当前位置: 仪器信息网 > 行业主题 > >

激光光声高纯痕量级气体分析仪

仪器信息网激光光声高纯痕量级气体分析仪专题为您提供2024年最新激光光声高纯痕量级气体分析仪价格报价、厂家品牌的相关信息, 包括激光光声高纯痕量级气体分析仪参数、型号等,不管是国产,还是进口品牌的激光光声高纯痕量级气体分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光光声高纯痕量级气体分析仪相关的耗材配件、试剂标物,还有激光光声高纯痕量级气体分析仪相关的最新资讯、资料,以及激光光声高纯痕量级气体分析仪相关的解决方案。

激光光声高纯痕量级气体分析仪相关的论坛

  • 【分享】激光气体现场在线分析仪技术与产品应用

    现场在线(in-situ)分析测量工业过程气体成分含量,在世界工业领域中显得越来越重要。 现场在线气体分析测量也是复杂工业过程和排放最重要的领域之一。特别是用户对低含量和高精度气体分析测量的需要,也要求气体分析仪制造商采用更新、更先进的技术。 满足此需要是挪威纳斯克公司开发激光气体现场在线分析仪的主要目的。纳斯克公司能提供基于独特技术、比传统气体分析产品更具优越性能的一系列激光气体现场在线分析仪。 激光气体现场在线分析仪开创了工业过程和排放气体测量新领域。通过先进的固态二极管激光技术、光学解决方案、光谱学和坚固的工业设计等独特技术,激光气体现场在线分析仪能工作在无来自其它气体交叉干扰影响情况下。过程压力可达5 bar,温度超过1600℃。 - 测量原理 激光气体现场在线分析仪是光学仪器,从温度稳定、单模二极管激光器发射激光到发射器直径方向相对的接收器上。二极管激光器工作在室温附近。 传统在线(on-line)分析仪如红外(IR)在线分析仪通常受来自其它气体成分(包括粉尘、水分背景成分等)交叉干扰影响,此问题在探测含量很低时,显得越来越严重。对照采用宽带光谱过滤的传统IR红外在线分析仪,激光气体现场在线分析仪采用在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]范围内的单线光谱技术。 单线光谱测量技术基于在近红外区域内对被测气体单吸收线的挑选。通过对所选吸收线光谱分析,使得在所选吸收线波长内无其它气体的吸收线(无交叉吸收干涉)。然后,通过调节二极管激光器温度和驱动电流,将二极管激光器频率调整对应到气体的单吸收线。激光光谱宽度相应调整到比被测气体单吸收线光谱宽度更窄。通过改变二极管激光器的电流,包含单吸收线的激光波长被扫描发射出来。 在激光扫描发射期间,作为波长的一个特性,接收单元探测到的光强度将发生变化,且此变化仅仅是来自于激光器与接收器之间光通道内被测气体分子对光线的吸收。探测到的单吸收线的形状和尺寸,用来计算发射器和接收器之间的气体含量。其它气体的吸收线不会出现在所选波长范围内,因此不会对单吸收线产生干扰,从而影响气体含量测量。 激光气体现场在线分析仪不受过程气体中分水、粉尘或视窗上污染物等吸收影响,这是由于气体含量的计算是基于独特单吸收线尺寸和形状,因此实现了更可靠的测量,并减少了维护的需要。 - 安装 由于其小而坚固的机械单元,激光气体现场在线分析仪很容易安装。由三个基本单元组成: 发射单元,带吹扫、调整机构、DN50安装 接收单元,带吹扫、调整和标定机构、DN50安装 电子单元,带显示器 发射和接收单元通过自身法兰直接装配到焊接在管道或烟道上的DN50/PN10或PN16法兰上,也可在它们之间插入带法兰阀门(推荐球阀)。安装时需联一台PC电脑到分析仪电子单元上,运行服务软件来进行。 光学视窗、不锈钢法兰和吹扫机构建立了过程气体和分析仪的接口。为了防止粉尘和其它污染物在视窗上的聚集,需用干且无油压缩空气、气体(一般为氮气)或风扇连续吹扫。 分析仪的调整通过调节发射器和接收器的法兰来进行。防止在安装和维护时过程气体泄露的阀(推荐球阀)可安装在过程气体和法兰之间,这些阀也保护了视窗。 - 维护 坚固的工业设计和连续吹扫,使得激光气体现场在线分析仪维护非常容易、维护工作量相当少(几乎接近于免维护)。由于无运动部件在仪器中,因此预防性维护有限到只需目测检查和清洁光学视窗。经验显示维护周期通常超过三个月且简单到只需清洁光学视窗。由于关键的参数已被内部检测,若需在推荐的维护周期以外进行维护,仪器会给出提醒。 - 标定 激光气体现场在线分析仪出厂时已标定好,首次使用无需标定,重标定至少在六个月或几年以后才需要。由于分析仪所采用的先进技术,标定非常容易。可通过向接收单元内置的“流体通过单元”吹入标定气进行标定,因此可进行现场在线标定,无需拆下发射和接收单元。标定通过PC来进行,标定过程非常容易——运行在PC中的服务软件完成全部的计算任务。也可选用标定管离线标定。 - 输入和输出信号 激光气体现场在线分析仪提供三种主要气体含量输出信号,作为标准信号: 4-20 mA模拟量输出测量值、500 Ω Max.,隔离。 电子单元上的显示(LCD):气体含量、光强、警告和错误信息 电子单元上RS 232口 选项:光纤信号输出测量值(同步ASCII格式) - 服务软件 激光气体现场在线分析仪包含发射器、接收器和电子单元。在安装、维护和标定时通过RS 232和PC 电脑通讯,也可通过MODEM和PC远程通讯。分析仪服务软件特别设计,用来完成所有必须的操作,如设置输出范围、气体温度和压力、光通道长度等。 - 总结 激光气体现场在线分析仪具坚固的设计,并采用了目前世界最先进技术。因此适合于高精度排放测量和过程控制应用。包含以下特征: 连续、现场在线测量 高灵敏度和高精度 响应时间一般小于2秒 可选的测量范围 可选的输出单位 工作在0.1到5 bar压力,气体温度超过1600℃ 容易安装 极少而又简单的维护需要 内置吹扫、标定机构 无需进行气体采样预处理 无其它气体交叉干扰(不受粉尘、水分、背景成分等影响) 视窗上粉尘和污物对测量无影响

  • 中国计量院完成“痕量分析用试剂纯化与检测关键技术及应用”

    1月9日,2014年度国家科学技术奖励大会在人民大会堂隆重召开。由中国计量科学研究院(以下简称“中国计量院”)牵头完成的“痕量分析用试剂纯化与检测关键技术及应用”成果获得国家科技进步二等奖。 “痕量”在化学分析中的意为“少得只有一点儿痕迹”。人们通常将10-6数量级即百万分之一以下的含量测量称为“痕量分析”。近年来,随着人们对有毒有害物质监测问题的不断关注,痕量分析的比重已越来越大、限量值也越来越低。如以二噁英、多氯联苯等持久性有机污染物、农兽药等,即使含量低于10-9g/g痕量水平,相当于每克物质中存在有十亿分之一克的残留,仍然对人类健康具有严重危害。因此,痕量物质的准确测量是控制重大风险的技术保障,对保障公共安全和大众健康具有十分重大的现实意义。 在痕量物质的准确检测中,高纯溶剂、样品处理材料和标准物质等分析用试剂直接决定了检测结果准确度水平。但由于技术水平的限制,我国痕量分析用试剂几乎全部依赖进口,严重制约了环境、食品等领域的准确测量。 1月9日,2014年度国家科学技术奖励大会在人民大会堂隆重召开。由中国计量科学研究院(以下简称“中国计量院”)牵头完成的“痕量分析用试剂纯化与检测关键技术及应用”成果获得国家科技进步二等奖。 “痕量”在化学分析中的意为“少得只有一点儿痕迹”。人们通常将10-6数量级即百万分之一以下的含量测量称为“痕量分析”。近年来,随着人们对有毒有害物质监测问题的不断关注,痕量分析的比重已越来越大、限量值也越来越低。如以二噁英、多氯联苯等持久性有机污染物、农兽药等,即使含量低于10-9g/g痕量水平,相当于每克物质中存在有十亿分之一克的残留,仍然对人类健康具有严重危害。因此,痕量物质的准确测量是控制重大风险的技术保障,对保障公共安全和大众健康具有十分重大的现实意义。 在痕量物质的准确检测中,高纯溶剂、样品处理材料和标准物质等分析用试剂直接决定了检测结果准确度水平。但由于技术水平的限制,我国痕量分析用试剂几乎全部依赖进口,严重制约了环境、食品等领域的准确测量。

  • 【原创】在线多组份拉曼激光气体分析仪

    用一台仪表在线多组份气体测量一直是一个难题,在拉曼激光气体分析没有诞生时,只能用质谱仪或色谱仪两种仪器或多台组合(如同时测:CO、CO2、H2、O2、N2、CH4、H2S);质谱议价格昂贵使用维护成体高,色谱仪响应时间慢。 拉曼多组份气体分析一台仪表可同时测量八种气体的体积浓度,单原子及双原子都能测:CO、CO2、H2、N2、O2、CH4等八种;仪表的分析周期1S(1秒),最低检测:5-10PPM,精度:最大量程的正负0.25%量程:0-100%,仪表的大小如家用微波炉大小。使用维护成本几乎为零;详尽资料见附件。有意进一步交流请致电刘先生:13408162837。

  • 【转帖】我国激光气体分析仪国际标准提案获IEC全票通过

    近日,从国际电工委员会(IEC)传来消息,由聚光科技代表中国提出并制定的《可调激光气体分析仪国际标准提案》获得全票通过,成为国际电工委员会IEC标准正式项目。   《可调激光气体分析仪国际标准提案》是聚光科技在“激光气体分析”技术的基础上,参考国际规范而制定出的一套关于激光气体分析技术的国际标准提案,该提案在2008年的国际电工会议上获得了17个投票成员国和3个观察员的全票通过,成为IEC标准正式项目。   聚光科技利用激光气体分析技术成功研发出的“激光在线气体分析系统”经浙江省科技厅组织鉴定,为国内首创,总体技术水平达到国际先进,其关键技术指标达到国际领先,该项成果曾获得国家科技进步二等奖等多项荣誉。   国际电工委员会是世界上成立最早的非政府性国际电工标准化机构,它负责电气和电子工程领域的国际标准化工作,是世界上最具权威性的国际标准化机构之一,其宗旨是促进电工标准的国际统一,电气、电子工程领域中标准化及有关方面问题的国际合作等。   聚光科技提出并制定的《可调激光气体分析仪国际标准提案》被国际电工委员会立为IEC标准正式项目,这说明聚光科技正在承担起激光气体分析领域的国际标准制定重任。

  • 夏日高温禁运来袭,低苯级&痕量分析级二硫化碳,PICK一下!

    二硫化碳是一种无色透明带有芳香味的挥发性液体,是有机物的良好溶剂,在检测分析中主要用于水、土壤、空气等环境中苯系物检测,工作场所空气中有毒物质测定,如饱和烷烃类化合物、卤代烷烃类合物、芳香烃类化合物、多环芳烃类化合物、脂肪族酯类化合物、脂肪族醚类化合物和脂肪族酮类化合物等。检测中主要利用二硫化碳萃取或解吸样品,然后结合[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](GC)或[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用(GC-MS)方法来进行定性定量分析。 [align=center][img]http://www.anpel.com.cn/UpFile/Admin/image/20180604/20180604134333_5055.jpg[/img] [/align] 由于检测样品中苯系物、烷烃化合物等含量比较低(基本都低于100ppb,要求高者甚至达到10ppb以下),因此对二硫化碳本底的种类和含量都有要求,但目前市场上销售的二硫化碳溶剂很多无法满足分析要求,普遍存在着产品本底偏高的现象,CNW 能够[b]提供低苯级和痕量级两个级别的二硫化碳,两个级别都能保证最佳本底控制,满足不同的检测需求。优势[/b]●更低,更稳定的本底控制●采用独立进口包装瓶,无需水封处理●可适用于苯系物,烃类,VOC等物质分析[b]痕量分析级别二硫化碳质控结果[/b][align=center][img=,900,546]http://www.anpel.com.cn/UpFile/Admin/image/20180604/20180604135353_0556.png[/img][/align] [align=left][b]检测证书[/b] [/align][align=center]▼低苯级 [/align][align=center][img]http://www.anpel.com.cn/UpFile/Admin/image/20180604/20180604135805_9459.jpg[/img] [/align][align=center]--------------------------------------------▼痕量分析级 [/align][align=center][img]http://www.anpel.com.cn/UpFile/Admin/image/20180604/20180604140714_2947.jpg[/img] [/align][b]适用的检测方法[/b] [align=center][img]http://www.anpel.com.cn/UpFile/Admin/image/20180604/20180604141321_2762.png[/img] [/align] [align=center]…… [/align][b]产品信息[/b] [align=center][img]http://www.anpel.com.cn/UpFile/Admin/image/20180604/20180604141544_7152.png[/img] [/align][b]CNW二硫化碳选型推荐[/b]A)针对GBZ/T 职业卫生标准客户,推荐使用低苯级二硫化碳;B)针对环境和国标标准检测客户,如使用CD-1类似柱子,推荐低苯级二硫化碳;如使用CD-WAX类似柱子,对苯系物检测要求极高,推荐使用痕量级二硫化碳关联产品。[b]关联产品[/b] [align=center][img]http://www.anpel.com.cn/UpFile/Admin/image/20180604/20180604141713_4745.png[/img] [/align][b]友情提示[/b][color=#e53333]高温禁运:上海市从2018年6月15日-10月15日将限制低沸点化学试剂异地运输。为了不影响您实验,请做好备货准备。[/color]安全防护:鉴于二硫化碳对人体存在一定程度的危害,建议使用者务必做好个人安全防护措施,选择最佳防护口罩或面具,佩戴最适防护手套等,并在通风厨中实验。储存方式:鉴于二硫化碳沸点较低, 建议使用者存储在通风阴凉处。

  • 【分享】气相色谱法做痕量分析选择仪器的几方面考虑-(1)

    气相色谱法做痕量分析选择仪器的几方面考虑痕量分析一般是指纯物质或混合物中被测组分含量在10-6~10-9(体积比或重量比)的成分的定性和定量分析。随着社会的不断发展与进步,人类面临的几大课题(资源 能源 人口 环境)的解决均与痕量分析技术密切相关。或者说,人们的日常生活越来越离不开痕量分析。近期接到有关分析仪器的采购单几乎都是解决痕量分析项目。痕量分析样品的特点①样品来源广泛;② 种类繁多;③ 组成复杂;④ 含量低;⑤ 性质状态各不相同。因此相对常量和微量分析难度大,对各方面要求都高的一项工作。虽说多种分析方法:如色谱法、质谱法、光谱法、电化学等都可以用于痕量分析,相比之下气相色谱法具有诸多优点(在大多数情况下):⑴仪器价格较低,使用条件不苛刻,利于普及推广;⑵ 分离效率高,选择性大,有利于复杂多组分的分离检测;⑶灵敏度高,分析速度快,直接进样用量小;⑷与其他仪器联用能解决更复杂的分析难题。色谱法已经是目前痕量分析中使用方法与仪器中数量最大,面最广的方法。当然,要完成一项痕量分析任务,除首先购置一台性能优良的GC外,还涉及样品采集,予处理,分析方法建立(色谱柱的选择,分析条件的优化等。),标准样品的制备,数据处理等环节。本文就气相色谱法做痕量分析在选购GC仪器时应考虑的几个方面,加以概括介绍供大家参考。若有更具体的技术问题请在本网站“专家咨询”栏目中交流。

  • 【原创大赛】天瑞ICPMS2000B测试高纯硝酸中的痕量超痕量元素含量

    【原创大赛】天瑞ICPMS2000B测试高纯硝酸中的痕量超痕量元素含量

    前阵子作为项目,做了高纯硝酸当中的23种杂质元素含量,主要是验证同一方法中运行多种模式以及“碰撞聚焦”的实际效果。 实验结果表明,对于机器背景较高的元素如Na、Mg等以及受Ar基干扰较为严重的元素如K、Ca、Fe等,碰撞聚焦-冷等离子体模式下的“灵敏度/背景”要比单纯地使用“冷等离子体”模式来得更佳。 电感耦合等离子体质谱仪测试高纯硝酸中痕量超痕量元素杂质含量摘要: 采用超纯水稀释高纯硝酸的处理方法,直接测试了高纯硝酸当中的锂、铍、钠、镁、铝、钾、钙、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、砷、银、镉、钡、铅、铋等 23种元素的含量。实验结果表明,各元素 BEC 值在 0.2~40ng/L 之间,加标回收率在 80~120%,长期稳定性5%。 作为工业和实验室分析当中最为常用的硝酸,其重要作用毋庸置疑。对于光伏、半导体工业来说,这是常见的清洗、反应用酸。其中所含杂质的含量对于产品有着十分重要的影响——例如金属元素过高会导致器件被击穿、P\B 含量则决定着光伏电池的 P/N 型。另外,在ICP-MS 分析当中,由于仪器高灵敏度、样品中目标元素一般为痕量超痕量级别,故样品前处理中最常使用的硝酸也需要做一定程度的杂质管控。 本文参照光伏对于硝酸的标准——SEMI PV16-0611,以标准加入法、“一次进样运行四种模式”测试了高纯硝酸当中的 23 种元素。实验结果表明,对于硝酸中各杂质的背景等效浓度 BEC 值在 0.2~40ng/L 之间,加标回收率均在 80%~120%,2 小时的长期稳定性均在 5%以下。1、 材料与方法:1.1 材料与仪器: 质量分数为 68%的高纯硝酸,随带检测报告表明每种杂质元素含量均不超过1μ g/L;实验用水:Millipore-A20 所制得的超纯水,其电阻率≧18.2MΩ ·cm;ICP-MS2000B:带碰撞反应池和 2 路碰撞反应气,可分别通(He+H2)和(He+NH3),也可根据实际需求配置纯氦气或者其他纯碰撞/反应气;1.2 标准溶液的配置: 锂、铍、钠、镁、铝、钾、钙、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、砷、银、镉、钡、铅、铋混合标准溶液均由对应的 10mg/L 单标配置而成,各标液购自于 Inorganic Ventures 公司;以重量法经一步稀释成 230.97μ g/L;1.3 前处理方法: 由于 ICP-MS 的离子源 ICP 部分是和大气直接接触的,故等离子体中也有大量的N、O、H,因此硝酸的基体除了酸度影响灵敏度之外,其他的和超纯水并无差别,故前处理上以超纯水直接稀释 10~20 倍即可;考虑到本次样品的纯度仅大致为每元素含量 1ppb 且该样品已多次启封使用,含量已较未开封样品高,故以稀释 20 倍处理。1.4 仪器工作参数: 由于使用了 4 种工作模式,各模式的参数罗列如下:http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_669011_1638867_3.pnghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016081010231588_01_1638867_3.png2、 结果和讨论2.1 分析模式的选择 由于测试的元素总共有 Li、Be、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、As、Ag、Cd、Ba、Pb、Bi 等 23 个元素。在这些元素当中,可大致分为以下四类:a、 受背景干扰较强但本身并无多原子离子干扰的元素:Li、Na、Mg;这类元素在冷等离子体或者冷等离子体-碰撞反应模式中,背景可以被有效地压制,具体情况如 1.4 的表 2;b、 受多原子离子干扰较为强烈且电离能较低的元素:K(ArH)、Ca(Ar)、Cr(ArC)、Mn(ArN)、Fe(ArO);这类元素在冷等离子体条件下,多原子离子的干扰可以被有效地压制,但本身的灵敏度也比较低。另外,在冷等离子体调谐条件下加入碰撞反应气,除了可以有效提高目标元素灵敏度之外,(He+H2)混合气当中的 H2还可以有效地消除多原子离子的干扰。故这些元素十分适合“碰撞聚焦-冷等离子体”模式;c、 受多原子离子干扰强烈且电离有高有低的元素:Al(CNH、CN)、K(ArH)、Ca(Ar)、Ti(SO、SiOH)、Cr(ArC)、Mn(ArN、ArNH)、Fe(ArO、CaO)、Co(ArF、ArOH)、Cu(NaAr)、Zn(SO2、S2)。这类元素既适合上述的“碰撞聚焦-冷等离子体”,也适合“碰撞-反应模式”。在仔细地比较了“灵敏度-背景”之后,Al、Ti、V、Fe、Zn、Cu 元素选用碰撞反应模式来解决多原子离子的干扰。d、 其他元素:由于并无多原子离子的干扰或者干扰影响很小,同时考虑到灵敏度的问题,故 Be、Ga、Ag、Cd、Ba、Pb、Bi 等元素采用常规模式。综合上述原则,各元素采用的分析模式如表 3:http://ng1.17img.cn/bbsfiles/images/2017/10/2016081010242298_01_1638867_3.png2.2 各分析模式切换的时间和分析总时间 在这四种模式当中,低功率运行的状态一般来说,要比高功率更加不耐受基体。因此如果从高功率向低功率转换,稳定时间要更长一些;另外,通入碰撞反应器和没通碰撞反应气又需要一定的稳定时间。综合以上的因素,实际测试过程中将“碰撞聚焦-冷等离子体”模式放在第一位,其他的依次是“冷等离子体”、“碰撞反应”、“常规”。模式之间切换的稳定时间为:45s、30s、30s、30s。 23 个元素的总分析时间大约为 6 分钟。2.3 内标元素的选择、样品处理方法及分析方法: 任何的动态型分析检测设备,都存在信号的漂移,样品基体也会导致这种情况的发生,因此测试过程当中一般都会采用内标加以校正。但是对于高纯酸而言,由于其待测元素的含量都处于超痕量的水平。如果添加内标,那么无论是内标溶液本身还是添加这个操作,都存在引入污染的风险。另外,实际测试过程中,硝酸样品除了酸度之外其他情况和超纯水十分类似。因此,综合以上因素,测试过程中不用任何的内标。 在前处理的选择上,由于无论是硝酸还是盐酸,如果进行赶酸富集的话,对前处理的环境有较高的要求。考虑到 ICP-MS 的高灵敏度并且这两种类型样品基体和超纯水十分类似,故前处理上以“体积比”的方式用超纯水将待测样品稀释20 倍。测试过程当中,以标准加入法分析各元素含量。2.4 背景等效浓度 BEC 值、加标回收率和 2 小时的长期稳定性: 2.4.1 背景等效浓度 BEC 值为 5%的硝酸信号所对应的浓度值,具体如表 4;另外为验证检测能力,还以标准加入法测试了超纯水中的各个元素http://ng1.17img.cn/bbsfiles/images/2017/10/2016081010260305_01_1638867_3.png 超纯水中各元素 BEC 值测试中,标准曲线为超纯水添加 2.0、5.0、10.0、50.0ng/L。 结果如表 5:http://ng1.17img.cn/bbsfiles/images/2017/10/2016081010263344_01_1638867_3.png 扣除上述超纯水中各元素的浓度值,并乘以稀释倍数,得出硝酸中各元素含量元素 背景等效浓度 BECng/L元素 背景等效浓度 BECng/L7Li 12.22 58Ni 32.7923Na 58.76 59Co 16.2324Mg 164.85 63Cu 11.9127Al* 3545 64Zn* 918.939K 216.0 69Ga 3.8440Ca* 1309 75As 93.9348Ti 128.6 107Ag 7.9251V 35.03 114Cd 2.5652Cr 32.22 138Ba 10.8655Mn 21.13 208Pb 8.6256Fe 244.6 209Bi 6.51值如表 6:http://ng1.17img.cn/bbsfiles/images/2017/10/2016081010290113_01_1638867_3.png2.4.2 加标回收率和长期稳定性: 硝酸的加标回收率以 5%(V/V)硝酸中添加 500ng/L 的混合标准溶液进行测试;同时以 2 小时内测试 21 次的方式测试了长期稳定性。结果分别如表 7 和图 1:http://ng1.17img.cn/bbsfiles/images/2016/

  • 【分享】气相色谱法做痕量分析选择仪器的几方面考虑

    气相色谱法做痕量分析选择仪器的几方面考虑-(1)痕量分析一般是指纯物质或混合物中被测组分含量在10-6~10-9(体积比或重量比)的成分的定性和定量分析。随着社会的不断发展与进步,人类面临的几大课题(资源 能源 人口 环境)的解决均与痕量分析技术密切相关。或者说,人们的日常生活越来越离不开痕量分析。近期接到有关分析仪器的采购单几乎都是解决痕量分析项目。痕量分析样品的特点①样品来源广泛;② 种类繁多;③ 组成复杂;④ 含量低;⑤ 性质状态各不相同。因此相对常量和微量分析难度大,对各方面要求都高的一项工作。虽说多种分析方法:如色谱法、质谱法、光谱法、电化学等都可以用于痕量分析,相比之下气相色谱法具有诸多优点(在大多数情况下):⑴仪器价格较低,使用条件不苛刻,利于普及推广;⑵ 分离效率高,选择性大,有利于复杂多组分的分离检测;⑶灵敏度高,分析速度快,直接进样用量小;⑷与其他仪器联用能解决更复杂的分析难题。色谱法已经是目前痕量分析中使用方法与仪器中数量最大,面最广的方法。当然,要完成一项痕量分析任务,除首先购置一台性能优良的GC外,还涉及样品采集,予处理,分析方法建立(色谱柱的选择,分析条件的优化等。),标准样品的制备,数据处理等环节。本文就气相色谱法做痕量分析在选购GC仪器时应考虑的几个方面,加以概括介绍供大家参考。若有更具体的技术问题请在本网站“专家咨询”栏目中交流。

  • 【分享】激光气体分析仪在电解铝厂HF监测应用

    【分享】激光气体分析仪在电解铝厂HF监测应用

    [align=center][b][size=4][font=Verdana]LasIR[sup]TM[/sup]-R[/font][/size][size=4][font=宋体]系列激光气体分析仪在电解铝厂[/font][/size][size=4][font=Verdana]HF[/font][/size][size=4][font=宋体]监测的应用[/font][/size][size=4][font=Verdana][/font][/size][/b][/align][b][size=3][font=Times New Roman][/font][/size][/b][font=Times New Roman]Unisearch Associates Inc., 96 Bradwick Drive, Concord, Ont. Canada L4K 1K8[/font][color=#d40a00]屏蔽广告信息[/color][size=6][b][font=宋体]关键词([/font][font=Verdana]Key Words[/font][font=宋体])[/font][font=Verdana][/font][/b][/size][font=宋体]可调二极管激光光谱[/font][font=Verdana]([/font][font=Verdana]Tunable Diode Laser Spectroscopy[/font][font=Verdana])[/font][font=Verdana], NH3, HF, CO, CO[sub]2[/sub], [/font][font=宋体]排放监测([/font][font=Verdana]emission monitoring[/font][font=宋体])[/font][font=Verdana], [/font][font=宋体]过程控制([/font][font=Verdana]process control[/font][font=宋体])[/font][font=Verdana], [/font][font=宋体]铝厂([/font][font=Verdana]aluminum smelter[/font][font=宋体])[/font][font=Verdana],[/font][font=宋体]气体分析仪([/font][font=Verdana]gas analyzer[/font][font=宋体])[/font][font=Verdana].[/font][font=Verdana][/font][b][size=3][font=Times New Roman][/font][/size][/b][size=3][b][font=宋体]引言[/font][/b][/size][size=3][font=宋体]基于可调二极管激光吸收光谱([/font][font=Times New Roman]TDLAS[/font][font=宋体])技术的激光光谱气体分析系统已经迅速应用到对于灵敏度、响应时间、背景气体免干扰等有较高要求的各种气体监测领域。[/font][font=Times New Roman]TDLAS[/font][font=宋体]的技术优势在于实现了实时的原地测量,避免了气体抽样测量带来的一些问题。[/font][font=Times New Roman]Unisearch[/font][font=宋体]公司基于近红外可调谐二极管技术开发了[/font][font=Times New Roman]LasIR[sup]TM[/sup][/font][font=宋体]气体分析系统,整套系统耐用且易于安装,[/font][font=Times New Roman]LasIR[sup]TM[/sup][/font][font=宋体]气体分析系统特别适用于众多工业领域气体排放监测和过程控制,例如:燃煤发电厂、铝厂、钢铁厂、冶炼厂、核电站、垃圾发电站、水泥厂和化工厂等等,本篇论文阐述了部分行业的气体监测应用。[/font][/size][size=3][font=宋体]一套基本的[/font][font=Times New Roman]LasIR[sup]TM[/sup][/font][font=宋体]气体分析系统配置包括一个内置可调谐激光源的分析仪、光学发射端、光学接收端。可调谐二极管激光器被调谐发射出特定气体吸收线的激光,光束穿过被测气体,由于被测气体的吸收引起光强的衰减,通过检测器检测光强信号计算出气体浓度。除气体浓度之外,其他的一些参数,例如:气体温度、气体压力等也可以通过检测透射光光强的变化来加以测定。[/font][font=Times New Roman]TDLAS[/font][font=宋体]技术相对与其他气体测量技术的优势在于其快速的响应时间、极低的检测下限(可达[/font][font=Times New Roman]ppb[/font][font=宋体]级)及完全不存在其他气体分子的交叉干扰。[/font][/size][size=3][font=Times New Roman]LasIR[sup]TM[/sup][/font][font=宋体]气体分析系统也被广泛应用到世界各地的电解铝厂的[/font][font=Times New Roman]HF[/font][font=宋体]气体监测。铝在熔炼的过程中,[/font][font=Times New Roman]HF[/font][font=宋体]气体也随之产生并被排放,为了避免[/font][font=Times New Roman]HF[/font][font=宋体]气体泄漏在工作区域,电解槽都有专用的槽板罩住,产生的[/font][font=Times New Roman]HF[/font][font=宋体]气体被捕获收集,经过净化系统处理后再排放。[/font][font=Times New Roman]HF[/font][font=宋体]气体具有剧毒,对电解槽车间工人的身体健康和周边的环境都有很大的伤害和影响,另外,铝厂对氟化物回收可以节约能源,增加经济效益。可调谐二极管激光技术目前已经在世界各地的几百个电解铝厂做为净化系统的控制设备得以应用。[/font][/size][b][size=3][font=Times New Roman][/font][/size][/b][size=3][b][font=Times New Roman]LasIR[sup]TM[/sup][/font][font=宋体]系统[/font][/b][/size][size=3][font=Times New Roman] LasIR[sup]TM[/sup][/font][font=宋体]系统包括内置可调谐激光器的分析仪、发射激光光束并穿过被测介质的光学发射端、安装在被测介质另一端接收透射光的接收端。分析控制器(分析仪)自身可以安置在远离现场监测点[/font][font=Times New Roman]1km[/font][font=宋体]之外的控制室内,现场光学传感系统与分析控制器之间通过光纤和同轴电缆连接,测量的数据被保存在[/font][font=Times New Roman]LasIR[sup]TM[/sup][/font][font=宋体]系统的分析控制器内的闪存卡或外部电脑上,外部电脑通过以太网网口或[/font][font=Times New Roman]RS232[/font][font=宋体]端口与分析控制器连接,数据信息也可以传送到企业的数据库。[/font][/size][size=3][font=Times New Roman]LasIR[sup]TM[/sup][/font][font=宋体]系统的定量分析是以[/font][font=Times New Roman]Beer-Lambert[/font][font=宋体]定律为基础,[/font][font=Times New Roman]Beer-Lambert[/font][font=宋体]定律指出了光吸收与光穿过被检测的物质之间的关系,当一束频率为[/font][font=Times New Roman]V[/font][font=宋体]的光束穿过吸收物质后,在其穿过的光径上的光强变化为:[/font][/size][b][i][font=Verdana][size=3]I(v)=I[sub]0[/sub](v)exp[-σ(v)CL][/size][/font][/i][/b][size=3][b][i][font=Verdana]I(v)[/font][/i][/b][font=宋体]:[/font][font=Verdana] [/font][font=宋体]光束穿过一个光程距离为[/font][b][i][font=Verdana]L[/font][/i][/b][font=宋体]的被测气体介质后的透射光强度[/font][font=Verdana][/font][/size][size=3][b][i][font=Verdana]I[sub]0[/sub](v)[/font][/i][/b][font=宋体]:[/font][font=Verdana] [/font][font=宋体]入射光强度[/font][font=Verdana][/font][/size][size=3][b][i][font=Verdana]σ(v)[/font][/i][/b][font=宋体]:[/font][font=Verdana] [/font][font=宋体]被测气体的吸收横截面[/font][font=Verdana][/font][/size][size=3][b][i][font=Verdana]C[/font][/i][/b][font=宋体]:[/font][font=Verdana] [/font][font=宋体]被测气体的浓度[/font][font=Verdana][/font][/size][size=3][b][i][font=Verdana]L[/font][/i][/b][font=宋体]:[/font][font=Verdana] [/font][font=宋体]光程[/font][font=Verdana][/font][/size][size=3][font=Times New Roman][/font][/size][size=3][font=Times New Roman] [/font][font=宋体]使用[/font][font=Times New Roman]TDLAS[/font][font=宋体]技术测量的气体浓度实际上是光束在穿过的区域上测得的平均浓度,[/font][font=Times New Roman]LasIR[sup]TM[/sup][/font][font=宋体]系统的原地测量远远优于使用采样探头在烟道[/font][font=Times New Roman]/[/font][font=宋体]管道一个点上抽取测量的方式,尤其是在气体浓度呈梯度性变化或非均匀分布存在时,通过原地测量光径上的气体浓度平均值则更好的代表了过程气体的一个整体浓度值。[/font][/size][size=3][font=宋体]在分析控制器内部,光纤耦合激光器通过光多路器可以实现气体的多点监测,[/font][font=Times New Roman] LasIR[sup]TM[/sup][/font][font=宋体]系统能够做到使用单台分析控制器同时做[/font][font=Times New Roman]1~16[/font][font=宋体]个不同点的同步监测,另外,在激光器可调谐范围之内,当不同的气体吸收谱线非常接近时,一台分析控制器也可以对多种气体进行同时监测。无电源要求的光学传感单元能非常容易的满足有防爆要求的检测场合(可以配置发射端和接受端都使用光纤传输)。[/font][/size][size=3][font=Times New Roman]2010[/font][font=宋体]年,[/font][font=Times New Roman]Unisearch[/font][font=宋体]公司开发了新一代[/font][font=Times New Roman]LasIR[sup]TM[/sup]-R[/font][font=宋体]气体分析系统,[/font][font=Times New Roman]LasIR[sup]TM[/sup]-R[/font][font=宋体]符合欧盟[/font][font=Times New Roman]RoHS[/font][font=宋体]认证,有机架安装式和台式两种形式的分析控制器。[/font][font=Times New Roman]Unisearch[/font][font=宋体]公司开发的这些高性价比气体分析系统不仅体积紧凑、结实耐用,而且能够提供从便携的单通道气体分析仪到能同时监测多达[/font][font=Times New Roman]16[/font][font=宋体]不同监测点以及某些多气体组分的全系列产品。对于多通道来说,各个通道的控制相互之间都是独立的,因此,单台多通道分析控制器能同时对管道[/font][font=Times New Roman]/[/font][font=宋体]烟道、长光程环境空气、抽取池样品等不同浓度级别的气体进行同时监测,这些光学传感单元可以在一个分析系统中任意组合,各个通道非常大的浓度差别都不存在相互的干扰,[/font][font=Times New Roman]LasIR[sup]TM[/sup][/font][font=宋体]系统可能的配置如下图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][font=Times New Roman]LasIR[sup]TM[/sup][/font][font=宋体]系统还有一款光学部件和电子部件一体式设计的便携式气体分析仪,其轻便(小于[/font][font=Times New Roman]5kg[/font][font=宋体])而节能(功率小于[/font][font=Times New Roman]20W[/font][font=宋体]),可以安装在一个三脚架上使用,如使用多反射镜阵列,可以在光径长达几百米的开放式环境中对不同气体浓度进行监测。[/font][/size][img]http://ng1.17img.cn/bbsfiles/images/2010/10/201010281023_254598_2030933_3.jpg[/img][align=center][size=3][font=宋体]图[/font][font=Times New Roman]1[b]. [/b]LasIR[sup]TM[/sup][/font][font=宋体]系统分析控制器与各种光学传感单元通过光纤与同轴电缆连接的配置示意图[/font][/size][/align]

  • 痕量分析时的注意事项

    [align=center]痕量分析时的注意事项[/align] 在一些特殊行业中,需要测试一些超痕量的离子含量,因此,怎么检测含有超痕量离子的样品是非常重要的。超痕量分析的关键在于富集样品,可以通过富集柱或者大体积进样方式,与此同时,原本的系统污染也会随之同步增大,会对检测结果造成干扰,使得结果不可信。因此,如何减少系统污染,对于超痕量分析来说是重中之重。1 系统污染的来源及防控进行超痕量检测时,最大的难点在于系统的污染。污染物会进入试剂或样品中,对检测结果造成干扰(直接干扰与间接干扰如溶出与目标峰相邻的峰的离子)。这里把可能的系统污染列举下。①来自空气中的污染及其防控:自然界空气中含有各种气体、液体和固体颗粒物,如气溶胶和尘埃,这些污染物质通过各种渠道进入分析实验室。空气中的污染物也可能来源于实验室内的各种仪器、设备、试剂和分析人员(头发、皮肤屑、衣物和化妆品)。挥发性物质的污染:如氯化氢、氨、汞蒸气、挥发性有机物等。比如笔者到过一个实验室,其需要检测某样品中的氯离子含量,但这个实验室同时使用盐酸提取其它样品,这样氯离子检测结果就很可能偏高。为了减少空气污染对超痕量分析的影响,我们要充分利用洁净实验室、洁净通风柜、超净工作台、手套箱以及各种封闭装置。对于有条件的实验室,通风用的空气亦需过滤。工作时穿戴手套、工作帽、工作服和工作鞋,避免皮肤、头发和衣服上的微粒带进实验室并在空气中传播造成污染。其中手套必须不透皮肤油脂和汗水,不得用滑石粉润滑。PVC、聚乙烯、乳胶和丁睛手套都能很好的防止物理及化学污染。②来自设备设施等污染及其防控:直接与样品接触的容器或其它设备的表面可能因为溶出从而引起污染。玻璃或石英材质的表面存在一层很薄的活化层,使容器表面与溶液中的离子之间可能发生吸附、离子交换、渗透等复杂的物理化学变化。而且玻璃及石英不能作为碱及氟化物的容器。有些钠玻璃不适合用来做超痕量分析——因为其中的钠离子等组分会溶入样品及试剂中。聚四氟乙烯(PTFE)和聚丙烯(PP)等高分子聚合物材料的容器具有良好的耐化学腐蚀性,但不耐高温,且有透气性,不能长时间保存有挥发性的溶液。某些品牌的PP瓶也存在溶剂吸附与溶出现象,为了减少吸附及溶出影响,低浓度的溶液需要现用现配,超纯水也需要现场制取,不宜久存。③来自试剂的污染及其防控:主要是实验用水易受污染,导致结果出现偏差。这里推荐使用怡宝、娃哈哈、屈臣氏等品牌的纯净水经过超纯水机(需要勤换耗材)过滤后的超纯水作为实验用水,并且使用时要现场制水,因为空气中的二氧化碳会溶于水中并电离出碳酸根离子干扰分析。2 如何评估实验过程中的污染与损失评估实验过程中的污染与损失,进行空白实验是可行的方法。在相同条件下,同样品分析平行地进行“空白实验”,所得的“空白值”要从分析值中扣除。那么,我们是否可以通过扣除某次空白值的方法有效地将沾污等因素加以准确校正呢?其实是不能的。因为很多类型的污染并不能重现,例如空气污染的程度随时间和地点的不同而不同,由容器表面吸附及溶出造成的污染与容器的材质、品牌、所用的清洗方法以及样品分析和空白实验中溶液的组成的差异有很大的关系。另外,在进行样品分析和空白实验时,待测超痕量离子的损失可能同污染一起以不同的方式同时发生。在偶然情况下污染和损失可能会互相抵消。所以,扣除空白值的操作仅限于空白实验和样品实验同批进行时才有效。总之,对于痕量分析来说,只有从人机料法环各个方面都进行污染排除,才能将分析做好。

  • 【转帖】气体分析仪器现状与发展趋势

    气体分析仪器现状与发展趋势一、气体分析技术介绍(1) 人工采样法传统的分析方法如化学分析法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法较多采用人工采样法。人工采样法的特点是采用人工取样的方式,抽取某一时点的样气进行分析。它的缺点是显而易见的:必须对气体进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能;分析费时费力,响应速度慢,效率低,难以实时地反映工况信息。 (2) 连续采样法连续采样法主要有红外线式、紫外线式和热导式三种测量方法。连续采样法的特点是采用不同测量方法的气体分析系统都由采样预处理系统和分析仪表两部分组成,采样探头将被测气体从烟道或管道中引出并进行预处理后,连续送入仪器的气体室中,分析仪器通过不同的方法完成气体浓度的测量。上述三种测量方法的系统集成方式、适应性和性价比有很大的区别。应用最广泛的红外线式气体分析仪基于非色散红外吸收光谱(NDIR)的原理,其测量方法是基于气体对红外线进行选择性吸收的原理,当被测气体通过测量管道时吸收红外光源发出的特定频率光(与被测气体成分有关)使光强衰减,测出光强的衰减程度即确定了被测气体的浓度。紫外线式气体分析仪是基于被测气体对紫外光选择性的辐射吸收原理,可以测量SO2、NOx、HCl、NH3等气体,但在同等性能、功能情况下仪器价格较高。热导式气体分析仪的工作原理是利用各种气体不同的热导系数,即具有不同的热传导速率来进行测量的。当被测气体以恒定的流速流入分析仪器时,热导池内的铂热电阻丝的阻值会因被测气体的浓度变化而变化,运用惠斯顿电桥将阻值信号转换成电信号,通过电路处理将信号放大、温度补偿、线性化,使其成为测量值。热导式气体分析器的应用范围很广,如H2、Cl2、NH3、CO2、Ar、He、SO2、H2中的O2、O2中的H2和N2中的H2等等;它的测量范围也很宽,在0%~100%围内均可测量。热导式分析仪器是一种结构简单、性能稳定、价廉、技术上较为成熟的仪器。但是热导式分析仪器对气体的压力波动、流量波动十分敏感,介质中水汽、颗粒等杂质对测量影响较大,所以必须安装复杂的采样预处理系统。(3) 现场在线测量法现场在线测量法中以半导体激光吸收光谱技术(DLAS)最为先进和最具有代表性。DLAS技术的特点是无需采样预处理系统,分析仪器直接安装在测量现场,通过一束穿过被测气体的激光光束来实现现场在线气体分析。DLAS技术可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,适用于钢铁、冶金、石化、环保、生化、航天等各种领域。虽然DLAS技术与其他吸收光谱气体分析技术都利用吸收光谱技术来实现气体分析,但由于DLAS技术采用了独特的“单线光谱”技术和调制光谱技术,可不受背景气体交叉干扰和粉尘、视窗污染的干扰,并可自动修正气体温度、压力等气体参数变化的影响,因此可以将分析仪器直接安装在测量现场,实现其他光谱吸收技术无法或很难实现的现场在线连续气体测量。DLAS技术的优势在于能适应高温、高水分、高粉尘、强腐蚀性和高流速的被测气体环境,无需采样预处理系统,测量精度高,响应速度快。随着半导体激光气体分析技术的逐步成熟,相关光电元器件成本的显著下降,其性价比优势更为突出。在发达国家,半导体激光气体测量技术已逐步取代传统气体检测技术,在气体在线监测领域得到了日益广泛的应用。二、DLAS技术简介聚光科技研发生产的LGA-2000系列激光现场在线气体分析仪是基于DLAS技术开发的现场在线气体分析仪器。DLAS(Diode Laser Absorption Spectroscopy)是半导体激光吸收光谱技术的简称。该技术是利用激光能量被气体分子“选频”吸收形成吸收光谱的原理来测量气体浓度的一种技术。具体来说,半导体激光器发射出的特定波长的激光束穿过被测气体时,被测气体对激光束进行吸收导致激光强度产生衰减,激光强度的衰减与被测气体含量成正比,因此,通过测量激光强度衰减信息就可以分析获得被测气体的浓度。九十年代后,半导体激光器和光纤元件发展迅速,性能大大提高,价格大幅下降,室温工作、长寿命(100,000小时)、单模特性和较宽波长范围的半导体激光器被大量地生产出来并投入市场,一些高灵敏度的光谱技术如frequency modulation spectroscopy、cavity ringdown spectroscopy等也逐渐成熟,DLAS技术开始被较多地应用于科学和工程研究,发达国家的一些仪器公司也开始将DLAS技术应用于气体监测。由于DLAS技术较传统光谱检测技术具有显著的技术优势而得到了迅速推广。Focused Photonics,Inc.(FPI)是DLAS技术的主要开发厂商之一,FPI自主开发了拥有完全知识产权的全系列的激光气体分析产品,并广泛应用于钢铁、冶金、石化、环保、生化、航天等领域。FPI通过聚光科技(杭州)有限公司将该技术引入中国,结合中国各行业的实际需求,开发了LGA-2000系列激光现场在线气体分析仪、LGA-3000系列激光采样在线气体分析仪,并且在钢铁、焦化、石化、电力、环保、航天等行业取得了良好的应用。三、DLAS技术的特点DLAS技术的特点主要表现为:1.恶劣环境适应能力强,无需采样预处理系统,实现现场在线连续测量激光在线气体分析仪采用DLAS技术独有的“单线光谱”原理,使用非接触式激光测量方法,测量仪器与被测量气体环境隔离,其分析测量不受测量环境中背景气体、粉尘以及环境温度和压力的影响,具有高温、高粉尘、高水份、高腐蚀性、高流速等恶劣测量环境的良好适应性,避免了传统气体分析系统必需的复杂的采样预处理系统,从而实现了现场在线连续测量。2.克服了背景气体、水分和粉尘的吸收干扰,测量精度大大提高DLAS独特的“单线光谱”技术、频率扫描技术、谱线展宽自动修正技术克服了背景气体、水分和粉尘的吸收干扰,修正了温度和压力等气体参数变化对气体浓度测量的影响,而且系统直接对现场气体进行测量,气体信息不失真。相对于传统的气体测量技术,这些独特的测量技术和现场测量方法大大提高了测量的精度。3.响应速度快,实现工业过程实时在线管理DLAS技术进行气体分析不需采样预处理系统,节省了样气预处理的时间和样气在管道内的传输时间。系统可以达到毫秒级的响应速度,几乎是实时地反映过程气体浓度及其他参数变化状况,完全可以满足工业过程实时在线管理的需要。4.可同时检测多种气体参数,能测量分析多种气体,应用面广,仪器发展潜力大采用DLAS技术可同时在线测量气体的浓度、温度和流速等,并可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,可广泛应用于钢铁、冶金、石化、环保、生化、航天等领域。较以往采用多种检测技术并进行系统集成而言,采用DLAS技术可大大简化仪器的结构,进而实现气体分析仪器的微型化、网络化(远距离数据无线传输)、智能化和自动化。5.光纤传输特性使系统的应用更加灵活,性价比更高DLAS技术采用的激光光源与常规光纤有良好的兼容性,所以可以将半导体激光器放置在中央处理单元内,把光纤输出的激光通过树形光纤分路耦合器同时耦合到多根光纤,不同的光纤把激光传递到几个不同的测量位置,对这几个不同位置的气体同时进行测量,从而实现分布式的在线气体监测分析。采用光纤后测量系统的抗电磁干扰能力、适应恶劣环境和防爆环境的能力非常强;整套测量系统的成本大大降低;与传统的气体分析系统相比,配置更加灵活,性价比也更高。

  • 【分享】气体分析仪器现状与技术比较

    气体分析仪器现状与技术比较1、气体分析技术介绍 (1)人工采样法 传统的分析方法如化学分析法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法较多采用人工采样法。人工采样法的特点是采用人工取样的方式,抽取某一时点的样气进行分析。它的缺点是显而易见的:必须对气体进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能;分析费时费力,响应速度慢,效率低,难以实时地反映工况信息。 (2)连续采样法 连续采样法主要有红外线式、紫外线式和热导式三种测量方法。连续采样法的特点是采用不同测量方法的气体分析系统都由采样预处理系统和分析仪表两部分组成,采样探头将被测气体从烟道或管道中引出并进行预处理后,连续送入仪器的气体室中,分析仪器通过不同的方法完成气体浓度的测量。上述三种测量方法的系统集成方式、适应性和性价比有很大的区别。 应用最广泛的红外线式气体分析仪基于非色散红外吸收光谱(NDIR)的原理,其测量方法是基于气体对红外线进行选择性吸收的原理,当被测气体通过测量管道时吸收红外光源发出的特定频率光(与被测气体成分有关)使光强衰减,测出光强的衰减程度即确定了被测气体的浓度。 紫外线式气体分析仪是基于被测气体对紫外光选择性的辐射吸收原理,可以测量SO2、NOx、HCl、NH3等气体,但在同等性能、功能情况下仪器价格较高。 热导式气体分析仪的工作原理是利用各种气体不同的热导系数,即具有不同的热传导速率来进行测量的。当被测气体以恒定的流速流入分析仪器时,热导池内的铂热电阻丝的阻值会因被测气体的浓度变化而变化,运用惠斯顿电桥将阻值信号转换成电信号,通过电路处理将信号放大、温度补偿、线性化,使其成为测量值。热导式气体分析器的应用范围很广,如H2、Cl2、NH3、CO2、Ar、He、SO2、H2中的O2、O2中的H2和N2中的H2等等;它的测量范围也很宽,在0%~100%围内均可测量。热导式分析仪器是一种结构简单、性能稳定、价廉、技术上较为成熟的仪器。但是热导式分析仪器对气体的压力波动、流量波动十分敏感,介质中水汽、颗粒等杂质对测量影响较大,所以必须安装复杂的采样预处理系统。 (3)现场在线测量法 现场在线测量法中以半导体激光吸收光谱技术(DLAS)最为先进和最具有代表性。DLAS技术的特点是无需采样预处理系统,分析仪器直接安装在测量现场,通过一束穿过被测气体的激光光束来实现现场在线气体分析。DLAS技术可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,适用于钢铁、冶金、石化、环保、生化、航天等各种领域。 虽然DLAS技术与其他吸收光谱气体分析技术都利用吸收光谱技术来实现气体分析,但由于DLAS技术采用了独特的“单线光谱”技术和调制光谱技术,可不受背景气体交叉干扰和粉尘、视窗污染的干扰,并可自动修正气体温度、压力等气体参数变化的影响,因此可以将分析仪器直接安装在测量现场,实现其他光谱吸收技术无法或很难实现的现场在线连续气体测量。 DLAS技术的优势在于能适应高温、高水分、高粉尘、强腐蚀性和高流速的被测气体环境,无需采样预处理系统,测量精度高,响应速度快。随着半导体激光气体分析技术的逐步成熟,相关光电元器件成本的显著下降,其性价比优势更为突出。在发达国家,半导体激光气体测量技术已逐步取代传统气体检测技术,在气体在线监测领域得到了日益广泛的应用。

  • 【原创大赛】高纯硅中超痕量级钛元素分析测试干扰源及其消除方法探讨

    这篇文章,其实大约在去年做Ti的时候就意识到这个问题,只是当时并没有特别在意。后来领导认为Ti的测试数据有问题,而且发了篇文章(参考文献1)给我们看,文章中写到当硅中的Ti含量高于10ppbw的时候,电池片的转换效率将降低50%。然而实际工艺的结果与分析测试的Ti完全不相符——实际的转换效率未有明显变化。那时我意识到可能是哪里出问题了。 后来仔细想想,才想起Si、O、F、H四种元素的组合全面覆盖了Ti的5中稳定核素46、47、48、49、50。 鉴于这个原因,后来也做了一些实验,发现无论怎么改变方法,BEC始终无法降低。最佳的结果也就是测试到待测液中1ppb左右。 有感于此,遂将之前的想法以及在论坛中和大家讨论的结果整理一下,也算作一篇原创吧。 在此感谢版内的timstoicpms、tuxlin、nphfm2009等各位老师的指点。在做样过程中也和安捷伦的AE请教过,很感谢他们不厌其烦地回答我的问题。

  • 【讨论】讨论: 工业乙炔中痕量有机气体、无机气体分析 气相色谱法

    讨论: 工业乙炔中痕量有机气体、无机气体分析 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法成份O2N2 CO2 CO CH4C2H6C2H4C3H8 丙酮C2H2 检测限ppm250.50.50.51112090%--99.99% 六通阀进样,反吹,氢气作载气,1m5A分子筛,分离O2、N2 ,TCD检测;2m Porapark Q ,N2 作载气,分离CO2、CO、CH4 ,甲烷转化炉,FID检测;十通阀进样,Porapark Q预柱,N2 作载气,中心切割,POLT Al2O3 分离,FID检测。上述只是个人意见,不足之处还望批评指正!!

  • 分光光度法检测半导体工业用水中痕量硅

    【摘要】硅酸盐在酸性介质中与钼酸铵反应生成硅钼黄,硅钼黄还原为硅钼蓝后,可被HLB小柱定量萃取。在此基础上,建立了流动注射固相萃取分光光度(FISPEVis)测定水中痕量硅酸盐的新方法。反应生成的硅钼蓝经HLB小柱萃取后,用水清洗去除杂质,NaOH溶液洗脱,分光光度法检测。实验对各参数进行了优化,优化后的参数为:洗脱剂浓度0.01mol/L;试样上柱流速28.0mL/min;洗脱流速3.5mL/min;反应温度45℃;硅钼黄与硅钼蓝反应时间均为5min;钼酸铵混合溶液、草酸溶液、抗坏血酸溶液的用量分别为3.5,3.5和1.75mL。本方法具有良好的重现性和灵敏度,测定含硅9.33μg/L的硅酸盐水样7次,RSD值为1.8%;选取不同的试样富集时间,可将定量分析的线性范围扩展为0.47~117μg/L;检出限0.18μg/L;回收率为96.8%~105%。可满足特殊工业用水中痕量硅检测的需要。1、引言工业用水中的硅含量若超出允许范围,将对产品产生不良影响,甚至造成严重事故。例如,可溶性硅浓度是火力发电厂、试剂厂、半导体厂等用水质量的重要控制指标之一。半导体工业用水的硅浓度限制在1μg/L以下。水中的可溶性硅主要以硅酸形式存在,经典的测定方法为硅钼蓝分光光度法。该法检出限较高,不能满足工业用水中硅的检测要求。近年来新的检测方法相继出现,包括改进的硅钼蓝法、碱性染料分光法、动力学光度法、鲁米诺化学发光法、荧光法、电化学法以及原子光谱法等。这些方法,或灵敏度达不到要求,或干扰严重,实验操作要求高,均未得到广泛应用。本研究以流动注射分析(FI)技术控制分析过程,将硅钼蓝富集在HLBTM固相萃取(SPE)小柱上,以少量NaOH溶液洗脱,由可见分光光度计在线检测,由此建立了流动注射固相萃取分光光度(FISPEVis)测定水中痕量硅酸盐的新方法。2、实验部分2.1仪器和试剂732PC型可见分光光度计(上海光谱仪器有限公司);FIA3110型流动注射分析处理仪(北京吉天仪器有限公司);HH1型数显恒温水浴锅(金坛市顺华仪器有限公司);OasisHLB小柱(美国Waters公司)。实验器皿用HCl(1∶4,V/V)浸泡10min后,用纯水清洗。蠕动泵管为硅橡胶管,流路管道为PTFE管,实验器皿均为非玻璃材质器皿。试剂均由MiliQ纯水机(美国Millipore公司)制备的纯水(18.2MΩ·cm)配制。硅标准溶液(100mg/L(以SiO2计),国家标准物质研究中心);1.5mol/LH2SO4(优级纯,广东汕头化学试剂厂);钼酸铵(分析纯,国药集团)混合溶液:称取2.1g(NH4)6M7O24·7H2O溶于50mL水中,将此溶液缓慢地加入到50mLH2SO4中;100g/L草酸(分析纯,广东汕头市西陇化工厂)溶液;28g/L抗坏血酸(分析纯,国药集团)溶液。0.6mol/LNaOH(优级纯,上海山海工学团实验二厂)贮备液;0.01mol/LNaOH使用液;无水乙醇(分析纯,国药集团)。1.钼酸铵混合溶液(Ammoniummolybdate);2.草酸溶液(Oxalicacid);3.抗坏血酸溶液(Ascorbicacid);4,6,8.H2O;5.无水乙醇(Ethnaol);7.NaOH;V1.八位阀(8Positionvalve);V2.八通阀(8Portrotoryvalve);P1,P2.蠕动泵(Pump);Rc.反应瓶(Reactioncontainer);D.检测器(Detector);W.废液(Waste)。实线阀位(Valvepositioninrealline):Inject;虚线阀位(Valvepositionindashedline):Fill。2.2实验方法与流动注射分析流路图

  • 痕量分析检测用超纯水机该如何选择?

    痕量分析检测用超纯水机该如何选择?

    [font=宋体] 在实验工程中,[/font][font=宋体]痕量分析[/font][font=宋体]已广泛应用于各个层面,而超纯水又是裂痕分析中不可分割的重要部分,选择一台合适的超纯水机,不仅提高实验的便捷性,还能改增加检测准确度,今天艾柯就带大家了解一下痕量分析检测的超纯水该如何选择。[/font][font=宋体] 在进行裂痕分析时,为了能够达到更好的量化标准,实验过程中的环境以及稀释标准和玻璃器皿洗涤都与超纯水脱不开关系。并且高精度的裂痕分析实验中,好的水质往往能让分析过程事半功倍。[/font][font=宋体] 我们在选择超纯水机的时候,设备生产过程中的电导率以及可溶性硅都是至关重要的参数。用于痕量的超纯水机包含着一些纯化系统,主要是以预处理单元、[/font][font=宋体][font=Calibri]RO[/font][font=宋体]反渗透以及后置纯化单位组成,同样是城市自来水为水源,[/font][/font][font=宋体]痕量分析检测用超纯水机在参数方面的要求主要有:[/font][font=宋体] [/font][font=宋体][font=宋体]温度在[/font][font=Calibri]5-40[/font][font=宋体]℃范围内均可;要求进水[/font][font=Calibri]TDS[/font][font=宋体]在[/font][font=Calibri]200ppm[/font][font=宋体]以下;出水水质电阻率在在[/font][font=Calibri]18.2[/font][font=宋体]ΜΩ?[/font][font=Calibri]cm[/font][font=宋体]以上;水质标准优于中国国家实验室用水[/font][font=Calibri](GB6682-92)[/font][font=宋体]标准;可溶性硅[/font][font=Calibri]0.01mg/L[/font][font=宋体];总有机碳量[/font][font=Calibri]TOC10ppb[/font][font=宋体];微粒子[/font][font=Calibri]([/font][font=宋体]大于[/font][font=Calibri]0.2[/font][font=宋体]μ[/font][font=Calibri]m)[/font][font=宋体]含量[/font][font=Calibri]1/ml[/font][font=宋体];重金属含量[/font][font=Calibri]0.01 mg/L[/font][font=宋体];氧化矽含量≤[/font][font=Calibri]0.01mg/L[/font][font=宋体];系统的瞬间取水量可达[/font][font=Calibri]1.8L/min[/font][font=宋体],其产出的超纯水可适用于痕量分析中。[/font][/font][font=宋体] 艾柯[/font][font=宋体][font=宋体]实验室超纯水机可以有效去除水中的硼、硅离子在内的所有离子,显示出了较高的离子截流率和稳定性。并且在纯化单元,可以通过使用特殊设计的硼去除纯化柱可以降低早起的硼穿透现象。这些技术的结合保证达到适合于[/font][font=Calibri]ppt[/font][font=宋体]级、次[/font][font=Calibri]ppt[/font][font=宋体]级痕量分析对超纯水机生产的超纯水的要求。成都唐氏康宁科技发展有限公司是一家集科研、生产、贸易为一体的综合性股份制公司。“艾柯“为公司旗下自主品牌。公司拥有近二十年的技术沉淀,深耕行业多年、主要业务涵盖了水处理设备产品的研发、生产制造、销售服务等。主要核心产品有:工业纯水、超纯水系列;实验室用纯水机、超纯水机系列;实验室(污水)废水综合处理设备;实验室反渗透超纯水机系列;水处理系统系列;智能超纯水系统系列;纯水供水系统等产品。了解更多请关注公众号“艾柯超纯水机”[img=,665,312]https://ng1.17img.cn/bbsfiles/images/2022/05/202205191029158011_8753_1005_3.jpg!w665x312.jpg[/img][/font][/font]

  • ICP-MS测定麦芽酒精饮料(威士忌酒)中的痕量元素

    (转帖)摘要 介绍了一个麦芽酒精饮料(威士忌酒)中痕量元素的分析方法,分析了 6 种不同样品。采用配置八极杆反应池系统 (ORS) 的Agilent 7500cx ICP-MS 进行分析。7500cx 能确保使用一种方法和一组条件的简单操作就能消除无论源于何处的各种干扰。对样品简单稀释后获得了很好的加标回收率(97-107%之间)。5 小时稳定性实验对几乎所有元素都得到了极好的精密度( 2%)。本研究表明,7500cx 可以用于饮料中痕量元素的常规分析。引言 无论是产品质量控制需要,还是法规的要求,都需要测定酒精饮料中痕量元素。金属元素可能来自原料(比如水或谷物)以及制作过程(比如来自在发酵或蒸馏设 备)。例如,由于蒸馏容器是用质量较差的铜制作的,所以饮料中含有高浓度的砷。痕量元素的含量水平也会对威士忌的味道有很大影响。因此,最终饮料产品需要 测量其中痕量元素浓度。虽然 ICP-MS 对于许多元素具有高灵敏度和极好的检出限,但酒精成分对一些关键元素的干扰以及所需的样品制备都存在着一些问题。 7500cx 的特点是具有八极杆碰撞/反应池系统 (ORS),它使用一组池条件(氦模式)就能消除基体产生的各种多原子干扰。对于酒精分析,来自样品的主要干扰就是碳基干扰(比如, 40Ar12C 对 52Cr 的干扰)。许多元素在氯化物基体中的稳定性要远大于用简单的硝酸酸化。鉴于此,样品中加入了盐酸。加入盐酸后产生了新的干扰(比如, 35Cl16O 对 51V; 40Ar35Cl 对 75As,等),但这些干扰可以通过氦模式 ORS 消除。 7500cx 有一个备选的反应池气体管线,可供在氢气反应模式使用,氢气反应模式可用于超痕量级硒的测定。在本工作中,由于几个溶液稀释后 Se 的含量小于 40 ng/L(有的低更多),所以也使用了 H2 反应模式。实验详细见附件结论 高百分含量的酒精饮料样品经简单酸化/稀释后,采用 7500cx ICP-MS 测定成为了常规分析方法。使用合适气体模式的 ORS,可以有效消除等离子体和基体产生的各种干扰,因此只用一套简单的条件就可改善检出限和分析可靠性。氦模式的使用也可以实现无干扰半定量分析,允许 更宽的元素覆盖范围和快速筛选作用。

  • 【转载】Prodigy直流电弧光谱仪在高纯铜痕量元素检测中的应用研究

    光谱仪采用最新的大面积程序化L-PAD检测器.147(2)4-611-1310-90Se203。电弧激发台所带的斯托伍德气室可采用各种质子流量计控制的气体来降低CN键所造成的干扰,未采用斯托伍德气室。940nm处校准曲线,另外还可能在消解过程中带入污染,具有6个数量级以上的动态范围Prodigy直流电弧采用了固态的。772(2)4-611-1310-90Fe259,元素浓度如表2所示。068nm处的波长采集窗口图1所示为标样中1ppm的Ag在328,激发源所采用的微处理器可自动控制激发电流和持续时间。最早的一些依靠照相版检测技术的仪器甚至沿用至今,980nm处的校准曲线,Te。时序分析等功能,如果采用直流电弧技术,984(2)1-312-1410-90Bi306。020,因为固态检测器技术具有更快的分析能力,因此可同时作为两组元素的内标元素,020,同时。0Zn0,样品电极和上电极的的直径分别为1/4"和1/8",Sb。图4Fe在259。分析参数样品电极和上电极可直接从BayCarbon公司购买。直流电弧光谱技术在众多固体材料的检测中具有许多其他技术难以企及的优势.10.我们归入第一组元素。而对于后烧蚀出的元素我们归入第二组,Ni。需要较长的时间,对于所有样品的分析均采用铜为内标元素,仪器采用800mm焦距光学系统和百万像素大面积程序化固态检测器(L-PAD),010.050.并且可以永久地记录样品的全谱信息.同时由于没有经过溶液稀释.并且在整个激发过程中随着电极及样品的消耗需要不断调整.表3ElementWavelength(nm)LeftBackgroundPositionRightBackgroundPositionIntegrationPeriod(s)Ag328.分析波峰的缺省位值为7.050.772nm和Se在203.281(2)610-1210-90Zn481.所有的分析元素均被分成了两组.但信息的处理同样是繁琐和令人望而生畏的.其后.图5和图6分别为Bi在306.10.As.则可以实现纯铜固体样品的直接分析.所有的样品在空气中激发.从而可以获得更好的检出限.并在电弧激发的前10秒进行积分.61.对于第二组元素.940nm处的校准曲线.对于先烧蚀出的元素.确保仪器具有最佳的稳定性.单元素多谱线可选.是现有同类仪器中检测器面积最大的.这些优点使得Prodigy波长范围达到175-1100nm的连续覆盖.在单次激发过程中可采用多种不同气体.光电倍增管技术同样存在缺陷.03.通过这些扫描图.10,本文主要探讨了Prodigy直流电弧光谱仪对于高纯铜中痕量元素的分析能力,其中,Sn,51,一旦电弧形成,该检测器有效面积为28×28mm,在电弧激发的后80秒进行积分,可为不同元素选择最佳积分时间以获取最大的信噪比。860(2)3-413-1510-90纯铜中各元素的典型校准曲线如图4-6所示,除此之外。检测器还具有防溢出功能并且可以进行随机读取和非破坏性数据读取。无需样品消解过程,激发过程的电流控制程序如表1所列表1StepTime(s)103223341149011实验部分校准标样高纯铜从CopperSpec公司购买并直接使用。高纯铜中痕量元素检测如果采用常规消解方法来分析的话无疑具有很大的挑战性,图250ppm的Fe、Ni标样的时序分析扫描图图350ppm的Bi、Pb、Sn、Zn标样的时序分析扫描图如表3所示,而基体元素铜则在整个分析过程均匀激发,018,分析波峰的位值位于像素阵列的中央。纯铜电弧激发技术特点直流电弧技术主要利用了分析物中不同组分的挥发特性而依次将感兴趣的组分烧蚀出来进行分析,根据扫描图谱,我们对一块50ppm含量的校准标样进行了时序分析扫描。从而极大提高的样品分析的速度,053(2)4-611-1310-90Cu310。宽度为3,首先消解过程非常复杂,980(2)3-510-1210-90Sn283。03,不同元素或组分的挥发特性可通过时序分析功能所获取的扫描图来进行判断,305(2)5-611-1310-90Sb231,并相应设置了不同的积分时间,010。020,实验仪器本文采用Prodigy直流电弧光谱仪作为实验设备,Bi。从而极大地减少了电极的消耗和样品分析时间,06,010。8601-313-150-10Cu310。两个电极间的间距为4mm,51,0Pb0。068(2)3-51310-90As234。这些仪器永久地记录了样品的谱图照片,图11ppm的Ag在328。Prodigy对于高纯铜中的各种杂质元素具有极佳的分析灵敏度及准确度,068nm处的波长采集窗口,0823-511-130-10Pb283,表2ElementStd1(ppm)Std2(ppm)Std3(ppm)Std4(ppm)Std5Ag。其中图4所示为Fe在259,更为重要的是,稀释过程使得部分元素的含量远低于仪器的检出限。并且每种气体单独控制,对于所有分析元素的波长选择及背景校正点已在表3中列出,我们将分析元素归类为两种不同的积分时间。以维持4mm的间距。烧蚀出的元素在电弧中继续激发并发射出特征谱线,9405-611-130-10Ni305,仪器在一次激发过程中可同时进行信号采集和背景校正,83,10。同时还具有实时背景校正,04,810。并且提高样品激发速率,Prodigy采用一个3×15的像素阵列读取,050,03。05,在消解过程中,固态检测器阵列的引入极大地冲击了传统的基于PMT检测器的直流电弧光谱系统。电流稳定的激发源,51。斯托伍德气室的气体流量同样通过微处理器来控制。

  • 【分享】解读气体分析仪器的现状与发展趋势

    [color=#00FFFF] 这是专家的著作,本人将其拿来供大家学习。[/color]一、不同的气体分析技术比较 1、气体分析技术介绍 (1)人工采样法 传统的分析方法如化学分析法、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法较多采用人工采样法。人工采样法的特点是采用人工取样的方式,抽取某一时点的样气进行分析。它的缺点是显而易见的:必须对气体进行人工取样,在实验室进行分析,其中操作者的操作技能对分析的精度有很大影响;只能单一成份地逐个进行检测分析,不具备多重输入和信号处理功能;分析费时费力,响应速度慢,效率低,难以实时地反映工况信息。 (2)连续采样法 连续采样法主要有红外线式、紫外线式和热导式三种测量方法。连续采样法的特点是采用不同测量方法的气体分析系统都由采样预处理系统和分析仪表两部分组成,采样探头将被测气体从烟道或管道中引出并进行预处理后,连续送入仪器的气体室中,分析仪器通过不同的方法完成气体浓度的测量。上述三种测量方法的系统集成方式、适应性和性价比有很大的区别。 应用最广泛的红外线式气体分析仪基于非色散红外吸收光谱(NDIR)的原理,其测量方法是基于气体对红外线进行选择性吸收的原理,当被测气体通过测量管道时吸收红外光源发出的特定频率光(与被测气体成分有关)使光强衰减,测出光强的衰减程度即确定了被测气体的浓度。 紫外线式气体分析仪是基于被测气体对紫外光选择性的辐射吸收原理,可以测量SO2、NOx、HCl、NH3等气体,但在同等性能、功能情况下仪器价格较高。 热导式气体分析仪的工作原理是利用各种气体不同的热导系数,即具有不同的热传导速率来进行测量的。当被测气体以恒定的流速流入分析仪器时,热导池内的铂热电阻丝的阻值会因被测气体的浓度变化而变化,运用惠斯顿电桥将阻值信号转换成电信号,通过电路处理将信号放大、温度补偿、线性化,使其成为测量值。热导式气体分析器的应用范围很广,如H2、Cl2、NH3、CO2、Ar、He、SO2、H2中的O2、O2中的H2和N2中的H2等等;它的测量范围也很宽,在0%~100%围内均可测量。热导式分析仪器是一种结构简单、性能稳定、价廉、技术上较为成熟的仪器。但是热导式分析仪器对气体的压力波动、流量波动十分敏感,介质中水汽、颗粒等杂质对测量影响较大,所以必须安装复杂的采样预处理系统。 (3)现场在线测量法 现场在线测量法中以半导体激光吸收光谱技术(DLAS)最为先进和最具有代表性。DLAS技术的特点是无需采样预处理系统,分析仪器直接安装在测量现场,通过一束穿过被测气体的激光光束来实现现场在线气体分析。DLAS技术可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,适用于钢铁、冶金、石化、环保、生化、航天等各种领域。 虽然DLAS技术与其他吸收光谱气体分析技术都利用吸收光谱技术来实现气体分析,但由于DLAS技术采用了独特的“单线光谱”技术和调制光谱技术,可不受背景气体交叉干扰和粉尘、视窗污染的干扰,并可自动修正气体温度、压力等气体参数变化的影响,因此可以将分析仪器直接安装在测量现场,实现其他光谱吸收技术无法或很难实现的现场在线连续气体测量。 DLAS技术的优势在于能适应高温、高水分、高粉尘、强腐蚀性和高流速的被测气体环境,无需采样预处理系统,测量精度高,响应速度快。随着半导体激光气体分析技术的逐步成熟,相关光电元器件成本的显著下降,其性价比优势更为突出。在发达国家,半导体激光气体测量技术已逐步取代传统气体检测技术,在气体在线监测领域得到了日益广泛的应用。 二、DLAS技术简介 聚光科技研发生产的LGA-2000系列激光现场在线气体分析仪是基于DLAS技术开发的现场在线气体分析仪器。 DLAS(DiodeLaserAbsorptionSpectroscopy)是半导体激光吸收光谱技术的简称。该技术是利用激光能量被气体分子“选频”吸收形成吸收光谱的原理来测量气体浓度的一种技术。具体来说,半导体激光器发射出的特定波长的激光束穿过被测气体时,被测气体对激光束进行吸收导致激光强度产生衰减,激光强度的衰减与被测气体含量成正比,因此,通过测量激光强度衰减信息就可以分析获得被测气体的浓度。 九十年代后,半导体激光器和光纤元件发展迅速,性能大大提高,价格大幅下降,室温工作、长寿命(100,000小时)、单模特性和较宽波长范围的半导体激光器被大量地生产出来并投入市场,一些高灵敏度的光谱技术如frequencymodulationspectroscopy、cavityringdownspectroscopy等也逐渐成熟,DLAS技术开始被较多地应用于科学和工程研究,发达国家的一些仪器公司也开始将DLAS技术应用于气体监测。由于DLAS技术较传统光谱检测技术具有显著的技术优势而得到了迅速推广。 FocusedPhotonics,Inc.(FPI)是DLAS技术的主要开发厂商之一,FPI自主开发了拥有完全知识产权的全系列的激光气体分析产品,并广泛应用于钢铁、冶金、石化、环保、生化、航天等领域。 FPI通过聚光科技(杭州)有限公司将该技术引入中国,结合中国各行业的实际需求,开发了LGA-2000系列激光现场在线气体分析仪、LGA-3000系列激光采样在线气体分析仪,并且在钢铁、焦化、石化、电力、环保、航天等行业取得了良好的应用。 三、DLAS技术的特点 DLAS技术的特点主要表现为: 1.恶劣环境适应能力强,无需采样预处理系统,实现现场在线连续测量 激光在线气体分析仪采用DLAS技术独有的“单线光谱”原理,使用非接触式激光测量方法,测量仪器与被测量气体环境隔离,其分析测量不受测量环境中背景气体、粉尘以及环境温度和压力的影响,具有高温、高粉尘、高水份、高腐蚀性、高流速等恶劣测量环境的良好适应性,避免了传统气体分析系统必需的复杂的采样预处理系统,从而实现了现场在线连续测量。 2.克服了背景气体、水分和粉尘的吸收干扰,测量精度大大提高 DLAS独特的“单线光谱”技术、频率扫描技术、谱线展宽自动修正技术克服了背景气体、水分和粉尘的吸收干扰,修正了温度和压力等气体参数变化对气体浓度测量的影响,而且系统直接对现场气体进行测量,气体信息不失真。 相对于传统的气体测量技术,这些独特的测量技术和现场测量方法大大提高了测量的精度。 3.响应速度快,实现工业过程实时在线管理 DLAS技术进行气体分析不需采样预处理系统,节省了样气预处理的时间和样气在管道内的传输时间。系统可以达到毫秒级的响应速度,几乎是实时地反映过程气体浓度及其他参数变化状况,完全可以满足工业过程实时在线管理的需要。 4.可同时检测多种气体参数,能测量分析多种气体,应用面广,仪器发展潜力大 采用DLAS技术可同时在线测量气体的浓度、温度和流速等,并可实现多种气体如CO、CO2、O2、HF、HCl、CH4、NH3、H20、H2S、HCN、C2H2、C2H4等的自动检测,可广泛应用于钢铁、冶金、石化、环保、生化、航天等领域。较以往采用多种检测技术并进行系统集成而言,采用DLAS技术可大大简化仪器的结构,进而实现气体分析仪器的微型化、网络化(远距离数据无线传输)、智能化和自动化。 5.光纤传输特性使系统的应用更加灵活,性价比更高 DLAS技术采用的激光光源与常规光纤有良好的兼容性,所以可以将半导体激光器放置在中央处理单元内,把光纤输出的激光通过树形光纤分路耦合器同时耦合到多根光纤,不同的光纤把激光传递到几个不同的测量位置,对这几个不同位置的气体同时进行测量,从而实现分布式的在线气体监测分析。采用光纤后测量系统的抗电磁干扰能力、适应恶劣环境和防爆环境的能力非常强;整套测量系统的成本大大降低;与传统的气体分析系统相比,配置更加灵活,性价比也更高。

  • 【共享】气相色谱仪在纯气与高纯气分析中的应用

    超纯气、高纯气的分析测试是痕量分析学科的一个分支。它是研究气体纯度分析与其中痕量杂质测定的一门范围较窄但具有现实意义的专业学科。随着我国经济的高速发展,对高纯气不仅在数量上、质量上、种类上都不断提出新的要求,而且对相应的国家标准、检测理论、方法与检测仪器的研究、研制与生产都提出了更高的要求。先进的检测仪器不仅能指导生产工艺的控制与改革,还能确保产品质量、避免生产厂家与使用单位的纠纷。 “超纯气体”一词是在1964年全国超纯气体测试年会上定义的,即凡气体纯度达5个“9”( 99.999%)以上,总杂质为10x10-6V/V(即10ppm)以下的气体皆属“超纯气体范畴。但五十年的发展已经改变了这一定义;已经把5个“9”气体称为高纯气,而称6个“9”以上纯度气体才为超纯气。纯度大于99%以上的气体纯度分析都采用扣除杂质的差减法计算,因而气体纯度分析实际是对气体中微量或痕量的杂质气体检测。因其检测方法很多,本文不全面论述,仅对[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]检测杂质气体的现状作一小结,并对某些概念上的认识提出看法。水分也是一种杂质气体,而且是极为特殊的、又无处不在的气体杂质,因检测手段特殊,本文也不予论述。 一、 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析纯气的现状 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析纯气中杂质因其具有各种优越性而不可替代。如同时可检测多个组分,分析时间短,操作简便,分析技术灵活多变,价格低,能自动化检测与计算机控制等优点,因而其产品受到广大用户的欢迎。例如我公司的“氩气纯度分析仪” 、“液氧中痕量总烃分析仪”等产品投入市场后得到用户的肯定和青睐,替代进口并供不应求。在纯气分析方面的国家标准已有一定数量上已经采用了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法。但现状仍与国际上有较大的差距。 1、技术研究与创新方面 从发表论文上看,在上世纪八十—九十年代国内出现过研究分析痕量杂质气体的繁荣时代。但近十年来新的检测方法、技术与仪器、检测器研究进展缓慢、创新乏力、论文发表数量减少,无长期统一规划和稳定的投入,专业研究与分析队伍不断壮大,同时又有待素质提高。至今还无一本“高纯气体分析技术”的专著问世。2、“国家标准”反应技术落后 总体看有关高纯气的“国家标准”中,其中分析方法与国际水平比较明显落后,仪器化水平低,其中有一部分才能与之水平相近。还有些“标准”仍采用比色法为主,检测方法不能仪器化。例如在“医用氧标准”(GB8982—1998)中反应出的问题最为集中。在标准的“技术指标”中除氧含量指标(≥99.5%)外,杂质含量无任何数据,都是“按规定方法试验合格”。而所有的规定方法都是化学吸收法或比色法。分析结果只有“合格”与“不合格”,无数据记录。这对指导厂家生产是不利的。至今多数厂家不具备全面按“规定”抽检的技术与条件。使用单位(医院与相关研究单位)更难投入组建分析人员与条件。有的厂家只是向科研单位送检一次、检验合格后再不对该项检测。 二、 检测器与检测技术 1、 检测器目前用于纯气中杂质气体分析的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器有如下几种。⑴热传导池检测器(TCD) 该检测器的最好指标可以达到ppm级检测。与变温浓缩法配合可以检测到ppb级,例如高纯氢气,超纯氢的检测可以测到0.1ppb(0.1x10-9V/V)级。[4、6、12、20] ⑵气敏检测器 在检测高纯氮气的国家标准(GB/T8980—1996)中用此检测器可以检测到此0.1ppm杂质氢气。⑶氢火焰离子化检测器(FID) 国家标准(GB/T8984.1—3—1997)气体中一氧化碳、二氧化碳和碳烃化合物的测定是利用火焰离子化法转化后,直接测定,可检测最小浓度0.1ppm。配合变温浓缩可测到1 ppb。⑷改性离子检测器(M—ArID)[10,14] 将氩离子化检测器改性后可以检测高纯氩中的氢、氧、氮、甲烷、一氧化碳和二氧化碳杂质气,最小检测浓度可到0.1ppm。⑸氦离子化检测器(HeID)[3,16] 该检测器大多使用检测高纯氦气中杂质气体,直接检测可到1ppb [3,16] 。也有与切换技术配合检测其它高纯气中杂质气[15]。⑹电子捕获检测器(ECD) 该检测器可以检测高纯氮气、氩气、一氧化碳等气中的痕量氧(ppb级)。另外还有氧化锆检测器[17]、离子迁移检测器等。2、检测技术 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法分析气体杂质采用的检测技术有变温浓缩法、柱中转化法、柱切换法和流程变化法等。 ⑴变温浓缩法 变温吸附浓缩法是将一定量的样品气中杂质气低温吸附在样管中吸附剂上,解冻加热进样的方法。因而实际进样量大大大于样管体积(102~104倍),杂质气就从ppb级变成ppm级分析[1,4]。用此法要求底气不被冷冻、吸附或沸点高于杂质气,如用于浓缩氢中杂质、氧中的烃类等。附变温吸附浓缩法外,还有化学反应浓缩法与特殊浓缩法,它们使用在特种气体的检测。⑵柱中转化法 柱中转化法是样品进样后、在色谱分离柱前或后,经过一个催化剂或化学反应管(可以控制一定温度)。其中某杂质气参加反应,变成另一种气体被检测。如一氧化碳与二氧化碳在火焰离子化检测器上无响应,但经镍催化剂(有氢气参加)后变成甲烷气就响应了,并能检测到0.1ppm。与浓缩配合可检测到ppb。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析微量水时也采用此法。微量水与柱中碳化钙(Ca2C)反应生成乙炔,用火焰离子化检测能到小于1ppm的水分。 ⑶柱切换法[2,7] 该法又称多维色谱法。它是利有阀或“无阀”切换将主成分(底气)大部分切去后,余下杂质气体再经二次分离后检测[2]。如采用高灵敏度的氦离子化检测器检测氧中杂质,氢气和氖气中杂质气 [15] 。⑷流程变化法 利用色谱柱的串联、并联达到分离杂质气,也能与上述三种方法联合使用达到分离检测多种杂质气的目的。检测器也能串联、并联使用,但需满足串并的检测器都使用同一种载气。以上技术大都对常规气体的检测,而对更多的特种高纯气应采用特殊的技术 [21—28] 。

  • 激光粒度分析仪要注意哪些问题?

    激光粒度分析仪是一种常用的分析仪器,产品具有性能稳定、测量范围宽、可靠性高、维护简便等优点。用户在选购激光粒度仪过程中需要注意哪些问题呢?下面小编就来具体介绍一下激光粒度仪的选购要点,希望可以帮助用户更好的应用产品。激光粒度分析仪的选购要点1.粒度丈量范围:粒度范围宽,适合的应用广。不仅要看仪器所报出的范围,而是看超出主检测面积的小粒子散射(0.5μm)如何检测。最好的途径是全范围直接检测,这样才能保证本底扣除的一致性。不同方法的混合测试,再用计算机拟合成一张图谱,肯定带来误差。2.激光光源:一般选用2mW激光器,功率太小则散射光能量低,造成灵敏度低;另外,气体光源波是非,稳定性扰于固体光源。检测器:由于激光衍射光环半径越大,光强越弱,极易造成小粒子信/噪比降低而漏栓,所以对小粒子的分布检测能体现仪器的好坏。检测器的发展经历了圆形,半圆形和扇形几个阶段。3.通道数:在激光粒度分析仪中不象计数器中存在通道的概念,它实际为检测受光面积数,它有一个理念与实际的最优化值﹕偏少﹕接受的散射光不充分,正确度差﹕偏多﹕灵敏度太高,导致重现性差。4.是否使用完全的米氏理念:由于米氏光散理念非常复杂,数据处理量大,所以有些厂家忽略颗粒本身折光和吸收等光学性质,采用近似的米氏理论,造成适用范围受限制,漏检几率增大等题目。5.正确性和重复指标:越高越好。采用NIST标准粒子检测。

  • 【原创大赛】天瑞ICP-MS2000E分析高纯铝中痕量超痕量杂质元素含量

    【原创大赛】天瑞ICP-MS2000E分析高纯铝中痕量超痕量杂质元素含量

    5.5N))则是指高纯铝在经过进一步的提纯而得到。 铝中杂质的分析手段,视具体的目标元素含量而定,化学检测手段能涉及的纯度一般最高为高纯铝,超高纯度的铝因杂质含量过低且目前没有有效的去除基体的方法,故一般使用物理手段如测量残余电流进行换算。 对于铝的化学检测方法,一般可用分光光度法、AAS(包含 FLAA 和GFAA)、XRF、直读光谱仪、ICP-OES、ICP-MS、GDMS、SIMS等。在这些分析手段当中分光光度法、XRF、直读光谱因其检出限限值,一般是面向常规的铝或者铝合金;AAS分析速度过低并且检出限较差;ICPOES 由于检出限和各种干扰的限制,不足以满足高纯铝的检测要求;GDMS和SIMS 虽然有着十分优秀的检出能力和近乎“无损”的检测方式,但设备本身价格太高、对人员的技术要求过高等因素限值了其应用。而 ICP-MS则既有快速检测、高通量,也有超低检出限以及较少干扰的因素,因此在高纯铝的杂质含量检测当中无疑是最适合推广的手段。 目前对于高纯铝的检测方法主要是《YS/T 244.9-2008 高纯铝化学分析方法》 ,该标准的第9 部分:电感耦合等离子体质谱法测定杂质含量。本项目的检测方法即为参照此标准进行,测试的元素包含:钛 Ti、铁Fe、钴 Co、锌Zn、镓Ga、钼Mo、银 Ag、镉Cd、铟 In、锑Sb、铅 Pb和铋 Bi共12 种。1、 材料与方法 1.1 材料与仪器 质量分数为 68%的硝酸为Scharlau公司的优级纯; 质量分数为 35%的盐酸为Scharlau公司的优级纯;实验所用的水均为 Millipore 超纯水机制得的超纯水(电阻率≧ 18.2MΩ ·cm); 测试样品为直读光谱参考标物 E3140; 实验全程均使用江苏正红的 FEP 带盖小瓶; 质谱型号为 ICP-MS2000E,带六极杆碰撞反应池;1.2 标准溶液的配置: 1.2.1 Ti、Fe、Co、Zn、Ga、Mo、Ag、Cd、In、Sb、Pb、Bi混合标准溶液:由购自 SPEX的上述各元素的10μ g/mL 单标标准溶液经由称重法一步配置成 120.97μ g/L 的混合标液,标液基体为 2%HNO3-TrHCl。 1.2.2 内标标准溶液的配置:由购自 SPEX的 10μ g/mLGe和Rh 标准溶液,以称重法、离线的方式添加到每个待测溶液中;保证每个待测溶液的 Ge 和Rh均为2.0μ g/L。1.3 分析方法: 1.3.1 样品的初步处理: 用线切割机将锭状铝切成薄片状,再用工具剪剪成每块大约0.1g;用1:1 的(超纯水:乙醇)超声泡洗 0.5h,超纯水冲洗 3~5遍后用超纯水超声清洗0.5h;再用 1:3 盐酸微热泡洗剪好的小块状样品,大约 2~3h;弃去盐酸,用超纯水冲洗 3~5遍;最后用超纯水浸泡,称重时用干净的塑料镊子夹取,并用无尘纸吸干水分,转移到清洗好的带盖小瓶中。 1.3.2 器皿的准备: 为适应高纯分析的要求,使用江苏正红塑料厂的FEP 带盖小瓶。在使用之前先将盖子和瓶身分离倒扣在塑料盒中,用少量的优级纯硝酸以低温加热产生酸蒸汽的方式进行过夜的回流清洗。清洗完成之后装满超纯水超声 0.5h,再用超纯水清洗 3~5 次,最后用超纯水装满备用。 表面清洗之后的样品,用万分之一的电子天平称重并记录重量,置于预先准备好的带盖 FEP小瓶中,以称重的方式分两次添加总共6.0g 左右的 1:3(硝酸:盐酸),盖上瓶盖于电加热板上微热至样品全溶解,添加超纯水以称重的方式稀释至100g左右,按照实际的重量计算添加 Ge、Rh 单标至浓度为2.0μ g/L,最后盖上瓶盖轻轻晃动液体使其均匀,待测。1.4 仪器工作参数: 采用 10μ g/L 含Co、In、Ce、U的调谐液对仪器条件进行优化,优化后的仪器参数为:功率1300w,等离子体气流量13L/min,辅助气流量 0.8L/min,载气流量0.9L/min,碰撞/反应气(He+H2)流速为4.0ml/min,采样深度为12.0mm。 2、 结果与讨论: 2.1 分析模式的选择: 关于 ICP-MS 的质谱干扰以及降低干扰的技术已经有了大量的报导,其中带有磁场和电场双聚焦的高分辨 ICP-HR-MS具有优异的降低干扰的效果,但存在着设备价格昂贵、人员要求高以及高分辨所带来的灵敏度降低等问题。采用六极杆碰撞/反应池技术的 CCT-ICP-MS,在六极杆碰撞/反应池内通入(He+H2)混合气体,通过调节透镜电压,可灵活实现动能歧视起主要作用或者反应模式起主要作用。本次实验比较了Normal Gas(简称 NG ,下同)和碰撞/反应模式(简称 CRC,下同)下各元素的 BEC如表1。http://ng1.17img.cn/bbsfiles/images/2015/08/201508031040_558731_2984502_3.jpg 实验过程比对了两种模式的背景等效浓度BEC、实际样品的2小时长期稳定性等。 虽然CRC模式下元素特别是轻质量数元素的灵敏度损失比较大,但样品测试结果的平行性和加标回收率均与 NG模式相差无几。故为提高测试的效率,实验过程采用 CRC一种参数测定所有的元素:http://ng1.17img.cn/bbsfiles/images/2015/08/201508031041_558732_2984502_3.jpg2.2 碰撞/反应模式工作参数的优化: 如上述分析模式的选择,所有的元素均采用 CRC 模式。兼顾考虑实际样品的主要干扰源为 Ar基所带来的干扰,以及元素测试所需要的灵敏度。故调谐上以 10μ g/L 的Co 和超纯水中 Fe的比值作为调谐目标。最终调谐的结果使Co 的信号达到最大同时超纯水中Fe的信号最低。 实际的调谐参数如下:http://ng1.17img.cn/bbsfiles/images/2015/08/201508031043_558738_2984502_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508031043_558741_2984502_3.jpg 最终实际调谐结果当(He+H2)的流速在 4.0mL/min 的时候,Co(10μg/L)/Fe(超纯水)的比值达到最大的35,同时 10μ g/L 的 Co 的信号值达到最高。 2.3 内标溶液的选择: 高纯物分析的原则之一为前处理步骤越少越好。因此,前处理以将铝消解后稀释后即上机测试的方式。但是由于没有去处铝基体的步骤,因此较高的TDS对各元素信号存在着抑制和信号的漂移。而内标元素的使用可在一定程度上改善基体所导致的影响。 依据 YS/T 244.9-2008标准,使用的 4ng/mL 的 Cs和2ng/mL 的Ge作为内标元素。根据内标的使用原则——内标物产生的信号和目标元素信号尽可能一致;另外,为提高检测效率,实验中研究使用(He+H2)一种模式来解决所有元素测试问题。因实验室缺乏Cs 标液,而 Ge在CRC模式下灵敏度损

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制