquo ,回传截止日期2011年3月15日。
  • “多角度深入探讨注射剂再评价中的关键影响因素”研讨会圆满落幕
    p 2018年10月18-19日,由国药励展展览有限责任公司与北京医恒健康科技有限公司联合主办,药酚享科技(北京)有限公司与南京方生和医药科技有限公司等协办的在南京国际博览中心与第81届中国国际医药原料药/中间体/包材/设备交易会同期成功举办。/pp 虽然国家的注射剂一致性/再评价工作正式指导性文件仍在完善中,但不少注射剂企业已开始提早布局,目前,从CDE的官方数据来看,已有数个品规的注射剂通过了评价,并已有了几十个注射剂品种的受理号。不过,随着研究的开展越来越多的困惑也开始出现。因此,北京医恒健康科技有限公司携手国药励展展览有限责任公司在行业盛会-第81届API China原辅包机展会同期组织了这次研讨会,让大家对行业发展与市场形势有一次全面的调研与掌握。/pp 本次研讨会为期两天,共邀请了资深药品审评专家库专家、国家药典委员、药检系统专家,以及国内外优秀企业代表共13位报告人分别从注射剂一致性/再评价的国家政策法规、注册审评质控变化趋势到注射剂的关键工艺研究、质量与稳定性研究、原辅包质量与相容性研究等关键影响因素与参会者进行了分享和讨论。本次会议由北京医恒健康科技有限公司总经理余立和董事吕竹轮流主持,于10月18日上午9点准时在南京国际博览中心8202会议室召开,共有近百位来自制药公司、大专院校及科研单位的负责人和技术人员代表参加。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201810/uepic/ce886baf-2830-4f41-91ea-608ca5768928.jpg" title="1.JPG" alt="1.JPG"/ 会议现场图/pp 研讨会由周建平教授首先进行开场演讲,他从制剂技术发展,到药典注射剂通则拟增修订思路,再到注射剂过程控制的要求,以及政策和药典通则变化对企业注射剂研发的影响这四个主要方面对参会者进行了详细介绍,使到会者收益颇多。/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/201810/uepic/6d101a6c-e9b1-4e54-9123-b8e23b1066d2.jpg" title="1.1.JPG" alt="1.1.JPG"//pp style="text-align: center "注射剂制剂技术变化趋势及对新药研发的影响/pp style="text-align: center "演讲者-周建平· 国家药典委制剂专委会主任委员,中国药科大学教授/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/201810/uepic/23fe0395-6243-475a-97a1-ac016f0c8e26.jpg" title="1.2.JPG" alt="1.2.JPG"//pp style="text-align: center "增溶剂质量与注射剂质量相关性研究案例分析/pp style="text-align: center "演讲者-史晋海· 天津国际生物医药联合研究院副院长;中国蛋白药物质量联盟秘书长/pp style="text-align: left " 史晋海老师以聚山梨酯80为例进行了增溶剂质量与注射剂质量相关性研究报告。他从聚山梨酯80结构、理化性质以及在注射剂中作为辅料应用的功能、应用领域概述,到国内外现行质量标准差异比较分析,目前存在的问题,生物制药与中药注射剂中的不同应用方式等方面进行了论述。聚山梨酯80是注射剂中应用较多的一种辅料,它的质量与标准直接影响到注射剂药品的质量、安全和有效性。聚山梨酯80的质量控制与其标准的合理制订对注射剂产品的研发与生产有直接的联系。br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/3117d479-c8ee-4a0a-ad53-e533b612c77f.jpg" title="4.1.JPG" alt="4.1.JPG"//pp style="text-align: center "注射剂包装形式和相容性研究要点/pp style="text-align: center "演讲者-俞辉国家药典委辅料包材专委会委员,浙江省食品药品检验研究院包材所所长/pp 俞辉老师为国内包材知名专家之一,他详细介绍了注射剂的各种包装形式,将欧共体药典指导原则对塑料材料的最新要求,以及欧洲药典或欧共体成员国各自药典对其他材料的要求讲解给参会者。通过讲解高风险给药途径气雾剂的人体吸收过程说明了包装材料安全的重要性。同时介绍了注射剂中微粒与碎片的安全评估及包装容器和给药装置可能存在的风险。指出用药的安全有效和便利是个复杂的系统和全民工程,是健康中国战略实施的重要保障。/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/201810/uepic/25d45e1a-a2d5-4120-8c9f-c87c10bec178.jpg" title="5.1.JPG" alt="5.1.JPG"//pp style="text-align: center "辅料对注射剂质量的影响与关联审评的必要性/pp style="text-align: center "演讲者-孙春萌· 中国药科大学副教授,药品审评中心外聘专家/pp style="text-align: left " 孙春萌老师曾在CDE借调工作一年多,对仿制药审评思路与要求有较多了解,他从注射剂一致性研究的工作重点出发,介绍药用辅料在注射剂处方中的重要作用,并进一步梳理药用辅料审评审批政策的变化历程,概述国家相关职能部门对于现行原辅包共同审评政策的执行情况。也从国家药用辅料标准体系建立的角度出发,介绍在选择制剂中药用辅料时的关注点,并对复杂组分供注射用药用辅料的质量研究策略进行案例分析。br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/f7d1a164-56d1-46c3-8781-98ff1a5f619a.jpg" title="6.1.JPG" alt="6.1.JPG"//pp style="text-align: center "注射剂颜色研究的方方面面/pp style="text-align: center "演讲者-余立· 原北京药检所所长助理 药典委生化专委会委员/pp style="text-align: center " 连续四届当选药典委员的余立老师曾是药典通则溶液颜色检查法的起草者之一。虽说注射剂的溶液颜色研究听起来像是个小项目,也许没有几个人用心去琢磨,但颜色小项目是与注射剂质量大问题挂钩的!真的问起来,估计也没有几个人能完全回答上来余立老师在这次会上讲到的几个问题:为什么有些药品设立颜色检查项而有些不设呢?怎么原来叫溶液的颜色检查现在有的都改叫杂质吸光度了呢?欧洲药典的Y5等于中国药典的Y5吗?谁宽松谁严格如何进行评价与转换?颜色检查的各种方法各有哪些优缺点?分别适合哪类药品?如何让颜色检查限度与大问题真正挂上钩呢?现在的颜色检查方法有哪些让人不满意的地方?药典方法有可能在哪方方面进行改进?余立老师以她惯有的生动幽默,深入浅出的形式回答了大家的疑问。 br/img src="https://img1.17img.cn/17img/images/201810/uepic/0d5b3264-104a-4080-bf2e-669e143e80c3.jpg" title="7.1.JPG" alt="7.1.JPG"//pp style="text-align: center "注射剂再评价与伴随的质量研究/pp style="text-align: center "演讲者-周立春· 原北京药检所所长助理,药典委化药专委会委员br//pp style="text-align: left " 周立春老师从注射液剂型特点和质量要求;注射液对API与辅料的质量要求;注射液杂质特点,研究及控制策略;一般杂质限度拟定的基本思路与策略及案列分析;基因毒性杂质研究思路及控制策略;金属杂质研究思路及控制策略等6个方面内容进行了深入报告。 br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201810/uepic/bbbccac5-88c4-4c97-80fe-7a89dee12bda.jpg" title="8.1.JPG" alt="8.1.JPG"//pp style="text-align: left " 中药注射剂再评价研究要点br/ 演讲者-李文龙· 浙江大学药学院教授,浙江省药学会制药工程专业委员会秘书br/ 会议特意为关心中药注射剂再评价的同行安排了李文龙老师关于中药再评价方面的报告。李老师介绍了中药注射剂整体应用概况,深入解读CFDA关于中药注射剂的最新政策及其核心内涵;以他目前从事的研究对象-正清风痛宁注射液为例,论述中药注射剂再评价研究要点,并对中药注射剂未来的应用前景及研究重点给出个人见解。br//pp style="text-align: left " img src="https://img1.17img.cn/17img/images/201810/uepic/1858247d-7780-480d-8498-7f5889c073c1.jpg" title="9.1.JPG" alt="9.1.JPG"//pp style="text-align: center "液相色谱法的进展对注射剂质量控制与标准制订的影响/pp style="text-align: center "演讲者-王玉· 原江苏省院副院长,药典委理化专委会委员/pp style="text-align: left " 王玉老师报告中介绍了二维色谱的基本概念,分离模式。二维液相色谱在药学中主要应用在杂质分析,特别是手性杂质分析,以及样品表征。他还介绍了药典通则中液相色谱法的修订思路,比如在检测器中增加的电喷雾检测器的相关描述;在流动相中增加了等度洗脱和梯度洗脱的定义;增加色谱条件允许调整范围的表格及相关表述,同时增加对品种正文项下色谱柱描述的建议;增加多维液相色谱的表述等。br/ 针对注射剂质量评价研究工作的知识洼地,会议主办方特别邀请了知名企业的技术负责人做针对性报告。br/img src="https://img1.17img.cn/17img/images/201810/uepic/a5dd0d17-688a-415a-bd74-9add4fc0a8e4.jpg" title="安进.png" alt="安进.png"//pp style="text-align: center "注射剂容器密闭性检测方法及局限性考量/pp style="text-align: center "演讲者-于磊· 美国安进公司注册事务部CMC副总监/pp 作为国际知名生物制药企业之一的美国安进公司参加了研讨交流,该公司的注册事务部CMC副总监于磊先生给国内药企介绍他们的管理与质控先进理念和方法。张薰文博士还现场精彩解答了参会者包材申报方面的一些问题。br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201810/uepic/2aac6159-706b-43f6-bb62-771f2fd04754.jpg" title="10.1.JPG" alt="10.1.JPG"//pp style="text-align: center "优质药用玻璃包装助力药品的关联审批审评/pp style="text-align: center "演讲者-官子楸· 康宁医药玻璃业务部负责人/pp 参加研讨的还有百年品牌公司康宁玻璃,沃特斯公司,岛津公司和郑州翱翔医药科技股份有限公司都从技术的角度分别给参会者介绍了注射剂包材质量与药物相容性以及特殊杂质的研究与控制方法。从包材与仪器使用及质量研究的视角助力药企的注射剂再评价研究。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201810/uepic/9be85dec-285e-4c27-a69e-46341db0b4b3.jpg" title="11.1.JPG" alt="11.1.JPG"//pp style="text-align: center "预灌封注射器用橡胶配件的稳定性与相容性研究/pp style="text-align: center "演讲者-刘海洪总工· 郑州翱翔医药科技股份有限公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201810/uepic/d37180ba-43d6-484d-9c6c-2b0ab09344ac.jpg" title="12.1.JPG" alt="12.1.JPG"//pp style="text-align: center "ICP-MS技术在药物元素杂质分析及注射剂质量评价中的应用/pp style="text-align: center "演讲者-李晓东· 岛津公司,原中检院仪器室主任/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201810/uepic/abfd408b-2612-40b7-b815-2da6587a8c3a.jpg" title="13.1.JPG" alt="13.1.JPG"//pp style="text-align: center "手性杂质分离分析技术进展与应用/pp style="text-align: center "演讲者-陆金金· Waters公司市场br/img src="https://img1.17img.cn/17img/images/201810/uepic/86211c23-626d-4882-a172-1d30f4e5fa2b.jpg" title="会议互动图.png" alt="会议互动图.png"//pp style="text-align: center "现场互动/pp style="text-align: center " img src="https://img1.17img.cn/17img/images/201810/uepic/ace9d535-3d47-4856-b368-4aa4e080b882.jpg" title="会议互动图2.png" alt="会议互动图2.png"/br//pp style="text-align: center "现场互动br//pp 报告后的答疑环节每次都将会场气氛引出一个个小高潮,来自各地的参会者,其中不乏知名药企的参会代表同报告老师们积极交流讨论,氛围热烈,问与答之间积极精彩,令人脑洞大开。演讲者们在解答学术问题的同时也不时探讨药物法规和制药理念。让人深刻感受到制药领域科研技术及产业人员的热忱、责任和致力于国药崛起的情怀。/pp 本次论坛为北京医恒健康科技有限公司与国药励展展览有限责任公司正在探讨形成的合作模式。计划于每次的原辅包机大型展会上同时举行学术论坛,为大家提供一站式服务,让与会者观展同时一并聆听热点报告。/p
  • 中药抗“疫”:莪术油注射液协同治疗新型冠状病毒肺炎
    p style="text-align: justify line-height: 1.75em "  背景介绍:当前新型冠状病毒肺炎(COVID-19)的治疗尚无特效药,国家医疗救治主管部门陆续发布多个针对COVID-19的诊疗方案。strong莪术油及其制剂在抗病毒、治疗肺纤维化等方面的疗效已被多项基础研究及临床应用所证实,推测在COVID-19的临床治疗中可试用莪术油注射液,特别是治疗肺间质改变造成的肺纤维化、促进止泻、减少患者发热时间等。/strong此外,与抗病毒、抗生素等临床配伍使用的经验提示,莪术油注射液可用于减少COVID-19患者在治疗过程中药物引发性肝损伤,提高治疗效果。为莪术油及其制剂在协同治疗COVID-19中的科学使用提供理论依据。/pp style="text-align: justify line-height: 1.75em "  当前新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)呈现全球蔓延之势。《新型冠状病毒感染的肺炎诊疗方案(试行第七版)》指出,该病毒感染临床表现为潜伏期1~14 d,一般为3~7 d。以发热、乏力、干咳为主要表现。少数患者伴有鼻塞、流涕、腹泻等症状。重症患者多在发病1周后出现呼吸困难和/或低氧血症,严重者快速进展为急性呼吸窘迫综合征、脓毒症休克、难以纠正的代谢性酸中毒和出凝血功能障碍等,胸部影像学的早期呈现多发小斑片影及间质改变,以肺外带明显。进而发展为双肺多发磨玻璃影、浸润影,造成肺间质改变,严重者可出现肺实变,胸腔积液少见。/pp style="text-align: justify line-height: 1.75em "  我国首例COVID-19病例遗体解剖报告称:尸体检验肉眼所见与影像学改变分布情况相符合,即与肉眼所见肺泡灰白色病灶对应,提示COVID-19主要引起深部气道和肺泡损伤为特征的炎性反应。新型冠状病毒(SARS-CoV-2)感染后病变仍聚焦于肺部,肺部有纤维化及实变,但严重程度小于严重急性呼吸综合征(sever acute respiratory syndrome,SARS),其他脏器损伤尚证据不足。/pp style="text-align: justify line-height: 1.75em "  鉴于SARS-CoV-2和SARS在分类序列和引起疾病临床症状上均具有相似性,并且2003年SARS病毒感染康复患者大部分都有不同程度的肺部病变,推测COVID-19患者康复后也会有肺部遗症、肝心遗症和心理遗症。同时,在温州COVID-19患者的定点收治医院,临床专家发现患者在康复且核酸转阴后遗留有不同程度的肺间质改变。因此,如何在临床治疗中阻断肺间质改变,避免肺纤维化,尤为重要。/pp style="text-align: justify line-height: 1.75em "  莪术油系从莪术Rhizoma CurcumaeCurcuma 中提取所得的挥发油,主要成分有莪术醇、莪术二酮、榄香烯等。临床多用其治疗病毒性肺炎、妇科炎症、小儿呼吸道疾病等。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "本文通过对莪术油及其制剂在抗病毒、治疗肺纤维化等方面的众多基础研究及临床应用报道进行梳理,结合SARS-CoV-2自身病理学特征、现有临床诊疗报道和患者遗体病理解剖等特点,初步探索莪术油及其制剂协同治疗COVID-19的可行性,以期为临床科学使用提供参考依据。/pp style="text-align: justify line-height: 1.75em "  span style="color: rgb(0, 112, 192) "strong莪术油及其制剂概述/strong/span/pp style="text-align: justify line-height: 1.75em text-indent: 2em "莪术为姜科植物温郁金Curcuma wenyujin Y. H. Chen et CLing、广西莪术C.kwangsiensis S. G. Lee et C. F. Liang或蓬莪术C. phaeocaulis Val. 的干燥根茎,其性温,味辛、苦,归肺、肝、脾经,有行气破血、消积止痛之效。莪术油系从莪术中提取得到的挥发油,其主要成分有莪术醇、莪术二酮、莪术烯醇、异莪术烯醇、吉马酮、榄香烯、姜黄素等,最早收载于《中国药典》1977年版。莪术油具有多种药理作用,包括抗肿瘤、抗炎、抗病原体、增强免疫力等,以及广泛的临床应用,包括小儿呼吸道疾病、病毒性肺炎、病毒性脑炎、病毒性肠炎、妇科炎症等。/pp style="text-align: justify line-height: 1.75em "  采用现代制药技术精制而成的莪术油注射液,其原药材为温莪术,原料药为莪术油,辅料为聚山梨酯80。临床适应证为“用于病毒引起的感冒、上呼吸道感染、小儿病毒性肺炎 消化道溃疡,甲型病毒性肝炎,小儿病毒性肠炎及病毒性心肌炎、脑炎等”。虽早在20世纪70年代即开始研究,20世纪90年代获准生产,2002年7月获国家药品监督管理局药品批准证明文件,但受原料药限制,莪术油注射液目前仅浙江天瑞药业有限公司独家生产,2019年销售量近160万支。临床治疗呼吸道感染和支气管炎占比最多,分别为46.40%、21.71% 其次为病毒性感冒、病毒性脑炎、肺炎、病毒性肠炎、疱疹性咽颊炎、腮腺炎,占比为1%~7%。迄今累计销售额逾1.2亿元,数百万患者获益。/pp style="text-align: justify line-height: 1.75em "  莪术油注射液临床不良反应发生率为0.2%~0.3%[8-9],包括变态反应、呼吸系统反应、胃肠道反应等,主要表现为呼吸困难、紫绀、过敏样反应、胸闷、过敏性休克、血压降低、脉搏微弱等。儿童使用发生不良反应的比例较高,这与其在儿科应用较广泛、儿童脏器尚未发育成熟等有关,但不良反应消除速度快、预后好,长期使用也未见对主要脏器的明显损害。/pp style="text-align: justify line-height: 1.75em "  莪术油注射液用于呼吸道感染疾病的不良反应发生率低于利巴韦林、青霉素、头孢类等抗病毒和抗生素类药物,但应注意控制静脉滴注速度,并在使用前对患者进行过敏反应测试。现有针对莪术油注射液提高稳定性和降低溶血性风险的研究结果提示,后续可通过改变莪术油注射液的配方等,以降低不良反应发生率。/pp style="text-align: justify line-height: 1.75em "  综上所述,莪术油与其制剂莪术油注射液在临床治疗用途上具有较高的一致性。/pp style="text-align: justify line-height: 1.75em "span style="color: rgb(0, 112, 192) "strong  莪术油及其制剂治疗COVID-19的可行性分析/strong/span/pp style="text-align: justify line-height: 1.75em "  strong治疗炎症反应的可行性分析/strong/pp style="text-align: justify line-height: 1.75em "  魏海明团队研究发现在SARS-CoV-2感染后,CD4+ T细胞被迅速激活,成为致病性Th1细胞,并产生粒细胞-巨噬细胞集落刺激因子(GM-CSF) 同时诱导炎症CD14+和CD16+以及单核细胞的白细胞介素-6(IL-6)的高表达,加速炎症的产生。这些过多又异常的免疫细胞可能大量进入肺循环,进而破坏免疫环境导致肺功能损伤。/pp style="text-align: justify line-height: 1.75em "  莪术油有活血祛癖之效,临床多用于治疗痈疽肿毒等症,结合现有研究,推测莪术油具有良好的镇痛、镇静、消炎的功效。/pp style="text-align: justify line-height: 1.75em "  莪术油发挥抗炎作用是通过抑制诱导型一氧化氮合酶(iNOS)的mRNA表达和蛋白水平,下调由脂多糖(LPS)诱导产生的肿瘤坏死因子-α(TNF-α)、IL-1β和IL-6水平,通过减少氨基末端激酶(JNK)的磷酸化水平,从而产生抗炎活性 以及通过抑制TNF-α、Toll样受体2(TLR2)mRNA、可溶性钙结合(S100B)蛋白表达从而发挥抗炎疗效。此外,莪术油中的莪术二酮、姜黄素等单体化合物等通过抑制核转录因子-κB(NF-κB)、IL-1β、IL-6及TNF-α等蛋白分子的高表达,从而抑制炎症反应。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "strong直接作用于SARS-CoV-2的可行性分析/strong/pp style="text-align: justify line-height: 1.75em "  临床上通过观察70例小儿病毒性肺炎患者发现,莪术油对呼吸道合胞病毒有直接抑制作用,对流感病毒A1和A2有直接灭活作用。莪术油能使H1N1病毒蛋白的表达和RNA合成均受到抑制,从而抑制H1N1病毒的复制。通过体内实验发现,莪术油还可以减少由H1N1引起的肺损伤以及血清和全血细胞中的病毒载量,以及抗病毒蛋白的表达和细胞内病毒数量,这进一步证明了莪术油能抑制病毒复制。/pp style="text-align: justify line-height: 1.75em "  已上市品种莪术油注射液多年临床使用结果显示,其可有效影响病毒的侵入和复制 可抑制病毒核蛋白(NP)表达、减少病毒粒子 对呼吸综合症病毒均具有一定的抑制、杀灭或阻断作用 对流感甲型病毒、柯萨奇病毒B3、呼吸道合胞病毒、腺病毒3型等有抑制作用 可以迅速缓解病毒性肺疾病的症状和体征、明显缩短患者病程,预后良好,且安全性较高。/pp style="text-align: justify line-height: 1.75em "  2003年广州医学院第一附属医院、广州呼吸疾病研究所临床团队研究了SARS中医药介入治疗效果,研究表明采用中西医结合治疗组(在SARS憋喘期病情平稳时,配合莪术油注射液静脉滴注,每日1次)患者临床症状严重程度改善显著,且时间较早,重症患者病死率低。/pp style="text-align: justify line-height: 1.75em "  根据最新研究,在早期从5名武汉COVID-19患者体内获得的5例SARS-CoV-2基因组基本上一致,通过对其保守的7个非结构蛋白进行对比,发现SARS-CoV-2属于SARS相关病毒(SAR-Sr-CoV),并与SARS具有高度同源性。莪术油注射液在SARS病例中有过临床应用,故推测对于SARS-CoV-2也有药效。来自温州医科大学附属第一、第二医院的最新临床观察性研究(浙江大学应急专项课题,项目编号2020XGZX029)结果则显示,莪术油注射液可有效改善COVID-19普通型患者的咳嗽等症状,促进肺部病灶吸收等。/pp style="text-align: justify line-height: 1.75em "  strong治疗肺纤维化的可行性分析/strong/pp style="text-align: justify line-height: 1.75em "  根据国家发布的《新型冠状病毒感染的肺炎诊疗方案(试行第七版)》诊断标准中可以总结出,SARS-CoV-2感染患者肺部间质改变易导致肺纤维化,从而导致呼吸窘迫甚至衰竭[38],而肺纤维化病变的发展可以作为判断COVID-19患者病情的发展依据。/pp style="text-align: justify line-height: 1.75em "  莪术油中的莪术醇可抑制肺纤维化大鼠肺组织中转化生长因子-β1(TGF-β1)和纤溶酶原激活剂抑制剂-1(PAI-1)的表达,缓解博来霉素诱导的大鼠肺纤维化。莪术醇还可通过将细胞周期阻滞于G0/G1,减少DNA复制,抑制人胚肺成纤维细胞增殖和细胞分泌胶原。/pp style="text-align: justify line-height: 1.75em "  莪术与三棱联合用药能有效降低大鼠肺组织中羟脯氨酸(Hyp)含量,同时减少肺组织细胞过度凋亡,从而抑制博来霉素诱导的肺纤维化。莪术与黄芪联合用药时能显著抑制博莱霉素致大鼠肺纤维化的作用,抑制TGF-β1及TGF-β1 mRNA的表达是其可能的机制之一。/pp style="text-align: justify line-height: 1.75em "  strong治疗发热与腹泻的可行性分析/strong/pp style="text-align: justify line-height: 1.75em "  莪术油治疗病毒引起的发热和腹泻,主要是通过抑制病毒的活性,其次其活血化瘀、改善肠道微循环的作用可促进受损上皮细胞的再生,进而促进肠道对水和电解质的回吸收,治疗腹泻 以及通过增加巨噬及中性粒细胞吞噬能力治疗发热。莪术油退热、止泻作用良好,在临床上已经有很多成功使用莪术油注射液治疗的病例。/pp style="text-align: justify line-height: 1.75em "  袁洞君等研究发现在治疗小儿病毒性肺炎时,莪术油注射液治疗组总有效率(96.2%)显著高于利巴韦林对照组(76.0%),同时莪术油注射液组体温恢复正常时间、咳嗽缓解时间、肺啰音消失时间均显著短于利巴韦林治疗组。莪术油注射液联合奥司他韦治疗小儿病毒性肺炎,发现治疗组患儿喘憋消失时间、体温恢复正常时间及X线恢复正常时间均显著短于对照组(P 0.05),并且在治疗后,两组患者血清IL-8、C反应蛋白(CRP)、肌酸激酶(CK)、心肌肌钙蛋白T(CTnT)水平均较治疗前显著降低(P 0.05)。/pp style="text-align: justify line-height: 1.75em "  张玉玲取轮状病毒引起的腹泻病61例,用莪术油注射液治疗后,总有效率87.50%,高于对照组(病毒唑,总有效率为68.96%)。单晓英等对100例秋季腹泻患儿除用常规治疗(使用利巴韦林抗病毒,通过补充电解质,纠正酸中毒并加强对症支持治疗及口服微生态制剂和黏膜保护剂等综合治疗),还加用莪术油静滴治疗,结果治疗组有效率达96%。周云兰用莪术油注射液和利巴韦林治疗160例婴幼儿秋季腹泻患儿,结果治疗组总有效率90.0%,高于(P 0.01)对照组总有效率(77.5%)。郭仲田将莪术油注射液用于160名患者进行腹泻治疗,结果显示5 d内治疗组与对照组退热、止吐、止泻、脱水纠正的例数两组间均有显著差异,此方法用于婴幼儿腹泻治疗同样有效。/pp style="text-align: justify line-height: 1.75em "  上述研究提示,对于病毒性肺炎引起的发热,莪术油及其制剂的退热效果好于利巴韦林、奥司他韦等常规药物,并兼有治疗腹泻等作用。因此可以考虑用于有发热、腹泻等症状的COVID-19患者。/pp style="text-align: justify line-height: 1.75em "  strong与其他治疗药物合用的可行性分析/strong/pp style="text-align: justify line-height: 1.75em "  在2003年SARS爆发期间,医院采用大剂量激素疗法,虽然保住了患者的性命,但大多数患者发生了股骨头坏死等后遗症。在此次COVID-19疫情中针对炎症的治疗方面,最初诊疗方案中也推荐使用糖皮质激素类药物。据统计在128例COVID-19患者中仅有45%的患者接受了糖皮质激素治疗,且未收到预期效果,表明糖皮质激素可用于COVID-19的治疗证据有限。虽然使用糖皮质激素会抑制免疫反应,减轻肺部炎症渗出,但也可能导致病毒清除延迟,最终增加患者死亡风险。而同期使用中药治疗的患者预后良好,无股骨头坏死等不良反应。/pp style="text-align: justify line-height: 1.75em "  莪术油及其制剂莪术油注射液单独使用时可治疗病毒性肺炎、支气管肺炎,与抗生素、抗病毒药联合使用能提高这些药物单独使用时的疗效,且与大部分抗生素都能配伍。莪术油注射液联合奥司他韦治疗小儿病毒性肺炎,能显著改善患者临床症状,降低血清因子水平 联合利巴韦林注射液治疗115例小儿急性呼吸道感染的总有效率明显优于利巴韦林注射液组(P 0.05)[66] 联合抗生素头孢唑啉钠治疗病毒性肺病,能缩短体温恢复正常、喘憋消失、肺部啰音消失、咳嗽缓解时间。这些研究说明,莪术油注射液与其他抗病毒药物联用时,除协同增效外,还能提高总有效率,减少喘憋时间、体温恢复正常时间以及X线恢复正常时间等。推测莪术油注射液对人感染冠状病毒后常见体征如呼吸道症状、发热、咳嗽、气促和呼吸困难等都将有所改善。/pp style="text-align: justify line-height: 1.75em "  莪术油注射液临床不良反应发生率低于抗病毒和抗生素类药物,因此合理使用莪术油注射液,还能降低其他抗病毒药物的使用量,减少药物毒性。/pp style="text-align: justify line-height: 1.75em "  strong提升免疫力并保护肝脏的可行性分析/strong/pp style="text-align: justify line-height: 1.75em "  COVID-19患者机体本身有炎性反应,而病毒会引起胆汁淤积,由此进一步激发的炎性反应可能造成肝损伤,甚至引发细胞因子风暴。此外,COVID-19患者在发生呼吸窘迫综合征时由于缺氧时引发炎症因子进一步的释放,也会引起肝损伤。然而目前针对COVID-19的治疗药物如利巴韦林、糖皮质激素等,均会引起一定程度的肝损伤。/pp style="text-align: justify line-height: 1.75em "  多项研究证明,莪术对多种肝脏疾病肝纤维化、乙型肝炎、肝癌有治疗作用。莪术油中的莪术醇可以抑制Ras同源基因-Rho相关螺旋卷曲蛋白激酶(Rho-ROCK)信号通路,达到抗肝纤维化的效果 莪术油可通过下调TGF-β1、转录激活因子2(Smad2)、转录激活因子3(Smad3)蛋白和mRNA表达来减轻血瘀证肝纤维化小鼠的肝纤维化程度 或通过下调瘦素诱导活化的大鼠肝星形细胞(HSC)中锌指蛋白1(Gli1)的表达,参与Hedgehog信号通路,抑制HSC的活化与增殖,并能通过下调Gli1的表达而下调Wnt信号通路关键因子β-连环蛋白(β-catenin)的表达,抑制HSC活化与增殖,从而抑制肝纤维化。/pp style="text-align: justify line-height: 1.75em "  Diao等研究分析了2019年12月—2020年1月在武汉2家医院住院的522名COVID-19患者的住院数据中T细胞、CD4+、CD8+ T细胞和血清中细胞因子浓度。结果表明,COVID-19患者,尤其是老年患者(60岁以上)和需要重症监护病房(ICU)护理的患者,T细胞、CD4+和CD8+ T细胞总数显著减少。T细胞数与血清IL-6、IL-10和TNF-α浓度呈负相关,疾病衰退期患者的IL-6、IL-10和TNF-α浓度有所下降,T细胞计数恢复。莪术油可以通过下调Fas/Fas L通路,使得TLR2、TLR4蛋白和RAF原癌基因丝氨酸/苏氨酸-蛋白激酶(C-Raf)蛋白表达下调,导致相关因子TGF-β1以及IL-10等的表达下调,起到免疫增强作用。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "strong从中医理论角度出发的可行性分析/strong/pp style="text-align: justify line-height: 1.75em "  自COVID-19暴发以来,临床针对其各种症状进行差异化治疗,目前尚无特效药。除直接使用抗病毒药物以外,还配合其他药物以减轻炎症反应,提高免疫力,有效退热、止泻以及保护肺器官以防发生肺纤维化损伤。根据现有临床研究报道,COVID-19患者多表现为发热、咳嗽、乏力,严重时可见细胞因子风暴综合征(CSS)、急性呼吸窘迫综合征(ARDS)的发生。中医认为COVID-19属于疫戾之气的范畴,具有很强的传染性,其病位在肺脾,基本病机特点为“湿、毒、瘀、闭”,以“瘀”贯穿疾病始终,因实邪阻滞,经脉不畅,气血不通,而至“瘀”。莪术具有活血化瘀之效,活血化瘀主要是针对脏腑、经络之气阻滞不畅,引起血液的运行瘀滞 现代医学研究证明,血液循环瘀阻,是许多疾病发生的基础,而胸闷、呼吸困难是肺部纤维化的表现形式。中药以疗效佳、毒副作用低体现其优势。针对本病的病机,在COVID-19治疗中可减轻患者肺部纤维化程度,从而提高患者愈后的生活质量。/pp style="text-align: justify line-height: 1.75em "  关于COVID-19的病灶,多数中医专家认为在肺,如王玉光教授认为“湿毒”是COVID-19的病理核心,病灶在肺,基本病机特点为“湿、毒、瘀、闭” 国医大师熊继柏教授指出本病的主要病位在肺,胃肠道的症状仅是一个兼证。各省市自治区诊疗方案将COVID-19归属于疫病范畴,病灶在肺,可累及脾胃,为感受疫戾之气所致。肺纤维化的病机复杂、变化多端,临床治疗以辨证治疗为主,有益气养阴、活血化瘀、扶正祛邪、软坚散结、宣肺涤痰、清热解毒、宽胸理气等治疗方法。而这次感染SARS-CoV-2的患者,其病情发展都较为迅速,使得身体极度虚弱,按照《难经》中“虚则补其母,实则泻其子”的治疗理论,此时应该先补脾,再健肺。中药莪术归肝、脾、肺经,《本草经疏》《药品化义》《萃金裘本草述录》和《汤液本草》等医学著作认为莪术具有行气破血、消积止痛、益气之效,能够同时补气健脾,强健肺气。《中国药典》2015年版也载明其功能主治为“行气破血,消积止痛。用于癥瘕痞块,瘀血经闭,胸痹心痛,食积胀痛”等。因此,采用现代工艺提取温莪术挥发油并精制而成的莪术油注射液,可避免中药传统口服给药方式起效慢、有效成分利用率低等不足,并通过血液循环系统快速到达因SARS-CoV-2感染的病理部位,及时发挥药效。/pp style="text-align: justify line-height: 1.75em "  strong结语与展望/strong/pp style="text-align: justify line-height: 1.75em "  自COVID-19疫情发生以来,国家主管部门积极鼓励中医药疗法的介入,临床上通过“强化中西医结合”切实缩短了病程,这对中西医结合治疗疫病无疑是一大肯定。中医根据疾病的演变,适时调整治疗方案。此次针对COVID-19的诊疗,除探究其成因,根据患者的临床表现将其分型,并跟西医的分型对比衔接,做到辨证施治、对症下药,如中医初期寒湿郁肺证对应西医临床轻型,此时可应用麻杏石甘汤 重症期内闭外脱对应临床危重型,推荐使用醒脑静注射液。中西医在临床诊疗上精准协同,有助于深入认识COVID-19,优化诊疗方案,增强用药的精准度,从而全面提升临床救治效果。/pp style="text-align: justify line-height: 1.75em "  莪术油注射液治疗COVID-19同时具备中医理论和现代化研究成果依据,推测其在促进患者退热、加速止泻、减少肺纤维化、提升免疫力及改善患者肝功能上将有积极作用,并可与其他抗病毒药物协同作用,如配合糖皮质激素治疗可降低药物毒性 联合利巴韦林、奥司他韦降低药物毒性缩短退热时间并治疗因疾病引起的腹泻 对于初期COVID-19患者,可强健肺气,防止其向中期、重症期发展,可实现中医“治未病”初衷 对于处于重症期的患者可配合其他药物在抗病毒的同时治疗肺纤维化 对处于身体恢复期的人能补气健脾,助益身体机能恢复和提高免疫力,防止再次感染,为解决此次疫情中“肺疾”问题新增一味良药。这些都有待于进一步临床观察性研究,获得更多统计学数据后,科学辨证施治。此外,莪术油注射液源于中药材温莪术,其原料药莪术油成分亦较复杂,生产工艺、原药材和辅料的质量等都可能影响到制剂质量。因此,未来要加强原料药莪术油物质基础研究,建立多指标检测方法,控制其化学成分、杂质成分的含量,提高莪术油注射液质量标准 保障临床使用的安全性和有效性。中药注射液的安全性在目前仍然是受关注度比较高的问题,而注射液能在患者昏迷不能吞咽时使用成为它的一个优势。因此,使用中药注射液进行临床治疗前应对其进行充分的安全性测试,使用时应做到完全遵守医嘱,杜绝滥用。同时寻找新的注射液配方,如载药脂肪乳,以及筛查中药注射液中能起到治疗的成分,在最大程度上降低因成分复杂而导致的安全性问题。/pp style="text-align: justify line-height: 1.75em "  随着越来越多中药、中成药及其治疗方案的融入,中医药在抗击COVID-19疫情期间的作用和价值得以进一步发挥。通过梳理莪术油注射液对抗COVID-19多个方面的可行性,以期为后续临床验证性试验提供理论依据,为进一步挖掘莪术油注射液抗SARS-CoV-2的机制提供基础信息,加快其获准临床应用速度,从而为我国快速打赢这次疫情保卫战做出应有贡献。/pp style="text-align: justify line-height: 1.75em " /ppbr//p
  • 用流动注射-质谱自动分析可疑样品——具有自动光谱库搜索的快速FIA-MS
    •Ryan De Vooght Johnson美国宾夕法尼亚马毒理学和研究实验室的分析师使用特殊的LC-MS设置开发的自动FIA-MS分析方法可以快速准确地识别没收样品中的药物。在为执法和兴奋剂控制或毒理学调查分析可疑样本时,速度和准确性至关重要。海关、警察或反兴奋剂机构没收的样本可能含有兴奋剂、特制药物或街头毒品,因此快速识别对药物和兴奋剂控制都很重要。质谱法是鉴定未知化合物的常用技术,可以直接进行,也可以通过GC或LC分离进行,但有一些局限性。例如,LC和GC分离可能非常耗时,需要分析专家,而且它们不包括所有潜在的没收化合物。具有电离界面的质谱法,如解吸大气压光电离(DAPPI)或解吸电喷雾电离(DESI),可以在不需要样品预处理的情况下给出快速结果,但不适用于分析注射用注射器中的液体样品。在宾夕法尼亚马毒理学和研究实验室,为了克服这些缺点,他们采用了注射器注入(SI)-质谱,这是一种用于生物样品代谢组学和脂质组学分析的方法。没收的样品直接注入ESI-MS源进行分析。SI将整个样品引入ESI源,因此可以检测样品中的所有物质,并且每天可以比LC-MS运行更多的样品。在SI-MS检测不到任何东西的情况下,可以使用GC-MS。整个SI-MS过程目前是手动进行的,从收集全扫描MS光谱开始。强度超过20%的离子注入CID以给出MS/MS光谱,然后将其与光谱库进行比较,以确定样品中的物质。由于需要获取大量的MS/MS光谱和手动库搜索,手动过程相当耗时。自动化这一过程将显著增加整个样本量,并降低劳动强度,因此马毒理学和研究实验室的关富宇(Fuyu Guan)和同事们开始这样做。为了实现该过程的自动化,作者使用了Vanquish UHPLC和Thermo Fisher公司的高分辨率QE+MS检测器,并将其用于流动注射分析。不寻常的是,该系统没有LC柱进行分离,因此流动注射分析是通过流动相从LC的自动进样器直接流向ESI源实现的。通常,由于低压,LC泵会在没有柱的情况下关闭,因此通过使用窄直径Viper管将自动取样器连接到检测器上的样品入口来产生背压。在注入20µL样品后,使用水:乙腈(50:50)(正电离模式和负电离模式分别使用或不使用甲酸)以50µL/min的速度进行2min等度运行,以将样品的所有成分从自动取样器带到检测器,尽管没有色谱分离。QE Plus探测器每周校准一次,并以正或负模式运行。进行了完整的MS和数据相关的MS/MS扫描,数据由Thermo Fisher的Compound Discover软件自动处理,允许通过各种数据库识别未知物。使用这种LC- MS类型设置的自动FIA仅需15min,明显快于手动SI-MS(secondary ion-mass spectroscopy, 二次离子质谱)过程所需的小时或更长时间。化合物发现者自动处理数据,并在一小时内识别样本中的成分,与SI-MS使用的手动库搜索相比,覆盖了更多的化合物。作者们对这种自动化方法的前景感到非常兴奋,认为它“有可能改变没收样本在多个领域的分析方式,包括运动兴奋剂控制和执法药物检测。”未来,他们希望增加更多的MS/MS数据库和搜索引擎,以扩大所涵盖的化合物数量。注释:LC- MS:液相色谱-质谱法GC- MS:气相色谱-质谱法FIA-MS:流动注射-质谱法ESI-MS:电喷雾-质谱法SI-MS:注射器注入-质谱法CID:电荷注入检测器(charge injection device)。原载:Automated analysis of suspicious samples with flow-injection MS, Wiley Analytical Science, 31 January 2023——Fast FIA-MS with automatic spectral library searching相关链接Guan F, Fay S, Adreance MA, et al. Automated identification of unknown doping agents in confiscation samples by flow-injection mass spectrometry and mass spectral library searches. Drug Testing and Analysis. 2023. https://doi.org/10.1002/dta.3445 De Vooght-Johnson R. Drug doping detected by data digging. Wiley Analytical Science. 7 August 2019 (https://analyticalscience.wiley.com/do/10.1002/sepspec.16c666e7b5b accessed 30 January 2023).De Vooght-Johnson R. MetAlign for retrospective doping data dive. Wiley Analytical Science. 8 July 2021 (https://analyticalscience.wiley.com/do/10.1002/was.0090126 accessed 30 January 2023).About the authors• Ryan De Vooght-JohnsonRyan是一名自由科学作家和编辑。在仪器和分析方法硕士毕业后,他曾在制药行业担任过各种分析开发角色,后来进入编辑岗位。作为一名委托编辑,他创办了两本与分析化学和药物相关的期刊,《生物分析和治疗传递》,并管理了许多其他期刊。他现在是一名自由撰稿人和编辑,让他有更多的时间陪伴家人、骑自行车和分配食物。供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 江西6人注射球蛋白死亡续:家属否认病危说法
    5月29日,国家药监局接到国家药品不良反应监测中心报告,江西南昌大学第二附属医院,在使用标示为江西博雅生物制药有限公司生产的批号为20070514的静脉注射人免疫球蛋白(pH4)后出现严重不良反应事件。国家药监局当即组成调查组赶赴江西,初步检测结果显示,部分样品存在异常,但具体原因尚未查明,调查组正在对此进行进一步的调查和检验。截至目前,除江西南昌大学第二附属医院外,没有其他省份报告使用该批号药品的任何不良反应报告。 中新社发 魏玮 摄 昨天(4日),针对有媒体报道抚州市食品药品监督管理局实验室传出消息,博雅公司原厂免疫球蛋白样品检测无异常,抚州市药监局称他们并不了解具体情况,国家药监局表示目前结果还没有出来,有结果后会第一时间在网上公布。 家属否认病危说法 昨天(4日),本次6人注射免疫球蛋白死亡事件的第1名死者家属余平联系上记者。 5月22日,在南昌打工的陈海英,因病毒性脑炎合并症状癫痫住进南昌大学第二附属医院,当晚6点多注射免疫球蛋白液体,第1瓶注射以后就已经昏迷了,随后在注射第2瓶液体时死亡。 “当天,会诊专家跟我说,病人免疫能力较弱,6瓶一疗程效果可能不会太好,不如一天8瓶冲击一下。”余平说。 据余平介绍,目前已经互相联系到3名死者家属,正在努力联系其他3名死者家属。“目前各家家属都不同意院方此前提出的‘病危说’。”余平说。 结果将在网上发布 昨天(4日),有媒体报道抚州市食品药品监督管理局实验室传出消息,经过小白鼠注射试验,证明博雅公司原厂提取的免疫球蛋白样品不存在异样情况。 据相关部门介绍,调查组目前调查仍然覆盖整个生产流通环节。 昨天(4日),参与协助调查的抚州市食品药品监督管理局表示,目前他们还不清楚情况,对于媒体报道原厂药品检验无异样,他们没看到相关消息,也不清楚消息来源。 6月5日,江西省药监局表示,目前不能透露相关情况,其下属的江西省食品药品检测所称,所有检测都在北京的中检所进行,而调查组目前也不在药监局。 下午,国家药监局方面表示,对于调查组是不是已经离开南昌,他们目前还不知道,最终调查结果出来的时间还不好说,结果出来以后将会在网上及时公布。 新华社消息称,江西省食品药品监督管理局5日通报,所有问题药品在全国范围内得到有效控制。(特派记者 孙勇杰) 致6人死亡球蛋白样本异常 江西公安部门介入调查致6人死亡的静脉注射人免疫球蛋白部分样品存在异常
  • 4重好礼,不容错过!快来享显微注射系统全线产品钜惠!
    显微注射实验已成为研究基因表达、功能和基因间的相互作用、以及各类药物传递等关键方法,具有效果稳定、重复性强、注射样品自由度大、适用细胞种类广泛等优点。瑞沃德MM-500电动显微操纵器、MP-500微电极拉制仪、R-480玻璃微电极注射泵可组成显微注射实验解决方案,除了覆盖常见病毒注射、眼球注射实验之外,还可针对线虫、斑马鱼等模式生物的胚胎、幼体实现精密显微注射。(瑞沃德显微注射系统)为了更好地帮助客户快速开展实验,瑞沃德特推出限时组合购买优惠活动,四大超值福利等你拿,9月底活动结束,不要错过噢~👇活动详情👇① 购买任意3种产品:赠送3000元京东卡+3000元精密手术器械包+2000元玻璃管耗材+显微注射实验手册② 购买任意2种产品: 赠送2000元京东卡+ 2000元精密手术器械包+ 1000元玻璃管耗材+显微注射实验手册③ 购买1种产品:赠送1000元京东卡+1000元玻璃管耗材+显微注射实验手册(注射泵不参与此单项活动)四重好礼超优惠活动火热进行中,还在等什么抓紧时间来选购吧~如果想先行体验显微注射系统还可参与免费试用活动识别上方二维码可申请免费试用抓紧时间,别错过试用机会噢
  • 静脉注射脂肪乳粒尾部大颗粒研究专题
    摘要 脂肪乳作为肠道外给药营养药物应用于临床已超过50年,临床使用脂肪乳的主要目的在于为机体提供必要的脂肪酸和能量,促进脂溶性维生素的吸收,有效地改善氮平衡,维持细胞结构和人体脂肪组织的稳定。早期的脂肪乳存在多种临床问题,作为脂肪乳研究的先驱人物Geyer教授早在1960年就提出:“患者对一种品牌的脂肪乳产生不良反应,但对成分相同的另一种品牌脂肪乳反应良好,这种现象不应被忽视”。之后发现这种“不应被忽视”的现象与脂肪乳粒径大小有密切联系。1971年Fujita等通过动物实验,发现脂肪乳粒径与毒性之间的联系,自此,脂肪乳粒径分布及尾部大颗粒的测定逐渐为人们所重视。 关键词 大乳粒、大乳粒测定原理、大乳粒检测仪、大乳粒分析仪、大乳粒检测、大乳粒灭菌后超标是什么原因、PFAT5、PFAT5检测、PFAT5什么意思、大乳粒药典、静脉注射脂肪乳粒要求、脂肪乳大乳粒检测原理、大乳粒检测方法及各国药典的规定、乳剂中大乳粒PFAT5检测专题、大乳粒检测方法专题、大乳粒测定。 脂肪乳是水包油的分散体系,外观呈半透明或不透明的乳状液体,为热力学不稳定体系。脂肪乳制备工艺一般采用高压均质法或微射流法,无论采用哪种制备方法,脂肪乳的粒径都无法得到完全均一的值,存在一定粒径分布范围,显示静注用脂肪乳粒径的一般分布状态。从图1中可知, 乳剂的粒径范围一般在0.05~10μm,其中平均粒径为0.3μm的脂滴占大多数,极端值(极小值与极大值)脂滴含量很少。优化处方或工艺可能只会让图中的“峰”向左移动或峰宽变窄,不会改变脂滴粒径分布在一定范围内的事实。尾部大颗粒就是粒径分布图1中所显示的粒径大于5μm的部分。 尾部大颗粒的概念 通常,在脂肪乳中,当油脂的密度低于周围水媒介密度约10%时,乳析现象就会产生。乳析的乳剂只要轻轻搅拌,乳滴仍能重新分布。但当脂滴合并成直径超过1μm的大脂滴时,脂滴的合并便是不可逆的过程,脂滴会逐渐聚集,1μm脂滴可“生长”成5μm甚至更大的脂滴颗粒,直至自由脂滴从乳剂中析出,成为不稳定脂肪乳。可以认为,尾部大颗粒是包含在大脂滴概念中的。 形成尾部大颗粒的因素 如上所述,尾部大颗粒的形成是一种自发过程。因此,保证微小粒径脂滴在水相中的稳定分布,防止脂滴合并发生及大脂滴的生成,是尾部大颗粒控制的关键。研究表明,多种因素影响尾部大颗粒的形成:①油相:油相含量增大,乳剂粒径增大。②乳化剂:有文献报道,采用蛋黄卵磷脂E-80为单一乳化剂的脂肪乳,粒径分布容易出现双峰现象。在卵磷脂中加入泊洛沙姆,乳滴粒径分布更集中,粒径大小更均匀。③微射流均质机:均质机的选择对乳剂粒径有影响。在制备海豹油脂肪乳时,对比了3种均质机,认为意大利PSI微射流均质机均质后乳滴呈单峰分布,且分布范围较窄,粒径状态理想。④均质温度、压力与均质次数:在丙泊酚脂肪乳制备中,60℃均质温度下,不同压力均质所得的乳剂,产生油漂 而在25℃均质温度下,乳剂的粒径随着压力和循环次数的增加而降低,尾部大颗粒的数量会减少。⑤包装材料: 需慎重选择。2004年美国某品牌静注脂肪乳对包装材料进行重大改变,使用塑料容器替换传统玻璃容器。结果发现,包装材料替换后,脂肪乳的尾部大颗粒不符合美国药典的限度规定,而使用玻璃器皿的脂肪乳尾部大粒径都合格。对15种成人用脂肪乳的检测进一步发现,塑料包装的脂肪乳样品均无法满足尾部大颗粒限度要求,并且乳剂贮存的稳定性不如玻璃包装材料。然而在2010年,Ellborg等对50种采用多腔塑料包装袋包装的市售乳剂进行尾部大颗粒含量测定,发现所测产品未出现PFAT5大于0.05%。2013年Wei等将不同载药量的丙泊酚中/长链脂肪乳包装于不同材质的包装袋中进行研究,对尾部大颗粒的监测结果显示,软包装的高浓度丙泊酚载药乳放置24h后PFAT5超过0.05%,而玻璃材质包装的乳剂尾部大颗粒正常。因此建议丙泊酚乳剂应分装于玻璃瓶中,且不同载药量的乳剂应现用现配,乳剂经生理盐水稀释后应在6h内使用完毕以上研究显示,软包装材料可能会对脂肪乳的尾部大颗粒产生影响,导致产品质量不可控,它对乳剂粒径的影响还需要更多的研究与探讨。此外,还有很多因素包括pH值的变化、电解质的存在、乳化剂的用量和贮存条件的改变等因素,都会影响微小脂滴能否稳定分布在水相中。因此,能否制备稳定的脂肪乳,减少微小脂滴合并成大脂滴从而转变成尾部大颗粒的发生概率,将尾部大颗粒控制在规定限度内,也是评价脂肪乳处方组成及制备是否合理的重要指标之一。 控制尾部大颗粒的重要性 脂肪乳的不稳定体系表现为水油两相的分离,成为不稳定脂肪乳。因此,尾部大颗粒超出一定限度,影响脂肪乳的稳定性,临床上产生有效性隐患和安全性风险。 尾部大颗粒的测定技术 根据测量原理不同, 尾部大颗粒的测定技术包括:光遮/单粒子光学传感(light obscuration/singleparticle optical sensing,LO/SPOS)技术、光散射技术、电敏感带技术(electrical-sensed zone, ESZ)及显微油浸技术等。目前成熟的测定技术为LO/SPOS技术。美国药典于2004年增加新章节USP,名为“静注用脂肪乳粒径分布”,首次对静注用脂肪乳的尾部大颗粒加以控制,明确了它的测定方法和限度。新章节中规定:必须测定脂肪乳的尾部大颗粒(PFAT5),推荐使用LO/SPOS技术, PFAT5限度为不得大于0.05%。 结语 脂肪乳作为一种较为稳定的乳剂类型,可供静脉注射,能完全被机体代谢和利用,是目前临床治疗中备受瞩目的胃肠外给药体系。尽管目前用于临床的载药脂肪乳不多,但作为新型乳剂,其具有的药物靶向性,减缓和控制药物释放速率以及提高药物在体内的生物利用度等特点,应用前景广泛。控制脂肪乳尾部大颗粒的含量不仅与脂肪乳的稳定性、安全性密切相关,也反映了脂肪乳制剂的研发与制备水平。我国应加强对脂肪乳尾部大颗粒测定的重视,完善尾部大颗粒测定技术,加强脂肪乳尾部大颗粒监测,将尾部大颗粒控制在合适的限度内。这项工作不仅是保证静注脂肪乳剂真正达到安全、有效、质量可控的重要手段之一,也将会对我国脂肪乳制造业起到鞭策与激励作用,推动我国脂肪乳制备稳步发展。
  • 中药注射剂安全事故频发受质疑 能口服就别注射
    pspan style="font-size: 16px "  /spanstrong style="font-size: 16px "中药注射安全性受质疑/strongbr//pp  日前,《国家药品不良反应监测年度报告》中强调了中药注射剂不良反应问题的严重性。报告显示,去年全国收到中药注射剂不良反应报告12.7万例,其中严重报告占6.7%。/pp  业内人士表示,伴随着因中药注射剂引发的安全事故频频发生,业内对中药注射剂的争议也越来越大。/pp  今年4月,江苏苏中药业集团股份有限公司被曝出“生脉注射液事件”。国家食药监局称,苏中药业生产的生脉注射液在广东省发生不良事件。/pp  事实上,针对中药注射剂的安全性问题,近年来已引发了社会的广泛争议,此前的鱼腥草事件、刺五加事件、茵栀黄事件、双黄连事件等,都是中药注射剂引发的事故。/pp  《国家药品不良反应监测年度报告》显示,2014年不良反应报告数量排名前十名的药品分别是:清开灵注射剂、参麦注射剂、双黄连注射剂、血塞通注射剂、舒血宁注射剂、血栓通注射剂、丹参注射剂、香丹注射剂、生脉注射/pp  剂、痰热清注射剂。据悉,排名前20位的相关药品不良反应中,涉及合并用药的报告占42.3% 发生在基层医疗卫生机构的不良反应报告多于其他医院。/pp  医药行业分析师史立臣分析,“由于使用中药注射剂而产生不良反应的病例在现实中比这多很多。”/pp  strong中药注射剂属高风险品种/strong/pp  中药注射剂在各级医院的使用率依然可称得上普遍。为何一边广泛使用一边依然风险不小?/pp  朝阳医院药事部主管药师张征介绍,中药注射剂的提纯工艺水平一直参差不齐,产品质量对不良反应的发生推波助澜 另外,中药材原料受到各种外在因素影响,成分有所差异且相对复杂,部分制成注射剂后品质并不稳定,容易引发不良反应。/pp  此外,临床一定程度的滥用也使得不良反应报告数量增多。中药注射剂与其他药品在临床上联合使用现象普遍存在,这可能增加用药风险。/pp  业内人士透露,中药注射剂在上世纪七八十年代就已广泛兴起,但是中药注射剂的质量、技术却一直没有改善。由于中药注射剂的应用历史较短,有些不该研制、不该生产、不该销售、不该进入的药品,历经公关处理,都被批准生产了。同时,研制、生产、销售中药注射剂的高回报率促使药企争相上马中药注射液生产线。以住院患者每天使用剂量为例,中药注射液较其他常规剂型的药品价格高出2至3倍。/pp  张征指出,中药注射剂属于高风险品种,质量标准的提高势在必行。政府部门应该对其加强质量监管,同时应补充进行系统的临床安全性再评价,淘汰安全性差的、有替代治疗方法的品种。/pp  strong中成药能口服就别注射/strong/pp  中医针对个体辨证用药,每个人用多少量均有不同。但变成中成药后,很多情况下成了患者自行用药。剂型一旦从口服变成静脉注射,危险性更是相应加大。/pp  临床中常出现这样的问题,同样的药,患者作为汤药服用时相对安全,但注射使用时却容易出现较严重的不良反应,2006年发生的“鱼腥草注射液事件”就是例证。/pp  张征表示,中药注射剂成分往往复杂,所引起的不良反应也难以确定原因。因此,在临床使用中药注射剂时,要严格按照适/pp  应症和禁忌症使用,尽量避免与其他药品混合配制,并避免快速输注,同时要密切注意病人用药后的反应。国家药监总局提出:中药注射剂使用应遵循“能口服给药或肌肉注射给药的,不选用静脉注射或滴注给药”等原则。/ppbr//p
  • 国家药监局|新冠检测试剂盒、PCR仪和磁共振成像等212个医疗器械产品获批
    2022年4月,国家药品监督管理局共批准注册医疗器械产品212个。其中,境内第三类医疗器械产品154个,进口第三类医疗器械产品35个,进口第二类医疗器械产品20个,港澳台医疗器械产品3个(具体产品见附件)。特此公告。国家药监局2022年5月13日2022年4月批准注册医疗器械产品目录序号产品名称注册人名称注册证编号境内第三类医疗器械1新型冠状病毒(2019-nCoV)抗原检测试剂盒(胶体金法)上海芯超生物科技有限公司国械注准202234004262新型冠状病毒(2019-nCoV)抗原检测试剂盒(胶体金法)南京申基医药科技有限公司国械注准202234004273新型冠状病毒(2019-nCoV)IgM/IgG抗体检测试剂盒(胶体金法)杭州莱和生物技术有限公司国械注准202234004284新型冠状病毒(2019-nCoV)抗原检测试剂盒(胶体金法)山东博科诊断科技有限公司国械注准202234004305磁共振成像系统鑫高益医疗设备股份有限公司国械注准202230604316全自动核酸提取纯化及实时荧光PCR分析系统上海之江生物医药科技有限公司国械注准202232204327一次性使用麻醉穿刺针上海明舟医疗科技有限公司国械注准202230804338一次性使用胰岛素笔配套用针江苏采纳医疗科技有限公司国械注准202231404349球囊扩张导管归创通桥医疗科技股份有限公司国械注准2022303043510椎体扩张球囊导管江苏艾为康医疗器械科技有限公司国械注准2022304043611人工髋关节组件-髋臼山东新华联合骨科器材股份有限公司国械注准2022313043712射频控温热凝设备北京北琪医疗科技有限公司国械注准2022301043813透析液过滤器广东宝莱特医用科技股份有限公司国械注准2022310043914一次性使用精密过滤袋式输液器成都市新津事丰医疗器械有限公司国械注准2022314044015髋关节假体-髋臼内衬宽岳医疗科技(北京)有限公司国械注准2022313044116牙胶尖天津中鼎生物医学科技有限公司国械注准2022317044217一次性使用高压注射连接管山东威高集团医用高分子制品股份有限公司国械注准2022306044318神经外科生物补片北京佰仁医疗科技股份有限公司国械注准2022313044419糖尿病视网膜病变眼底图像辅助诊断软件微医(福建)医疗器械有限公司国械注准2022321044520软性亲水接触镜壹见健康科技(上海)有限公司国械注准2022316044621柠檬酸消毒液北京利安康医药用品有限公司国械注准2022310044722微导丝苏州中天医疗器械科技有限公司国械注准2022303044823一次性使用导管鞘组深圳市业聚实业有限公司国械注准2022303044924半导体激光治疗机西安蓝极医疗电子科技有限公司国械注准2022301045025带袢钛板运怡(北京)医疗器械有限公司国械注准2022313045126二氧化碳激光治疗机武汉高科恒大光电股份有限公司国械注准2022301045227一次性使用麻醉穿刺针广东百越医疗器械有限公司国械注准2022308045328聚醚醚酮椎间融合器西安康拓医疗技术股份有限公司国械注准2022313045429一次性使用止血闭合夹南微医学科技股份有限公司国械注准2022302045530聚醚醚酮带线锚钉上海利格泰生物科技有限公司国械注准2022313045631口腔修复膜北京博辉瑞进生物科技有限公司国械注准2022317045732一次性使用双极电圈套器杭州安杰思医学科技股份有限公司国械注准2022301045833胸腰椎后路钉棒内固定系统卓迈康(厦门)医疗器械有限公司国械注准2022313045934颈椎前路钉板固定系统湖南华翔增量制造股份有限公司国械注准2022313046035聚醚醚酮带线锚钉运怡(北京)医疗器械有限公司国械注准2022313046136髋关节置换手术导航定位系统杭州键嘉机器人有限公司国械注准2022301046237B型流感病毒IgM抗体检测试剂盒(胶体金法)潍坊市康华生物技术有限公司国械注准2022340046338医用荧光定量PCR仪山东博弘基因科技有限公司国械注准2022322046439X射线计算机体层摄影设备东软医疗系统股份有限公司国械注准2022306046540一次性使用有创压力传感器苏州润迈德医疗科技有限公司国械注准2022307046641磁共振成像系统西门子(深圳)磁共振有限公司国械注准2022306046742界面螺钉方润医疗器械科技(上海)有限公司国械注准2022313046843聚醚醚酮钉鞘固定系统北京瑞朗泰科医疗器械有限公司国械注准2022313046944新型冠状病毒(2019-nCoV)抗原检测试剂盒(乳胶法)珠海丽珠试剂股份有限公司国械注准2022340047045新型冠状病毒(2019-nCoV)抗原检测试剂盒(胶体金法)上海伯杰医疗科技股份有限公司国械注准2022340047146球囊扩张导管科睿驰(深圳)医疗科技发展有限公司国械注准2022303047247静脉腔内射频闭合发生器北京先瑞达医疗科技有限公司国械注准2022301047348肋骨锁定接骨板系统天津正天医疗器械有限公司国械注准2022313047449正电子发射及X射线计算机断层成像扫描系统上海联影医疗科技股份有限公司国械注准2022306047550静脉腔内射频闭合导管北京先瑞达医疗科技有限公司国械注准2022301047651椎板固定板系统重庆富沃思医疗器械有限公司国械注准2022313047752一氧化氮治疗仪北京航天长峰股份有限公司国械注准2022308047853颅内抽吸导管套装北京深瑞达医疗科技有限公司国械注准2022303047954同种脱钙骨基质上海亚朋生物技术有限公司国械注准2022313048055注射用交联透明质酸钠凝胶浙江景嘉医疗科技有限公司国械注准2022313048156头颈CT血管造影图像辅助评估软件语坤(北京)网络科技有限公司国械注准2022321048257半自动体外除颤器普美康(江苏)医疗科技有限公司国械注准2022308048358呼吸机深圳融昕医疗科技有限公司国械注准2022308048459心脏外科生物补片金仕生物科技(常熟)有限公司国械注准2022313048560半自动体外除颤仪深圳市安保科技有限公司国械注准2022308048661正电子发射及X射线计算机断层成像系统江苏赛诺格兰医疗科技有限公司国械注准2022306048762颅内球囊扩张导管北京泰杰伟业科技有限公司国械注准2022303048863脱细胞异体真皮北京桀亚莱福生物技术有限责任公司国械注准2022313048964一次性使用泪道引流管济南润视医疗器械有限公司国械注准2022316049065乙型肝炎病毒核心抗体IgM(HBc-IgM)检测试剂盒(光激化学发光法)科美诊断技术股份有限公司国械注准2022340049166α和β地中海贫血基因检测试剂盒(联合探针锚定聚合测序法)华大生物科技(武汉)有限公司国械注准2022340049267一次性使用血液灌流器北京中科太康科技有限公司国械注准2022310049368颅内远端导管微创神通医疗科技(上海)有限公司国械注准2022303049469钴铬合金生物可降解涂层雷帕霉素洗脱冠脉支架系统山东吉威医疗制品有限公司国械注准2022313049570卵裂胚培养液东蕴医疗科技(上海)有限公司国械注准2022318049671机械解脱弹簧圈上海沃比医疗科技有限公司国械注准2022313049772钛合金带线锚钉上海三友医疗器械股份有限公司国械注准2022313049873一次性无菌无针输液接头广东百合医疗科技股份有限公司国械注准2022314049974椎间融合器上海康定医疗器械有限公司国械注准2022313050075髋关节假体 髋臼假体北京科仪邦恩医疗器械科技有限公司国械注准2022313050176颅内支撑导管江苏畅医达医疗科技有限公司国械注准2022303050277脊柱后路钉棒系统德州金康辰医疗器械有限公司国械注准2022313050378新型冠状病毒(2019-nCoV)抗原检测试剂盒(胶体金法)复星诊断科技(上海)有限公司国械注准2022340050479胃肠标记物胶囊江苏唯德康医疗科技有限公司国械注准2022306050580银离子敷料长沙海润生物技术有限公司国械注准2022314050681新型冠状病毒(2019-nCoV)抗原检测试剂盒(乳胶法)河北精硕生物科技有限公司国械注准2022340050782新型冠状病毒(2019-nCoV)抗原检测试剂盒(乳胶法)海孵(海南自贸区)医疗科技有限责任公司国械注准2022340050883膝关节置换手术导航定位系统苏州微创畅行机器人有限公司国械注准2022301050984膝关节置换手术导航定位系统骨圣元化机器人(深圳)有限公司国械注准2022301051085脊髓神经刺激测试电极北京品驰医疗设备有限公司国械注准2022312051186髂静脉支架系统苏州天鸿盛捷医疗器械有限公司国械注准2022313051287玻璃化解冻液套装瑞柏生物(中国)股份有限公司国械注准2022318051388远端通路导管上海沃比医疗科技有限公司国械注准2022303051489软性亲水接触镜湖南多富丽光学科技有限公司国械注准2022316051590注射用交联透明质酸钠凝胶北京凯诺瑞和医疗器械有限公司国械注准2022313051691血管鞘杭州捷通安晟医疗科技有限公司国械注准2022303051792医用磁共振成像系统飞利浦医疗(苏州)有限公司国械注准2022306051893带线锚钉苏州优贝特医疗器械有限公司国械注准2022313051994肋骨接骨板四川维思达医疗器械有限公司国械注准2022313052095血栓抽吸导管系统广州易介医疗科技有限公司国械注准2022303052196支撑导管上海心玮医疗科技股份有限公司国械注准2022303052297玻璃化冷冻液套装瑞柏生物(中国)股份有限公司国械注准2022318052398脊柱内固定系统-椎板成形系统强生(苏州)医疗器材有限公司国械注准2022313052499一次性使用避光带管路输液接头佛山特种医用导管有限责任公司国械注准20223140525100防针刺伤型植入式给药装置专用针佛山特种医用导管有限责任公司国械注准20223140526101实时荧光定量PCR仪苏州雅睿生物技术有限公司国械注准20223220527102肋骨接骨板江苏艾迪尔医疗科技股份有限公司国械注准20223130528103PTA球囊扩张导管北京迪玛克医药科技有限公司国械注准20223030529104膝关节假体上海博玛医疗科技有限公司国械注准20223130530105棘突间固定系统常州集硕医疗器械有限公司国械注准20223130531106微导管上海励楷科技有限公司国械注准20223030532107环扎固定系统天津正天医疗器械有限公司国械注准20223130533108颅内血栓抽吸导管玮铭医疗器械(上海)有限公司国械注准20223030534109地中海贫血基因检测试剂盒(微阵列芯片法)成都博奥晶芯生物科技有限公司国械注准20223400535110梅毒螺旋体抗体检测试剂盒(化学发光法)厦门市波生生物技术有限公司国械注准20223400536111肠道病毒通用型、肠道病毒71型和柯萨奇病毒A组16型/10型/6型核酸检测试剂盒(PCR-荧光探针法)苏州创澜生物科技有限公司国械注准20223400537112彩色超声诊断系统飞利浦医疗(苏州)有限公司国械注准20223060538113永磁型磁共振成像系统安徽迈力医疗科技有限公司国械注准20223060539114不规则抗体筛查红细胞试剂盒(血清学凝集法)广东营安生物科技有限公司国械注准20223400540115多项毒品联合检测试剂盒(胶体金免疫层析法)万华普曼生物工程有限公司国械注准20223400541116甲基安非他明(MET)检测试剂(胶体金法)杭州赛凯生物技术有限公司国械注准20223400542117一次性使用指引导管安吉特(天津)科技有限公司国械注准20223030543118一次性使用输液器 带针四川双陆医疗器械有限公司国械注准20223140544119盐酸丁卡因肠镜润滑剂深圳市盛康泰医疗器械有限公司国械注准20223060545120关节骨水泥上海意久泰医疗科技有限公司国械注准20223130546121左心耳封堵器系统上海心玮医疗科技股份有限公司国械注准20223130547122一次性使用无菌注射针北京航天卡迪技术开发研究所国械注准20223140548123冠状动脉球囊扩张导管深圳麦科田生命科学有限公司国械注准20223030549124一次性使用置换液管路江西洪达医疗器械集团有限公司国械注准20223100550125盐酸丁卡因胃镜润滑剂深圳市盛康泰医疗器械有限公司国械注准20223060551126远端通路导管北京久事神康医疗科技有限公司国械注准20223030552127椎体成形系统博益宁(厦门)医疗器械有限公司国械注准20223040553128钴铬钼合金脊柱棒大博医疗科技股份有限公司国械注准20223130554129聚醚醚酮界面螺钉大博医疗科技股份有限公司国械注准20223130555130聚醚醚酮界面螺钉浙江科惠医疗器械股份有限公司国械注准20223130556131一次性使用精密过滤输液器 带针山东瑞通高分子医疗器械有限公司国械注准20223140557132椎板固定板系统广东施泰宝医疗科技有限公司国械注准20223130558133非顺应性冠状动脉球囊扩张导管深圳麦科田生命科学有限公司国械注准20223030559134全缝线锚钉北京科仪邦恩医疗器械科技有限公司国械注准20223130560135人工髋关节假体 高交联髋臼内衬山东威高海星医疗器械有限公司国械注准20223130561136个性化基台及螺钉深圳市瑞丽牙科技术有限公司国械注准20223170562137可降解泪小管栓广州聚明生物科技有限公司国械注准20223160563138一次性使用注射笔用针头浙江康德莱医疗器械股份有限公司国械注准20223140564139足踝锁定接骨板系统创生医疗器械(中国)有限公司国械注准20223130565140一次性使用无菌牙科注射针江苏采纳医疗科技有限公司国械注准20223140566141新型冠状病毒(2019-nCoV)抗原检测试剂盒(胶体金法)武汉生之源生物科技股份有限公司国械注准20223400567142新型冠状病毒(2019-nCoV)抗原检测试剂盒(胶体金法)上海科华生物工程股份有限公司国械注准20223400568143EB病毒抗体质控品北京贝尔生物工程股份有限公司国械注准20223400569144肺结节CT图像辅助检测软件语坤(北京)网络科技有限公司国械注准20223210570145射频治疗仪深圳半岛医疗有限公司国械注准20223090571146胸部骨折CT图像辅助分诊软件推想医疗科技股份有限公司国械注准20223210572147乙型肝炎病毒e抗体测定试剂盒(化学发光免疫分析法)深圳市新产业生物医学工程股份有限公司国械注准20223400573148鼻病毒核酸检测试剂盒(PCR-荧光探针法)中山大学达安基因股份有限公司国械注准20223400574149肺结节CT图像辅助检测软件慧影医疗科技(北京)有限公司国械注准20223210575150一氧化氮治疗仪南京诺令生物科技有限公司国械注准20223090576151一次性使用高频止血钳常州乐奥医疗科技股份有限公司国械注准20223010577152一次性使用高频切开刀常州乐奥医疗科技股份有限公司国械注准20223010578153甲胎蛋白(AFP)测定试剂盒(磁微粒化学发光法)湖南莱拓福生物科技有限公司国械注准20223400579154口腔颌面锥形束计算机体层摄影设备安徽麦科视科技有限公司国械注准20223060580进口第三类医疗器械155亲水涂层血管内造影导管テルモ株式会社国械注进20223030166156非吸收性聚酯缝线Covidien llc国械注进20223020167157导丝Lake Region Medical国械注进20223030168158自钻免打结缝线锚钉Medos International SARL国械注进20223130169159骨水泥TEKNIMED S.A.S国械注进20223130170160磁共振成像系统キヤノンメディカルシステムズ株式会社国械注进20223060171161可解脱水凝胶铂金弹簧圈MicroVention,Inc.国械注进20223130176162腹腔内窥镜高频手术器械GIMMI GmbH国械注进20223010177163植入式心律转复除颤器MicroPort CRM S.r.l.国械注进20223120178164一次性使用高压注射器针筒及附件Bayer Medical Care Inc.国械注进20223060179165X射线计算机体层摄影设备富士胶片医疗健康株式会社国械注进20223060180166注射用修饰透明质酸钠凝胶ACROSS CO., LTD.国械注进20223130181167胶原型牙科骨填充材料GENOSS Co., Ltd.国械注进20223170182168膝关节假体组件Howmedica Osteonics Corp.国械注进20223130183169微导丝Merit Medical Systems, Inc.国械注进20223030191170连续性血液净化管路Fresenius Medical Care AG & Co. KGaA国械注进20223100192171导引导丝Merit Medical Systems,Inc.国械注进20223030193172一次性使用钝末端注射针(주)제일테크国械注进20223140194173三维膨胀弹簧圈MicroVention, Inc.国械注进20223130195174血栓抽吸导管Penumbra, Inc.国械注进20223030196175连续性血液净化及血浆置换用辅助管路Fresenius Medical Care AG & Co. KGaA国械注进20223100197176连续性血液净化管路Fresenius Medical Care AG & Co. KGaA国械注进20223100198177口腔颌面锥形束计算机体层摄影设备Sirona Dental Systems GmbH国械注进20223060200178电切镜附件STEMA Medizintechnik GmbH国械注进20223060201179血流动力学和电生理记录系统Siemens Healthcare GmbH国械注进20223070202180经尿道植入前列腺束钉NeoTract, Inc.国械注进20223130205181牙科种植体Nobel Biocare AB国械注进20223170206182脊柱内固定系统-矫形棒Medtronic Sofamor Danek USA, Inc.国械注进20223130207183软性角膜接触镜Johnson & Johnson Vision Care,Inc.国械注进20223160208184足部锁定接骨板系统In2Bones USA国械注进20223130209185隐形眼镜多功能护理液Bausch & Lomb Incorporated国械注进20223160210186电切内窥镜及附件GIMMI GmbH国械注进20223060215187超声诊断仪SAMSUNG MEDISON CO., LTD.国械注进20223060216188人类免疫缺陷病毒(1型)核酸检测试剂盒(TMA-转录介导法)Hologic, Inc.国械注进20223400217189胃蛋白酶原II(PGII)检测试剂盒(化学发光法)Fujirebio Inc.国械注进20223400218进口第二类医疗器械190促红细胞生成素质控品Siemens Healthcare Diagnostics Inc.国械注进20222400164191胃泌素释放肽前体(ProGRP)质控品Fujirebio Inc.国械注进20222400165192眼科光学相干断层扫描仪株式会社トプコン国械注进20222160172193电子内窥镜图像处理器Ambu A/S国械注进20222060173194总胆汁酸测定试剂盒(酶循环法)SENTINEL CH. S.p.A.国械注进20222400174195透析治疗临床管理软件Fresenius Medical Care AG & Co. KGaA国械注进20222210175196利福平药敏实验纸片(扩散法)Oxoid Limited国械注进20222400184197阿莫西林/克拉维酸药敏实验纸片(扩散法)Oxoid Limited国械注进20222400185198手术显微镜Leica Microsystems (Schweiz) AG国械注进2022206018619925-羟基维生素D定标液Roche Diagnostics GmbH国械注进20222400187200血糖仪Ascensia Diabetes Care Holdings AG国械注进20222220188201生物芯片阅读仪EUROIMMUN Medizinische Labordiagnostika AG国械注进20222220189202导丝Wilson-Cook Medical, Inc.国械注进20222020190203口腔数字印模系统Sirona Dental Systems GmbH国械注进20222170199204雄烯二酮测定试剂盒(微粒子化学发光免疫分析法)Siemens Healthcare Diagnostics Inc.国械注进20222400203205纤维蛋白(原)降解产物校准品希森美康株式会社 SYSMEX CORPORATION国械注进20222400204206D-二聚体校准品SYSMEX CORPORATION国械注进20222400211207纤维蛋白(原)降解产物质控品SYSMEX CORPORATION国械注进20222400212208电池供电骨组织手术设备Stryker Instruments国械注进20222040213209一次性使用胆胰管内窥镜导管Boston Scientific Corporation国械注进20222060214港澳台医疗器械210软性亲水接触镜永勝光學股份有限公司国械注许20223160009211软性亲水接触镜望隼科技股份有限公司国械注许20223160010212医用外科口罩中國衛生材料生產中心股份有限公司国械注许202221400112022年4月批准注册医疗器械产品目录.doc
  • 132万!荔浦市疾病预防控制中心连续流动注射分析仪等采购项目
    一、项目基本情况项目编号:GLZC2023-J1-310021-GSZB项目名称:实验室能力建设仪器设备采购采购方式:竞争性谈判预算金额:132.0000000 万元(人民币)采购需求:项号货 物 名 称数量单位简要规格描述或项目基本概况1连续流动注射分析仪1套如需进一步了解详细内容,详见采购文件。2微波消解仪1台3原子荧光分析仪1台4全自动高锰酸盐指数分析仪1台合同履行期限:自签订合同之日起30天内交付使用并通过验收本项目( 不接受 )联合体投标。二、获取采购文件时间:2023年03月31日 至 2023年04月10日,每天上午00:00至12:00,下午12:00至23:59。(北京时间,法定节假日除外)地点:“政采云”平台(http://www.zcygov.cn)方式:供应商登录“政采云”平台(http://www.zcygov.cn)在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件)售价:¥0.0 元(人民币)三、凡对本次采购提出询问,请按以下方式联系。1.采购人信息名称:荔浦市疾病预防控制中心地址:荔浦市荔城镇滨江南路4号联系方式:徐建刚 0773-72178132.采购代理机构信息名称:广西国盛招标有限公司地址:桂林市临桂区西城北路山水凤凰城G41栋17楼联系方式:蒋桂珍 0773-58381883.项目联系方式项目联系人:蒋桂珍电话:0773-5838188
  • 2016年吉天仪器流动注射巡回交流会完美收官
    近年来流动分析技术在检验检疫、水质分析、农业检测、科研教学等领域得到广泛应用,以流动分析技术为理论基础发展起来的检测仪器也逐渐成为实验室分析仪器中的常规仪器。这类仪器有着自动化程度高,分析速度快,处理样品量大等优势,备受市场的青睐。约十年前吉天仪器的流动注射分析仪在时代的浪潮中应运而生,填补了国内这类仪器的空白,经过近十年的发展吉天仪器流动注射分析仪已经成为此类仪器的翘楚,无论是仪器性能还是市场反馈都足以同进口仪器抗衡,在水质挥发酚、氢化物及阴离子等项目的检测中各项性能指标甚至优于同类进口仪器。在所有此类国产仪器中更是当之无愧的魁首,引领着这类仪器的发展方向。  2016年随着吉天仪器流动注射分析仪用户的不断增加,用户对此类仪器的技术培训需求迫切,吉天仪器经过一个多月的策划与筹备,于2016年9月在北京举办流动注射技术交流会,至此流动注射全国巡回技术交流会正式拉开帷幕,而后吉天仪器团队兵分两路奔赴长春、郑州、福州、呼和浩特等十余个城市,展开为期三个月的全国“巡演”。所到之处覆盖黑吉辽、京津冀、江浙沪、鄂豫皖等十余个省,辐射东、北、西北、中原、西南、东南等区域,最终在美丽的重庆落下帷幕。由于时间关系,部分未涉及到的省市将排在明年推广计划当中。  本次巡回交流会,旨在服务吉天仪器现有流动注射用户并将流动注射分析技术推广至全国各地大专院校、科研院所、高新企业等单位,同时与这些应用单位共同推动流动注射分析技术在分析检验检测领域的发展,为国内检测分析行业做出一个仪器公司应有的贡献。盛况空前,营造良好的交流氛围  2016年吉天仪器流动注射巡回交流会共策划11场;其中包括6场流动注射主场交流会和5场综合产品交流会。会议吸引了各省市粮油研究所、质检院、疾控中心、环境监测站、自来水厂、高校以及第三方检测行业的专家、学者、一线实验人员前来学习、交流和分享,会议累计参加人次近千人,间接影响人数千余人,可谓是盛况空前。参会人员均来自不同的检测领域,在各自领域都有着丰富的工作经验,吉天仪器以技术交流会的形式将各个检测领域的专业人员集中到一起,让大家互通有无,相互交流仪器在应用中可能出现的问题及相应的解决方法。三个月的交流会,吉天仪器将各地用户们遇到的问题进行了汇总,同时又将用户们总结出的解决方法由一个区域带到另一个区域,知识和经验就这样随着吉天仪器队伍的移动而迁移。另外,利用吉天仪器自有的移动网络平台,我们对此次巡回技术交流会做了详细报道,并在自媒体平台上上线了部分培训教程及解决方案供用户参考。流动注射技术交流会场次序号日期地点性质12016/9/9北京流动注射主场22016/9/13长春流动注射主场32016/9/20郑州流动注射主场42016/9/20福州综合推广会52016/9/26呼和浩特流动注射主场62016/10/14贵阳流动注射主场72016/10/18长沙流动注射主场82016/10/21武汉综合推广会92016/11/4合肥综合推广会102016/11/17杭州综合推广会112016/11/25重庆综合推广会零距离接触,科学与思维的碰撞   交流会中,吉天仪器的研发工程师就仪器的研发背景、发展历程、仪器原理、仪器构造及应用案例进行了详细讲解。目前市场上的流动分析仪依据分析技术的不同主要分为:流动注射(FIA)分析仪及连续流动分析仪(CFA)两类,这两类仪器同为流动分析仪,在技术原理及研发历程上有着众多渊源,但是在仪器特点及适用性上却存在一定差异,FIA是基于非稳态反应的检测技术,其优势在于分析速度快,仪器结构简便,而CFA是基于常规稳态反应的检测技术,其优势在于长时间稳定性好。二者在针对不同种类样品的检测上互有优势,互相补充。而吉天仪器兼具两种技术类型的流动分析仪,可满足不同种类客户的需求。吉天仪器自主研发的FIA6000+全自动流动注射分析仪,集成了各项自动化在线前处理技术,如在线紫外-加热消解技术、在线蒸馏技术、在线冷凝技术、在线萃取技术、在线还原技术、在线稀释技术等都可以在仪器面板上实现。  在FIA6000+的应用板块,工程师重点就固体样品和液体样品怎样进行前处理做了分享,对于大部分液体样品只需进行简单预处理便可上机检测,只要配好必需的试剂,所有检测环节都可由程序控制仪器自动完成,而对于固体样品则需要进行必要的提取或消解,将固体样品变为液体样品后再导入仪器进行检测。仪器所需大部分试剂均选用国产试剂便可满足检测需要,大大降低了检测成本。针对试剂选配较为繁琐这一问题,吉天仪器联合安谱实验共同开发出专门用于流动注射分析仪FIA6000+不同分析方法的试剂包。这种试剂包使用简便,针对不同方法按照说明书开包定容便可使用,一个试剂包可检测上百个样品,试剂纯度高、一致性好,避免由于试剂纯度不一而带来的误差。对于水质样品中挥发酚、氢化物、阴离子等项目的检测有着高效快捷的绝对优势。  在FIA6000+的日常维护板块,工程师就仪器使用中可能出现的故障进行了详细讲解。这类仪器硬件上的故障很少出现,诸如取样针走偏,机械臂故障,管路接口漏液等简单问题都可在工程师指导下远程完成修复,如果用户无法完成修复驻地工程师会及时上门服务解决问题。相较硬故障而言常见故障还是软故障,无非是空白过高、峰形异常、无信号等影响检测结果,这就需要用户对实验原理和仪器构造进行了解,通过工程师的讲解能让用户学会通过峰形来初步判断仪器故障的方法。针对这些软故障,吉天仪器工程师也进行了归类,并输出相应的解决方案与用户共同分享。  会后的仪器参观及答疑交流环节是每场交流会的重点,工程师的讲解只是针对用户当中的共性问题进行解答,而对于不同用户个性化需求的满足还要靠现场交流环节。通过技术宣讲大部分用户都对仪器日常维护有了自己的认识,而这一认识大部分又只停留在表面,不少用户知其然而不知其所以然,而我们技术交流的目的又不仅仅是教会用户针对某个特定问题的解决方法,而是培养用户运用现有知识分析和解决问题的能力。为了更深层次地解决客户应用当中的问题,每场交流会都配置有专门的仪器样机,便于现场交流。部分场次针对用户提出的问题,工程师对样机关键部件进行了拆卸,帮助用户深入了解仪器原理及构造,让用户自己掌握基本的诊断、维修甚至改装技巧。日后仪器行业的“中心”一定会是用户自己,只有用户自己才更加了解自己的需求,用户可以根据自己的实验需求自行改造仪器,而厂家负责将用户改造后的仪器商品化推向有更多同类需求的用户,实现生态共赢,这才是仪器行业该有的良性生态系统——产品生产以用户需求为核心,这也是十几年来吉天仪器研发生产产品的遵旨。互惠共赢,共建良性生态系统  每场交流会吉天仪器团队都会收集用户反馈问卷,了解用户对吉天仪器品牌及吉天仪器的看法,这为我们改进仪器提升服务质量提供了强有力的数据支撑。而用户所填的问题也会得到及时解决,同时会惠及有同样类似问题的不同区域的用户。此外我们为所有填写问卷的流动注射用户免费提供试剂包一份,帮助用户更高效地享受流动注射分析仪带来的便捷。在对400余个有效样本进行分析后我们得到众多结论,其中一条结论为:此次巡回交流会对用户帮助极大,基本解决了用户在实际应用当中出现的问题,吉天仪器品牌及吉天仪器作为名族品牌已得到用户们的广泛认可。基于这些数据得出的结论,将会指导吉天仪器的持续改进,未来吉天仪器流动注射产品会朝着用户需要的方向发展,将用户体验提升到更高层次。从另一个角度来看,此次巡回交流会对吉天仪器工作人员的帮助也很大,通过走出实验室近距离与用户接触,了解到更多用户在实际应用中的需求,这对推动仪器改进提供了最合理的依据,同时工程师们还从用户身上学到了丰富的应用经验,这些应用经验又被工程师汇总传播到其他地域,最终在厂商和全国范围的用户间达到互惠共赢的效果。竭心尽力,开创美好篇章  在整个巡回交流会期间,吉天仪器受到了业界的持续关注,而吉天仪器也时刻坦然面对业界同仁们的监督,“将流动注射分析技术推广到全国”这不仅是一句口号,而是全部吉天人的呐喊!虽然吉天仪器2016年流动注射巡回交流会已经结束,但是我们的步伐不会停止,肩负着振兴国产实验室分析仪器使命的吉天人,会在下一次巡回交流会中以更新的姿态示人,吉天仪器最新款流动分析仪iFIA-7将会有怎样的市场表现,还请各位拭目以待!
  • 步琦近红外快速测定注射液浓度——协助确保药物安全性
    近红外快速测定注射液浓度协助确保药物安全性近红外应用”1介绍氯化钠注射液和葡萄糖注射液,在我们的日常医疗治疗中扮演着重要的角色,它们的确切含量对患者的康复至关重要。氯化钠注射液,也就是我们俗称的“生理盐水”。这种看似简单的液体,含有 0.9% 的氯化钠,与人体血液中的盐分浓度相仿。它不仅能够补充体液、维护电解质平衡,还可以作为给药时的溶剂,帮助药物均匀分布在血液中。生产这种注射液需要精确的配比、严格的无菌操作以及彻底的质量检验,确保每一滴都安全无误地进入患者体内。而葡萄糖注射液作为能量源的供应者,常用于提供紧急营养,特别是对于那些暂时无法通过口服获取能量的患者。根据葡萄糖的浓度不同,注射液可分为多种类型,5% 的葡萄糖注射液适合轻度补充,而 10% 或更高浓度的葡萄糖注射液则用于更严重的能量缺乏状态。生产这些注射液同样需要高标准的生产流程和质量控制,以保证其在临床使用时的效果和安全。在医疗实践中,准确测定这些注射液中氯化钠和葡萄糖的含量至关重要,传统检测氯化钠和葡萄糖注射液的方法分别是滴定法和旋光度测定,这两种方法需要消耗一定的化学试剂,且对操作人员有一定的熟练度要求,对于生产企业来说,日常多批次的检测需求不仅对试剂耗材更是对人力的巨大考验,而近红外光谱分析技术为我们提供了一个高效、便捷的解决方案。近红外光谱分析利用分子振动能级吸收光谱进行定量分析,主要是分子中如 C-H、O-H、S-H、N-H 等氢键在近红外光照射时会吸收相应的能量,再结合传统湿化学方法的结果,借助化学计量学工具建立所关注指标的定标模型。在实际应用中,近红外光谱分析无需复杂的前处理步骤,不会使用各种化学试剂,检测过程快速方便,多种指标同时测定,能够为企业的批量检测降本增效。下面分享两个近红外定量分析的案例,使用 BUCHI 的 ProxiMate 近红外光谱仪分别对氯化钠注射液和 10% 葡萄糖溶液进行快速定量分析。2样品信息氯化钠注射液浓度范围 0.66% - 1.20%,梯度变化 0.02 %,每个梯度测量两个样品,共计 56 个样品;葡萄糖注射液浓度范围 9.55% - 10.5%,梯度变化 0.05 %,每个梯度测量一个样品,共计20个样品。3模型效果▲氯化钠注射液模型▲葡萄糖注射液模型氯化钠注射液模型 SECV 为 0.07,葡萄糖注射液模型的 SECV 为 0.08,且均有良好线性关系,说明近红外能够对这两类样品进行快速测定。ProxiMate上述案例中使用的是 BUCHI 的 ProxiMate 近红外光谱仪,具有 IP69 的高防护等级及 FDA 认证的外壳设计,能够胜任各种复杂条件下的测量工作,固定阵列光栅也无惧振动环境的干扰,上下两种照射方式及各式检测附件能够满足多种样品状态的测量需求。如果您对BUCHI近红外产品及应用或是其它仪器感兴趣,欢迎通过下面联系方式咨询。▲ProxiMate
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制