当前位置: 仪器信息网 > 行业主题 > >

准稳态法高温导热系数测试系统

仪器信息网准稳态法高温导热系数测试系统专题为您提供2024年最新准稳态法高温导热系数测试系统价格报价、厂家品牌的相关信息, 包括准稳态法高温导热系数测试系统参数、型号等,不管是国产,还是进口品牌的准稳态法高温导热系数测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合准稳态法高温导热系数测试系统相关的耗材配件、试剂标物,还有准稳态法高温导热系数测试系统相关的最新资讯、资料,以及准稳态法高温导热系数测试系统相关的解决方案。

准稳态法高温导热系数测试系统相关的论坛

  • 隔热材料等效导热系数与导热系数的区别以及高温大温差条件下的试验验证

    隔热材料等效导热系数与导热系数的区别以及高温大温差条件下的试验验证

    [color=#ff0000]摘要:针对目前隔热材料导热系数测试中存在的使用条件和测试条件不一致,以及隔热材料导热系数测试方法选择不合理的问题,本文对低密度隔热材料导热系数测试技术进行了分析,介绍了等效导热系数和导热系数基本概念,介绍了如何选择合理的测试方法,并用试验测试数据验证了不同测试方法所得的等效导热系数和导热系数之间的差异。[/color][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]在高低温隔热防护领域中,经常会听到防热结构设计人员和隔热材料使用机构提出隔热材料无法满足使用要求的问题,经常会出现隔热性能样品测试结果与实际隔热考核试验效果相差巨大的现象。在隔热材料实际应用中,如果按照隔热材料导热系数测试结果进行设计,经常会出现防隔热系统根本无法达到隔热设计要求的现象。出现这种现象主要是由于以下几方面的原因:(1)隔热材料使用条件和测试条件出现严重偏离。(2)隔热材料导热系数测试方法选择不合理。为解决上述问题,本文将针对当前低密度隔热材料导热系数测试技术进行分析,介绍合理的测试方法选择,并用试验测试演示不同测试方法所得的等效导热系数和导热系数之间的差异。[size=18px][color=#ff0000]二、等效导热系数、导热系数及其测试方法分析[/color][/size]各种隔热材料在实际应用中,一般都会在材料的隔热厚度方向上形成较大温差,即隔热材料的一面面对高温热源或低温冷源,隔热材料另一面经隔热后的温度越接近于环境温度(如室温)越好。在高温防隔热系统中,这种温差往往有几百至上千度;在低温绝热系统中,这种温差也会有200~300℃左右(如液氮和液氦冷源)。另外在隔热过程中,隔热材料内部的传热形式主要有导热、辐射和对流三种传热形式,特别是对于低密度多孔隙的隔热材料,冷热面之间的温差越大,辐射和对流的作用越明显。因此,为了准确测试表征隔热材料的实际隔热性能,需要在隔热材料厚度方向上模拟出与实际应用接近的大温差后再进行测试,这种大温差条件下测试得到的导热系数包含了导热、辐射和对流三种传热形式的综合作用,这种包含了复杂综合传热效果的导热系数称之为等效导热系数(effective thermal conductivity),或表观导热系数(apparent thermal conductivity)。目前大多数隔热材料导热系数测试过程中,并未在隔热材料厚度方向上形成较大温差,一般是将温差控制在10~40℃范围内,此时获得的测试结果为导热系数(thermal conductivity),也称之为真导热系数(ture thermal conductivity),主要包括隔热材料内的固体材质和气体的导热系数之和,这种较小温差使得隔热材料内存在的辐射和对流热传递可以忽略不计。真导热系数的另外一个显著特点是与被测样品的厚度无关,即测试不同厚度的相同隔热材料样品应得到相同的真导热系数,此特点常用于考核导热系数测试仪器的准确性。由此可见,由于小温差测试中不包含辐射和对流传热,这使得测试相同隔热材料测试时,大温差下测试得到的等效导热系数数值往往会普遍大于小温差下测试得到的真导热系数。因此,如果用真导热系数来进行防隔热系统的设计,自然无法得到合理的隔热设计效果。总之,为了得到隔热材料的真实准确数据,隔热材料的导热系数测试条件必须尽可能的与实际隔热温差接近。依上所述,在隔热材料导热系数测试过程中,要根据隔热材料实际应用情况,导热系数测试设备要在被测样品厚度方向上建立相应的大温差或小温差,并在所建立的温差条件下进行测试。因此必须对测试方法和测试设备进行合理的选择,这样才能得到合理的隔热性能测试结果。以下为几种常用于低密度隔热材料导热系数表征的测试方法以及它们的相应温差条件说明。(1)稳态保护热板法:稳态保护热板法是目前导热系数测量精度最高的一种稳态测试方法,也是一种绝对测试方法,其典型标准为GB/T 10294和ASTM C177,测试温度范围可以覆盖-160℃~600℃。由于这种方法在被测样品厚度方向上只能形成20~30℃的小温差,所以测试得到的是真导热系数。保护热板法适合测试导热系数小于1W/mK的各种低导热防隔热材料,但对于超低导热系数(0.01W/mK)测试中,准稳态法的表现显着尤为突出,这主要是因为准稳态法具有从低温至高温的很宽泛测试温度范围,并能测试大温差下的等效导热系数,同时配套的校准技术相对简单,并具备多参数(导热系数、热扩散系数和比热容)测试能力和和更快的测试效率,另外准稳态法测试设备具有相对较低的造价。(2)对于具有超低导热系数(0.01W/mK)的绝热材料,其常温至低温下导热系数测试推荐采用蒸发量热计法,一方面是因为这种方法灵敏度和准确度都非常高,另一方面是可以测试大温差下的等效导热系数。[size=18px][color=#ff0000]三、等效导热系数和导热系数测试对比[/color][/size]为了更直观的说明和了解等效导热系数与导热系数之间的区别,我们分别对石墨毡隔热材料在高温和真空下分别采用不同稳态热流法法和稳态防护热板法进行了测试验证。样品:石墨毡,样品尺寸300mm×300mm×30mm,密度91.7kg/m3。测试环境:真空环境,真空度始终控制在100Pa左右。测试方法和设备:(1)稳态保护热板法(ASTM C177),测试设备为德国耐驰公司的GHP 456,如图1所示。样品热面最高温度为620℃,样品厚度方向上的温差为20℃。(2)稳态热流计法(ASTM C518),测试设备为上海依阳公司的TC-HFM-1000,如图2所示。样品热面最高温度为1000℃,冷面温度控制在50℃以上,最大温差980℃。[align=center][img=大温差下测试等效导热系数,500,333]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171059034061_2954_3384_3.jpg!w690x460.jpg[/img][/align][align=center]图1 德国耐驰公司GHP 456导热测试设备[/align][align=center][/align][align=center][img=大温差下测试等效导热系数,500,388]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171059379893_798_3384_3.jpg!w500x388.jpg[/img][/align][align=center]图2 上海依阳公司TC-HFM-1000导热测试设备[/align]采用热流计法和保护热板法得到的测试结果如表1所示,绘制成拟合曲线如图3所示。[align=center]表1 采用热流计法和保护热板法测试石墨毡导热系数结果[/align][align=center][img=大温差下测试等效导热系数,690,220]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171059504021_3983_3384_3.png!w690x220.jpg[/img][/align][align=center][img=大温差下测试等效导热系数,690,421]https://ng1.17img.cn/bbsfiles/images/2022/05/202205171100113433_2123_3384_3.png!w690x421.jpg[/img]图3 石墨毡等效导热系数和导热系数测试结果对比图[/align]从上述测试结果可以明显看出,保护热板法在20℃小温差下测得的导热系数随温度变化基本呈线性关系。热流计法在大温差下测得的等效导热系数随温度变化呈曲线关系,并随着温差增大,导热系数快速增大,其中的热辐射传热效应非常明显。在500℃平均温度下,等效导热系数要比真导热系数增大了将近60%多。由此可见,如果在防隔热系统中采用的是导热系数而非等效导热系数进行设计,则会出现严重错误。[size=18px][color=#ff0000]四、总结[/color][/size]为了满足实际工程应用中对隔热材料的隔热性能准确测试表征,需特别注意以下内容:(1)根据隔热材料的设计和应用场景,选择合理的测试方法,相应测试方法和测试设备要求具备模拟隔热材料实际应用中高温下的大温差能力。(2)为同时实现大温差和尽可能高的测试温度,推荐的测试方法为热流计法和准稳态法。(3)对于超低导热系数绝热材料(如气凝胶类隔热材料)的测试,要仔细考量和解决热流计的校准问题和准稳态法中量热计的漏热问题。(4)稳态保护热板法是目前热流计校准唯一较准确的方法,为了实现对超低导热系数测试中更小热流的准确测量,势必要大幅度降低保护热板法校准设备的微小漏热问题,但此问题的解决难度大,现有技术基本已经达到了极限,从而造成目前所有超低导热系数测试普遍偏高的现象。因此迫切需要在新技术上有所突破,解决微小漏热难题,特别是在高灵敏度热流计和微小热流精密校准方面取得突破。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    树脂基复合材料低导热系数测试时稳态法和激光脉冲法的选择

    最近有朋友对导热系数测试方法如何选择想进行一些讨论,这里就我们在导热系数测试中的经验,以及导热系数测试设备研制和测试方法研究中的体会谈一些感受,欢迎大家批评指正。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 对于稳态护热板法和激光脉冲法来说,这两种测试方法基本上属于互补性关系,即分别覆盖不同导热系数范围的测量。通常,稳态法的导热系数测试范围为0.005~1 W/mK;非稳态激光脉冲法的导热系数测试范围为1~400 W/mK。在满足测试条件的前提下,稳态法的测量精度可以达到±3%以内,激光脉冲法的测量精度可以达到±5%以内。 材料的导热系数一般采用两类测试方法,一类是稳态法,主要包括护热板法、护热板热流计法和护热式圆筒法等;另一是非稳态法,主要包括激光脉冲法、热线法、热探针法和平面热源法等。这些方法国内外都有相应的测试标准,是比较成熟和经典测试方法。 低导热材料一般泛指导热系数在0.1~1W/mK 范围的隔热材料。这类材料由于导热系数低常被用作工程隔热材料,如各种玻璃钢类材料、树脂基类复合材料和陶瓷材料等。在这类低导热材料的导热系数测量中,测试方法的选择常常容易出现偏差,很多测量机构由于只有激光脉冲法测试设备,而就用激光脉冲法测量这类低导热材料,测量结果往往出现比稳态法准确测量值低15%~20%的现象。采用氟塑料(导热系数0.2 W/mK 左右)和纯聚酰亚氨树脂材料Vespel SP1(导热系数0.4W/mK 左右),用稳态法和瞬态激光脉冲法进行的比对试验也证明激光脉冲法的测试结果确实偏低。有些材料研制机构也利用这种现象来证明研制的材料达到了验收标准,这样很容易误导材料设计和使用部门的正常使用。 对于低导热材料的测试,造成激光脉冲法测量结果总是要低于稳态法测量结果的主要原因是由测量装置的固有因素造成,主要体现在以下两个方面:一、激光脉冲法测量装置的影响 激光脉冲法测试设备的试样支架,一般都是采用导热系数较低的陶瓷材料做成,其目的是在固定试样的同时尽可能减少传导热损失,以保证激光脉冲加热试样后,试样内的热流沿着试样厚度方向以一维形式传递。如果被测试样的导热系数小于1W/mK,基本上与陶瓷支架相近,这样必然会引起较大的侧面热失,破坏一维传热模型。如图 1 所示,侧面热损会使得试样背面的最大温升Tm 降低,从而造成较大的测量误差。而这些热损情况在稳态测量方法中不会出现。 如图 1 所示,采用激光脉冲法测量材料热扩散时,导热系数越大,背面温升达到一半最高点的时间t0.5 越短,背面温升采集时间10t0.5 也越短。一般金属材料背面温升达到一般最大值的时间t0.5 大约在50 毫秒以内,而对低热导率材料,背面温升达到一半最大值时间t0.5 就需要上百毫秒以上,同时总的采集时间10t0.5 也将相应的增大很多,如此长的传热时间,必然会引起强烈的侧面热损。http://ng1.17img.cn/bbsfiles/images/2015/03/201503202143_539038_3384_3.png图1 激光脉冲法典型背面温升曲线 激光脉冲法一般都是采用间接测量方式获得被测材料的导热系数,即激光脉冲法测量材料的热扩散率,然后与其它方法测得的密度和比热容数据相乘后得到被测材料的导热系数。这样得到的导热系数数据势必会叠加上其它方法测量误差,特别是比热容的测试误差一般较大。这样获得的导热系数测量精度就势必要比稳态法直接测量的热导率误差偏大。二、激光脉冲法试验参数的影响 如图 1 所示,激光脉冲法在测试过程中,试样在激光脉冲加热后,试样背面温升快速升高,最大温升也仅1 ~ 5℃之间。但对于低导热材料,由于材料导热系数比较低,要使背面温度达到可探测的幅度很困难。为了解决背面温升的可探测性,必须通过两种途径:一是采用很薄的试样,约为1mm 厚,否则很难探测到有效信号;二是在采用薄试样的同时增大激光脉冲的能量,也就是提高脉冲加热试样的功率,使得试样前表面达到更高的温度。这两种途径都会对低导热材料的测量结果带来影响: (1)低导热材料多为复合材料,密度一般都很小。激光脉冲法的试样直径(10mm ~ 12mm)本来就很小,如果试样厚度再很薄,对于复合材料来说很难具有代表性。并且密度分布的不均匀,会使得测量结果的离散性比较大。而稳态法测量所用的试样一般较大,代表性强。 (2)激光脉冲法认为激光脉冲加热试样前表面时,前表面热量的吸收层相比试样总体厚度越小越好。而一般低导热材料的热分解温度和熔点较低,高功率脉冲激光很容易使得试样表面产生高温加热而带来化学反应,反应层厚度相比试样总体厚度较大,破坏了激光脉冲法测试模型的要求,带来测量结果的不真实性。而在稳态法测量过程中,测试过程中的温度变化都严格控制在被测材料热分解温度点以下,就是为了避免热分解现象的产生带来测量结果的不真实性。 (3)一般导热系数测量过程都带有温度变化和一定的温度梯度。激光脉冲法测量如果在静止气氛中进行,背面温升的变化会受到辐射和对流的影响。所以,激光脉冲法在测量过程中,一般需要抽真空测试,以消除对流影响。而对一般复合材料来说,密度越低,在真空下发生真空质量损失的现象也越强烈。如果被测材料密度较低,真空质量损失会使得试样厚度和质量发生变化,如果再加上激光脉冲加热更会加剧质量损失过程,对测量结果带来影响。 (4)由于低密度材料内部容易存在着空隙和气孔,如果在真空中测量这类材料,真空环境将严重的改变试样内部的传热方式,基本上不再有对流传热。因此真空下测量的热导率会比在常压大气环境的测量值明显偏低。而稳态法测试设备绝大多数是在常压大气下进行,通过特别的护热装置使得在试样外部不存在温度梯度以消除对流,传热现象只发生在试样内部,因此稳态法测量结果代表的是常压大气环境下材料的热导率。个别变真空稳态法测量装置,也是专门用来测量评价材料在不同真空度下的热导率,以用于准确表征材料在不同真空度下的隔热性能。 因此,对于低导热材料热导率的测量,如果条件允许,尽量采用稳态测量方法,并明确试验条件,建议不采用激光脉冲法测量低导热材料热导率。 目前在国内的军工系统中都普遍采用稳态的保护热流计法导热系数测定仪来进行树脂基复合材料的导热系数测试,并已经做为工艺考核标准。多数采用的是美国TA公司的MODEL 2022导热仪,圆片状试样直径有1英寸(25.4mm)和2英寸(50.8mm)两种规格,最高测试温度为300℃。同时,美国TA公司的MODEL 2022导热仪也是该公司的主流产品,由此也可以看出这种稳态测试方法的应用十分广泛。

  • 稳态法热导仪超低导热系数测试下限的评估方法和试验验证

    稳态法热导仪超低导热系数测试下限的评估方法和试验验证

    [size=14px][color=#ff0000]摘要:针对气凝胶和超级绝热材料(VIP)等超低导热系数材料的测试,常用的稳态法热导仪往往会在测量精度和灵敏度方面表现出不足。为考核稳态法导热仪的超低导热系数测试能力,本文提出了一种简便可行的考核方法,通过对一系列不同厚度的样品进行导热系数测试,最终根据导热系数随厚度的变化来判断和考核稳态法热导仪的导热系数测试下限,以准确掌握稳态法导热仪的测试能力,为正确使用和改进导热仪提供参考和指导。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、问题的提出[/color][/size][size=16px]在隔热材料的研发和生产过程中,隔热材料的导热系数测试结果经常会受到质疑,特别是隔热材料导热系数小于空气(0.026W/mK)的气凝胶和超级绝热材料(VIP),这些超低导热系数的测试结果往往存在较大误差。隔热材料低导热系数的测试普遍采用稳态法(防护热板法和热流计法),对应于低导热系数测试不准确现象,相应的稳态法导热仪往往会存在以下问题:(1)稳态法导热仪的测量精度和灵敏度不够,无法准确测量低导热和超低导热系数,无法准确测量超低导热系数以及导热系数的微小变化,无法满足材料研发和生产中工艺和配方调整和评价需要。(2)由于缺乏导热系数在0.02W/mK左右(或更低)的标准参考材料,对于已有的稳态法导热仪,如何判断仪器的低导热系数测试能力,由此来大致判断测量结果的准确性。为解决上述问题,本文将提出一种简便可行的考核方法,通过对一系列不同厚度的隔热材料样品进行导热系数测试,根据导热系数随厚度的变化情况来判断和考核稳态法热导仪的导热系数测试下限,以准确掌握稳态法导热仪的测试能力,为正确使用和改进导热仪提供参考和指导。[/size][size=18px][color=#ff0000]二、评估方法和考核试验[/color][/size][size=16px]考核试验的依据是稳态法的导热系数测试结果不应随样品的厚度发生而改变,如果发生改变,则说明导热系数测试产生误差。由此可用来判断导热仪的误差范围和测试极限。气凝胶软毡考作为考核试验样品,单层软毡厚度略大于10mm,通过多层叠加来实现不同厚度。测试采用了热流计法导热仪,样品为300mm边长的正方形,样品厚度分别为10、20、30、40和50mm,样品的平均温度为30℃,冷热面温差为20℃,结果如图1所示。[/size][align=center][size=14px][img=气凝胶超低热导率测试,600,380]https://ng1.17img.cn/bbsfiles/images/2022/05/202205251654466502_5355_3384_3.png!w690x437.jpg[/img][/size][/align][size=14px][/size][align=center]图1 不同厚度气凝胶软毡导热系数测试结果[/align][size=16px]从图1测试结果可以看出,在厚度20~40mm范围内,测试结果不会随厚度变化而改变,导热系数平均值为0.02045W/mK。随着厚度降低到10mm,导热系数测试结果有变小的趋势,此时说明样品太薄使得厚度测量和厚度均匀性给样品内部热流场均匀性所带来的误差影响变大。从图1测试结果还可以看出,当厚度增大到50mm时,导热系数测试结果有变大的趋势,这种现象说明随着样品厚度的增大,样品热阻也随之增大,稳态时流经样品厚度方向上的热流量变小,热流传感器对小热流的测量出现误差变大的现象。同时样品厚度增大使得样品内部热流场均匀性所带来的误差影响变大。在图1所示的测试结果中,尽管对薄样品和厚样品的测试结果偏离了平均值,但偏差还是没有超出导热仪的±5%的误差范围,这证明了此热流计法导热仪完全具备准确测试0.02W/mK导热系数的能力。[/size][size=18px][color=#ff0000]三、导热系数测试下限分析[/color][/size][size=16px]根据上述考核试验测试得到相同材料不同厚度下的导热系数,可以依据傅里叶稳态传热定律推算出流经样品的热流密度,如表1所示。如果假设热流计法导热仪中热流计的灵敏度为10uV/(W/m2),那么就可以得到相应的热流计电压输出值。这里选择10uV/(W/m2)作为热流计的灵敏度,是因为目前普遍的热流计灵敏度都在这个数值以下。另外,选择此灵敏度主要仅是为了更方便的描述如何进行导热系数测试下限判定,其他灵敏度也能说明问题。[/size][align=center]表1 根据不同厚度样品的热导率测试结果推算出的热流密度和热流计电压输出值[/align][align=center][size=14px][img=气凝胶超低热导率测试,690,202]https://ng1.17img.cn/bbsfiles/images/2022/05/202205251655508891_6096_3384_3.png!w690x202.jpg[/img][/size][/align][size=16px]按照傅里叶传热定律,如果假设样品的导热系数保持不变并与样品厚度无关,那么随着样品厚度增加,样品热阻会线性增大,流经样品的热流密度会线性减小,对应的热流计输出信号(电压值)也会线性减小。从表1的推算结果也显示了这种变化过程,但不同的是由于热流计电压输出测试仪表的测量精度有限,在大厚度、高热组和小热流密度时,电压信号测量会带有明显误差。由此可见,在低导热系数测试中,主要测量误差来源是热流计的灵敏度。根据表1,如果假设103uV是电压测量仪表的准确测量下限,对应10uV/(W/m2)灵敏度的热流计,热流计准确测量热流密度的下限为10W/m2,可准确测量的最大热阻为1.95m2K/W。由此,可以根据这个可测热阻值1.95m2K/W,推算出20mm最佳厚度样品的可准确测量的最低导热系数为0.02/1.95=0.0102W/mK。如果设定可接受的误差范围为±5%,那么10uV/(W/m2)灵敏度的热流计法导热仪,其测试下限为0.0102×0.95=0.0097W/mK,约为。由此可见,上述的热流计法导热仪的导热系数测试下限基本为0.01W/mK,且误差在5%的误差范围内。那么对于真空绝热材料(VIP),这类材料的导热系数一般在3~8W/mK之间,那么用此灵敏度的导热仪测试将会带来巨大误差。由此可见,为了保证测量超低导热系数的绝热材料,必须进一步提高热流计的灵敏度。由此也可以得出同样的结论,采用稳态保护热板法导热仪测量超低导热系数,关键之一是必须进一步降低护热板的漏热。[/size][size=18px][color=#ff0000]四、总结[/color][/size][size=16px]对于稳态法热导率测试,通过对一些列不同厚度但材质相同的样品进行测试,可以大致判断出稳态法热导率测试仪器的测试能力,特别是判断导热仪是否具备超低导热系数测试的能力,并用此方法对稳态法导热仪进行考核。[/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size][size=14px][/size]

  • 耐火隔热材料性能测试:有效导热系数与真导热系数的相互关系研究

    耐火隔热材料性能测试:有效导热系数与真导热系数的相互关系研究

    [table][tr][td][color=#ff0000]摘要:本文针对耐火隔热材料导热系数测试中的大温差和小温差这两类主流测试方法,明确了有效导热系数和真导热系数的定义,首次详细描述了这两个参数之间的关系、区别和详细转换方法,明确了这两类主流测试方法的适应范围,从而便于在耐火隔热材料性能评价中选择合适的测试方法,有利于对耐火隔热材料的隔热性能做出准确测试评价,从而保证对隔热材料及结构的正确选择和设计。[/color][/td][/tr][/table]关键词:耐火材料、隔热材料、有效导热系数、真导热系数、导热系数、大温差、测试方法[align=center][b][color=#3333ff]注:文中有大量公式,但不便在网页中进行完整显示。本文的PDF格式完整版本,已在本文的结尾处附上。[/color][/b][/align][b][color=#ff0000]1. 引言[/color][/b] 导热系数是评价和使用耐火隔热材料的关键参数,但在实际测试和应用中还存在许多困惑和误区。 耐火隔热材料在实际高温条件下使用时多为板材和管材,隔热材料大多处于一个受热面和背热面温度相差巨大的热环境中。而在材料样品导热系数具体测试中,有些是在模拟实际使用热环境的大温差条件下进行测量,而有些则是在很小温差、甚至没有温差的条件下进行测量,不同的测量导致所得到的结果相差很大,这给耐火隔热材料的性能评价和使用带来很大困扰。 由于技术上的局限性和测试及验证手段不足等原因,耐火隔热材料行业多年来一致对耐火隔热材料导热系数测试方法缺乏准确的理解,对哪种测试方法更能准确表征耐火隔热材料性能并不明确,由此造成测试方法混杂和乱用的现象,使得很多隔热结构设计人员在耐火隔热材料的性能评价和选材中不知该用哪种测试方法,经常会出现误导现象,甚至导致工程应用中出现漏热等重大事故。 为了满足耐火隔热材料在实际工程中的应用,加强对耐火隔热材料导热系数测试的准确了解,规范耐热隔热材料导热系数测试方法的选择,本文首次将耐火材料导热系数测试方法,按照测试过程中样品一维热流方向上的大温差和小温差进行分类,由此分别定义出有效导热系数和真导热系数。通过对这两种导热系数分析、计算和验证,展示出这两种导热系数的区别、相互关系以及可转化性,明确如何正确选择耐火隔热材料测试方法,明确如何正确描述和表达耐火隔热材料的隔热性能,由此实现耐火隔热材料测试评价和选材的规范性。[color=#ff0000][b]2. 耐火隔热材料导热系数主要测试方法和设备2.1. 测试方法[/b][/color] 材料导热系数测试方法主要分为稳态法和瞬态法,对于耐火隔热材料的导热系数测试而言也是如此。但由于耐火隔热材料一般都是在高温下使用,所以相应的测试方法也需要满足高温要求。由此,目前国内外也仅有限几种方法可用于耐火隔热材料高温条件下的导热系数测试,如图 2‑ 1所示。[align=center][img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142042533218_8908_3384_3.png!w690x216.jpg[/img][/align][align=center][color=#ff0000]图2‑ 1 耐火隔热材料高温导热系数测试方法分类[/color][/align] 采用以上测试方法进行耐火隔热材料的测试设备如下:[color=#ff0000][b]2.2. 测试设备2.2.1. 稳态热流计法高温导热系数测试仪器[/b][/color] 稳态热流计法高温导热系数测试仪器依据GB/ T 10295、ASTM C201和ASTM C518标准测试方法,是一种标准的稳态法导热系数测试设备。稳态热流计法高温导热系数测量原理如图 2‑ 2所示,当水平放置的被测平板状样品上下热面和冷面处在恒定温度时,在被测样品的中心区域和热流测量装置的中心区域会建立起类似于无限大平板中存在的一维稳态热流。通过测量热流密度、试样的热面和冷面温度以及试样厚度则可获得被测试样的导热系数。稳态热流计法高温导热系数测试仪器图 2‑ 3所示。[align=center][img=,690,389]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142044227159_7689_3384_3.png!w690x389.jpg[/img][/align][align=center][color=#ff0000]图2‑ 2 热流计法高温导热系数测量装置原理图[/color][/align][align=center][color=#ff0000][img=,690,535]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142044416555_2241_3384_3.jpg!w690x535.jpg[/img][/color][/align][align=center][color=#ff0000]图2‑ 3 上海依阳公司热流计法高温导热仪[/color][/align] 与其它测试方法相比,稳态热流计法高温导热系数测试方法及其仪器最显著特点就是测试条件可以模拟耐火隔热材料在各种实际工程中的应用环境,稳态热流计法是目前唯一能模拟出实际工程隔热环境的测试方法,在被测样品上能够建立起工程实际应用中的隔热大温差,即温度样品冷面可以控制在室温~50℃以下,而样品热面温度则可以达到1500℃以上的高温。[b][color=#ff0000]2.2.2. 稳态保护热板法中温导热系数测试仪器[/color][/b] 稳态保护热板法导热系数测试仪器依据GB/T 10294和ASTM C177标准测试方法,是一种标准的稳态法导热系数测试设备。稳态保护热板法导热系数测试原理如图 2‑ 4所示。保护热板法有单样品和双样品之分,样品置于加热板上,样品2/3尺寸大小的热板内布置用于量热的加热丝,其它尺寸外缘部分布置防护加热丝,并有隔离缝,下部是辅助防护加热,这样热板部分的发热量通过样品形成一维稳态热流,均作为热流密度的计算量,因此保护热板法是一种绝对方法。稳态保护热板法高温导热系数测试仪器如图 2‑ 5所示。[align=center][img=,516,301]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142045185716_9092_3384_3.jpg!w516x301.jpg[/img][/align][align=center][color=#ff0000]图2‑ 4 单样品防护热板法测量原理图[/color][/align][align=center][color=#ff0000][img=,441,486]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142045307632_8761_3384_3.jpg!w441x486.jpg[/img][/color][/align][color=#ff0000][/color][align=center]图2‑ 5 德国耐驰公司高温保护热板法分析仪[/align] 稳态保护热板法高温导热系数测试方法及其仪器最显著特点就是其测量精度最好,常用于计量和校准标准材料和其它测试仪器,被测样品冷热面温差小,最大不超过50℃,但保护热板法测试仪器用于耐火保温材料导热系数测试中的最大问题是测试温度不高,样品热面温度最高只能达到600℃。[b][color=#ff0000]2.2.3. 准稳态高温导热系数测试仪器[/color][/b] 准稳态导热系数测试技术是一种新型测试方法,准稳态高温导热系数测试仪器依据ASTM E2584标准测试方法。准稳态法是一种介于稳态法和瞬态法之间的一种测试方法,准稳态导热系数测试原理如图 2‑ 6所示。[align=center][img=,560,370]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142046135293_9233_3384_3.png!w690x457.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 6 准稳态法导热系数测量原理图[/color][/align] 准稳态法采用的是一维热流加热方式,被测平板状样品在被加热或冷却到一定阶段后,通过试样的热流速度将达到一个缓慢变化状态,也就是准稳态状态,由此可以测量样品在加热和冷却过程中热流随时间的变化速度,,通过得到的准稳态条件下的热流和温度变化测试数据,可以准确计算出被测材料的热扩散系数、热容、热焓和导热系数。准稳态法高温导热系数测试仪器如图 2‑ 7所示。[align=center][img=,500,578]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142047447306_5655_3384_3.png!w690x798.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 7 上海依阳公司准稳态法高温导热仪[/color][/align] 从原理上讲准稳态法是一种大温差形式的动态测试方法,在试验过程中的测量参数都是试样表面温度变化,不涉及到材料的内部变化,而是将材料的内部变化都看成为一个等效传热过程,因此这种方法可以用于材料在具有相变和化学反应过程中的有效热扩散系数、热容、热焓和有效导热系数测量。准稳态法的另外一个突出优点在于大大缩短了测试周期,基本可在36小时内测试得到一条有效导热系数随温度的变化曲线。[b][color=#ff0000]2.2.4. 瞬态热线法高温导热系数测试仪器[/color][/b] 瞬态热线法导热系数测试仪器依据GB/T 5990和ASTM C1133标准测试方法,是一种标准的瞬态法导热系数测试设备。瞬态热线法导热系数测试原理如图 2‑ 8所示。[align=center][img=,475,359]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142048251129_5443_3384_3.jpg!w475x359.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 8 热线法导热仪结构原理图[/color][/align] 热线法是在样品(通常为大的块状样品)中插入一根热线。测试时,在热线上施加一个恒定的加热功率,使其温度上升。测量热线本身或与热线相隔一定距离的平板的温度随时间上升的关系。热线法高温导热系数测试仪器如图 2‑ 9所示。[align=center][img=,690,555]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142048505870_3628_3384_3.jpg!w690x555.jpg[/img][/align][align=center][color=#ff0000]图2‑ 9 美国TA公司热线法高温导热仪[/color][/align] 瞬态热线法高温导热系数测试方法及其仪器最显著特点就是仪器结构简单和测试温度高,可以轻松实现1400℃下的高温测试,这也是过去常用的耐火隔热材料导热系数测试方法和仪器。 与上述稳态测试方法相比,瞬态热线法高温导热系数测试方法及其仪器在测试过程中要求被测样品整体温度达到均匀一致后再进行测量,所以瞬态热线法是一种无温差的测试方法。由于热线法中的热线很细,热线通电加热后热量向热线的径向方法传播,所以热线法测量的是样品整体导热系数而没有方向性,所以热线法要求被测样品由各向同性材质制成。[b][color=#ff0000]2.2.5. 瞬态闪光法高温导热系数测试仪器[/color][/b] 需要特别指出的是:传统意义上的瞬态闪光法并不适合对耐火隔热材料材料的导热系数进行测试, 这主要是因为耐火隔热材料的导热系数普遍偏低,脉冲光辐照到样品前表面后,脉冲形式的加热热量无法传递到样品背面,使得样品背面几乎没有任何温度变化,背温探测器基本检测不到任何温升信号。因此,Gembarovic和Taylor在闪光法基础上开发了一种步进加热三点测温的测试方法用于低导热材料的高温热扩散系数测量,测量原理如图 2‑ 10所示,整个测量装置的结构如图 2‑ 11所示。[align=center][img=,600,363]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142049373131_4398_3384_3.png!w690x418.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 10 瞬态步进加热三点测温法高温热扩散系数测量原理图[/color][/align][align=center][b][img=,690,441]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142049522161_6872_3384_3.png!w690x441.jpg[/img][/b][/align][align=center][color=#ff0000]图2‑ 11 瞬态步进加热三点测温法高温热扩散系数测试系统结构示意图[/color][/align] 这种测试方法和设备可以对相对较小的样品()进行温度高达1500℃下的高温热扩散系数测量,测量原理与闪光法近似,只是将闪光加热的脉冲宽度加的很长,对样品表面进行长时间的加热,从而使得热量能传递到样品背面获得有效测量信号。但这种测试方法在取样过程中样品不能太厚,否则热量还是无法传递到样品背面,由此很容易造成取样没有代表性问题。[b][color=#ff0000]2.3. 各种测试方法测试能力比较[/color][/b] 通过上述耐火隔热材料导热系数各种测试方法和相应测试设备的描述,将各种测试方法和测试仪器的主要特点、能力和要求进行汇总比较,如图 2‑ 12所示,由此对各种测试方法有一个直观的了解。[align=center][color=#ff0000][img=,590,160]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142051019290_574_3384_3.png!w690x188.jpg[/img][/color][/align][align=center][color=#ff0000]图2‑ 12 耐火隔热材料导热系数测试方法和测试仪器比较[/color][/align] 从图 2‑ 12中的综合比较可以看出,综合能力排名前两位的是准稳态法和稳态热流计法,这也就是上海依阳实业有限公司选择生产这两种测试仪器的主要原因之一。[b][color=#ff0000]3. 真导热系数和有效导热系数的定义[/color][/b] 根据上述针对耐火隔热材料导热系数测试方法所进行的介绍,可以发现尽管测试方法和测试设备有不同形式,但这些测试方法都离不开温度场这个环境变量和测试条件,即无论测试方法怎么变化,都必须使得被测样品要么是大温差、要么是小温差(将无温差归到小温差范围内)。这样,我们就可以将耐火隔热材料的导热系数按照温差大小分别对应进行定义,即: (1)样品小温差下,或无温差下得到的导热系数定义为真导热系数; (2)样品大温差下测量得到的导热系数定义为有效导热系数。 以往有效导热系数的定义多根据被测样品的均质性和组分结构的多样性来定义,并没有明确的按照测试温差大小(或使用过程中的温差大小)来定义。现在明确采用温差大小来定义和区分有效导热系数和真导热系数的不同,一方面是便于今后对耐火隔热材料测试方法选择和耐火隔热材料热性能的准确描述,另一方面也是依据标准测试方法所做的规定。 在国内外所有稳态法导热系数标准测试方法中,都指出:“通过测量热流、温差及样品厚度尺寸,利用稳态傅立叶导热公式计算得到的材料传热性质(导热系数或有效导热系数),可能并不是材料自身固有特性,因为它很大程度上可能取决于具体测试条件,例如试验过程中样品上的冷热面温差大小”。这句话指出了两个基本事实,可以理解为有两个含义: (1)一个事实就是材料的固有特性,即材料的固有特性是不受测试条件影响而本身存在的。所以在测试过程中要明确了解到底测量的是不受测试条件影响的材料固有特性,还是测量与测试或使用环境有关的特定环境特性。 (2)材料的固有特性,很大程度取决于具体测试条件,即取决于样品上的冷热面温差大小。温差小时测量得到则是固有特性,温差大时测量得到的则不是固有特性。 根据标准测试方法中的这些规定,就可以很容易进一步明确耐火隔热材料导热系数的定义: (1)样品小温差下,或无温差下得到的导热系数定义为真导热系数,即样品材料的固有导热系数; (2)样品大温差下测量得到的导热系数定义为有效导热系数,即样品材料的环境导热系数。 由此可见,一旦材料制成,其真导热系数就会固定不变,真导热系数就是这材料的固有特性。而这种材料在不同使用温度环境下,则会有相应的有效导热系数,这主要是因为在大温差条件下,有效导热系数会包含除真导热系数之外,还包括与辐射和对流传热相对应的辐射导热系数和对流导热系数。 由此可见,在小温差条件下,假设不考虑辐射传热和对流传热形式,同时假设也忽略气体导热传热,那么所谓的真导热系数,基本就代表了材料的固相导热系数。因此,为了对样品材料的真导热系数进行准确测量,很多标准测试方法对导热系数测试中的小温差进行了规定:GJB 329规定测试温差应控制在10~50℃,GB/T 10295建议温差控制在5~10℃,ASTM相关标准规定该温差应不大于25℃。由此可见,在最大温差不超过50℃条件下,就可以忽略稳态法测量中辐射和对流传热的影响,稳态法测量得到的样品导热系数,就是真导热系数。需要注意的是:耐火隔热材料由于低密度和高孔隙率,材料内部有大量孔隙,由此这个真导热系数,包括了材料的固体导热系数和气体导热系数。 根据上述小温差的定义,温差小于50℃的导热系数测试都是真导热系数测试。那么对于样品温度均匀无温差的测试,所得到的导热系数更是真导热系数。完成了两种导热系数定义后,就可以很明确知道不同测试方法测量得到不同类型的导热系数,即: (1)真导热系数测试方法:保护热板法、瞬态热线法、瞬态闪光法。 (2)有效导热系数测试方法:热流计法、准稳态法。[color=#ff0000][b]4. 真导热系数与有效导热系数的关系及其转换4.1. 问题的提出[/b][/color] 对于耐火隔热材料的性能测试,国内外都处于非常混乱的局面,有些测试得到的有效导热系数,有些测试得到的则是真导热系数,这些不同导热系数往往会引起隔热材料选择和隔热结构设计的混乱,特别是在耐火隔热材料高温性能测试中,测试方法的混乱使用很容易造成对隔热性能的高估,从而造成隔热效果不佳,甚至出现漏热事故和爆炸。因此,针对耐火隔热材料,如何才能准确测试和描述导热系数才能准确和实用呢,下面将从理论分析方面来对这个问题进行求解。[b][color=#ff0000]4.2. 真导热系数与有效导热系数的关系[/color][/b] 按照上述小温差和大温差形式分别定义真导热系数和有效导热系数,我们选择小温差的保护热板法法和大温差的热流计法来研究真导热系数与有效导热系数的关系。对于大温差的热流计法导热系数测量,有效导热系数的测量公式为: 式中表示流经样品厚度方向上的热流密度,表示样品厚度,表示样品热面温度,表示样品冷面温度。在热流计法大温差测量过程中,样品冷面温度的变化一般较小,基本都控制在50℃以下,而热面温度则较大(1000℃)。大温差下得到的有效导热系数的描述,都需要明确热面温度和冷面温度,并可用平均温度来表达。对于小温差的保护热板法导热系数测量,真导热系数的测量公式为: 式中同样表示流经样品厚度方向上的热流密度,表示样品厚度,表示被测样品冷热面之间的温度差。在保护热板法小温差测量过程中,冷热面温差很小,基本都控制在50℃以下。小温差下得到的真导热系数的描述,由于温差小,则可以直接用平均温度来描述,而无需标明热面温度和冷面温度。 尽管大温差和小温差所对应的两种测试方法不同,但这两种方法都是基于稳态傅立叶传热定律,公式和中各个参量的物理意义是相同的。因此,大温差的热流计法导热系数测量,可以在测试模型和数学上假设是由多个相同厚度的小温差保护热板法多层叠加而成,即和。这个假设的前题是: (1)样品材料在测试温度范围内没有化学反应或相变。 (2)在小的温度和气压区间内,真导热系数或保持不变、或呈线性关系。 (3)耐火隔热材料中的热传递形式一般由固相介质导热、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]介质导热及辐射传热三部分构成,如果材料内部不存在通孔形式的孔隙,可忽略辐射传热对整体热传递的贡献。 这样,大温差的热流计法导热系数测试模型数学表达式,就可以用小温差的保护热板法导热系数测试模型数学表达式的积分形式来描述,由此得出有效导热系数与真导热系数关系式为: 式中的和代表温度和气压变量。通过公式所定义的真导热系数与有效导热系数的关系,就可以进行这两种导热系数之间的转换,即通过大温差的有效导热系数测量推导出相应的小温差时的真导热系数,或根据小温差真导热系数测量推导出大温差时的有效导热系数。[b][color=#ff0000]4.3. 由真导热系数推导有效导热系数[/color][/b] 由真导热系数测试结果推导出大温差条件下的有效导热系数,即据根真导热系数测试结果推算出在温度~范围内的大温差有效导热系数,具体实施方法就是在温度~范围内选择一系列温度点进行保护热板法或瞬态热线法导热系数测试,得到一系列不同温度下的真导热系数测试结果。这里的在保护热板法测试中代表样品的平均温度,在瞬态热线法和瞬态闪光法中代表样品温度。然后将测试结果(,)进行最小二乘法拟合得到一个多项式表达式: 式中的、、和是与样品材料自身特性有关的多项式常数。大多数耐火隔热材料的真导热系数与温度的非线性关系一般都可以用一元三次多项式描述。 将得到的真导热系数随温度变化多项式代入公式,然后进行积分求解就可以得到相应的有效导热系数。针对气压变量的真导热系数推导有效导热系数也是如此操作。[b][color=#ff0000]4.4. 由有效导热系数推导真导热系数[/color][/b] 同样,在有效导热系数推导真导热系数过程中,假设真导热系数随温度变化关系是一个三元一次多项式,即: 式中的、、和是与材料自身特性有关的待定常数。将式直接代入与式可得: 在式中只有、、和四个未知数,理论上可以通过4个式的联立方程就可求解出这四个未知数。即在理论上通过4次值调整,即进行4个不同热面温度下的稳态热流计法导热系数测试试验,同时保持样品冷面温度基本不变,由此得出4组相应的、值,就可建立这4个联立方程,从而求出4个待定常数、、和的值,最终得到真导热系数与温度的关系表达式。 从式中可以看出,式对温差大小没有任何限制。因此可以在容易实现的大温差测试条件下进行相应测试和测算。为了提高这种方法的推导计算准确性,在选取值时应尽可能接近所需要的温度值。例如需求1000℃的材料真导热系数,选取的4个值中至少应有一个值为1000℃或大于1000℃。如果需要某一特定温度段的真导热系数,比如需要500~1000℃之间的材料真导热系数,那么4个值建议选取为500℃、l 000℃以及介于500℃与1000℃之间的2个温度点数据。同时,需要说明的是本方法不是利用低温段真导热系数进行高温真导热系数简单外推,而是在掌握大温差测试条件下有效导热系数相关数据的基础上,通过确定所假设的函数待定常数来最终获取耐火隔热材料高温真导热系数,并且假设的函数形式是统计分析得出的结论以及ASTM相关标准认可的。[b][color=#ff0000]5. 结论[/color][/b] 通过以上的理论分析和计算,针对耐火隔热材料导热系数测试中常用的小温差和大温差两类测试方法,明确了有效导热系数和真导热系数的定义,首次详细描述了这两个参数之间的关系、区别和详细转换方法,明确了这两类主流测试方法的适应范围,,从而便于在耐火隔热材料性能评价中选择合适的测试方法,有利于对耐火隔热材料的隔热性能做出准确测试评价,从而保证对隔热材料及结构的正确的选择和设计。 下一部工作将针对各种耐火隔热材料的有效导热系数和真导热系数测试数据,对上述的真导热系数和有效导热系数之间的关系和转换方式进行试验验证,由此来对测试方法、测试设备和两种导热系数相互关系及其转换进行评价。[b][color=#ff0000]6. 参考资料[/color][/b] (1) Gembarovic, J., and Taylor, R. E., “A Method for Thermal DiffusivityDetermination of Thermal Insulators,” International Journal of Thermophysics,Vol. 28, No. 6, 2007, pp. 2164-2175.[align=center][img=上海依阳公司热流计法高温导热系数测试系统,690,499]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142040536176_2249_3384_3.png!w690x499.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 酚醛树脂防热材料烧蚀碳化过程中的高温导热系数测试解决方案

    酚醛树脂防热材料烧蚀碳化过程中的高温导热系数测试解决方案

    [b]摘要:针对酚醛树脂这类烧蚀型防热材料导热系数测试中多年来存在的稳态法测试温度不高、闪光法测量误差大和无法测量烧蚀过程中的导热系数,本文提出了一种新型测试方法——恒定加热速率法,以期测试树脂类防热材料的高温导热系数,由此得到整个烧蚀过程中导热系数随表面温度线性变化的测试结果,以对烧蚀型防热材料的隔热性能做出更准确的测试评价。[/b][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [b][size=18px]一、问题的提出[/size][/b]酚醛树脂复合材料做为一种轻质强韧化防热材料,由于其具有防隔热一体化、抗剪切能力强、线烧蚀率和导热系数小及成炭率高等优点,被广泛地应用于飞行器的热防护系统(TPS)。而热防护系统占飞行器较大的比重,是飞行器安全性和可靠性的重要保证。因此,对酚醛树脂防热复合材料导热系数的准确测量,是合理设计和优化热防护系统的前提条件,也是解决过度冗余或防热设计可靠性不足等问题的有效途径。酚醛树脂防热材料的防热机理是主动式防热。如图1所示,一方面,树脂基高分子材料在高温下发生吸热的碳化反应,从而吸收外界热量。另一方面,碳化反应分解释放的气体可以被用来实现阻隔散热,同时形成的多孔结构的碳化层也具有较为优良的隔热性能。在三者协同作用下,飞行器在高热流环境下的使用和运行变得安全可靠。[align=center][img=01.酚醛树脂防热材料烧蚀过程中的复杂物理和化学变化,550,330]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200945412753_9630_3221506_3.png!w690x414.jpg[/img][/align][align=center]图1 酚醛树脂防热材料烧蚀过程中的复杂物理和化学变化[/align]由此可见,如此复杂的防热过程,使得准确测量防热材料的导热系数变得十分困难,用传统方法进行导热系数测试会出现巨大偏差。针对酚醛树脂这类烧蚀型防热材料,传统测试方法存在以下几方面的问题:(1)无法测量烧蚀材料物理和化学变化过程中的导热系数,只能测试烧蚀前(原材料)和烧蚀碳化后(多孔炭层)的取样样品。(2)烧蚀前样品的导热系数测试普遍采用稳态法,此方法目前多用于防热材料质量控制中的导热系数监控,但测试温度不超过300℃。(3)烧蚀后的多孔碳层导热系数,目前国内外普遍还都采用激光闪光法进行测试,主要原因是这种方法可以达到2000℃以上的高温。但由于多孔碳层导热系数较低,取样必须很薄(厚度一般小于1mm),由此容易造成加热激光脉冲透过被测样品带来严重误差。如果对样品前后表面进行遮光处理(如喷涂石墨或镀金),而高温下表面涂层会脱落而无法实现高温测试。另外,闪光法只能测试热扩散系数,还需采用其他高温设备测试相应的比热容和密度随温度变化数据。针对上述树脂基防热材料导热系数测试中多年来存在的问题,本文将提出一种新型测试方法——恒定加热速率法,以期测试树脂类防热材料的高温导热系数,由此得到烧蚀型防热材料在整个烧蚀过程中导热系数随表面温度线性变化的测试结果,以对烧蚀型防热材料的隔热性能做出更准确的测试评价。[size=18px][b]二、恒定加热速率测试方法[/b][/size]测试方法基于热物理性能测试中一般都需要测量热流和温度的基本理念,由此提出了如图2所示的测试模型,即对被测样品表面进行恒定速率加热,样品表面温度呈线性变化,样品背面布置一用来测量流经样品厚度方向上热流的金属板,样品四周和金属板背面为绝热边界条件,使得整个测试过程保持一维热流形态。[align=center][img=02.恒定加热速率法测试模型,300,320]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200946219228_6669_3221506_3.png!w615x658.jpg[/img][/align][align=center]图2 恒定加热速率测试模型[/align]在图2所示的一维热流测试模型中,根据傅里叶传热定律,样品厚度方向上的传热方程为:[align=center][img=,400,168]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200947004183_313_3221506_3.png!w503x212.jpg[/img][/align]式中: ρ为样品密度, C为样品比热容, λ为样品热导率,T为温度,t 为时间 ,T0 是 t=0 时的样品初始温度, b是加热速率。当加热速率b为一常数时,通过测试样品前后两个表面温度,并求解上述传热方程,可得到被测样品的等效导热系数随温度的变化曲线。在这种恒定加热速率测试方法中,金属板起到量热计的作用,即在线性升温过程中测量金属板温度(即样品背面温度),并结合金属板的已知热物理性能参数,可计算得到金属板所吸收的热量,由此间接获得流经被测样品的热流密度。通过测量得到的热流密度,结合测量得到的被测样品两个表面温度,求解上述传热方程,可得到被测样品的等效导热系数随温度的实时变化曲线。对于上述恒定加热速率法测试模型,我们采用有限元进行了热仿真模拟和计算,证明了此方法对于低导热材料导热系数测量的有效性。[b][size=18px]三、结论[/size][/b]这种恒定加热速率测试方法,是一种动态测试方法,准确的说是一种准稳态测试方法,即在样品热面温度线性升温过程中,样品中的各个位置处的温度在经历初期的非线性升温后,也会逐渐演变为相同速率的线性变化。恒定加热速率导热系数测试方法的最大特点是可以测量样品相变和热解过程中的导热系数,由此可见,采用此方法,完全可以测量酚醛树脂防热材料在整个烧蚀过程中的导热系数变化。当然,此方法也非常适合单独测量高温下碳化层导热系数随温度的变化。对于烧蚀型低密度的酚醛树脂防热材料,其特征之一是烧蚀后表面层会发生烧蚀退后现象,即样品厚度会发生变小现象。对于这种样品边界发生移动的条件,会对恒定加热速率测试方法的准确性带来影响,在测试方法中还需进一步的深入研究。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 真空隔热材料:真空绝热板和真空玻璃稳态法导热系数准确测量的难度和解决方案

    真空隔热材料:真空绝热板和真空玻璃稳态法导热系数准确测量的难度和解决方案

    [size=16px][color=#cc0000]摘要:本文详细分析了目前稳态法(防护热板法和热流计法)测量真空绝热材料(真空绝热板和真空玻璃)导热系数中存在的技术难度,介绍了国外在提高测量精度方面所做的有意尝试和研究,结合热流计高精度校准技术的突破,展示了高精度准确测量真空绝热材料的实施途径,简单介绍了真正能在绝热材料产品生产和品控中灵活应用的导热系数测量装置。[/color][/size][align=center][size=16px]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/size][/align][size=18px][color=#cc0000]1. 稳态法导热系数准确测量难度分析[/color][/size][font=宋体][size=16px] 真空玻璃和真空绝热板是目前市场上普遍使用的隔热性能最佳的两类材料,它们的隔热性能表征一般采用导热系数这一物理性能参数,而导热系数的准确测量则普遍采用精度最高的绝对测量方法——稳态保护热板法。下面将针对真空玻璃和真空绝热板这些超低导热系数材料来分析稳态保护热板法的测量难度,也就是说,通过分析来说明准确测量超低导热系数对稳态测试方法中存在那些具体难度。[/size][/font][font=宋体][size=16px] 根据傅里叶传热定律,在稳态且一维热流条件下,被测板材样品厚度方向上的导热系数[/size][/font][font=宋体][size=16px]定义为:[/size][/font][size=16px][img=,690,65]https://ng1.17img.cn/bbsfiles/images/2020/12/202012112005539612_2783_3384_3.png!w690x65.jpg[/img][/size][font=宋体][size=16px][font=宋体] [/font]式中:[/size][/font][size=16px]Q[/size][font=宋体][size=16px]表示流经样品厚度方向上的热量,单位[/size][/font][size=16px]W[/size][font=宋体][size=16px];[/size][/font][size=16px]d[/size][font=宋体][size=16px]表示被测板材样品的厚度,单位[/size][/font][size=16px]m[/size][font=宋体][size=16px];[/size][/font][size=16px]A[/size][font=宋体][size=16px]表示热流流经被测样品的横截面积,单位㎡;Δ[/size][/font][size=16px]T[/size][font=宋体][size=16px]表示被测板材样品两个表面之间的温度差,单位℃或[/size][/font][size=16px]K[/size][font=宋体][size=16px]。[/size][/font][font=宋体][size=16px][font=宋体] [/font]对于常用的真空绝热板,其厚度一般都在[/size][/font][size=16px]10~20mm[/size][font=宋体][size=16px]。在稳态法测试过程中,样品两面的温差一般控制在[/size][/font][size=16px]15[/size][font=宋体][size=16px]℃[/size][/font][size=16px]~25[/size][font=宋体][size=16px]℃范围内,而真空绝热板的导热系数一般为[/size][/font][size=16px]3~4mW/mK [/size][font=宋体][size=16px]。[/size][/font][font=宋体][size=16px][font=宋体] [/font]为了便于分析,假设稳态护热板测试过程中,样品厚度为[/size][/font][size=16px]10mm[/size][font=宋体][size=16px],温差控制在[/size][/font][size=16px]20[/size][font=宋体][size=16px]℃,样品横截面积为[/size][/font][size=16px]300mm[/size][font=宋体][size=16px]×[/size][/font][size=16px]300mm[/size][font=宋体][size=16px],导热系数为[/size][/font][size=16px]4mW/mK[/size][font=宋体][size=16px]。那么在测试过程中,流经样品厚度方向上的热量按照傅里叶定律计算为:[/size][/font][size=16px][img=,690,78]https://ng1.17img.cn/bbsfiles/images/2020/12/202012112006318020_5772_3384_3.png!w690x78.jpg[/img][/size][font=宋体][size=16px][font=宋体] [/font]由此可见,在稳态法测试真空绝热板样品过程中,流经样品的热流量非常小。这意味着如果采用传统的保护热板法测试仪器测量超低导热系数的真空绝热板会带来极大的误差,例如,采用目前国际上计量级别的稳态法测试仪器测量导热系数为[/size][/font][size=16px]0.04W/mK[/size][font=宋体][size=16px]的隔热材料,测量精度最高可达到±[/size][/font][size=16px]1%[/size][font=宋体][size=16px],而如果用来测量导热系数为[/size][/font][size=16px]0.004W/mK[/size][font=宋体][size=16px]的真空绝热板,则误差则会扩大到±[/size][/font][size=16px]10%[/size][font=宋体][size=16px],而普通的稳态法测量仪器此时的测量误差很容易扩大到±[/size][/font][size=16px]50%[/size][font=宋体][size=16px]以上。由此,显而易见,经典的保护热板法导热仪基本上无法准确测量真空绝热板和真空玻璃的导热系数,[/size][/font][size=16px]Wessling[/size][font=宋体][size=16px]等人[/size][/font][size=16px][1][/size][font=宋体][size=16px]的研究也同样得出此结论。[/size][/font][font=宋体][size=16px][font=宋体] [/font]从上述傅里叶传热定律可以看出,真空绝热板导热系数的测量准确性,完全取决于热量、样品冷热面温差和样品厚度测量的准确性。[/size][/font][font=宋体][size=16px][font=宋体] [/font]有关样品冷热面温差和样品厚度测量准确性的影响因素以及保证措施,在等人[/size][/font][size=16px][2][/size][font=宋体][size=16px]的研究中进行了描述。针对具体导热系数测试仪器,温差测量和厚度测量都可以通过一系列具体措施来保证测量精度,如采用测温精度更高的热电阻温度传感器等。[/size][/font][font=宋体][size=16px][font=宋体] [/font]真空绝热板和真空玻璃导热系数准确测量的最大难度集中在测量流经样品的微小热量,与之相关的测试难点主要体现在以下几个方面:[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]1[/size][font=宋体][size=16px])稳态法测试中的保护热板法,要求主加热器的热量以尽可能小的热损失传递给被测样品,但在实际测试仪器中还是会存在一定程度的热损失,也就是测量得到的热量[/size][/font][size=16px]Q[/size][font=宋体][size=16px]一般会比实际热量偏低,按照傅里叶传热定律,由此得到的被测样品导热系数一般会比实际导热系数数值要低。如果采用保护热板法测量真空绝热板和真空玻璃的超低导热系数,则主加热器上的热量则会更低,如果还要求热损失在总热量中所占比重保持不变,则对热防护措施提出更高的要求,要实现热损失小一个数量级的热防护,这对于稳态护热板法测试仪器几乎是无法实现的技术难度。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]2[/size][font=宋体][size=16px])稳态法测试中的热流计法,要求样品两面温度均匀,采用热流计来测量流经样品厚度方向上的热流密度。热流计法的优点是测量样品中心区域的热流密度而不用太考虑侧向热损失,但带来的问题是这里的热流计要采用稳态防护热板法仪器进行校准,如果要测量流经真空绝热板和真空玻璃的微小热量,同样需要稳态防护热板法仪器能准确提供如此小热量的准确热流来进行热流计校准。由此可见,热流计法测量真空绝热材料的测试难题同样归结到了上述稳态护热板法无法实现的技术难题上。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]3[/size][font=宋体][size=16px])为了实现稳态法微小热量下导热系数的准确测量,[/size][/font][size=16px]Wessling[/size][font=宋体][size=16px]等人[/size][/font][size=16px][1][/size][font=宋体][size=16px]采用了[/size][/font][size=16px]ASTM C 1114[/size][font=宋体][size=16px]“薄加热装置稳态热传导特性的试验方法”对真空绝热板进行了测试研究,如图[/size][/font][size=16px]1[/size][font=宋体][size=16px]所示。[/size][/font][size=16px]ASTM C 1114[/size][font=宋体][size=16px]方法实际上一种防护热板法的变化形式,是将双样品防护热板法装置中的主加热器和护热加热器用一个薄加热器代替,两个尺寸和性能完全相同的被测样品板把此薄加热器加持在中间,这样可以有效的降低侧向热损,并认为施加在薄加热器中的电能完成转换为热量传递给样品。[/size][/font][size=16px]Wessling[/size][font=宋体][size=16px]等人的工作证明了薄加热器装置测量真空绝热板导热系数的有效性,但这种测试方法和装置只能适用于双样品测试,而且样品尺寸会因为真空腔体和薄加热器等因素的限制而有固定限制,不太适合作为适合各种不同规格尺寸真空绝热板和真空玻璃导热系数测试的通用型仪器设备。[/size][/font][align=center][size=16px][img=,438,500]https://ng1.17img.cn/bbsfiles/images/2020/12/202012112007008163_2840_3384_3.jpg!w690x786.jpg[/img][/size][/align][align=center][size=16px][color=#cc0000][font=宋体]图[/font]1 ASTM C 1114[font=宋体]薄加热器真空绝热板导热系数测试系统[/font][/color][/size][/align][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]4[/size][font=宋体][size=16px])尽管上述薄加热器改善了稳态法测试中的热损,但热损失还是实际真空绝热板和真空玻璃导热系数测量中的主要误差源,这是因为大多数真空绝热板外表面耐磨损的金属或塑料薄膜,而这些薄膜是侧向热损的主要热通道,而真空玻璃的外部玻璃也是热损的主要通道。这些热通道对于普通隔热材料而言所造成的热损可以忽略不计,但对于真空绝热板和真空玻璃测试中的微小热流,则这些热通道所带来的热损失则显着十分突出。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]5[/size][font=宋体][size=16px])目前稳态法测试中的一个突出难题是测试仪器很难覆盖各种规格尺寸真空绝热板和真空玻璃的导热系数测试评价,一般是采用庞大的测试设备来进行覆盖,使得测试仪器的造价十分昂贵。[/size][/font][size=18px][color=#cc0000]2.[font=宋体]解决方案[/font][/color][/size][font=宋体][size=16px][font=宋体] [/font]为了解决上述真空绝热材料导热系数测试中存在的难度,上海依阳实业有限公司采用最新独创性技术,提出了以下具体解决方案以及具体分析。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]1[/size][font=宋体][size=16px])测试方法还是基于稳态法,但采用的稳态热流计法,这样就无需考虑热损给准确测量带来的影响,同时还可以实现测试仪器的较低造价和灵巧尺寸。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]2[/size][font=宋体][size=16px])为了保证测量的准确性和快捷性,方案中所用的稳态热流计法是一种改进型方法,即护热式稳态热流计法,即在被测样品的两个表面都进行了高精度的护热,以在被测样品两个表面上形成一定面积的高精度均温区,避免被测样品表面导热对测量结果带来的影响。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]3[/size][font=宋体][size=16px])热流计法高精度测量绝热材料超低导热系数的核心技术是对热流计进行高精度的校准。上海依阳实业有限公司在热流计校准技术方面最近取得了突破,采用高精度量热技术,可以在测量仪器上通过量热模块以自校准方式快速和高精度的校准测量用热流计,校准精度远大于经典防护热板法测量仪器的校准精度。再结合使用高灵敏度热流计,可以实现对流经真空绝热板和真空玻璃微小热流的高精度测量。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]4[/size][font=宋体][size=16px])按照傅里叶稳态传热公式[/size][/font][size=16px](0.0.1)[/size][font=宋体][size=16px],在被测样品性能(导热系数和厚度)固定的条件下,如果要准确测量超低导热系数,可以设法增大热量和增大温差,即在测试过程中适当的增大被测样品冷热面的温差,从而在仪器的固定测量精度下能明显提高导热系数测量精度。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]5[/size][font=宋体][size=16px])由于真空绝热板和真空玻璃的厚度普遍较小,测试面积(如正方形边长[/size][/font][size=16px]100mm[/size][font=宋体][size=16px])完成能够满足稳态法测量实现一维热流过程中对测试面积的要求。因此,测量装置将采用正方形结构(边长[/size][/font][size=16px]100mm[/size][font=宋体][size=16px])或圆形结构(直径[/size][/font][size=16px]100mm[/size][font=宋体][size=16px]),可以大幅度降低测试仪器尺寸和相应造价。[/size][/font][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]6[/size][font=宋体][size=16px])真空绝热板和真空玻璃导热系数测量装置将采用便携式分体结构,如图[/size][/font][size=16px]2[/size][font=宋体][size=16px]所示。整个测量装置主要包含加热装置和热流测量装置两部分,它们的尺寸边长在[/size][/font][size=16px]200mm[/size][font=宋体][size=16px]左右。在测试过程中,分别将它们紧贴在被测绝热材料板两侧。由此可以看出,这种结构和尺寸的导热系数测量装置,基本可以覆盖所有真空绝热板和真空玻璃产品的导热系数测量,并十分具有灵活性,通过放置在产品的不同部位可测量产品的导热系数分布。[/size][/font][align=center][size=16px][img=,500,185]https://ng1.17img.cn/bbsfiles/images/2020/12/202012112007573283_8484_3384_3.jpg!w690x256.jpg[/img][/size][/align][font=宋体][size=16px][/size][/font][align=center][size=16px][color=#cc0000][font=宋体]图[/font][font=&]2 [/font][font=宋体]真空绝热材料导热系数稳态热流计法测量装置测量布局图[/font][/color][/size][/align][font=宋体][size=16px][font=宋体] [/font]([/size][/font][size=16px]7[/size][font=宋体][size=16px])由于具有超高的测量精度以及样品尺寸的兼顾性,此方案的导热系数测量装置自然可以测量常温常压下普通隔热材料的导热系数。[/size][/font][size=18px][color=#cc0000]3.[font=宋体]参考文献[/font][/color][/size][font=宋体][size=16px]([/size][/font][size=16px]1[/size][font=宋体][size=16px])[/size][/font][size=16px]Wessling, Francis C., et al. [/size][font=宋体][size=16px]“[/size][/font][size=16px]Subtle Issues in theMeasurement of the Thermal Conductivity of Vacuum Insulation Panels.” Journalof Heat Transfer-Transactions of The Asme, vol. 126, no. 2, 2004, pp. 155–160..[/size][font=宋体][size=16px]([/size][/font][size=16px]2[/size][font=宋体][size=16px])[/size][/font][size=16px]Cucchi, Chiara, et al. [/size][font=宋体][size=16px]“[/size][/font][size=16px]Standard-BasedAnalysis of Measurement Uncertainty for the Determination of Thermal Conductivityof Super Insulating Materials”. 2020, pp. 171–184.[/size][align=center][size=16px]=======================================================================[/size][/align]

  • 气凝胶隔热材料超低导热系数测试中存在的问题及解决方案

    气凝胶隔热材料超低导热系数测试中存在的问题及解决方案

    [size=14px][color=#ff0000]摘要:针对气凝胶高效隔热材料低导热系数测试中存在的测试方法选择不合理、测试设备精度不高和测试条件偏离使用条件等问题,本文分析了目前气凝胶隔热材料热导率测试的常用方法及其适用范围,列举了各种测试方法的测试极限以及不合理使用的具体案例,重点介绍了实现低热导率准确测量的注意事项和具体措施,最后提出了今后进一步提高测量精度的改进方向。[/color][/size][align=center][size=14px][color=#330033]~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/size][/align][size=18px][color=#ff0000]一、问题的提出[/color][/size][size=16px]作为一种低密度和低导热系数的高效隔热材料,气凝胶隔热材料越来越得到重视和广泛应用,其导热系数测试的准确性往往决定了隔热系统的隔热效果和造价。从目前的市场反馈来看,气凝胶隔热材料导热系数测试中普遍存在测试不准确问题,这些问题主要归结为以下原因:(1)测试方法选择不合理。(2)测试设备达不到测试低导热系数的精度要求。(3)测试条件与实际使用条件严重偏离,导热系数测试结果无法代表实际隔热性能。针对上述问题,本文将介绍目前气凝胶隔热材料导热系数测试的常用方法,并对这些测试方法进行分析和特点介绍,并列举了各种测试方法的测试极限以及不合理使用的具体案例,最后重点介绍实现低导热系数测试准确性的具体措施和今后的改进方向。[/size][size=18px][color=#ff0000]二、低导热系数测试方法分析[/color][/size][size=16px]所谓低导热系数,一般是指0.001~0.1W/mK的导热系数。在高温下气凝胶隔热材料的导热系数一般不会超过0.1W/mK,在低温(液氮和液氦)和高真空环境下,有些气凝胶及其复合隔热材料会达到0.001W/mK甚至更低的超低导热系数。本文所做的分析主要是针对上述低导热系数范围内的测试方法。对于低导热系数的测试,目前常用的测试方法主要分为稳态法和瞬态法两类,如表1所示。[/size][align=center][size=16px]表1 低导热系数常用测试方法汇总[/size][/align][align=center][size=14px][img=表1 低导热系数常用测试方法汇总,690,288]https://ng1.17img.cn/bbsfiles/images/2022/05/202205201133028253_3023_3384_3.png!w690x288.jpg[/img][/size][/align][size=14px][/size][size=16px]对于隔热材料而言,特别是气凝胶复合材料这类低密度隔热材料,其内部的传热形式主要有导热、辐射和对流三种传热形式。在不同温度、温差、气压和气氛条件下,这三种传热形式所起的作用不同。以温度变量为例并假设在真空环境下不考虑气体对流传热,低密度隔热材料中会存在固体和气体导热以及辐射传热形式,它们各自的导热系数以及多种传热形式复合作用后的总体等效导热系数随温度的变化,如图1所示。由此可见,在不同的实际应用条件下,低密度隔热材料中存在着不同的传热形式以及相应的导热系数,这决定了测试方法的选择。[/size][align=center][size=14px][img=气凝胶绝热材料超低热导率测试,640,395]https://ng1.17img.cn/bbsfiles/images/2022/05/202205201138118496_2516_3384_3.jpg!w640x395.jpg[/img][/size][/align][align=center][size=14px]图1 固体、气体和辐射传热对应的导热系数分量以及复合作用后的等效导热系数随温度的变化[/size][/align][size=14px][/size][size=16px]测试方法和相应测试设备的选择主要依据以下原则:(1)测试方法要满足测量精度要求,导热系数越小所要求的测量精度越高。(2)测试方法具有较大温差的测试能力,大温差往往是隔热材料实际使用中的正常状态。(3)测试方法具有较快的测试速度,以满足工程应用中的高通量测试要求。(4)测试设备要具备实现各种试验条件(如温度、温差、气压和气氛等)的能力,同时具备保障测量精度的能力。按照上述原则,我们对表1中的常用测试方法进行分析,并得出如下结果:(1)气凝胶隔热材料普遍应用于大温差的隔热或隔冷,所选择的测试方法就需要具备大温差的测试能力。从表1中的各种测试方法温差可以看出,瞬态法都无法实现大温差条件,因此在气凝胶隔热材料的大温差导热系数测试中不建议使用瞬态法。(2)尽管无法进行大温差下的等效导热系数测试,但瞬态法在小温差下可以测试隔热材料中不含热辐射传热分量的固相导热系数和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]导热系数合成后的等效导热系数。瞬态法的另一个特点是还可以测试热扩散系数和比热容。从标准测试方法和相关文献可以看到[1,2],瞬态法对小于0.03W/mK的低导热系数测试存在较大误差,测试结果往往比稳态法测量值偏大约35%~40%,这主要是因为低导热系数测试过程中的探测器引线漏热和探测器热容影响所占比重变的不再可以忽略不计,需要尽可能减小探测器热容并进行复杂的修正计算[2]。(3)在表1所示的稳态法中,只有保护热板法无法进行大温差下的导热系数测量。但由于保护热板法是目前测量精度最高的小温差下导热系数测试方法,也是目前唯一能高精度校准稳态热流计法中热流传感器的方法,因此要真正高精度测量隔热材料的超低导热系数还是离不开保护热板法。为了实现超低导热系数(0.01W/mK)测试中,本文推荐采用准稳态法,这主要是因为准稳态法具有从低温至高温的很宽泛测试温度范围,并能测试大温差下的等效导热系数,同时配套的校准技术相对简单,并具备多参数(导热系数、热扩散系数和比热容)测试能力和更高的测试效率,另外准稳态法测试设备具有相对较低的造价。(5)对于具有超低导热系数(0.01W/mK)的绝热材料,其常温至低温下导热系数测试推荐采用蒸发量热法,一方面是因为这种方法的灵敏度和准确度都非常高,可以准确测量导热系数小于0.001W/mK的绝热材料,另一方面是可以测试大温差下的等效导热系数。但需要注意的是,蒸发量热法作为一种防护热板法的变形,同样需要精密的护热措施最大限度减小侧向漏热,否则测量精度也无法保证。[/size][size=18px][color=#ff0000]五、总结[/color][/size][size=16px]对于气凝胶这类绝热材料,实现超低导热系数的准确测试需采取以下措施和注意事项。(1)根据隔热材料设计和高低温应用场景选择合适的测试方法,测试方法和测试设备要具备模拟实际应用中的高低温温差能力。推荐的测试方法为热流计法、准稳态法和蒸发量热计法。(2)对于超低导热系数绝热材料测试,要确认测试仪器的低导热系数测试能力,要仔细考量和解决稳态测试设备中的漏热问题以保证超低导热系数测量精度。(3)稳态法测试中的漏热问题技术难度大,现有技术基本已经达到了极限,无法很好的解决微小漏热和超低导热系数准确问题,因此迫切需要在新技术上有所突破,解决微小漏热难题,特别是在高灵敏度热流计和微小热流精密校准方面取得突破。[/size][size=18px][color=#ff0000]六、参考文献[/color][/size][size=16px][1] Colinart T, Pajeot M, Vinceslas T, et al. How Reliable is the Thermal Conductivity of Biobased Building Insulating Materials Measured with Hot Disk Device?[C]//Construction Technologies and Architecture. Trans Tech Publications Ltd, 2022, 1: 287-292.[2] Zheng Q, Kaur S, Dames C, et al. Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119331..[3] Fesmire J E, Ancipink J B, Swanger A M, et al. Thermal conductivity of aerogel blanket insulation under cryogenic-vacuum conditions in different gas environments[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2017, 278(1): 012198.[4] Hoseini A, McCague C, Andisheh-Tadbir M, et al. Aerogel blankets: From mathematical modeling to material characterization and experimental analysis[J]. International Journal of Heat and Mass Transfer, 2016, 93: 1124-1131.[5] Adams J, Gangloff J, Stetson N, et al. Integrated Insulation System for Cryogenic Automotive Tanks (iCAT)[R]. Vencore Services and Solutions, Inc., Reston, VA (United States), 2018.[6] Coffman B E, Fesmire J E, White S, et al. Aerogel blanket insulation materials for cryogenic applications[C]//AIP Conference Proceedings. American Institute of Physics, 2010, 1218(1): 913-920.[7] Ilardi V, Busch L N, Dudarev A, et al. Compression and thermal conductivity tests of Cryogel Z for use in the ultra-transparent cryostats of FCC detector solenoids[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020, 756(1): 012005.[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=14px][/size]

  • 碳纤维隔热保温材料:真空和惰性气体环境下高温导热系数测试技术

    碳纤维隔热保温材料:真空和惰性气体环境下高温导热系数测试技术

    [color=#990000]摘要:针对碳纤维隔热保温材料这种在高温真空和惰性气体环境下的唯一一类耐高温隔热保温材料,本文介绍了碳纤维隔热保温材料高温导热系数测试中的特点,以及国内外针对碳纤维隔热保温材料导热系数测试技术的发展现状,并详细介绍了国外碳纤维保温材料导热系数测试结果,以及上海依阳公司采用稳态热流计法对国产石墨硬毡导热系数的测试结果。[/color][align=center][img=,566,376]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061729597358_7316_3384_3.png!w566x376.jpg[/img][/align][align=center][color=#ff0000]硬质碳纤维隔热材料[/color][/align][b][color=#ff0000]一、碳纤维隔热保温材料及其导热系数测试特点[/color][/b]碳纤维隔热保温材料是一种碳纤维与一定比例粘结剂成型制得的软毡材料,在软毡材料基础上通过碳化、石墨化、机加工制成硬质碳纤维隔热保温材料。评价这类材料隔热保温性能的一个重要指标为导热系数,而在导热系数测试中存在着与其他类型隔热材料不同的特点:(1)测试温度高:最高至1000~2000℃以上;(2)惰性气体环境;真空、氮气、氩气、氦气等;(3)两种温度分布形式:温度均匀和大温度梯度;(4)两类材料形式:柔性和刚性;(5)材料导电性:导电材料。[color=#ff0000][b]二、隔热材料高温导热系数国内外常用测试方法[/b][/color]对于低导热系数的隔热材料,常用的导热系数测试方法主要分为以下三类:[align=center][img=00.隔热材料导热系数常用测试方法,690,176]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061731593097_6773_3384_3.png!w690x176.jpg[/img][/align][align=center][color=#ff0000]三类导热系数常用测试方法[/color][/align]从以上列表可以看出,目前国内外可满足碳纤维隔热保温材料导热系数测试的商品化设备只有德国耐驰公司的稳态保护热板法导热仪和上海依阳实业有限公司的稳态热流计法导热仪,可实现在真空和惰性气体环境下对碳纤维隔热败落材料导热系数进行测试,而美国NASA的稳态热流计法导热仪则是非标自制的非商品数测试仪器。[b][color=#ff0000]2.1 稳态保护热板法[/color][/b]依据的标准为:ASTM C177 和 GB/T 10294,测量原理如图1所示。[align=center][img=01.单样品防护热板法示意图,516,301]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061732313057_7803_3384_3.jpg!w516x301.jpg[/img][/align][align=center][color=#ff0000]图1 单样品形式稳态保护热板法测量原理图[/color][/align]对于稳态保护热板法导热系数测试仪器,目前国内外具有在高温和真空条件下进行导热系数测试能力的设备只有德国耐驰公司生产的商品化设备和美国NIST自制的标准化测试设备,如图2和图3所示。[align=center][img=02.德国耐驰公司保护热板法分析仪,500,333]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061732576517_3719_3384_3.jpg!w500x333.jpg[/img][/align][align=center][color=#ff0000]图2 德国耐驰公司的稳态保护热板法导热仪[/color][/align][align=center][img=03.美国NIST保护热板法导热仪,600,403]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061733230452_8623_3384_3.jpg!w600x403.jpg[/img][/align][align=center][color=#ff0000]图3 美国NIST稳态保护热板法导热仪[/color][/align][b][color=#ff0000]2.2 稳态热流计法[/color][/b]依据的标准为:ASTM C201、GB/T 10295和YBT 4130-2005。其中YBT 4130-2005完全照搬了ASTM C201,是一种采用水量热计法进行热流密度测量,也是一种热流计法。稳态热流计法的基本原理如图4所示。[align=center][img=04.热流计法高温导热仪测量原理图,690,389]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061733428187_8222_3384_3.png!w690x389.jpg[/img][/align][align=center][color=#ff0000]图4 稳态热流计法测量原理图[/color][/align]对于稳态热流计法导热系数测试仪器,目前国内外具有在高温条件下进行导热系数测试能力的设备有以下四家机构的设备,如图5和图6所示,但只有美国NASA和上海依阳实业有限公司具有自制的标准化测试设备,如图7和图8所示。[align=center][img=05.国产水流量平板法高温导热仪,500,365]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061734048203_1810_3384_3.jpg!w500x365.jpg[/img][/align][align=center][color=#ff0000]图5 国产水量热计法高温导热仪[/color][/align][align=center][img=,608,600]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061753072806_6516_3384_3.jpg!w608x600.jpg[/img][/align][align=center][color=#ff0000]图6 美国Orton公司水量热计法高温导热仪[/color][/align][align=center][img=07.美国NASA稳态热流计法高温导热仪,624,473]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061734509267_416_3384_3.png!w624x473.jpg[/img][/align][align=center][color=#ff0000]图7 美国NASA稳态热流计法高温导热系数测试系统[/color][/align][align=center][img=08.上海依阳公司热流计法高温导热仪,690,535]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061735204189_1658_3384_3.jpg!w690x535.jpg[/img][/align][align=center][color=#ff0000]图8 上海依阳实业有限公司稳态热流计法高温导热系数测试系统[/color][/align][b][color=#ff0000]2.3 瞬态热线法[/color][/b]依据的标准为:ASTM C1133 和 GB/T 5990。瞬态热线法的基本原理如图9所示。[align=center][img=09.热线法导热仪结构原理图(平行线法),475,359]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061735445173_2323_3384_3.jpg!w475x359.jpg[/img][/align][align=center][color=#ff0000]图9 瞬态热线法导热仪原理图(平行线法)[/color][/align][align=center]对于瞬态热线法导热系数测试仪器,目前国内外具有在高温条件下进行导热系数测试能力的设备有以下两家公司的设备,如图10和图11所示。[/align][align=center][img=10.美国TA公司热线法高温导热仪,690,555]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061736056747_5297_3384_3.jpg!w690x555.jpg[/img][/align][align=center][color=#ff0000]图10 美国TA公司热线法高温导热仪[/color][/align][align=center][img=11.德国耐驰公司热线法高温导热仪,401,600]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061736304489_8933_3384_3.jpg!w401x600.jpg[/img][/align][align=center][color=#ff0000]图11 德国Netzsch公司热线法高温导热仪[/color][/align][b][color=#ff0000]三、碳纤维隔热材料测试技术现状[/color][/b]从以上三类隔热材料测试方法和相关导热系数测试设备可以看出,商品化设备仅有德国耐驰的保护热板法和上海依阳的热流计法设备可以满足碳纤维隔热材料在惰性气体环境下的测试要求。国外对碳纤维隔热材料导热系数测试多为非标自制设备,文献和隔热材料厂家报道全部是热流计法和热线法设备。主要因为只有这两种方法可实现高温。除了上海依阳实业有限公司之外,还未见到国内其他机构具有碳纤维隔热材料导热系数测试设备,也未见到相应的测试结果文献报道。[b][color=#ff0000]四、碳纤维隔热保温材料导热系数的两种主要测试技术[/color][/b]从上述介绍可以看出,针对碳纤维隔热保温材料的导热系数测试,目前国内外只有稳态热流计法和瞬态热线法能实现高温条件下的测试。下面分别介绍这两种方法在导热系数具体测试中的特点。[b][color=#ff0000]4.1 稳态热流计法高温导热系数测试[/color][/b]这是一种国内外隔热材料高温导热系数测试的主流方法,除可实现高温外,主要特点是模拟实际隔热时的大温差环境,可测量复合材料构件,并可测试不同方向上的导热系数。可在真空和惰性气体控制气压环境下进行导热系数测试,美国NASA有过大量文献报道,技术非常成熟,几乎对所有航天用隔热材料都进行过测试评价。上海依阳也采用此技术,以满足国内航天高温隔热材料导热系数测试需求。国外碳纤维隔热材料生产厂家的柔性和刚性隔热毡产品资料中也能看出采用的是稳态热流计法。[b][color=#ff0000]4.2 瞬态热线法高温导热系数测试[/color][/b]在未出现稳态热流计法前,是隔热材料和碳纤维隔热材料的主流测试方法,以前多用于耐火材料导热系数测试中。热线法导热系数测试设备结构简单,较易实现高温测试。热线法导热系数测试设备特点之一是均温测试,得到的是真导热系数,而不是高温下具有大温差时辐射传热起主导作用的有效导热系数。但对于碳纤维隔热材料这种导电材料,要设法解决热线高温绝缘难题。同时整个测试过程十分漫长,需要整个样品温度恒定。[b][color=#ff0000]4.3 稳态热流计法与瞬态热线法测量结果的区别[/color][/b]稳态热流计法导热系数测试过程中,样品厚度方向上存在较大温差,在高温下会存在导热、对流和辐射传热等多种传热 形式,这时所测试得到的导热系数对应于等效导热系数。瞬态热线法导热系数测试过程中,被测样品温度均匀无温差,测试过程中只存在固体和气体导热传热形式, 这时所测试得到的导热系数对应于真导热系数。图12所示为两种不同低密度隔热材料中导热、对流和辐射传热时的相应导热系数随温度变化曲线,从曲线中可以明细看出,由于辐射传热的影响,会使得整体导热系数明细的增加。[align=center][img=,667,412]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061750302779_5461_3384_3.png!w667x412.jpg[/img][/align][align=center][color=#ff0000]图12 固体、气体和辐射传热对应的导热系数分量随温度变化曲线[/color][/align]另外,对同一样品用热流计法测试得到的等效导热系数都比瞬态法热线法测试得到的真导热系数大,如图13所示。[align=center][img=13.等效导热系数与真导热系数对比,690,392]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061737172107_4763_3384_3.png!w690x392.jpg[/img][/align][align=center][color=#ff0000]图13 有效导热系数与真导热系数对比[/color][/align][b][color=#ff0000]五、国外碳纤维隔热材料测试典型报道[/color][color=#ff0000]5.1 美国 NASA Langley Research Center 工作[/color][/b]美国 NASA Langley Research Center研制的热流计法高温导热系数测试系统技术指标如下:(1)被测对象:刚性和柔性片状材料;(2)样品热面温度最高:1800℉;(3)气压控制范围:0.0001 ~ 760 torr。美国 NASA Langley Research Center研制的热流计法高温导热系数测试系统结构如图14所示。[align=center][img=,537,374]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061754362037_9065_3384_3.png!w537x374.jpg[/img][/align][align=center][color=#ff0000]图14 美国NASA和上海依阳稳态热流计法高温导热系数测试系统结构示意图[/color][/align]相关报道可参考以下文献:(1) Daryabeigi, Kamran. "Effective thermal conductivity of high temperature insulations for reusable launch vehicles." NASA/TM-1999-208972 (1999).(2) Daryabeigi, Kamran, George R. Cunnington, and Jeffrey R. Knutson. "Combined heat transfer in high-porosity high-temperature fibrous insulation: Theory and experimental validation." Journal of thermophysics and heat transfer 25, no. 4 (2011): 536-546.[color=#ff0000]5.2 日本 NIPPON CARBON 公司产品性能[/color]日本 NIPPON CARBON 公司的碳纤维隔热保温材料主要有GF-F软毡系列和FGL多层复合硬毡系列,如图15和图16所示。[align=center][img=15.GF-F软毡系列,345,290]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061738366157_2988_3384_3.png!w345x290.jpg[/img][/align][align=center][color=#ff0000]图15 Soft Felt GF-F Series[/color][/align][align=center][img=16.FGL多层复合硬毡系列,315,250]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061738596568_157_3384_3.png!w315x250.jpg[/img][/align][align=center][color=#ff0000]图16 Felt Laminated FGL Series[/color][/align]对于这两类碳纤维隔热保温材料,日本 NIPPON CARBON 公司在其官网分别给出了高温导热系数测试结果,如图17和图18所示。[align=center][img=17.日本碳公司软毡导热系数测试结果,599,515]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061739203059_8251_3384_3.png!w599x515.jpg[/img][/align][align=center][color=#ff0000]图17 日本碳公司软毡高温导热系数测试结果[/color][/align][align=center][img=18.日本碳公司多层硬毡导热系数测试结果,576,510]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061739426081_5945_3384_3.png!w576x510.jpg[/img][/align][align=center][color=#ff0000]图18 日本碳公司多层硬毡高温导热系数测试结果[/color][/align]从上述 NIPPON CARBON 公司给出的软毡和硬毡高温导热系数测试结果可以看出,导热系数测试是在20Pa的真空环境下进行,而且声明测试的是垂直于样品表面方向,这就代表了高温导热系数测试采用的稳态热流计法,因为只有稳态热流计法才有明确的方向性。[b][color=#ff0000]5.3 日本吴羽株式会社 KRECA FR石墨硬毡产品性能[/color][/b]日本吴羽株式会社的碳纤维隔热保温材料主要有KRECA FR石墨硬毡系列,如图19所示。[align=center][img=19.日本吴羽公司石墨硬毡,566,376]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061740320551_5825_3384_3.png!w566x376.jpg[/img][/align][align=center][color=#ff0000]图19 日本吴羽株式会社的KRECA FR石墨硬毡系列[/color][/align]对于KRECA FR石墨硬毡系列,日本吴羽株式会社在其中文官网上颁布的高温导热系数测试结果如图20所示。[align=center][img=20.日本吴羽公司硬毡导热系数测试结果,499,477]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061740533317_6109_3384_3.png!w499x477.jpg[/img][/align][align=center][color=#ff0000]图20.日本吴羽公司硬毡高温导热系数测试结果[/color][/align]从图20中可以看出,高温导热系数测试是在1.33Pa的真空环境下进行,样品厚度为50mm。尽管日本吴羽株式会社并未标注导热系数测试方法,但从样品厚度来判断应该是稳态热流计法,因为热线法导热系数测试中样品厚度较大。[b][color=#ff0000]5.4 美国 Carbon Composites公司产品导热性能[/color][/b]美国 Carbon Composites公司在其官网上颁布了其碳纤维隔热保温材料产品的高温导热系数在氩气和真空环境下的测量结果,如图21和图22所示。[align=center][img=,690,436]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061755145297_131_3384_3.png!w690x436.jpg[/img][/align][align=center][color=#ff0000]图21 美国CCI公司碳纤维保温隔热材料产品导热性能对比-氩气气氛[/color][/align][align=center][img=,690,436]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061755269885_9003_3384_3.png!w690x436.jpg[/img][/align][align=center][color=#ff0000]图22 美国CCI公司碳纤维保温隔热材料产品导热性能对比-真空环境[/color][/align]另外,从美国CCI公司官网的产品技术指标文件中,可以看到以上导热系数测量结果都有明显的导热系数方向性标识。尽管没有明确方向性标识,但只要是方向性标识就代表了采用的稳态热流计法。[b][color=#ff0000]5.5 瞬态热线法石墨毡高温导热系数测试文献报道[/color][/b]澳大利亚Chahine等人在2005年报道了采用瞬态热线法对石墨毡高温导热系数进行了测量:Chahine, Khaled, Mark Ballico, John Reizes, and Jafar Madadnia. "Thermal Conductivity of Graphite Felt at High Temperatures." In Australasian Heat & Mass Transfer Conference. Curtin University of Technology, 2005.文中报道了采用热线法对WDF级石墨毡导热系数进行的测试,石墨毡的密度为80 kg/m^3,石墨纤维直径在7.0 ~12.5 μm 范围,平均直径为10.5 ± 3.2 μm。测试分别在真空和氩气条件下进行,测量结果如图23所示。[align=center][img=,690,445]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061755436092_3412_3384_3.png!w690x445.jpg[/img][/align][align=center][color=#ff0000]图23 瞬态热线法在不同气氛环境下测量石墨毡高温导热系数结果[/color][/align][b][color=#ff0000]六、上海依阳实业有限公司所做的工作[/color][color=#ff0000]6.1 测试仪器[/color][/b]针对碳纤维隔热保温材料,上海依阳实业有限公司采用自制的商品化热流计法高温导热仪(型号TC-HFM-1000)和瞬态平面热源法导热仪(型号TC-TPS 1010)分别进行了常温和高温下的导热系数测试,在国内首次得到了碳纤维隔热保温材料在不同真空度下室温~1000℃范围内的导热系数测试结果。瞬态平面热源法导热仪(型号TC-TPS 1010)以及样品安装如图24和图25所示,热流计法高温导热仪(型号TC-HFM-1000)和样品安装如图26和图27所示。[align=center][img=24.瞬态平面热源法导热仪,600,399]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061742257237_5181_3384_3.jpg!w600x399.jpg[/img][/align][align=center][color=#ff0000]图24 上海依阳公司瞬态平面热源法导热仪[/color][/align][align=center][color=#ff0000][img=25.瞬态平面热源法导热仪样品安装,690,196]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061742566835_5032_3384_3.jpg!w690x196.jpg[/img][/color][/align][align=center][color=#ff0000]图25 瞬态平面热源法导热仪测试样品安装[/color][/align][align=center][img=26.上海依阳公司热流计法高温导热仪,690,535]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061743276756_2316_3384_3.jpg!w690x535.jpg[/img][/align][align=center][color=#ff0000]图26 上海依阳公司真空型热流计法高温导热仪[/color][/align][align=center][img=27.热流计法高温导热仪试样安装,690,425]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061743534172_2846_3384_3.jpg!w690x425.jpg[/img][/align][align=center][color=#ff0000]图27 热流计法高温导热仪样品安装[/color][/align][b][color=#ff0000]6.2 真空型温热流计法高温导热仪技术指标[/color][/b](1) 被测对象:刚性和柔性片状材料;(2) 温度范围:100℃~1000℃(最高1500℃) ;(3) 气压范围:10 Pa ~ 1 atm;(4) 导热系数测试范围:5 W/mK;(5) 试样尺寸:正方形 300 × 300 mm;(6) 试样厚度范围:10 ~ 100 mm;(7) 温度测量精度:±1%;(8) 气压测量精度:±1%;(9) 导热系数测量精度:±5%。[b][color=#ff0000]6.3 碳纤维隔热保温材料样品(石墨硬毡)[/color][/b]对国内厂家提供的碳纤维隔热保温材料样品(石墨硬毡)进行导热系数测试,厂家提供了两种尺寸规格但相同材料的石墨硬毡样品分别用于瞬态平面热源法和稳态热流计法测试,材料密度为156 kg/m^3。其中一种样品规格为50mm×50mm×40mm,如图28所示;另一种样品规格为310mm×310mm×44.5mm,如图29所示。[align=center][img=28.平面热源法测试试样,690,391]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061744214427_5030_3384_3.jpg!w690x391.jpg[/img][/align][align=center][color=#ff0000]图28 石墨硬毡样品 50mm×50mm×40mm[/color][/align][align=center][img=29.四川创越炭材料公司石墨硬毡大样品,690,446]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061744478427_2043_3384_3.jpg!w690x446.jpg[/img][/align][align=center][color=#ff0000]图29 石墨硬毡样品 310mm×310mm×44.5mm[/color][/align][b][color=#ff0000]6.4 常温常压大气环境下瞬态平面热源法导热系数测试结果[/color][/b]采用瞬态平面热源法导热仪对石墨硬毡样品在常温常压大气环境下进行了15次的导热系数重复测量,测试结果如图30所示,导热系数测量平均值为0.112±0.002 W/mK。[align=center][img=,690,401]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061756110777_6506_3384_3.png!w690x401.jpg[/img][/align][align=center][color=#ff0000]图30 瞬态平面热源法常温常压下石墨硬毡导热系数多次测量结果[/color][/align][b][color=#ff0000]6.5 常压氮气环境下采用热流计法导热仪测量石墨硬毡高温导热系数结果[/color][/b]针对碳纤维隔热保温材料的高温导热系数测量,首先在常压惰性气体(氮气)环境下进行了不同温度点下的高温导热系数测量,不同温度下导热系数测量数值如图31所示,用横坐标为样品热面温度、纵坐标为有效导热系数的图形表示如图32所示。[align=center][img=31.热流计法高温导热系数测量数值,690,250]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061745380347_78_3384_3.png!w690x250.jpg[/img][/align][align=center][color=#ff0000]图31 石墨硬毡样品测试参数和结果数值[/color][/align][align=center][img=32.热流计法高温导热系数测量结果曲线,690,388]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061745567597_5912_3384_3.png!w690x388.jpg[/img][/align][align=center][color=#ff0000]图32 石墨硬毡有效导热系数随样品热面温度变化测量结果和拟合曲线[/color][/align]从图31所示的测量结果可以看出,拟合曲线为一条三次多项式公式,随着热面温度的增大曲线向上弯曲,这说明随着温度的升高,辐射传热的作用变得更加明显。[b][color=#ff0000]6.6 不同氮气气压(真空度)下采用热流计法导热仪测量石墨硬毡高温导热系数结果[/color][/b]为了测量不同氮气气压(真空度)下石墨硬毡样品的高温导热系数,分别将样品热面温度控制在200、600和1000℃,如图33所示。在每个热面温度恒定控制过程中,再分别控制氮气气压(真空度)的变化,真空度设定值分别为10、100、1000、5000和10000Pa,由此测量不同温度下和不同真空度下的有效导热系数,有效导热系数测量结果数值如图34所示。[align=center][img=,690,371]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061756353244_4739_3384_3.png!w690x371.jpg[/img][/align][align=center][color=#ff0000]图33 变真空测试过程中的样品热面温度变化曲线[/color][/align][align=center][img=,690,401]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061756457394_5389_3384_3.png!w690x401.jpg[/img][/align][align=center][color=#ff0000]图34 石墨硬毡在不同温度和不同真空度下的有效导热系数测量结果数值[/color][/align]将图34得到的有效导热系数测量结果数值绘制成图形,如图35所示。从图中可以看出,在每个恒定温度下,有效导热系数都会随着气压的增大而增大,并在接近常压时导热系数变化趋于稳定,这完全符合低密度隔热材料导热系数随气压增大的变化规律。[align=center][img=,690,383]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061757054144_6566_3384_3.png!w690x383.jpg[/img][/align][align=center][color=#ff0000]图35 不同温度下石墨硬毡导热系数随真空度变化测量结果[/color][/align]通过以上采用上海依阳实业有限公司的导热系数测试设备进行的石墨硬毡高温变真空条件下的测试,首次在国内得到了石墨硬毡完整的隔热性能测试评价结果,这将有助于碳纤维隔热保温材料的研究、生产、质量控制和性能评价等方面的需要。[b][color=#ff0000]七、稳态热流计法法导热系数测试更高温度(1500℃)测试系统方案[/color][/b]上海依阳实业有限公司现有测试设备已经证明完全可以满足1000℃以下碳纤维隔热材料的导热系数测试,若需要将测试温度提升到1500℃,需要进行以下改动,但不存在技术难度。(1) 更换加热方式,将金属发热体更换为石墨或碳/碳材料发热体,采用更大功率的低压大电流直流电源;(2) 碳纤维隔热材料导热系数一般偏高,样品冷面温度控制需更换为更大制冷功率的高精度冷却循环系统。(3) 温度测量采用更高使用温度的 S 型热电偶;(4) 加厚高温热防护装置以保证最高运行温度下的安全性;(5) 真空抽取根据真空度要求配备相应的真空系统。[align=center][img=,573,573]http://ng1.17img.cn/bbsfiles/images/2018/03/201803061757151027_2570_3384_3.png!w573x573.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][/align]

  • 不同真空度下石墨硬毡热流计法高温导热系数测量

    不同真空度下石墨硬毡热流计法高温导热系数测量

    摘要:石墨硬毡具有优异的高温隔热效果和稳定性,被广泛应用于高温热处理炉、烧结炉和硅单晶炉等领域。本文主要介绍了石墨硬毡的隔热性能测试,首先采用瞬态平面热源法进行了常温常压下的导热系数测量,然后再采用稳态热流计法在高温常压氮气环境下测试了石墨硬毡的高温导热系数,最后在氮气气氛中,同样采用稳态热流计法测试了不同温度和不同真空度下的导热系数。通过测试揭示了在氮气气氛下石墨硬毡隔热材料导热系数随温度和真空度的变化规律。采用稳态热流计法进行测试使得整个测试过程更接近于石墨毡隔热材料真实的大温差隔热工况,测试结果更具有代表性和指导意义。1. 石墨硬毡简介 石墨硬毡是在石墨软毡的基础上,使用少量连接剂制成各种任意形状后,经高温石墨化处理而形成的成形隔热材料。由于其重量轻,可独立,又可进行复杂加工,从而大大改善了原有的作业环境和可操作性。同时它还能进行各种表面处理,与软毡相比它的发尘量大大降低,而使用寿命大大延长,且具有优异的隔热效果和高温稳定性,石墨硬毡以其优异的性能,广泛应用于绝大部分高端市场,包括太阳能行业,半导体单晶硅行业,人工晶体行业,光纤行业,高端真空烧结炉、热处理炉等行业。 石墨硬毡主要性能特点: (1)石墨硬毡热处理温度高(处理温度约2250℃以上),具有低收缩率,低挥发物释放量等优点; (2)灰份低,纯度高,经纯化后的高纯硬毡灰份小于20ppm,保证了热场的纯净度; (3)低导热系数、隔热效果好、节能,产品质量的一致性好; (4)纤维基体,保证绝热性能均匀,同时温场稳定性能好。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121639_596542_3384_3.jpg 图 1-1 各种工艺形式的石墨硬毡 如图 1-1所示,石墨硬毡可以根据所需的隔热性能和使用要求,采用不同的工艺手段和表面处理方式,形成多种产品形式和任意形状设计,结合使用条件,以达到自由的隔热效果设计。2. 石墨毡高温导热系数测试国内外文献综述 石墨硬毡最主要的物理性能参数之一是导热系数,特别是高温下的导热系数。由于石墨硬毡的抗氧化能力差而只能用于真空和各种惰性气体环境下,所以对于石墨硬毡还需要了解在不同气体和不同真空度下的导热系数。 另外,石墨硬毡做为隔热材料使用,一定是石墨硬毡的一面承受高温,而另一面温度很低基本在常温附近,也就是说实际隔热工况一定是石墨硬毡厚度方向上形成一个较大温差或温度梯度,温差或温度梯度会随着隔热温度的提高而逐渐增大。 为了准确测试评价石墨硬毡的隔热性能,测试中试样的边界条件必须要与石墨硬毡实际环境条件尽可能相同,必须要保证的边界条件包括温度、温度梯度、环境气氛真空度和环境气体成分。由此可见,对于石墨硬毡这类高温易氧化的隔热材料导热系数测量,必须在真空密闭环境中进行,以便于抽真空或充不同种类的惰性保护气体,同时还需配备相应的真空度控制系统。在具体的测试过程中同时还要求,被测试样的受热面温度尽可能高,被测试样的冷却面则始终处于室温附近。 由于石墨毡类材料所具有的低密度、耐高温、易氧化的特殊性,这类材料的导热系数测试只能在高温真空环境下进行测试,对测试设备的要求非常高,相应的研究文献并不多,很少有文献对石墨毡的导热性能测试进行过详尽的报道,也很少有不同测试条件下的测试结果详尽报道,就连石墨硬毡生产厂商也没有报道出相应数据的测试方法描述。这里只简单介绍Chahine等人的工作,其它报道罗列在本文的参考文献内。 Chahine等人采用热线法对WDF级的石墨毡导热系数进行了全方位的测试研究,其中石墨毡的密度为80kg/m^3,石墨纤维直径在7.0~12.5μm范围内,平均直径为10.5±3.2μm。石墨毡导热系数的测试分别在真空和氩气条件进行,测试结果如图 2-1所示。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121644_596543_3384_3.png图 2-1 石墨毡在真空和氩气环境下的高温导热系数测试结果 为了进一步研究低密度石墨毡的传热性能,将石墨毡内的热传递分解为沿纤维的固体导热、气体导热、气体辐射和纤维之间的辐射热交换几个部分。综合考虑了石墨毡内的复合传热机理,分别对50kg/m^3和80kg/m^3两种密度的石墨毡的表观导热系数进行了计算,计算结果如图 2-2所示。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121644_596544_3384_3.png图 2-2 两种不同密度石墨毡的表观热导率计算值以及不同传热机理 从计算结果可以看出,在小于500K的较低温度区间,石墨毡内的传热主要是固体和气体导热起主要作用,而在高温区间,辐射和一定程度的气体导热(基于环境气体成分)起主要作用,而且辐射传热机理对石墨毡的密度变化非常敏感,而其它传热形式则对密度变化并不灵敏。 作者在文献中所得出的结论是石墨毡高温导热系数的确定是个非常复杂的过程,需要结合理论计算和试验测试结果。当气体导热传热机理非常简洁以及气体导热系数可以很容易得到时,由于石墨毡的复杂几何结构,石墨毡的导热和辐射传热机理就被证明非常复杂并具有不确定性。大多数传热模型还是以纯经验为基础,还无法在不求助试验结果的前提下准确预测材料的传热性能。同样,所有辐射传热机理模型中的几何结构因数也都是通过试验手段获得。由此,WDF石墨毡的表观导热系数不能仅通过纯理论计算获得。 由以上研究文献可以明显的看出作者的无奈,作者在石墨毡测试过程中无法准确的模拟材料实际使用环境,特别是石墨毡实际使用中的大温差环境,采用热线法测试导热系数只能在被测试样等温条件下进行,无法测试得到实际大温差对导热、辐射和对流的影响和传热机理,只能通过建立经验模型和理论计算得到预测值。3. 瞬态平面热源法石墨硬毡常温常压导热系数测试 针对石墨硬毡材料,首先在常温常压下采用瞬态平面热源法(ISO 22007-2-2008 塑料-热传导率和热扩散率的测定.第2部分瞬时平面热源法)进行了测试。对石墨硬毡采用瞬态平面热源法进行测试,以期实现以下目的: (1)采用瞬态平面热源法测试石墨硬毡导热系数,以期后续与其它测试方法进行对比。 (2)石墨硬毡是一种典型材料,由于低密度和具有大量孔隙,这种材料的导热系数会随真空度增高而减小。通过真空控制和真空腔提供变真空测试环境,在1E-04~1E+03Torr覆盖七个数量级的真空度变化范围内,测试石墨硬毡在不同真空度下的导热系数,得到一条导热系数随真空度变化的完整曲线,以期获得导热系数随真空度变化的规律。同时由此可以用来研究石墨硬毡的传热机理和各种传热形式的影响。 (3)研究环境气体成分对石墨硬毡导热系数的影响,即在真空腔内充实不同的惰性气体,测试不同气体成分中石墨硬毡导热系数随真空度的变化。 本文所描述内容仅包括常温常压下的石墨硬毡导热系数测试结果,不同真空度和不同惰性气体气氛下的石墨毡导热系数测试将在后续报道中介绍。3.1. 瞬态平面热源法被测试样 瞬态平面热源法石墨硬毡被测试样如图 3-1所示,尺寸为50mm×50mm×40mm。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121644_596545_3384_3.jpg图 3-1 石墨硬毡瞬态平面热源法被测试样3.2. 瞬态平面热源法测试结果 用两块石墨硬毡被测试样夹持瞬态平面热源法薄膜测试探头,如图 3-2所示。http://ng1.17img

  • 室内湿度影响验证:非真空型稳态法导热仪的正确使用方式

    室内湿度影响验证:非真空型稳态法导热仪的正确使用方式

    目前国内外常用的稳态法导热仪,普遍都是非真空密封形式,也就是被测样品完成处于实验室的温湿度环境条件下。在稳态法导热仪使用过程中,往往会出现导热仪的冷板温度低于室温的情况。 我们曾经遇到过多次这种情况并专门进行过验证试验,即采用真空型稳态法导热仪,仅关闭真空腔而不抽真空,在上海这种常年湿度较大的地区,如果冷板温度低于室温,稳态法的较长测试时间会导致导热仪冷板上冷凝很多水珠,甚至会出现大面积积水,如图1和图2所示,从而对被测样品、测试结果和仪器产生严重影响,如图3所示。[align=center][color=#990000][img=,690,307]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025172089_727_3384_3.jpg!w690x307.jpg[/img][/color][/align][align=center][color=#cc0000]图1 样品和冷板积水现象[/color][/align][align=center][color=#cc0000][img=,690,376]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025327354_6419_3384_3.jpg!w690x376.jpg[/img][/color][/align][align=center][color=#cc0000]图2 模拟试验中的冷板积水现象[/color][/align][align=center][color=#cc0000][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280025446891_7590_3384_3.jpg!w690x457.jpg[/img][/color][/align][align=center][color=#cc0000]图3 受潮后的被测样品[/color][/align] 对于这类问题,常用以下三种方式解决: (1)设法降低室内湿度,如开空调; (2)将导热仪整体放置在一个密闭罩内,将导热仪与外界湿气尽量隔离,如图4所示。[align=center][color=#cc0000][img=,483,300]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280026004471_4897_3384_3.jpg!w483x300.jpg[/img][/color][/align][align=center][color=#cc0000]图4 日本某实验室带气密罩的热流计法导热仪[/color][/align] (3)真空型(或气密型)稳态法导热仪,如图5所示。[align=center][color=#cc0000][img=,500,388]https://ng1.17img.cn/bbsfiles/images/2019/04/201904280026530374_1132_3384_3.jpg!w500x388.jpg[/img][/color][/align][align=center][color=#cc0000]图5 上海依阳真空型高温热流计法导热系数测试系统[/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][color=#cc0000][/color][/align][align=center][color=#cc0000][/color][/align]

  • 热流计法测试低密度刚性隔热瓦高温有效导热系数

    热流计法测试低密度刚性隔热瓦高温有效导热系数

    摘要:为了准确测试低密度刚性隔热瓦的高温导热系数,首先采用瞬态平面热源法进行了常温常压下的导热系数测量,同时瞬态平面热源法也采用美国NIST标准参考试样SRM 1453进行了测量准确性的考核和验证。然后采用高温热流计法导热系数测试系统对低密度刚性隔热瓦进行了试样热面温度200℃1000℃的导热系数测量,得到了一条完整的导热系数随温度变化结果曲线。 1. 低密度刚性隔热瓦试样送样单位送来的低密度刚性隔热瓦试样拆封前后图片如图1-1和图1-2所示。 http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667351_3384_3.jpg图1-1 包装试样 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200232139_01_3384_3.jpg图1-2 拆封试样分别对两块试样进行编号和尺寸及密度测量。图1-3所示为1号试样,长宽厚分别为300×300×19.71mm,重量435g,密度0.25g/cm^3。图1-4所示为2号试样,长宽厚分别为300×300×16.82mm,重量445g,密度0.25g/cm^3。http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200240265_01_3384_3.jpg图1-3 低密度刚性隔热瓦1号试样http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200242200_01_3384_3.jpg图1-4 低密度刚性隔热瓦2号试样其中1号试样是经过热面1000℃高温试验后的尺寸和密度测量数据,与2号未经高温试验的密度相比,高温试验前后的密度基本未发生改变。 2. 瞬态平面热源法测试 为了验证和考核低密度刚性隔热瓦导热系数测试的准确性,首先在常温常压下采用ISO 22007-2-2008 塑料-热传导率和热扩散率的测定.第2部分瞬时平面热源法,对导热系数与低密度刚性隔热瓦相同量级的美国NIST标准参考材料SRM 1453(发泡聚苯乙烯板)进行测试,以期实现以下目的:(1)评测和验证瞬态平面热源法导热系数测试系统的测量准确性,重点验证低导热材料(导热系数0.03W/mK左右)测量的准确性,以保证低密度刚性隔热瓦常温常压下导热系数测量的准确性。(2)NIST标准参考材料SRM 1453是一种典型的泡沫聚苯乙烯板,由于低密度和具有一定气孔率,所以这种材料的导热系数会随真空度增高而减小。因此希望通过在不同真空度下测试SRM 1453的导热系数,评估瞬态平面热源法导热系数测试系统测量极低导热系数(小于0.03W/mK)的能力。(3)通过真空控制和真空腔提供变真空测试环境,在1E-04~1E+03Torr覆盖七个数量级的真空度变化范围内,测试NIST标准参考材料SRM 1453在不同真空度下的导热系数,得到一条导热系数随真空度变化的完整曲线,以期获得导热系数随真空度变化的规律。 2.1. 测试美国NIST标准参考材料SRM 14532.1.1. 美国NIST标准参考材料SRM 1453将购置的NIST标准材料材料SRM 1453切割成100mm见方的正方形,如图2-1所示。 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200250876_01_3384_3.jpg图2-1 NIST标准材料材料SRM 14532.1.2. 美国NIST标准参考材料SRM 1453导热系数标准数据美国NIST标准参考材料SRM 1453(发泡聚苯乙烯板)导热系数数据不仅与温度有关,而且会随材料的密度发生变化,这里仅给出导热系数与温度和密度的关系式: http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200254217_01_3384_3.png式中: ρ 表示体积密度,单位kg/m^3;Tm 表示整个体积密度和温度范围内的测试平均温度,密度范围为37~46kg/m^3 ,温度范围为281~313K 。2.1.3. 瞬态平面热源法测试SRM 1453导热系数测试试样和测试卡具整体放置在如图2-2所示的真空腔内,如图2-3所示将被测的NIST标准材料材料SRM 1453放入测试卡具内,如图2-4所示试样和探测器压紧后关闭真空腔,然后进行真空度控制和导热系数测试。 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200305978_01_3384_3.jpg图2-2 高真空试验腔体 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200312723_01_3384_3.jpg图2-3 测试试样和测试卡具 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200312844_01_3384_3.jpg图2-4 试样安装完毕后的待测状态在NIST标准参考材料SRM 1453不同真空度下导热系数测试过程中,首先在常温常压下进行测试,然后再逐渐提高真空度并进行真空度控制,真空度控制精度达到5‰,稳定性优于1%。每个真空度至少恒定半小时后再开始导热系数测量,每个真空度下进行2次重复性测量,任何2次测量间隔至少30分钟以上。由于NIST标准参考材料SRM 1453比较薄,厚度为14mm,由此在测试中采用了小尺寸的探头,编号C5501。整个测试过程中,试样温度保持在室温范围内,温度范围为22℃23℃。为了便于测量控制及描述,真空度单位采用Torr,测试结果如下表所示。表中的试验参数表示测试过程中的探头加热功率(豪瓦)和测试时间(秒)。http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200331630_01_3384_3.png将以上测试结果绘制成横坐标为真空度、纵坐标为导热系数的对数坐标曲线,如图2-5所示。[ali

  • 水流量平板法高温导热系数测定仪升级改造解决方案

    水流量平板法高温导热系数测定仪升级改造解决方案

    [img=水量热计法高温平板导热仪升级改造解决方案,690,446]https://ng1.17img.cn/bbsfiles/images/2022/10/202210021605330949_5078_3221506_3.png!w690x446.jpg[/img][color=#990000]摘要:水流量平板法是目前常用的耐火材料导热系数测试方法,相应的导热仪具有测试温度高、大温差测量、结构合理简单、造价便宜和操作方便等突出优点,国内外用户众多,但存在的致命问题是测量低导热系数的隔热材料时误差巨大。针对水流量平板法导热仪,本文提出了一种改造升级方案,即采用一种高精度量热计技术代替现有的水量热计,彻底解决测量误差大的难题,在保留原有水流量平板法导热仪众多优势的前提下,实现导热系数测量精度大幅提高和测试时间大幅缩短,以满足各种高温隔热材料的低导热系数快速准确测量需求。[/color][color=#990000][/color][b]一、问题的提出[/b]对于导热系数小于0.03W/mK的隔热材料,其高温范围(1000℃以上)的导热系数准确测量一致都是没有很好解决的技术难题。但为了获得隔热材料的高温导热系数,并且出于测试设备的经济性考虑,很多国内外机构都选择了商业化的水流量平板法导热仪进行测试。水流量平板法导热仪是一种依据标准测试方法的导热系数测试设备,相关标准如下:(1)美国ASTM C201“耐火材料导热性的标准测试方法”。(2)英国BS 1902-505“耐火材料导热系数标准测试方法(平板/水量热计法)”。(3)冶金行业标准YB/T 4130-2005“耐火材料导热系数试验方法(水流量平板法)”。上述三个标准测试方法的基本原理完全一样,所采用的技术都是通过水量热计来测量流经样品厚度方向上的热流量。由于水量热计比较适用于较大的热流量测量,对于较小的热流量测量则存在巨大误差,因此这种测试方法比较适用于导热系数较高(大于0.1W/mK)的耐火材料。由于水流量平板法导热仪可以进行温度达1500℃以上的高温导热系数测试,因此很多客户采用这种导热仪进行高温隔热材料的测试评价,由于测量误差巨大使得导热系数测试结果往往非常小,严重误导了材料的研发、生产和性能评价。目前国内主流的商品化水量热计法导热系数测定仪有如图1所示的几种规格,测试温度可以从1200℃到1600℃。[align=center][img=01.国内常见的水流量平板法高温导热仪,690,274]https://ng1.17img.cn/bbsfiles/images/2022/10/202210021606396191_613_3221506_3.png!w690x274.jpg[/img][/align][align=center]图1 国内常见的几种水流量平板法高温导热仪[/align]尽管水流量平板法在高温导热系数测试中存在巨大误差,但随着量热分析技术的进步,可以对水流量平板法进行升级改造,可以通过提高量热计测量精度实现高精度的高温导热系数测量。选择水流量平板法导热仪进行技术改造,主要是因为水流量平板法导热仪具有以下便利特征:(1)水流量平板法导热仪的整体测试结构非常合理,高温加热加载在样品的顶面,水量热计位于被测样品的底面,从而在样品厚度方向上形成大温差,这非常符合隔热材料的实际使用工况,可以获得被测样品材料的等效导热系数。(2)样品顶面加热装置是一个独立的机构,可通过改变发热体材料实现不同的加热温度,由此可实现从1000℃至1500℃,甚至最高可达2000℃以上的高温,非常便于隔热材料高温导热系数的测量。(3)被测样品的装卸非常方便,并且可对不同尺寸的样品导热系数进行测试。(4)最重要的是水量热计位于测量装置的底部,更换水量热计比较方便,可以很容易的更换高精度量热计而不影响测量装置的整体结构。(5)水流量平板法导热仪的价格普遍很低,且国内用户众多。基于上述特点,针对水流量平板法导热仪,本文将提出一种改造升级方案,即采用一种高精度量热计技术代替现有的水量热计,彻底解决测量误差大的难题,在保留原有水流量平板法导热仪众多优势的前提下,实现导热系数测量精度大幅提高和测试时间大幅缩短,以满足各种高温隔热材料的低导热系数快速准确测量需求。[b]二、现有量热计热流测试技术分析[/b]在稳态法导热系数测试方法中,关键技术之一就是对流经样品的热流进行准确测量。热流测量的典型技术是量热计法,即基于量热计的比热容特性,通过测量量热计吸收或放出热量后的温度变化来确定所吸收或放出的热量多少。量热计在导热系数测试中有如下典型应用:(1)防护热板法:如图2(a)所示,防护热板法实际上是一种典型的绝热量热计法,热板作为样品热面温度的实施热源,其最终稳定温度就是完全吸收电加热功率后热板所升高的温度。因此,通过测量热板完全吸收的加热功率(即加载的电功率)就可以获得流经样品的热流。[align=center][img=02.量热计用于导热系数测试的两种测试方法示意图,690,243]https://ng1.17img.cn/bbsfiles/images/2022/10/202210021607339875_6761_3221506_3.png!w690x243.jpg[/img][/align][align=center]图2 量热计用于导热系数测试的两种测试方法示意图:(a)防护热板法;(b)水流量平板法[/align](2)水流量平板法:如图2(b)所示,与防护热板法类似,也用的是量热计法,只是量热计位于被测平板样品的冷面来测量流经样品的热流。量热介质则是流动的液体,通过测量量热介质的温升,可根据量热介质的比热容计算得到量热介质吸收的热量大小。从上述量热计在导热系数测量中的两个典型应用,可以做出以下分析:(1)防护热板法中采用的量热计技术,可以获得很高的导热系数测量精度。但由于需要使用护热技术使得量热计输出的热量只流经样品,即量热计周边处于一个高温动态等温绝热环境,而量热计自身还需处于高温状态,这使得量热计在高温下很难实现绝热防护和保证量热计尺寸的稳定性,因此防护热板法只能实现1000℃以下的导热系数准确测量。(2)水流量平板法是将量热计布置在被测样品的冷面,这样做的好处是样品冷面温度较低(特别是测试低导热系数隔热材料样品时),这样可以很容易实现较高样品热面温度。但带来的问题是如果样品冷面温度超过100℃,会使得水量热计中的流体产生沸腾蒸发而影响测量精度,如果通过增加水流速度避免流体沸腾蒸发,则会使得进出口之间的温差减小,也同样会带来另外的测量误差。同时水量热计四周较差的绝热防护措施而产生较大热损,会带来严重的测量误差。这些就是致使水流量平板法测量误差较大的主要原因,这些因素在高导热系数测量时还不明显,但在测量低导热系数时,测量误差所占比重则会很大,导热系数测量结果会明显偏低,甚至会有数量级水平的误差。(3)从上述两种量热计在导热系数测试的典型应用可以看出,两种量热计法测试都是在稳态状态下进行,每次导热系数测试都需要在样品冷热面温度和热流达到稳定状态。特别是对于高温范围的隔热材料测试,需要漫长时间进行多个温度点下的测量才能获得一条导热系数随温度变化曲线。从上述分析可以看出,尽管水流量平板法存在测量误差巨大的严重缺陷,但在高温导热系数测量中则有巨大的潜力。只要克服水量热计存在的问题,就可解决低导热系数高温测量难题,因此问题的关键就是如何采用新型的量热计技术来代替目前的水量热计。[b][color=#990000]三、高精度金属块量热计解决方案[/color][/b]我们从最基本的物体吸收热量与温升的关系出发,即材料的比热容定义:单位质量物体升高一度所吸收的热量,可以设计出以下导热系数动态测试方法:(1)如图3所示,将图2(b)所示的水流量平板法导热仪中的水流量计更换为一平板金属块作为量热计,量热计上方的其他结构保持不变。[align=center][img=03.金属块量热法高温导热系数动态测试设备结构示意图,500,313]https://ng1.17img.cn/bbsfiles/images/2022/10/202210021609596535_7755_3221506_3.png!w690x433.jpg[/img][/align][align=center]图3 金属块量热法高温导热仪结构示意图[/align](2)此金属块量热计采用高导热金属材料制成,用于吸收透过被测样品的热流量。采用高导热金属材料作为量热计是为了保证量热计温度能快速均匀,以满足测试模型中要求量热计始终处于等温的边界条件,同时具有耐高温能力,以能够进行高温下的导热系数测试。(3)由于金属块量热计的快速均温能力,那么通过量热计的温度变化就可以计算得到样品冷面的热流变化。(4)为了使金属块量热计所吸收的完全是透过被测样品的热量,最大限度减小量热计的热损失,借鉴了保护热板法的技术方案,即在金属块量热计四周增加了主动护热装置来实现绝热。(5)还继续采用原有水流量平板法导热仪的加热装置和温度测量装置,但加热装置的温度以线性方式进行变化,由此使得被测样品的冷热面以相同的升降温速率进行变化。通过上述测量得到的冷面热流变化,以及结合测量得到的冷热面温度和温度变化速率,可以得到整个温度变化过程中的导热系数变化曲线。综上所述,只需对水流量平板法导热仪中的水量热计进行更换,即可实现绝热材料高温导热系数的准确测量,同时采用了线性升温加热方式,大幅缩短了测试时间。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 质子交换膜燃料电池气体扩散层厚度方向导热系数测试方法研究

    质子交换膜燃料电池气体扩散层厚度方向导热系数测试方法研究

    [color=#cc0000]摘要:针对质子交换膜燃料电池中气体扩散层材料厚度方向导热系数测试,介绍了气体扩散层在压缩等条件下进行测试的几种有效测试方法,并分析了稳态法和瞬态法的特点、局限性和应用中存在的问题。并针对瞬态法开展了深入研究,提出了一种更实用的新型测试模型结构。[/color][color=#cc0000]关键词:燃料电池,气体扩散层,导热系数,温度波法,激光闪光法[/color][align=center][color=#cc0000][img=气体扩散层导热系数测试,690,454]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152122447766_8811_3384_3.jpg!w690x454.jpg[/img][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1. 概述[/color][/b]  质子交换膜燃料电池中的气体扩散层(GDL)材料呈现明显的各向异性特点,而且厚度很薄,也就是气体扩散层材料是微米量级的物理尺度。在如此小的物理尺度下对薄膜材料性能进行准确测量评价,势必面临着严峻的技术挑战,这种技术挑战完全是薄膜材料面内方向热物理性能测试无法比拟的,毕竟物理尺度不在一个量级上。因此,上海依阳实业有限公司针对薄膜材料,特别是质子交换膜燃料电池中的气体扩散层薄膜材料,对厚度方向导热系数测试技术进行研究,以在实际工程应用中建立起测量准确性高、且操作简便的测试方法和测试仪器。[b][color=#cc0000]2. 气体扩散层厚度方向导热系数测试要求[/color][/b]  根据目前质子交换膜燃料电池中的气体扩散层(GDL)材料的现状,GDL薄膜材料在厚度方向上的导热系数测试,要考虑以下几方面的特性:  (1)各向异性条件:如文献报道,各种GDL材料的面内方向和厚度方向导热系数分别为3.5~15W/mK和0.2~2W/mK。这基本就确定了GDL薄膜厚度方向导热系数变化范围大致为0.05~5W/mK,这个范围基本就是非金属薄膜材料的导热系数范围。  (2)厚度范围:各种GDL材料的厚度基本都在100~500范围内。  (3)压缩力条件:在燃料电池装配过程中会对GDL产生一定的压缩力来改变电池性能,加载到GDL上的压力范围一般为1MPa以下,最大不超过6MPa。  [b][color=#cc0000]3. 测试方法及其特点分析[/color][/b]  薄膜材料的导热系数测试方法众多,但由于GDL被测样品要在上述加载压力下进行测试,有些方法并不适合。合适的测试方法基本上分为稳态法和瞬态法两类。[color=#cc0000]3.1. 稳态法3.1.1. 稳态热流计法[/color]  对于薄膜和薄层材料厚度方向导热系数的测试,最常用的方法是A-S-T-M D5470。由于这种方法基于稳态热流测量,所以通常称之为保护热流计法或恒定热流法。另外,由于这种方法可以对被测样品加载可控的压缩力和对接触热阻进行测量,使得这种方法在大多数GDL厚度方向导热系数测量中得到应用。[align=center][img=,690,547]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152116413556_4706_3384_3.jpg!w690x547.jpg[/img][/align][align=center][color=#cc0000]图3-1 气体扩散层(GDL)厚度方向导热系数测量装置示意图[/color][/align]  如图3-1所示,在稳态热流计法中,GDL样品夹在上下两个热流计棒之间。上热流计顶部与热板接触,下热流计棒底部与冷板接触,因此通过柱形棒轴线方向从顶部到底部存在连续的热流,实验装置也设计成热量仅允许沿轴向传递。通过温度传感器测量棒上的温度分布梯度(如图3-1所示,并排放置,在顶部和底部棒上具有相同间隔),施加到GDL样品上的压缩载荷也通过负载装置控制。在达到稳态条件下,分别测量流经样品的热流、样品厚度方向上的温差和样品厚度,就可根据稳态傅立叶传热定律计算得到GDL样品厚度方向上的导热系数。[color=#cc0000]3.1.2. 准稳态法[/color]  准稳态法是一种介于稳态和瞬态方法之间的一种导热系数测试方法,在板状被测样品的一面线性升温和降温过程中,在一维热流边界条件下,样品的冷热面温差会逐渐趋于一种相等状态,这个动态过程中的稳态阶段,就称之为准稳态。通过准稳态下的测量可确定被测样品导热系数随温度的实时变化曲线,准稳态法导热系数测试所对应的标准测试方法为A-S-T-M E2584。  准稳态法的测量原理如图3-2所示,Zamel等人采用准稳态法对用作GDL的碳纸在厚度方向的导热系数进行了测量,并测量了温度、压缩和PTFE加载对碳纸厚度方向导热系数的综合影响。在测试中所用的样品材料为日本东丽TPGH-120型号的碳纸,单张碳纸的厚度为370μm,被测样品由6层碳纸组成,总厚度为2.22 mm。测试温度范围为-50~120℃,压缩力大小最大为1.6 MPa。如所推测的那样,在碳纸未经处理和经PTFE处理过的不同情况下,随着压缩增加,导热系数增加。此外,他们还观察到温度的升高导致厚度方向导热系数提高。这种行为与面内导热系数研究的测量结果形成对比,表明碳纤维的热膨胀具有方向依赖性。[align=center][img=,690,561]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152117126996_6136_3384_3.jpg!w690x561.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 准稳态法GDL厚度方向导热系数测量原理图[/color][/align][color=#cc0000]3.1.3. 稳态法应用中存在的问题和局限性[/color]  目前GDL厚度方向导热系数测量的大多数都是采用稳态测量方法,从文献报道上来看基本都是采用自行搭建的测试仪器。稳态法的最大特点是原理模型简单,这往往误导了很多此方法的使用者。因为稳态法原理模型所要求的边界条件非常苛刻且实现难度大,要做到对薄膜类材料导热系数准确测量需要非常精密的加工制造和复杂的校准过程,所以很多国外商品化稳态法测试仪器往往很昂贵,而这些往往是自行搭建仪器最容易忽略的关键内容,由此带来的结果就是测试数据波动性大和误差大,不同文献往往会得出相反的结论。  迄今为止,已经尝试了实验性努力以使用稳态法了解压缩对厚度方向导热系数的影响。用稳态法Khandelwal和Mench测量了温度在+26~+73℃范围内对TORAY碳纸导热系数的影响,他们报告了导热系数随温度升高而降低。他们的测量是在2MPa的压缩力下进行,该压缩力大小代表着接触热阻最小化的压力。在同一项研究中,他们还测量了Teflon对SIGRACET碳纸处理的影响,并表明在碳纸上添加PTFE会大大降低其导热系数。  在文献中还研究了压缩和添加PTFE对多个制造商碳纸的总导热系数的影响,观察到的一般趋势是厚度方向导热系数随着压缩压力的增加而增加,这主要归因于碳纤维之间总接触热阻的降低。在Burheim等人的研究中,他们研究了压缩、厚度、PTFE和液态水对碳纸的厚度方向导热系数的影响,他们报告说,添加PTFE会导致整体导热系数降低,而压缩和液态水会导致这种性能提高。此外,他们的主要观察之一是具有不同厚度的TORAY纸显示出不同的导热性,他们将这一发现主要归功于这种碳纸的制造过程,而且他们假设较厚的样品是通过将较薄的样品堆叠在一起而制成的。  在Nitta等人的研究中报道了,尽管施加的压力高达5.5MPa,但发现TORAY碳纸的导热系数与压缩压力无关,他们认为这种趋势主要是由于通过空气的热传递引起的,尽管其导热系数低于固体碳纤维的导热系数。值得注意的是,根据TORAY材料的规格参数,不考虑纸张厚度时,TORAY碳纸厚度方向导热系数在室温下为1.7 W/mK。没有关于TORAY所使用的测量方法的公开信息,此外,在已发表的文献中关于获得该值所需的压缩压力存在很大差异。例如,根据Khandelwal和Mench和Burheim等人的研究,压缩压力对整体导热系数有显著影响,而在参考文献中可以看出这种情况并非如此。  通过对大量文献进行分析,发现在气体扩散层(GDL)厚度方向热导率测试中很多研究机构选择稳态法测量导热系数,主要出于以下几方面的考虑:  (1)同时兼顾气体扩散层样品面内方向导热系数的测试。  (2)同时兼顾气体扩散层样品厚度方向电导率的测试。  (3)可进行仪器结构扩展以兼顾薄膜样品面内方向电导率和导热系数的测试。  由于在稳态法测试仪器研制过程中,缺乏对测试模型和边界条件的深刻理解,缺乏仪器设计和高精度制造的能力,缺乏校准和考核仪器的技术手段,以及稳态法自身存在的局限性,这些都会造成稳态法测试仪器对薄膜导热系数测量产生较大误差,使得薄膜热物理性能变化规律很容易淹没在仪器的系统误差内。  纵观各种稳态法测试仪器,在薄膜材料厚度方向导热系数测试应用中普遍存在的问题以及测试方法固有的局限性主要表现在以下几个方面。  (1)温度传感器的选择:温度测量的准确性差是目前稳态法薄膜导热系数测量的最严重问题。温度测量涉及到流经薄膜样品厚度方向热流测量和薄膜样品厚度方向上两个表面上的温度差,因此温度测量对导热系数和热阻测量精度有着直接影响。尽管在稳态法中温度测量可以是相对形式(温差值),但对温度传感器的灵敏度、稳定性和一致性要求非常高。绝大多数自制稳态法仪器普遍采用细径铠装热电偶进行测温,采用细径主要是为了减少铠装热电偶金属套管带来的侧向散热损失。而热电偶是一种测温精度较差的温度传感器,在常温附近更容易引起较大误差,所以热电偶的测温精度根本无法满足要求。但如果选择精度合适的电阻温度传感器,则会增大传感器尺寸,带来更大的定位误差,同时会增加传感器自身导热带来的散热损失。  (2)温度传感器的校准和配套措施:温度传感器除了在安装前需要进行自身校准之外,因为温度传感器还涉及到热流测量和样品表面温度的推算,安装后的温度传感器还需要进行一系列的在线校准来对传感器和装置做出准确的评估和合理的修正。另外,为了防止温度传感器引线带了的侧向热损,需要配套专门用于热电偶引线的热防护装置,这势必使得整个测量装置非常复杂。A-S-T-M D5470只是给出了原则性的规定,并没有详细的描述,这方面内容在A-S-T-M C177中有着详细描述以及试验考核验证过程。  (3)对于薄膜厚度方向导热系数测试,薄膜样品厚度,特别是在线受压时的厚度要求均匀性要好,这就对测量装置的机械移动机构和在线厚度测量机构提出非常高的要求,位移、平行度和位移测量至少要达到微米量级精度,否则很容易在加载压力过程中使得薄膜样品产生倾斜而带来很大的热阻和导热系数测量误差。同时,还需要测试仪器在整个生命周期内始终保持这个高精度。  (4)综上所述,可以将稳态法导热系数和热阻测量装置等效看作是一个精度更高的大号螺旋千分卡尺,位移及其厚度测量精度至少优于10微米,而且还要保证平行度,同时还要布置上多只温度传感器及其主动和被动热防护装置。所有这些都会使得相应的稳态法测试仪器较为复杂,在选材、设计和加工制作中要十分谨慎,并经过一系列复杂的校准和考核试验后,仪器才能正常使用。目前我们看到的国内外大多数自制的稳态法测试仪器,包括国内一些仪器厂商生产的一些低价的稳态法测试仪器,只能属于教学类仪器,根本经不起规范的考核验证的检验,无法真正在科研生产中进行准确测量,使得很多材料特征及其变化规律往往淹没在巨大的测试误差范围内。[color=#cc0000]3.2. 瞬态法[/color]  瞬态法不同于稳态法需要人为加载一个较大的温度梯度,瞬态法测量时只是在稳态样品上施加一个1℃左右的微小温度扰动,测量由于温度扰动所引起的温度幅度或相位变化,测试过程更快捷,测试边界条件更接近于薄膜材料的真实使用环境,直接得到的测量结果往往是热扩散系数。尽管瞬态法理论模型和数据处理十分复杂,但测量装置十分简单,可以直接放置在各种实际应用环境中进行测试,特别适用于老化过程中薄膜材料性能的实时衰减考核。  在ISO 22007标准测试方法中,比较全面的对各种瞬态法做出了规定。但针对气体扩散层(GDL)厚度方向导热系数在压力加载过程中的测试,比较合适的瞬态法是温度波法和激光闪光法。由于瞬态热线法和平面热源法测量的是体积导热系数,无法明确测量厚度方向导热系数,并不适合各向异性GDL厚度方向导热系数测试。[color=#cc0000]3.2.1. 温度波法[/color]  ISO 22007-3规定了一种温度波分析方法,用于确定薄膜和塑料板在整个厚度方向上的热扩散系数。温度波法是一种通过测量样品前后表面之间温度波的相移来测量薄而扁平样品厚度方向热扩散系数的方法。使用在样品两个表面上溅射或接触的电阻器,一个作为加热器,通过交流焦耳加热产生温度波,另一个作为温度计来检测温度波。  ISO 22007-3中给出了温度波法测量装置示意图,如图3-3所示,同时还给出了直接溅射到薄膜样品前后表面上的加热器和传感器元件的示例,如图3-4所示。[align=center][img=3-3 温度波法热扩散系数测量装置示意图,690,473]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151925076294_8710_3384_3.jpg!w690x473.jpg[/img][/align][align=center][color=#cc0000]图3-3 温度波法热扩散系数测量装置示意图[/color][/align][align=center][color=#cc0000][img=3-4 加热器和传感器单元示例,690,381]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151925274567_6425_3384_3.jpg!w690x381.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-4 加热器和传感器单元示例[/color][/align]  从上述描述中可以看出,温度波法测量装置包括彼此面对的微加热器和温度传感器,样品安装在它们之间。向加热器提供弱的正弦电功率信号,在样品表面上产生温度波。温度传感器是一种高灵敏度电阻传感器,它使用前置放大器在将弱信号进入锁相放大器之前对其进行放大。观察到的温度信号是激发温度波和背景温度信号的混合,例如环境的温度。在交流测量中,锁定放大的一个优点是能够提取和分析信号中仅一个指定频率分量的变化,抵消室温变化的影响(误差的主要来源)以及噪声成分实现高灵敏度测量。通过将实际施加的温度波幅度限制在1℃以内或更低,可以有效地抑制对流和辐射,并确保几乎不损坏样品。此外,如果采用极小的传感器尺寸则可识别更小样品区域内的热扩散系数。  由此可以看出,在样品的夹持、厚度控制和测量方面,温度波法与稳态法基本相同,温度波法也可以在测量过程中对样品加载一定的压力,但温度波法则规避了稳态法温度和热流测量方面的复杂问题,并采用交流加热和锁相放大技术可以有效的提取测量信号和减少误差,可以对薄膜材料进行高灵敏测量。  温度波法对薄膜热性能测试有着明显优势,Morikawa和Hashimoto采用此方法对芳香族族聚酰亚胺薄膜厚度方向热扩散系数进行了测量,获得了10~570K温度范围内厚度范围为0.1~300μm的薄膜热扩散系数。  但从图3-4所示的样品制备中可以看出,需要在薄膜样品的两个表面上进行繁琐的溅射工艺处理,这明显制约了温度波法的广泛应用,这也是ISO 22007-3温度波法标准颁布这么多年来一致没有推广使用的主要原因。[color=#cc0000]3.2.2. 激光闪光法[/color]  在ISO 22007-4对激光闪光法也做出的规定。激光闪光法的原理是使用短能量脉冲(通常由激光提供)照射样品的正面,并使用红外探测器记录样品背面的后续温度升高。从样品背面的温度-时间曲线的形状和样品厚度,可以确定样品的热扩散率。对于具有多孔或透明性质的薄膜材料,它们必须在测试前进行涂覆以确保分别在前后面进行吸收和发射。激光闪光法测量原理和样品表面处理如图3-5所示。[align=center][img=,690,236]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152117530286_1398_3384_3.jpg!w690x236.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-5 激光闪光法测量原理和样品表面处理示意图[/color][/align]  激光闪光法最大的特点是非接触测量,很容易进行各种温度下的测试,因此激光闪光法在薄膜热物理性能测试中应用十分广泛。但对于气体扩散层(GDL)这种特殊薄膜材料的测试,采用激光闪光法则存在以下问题:  (1)气体扩散层(GDL)是一种多孔材料,相对于激光而言属于透光材料,在采用激光闪光法测试是需要对GDL样品进行表面处理,需要镀金和喷涂石墨来进行遮光处理,但这样的样品表面处理会使涂层材料通过孔隙进入GDL样品而对测量结果带来严重影响。  (2)GDL薄膜材料需要在可控压力加载情况下进行测试,而普通的激光闪光法测量装置并不具备压力加载和控制能力,由此使得激光闪光法很少用于GDL导热系数的测试。[color=#cc0000]3.2.3. 瞬态法特点和应用中存在的问题[/color]  在薄膜材料热性能测试方面,稳态法与瞬态法有着明显区别和各自的显著特点。  稳态法是基于温度和热流处于不随时间变化的稳定状态下进行测试的一种方法,测量薄膜材料热性能基本是基于较厚块体样品的测试软硬件体系。而在薄膜材料稳态法测试过程中,由于样品厚度的减小,相应的被测信号(如温度和热流)相应的也会变小,这使得在块体样品测试中一些并不明显的问题得到了放大和凸出,如温度传感器精度、热损影响和测量表面精度等。为了解决因样品变薄所带来的一系列问题,就需要增加相应的辅助措施来保证测试满足边界条件,从而造成测试设备整体十分复杂,并需要进行一系列的校准验证考核试验,但效果并不十分明显。从另一个方面来看,稳态法是在块体材料热性能基础上发展起来的测试方法,对于较大尺寸的块体样品测试技术非常成熟和稳定。为了进行薄膜材料测试,在稳态法上做的任何工作都是在挖掘稳态法的潜力,是对稳态法测试能力区间的下限进行进一步的拓展,但毕竟是测试能力下限,受到了稳态法自身的制约,这种扩展空间十分有限且效果很难保证。这也是市场上没有可用于薄膜材料热性能测试仪器的主要原因。  瞬态法与稳态法恰恰相反,瞬态法是基于样品材料对热激励动态响应的一种测试方法,被测样品越薄,对热激励的响应越快,所以瞬态法的核心是检测物理量随时间变化快慢的问题。同时,在被测样品对热激励的快速响应过程中,周围环境和其他边界条件的影响反而变得很小,这就是瞬态法测试设备往往比较简单的主要原因。最主要的是,随着技术的发展,块体样品(特别是薄膜材料)对热激励的动态响应时间,在当前的电子检测技术面前都不属于快速测量范畴,采用目前的各种电子技术手段很容易对热激励响应进行快速和准确测量。从另一方面理解,就是针对材料的热性能测试,瞬态法可以针对不同被测样品厚度范围(响应时间)采用相应响应频率范围的电子仪器和设备来实现准确测量,而目前电子仪器设备的测试能力要远远超过薄膜材料热性能测试的需求。这就是瞬态法自身的最大优势,同时也是目前市场上薄膜材料热性能测试仪器大多采用瞬态法的主要原因。  瞬态法与稳态法一样,在实际应用中都存在以下几方面的共性问题:  (1)在线厚度的均匀性和准确测量问题:样品尺寸越大,样品厚度越小,厚度均匀性越难保证。稳态法由于要布置多只温度传感器而使得样品面积尺寸没有多少减少余地,所以在厚度均匀性保证上有一个极限值。但瞬态法在样品尺寸变化上则有很大空间,瞬态法可以根据激励源和探测器的尺寸来改变样品尺寸大小,样品可以做到很小尺寸,如激光闪光法样品尺寸可以做到直径5~12mm,温度波法样品尺寸还可以更小,由此使得瞬态法更容易保证样品厚度的均匀性以及在线准确测量。  (2)接触热阻问题:无论是稳态法还是瞬态法,测量中都会面临接触热阻问题,在薄膜材料测试中会更为明显。稳态法解决接触热阻问题是通过测量一系列相同材质和表面状态但厚度不同的样品,通过测试结果推算出接触热阻。但对于薄膜材料而言,一系列不同厚度薄膜样品很难加工制作,另外薄膜厚度均匀性问题也会造成接触热阻测量误差很大。因此无论是稳态法还是瞬态法,采用变厚度测量方法测试接触热阻只能算是一种无奈之举。在瞬态法测试过程中,可以将接触热阻看作是另一种材质的样品薄膜,整个测试模型就可以看作是一个多层薄膜结构的测试问题。只要采用瞬态法测量结果推算出各分层样品的热性能参数,就可以消除接触热阻的影响。随着瞬态法理论模型的发展,目前已经找到多层结构求解的技术途径,还需要进一步的模拟计算和试验考核以验证此方法的准确性和可靠性。  (3)多层膜问题:大多数薄膜材料在实际应用中都是沉积在基材上,或是与其他薄膜材料进行复合后使用,呈现单层结构并能用于测量的薄膜材料很少,因此更有应用价值的是多层膜的测试问题,特别是对于多层膜样品要能够测试出各个单层薄膜的热物性参数,同时还要考虑压缩力等外部环境条件。多层膜问题与接触热阻问题类似,核心都是一个根据瞬态法测量结果求解单层膜信息的科学问题。[b][color=#cc0000]4. 瞬态法测试技术的深入研究[/color][/b]  从上述瞬态法特点和存在问题中可以看出,对于薄膜材料,特别是对于质子交换膜燃料电池气体扩散层薄膜材料,瞬态法测试中很大的问题是要对每个被测气体扩散层样品进行表面加工和处理,这显然会增大测试的难度和工作量。如果样品材料的刚度不够而发生皱着和弯曲,则会很难制造合适的被测薄膜样品,因此薄膜测试中被测样品的制作和提取一直是个比较棘手的问题。  我们通过分析,对瞬态法测试技术进行了更深入的研究,特别是在被测样品环节提出了一种新的试验方法。这种新方法就是不在被测样品上进行任何处理,将原来对样品表面的处理转移到两片基材上,通过两片基材把被测样品夹持在中心位置来达到样品表面处理的相同效果。新方法的原理如图4-1所示。[align=center][img=4-1 新型瞬态法测试模型原理示意图,690,396]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151926256162_9109_3384_3.png!w690x396.jpg[/img][/align][align=center][color=#cc0000]图4-1 瞬态法新型模型原理示意图[/color][/align]  针对不同的瞬态测试方法,这种改进后的瞬态法模型可以有不同结构形式,并具有以下几方面的功能和特点:  (1)对于温度波法而言,基体就相当于图3-4中的背板,可以将加热器、探测器和电极引线直接溅射在背板上,然后将被测薄膜样品加持在两块背板之间。这样避免了对被测样品的表面处理,通过已经制作成型的背板对各种样品进行测试。  (2)不对样品进行表面处理,可以避免直接在样品表面进行沉积涂层过程中涂层材料进入多孔薄膜对测量结果的影响,这对于气体扩散层这种多孔材料的导热系数测试尤为重要。  (3)对于激光闪光法而言,基体材料为刚性透明材料,激励层和探测层为沉积在基体材料表面的金属材料,然后表面在喷涂石墨层。这相当于将以往对透明样品的表面处理形式挪用到对基体材料的表面惊醒处理。作为激励源的激光脉冲经过透明的基体材料照射到激励层使得激励层温度快速升高,同时热量穿过被测样品到达探测层。探测层的温度变化透过透明基体被探测器检测,这个测试过程与普通激光闪光法完全相同,不同的是要考虑热量在多层结构中的传递,而不是以往那样仅有被测样品一层。在实际薄膜激光闪光法测试过程中,经过表面处理后的样品,也应该按照多层结构进行数据处理才能真正得到薄膜样品的测量结果。  (4)采用新型结构形式的激光脉冲法,同样规避了每次测试薄膜样品都需要进行表面处理的繁琐程序,做多每次需要再在基体表面喷涂石墨以增加发射率。  (5)从理论上来说,激光闪光法也可以看作是温度波法的一种特殊形式,普通温度波法是周期性热激励和周期信号检测,而激光闪光法则是单脉冲式的热激励和单个温升信号检测。因此,如果将激光单脉冲激励源更换为连续激光加周期性调制,使得经过激光束按照一定周期对激励层进行加热,这就相当于温度波法,但可以实现非接触测量。  总之,采用瞬态温度波法可以很好的进行压缩环境下薄膜材料的热物性测试。如果能解决多层模型的单层热性能参数的提取问题,解决接触热阻的影响,温度波法将更为准确和实用,同时也为激光闪光法开辟了更广泛的应用领域。[b][color=#cc0000]5. 参考文献[/color][/b]  (1) Zamel N, Litovsky E, Shakhshir S, et al. Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of?20℃ to+120℃. Applied energy, 2011, 88(9): 3042-3050.  (2) American Society for Testing Material Committee, A-S-T-M D5470-17 Standard Test Method for Thermal Transmission Properties of ThermallyConductive Electrical Insulation Materials, A-S-T-M International, West Conshohocken,PA, 2011.  (3)Khandelwal M, Mench M M. Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. Journal of Power Sources, 2006, 161(2): 1106-1115.  (4) Nitta I, Himanen O, Mikkola M. Thermal conductivity and contact resistance of compressed gas diffusion layer of PEM fuel cell. Fuel Cells, 2008, 8(2): 111-119.  (5) Karimi G, Li X, Teertstra P. Measurement of through-plane effective thermal conductivity and contact resistance in PEM fuel cell diffusion media. Electrochimica Acta, 2010, 55(5): 1619-1625.  (6) American Society for Testing Material Committee, A-S-T-M E2584-14 StandardPractice for Thermal Conductivity of Materials Using a Thermal Capacitance(Slug) Calorimeter , A-S-T-M International, West Conshohocken,PA, 2007.  (7) Zamel N, Litovsky E, Li X, et al. Measurement of the through-plane thermal conductivity of carbon paper diffusion media for the temperature range from?50 to+120° C. international journal of hydrogen energy, 2011, 36(19): 12618-12625.  (8) Zamel N, Litovsky E, Shakhshir S, et al. Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of?20° C to+120° C. Applied energy, 2011, 88(9): 3042-3050.  (9) Ramousse J, Didierjean S, Lottin O, Maillet D. Estimation of the effective thermal conductivity of carbon felts used as PEMFC gas diffusion layers. Int J Therm Sci 2008 47:1e6.  (10) Burheim O, Vie PJS, Pharoah JG, Kjelstrup S. Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell. J Power Sources 2010 195: 249e56.  (11) Burheim OS, Pharoah JG, Lampert H, Vie PJS, Kjelstrup S. Through-plane thermal conductivity of PEMFC porous transport layers. J Fuel Cell Sci Technol 2011 8:021013-1e021013-11.  (12) Karimi G, Li X, Teerstra P. Measurement of through-plane effective thermal conductivity and contact resistance in PEM fuel cell diffusion media. Electrochim Acta 2010 55:1619e25.  (13) Sadeghi E, Djilali N, Bahrami M. Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 1: Effect of compressive load. J Power Sources 2010. doi:10.1016/j. jpowsour.2010.06.039.  (14) Sadeghi E, Djilali N, Bahrami M. Effective thermal conductivity and thermal contact reisstance of gas diffusion layers in proton exchange membrane fuel cells. Part 2: hysteresis effect under cyclic compressive load. J Power Sources 2010 195:8104e9.  (15) Radhakrishnan A, Lu Z, Kandilkar SG. Effective thermal conductivity of gas diffusion layers used in PEMFC: measured with guarded-hot-plate method and predicted by a fractal model. ECS Trans 2010 33:1163e76.  (16) Nitta I, Himanen O, Mikkola M. Thermal conductivity and contact resistance of compressed gas diffusion layer of PEM fuel cell. Fuel Cells 2008 8:111e9.  (17) TORAY Speci?cation, www.fuelcell.com/techsheets/TORAY-TGP-H.pdf.  (18) Zamel N, Litovsky E, Shakhshir S, Li X, Kleiman J. Measurememedia in the temperature range of -20 to +120C. Appl Energy 2011.  (19) Litovsky E, Puchkelevitch N. Thermophysical properties of refractory materials, Reference book. Moscow:Metallurgy 1982.  (20) Volohov GM, Kasperovich AS. Monotonic heating regime methods for the measurement of thermal diffusivity. In: Maglic KD, Cezairliyan A, Peletsky VE, editors. Compendum of thermophysical property measurement methods: recommended measurement techniques and practices, vol.2.New York and London: Plenum Press 1989. pp. 429e454.  (21) ISO 22007-3, Plastics - Determination of thermal conductivity and thermal diffusivity - Part 3: Temperature wave analysis method.  (22) Morikawa J, Hashimoto T. Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis. Journal of Applied Physics, 2009, 105(11): 113506.  (23) ISO 22007-4, Plastics - Determination of thermal conductivity and thermal diffusivity - Part 4: Laser flash method.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 高低温(-180~1500℃)和真空环境下的隔热材料热物理性能测试系统初步设计

    高低温(-180~1500℃)和真空环境下的隔热材料热物理性能测试系统初步设计

    [size=14px][color=#ff0000]摘要:针对各种柔性和刚性隔热材料对变温和变真空环境下热物理性能参数的测试要求,本文介绍了采用准稳态法ASTM E2584 进行的测试系统初步设计方案,拟实现的高低温测试温度范围为-180~1500℃,真空度范围为0.05Pa~0.1MPa,样品尺寸为300mm×300mm×50mm,可实现导热系数、热扩散系数和比热容三个热物理性能参数的快速连续测量,并同时可通过热扩散系数的连续测量确定复合材料的固化度及优化固化工艺。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、概述[/color][/size][size=16px]随着空间技术和半导体行业的发展,对各种高温隔热材料的热物理性能测试提出了更高的要求,如温度范围要宽可覆盖高低温、可变真空以模拟空间环境和真空炉气氛环境。在目前的全球商用热物性测试设备中,具有高低温和变真空功能的只有德国耐驰公司和上海依阳公司的产品。如图1所示,采用稳态保护热板法,耐驰公司设备最高温度达到600℃,测试样品冷热面温差为20℃左右的导热系数。如图2所示,采用稳态热流计法,上海依阳公司设备最高温度达到1000℃(热流计法),测试样品冷热面温差最大可达1000℃的等效导热系数,可更接近实际隔热工况的对隔热材料中导热、辐射和对流复合传热机理共同作用结果做出测试评价。[/size][align=center][size=14px][color=#ff0000][/color][/size][/align][align=center][size=14px][color=#ff0000][img=高低温隔热材料热物性测试,690,460]https://ng1.17img.cn/bbsfiles/images/2022/05/202205101124340854_8773_3384_3.jpg!w690x460.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图1 德国耐驰公司GHP 456保护热板法导热仪[/color][/align][align=center][size=14px][color=#ff0000][/color][/size][/align][align=center][size=14px][color=#ff0000][img=高低温隔热材料热物性测试,650,504]https://ng1.17img.cn/bbsfiles/images/2022/05/202205101125290599_6589_3384_3.jpg!w500x388.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图2 上海依阳公司TC-HFM-1000热流计法导热仪[/color][/align][size=16px]目前上述两种设备都在进行繁忙的常规测试,尽管都可以对隔热材料进行准确测试,但面对目前的各种新型高温隔热材料的发展,还是存在以下不足:(1)测试温度范围基本已经达到稳态法的极限,受材料和其他技术限制,再提升稳态法测试温度难度极大,同时会大幅提升造价。(2)稳态法只能测试导热系数一个参数,无法测试存在挥发和相变过程的热物性变化。(3)稳态法测试周期漫长,无法满足高通量隔热材料性能测试需求。为解决上述隔热材料热物理性能测试中存在的问题,本文将介绍采用准稳态法ASTM E2584 进行的隔热材料热物理性能测试系统初步设计方案。[/size][size=18px][color=#ff0000]二、拟达到的技术指标和初步方案[/color][/size][size=16px]拟达到的技术指标如下:(1)测试参数:导热系数、热扩散系数和比热容,测量不确定度±5%。(2)温度范围:-180℃~1500℃,发热体设计温度最高2000℃,测量不确定度±1%。(3)气氛环境:真空度0.01Pa~0.1MPa,可充各种惰性气体。(4)样品尺寸:截面积200×200mm~300×300mm,厚度20~150mm。(5)升降温速度:1~10℃/分钟。(6)测试方法:ASTM E2584。为实现上述技术指标,设计了隔热材料热物理性能测试系统,系统整体结构的初步设计如图3所示。[/size][align=center][size=14px][color=#ff0000][img=高低温隔热材料热物性测试,690,509]https://ng1.17img.cn/bbsfiles/images/2022/05/202205101126124993_1958_3384_3.png!w690x509.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图3 高低温和真空环境下隔热材料热物理性能测试系统[/color][/align][size=16px]整个测试系统设计为高低温分体结构,即分为高温测试和低温测试两套装置,高温覆盖室温~1500℃,低温覆盖室温~-180℃。两套装置分别安装在卧式真空腔体的前后推拉腔门上,公用一个真空腔体,整个真空腔体和前后门通过循环水进行冷却保护,并同时保证环境温度恒定。真空腔体内的气体种类和气压大小通过腔体侧面布置的真空系统进行精确控制。为实现1500℃甚至更高温度2000℃的材料热物性测试,测试系统的高温发热体为矩形钼加热片结构。为实现最低温度-180℃下的测试,采用液氮作为冷却介质,并结合矩形电加热薄膜进行温度精密调节和控制。高温和低温测量装置中的热源和冷源都采用薄片结构,可保证样品表面温度的均匀性和满足一维热流条件,同时可降低侧向高低温热防护装置的复杂程度。在测试系统中,高温加热装置和低温冷却装置都为升降结构,通过升降来完成被测样品的放入、取出和压紧,并实现不同厚度样品的测试。对于柔性隔热材料,可在测试过程中准确恒定样品厚度。在高低温真空试验设备中,高温发热体一般采用极易氧化的高温材料,同时频繁的高低温冷热交变会带来很大的热变形和热损伤等不利影响,这些都要求高低温设备的结构设计要便于维护和维修。因此本文所述高低温测试系统的设计采用了分体结构,非常便于拆装和维护。本文所述的高低温热物理性能测试系统,采用了准稳态测试方法,主要有以下优势:(1)可测量多个热物性参数,如导热系数、热扩散系数和比热容,特别是可以在整个相变过程中测试材料热物性的连续变化情况。同时还可以通过热扩散系数测试来确定固化度。(2)测试温度可以达到很宽的范围,而且测试速度快,通过一个完整的线性升降温过程就可以得到整个温区范围内的热物性随温度变化曲线,大幅缩短测试周期提高测试效率。(3)准稳态法测试原理是基于平板样品的一面线性温度变化,另一面绝热的边界条件,因此会在平板样品厚度方向上会形成更接近实际隔热应用时的较大温差,测试结果会包含导热、辐射和对流的复合传热效应,测试结果更能表征隔热材料的真实性能。[/size][align=center]=====================================[/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align]

  • 【原创大赛】文献综述和评论:圆柱形锂电池各向异性导热系数测试技术

    【原创大赛】文献综述和评论:圆柱形锂电池各向异性导热系数测试技术

    [b][color=#999999]Literature Review and Comments: Measurement Technology for Anisotropic Thermal Conductivity of Cylindrical Lithium Battery[/color][/b][color=#cc0000]摘要:本文针对圆柱形锂离子电池整体导热系数测试方法,评论性概述了近些年的文献报道,研究分析了导热系数测试方法的特点,总结了圆柱形锂电池各向异性导热系数测试中存在的问题和面临的挑战,从热分析仪器市场化角度提出了迎接这些挑战的技术途径和新方法。[/color][hr/][size=18px][color=#cc0000]1. 问题的提出[/color][/size]  圆柱形锂离子电池是所有类型锂离子电池中功率密度最高的,在设计、制造、应用和质量及安全性管理中,圆柱形锂电池会涉及到多种规格形式,如图1-1所示。[align=center][img=,690,312]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081757079468_491_3384_3.jpg!w690x312.jpg[/img][/align][align=center][color=#cc0000]图1-1 各种规格的圆柱形锂电池[/color][/align]  圆柱形锂电池通常采用螺旋电极组件,由于在径向传导路径中电极和电解质层之间存在大量轴向上没有的界面,这使得圆柱形锂离子电池导热系数在径向和轴向之间存在着近两个数量级的差异。导热系数作为锂离子电池重要的热物理性能参数之一,测试就需要覆盖上述不同规格电池和不同方向的导热系数,这使得准确测试评价圆柱形锂离子电池导热系数面临着以下几方面的严峻挑战:  (1)导热系数测试方法众多,但针对圆柱形锂离子电池的特殊外形特征,首先要需要找出合理的测试方法,以保证测量结果的准确性,这对锂离子电池的设计和热管理尤为重要。  (2)圆柱形锂离子电池一个显著特点就是明显的各向异性特征,这就要求导热系数测试方法和仪器还需具备各向异性的测试能力。同时,由于圆柱形锂电池一般都是密封结构,不允许在电池内插入温度传感器等探测器,测试只能采用无损形式。由此可见,圆柱形锂电池的各向异性和无损检测,明显增大了测试技术的复杂程度和技术难度,甚至还需开发有些新型测试技术,如圆柱形锂离子电池径向导热系数测试技术。  (3)由于圆柱形锂电池导热系数测试涉及到不同形状和方向,这就要涉及不同的导热系数测试方法和设备。但在实际工程应用中,还是希望能对测试方法进行优化和开发测试新技术,从而实现用尽可能少的测试方法和仪器设备以尽可能多的满足其他规格锂电池的导热系数测试需求。  (4)由于锂离子电池还涉及其他热性能参数和表征参数,如比热容和热失控等,这样就要求导热系数测试方法和仪器能与其他热性能参数测试仪器集成在一起,使得测试仪器具备多功能性,在一台测试仪器上可实现多个参数的测试。  本文将针对上述存在的问题和挑战,首先对近几年圆柱形锂离子电池导热系数测试技术进行评论性综述,然后在对这些技术进行分析研究的基础上,提出更适合圆柱形锂离子电池导热系数测量的实用方法。[size=18px][color=#cc0000]2. 圆柱形锂电池导热系数测试方法综述[/color][/size]  尽管有些文献针对圆柱形锂电池导热系数测试进行了研究和报道,但出于适用性和实用性等方面的考虑,我们只关注那些对整体圆柱形锂电池进行的非破坏性导热系数测试方法。圆柱形锂电池是标准的圆柱形结构,对于径向和轴向导热系数,目前比较有效的测试方法基本采用的都是圆柱形结构的准稳态法,测试模型如图2-1所示。[align=center][img=,400,291]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081806399747_8057_3384_3.jpg!w690x502.jpg[/img][/align][align=center][color=#cc0000]图2-1(a)径向加热和(b)轴向加热情况的几何模型[/color][/align]  在上述测试模型中,假设圆柱形锂电池的成分均一,以简化操作和计算。径向测试模型是在圆柱形电池外表面加载恒定热流或加热电池使外表面温度呈线性变化,如图2-1(a)所示,在圆柱形电池的轴线上(z向)呈绝热状态。  同样,对于轴向导热系数测试,如图2-1(b)所示,只在圆柱形电池的顶部加载恒定热流或使顶部表面温度呈线性变化,而电池底部采取绝热措施,由此可以形成与图2-1(a)相同测试模型,而这个测试模型则是典型的一维准稳态测试模型。  为了实现图2-1所示的准稳态测试模型,径向导热系数测试装置的基本结构设计为如图2-2所示形式,并且整个装置放置在真空器皿中以减少热损失。[align=center][img=,690,221]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081758104291_4532_3384_3.jpg!w690x221.jpg[/img][/align][align=center][color=#cc0000]图2-2带柔性加热器、薄膜热流计和测温热电偶的径向导热系数测量装置示意图[/color][/align]  为了减少附加热容的影响,加热器、热流计以及绝缘层尽可能采用薄膜形式,由此所有温度和热流测量都在电池外表面进行。无论是径向还是轴向导热系数测量,用低导热隔热材料包裹整个测量装置以避免热量散失,以尽可能满足测试模型无热损的假设。  实际上,图2-1所示的准稳态测试模型是一种传统的测试方法,常被用于测量柔性和颗粒状隔热材料的高温导热系数。在标准的准稳态法测试过程中,需要测试绝热面的温度(如圆柱形样品的轴心温度)。在恒定热流加热情况下,经过一段时间后,样品的加热面和绝热面温度将达到相同的升温速率,传热方向上样品内外温度差将趋于相同,这种状态称之为准稳态。通过温差测量,很容易获得不同温度下的导热系数。  但对于圆柱形锂电池,不允许在电池中心插入测温传感器,只能在电池的外表面进行各种测量,这就为测量带来了难题。[color=#cc0000]2.1. Jain团队的研究工作[/color]  为了解决上述难题,美国德克萨斯大学Jain团队的Drake在读博期间开展了专项研究[1],开发了一种新颖的测试技术并进行了报道,测量装置与图2-2结构基本相同,只是少了薄膜热流计。测试过程中,通电控制加热膜温度线性升温,经过一段时间后,整个电池的温度变化进入准稳态过程,热电偶测量的电池表面温度也逐渐呈线性升温,希望通过此升温曲线来测定相关热性能参数。  另外,Drake等人针对测试模型建立了相应的数学表达式,并采用有限元方法进行仿真模拟,报道了数学表达式与有限元模拟结果有很好的吻合,如图2-3所示,计算了电池外表面、轴心线和径向不同位置处的温度变化。[align=center][img=,690,304]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081758273600_4573_3384_3.jpg!w690x304.jpg[/img][/align][align=center][color=#cc0000]图2-3 径向数学模型与有限元热模拟的比较[/color][/align]  通过对数学模型的分析,Drake等人认为在进入准稳态后,通过测量圆柱形电池外表面温度变化直线段的截距和斜率,来分别得到电池的导热系数和比热容。由此分别对26650和18650电池的径向和轴向导热系数以及比热容进行了测量,测试曲线如图2-4和图2-5所示,锂电池的导热系数和比热容测试结果如表2-1所示。[align=center][color=#cc0000]表2-1 26650和18650电池的测量热物理特性[/color][/align][align=center][color=#cc0000][img=,690,105]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081758408130_440_3384_3.png!w690x105.jpg[/img][/color][/align][align=center][color=#cc0000][img=,500,389]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081800067070_2731_3384_3.jpg!w690x538.jpg[/img][/color][/align][align=center][color=#cc0000]图2-4 26650锂电池径向和轴向热物理性能测量的实验数据和分析模型比较[/color][/align][align=center][color=#cc0000][img=,500,392]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081800230306_5883_3384_3.jpg!w690x541.jpg[/img][/color][/align][align=center][color=#cc0000]图2-5 18650锂电池径向和轴向热物理性能测量的实验数据和分析模型比较[/color][/align]  按照Drake等人提出的测试方法,圆柱形锂电池的不同方向测量可以得到不同的导热系数和比热容。因为比热容没有方向性,所以不同方向测试得到的比热容应该相同,由此可以检验测试方法的准确性。而Drake等人报道了对于26650锂电池的测试结果,轴向试验测得的比热容为1605J/kgK,径向试验测定的比热容为1895J/kgK,相差将近15%。  Drake等人的报道称这一“微小”差异归因于这样一个事实,即由于径向实验中的温度测量是在电池的中心位置进行,因此它没有考虑电池端部存在的金属接线片。当在轴向测试中考虑金属突片时,由于与构成电池电解质的有机溶剂相比,金属的比热容较低,所以测得的比热容稍低。所以报道认为轴向测量的比热容被认为更准确,因为考虑了翼片。  另外,Drake等人的报道还进行了简单的不确定度分析,结论是导热系数和比热容的总测量不确定度估计为5%左右。  在Drake博士的研究工作基础上,Jain团队又开展了研究改进工作[2]。Drake博士的圆柱形锂电池径向导热系数测试模型是进入电池的是不随时间变化恒定热流,但由于包裹的隔热材料以及薄膜形式的加热器等对热量吸收,使得真正进入电池的热流实际上可能会随时间发生变化,因此新的研究修改了解析模型以解决这些热量损失,得出了更广义的可变加热热流条件下的电池表面温升表达式,并重新定义的径向导热系数测试方法,以提高径向导热系数测量准确性。  此次研究分别对两种均质材料delrin和丙烯酸树脂和26650锂离子电池进行了测试,重新定义的导热系数测试方法并未沿用前期Drake博士报道的测试方法,而是采用试验得到的样品表面温升曲线,并结合灵敏度分析和参数估计方法来计算得到导热系数。  此次研究采用了如图2-2所示的测量装置,即在Drake博士的测试装置中加入了薄膜热流计,以检测加载恒定热流后真正进入圆柱形锂电池中的热流大小,测试结果如图2-6所示,从测试结果可以看出有随时间变化的明显热损。[align=center][img=,690,263]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081800415554_2764_3384_3.jpg!w690x263.jpg[/img][/align][align=center][color=#cc0000]图2-6(a)输入电池热流随时间的变化;(b)输入电池热流、热损及其总和随时间的变化,虚线表示加载给薄膜加热器的恒定热流[/color][/align]  为了真正有效的评价改进后的测试方法,采用了瞬态平面热源法对delrin和丙烯酸样品的导热系数进行单独测量并进行的对比测试,测试结果如表2-2所示。[align=center][color=#cc0000]表2-2两种测量方法的结果比较[/color][/align][align=center][img=,500,109]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081807306073_4151_3384_3.png!w690x151.jpg[/img][/align]  在Jain团队的这次改进性研究中,参数估计计算中只估计了导热系数这一个参数,并未对比热容进行参数估计,理由是参数估计过程中要先计算出比热容,然后再根据此比热容来估计导热系数,而比热容的误差会对导热系数带来较大影响。因此,此次研究中电池比热容数据采用了量热计独立测量结果,delrin和丙烯酸树脂比热容则由瞬态平面热源法测得。  Jain团队的这次改进性研究报道了径向导热系数测量的不确定度为7%,从表2-2所示测量结果来看,两种方法相差了9~15%,导热系数越小则测量误差越大。[color=#cc0000]2.2. Spinner等人的研究工作[/color]  为了对圆柱形锂电池做更深入的研究,美国海军研究实验室的Spinner等人分别采用了解析、量热测量、数值和试验四种方法对商用18650锂离子电池的热物理性能进行了测试研究[3]:  (1)第一种方法是根据随时间变化的导热方程式得出的径向导热系数的解析表达式,然后依据自然对流加热和冷却锂电池的实验测量值,采用参数估计方法得到锂电池径向导热系数和比热容。  (2)第二种方法是采用自制的简易量热仪测试出锂电池的比热容。  (3)第三种方法是采用径向导热方程解析表达式,结合图2-2所示的恒定热流试验测量结果,采用数值差分和参考估计方法得到径向导热系数和比热容。  (4)第四种方法完全采用了Drake等人的轴向导热系数测试方法[1]。根据电池表面温度准稳态变化曲线,通过截距和斜率计算得到轴向导热系数和比热容。  在第一种径向导热系数测试中,将一个表面粘贴有热电偶的锂电池放置在一个具有初始温度的密闭腔室内,等锂电池和腔室初始温度都达到稳定后,使腔室温度阶越升高或降低到一个新的温度,通过表面对流传热形式对锂电池进行加热或冷却,测温热电偶在整个过程中检测电池表面温度随时间的变化。这是一个典型的圆柱形样品侧面对流热交换模型,Spinner等人根据此传热模型建立了电池表面温度变化解析表达式,然后采用参数估计技术并结合试验测试得到的表面温度变化数据,计算得到锂电池径向导热系数和比热容,分别为0.55±0.23W/mK和972±92J/kgK。  为了评估测量准确性,在第二种方法中采用了量热法分别测量18650锂电池、铝和特氟隆的比热容作为对比,每次测量都将选取四个样品捆绑在一起以增加总热容来提高测量精度,测量结果如表2-3所示。[align=center][color=#cc0000]表2-3通过量热法获得的比热容与文献报道的铝(6061型)、特富龙和18650 LiCoO2电池的比热容值进行比较[/color][/align][align=center][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081800568202_6586_3384_3.png!w690x136.jpg[/img][/align]  在第三种径向导热系数测试中,首先对照测试了具有与18650电池相似几何形状的特富龙圆柱体,导热系数和比热容分别为0.232±0.003W/mK和1203±8J/kgK。然后对18650电池进行了九次不同恒定热流测试,九次测量结果有较好的一致性,导热系数和比热容的平均值分别为0.300±0.015W/mK和814±19J/kgK。  从第三种技术得到的结果可以看出,得到的比热容数据814±19J/kgK要比量热计测量结果896±31J/kgK低了近9%。因此,Spinner等人放弃了比热容测量,直接采用量热计的比热容测量结果,而直接参数估计径向导热系数这一个参数,这样得到的导热系数为0.219±0.020W/mK,认为此结果是最佳估计。但对于这个结论是否正确,并没有进行进一步的考核,如采用其他方法准确测量特富龙的导热系数,然后再进行比较。  在第四种轴向导热系数测试中,测得的轴向导热系数为21.9±1.7W/mK,但并未给出比热容测量结果。  将Spinner等人的结果与Drake等人的结果相比可以看出,除径向导热系数测量结果相近之外,轴向导热系数和比热容测量结果相差巨大。[color=#cc0000]2.3. Murashko团队的研究工作[/color]  为了对运行期间圆柱形锂电池的热性能(热扩散系数和发热量)实现在线测量,Murashko团队提出了另外一种测试方法并开展了研究[4][5]。  测试模型如图2-7(b)所示,圆柱形电池应视为无限长圆柱。为了这个目的,如图2-7(a)所示在圆柱形电池的两个端部都使用了纤维棉进行隔热。分别通过使用PT100温度传感器和热流传感器(GHFS)对电池表面的温度和热流进行测量。[align=center][color=#cc0000][img=,690,358]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081801134074_869_3384_3.jpg!w690x358.jpg[/img][/color][/align][align=center][color=#cc0000]图2-7 (a)具有隔热、GHFS和PT100传感器的圆柱形电池;(b)无限长的圆柱体[/color][/align]  对于圆柱形锂电池的热性能的测量,是将圆柱形电池当作有内热源的圆柱体样品来对待,针对内热源圆柱体传热模型,建立了表面温度和表面热流的解析表达式,通过测试获得的电池表面温度和热流,采用参数估计的方法逆向求解出径向导热系数、径向热扩散系数、比热容和电池发热量。分别进行了两次不同的测试,连个测试结果如表2-4和表2-5所示:[align=center][color=#cc0000]表2-4 首次测试后的热参数计算结果[/color][/align][align=center][color=#cc0000][img=,690,137]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081801256908_6402_3384_3.png!w690x137.jpg[/img][/color][/align][align=center][color=#cc0000]表2-5 第二次测试后的热参数计算结果[/color][/align][align=center][img=,690,135]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081801383511_9614_3384_3.png!w690x135.jpg[/img][/align]  从上述两次测试结果可以看出,所采用的方法很难同时测定比热容和径向导热系数,径向导热系数和热扩散率的误差巨大,但可以用于测量圆柱型电池的比热容。[color=#cc0000]2.4. 其他研究工作[/color]  厦门大学的黄键等人在2020年报道了他们针对18650圆柱形锂离子电池导热系数各向异性测试的研究工作[6],测试方法是ASTM D5470稳态恒定热流法和CFD仿真模拟相结合,通过不同尺寸和形状的上下热流计来测试夹持在上下热流计之间不同摆放形式的圆柱形锂电池。对于圆柱形锂电池的轴向导热系数测试,如图2-8所示,采用了小直径的铜棒热流计,上下结构的铜棒热流计将直立放置的圆柱形锂电池夹持在中间,电池上下顶面分别控制在不同温度以在电池轴向形成稳定的温度梯度,由此来测量轴向导热系数。[align=center][color=#cc0000][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081801511307_5360_3384_3.png!w690x317.jpg[/img][/color][/align][align=center][color=#cc0000]图2-8 轴向导热系数测试;(a)测量装置,(b)装置结构示意图[/color][/align]  如图 2-9所示,对于电池径向导热系数测量,还是采用稳态法,只是加大了上下铜棒热流计的尺寸,并是上下热流计的端面形状与圆弧形电池外表面贴合,以保证在电池的直径方向上性能稳定的温度梯度。从图 2-9可以看出,这种仪器结构测试的并不是真正意义上的径向导热系数。[align=center][color=#cc0000][img=,690,240]https://ng1.17img.cn/bbsfiles/images/2020/06/202006081802037589_4119_3384_3.png!w690x240.jpg[/img][/color][/align][align=center][color=#cc0000]图2-9 径向导热系数测试;(a)测量装置,(b)装置结构正视图,(c)侧视图[/color][/align]  采用瞬态平面热源法测量了316不锈钢导热系数(14.494W/mK),然后将316不锈钢制成18650圆柱形锂离子电池形状,再放置到上述两台测试仪器进行测试以考核测量精度。轴向测试结果偏差为-0.649%,径向测试结果偏差为2.394%。  在随后的18650圆柱形锂离子电池轴向导热系数测试中,电池顶部温度控制在125.7℃,底部温度控制在31.3℃,在温差近94.4℃情况下测得的轴向导热系数为11.5W/mK。在径向导热系数测试中,测得结果为4.324W/mK。  这种测试方法能否准确测量圆柱形锂电池的各向异性导热系数非常值得商榷,主要问题是在测试径向导热系数过程中,上下铜热流计和圆柱状电池的布置结构非常容易使热量寻找最短路径进行传递,如从电池外壳传热,这势必一方面增大了传热量,另一方面缩短了热传递路径,这两方面的作用都会使得导热系数测试增大。而且,这种上下形式的传热结构,并不是真正的电池径向传热,所得到的导热系数也不是真正的点尺寸径向导热系数。  加州理工学院的Bhundiya等人针对18650和26650圆柱形锂离子电池也开展了测试研究[7]。测试前先将被测电池拆解,使用镍铬合金线通电加热柱状电池中心轴线来测量锂电池的径向导热系数,对于18650锂电池导热系数的测量结果为0.43±0.07WmK,对于22650锂电池导热系数的测量结果为0.20±0.04W/mK。明显可以看出他们的两个测量结果均远大于Drake等人的报告值(0.20±0.01W/mK和0.15±0.01W/mK)[1],而且整个测试装置非常简陋,被测电池外围并没有采取热防护而存在对流热损,测量结果的重复性基本在10%以上,最重要的一是测量接触压力与实际不符而带来较大热阻,二是没有采用已知导热系数材料进行考核验证。尽管测试结果对比相差较大,但至少又一次证明了圆柱形锂离子电池中层间接触热阻的影响非常明显,也可能证明了不同厂家锂电池因不同制造工艺不同而使得径向导热系数出现较大差别。[size=18px][color=#cc0000]3. 分析和评论[/color][/size]  纵观上述国内外对圆柱形锂离子电池各向异性导热系数的测试研究,呈现出十分混乱的局面,研究思路不是十分清晰和有效,存在的诸多问题主要表现如下:  (1)最直观的表现是导热系数各向异性测量结果非常差,稍微有点作用的是对比热容的测量,由此反而说明了比热容测量对各种误差影响因素并不敏感。  (2)对圆柱形锂离子电池的径向导热系数测试,已经建立了恒定热流法测试模型,也推导出了非常漂亮的相应数学表达式,但在具体试验中并没有很好的应用。可能是各种边界条件的影响太大,使得无法直接使用相应的数学表达式来获得准确的测量结果,采用的各种参数估计方法并没有提高测量精度。  (3)在热性能测试过程中,数学模型并不能准确描述实际测量装置的各种变化和边界条件,因此在热性能测试中最要的一个环境就是对测试方法进行仿真模拟计算,验证测试模型的准确性和量化各种边界条件的影响,并建立相应的校准方法。这是保证测量准确性的关键,而上述国内外的研究都没有涉及,由此使得现有的国内外研究对提高测量精度显着无能为力,从而盲目的采取了更多的其他方法做着努力,但基本没有效果。  (4)在上述国外的测试研究中,出现了很多常识性错误。最典型的错误就是热性能参数测量绝对不能在真空环境下进行,企图用真空条件来降低对流和辐射热损的影响,其效果往往会被真空下空隙型接触热阻同时增大的负面影响给覆盖掉,真空下测试势必会增加加热膜、薄膜热流计和热电偶之间的接触热阻,这也是上述国外研究中测量误差巨大的主要原因之一。另外,如果真空度控制不稳定或者不控制,孔隙型接触热阻的变化也会给测量带来较大的波动。  综上所述,尽管国内外研究还存在很多问题,但总体有以下两点收获:  (1)针对圆柱形锂离子电池各向异性热性能的测试,做了有效的尝试。特别是针对非破坏式的测试方法方面,证明了只测量电池表面温度变化来确定各向异性导热系数和比热容的可能性,这种证明对后续研究工作的开展和解决锂离子电池热性能测试难题有着重大意义。  (2)通过近些年的努力,针对电池热性能的测试,基本形成了一个共识,就是不管使用什么测试方法和技术手段,最终都需要一是符合工程要求进行非破坏性检测,二是最终测量的准确性都需要采用可比较的测试方法和手段进行对比考核。[size=18px][color=#cc0000]4. 新方法的提出和研究[/color][/size]  通过上述针对圆柱形锂离子电池径向导热系数各种测试方法的综述和分析,可以看出真正有实际工程意义的测试方法具有以下几方面的特征:  (1)非破坏式测量,即不能拆解锂电池来进行测量,否则会改变电池的各种性能特征和边界条件。  (2)表面测量方式,即所有测试加载都发生在圆柱形电池的外表面,目前报道相对成功的是在电池表面加载恒定热流。  在材料热物理性能测试中,边界条件分为三类,即第一类边界条件是恒定温度,第二类边界条件是恒定热流,第三类边界条件是交变温度或热流。由此可见,对于不能拆解的圆柱形锂离子电池,完全可以可以采用这三种边界条件测试模型进行径向导热系数测量。上述综述中常用的方式是第二类边界条件,这也就是说还可以采用第一和第三类边界条件对锂电池径向导热系数进行测量。  由此,上海依阳实业有限公司采用第一类边界条件的测试方法对径向导热系数测试技术开展了研究,建立恒温测试模型,推导了相应的表面温度解析表达式,并用有限元仿真模拟验证了测试模型的准确性,同时也验证了恒定热流测试模型的准确性。  通过研究发现,采用第一类边界条件的恒温测试方法能更准确的测量锂电池径向导热系数,并同时能测量得到比热容和径向热扩散系数。更重要的是恒温测量方法可以很容易的推广应用到棱柱形和袋装锂离子电池的热性能和热失控测试,可以作为目前常用的加速量热计测试技术的一种重要补充。[size=18px][color=#cc0000]5. 参考文献[/color][/size][1] Drake, S. J., et al. “Measurement of Anisotropic Thermophysical Properties of Cylindrical Li-Ion Cells.” Journal of Power Sources, vol. 252, 2014, pp. 298–304.[2] Ahmed M B , Shaik S , Jain A . Measurement of radial thermal conductivity of a cylinder using a time-varying heat flux method[J]. International Journal of Thermal Sciences, 2018, 129:301-308.[3] Spinner, Neil S., Ryan Mazurick, Andrew Brandon, Susan L. Rose-Pehrsson, and Steven G. Tuttle. 2015. “Analytical, Numerical and Experimental Determination of Thermophysical Properties of Commercial 18650 LiCoO2 Lithium-Ion Battery.” Journal of The Electrochemical Society 162 (14).[4] Murashko K A , Mityakov A V , Mityakov V Y , et al. Determination of the entropy change profile of a cylindrical lithium-ion battery by heat flux measurements[J]. Journal of power sources, 2016, 330(oct.31):61-69.[5] Murashko K , Mityakov A V , Mityakov V Y , et al. Heat flux based method for determination of thermal parameters of the cylindrical Li-ion battery: Uncertainty analysis[C]// Power Electronics and Applications (EPE'17 ECCE Europe), 2017 19th European Conference on. 2017.[6] Huang, Jian, et al. “Experimental Measurement of Anisotropic Thermal Conductivity of 18650 Lithium Battery.” Journal of Physics: Conference Series, vol. 1509, 2020, p. 12013.[7] Harsh Bhundiya, Melany Hunt, and Bruce Drolen, “ Measurement of the Effective Radial Thermal Conductivities of 18650 and 26650 Lithium-Ion Battery Cells”, The Thermal and Fluids Analysis Workshop (TFAWS) 2018 Proceedings.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创大赛】瞬态平面热源法(HOTDISK法)测量导热脂不同温度下的导热系数

    【原创大赛】瞬态平面热源法(HOTDISK法)测量导热脂不同温度下的导热系数

    摘要:针对某种牌号导热脂这种热界面材料,采用瞬态平面热源法(HOTDISK法)测量了这种材料在25℃~150℃范围内导热系数变化,由此了解导热脂在不同温度下的导热性能,为这种材料的工程应用提供参考。1. 测试背景 导热脂作为一类典型的热界面材料(TIM—ThermalInterfaceMaterials)长期以来在各个行业中被用作传热材料,具有诸多优势,包括高低温稳定性、本身固有的低离子含量及很高的纯度。而且,由于其可与基板实现优异的表面接触和无孔隙界面,因而它们常常是各种传热材料的首选。导热脂在化学性质上为惰性,可在-45℃至+200℃的温度范围内保持较稳定的物理性能,这使其成为极少数能够承受各种恶劣运行环境的材料之一。由于模量很低,导热脂具有足够的柔性,可适应不同的热膨胀系数(CTE),传递到部件或基板的应力达到最小。导热脂有多种形式: (1)灌封剂和凝胶形式导热脂 (2)粘合剂形式导热脂 (3)填隙形式导热脂 导热脂这类热界面材料在冷却散热中应用广泛,各种厂家和型号的产品也是众多,但很少看到过厂家提供导热脂在不同温度下的导热系数数据,而不同温度下的导热系数数据是产品性能评价、冷却散热系统设计和工程应用选型的重要依据。 本测试试验针对导热脂这类材料,采用瞬态平面热源法,在不同温度下测量导热脂的导热系数,由此给出导热脂随温度变化的规律,为导热脂产品的评价和应用提供参考。2. 测试方法和测试仪器2.1. 测试方法 对于导热脂导热系数的测量,我们选择采用瞬态平面热源法。瞬态平面热源法作为一种绝对测量方法,在理论上可以达到很高的测量精度,特别适合导热脂这类热界面材料的测试。采用瞬态平面热源法测量导热脂的导热系数,主要体现出以下几方面的优势: (1)标准测试方法:瞬态平面热源法是一种标准测试方法,具有相应的测试标准方法,及ISO/DIS 22007-2.2 Plastics - Determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source (Hot Disk) method。具有标准方法有利于测试的准确性、可延续性和可对比性。 (2)测试精度高:在瞬态平面热源法标准测试方法中,明确把瞬态平面热源法归结到塑料材料,塑料类材料的一般特征是热导率在0.1~10 W/mK 范围并呈现各项同性,而瞬态平面热源法对塑料类材料的测试可以达到很高的精度。关键的是在这个导热系数测试范围内,有各种标准参考材料来对测量精度进行校准。 (3)试样制造的方便性:导热脂类热界面材料在工程上的应用可能会呈现出油脂状、膏脂状和固体状形式,特别是对于脂状的导热脂,可以很方便的将探测器插入导热脂试样中进行直接测量,大大降低了制样难度和测试难度。2.2. 测试仪器 导热脂导热系数变温测试采用了上海依阳公司出品的TC-4010型号瞬态平面热源法导热系数测试系统,如图 2.1所示。此系统采用冷热循环油浴增压泵流出的硅油作为加热介质流经装载有试样的腔体壁,整个腔体放置在厚实的隔热材料套中,使得被测试样可以精确的按照循环油浴温度进行恒温控制,充分利用了循环油浴±0.05℃的高精度温度控制功能保证试样温度均匀性和稳定性。通过计算机控制循环油浴的设定温度来自动实现不同温度下的试样热导率测量,一般温度变化范围为-40℃~250℃。http://ng1.17img.cn/bbsfiles/images/2015/06/201506141137_550100_3384_3.jpg图 2.1 瞬态平面热源法导热系数测试系统http://ng1.17img.cn/bbsfiles/images/2015/06/201506141133_550098_3384_3.png图 2.2 测试探头和导热脂试样的安装 在TC-4010型号瞬态平面热源法导热系数测试系统配置有专门的试样加载装置,此装置可以从加热腔体内抽取出放置在专门固定架上进行试样安装操作,如图 2.2所示。试样安装时取出独立的试样盒进行导热脂导填充,然后再插入探测器。 被测试样为某公司的导热脂,通过填充和挤压方式将导热脂试样装入试样盒内并进行测量。3. 测试结果和讨论 在25℃~150℃温度范围内对导热脂导热系数进行了测量,测试温度点分别为25、50、75、100、125和150℃六个温度点,测量过程可以分为两个步骤: (1)在某一温度恒定点上多次重复测量 由于导热脂在不同温度下的导热系数可能不同,所以测试过程中测试参数,如加热功率、加热时间,可能就需要进行调整以获得最好的测试结果。这样就需要在试样温度达到稳定后,对测试参数进行选择和试验,找到合适的测试参数,然后再进行此温度下的多次重复性测量。测试完成后,控制油浴升高温度并恒定,进行下一个温度点下的导热系数测量。 导热脂的导热系数一般比较大,加热功率选择也比较大(300mW和500mW两档),而加热时间则较小(10s和20s两档),两次测量间隔时间选择40分钟,以保证每次测量结束后试样温度恢复到稳定状态。 (2)整个温度区间内逐个温度点下导热系数全过程自动测量 因为TC-4010型号瞬态平面热源法导热系数测试系统可以进行全自动连续测量,即可以自动控制油浴的自动恒温和升温,并自动进行任意设定时间和任意温度下的导热系数测量。这样就可以自动进行整个台阶式升温过程中的导热系数连续测量,即自动控制油浴达到某一恒定温度,自动进行导热系数重复测量,然后再控制油浴恒定在另一个恒定温度上进行此温度下的导热系数自动测量。由此,通过一次试验可以完成整个温度变化过程中的导热系数测量,大大减少了人工操作,可以在几天甚至几周时间内连续进行测量,此特点尤其适合用对材料在各种老化过程中的导热系数变化进行监控。 由于在不同温度下导热系数可能不同,测试参数也需要进行调整,因此在进行这种全过程自动测量前,一定要进行初步的试验,摸清不同温度下的试验参数,然后在全过程控制程序中输入不同的试验参数再进行全过程的自动测量,这样可以有效保证测量精度。 如图 3.1所示为六个温度点下导热脂导热系数测量结果,在每个温度点至少进行了20次的重复性测量。图 3.2为导热脂导热系数测量结果随温度的变化情况。http://ng1.17img.cn/bbsfiles/images/2015/06/201506141152_550104_3384_3.png图 3.1 导热脂不同温度下多次重复性测量结果http://ng1.17img.cn/bbsfiles/images/2015/06/201506141152_550105_3384_3.png图 3.2 不同温度下导热脂的导热系数 从测试结果可以看出,随着温度的升高,导热脂的导热系数呈现出近乎线性的降低。当温度高于125℃后,导热脂导热系数有较大的突变,在150℃时的导热系数相对于常温导热系数几乎下降了三分之一。4. 结论 通过以上对导热脂在不同温度下的导热系数测量,可以发现导热脂的导热系数会随温度上升发生明显的改变,温度越高,导热系数越小。特别是在125℃以上,导热脂导热系数会发生较大的改变。 对于其他型号的导热脂也进行了相应的测试,基本都是这种规律。 这种随温度上升导热系数降低

  • 激光闪光法在聚合物复合材料导热系数测试中的应用研究

    激光闪光法在聚合物复合材料导热系数测试中的应用研究

    [color=#cc0000]  摘要:针对目前国内在激光闪光法测量聚合物热物理性能参数中存在误差大的问题,本文将从标准测试方法、多种测试方法对比测试、参考材料和实际测试结果文献报道等几方面,介绍了激光闪光法在聚合物材料测试中的应用评价过程,介绍了测试聚合物材料过程中的注意事项。同时针对聚合物材料的导热系数测量,给出了最好采用稳态法防护热流计法的建议。[/color][color=#cc0000]  关键词:聚合物,导热系数,热扩散系数,激光闪光法,热流计法[/color][color=#cc0000][/color][align=center][color=#cc0000][img=激光闪光法 上海依阳实业有限公司,690,237]https://ng1.17img.cn/bbsfiles/images/2018/12/201812231046563980_9788_3384_3.png!w690x237.jpg[/img][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1. 问题的提出[/color][/b]  导热系数和热扩散系数是聚合物类材料的重要热物理性能参数,相应的也存在多种测试方法。由于激光闪光法具有测试时间快、样品尺寸小、方向性强等特点,使得激光闪光法也常用于聚合物类材料的热扩散系数和导热系数测量。  但在采用激光闪光法测试聚合物材料过程中,由于对闪光法测量原理和测试能力的理解不足,以及对聚合物材料的特性了解不透彻,从而造成使用闪光法测试中经常会出现与其他方法测试结果不一致的现象。  本文将从标准测试方法、多种测试方法对比测试、参考材料和实际测试结果文献报道等几方面,介绍闪光法测试聚合物材料过程中的注意事项。[b][color=#cc0000]2. 聚合物热物性标准测试方法[/color][/b][color=#cc0000]2.1. 聚合物热物性标准测试方法[/color]  聚合物材料的导热系数一般在0.2~1 W/mK范围内。对于这种低导热系数材料的测试,成熟准确的测试方法是稳态法,如稳态防护热板法和稳态防护热流计法,相应的标准测试方法有A-S-T-M C177、C518、E1530、D5470等。随着技术的进步,这些稳态测试方法对样品的最小尺寸要求是直径25 mm,厚度范围1~25 mm,测试温度范围可以达到300℃以上,测试一个温度点下导热系数大约需要30分钟左右。  由于近十几年来瞬态测试技术的飞速发展,许多瞬态技术在聚合物材料的导热系数测试中得到了应用,如A-S-T-M E1461、D5930。为了规范聚合物材料瞬态测试方法,ISO专门针对塑料材料提出了多个瞬态测试标准方法ISO 22007。按照测试参数将ISO标准分为以下几类。[color=#cc0000]2.2. 聚合物热物性ISO瞬态测试方法分类[/color]  (1)导热系数和热扩散系数  瞬态平面热源法(HOT DISK法) - ISO 22007-2  (2)热扩散系数  温度波分析法 - ISO 22007-3  激光闪光法 - ISO 22007-4[color=#cc0000]2.3. 激光闪光标准方法中对聚合物样品制备的规定[/color]  在ISO 22007中对多个瞬态测试方法进行了规定,本文重点介绍对激光闪光法应用中的规定。  对于绝大多数采用激光闪光法进行的聚合物热物性测试,基本都是采用商品化的激光闪光法测试仪器,测试过程中可调节的参数主要是激光加热功率和样品制备,而样品的制备往往是影响测量结果的重要环节。  在ISO 22007-4第6.1条中,对激光闪光法被测样品的形状和尺寸给出了原则性的大致规定,要求样品为薄片状,直径范围为5~20 mm。样品最小厚度需要根据激光脉冲宽度和样品材料热扩散系数进行确定,即激光脉冲宽度与t1/2时间之比小于0.01,给出的聚合物典型样品厚度范围为0.5~3 mm。同时为了保证一维热流,要求样品直径与厚度之比大于3:1,另外还要求薄片样品的厚度均匀性要优于1%。  在ISO 22007-4第6.3条中,要求被测样品对激光波长呈不透明。如果聚合物样品透明或半透明,则需在样品表面制作很薄的高导热涂层以避免激光光束进入样品,认为薄的高导热涂层对测量结果带来的影响忽略不计。  从上所述可以看出,ISO 22007-4激光闪光法对聚合物样品的制备只给出了指导性原则,允许的操作空间很大,由此带来了一系列的测试问题,特别是聚合物样品厚度的选择上,不同厚度样品的测试结果之间存在很大偏差。另外,对于聚合物复合材料激光闪光法是否还适用也是问题,这对聚合物复合材料热物性评价中测试方法的选择提出了要求。为此,在采用激光闪光法时还需要针对聚合物材料做进一步的研究和规定,以保证测量的准确性。[b][color=#cc0000]3. 聚合物热物性多种瞬态测试方法对比[/color][/b]  在采用瞬态方法对聚合物热物性进行测试过程中,由于受多种因素的影响,测试结果往往出现很大的不一致性。如2005年Wilson Nunes等人比较了使用激光闪光法和瞬态热线法获得的一系列聚合物的测量结果。对于PMMA,两种方法的热扩散系数测量值差异高达20%,导热系数值差异高达10%,也获得过导热系数高达两倍的显著差异。对于LDPE样品闪光法结果要低于热线法结果,而对于HIPS样品则闪光法结果较高,这说明了聚合物热性能准确测量的困难性。  为了规范各种瞬态法在聚合物热物性测试中的应用,提高各种瞬态法测量聚合物热物性的准确性和可靠性,在ISO 22007的起草阶段,就对各种瞬态法在聚合物中的应用进行了评价研究,2009年Martin Rides等人报道了两种聚甲基丙烯酸甲酯的导热系数和热扩散系数的测量比对,所使用的各种方法包括温度波分析法、激光闪光法、瞬态平面热源(热盘)法、瞬态热线法和稳态热流计法。在此对比测试基础上,ISO专门在ISO 22007中增加了一个标准方法,ISO/TR 22007-5“塑料 - 导热系数和热扩散系数的测定.第5部分:聚甲基丙烯酸甲酯样品的多个实验室测试结果”。将对比测试过程和结果制订为标准测试方法,这在标准测试方法中是非常罕见的,由此可见对瞬态法在聚合物热物性测试中的应用进行规范的重要性。  在ISO/TR 22007-5对比测试中,对两种聚甲基丙烯酸甲酯(PMMA)材料进行了多个实验室对比测试,一种是浇铸料板材形式,另一种是挤出型板材形式。各种测试方法和样品信息如表31所示。  [align=center][color=#cc0000]表3-1 各种瞬态测试方法和相应样品信息[/color][/align][align=center][img=各种瞬态测试方法和相应样品信息-上海依阳,690,375]https://ng1.17img.cn/bbsfiles/images/2018/12/201812230919358347_4102_3384_3.png!w690x375.jpg[/img][/align]  通过各个实验室之间的比对,尽管测试方法和样品制备之间存在明显差异,但各种方法得到的导热系数结果比较一致,其值约在±7%范围内,热扩散系数测量结果的一致性在±9%范围内,所达到的一致性水平证明了这些不同方法在聚合物热物性测试中的有效性。这些一致性保证需要注意以下几个方面的试验参数控制:  (1)虽然所有参与者都提供了名义上相同的板材样品,但测试中使用的样品实际厚度必须调整到测试方法的规定,以便能够进行测量或确保分析中的假设是有效的。例如,对于激光闪光法,发现挤出型PMMA板的3mm厚度太大而不能进行可靠的测量,因此被测样品必须被加工的得更薄。温度波分析方法适用于厚度约为100um的薄膜或薄片,因此在测试之前必须将样品切割成该厚度。类似地,对于瞬态平面热源法,必须符合测试的厚度要求,这与热瞬态渗透到样品中的深度有关,对于较薄的2 mm厚样品,就需要通过将两个样品堆叠在一起以获得足够厚度以实现可靠测量。  (2)除了样品厚度问题之外,还存在方法上的进一步差异。对于PMMA的激光闪光法测量,由于样品是透明的,其表面必须在测试前用不透明材料处理,否则无法进行测量,而且不透明材料要尽可能薄且均匀,并不受测试过程中温度和激光照射的影响而产生脱落现象。目前一般的样品表面处理工艺是先在样品前后两个表面溅射金涂层以阻挡激光穿透透明样品和增加热接触效果,然后再在样品表面喷涂碳层以增大样品表面的发射率、提高吸收激光能量的能力和减少对激光的反射。  (3)采用激光闪光法测量的是热扩散系数,还需要采用其他方法测量比热容和密度。在ISO标准中,无一例外的都是采用差示扫描量热计(DSC)测量比热容,并未采用激光闪光法测量比热容。在DSC进行比热容测量时,要特别注意取样的代表性,这点在聚合物复合材料中尤为重要。  (4)在参与对比的测试方法中,只有瞬态平面热源法属于体积导热系数测试方法,体积导热系数是厚度方向和面内方向导热系数的函数,这使得瞬态平面热源法测量的导热系数和热扩散系数值通常略高于通过其他方法获得的值,尽管通过一些技术处理使得该差异在离散范围内,因此在对各向异性聚合物热物性测试中要十分小心测试方法的选择和取样的方向性。[b][color=#cc0000]4. 聚合物热物性参考材料[/color][/b]  为了考核和验证激光闪光法测试聚合物热物性的准确性以及试验参数选择的合理性,一般都会选择合适的参考材料进行测试检验。由于聚合物材料的导热系数范围为0.1~1 W/mK,可供选择的参考材料有杜邦公司出品的聚合物材料(纯聚酰亚胺Vespel-SP1)和康宁公司出品的高硼硅玻璃Pyrex 7740。其中,在25~300℃范围内,纯聚酰亚胺Vespel-SP1的导热系数范围为0.37~0.44 W/mK;在-50~300℃范围内,高硼硅玻璃Pyrex 7740的导热系数范围为0.95~1.5 W/mK。  2005年Jacobs和Stroe针对各向同性均质的纯聚酰亚胺Vespel-SP1(常温密度1434kg/m^3)分别采用顶杆法测量了热膨胀系数、采用激光闪光法测量测量了热扩散系数、采用DSC测量了比热容和采用稳态防护热流计法测量了导热系数。在激光闪光法测试中,样品尺寸为直径12.7mm,厚度2.032mm。在热流计法测试中,样品尺寸为直径50.8mm,厚度6.35mm。经过多次不同样品的测试,由激光闪光法、热膨胀系数测量和比热容测量计算获得导热系数值与热流计法直接测量得到的导热系数值,在整个25~300℃范围内相对偏差小于±3%。从这项工作中也可以看出,采用激光闪光法得到导热系数数值,需要进行大量的其他测试,远比热流计法直接测量复杂的多。  另外还可以从另一方面了解激光闪光法在聚合物测试中样品厚度的选择。在美国ANTER公司(现为美国TA公司)激光闪光法测试设备中,随机配备有参考材料纯聚酰亚胺Vespel-SP1,分别有三种规格,一种是直径12.7mm、厚度0.8mm;第二种是直径20mm、厚度1mm;第三种是直径30mm、厚度也是1mm,总之样品厚度都没有超过1mm。  高硼硅玻璃Pyrex 7740是一种透明玻璃,在使用激光闪光法验证测试过程中需要在透明玻璃表面溅射牢固的涂层,操作比较复杂,因此很少作为激光闪光法测试用参考材料,但多用于稳态法导热系数测试参考材料。1992年Yang等人采用稳态AC量热计法对Pyrex 7740在20~310K的低温环境下的热扩散系数和比热容进行了测量,样品直径为12.7mm,厚度1.06mm。采用稳态AC量热计法测量Pyrex 7740并不需要对样品表面溅射涂层,同时这种厚度的选择对激光闪光法有着参考价值。[color=#cc0000][b]5. 闪光法测试聚合物热物性文献报道[/b]5.1. 聚合物薄膜热物性[/color]  聚合物材料的最终产品形式很多时候往往是薄膜形式,这时闪光法样品小的优势得以发挥,可以直接对薄膜聚合物产品进行取样而无需加工,但薄膜样品会带来影响闪光法测量准确性的其他问题,如样品厚度太薄使得激光脉冲宽度引起的误差显得突出,样品透光需要进行表面溅射涂层,而涂层在薄膜上的沉积使得被测样品形成三层结构而需要考虑涂层的影响。  1995年Agari等人报道了采用激光闪光法对四种聚合物薄膜(厚度范围200~500um)的热扩散系数和比热容进行了测试,并研究了样品遮光石墨涂层以及样品厚度等其他因素对测量精度的影响。  2013年Chiguma1等人报道了采用激光闪光法和DSC法对环氧基纳米复合材料薄膜的热扩散系数和比热容进行的测量,样品尺寸为12.7mm×12.7mm×0.134mm,样品表面喷涂石墨层。测试结果显示,对于不同的纳米复合材料,其导热系数变化范围为881~1489W/mK的超高导热系数。对于如此高的导热系数,激光脉冲宽度和样品表面的石墨涂层已经会严重影响测量结果,但文中并未提到测试数据如何处理以及测量结果准确性的评判方法。[color=#cc0000]5.2. 聚合物复合材料热物性[/color]  在聚合物中添加高导热材料可以改进聚合物的导热性能,这类聚合物基复合材料的导热性能是材料性能表征的重要参数,但采用激光闪光法进行测试的文献报道并不多,多数的报道则是采用稳态法。  2006年Xu等人对单壁碳纳米管聚合物基复合材料的热行为进行了研究,采用激光闪光法测量热扩散系数,采用DSC测量比热容,采用TMA测量热膨胀系数,采用TG测量热重,最终计算得到导热系数。闪光法热扩散系数测量的样品尺寸为直径12.5mm,厚度为0.4~0.7mm。样品前后两表面先溅射金涂层,然后再在加热面喷涂碳层,测试温度范围为25~125℃。为了保证闪光法测量的准确性,出于对透光性的考虑,同时还对经过相同表面处理的厚度为0.5mm的Pyrex 7740参考材料进行了测量。最终测试结果表面,随着单壁碳纳米管体积含量0~49%的变化范围,室温下相应的导热系数变化范围为0.233~0.537W/mK。尽管单壁碳纳米管的导热系数标称可以达到2000W/mK,但添加了单壁碳纳米管的聚合物基复合材料的导热系数实际测量值远低于理论计算预测的导热系数范围0.2~335W/mK。  2012年Yamamoto等人在研究纤维增强聚合物复合材料层压板中,分别采用激光闪光法和稳态热流计法对层压板厚度方向上的导热系数进行了测量。采用激光闪光法分别测量了热扩散系数和比热容,计算得到厚度方向上的导热系数,其中样品尺寸为直径12.7mm厚度1mm,密度在1300~1500kg/m^3范围内,样品表面喷涂石墨层,并采用近似密度的参考材料纯聚酰亚胺Vespel-SP1进行测试验证。另外还采用热流计法对层压板两个方向(厚度方向和面内方向)上的导热系数进行了测量。测量结果显示层压板导热系数随着纤维含量的增加而增大,在纤维含量5%时,厚度方向导热系数为0.6~0.8W/mK,面内方向导热系数为0.9W/mK。两种测试方法的对比结果显示,稳态热流计法导热系数测量值始终要比激光闪光法导热系数测量值大0.1~0.2W/mK,这也是我们在聚合物热物性测试中经常遇到的现象,造成这种现象的原因是在激光闪光法测试和分析中假设了样品是各向同性和均质。  2016年Catherine等人采用激光闪光法对高导热聚合物复合材料的各向异性热物性进行了测试,样品尺寸为直径25.4mm厚度1mm左右,样品表面喷涂石墨层,测试温度范围为25~100℃,并分别采用参考材料纯聚酰亚胺Vespel-SP1(0.5W/mK导热系数)和不锈钢(16W/mK导热系数)进行测试验证。尽管文中提到了激光闪光法面内方向热扩散系数测试附件,但只给出了厚度方向上导热系数测量结果(0.5~9W/mK),并未给出面内方向导热系数测试结果,文中只提到聚合物复合材料具有明显的各向异性特征,同时也未提到比热容如何测量。[b][color=#cc0000]6. 稳态热流计法测量聚合物热物性[/color][/b]  采用稳态热流计法(A-S-T-ME1225、E1530、D5470等)可以直接对聚合物导热系数进行测量,如Jacobs和Stroe对纯聚酰亚胺Vespel-SP1在25~300℃范围的导热系数测试,样品尺寸为直径50.8mm,厚度6.35mm。从样品测试可以看出,这种尺寸的样品基本可以满足所有聚合物复合材料的代表性,而激光闪光法则因为样品小而缺少代表性。  在聚合物热物性测量方面,稳态法始终是一种常规测试方法且应用更加广泛。2004年Rudtsch和Hammerschmidt介绍了针对聚合物PMMA热物性进行的五个国家共十八个实验室之间的比对测试。PMMA常温密度为1185kg/m^3,测试温度范围为-70~+80℃,对应的导热系数范围为0.18~0.20W/mK,热扩散系数范围为0.14~0.11mm^2/s。导热系数对比测试方法分为稳态法和瞬态法两类,其中稳态法包括防护热板法和防护热流计法,瞬态法包括瞬态平面热源法、瞬态热带法和探针法,而恰恰没有激光闪光法。比热容测试采用的是差示扫描量热计(DSC),根据导热系数、比热容和密度测试结果计算得到热扩散系数。  上述对聚合物PMMA的对比测试中,PMMA的导热系数较低,在0.2W/mK以下。2011年David和Ronald报道了欧盟九家机构对导热系数为0.5W/mK左右的建筑石材类材料陶土砖(密度为1950kg/m^3)进行的比对测试。其中稳态法采用了防护热板法和热流计法,瞬态法采用了热带、热盘和热桥三种瞬态平面热源法。防护热板法样品尺寸为200mm×200mm×40mm和直径100mm厚度15mm两种,热流计法样品尺寸为直径50mm厚度10mm,此尺寸样品也可用于热带和热盘法测试,而热桥法样品尺寸为100×30×5。在此次对比测试中,测试温度只有10℃和23℃两个点,只对密度和导热系数进行测试对比。在此次比对测试中还是没有选择激光闪光法。  稳态法在聚合物热物性测试中应用的一个典型领域就是树脂基纤维编织类复合材料,这主要是因为稳态法样品尺寸要远比激光闪光法具有代表性,而且稳态法可以直接测量得到导热系数,简化了测量操作过程。2008年Sharp和Bogdanovich针对树脂基三向编织结构复合材料层压板厚度方向导热系数的测试评价,比较了激光闪光法和稳态热流计法,因激光闪光法样品太小无代表性,无法对编织结构的设计和优化提供准确表征,最终确定采用稳态热流计法进行厚度方向导热系数测量。[b][color=#cc0000]7. 参考文献[/color][/b]  (1) Wilson Nunes, Paul Mummery, and Andrew Wallwork. "Thermal diffusivity of polymers by the laser flash technique." Polymer testing 24.5 (2005): 628-634.  (2) MartinRides, et al. "Intercomparison of thermal conductivity and thermal diffusivity methods for plastics." Polymer Testing 28.5 (2009): 480-489..  (3) Jacobs-Fedore, R. A. Stroe, D. E. "Thermophysical properties of Vespel SP1". In Wang, Hsin Porter, Wallace D. Porter, Wally. Thermal Conductivity 27/Thermal Expansion 15. Knoxville, TN: DEStech Publications, Inc. 2005. pp. 231-238. ISBN 1-932078-34-7.  (4) Tye RP, Salmon DR. “Thermal conductivity certified reference materials: Pyrex 7740 and polymethymethacrylate.”In: DinwiddieRB, Mannello R, editors. Thermal conductivity 26—thermalexpansion 14. Lancaster: DEStech Publications 2005. p. 437-51.  (5) Yang, G., A. D. Migone, and K. W. Johnson. "Heat capacity and thermal diffusivity of a glass sample." Physical Review B 45.1 (1992): 157.  (6) Agari, Y., A. Ueda, and S. Nagai. "Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method." Journal of Polymer Science Part B: Polymer Physics 33.1 (1995): 33-42.  (7) Chiguma, Jasper, et al. "Thermal diffusivity and thermal conductivity of epoxy-based nanocomposites by the laser flash and differential scanning calorimetry techniques." Open Journal of Composite Materials 3.03 (2013): 51.  (8) Xu, Yunsheng, Gunawidjaja Ray, and Beckry Abdel-Magid. "Thermal behavior of single-walled carbon nanotube polymer-matrix composites." Composites Part A: Applied Science and Manufacturing 37.1 (2006): 114-121.  (9) Yamamoto, Namiko, Roberto Guzman de Villoria, and Brian L. Wardle. "Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes." Composites Science and Technology 72.16 (2012): 2009-2015.  (10) Thibaud-Erkey, Catherine, and Abbas Alahyari. Final Report for Project titled High Thermal Conductivity Polymer Composites for Low-Cost Heat Exchangers. United Technologies reserach Center, East Hartford, CT (United States), 2016. (11) Rudtsch, S., and U. Hammerschmidt. "Intercomparison of measurements of the thermophysical properties of polymethyl methacrylate." International journal of thermophysics 25.5 (2004): 1475-1482.  (12) Salmon, David R., and Ronald P. Tye. "An inter-comparison of a steady-state and transient methods for measuring the thermal conductivity of thin specimens of masonry materials." Journal of Building Physics 34.3 (2011): 247-261.  (13) Sharp, Keith, et al. "High through-thickness thermal conductivity composites based on three-dimensional woven fiber architectures." AIAA journal 46.11 (2008): 2944-2954.[align=center][img=激光闪光法 聚合物 上海依阳实业有限公司,690,236]https://ng1.17img.cn/bbsfiles/images/2018/12/201812231049305161_9631_3384_3.jpg!w690x236.jpg[/img][/align][align=center][/align]

  • 采用MapleSim软件进行缩短防护热板法导热系数测试时间的温度控制方法仿真模拟计算研究

    采用MapleSim软件进行缩短防护热板法导热系数测试时间的温度控制方法仿真模拟计算研究

    [color=#cc0000]摘要:防护热板法是低导热材料导热系数测试的经典方法,尽管防护热板法测量精度高,但相应的测试时间长,被测样品的热面温度很难准确控制在设定点温度上,不利于材料导热系数重复性测量结果在相同温差下进行对比,更无法满足大批量隔热材料快速测量的需求。为解决这些问题,上海依阳实业有限公司对防护热板法计量加热器的自动化控制技术进行了研究。本文主要介绍了研究的技术路线,采用MapleSim软件模块化的动态数值模拟计算验证了技术路线的可行性,通过动态模拟计算结果可以直观的看到测试时间大幅度的缩短,同时本文还通过模拟计算结果介绍了在大热阻材料防护热板法测试中较低的加热功率会使得漏热现象更加明显,需要大幅度提高温差探测的灵敏度。  关键词:缩短时间,防护热板法,导热系数,加热方式,数值模拟,MapleSim[/color][hr/][b][color=#cc0000]1.引言[/color][/b]  防护热板法作为一种经典的稳态方法,多用于防隔热材料和组件的热阻和导热系数测试中。防护热板法的测试模型就是通过周边防护手段使得计量热板中的热量只向被测样品方向进行一维传递,并最终达到稳定状态。因此在防护热板法测试中,计量热板中加热器的加载电功率控制及其测量是整个测试的核心内容之一,其技术要求主要体现在以下三个方面:  (1)加载的电功率要非常稳定,特别是达到一维热流稳态后,加载的电功率要求是稳定值,电功率的波动会对测量结果带来直接误差。  (2)对于任何被测样品,加载的电功率最好能将样品热面温度控制在一个整数值左右。结合同样受控的样品冷面温度,由此可以保证样品厚度方向上冷热面之间的温差基本都是固定值,从而提供可重复且一致的样品温差,有利于样品的重复测试结果对比,这对于非均质和各向异性隔热材料尤为重要。  (3)防护热板法作为一种稳态法,原理上就存在测试时间较长的特点,样品的热阻越大或导热系数越小,达到稳态所需的时间就越长。为此希望采用更新的技术手段缩短达到稳定的时间,提高测试效率,这点在真空隔热板和大厚度隔热材料测试中的需求十分迫切。  目前国内外防护热板法导热系数测量装置中大多数还是采用直流恒流加热方式,以期首先能保证测量的准确性,要同时满足上述三方面的要求还十分困难。尽管自动化控制技术已经发展多年并已得到广泛应用,但在防护热板装置中计量加热器的温度控制和功率测量方面还未采用自动控制技术,因为对计量加热器采用PID控制往往会使得加载功率波动较大而造成很大的测量误差。国内外现有防护热板法装置大多采用上述折中方法,即根据经验找出热面温度设定点与加热功率的经验关系,在测试过程中选择合适的恒定电流直接加载到计量加热器上。这种加热控制方式尽管可以保证计量加热器上加热功率的稳定和准确,但随之带来以下几方面的问题:  (1)样品热面温度无法准确恒定在设定温度点上,总是与设定温度点(一般为整数)存在较大偏差,每次测量的热面温度都不一样。这非常不利于对样品的重复性测试考核,特别是对低导热样品的测试评价尤为明显。  (2)这种恒定功率加热方式往往伴随着漫长的热场稳定时间,对低导热大热阻材料的测试耗时往往以天为单位计算。  为了同时满足加热功率稳定准确和热面温度准确控制在设定温度上,并大幅度降低热场稳定时间,满足用户大批量样品的测试需求,上海依阳实业有限公司对防护热板法计量加热器的自动化控制以及测量技术进行了研究。本文主要介绍了研究的技术路线,采用MapleSim软件模块化的动态数值模拟计算验证了技术路线的可行性,通过动态模拟计算结果可以直观的看到测试时间大幅度的缩短。2.防护热板法导热系数测试中的加热方式  依据以下一维稳态传热的傅立叶公式,要实现样品导热系数的测量,只有两个可用来进行控制的变化参数,一个是热量Q,另一个是温差ΔT。[align=center] λ=(Q×d)/(A×ΔT)[/align]  由此,防护热板法导热系数测试中建立一维稳态的加热方式基本可分为恒功率加热方式和恒温加热方式两种。  (1)恒功率加热方式是指样品冷面保持恒定温度,样品的热面则采用一恒定的电功率进行加热,对于固定的样品尺寸而言就是采用恒定的热流密度进行加热,即使得Q/A为恒定值。这种加热方式所带来的结果是就是样品热面温度并不受控,即样品冷热面温差ΔT并不会控制在指定值上。  (2)恒温加热方式是指样品冷面保持恒定温度,样品的热面也通过加热保持一恒定温度,也就是将样品冷热面温差ΔT控制在指定值上。但这种控温方式带来的问题就是相应的热流密度Q/A存在波动而很难准确测量。  上述这两种加热方式适用于防护热板法测量装置中的所有加热部件,需说明的是,为了便于对研制或定型中的测量装置进行考核评价,希望装置中所有加热部件的加热功率在达到稳态时都可以精确测定。[b][color=#cc0000]3.典型材料测试模型和数值模拟计算软件3.1.典型材料[/color][/b]  在防护热板法加热方式数值模拟计算中,选择了三种典型材料以期覆盖绝大多数被测材料类型,以下分别为三种材料在室温下的热物理性能参数。  (1)NIST 1450d标准参考材料  NIST 1450d标准参考材料参数如表3-1所示。[align=center][color=#cc0000]表 3-1 标准参考材料热物理性能参数[/color][/align][align=center][img=,690,119]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051929560486_6248_3384_3.png!w690x119.jpg[/img][/align]  (2)真空隔热板(VIPs)  真空隔热板的参数如表3-2所示。[align=center][color=#cc0000]表 3-2 真空隔热板热物理性能参数[/color][/align][align=center][img=,690,108]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051930567848_7200_3384_3.png!w690x108.jpg[/img][/align]  (3)大厚度高热阻复合隔热材料  大厚度高热阻复合隔热材料是一种"蒙皮+隔热材料+空气隙+树脂板"形式的多芯夹层结构,如图3-1所示,其作用是起到隔热和隔声功能。[align=center][img=大厚度高热阻复合隔热材料分层结构,690,240]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051934368816_4277_3384_3.png!w690x240.jpg[/img][/align][align=center][color=#cc0000]图3-1 大厚度高热阻复合隔热材料分层结构[/color][/align]  大厚度高热阻复合隔热材料的整体最大厚度为130 mm,其中蒙皮和树脂板厚度保持不变,而隔热材料和空气隙会根据不同材料及其组合而发生变化。其中蒙皮为碳纤维树脂基复合材料,内饰板为树脂基复合材料,隔热材料为玻璃纤维类低密度隔热材料。这里我们选择了最大热阻结构设计以计算最大热阻时的加热稳定时间,即空气层设计为10 mm厚,使得低导热隔热材料的厚度尽量大以实现最好的隔热隔声效果。高热阻复合隔热材料中各分层材料室温下的热物理性能参数如表3-3所示。[align=center][color=#cc0000]表3-3 大厚度高热阻复合隔热材料热物理性能参数[/color][/align][align=center][img=,690,268]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051931455126_6783_3384_3.png!w690x268.jpg[/img][/align][b][color=#cc0000]3.2. 防护热板法测试模型[/color][/b]  为了计算分析方便,防护热板法测试模型为正方形单样品形式,如图3-2所示。整体护热板面积尺寸设计为500 mm×500 mm,计量热板尺寸设计为250 mm×250 mm,材质都为纯铝。室温和冷板温度都设为25℃,并且假设上述三种样品材料和冷热板材料的热物理性能在室温附近不发生变化。[align=center][img=防护热板法测试模型,690,315]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051933320326_368_3384_3.png!w690x315.jpg[/img][/align][align=center][color=#cc0000]图3-2 防护热板法单样品测试模型[/color][/align][b][color=#333399]3.3. 模拟计算分析软件[/color][/b]  在传热学中可以使用很多软件进行数值模拟计算,一般常用的多为有限元分析软件,如ANSYS、COMSOL、SOLIDWORKS等。但对于本研究中涉及的物理量随时间变化的动态模拟计算分析,有限元法则显着笨重和繁琐,一个物理量动态变化全过程的计算分析往往需要大量的计算时间。为此,我们选择采用基于语言的MapleSim软件进行模拟计算分析,这种模型化的软件因为是基于物理基本模型和解析解,所以更适合动态模拟计算,十几秒钟就可以完成一个物理量动态变化全过程的计算分析。  有关数值模拟计算软件在材料热物理性能测量方法和测试技术中的应用,我们将撰文进行专门介绍。[b][color=#cc0000]4.模拟计算结果[/color][/b]  采用MapleSim软件分别对上述三种典型材料进行数值模拟计算,计算中设置的初始温度为25℃,样品冷面温度也设置为25℃,冷热面温差控制在20℃。[b][color=#cc0000]4.1. 标准参考材料1450d两种加热方式计算结果[/color][/b]  (1)恒功率加热方式计算结果  为将样品冷热面温差控制在20℃整数上,模仿实际测试中选择的加热功率1.375 W,对于纯样品的模拟计算结果如图4-1所示,对于带10mm厚铝质冷热板的模拟计算结果如图4-2所示。图中红线为恒功率加热过程中样品热面温度随时间的变化曲线,蓝线为样品内部温度变化速率随时间的变化曲线。[align=center][img=,690,378]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051955066033_5181_3384_3.png!w690x378.jpg[/img][/align][align=center][color=#cc0000]图 4-1 单纯参考材料1450d样品恒功率加热方式模拟计算结果[/color][/align][align=center][color=#333399][img=,690,395]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051956342530_4622_3384_3.png!w690x395.jpg[/img][/color][/align][align=center][color=#cc0000]图 4-2 带铝质冷热板和参考材料1450d样品恒功率加热方式模拟计算结果[/color][/align]  从这些曲线可以看出,对于纯样品的恒功率测试,从第3个小时开始进入稳态;而对于带10mm厚铝质冷热板和样品,则要从第40小时才能开始进入热面温度为45℃的稳定状态。由此给出非常具有实际意义的结果就是,采用恒功率加热方式,需要花费大量时间在金属冷热板的热稳定上,而花费在被测样品上建立稳态所需要的时间并不长。  (2)恒温加热方式计算结果  恒温加热方式是直接将样品冷热面温差控制在20℃整数上,即使得热面温度为45℃。对于纯样品和带铝质冷热板时的模拟计算结果没有差别,如图4-3所示。图中红线为恒问加热过程中样品内部热流量随时间的变化曲线,蓝线为样品内部温度变化速率随时间的变化曲线。从这些曲线可以看出,基本在40分钟后样品就开始进入热流为1.375 W的稳定状态,这显然要比恒功率加热方式能让样品更快的进入稳定状态,另外很重要的一点是稳定时间不受金属冷热板的影响,这在工程实现中也有重要意义。[align=center][img=,690,388]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051957020259_343_3384_3.png!w690x388.jpg[/img][/align][align=center][color=#cc0000]图4-3 参考材料1450d样品恒温加热方式模拟计算结果[/color][/align]  从上图可以很清楚的看出,恒温加热方式中样品内部的温度变化速率要明显快于恒功率加热方式,这主要因为热量传递是以温差为动力的,而恒温加热时样品是在设定温差下进行热量传递和累积,同要实现相同温差传递的恒功率加热方式相比,恒功率加热则首先必须消耗很多时间来使得金属冷热板达到冷热面温度,并建立样品冷热面之间同样的温差,这也是恒功率加热时内部温度变化速率缓慢的原因。  (3)恒温加热方式中不同温度时的计算结果  由于恒温加热方式是采用温差为动力使得样品内部热流和温度变化速度加快,会使得样品可以很快达到热平衡。这等同于电学中的欧姆定律,电压等同于温差,电流等同于热流,电压越大相应的电流也就越大。  为了验证这种现象,在恒温加热方式中在样品热面加载不同的温度45、245、445和645℃,每个温度点恒温加热时间都为2小时,模拟计算结果如图4-4所示。为便于观察,图中将纵坐标放大后进行了显示。从图中的结果可以看出,随着热面温度的不断增大,样品达到稳定的时间并没有缩短,而是略有延长。这种与实际试验中的结果并不相同,这可能是样品内导热系数随温度的变化而引起。[align=center][img=,690,396]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051957200767_4264_3384_3.png!w690x396.jpg[/img][/align][color=#333399][/color][align=center][color=#cc0000]图4-4 不同恒温温度加热时的样品内部温度变化速率对比[/color][/align]  恒温加热方式目前常用在稳态热流计法导热系数测试过程中,这主要是由于其中的热流测量采用了独立的热流传感器,而无需精确测量加载在电加热器上的电功率并换算成热流量。大量测量试验证明恒温加热方式的稳态热流法导热系数测试的时间要大大小于稳态防护热板法,如上海依阳实业有限公司出品的高温热流计法导热系数测试系统基本可以在不到48小时内完成室温-1000℃范围内10个整百度温度设定点下导热系数的连续测量,试验耗时基本与上述理论计算值接近。[b][color=#cc0000]4.2. 真空隔热板两种加热方式计算结果[/color][/b]  真空隔热板(VIPs)是目前隔热材料中导热系数最低的材料,很薄真空隔热板可以具有很大的热阻。我们选择真空隔热板进行模拟计算就是为了观察防护热板法测试这类大热阻样品时的消耗时间。  (1)恒功率加热方式计算结果  为了将样品冷热面温差控制在20℃整数上,模仿实际测试中选择合适的加热功率0.15375 W,然后分别对纯真空绝热板样品和加上两块10mm厚冷热板后的测试模型进行模拟计算,结果如图4-5和图4-6所示。图中红线为恒功率加热过程中样品热面温度随时间的变化曲线,蓝线为样品内部温度变化速率随时间的变化曲线。从这些曲线可以看出,对于纯粹的真空绝热板样品,约在30个小时后样品进入稳定状态,而增加了铝质冷热板后,则样品则会从第350小时(将近15天)后开始才进入热面温度为45℃的稳定状态,这基本上是无法接受的测试时间。[align=center][img=,690,395]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051957513448_487_3384_3.png!w690x395.jpg[/img][/align][align=center][color=#cc0000]图4-5 单纯真空绝热板样品恒功率加热方式模拟计算结果[/color][/align][align=center][color=#333399][img=,690,396]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051958139761_1197_3384_3.png!w690x396.jpg[/img][/color][/align][align=center][color=#cc0000]图4-6 带铝质冷热板和真空绝热板(30mm厚)样品恒功率加热方式模拟计算结果[/color][/align]  上述模拟计算结果也再次证明了恒功率加热过程中大量加热时间消耗在了金属冷热板的稳定上,对于真空绝热板这种超低导热系数和大热阻材料而言,采用经典的防护热板法需要漫长的测试时间,这也是极少看到有机构采用防护热板法进行真空绝热板测试的主要原因。  (2)恒温加热方式计算结果  恒温加热方式是直接将样品冷热面温差控制在20℃整数上,即使得热面温度为45℃。对于纯真空绝热板样品和带铝质冷热板时的模拟计算结果没有差别,如图4-7所示。图中红线为恒问加热过程中样品内部热流量随时间的变化曲线,蓝线为样品内部温度变化速率随时间的变化曲线。从这些曲线可以看出,从第7小时开始样品进入内部热流为0.15375 W的稳定状态,显然要比恒功率加热方式能让样品更快的进入稳定状态而具有实际意义。同样,另外重要的一点是稳定时间不受金属冷热板的影响。[align=center][color=#333399][img=,690,393]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051958395005_4648_3384_3.png!w690x393.jpg[/img][/color][/align][align=center][color=#cc0000]图4-7 真空绝热板(30mm厚)样品恒温加热方式模拟计算结果[/color][/align]  由上述针对真空绝热板防护热板法导热系数测试所进行的两种加热方式模拟仿真计算结果可以看出,针对大热阻样品的测试,只有恒温加热方式在实际应用中可以接受,但存在的问题则是很难准确测量加热稳态时的加热功率。为了规避这个难题,目前业界普遍采用的是稳态热流计法,即采用独立的热流计来测量流经样品的热流密度,但代价是降低测量精度。这是因为热流计精度较差,还需要采用防护热板法装置进行校准,但这样的好处是可以有效提高测试效率。[b][color=#cc0000]4.3. 大厚度高热阻复合隔热材料两种加热方式计算结果[/color][/b]  为了说明问题,将复合结构隔热材料简化为单一固体材料构成的大厚度高热阻样品,其总厚度为130mm,导热系数为0.02W/mK,总热阻为6.5m^2K/W。  (1)恒功率加热方式计算结果  为了将样品冷热面温差控制在20℃整数上,模仿实际测试中选择合适的加热功率0.1923 W。经过模拟计算后分别到纯样品和带金属冷热板样品的结果如图4-8和图4-9所示。[align=center][img=,690,393]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051958567443_1378_3384_3.png!w690x393.jpg[/img][/align][align=center][color=#cc0000]图4-8 单纯复合材料样品恒功率加热方式模拟计算结果[/color][/align][align=center][color=#333399][img=,690,394]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051959113998_3826_3384_3.png!w690x394.jpg[/img][/color][/align][color=#333399][/color][align=center][color=#cc0000]图4-9 带铝质冷热板和复合隔热材料(130mm厚)样品恒功率加热方式模拟计算结果[/color][/align]  图中红线为恒功率加热过程中样品热面温度随时间的变化曲线,蓝线为样品内部温度变化速率随时间的变化曲线。从这些曲线可以看出,对于纯粹的复合材料样品,约在150个小时后样品进入稳定状态,而增加了铝质冷热板后,则样品则会从第400小时后开始才进入热面温度为45℃的稳定状态,这些显然要比真空绝热板稳定时间还要长很多。  (2)恒温加热方式计算结果  恒温加热方式是直接将样品冷热面温差控制在20℃整数上,即使得热面温度为45℃,模拟计算结果如图4-10所示,其中有无金属冷热板对模拟计算结果的影响可以忽略不计。[align=center][img=,690,392]https://ng1.17img.cn/bbsfiles/images/2018/11/201811051959396346_372_3384_3.png!w690x392.jpg[/img][/align][color=#333399][/color][align=center][color=#cc0000]图4-10 大厚度高热阻复合隔热材料(130mm厚)样品恒温加热方式模拟计算结果[/color][/align]  图4-10中红线为恒温加热过程中样品内部热流量随时间的变化曲线,蓝线为样品内部温度变化速率随时间的变化曲线。从这些曲线可以看出,从第30小时开始样品进入内部热流为0.1923 W的稳定状态,显然要比恒功率加热方式能让样品更快的进入稳定状态而具有实际意义,可见对于大厚度高热阻复合材料的测试,每个温度点导热系数测试耗时基本也要在1~2天左右。[b][color=#cc0000]5.分析和结论[/color][/b]  针对三种不同热阻范围的典型隔热材料,利用MapleSim软件对恒功率和恒温两种加热方法的模拟分析可以发现:  (1)恒功率加热时材料内部的温度场变化比较缓慢,热量在材料内部传递是一个由加热面逐渐扩散到内部的缓慢的过程。但恒功率加热方法简单,并且由于功率值恒定,而稳态时加热功率和温度波动较小,所以精度比较高。加上这种加热方式工程上易于实现,使得恒功率加热是目前国内外防护热板法导热仪中最常用的加热方法。  (2)恒温加热时材料内部温度场变化比较快,热量可以快速的由加热面传递到材料的内部并达到稳定,稳定时间要远小于恒功率加热法,而且样品热面温度可以准确控制在设定点温度上以保证样品厚度方向上的温差为规定常数,这些在低导热材料防护热板法测试中非常具有现实意义。一般恒温加热方法普遍采用PID控制技术实现,但PID控制热面温度稳定时,加热功率并不是连续恒定不变,而且还存在波动,实现准确测量对控制系统硬件的技术要求非常高。  (3)目前国内外大多数防护热板法导热仪基本都采用的是恒功率加热方式,主要是由于没有很好解决PID恒温加热方式中的加热功率准确控制和测量这两方面的问题。特别是对于高热阻(大厚度和超低导热系数)材料的测试,样品热面温度控制过程中的过冲超调,温度过冲后回调非常缓慢,因此对PID算法的要求也非常高以避免过冲超调,否则体现不出恒温加热方式的优越性。  (4)由于恒功率和恒温加热方式各具特点,在实际应用中存在着相应的技术难题。为了扬长避短,对于高热阻(如真空绝热板)材料导热系数测试,有些导热系数测试仪器采用了达到稳态时间更短的恒温加热方法以满足工业生产质量品控需要。但为了规避热流测量中遇到的技术难题,则采取了牺牲精度保速度的策略,即采用热流计法在一维传热回路中介入独立的热流计来测量热流密度。这种热流计法充分发挥了恒温加热方式的特长,但存在热流计测量误差较大的问题。另外,热流计需要采用防护热板法进行校准,特别是对于高热阻导热系数测试中的低热流密度的测量误差较大,这种方法仅适用于工业生产中的粗放式检测。  (5)从上述三种典型隔热材料模拟计算中可以看出,对于高热阻材料的导热系数测试,达到稳态时的热量非常小。这也就是说由于材料的隔热性能太优异,使得只要加载很小的热量就能达到设定的冷热面温差,而这种小热量则对防护热板法护热装置提出了更高要求。由于计量热板所需热量小,热板防护装置引起的温度不平衡会使得漏热效应显著提高,同时也对温差探测器提出更高灵敏度要求。如在上述标准参考材料测试中稳态时的热量为1.375 W,对于这种热量下的可接受的漏热百分比所对应的护热能力,如果应用在上述真空绝热板和高热阻复合材料测试中稳态时的热量中(0.15375 W和0.1923 W),那么相同的护热能力所带来的漏热误差将由于热量降低10倍而使得误差增大10倍。另外,高热阻小热量防护热板法中的漏热问题在单样品测试中特别显著,对于大尺寸样品更为突出,这是因为单样品测量中护热面积为整个样品的横截面加四周侧面,具有巨大的护热面积和漏热通道,而这在双样品测试中则只存在较小面积的四周侧面护热,这也是高精度防护热板法装置普遍采用双样品模式进行测量的原因。因此,为了减小单样品高热阻材料防护热板法测试中大面积漏热问题,必须进一步提高温差探测器的灵敏度,并尽可能减少温差探测器引线数量避免带来相应的引线漏热问题。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创大赛】锂离子电池热性能评价:电池材料导热系数测试方法研究

    【原创大赛】锂离子电池热性能评价:电池材料导热系数测试方法研究

    [color=#cc0000]摘要:本文针对锂离子电池材料导热系数测试方法,评论性概述了近些年的相关研究文献报道,研究分析了这些导热系数测试方法的特点,总结了电池材料导热系数测试技术所面临的挑战,从热分析仪器市场化角度提出了迎接这些挑战的技术途径。[/color][hr/][size=18px][color=#cc0000]1.问题的提出[/color][/size] 锂离子电池在各种应用中用于能量转换和存储,包括消费类电子产品、电动汽车、航空航天系统等。图1-1所示为典型的锂离子电池的结构,锂离子电池主要包括电极材料、电解质材料、隔膜材料、电池堆和热管理高导热相变复合材料。[align=center][img=锂离子电池结构示意图,500,375]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250623319094_6619_3384_3.jpg!w600x450.jpg[/img][/align][align=center][color=#cc0000]图1-1 锂离子电池结构示意图[/color][/align] 导热系数作为电池材料的重要热物理性能参数之一,严重影响着锂离子电池的各种特性。而锂离子电池在使用过程中会面临着电、热、力和质的不同边界条件,这就使得准确测试电池材料导热系数面临着以下几方面的严峻挑战: (1)锂离子电池材料往往涉及含能和储能材料,在不同边界条件下,如在充放电过程中会伴随着生热甚至热解过程,在电池热管理系统中还涉及到相变材料,这就要求要在这些电化学和热化学过程中同时对导热系数进行测量,这要比以往纯热物理变化过程中的导热系数测试技术更为复杂。 (2)导热系数测试方法众多,但针对锂离子电池材料的复杂特征和要求,首先要需要找出合理的测试方法,以保证测量结果的准确性,这对锂离子电池材料和电池热管理尤为重要。 (3)由于锂离子电池材料导热系数测试所涉及的环境条件众多,会涉及众多不同的导热系数测试方法和设备。但在实际工程应用中,还是希望能对测试方法进行优化和开发测试新技术,从而实现用尽量少的测试方法和仪器设备尽可能多的满足各种各种锂离子电池材料的导热系数测试需求。 (4)由于锂离子电池材料还涉及其他热性能参数和表征参数,如比热容和热失控等,这样就要求导热系数测试方法和仪器能与其他热性能参数测试仪器进行集成,使得测试仪器具备多功能性,在一台测试仪器上可实现多个参数的测试。 本文将针对上述存在的问题和挑战,首先对近些年锂离子电池材料导热系数测试技术进行评论性综述,然后在分析研究的基础上,提出比较适合锂离子电池和材料导热系数测量的实用方法。[size=18px][color=#cc0000]2.电池材料导热系数测试方法综述[/color][/size] 在锂离子电池材料级别方面,主要涉及的材料有电极、电解质、隔膜、电极隔膜堆和热管理高导热相变复合材料。 在材料级别方面,已经报道了电极[1]-[4]、电解质[5]、隔膜[6][7]、电极堆[2][8]的导热系数和接触热阻[9][10]测量结果。 如图2-1所示,阴极样品厚度方向上导热系数已使用保护型热流计法(ASTM E1530)进行了测量[1][12],阴极由等体积分数的聚合物电解质以及活性材料和乙炔黑的混合物制成。经测量,在25~150℃之间复合材料导热系数在0.2 ~ 0.5 W/mK范围内变化。由于阴极材料太薄,将多层阴极材料叠加后形成1~2mm厚的可测样品,样品直径为25.4mm,测试压力为10psi以减少多层叠加后带来的接触热阻。[align=center][img=保护型热流计法导系数测试示意图,500,419]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250624120593_5244_3384_3.jpg!w500x419.jpg[/img][/align][align=center]图2-1 保护型热流计法导热系数测试示意图[/align] 如图 2-2所示,展示了锂离子电池电极材料厚度方向导热系数测量装置结构[2]。[align=center][img=,600,428]https://ng1.17img.cn/bbsfiles/images/2020/05/202005252355511656_8624_3384_3.jpg!w600x428.jpg[/img][/align][align=center][color=#cc0000]图2-2 锂离子电池材料厚度方向导热系数测量装置示意图[/color][/align] 装置采用了稳态薄加热片法[13],单层材料面积为431mm2,厚度0.42mm,被测样品为多层叠加形式。还采用了闪光法测量多层锂离子电池薄层材料的热扩散系数,并通过叠层材料不同取样方向来测量得到不同方向的热扩散系数。 时域热反射(TDTR)技术已用于测量LiCoO2薄膜厚度方向导热系数[3],样品厚度约500nm,测量了锂化程度对导热系数的影响。循环过程中原位测量LiCoO2阴极的导热系数表明,去锂化时,导热系数从5.4W/mK可逆地降低至4.7W/mK。 如图2-3所示,采用闪光法确定由各种粒径的合成石墨制成的负电极(NE)材料的导热系数[4][14],样品尺寸为直径约15mm,厚度范围为1.1~9.5mm,实验在室温RT,150和200°C下进行。[align=center][img=激光闪法测量原理,500,467]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250625143698_6549_3384_3.jpg!w500x467.jpg[/img][/align][align=center][color=#cc0000]图2-3 激光闪光法测量原理[/color][/align] 同样,聚合物电解质的导热系数采用图1-1所示保护型热流计法进行了测量[5],测量样品厚度方向上的温差,该温差用于计算总热阻,从中可提取出样品厚度方向上的导热系数。通过刮刀技术制备聚合物电解质薄膜样品,并将其夹在导热仪顶板和底板之间,然后测量温度差。据报道,在25~150℃范围内,导热系数在0.12~0.22W/mK之间变化。 如图2-4所示,隔膜材料面内方向导热系数已使用直流加热法进行了测量[6]。在100级无尘室中从26650锂离子电池中提取隔膜样品,在隔膜样品上沉积了两条相距很小的细钛线,其中一条线用作加热器,而这两条线都用于温度测量,两条线的温度作为时间函数的超快测量用于确定隔膜样品的热性能[15]。室温下的面内方向导热系数为0.5W/mK,在50℃下测量时,这些值没有明显变化。[align=center][img=,500,308]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250625463285_8933_3384_3.jpg!w550x339.jpg[/img][/align][align=center][color=#cc0000]图2-4 隔膜材料比热容和面内方向导热系数测试示意图[/color][/align] 正负电极薄膜材料和隔膜材料厚度方向和面内方向导热系数已使用不同的稳态方法进行了测量[7],实验装置与先前使用的一维热流计法装置非常相似[1]。样品尺寸30mm×30mm,单层膜厚度在24~106um范围内,导热系数测量结果范围为0.19~31W/mK。 如图2-5所示,采用闪光法测量了多层阳极、隔膜和阴极构成的电极隔膜堆的厚度方向和面内方向热扩散系数[8],采用差示扫描量热仪测量了比热容,由此得到电极隔膜堆厚度方向和面内方向的导热系数。另外对从新电池中取出的电极隔膜堆在45℃下循环500次,考察了高温循环对导热系数的影响。[align=center][img=闪光法厚度方向和面内方向测试示意图,690,400]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250626168406_2334_3384_3.jpg!w690x400.jpg[/img][/align][align=center][color=#cc0000]图2-5 (a)闪光法测试厚度方向和面内方向电极隔膜堆热扩散系数示意图;(b)测试过程中样品的取样形式和摆放形式[/color][/align] 除了上述关于导热系数测量的报道外,还报道了采用恒定热流法(ASTM D5470)在不同压力和温度下测量了电极隔膜堆的接触热阻[9][16]。如图2-6所示,测试过程中将被测电极隔膜堆叠层夹在两个铜块之间,并测量了叠层的总热阻。电池隔膜堆包括了涂覆有石墨的铜阳极、涂覆有钴酸锂的铝阴极、聚乙烯/聚丙烯隔膜和电解质,测试温度范围-20~50℃,压力0~250psi。通过测试得出的主要结论包括:与干电池组相比,湿电池组的接触热阻更低,并且电极隔膜堆叠热阻的温度依赖性较弱。但是,此处测得的热阻是总热阻,其中还包括材料自身热阻,而不仅仅是电池不同材料之间的接触热阻。已经测量了使用的电极和铜棒之间的接触热阻,这与电池的原位操作没有特别的关系。[align=center][img=,550,442]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250626475813_5845_3384_3.jpg!w550x442.jpg[/img][/align][align=center][color=#cc0000]图2-6 恒定热流法(ASTM D5470)测量电池材料接触热阻示意图[/color][/align] 如图2-7所示,在另一项工作中,同样采用恒定热流法(ASTM D5470)测量了阴极和隔膜之间的界面热传导[10]。测量结果表明,锂离子电池的热特性很大程度上取决于穿过阴极-隔膜界面的传热,而不是通过电池本身的传热。这种界面热阻约占电池总热阻的88%。[align=center][img=,500,267]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627005929_1859_3384_3.jpg!w600x321.jpg[/img][/align][align=center][color=#cc0000]图2-7 恒定热流法测量电池材料接触热阻示意图:(a)被测样品为电极隔膜堆;(b)纯隔膜样品;(c)纯阴极样品[/color][/align] 如图2-8所示,采用瞬态平面热源法测量了石墨烯填料的混合相变材料[11][17],石蜡相变材料在添加石墨烯前后的导热系数分别为0.25W/mK和45W/mK。[align=center][img=,500,202]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627216467_2507_3384_3.jpg!w600x243.jpg[/img][/align][align=center][color=#cc0000]图2-8 瞬态平面热源法测试探头和测量原理图[/color][/align] 对于锂离子电池材料这类薄膜材料,其导热系数的测量还有一种非常有效的方法就是温度波法[18]。这种方法尽管已推出多年,但应用还是较少,但今后将是一种重要的有效方法。[size=18px][color=#cc0000]3.测试方法的特点[/color][/size] 从上述综述中可以看出,电池材料导热系数采用了以下几种测试方法: (1)稳态保护热流计法:ASTM E1530; (2)稳态护热板法:ASTM C177; (3)时域反射法; (4)闪光法:ASTM E1461; (5)稳态热流计法:ASTM C518; (6)恒定热流法:ASTM D5470; (7)瞬态平面热源法:ISO 22007-2。 (8)温度波法:ISO 22007-3。 从上述所涉及的多个测试方法可以看出,与传统材料导热系数测试不同,锂离子电池材料导热系数测试呈现出以下显著特点: (1)薄膜化:锂离子电池材料基本都呈现出薄膜化的形态,所涉及的则是典型的薄膜导热系数测试技术; (2)各向异性:薄膜化的锂离子电池材料呈现出比较明显的各向异性特征,导热系数在厚度方向和面内方向上表现出明显差别,锂离子电池材料导热系数测试实际上是一个各向异性薄膜材料导热系数测试问题; (3)测试变量多:锂离子电池材料导热系数测试的另一个显著特征是测试条件变量较多,除需在传统的不同温度下进行测试之外,还需要包括其他测试条件,如不同的加载压力、SOC荷电、气氛、振动、湿度等条件,甚至还需在通电状态下。[size=18px][color=#cc0000]4.电池材料导热系数测试方法分析[/color][/size] 根据上述锂离子电池材料导热系数测试的特点,对上述各种测试方法进行分析,以寻找出那些测试方法更能适合锂离子电池材料的测试。 纵观上述测试方法,我们将它们分为稳态法和瞬态法进行分析。[color=#cc0000]4.1. 稳态法[/color] 稳态法主要包括:保护热流计法、护热板法、热流计法和恒定热流法。 稳态法的显著特点就是依据经典的傅里叶稳态传热定律,在被测电池材料薄膜样品的测试方向上形成稳定的一维热流,通过测量不同条件下的温度和热流密度来测定相应的导热系数和接触热阻。 稳态法做为一种传统方法,是在较厚的块体材料热性能基础上发展起来的测试方法,对于较大尺寸和较厚块体样品的导热系数测试非常准确和成熟,如保护热流计法、护热板法、热流计法。为了进行电池薄膜材料测试,需要对薄膜材料进行多层叠加后制成样品才能满足稳态法测量准确性要求,这种多层叠加势必会带来接触热阻的严重影响。鉴于传统稳态法对薄膜材料导热系数测试的局限性,开发的恒定热流法则部分解决了测试问题,通过独特的表面温度测试技术,可以进行百微米厚度量级的薄膜导热系数测量,非常适合测试多层膜构成的电池堆以及高导热相变复合材料。 尽管做了相应的改进,但这种在稳态法上做的任何努力都是在挖掘稳态法的潜力,是对稳态法测试能力区间的下限进行进一步的拓展,测试能力下限毕竟还是非常有限,受到了稳态法自身的制约,特别是受到表面温度和厚度测量准确性的制约,使得这种扩展空间十分有限且效果很难保证。总之,对于锂离子电池材料,暂时比较适合的稳态法是ASTM D5470恒定热流法,可以进行导热系数和热阻测量,样品尺寸适中并比较适合加载各种边界条件。[color=#cc0000]4.2. 瞬态法[/color] 瞬态法主要包括时域反射法、闪光法和瞬态平面热源法。 与稳态法恰恰相反,瞬态法是基于样品材料对热激励动态响应的一种测试方法,被测样品越薄,对热激励的响应越快,所以瞬态法的核心是检测物理量随时间变化快慢的问题。同时,在被测样品对热激励的快速响应过程中,周围环境和其他边界条件的影响反而变得很小。最主要的是,随着技术的发展,块体样品(特别是薄膜材料)对热激励的动态响应时间,在当前的电子检测技术面前都不再属于快速测量范畴,采用目前的各种电子技术手段很容易对热激励响应进行快速和准确测量。从另一方面理解,就是针对材料的热性能测试,瞬态法可以针对不同被测样品厚度范围(响应时间)采用相应响应频率范围的电子仪器和设备来实现准确测量,而目前电子仪器设备的测试能力要远远超过薄膜材料热性能测试的需求。这就是瞬态法自身的最大优势,同时也是目前市场上薄膜材料热性能测试仪器大多采用瞬态法的主要原因。 总之,瞬态法作为非接触是测量方法非常适用于致密性薄膜材料,适合测量非常薄的样品,但对于锂离子电池材料这类较低密度的薄膜材料则会遇到许多测试难题,多孔性的薄膜材料样品需要进行表面处理才能进行导热系数测量,但表面处理往往会带来渗透而改变薄膜样品的热性能。另外,瞬态法的另一个明显不足是很难在被测样品上加载各种相应的边界条件进行导热系数测量,如压力和通电等。但瞬态法中的温度波法则是一个例外,这将在下节中进行介绍。[size=18px][color=#cc0000]5.未来设想:新方法的提出[/color][/size] 从上述对电池材料导热系数测试方法的分析中可以看出,现有方法都不能很好的解决本文开始提到的锂离子电池材料导热系数测试所面临的问题,需要研究和开发新型测试方法才能应对相应的技术挑战。 通过我们的研究,我们认为将上述稳态法和瞬态法相结合的方法将会是一种有效的技术途径,具体的结合形式就是改进型的瞬态温度波法。 ISO 22007-3规定的温度波测试方法[18],主要用于确定薄膜和塑料板在整个厚度方向上的热扩散系数。温度波法是一种通过测量样品前后表面之间温度波的相移来测量薄而扁平样品厚度方向热扩散系数的方法。使用在样品两个表面上溅射或接触的电阻器,一个作为加热器,通过交流焦耳加热产生温度波,另一个作为温度计来检测温度波。ISO 22007-3中给出了温度波法测量装置示意图,如图5-1所示。[align=center][img=温度波法热扩散系数测量装置示意图,690,473]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627416770_5455_3384_3.jpg!w690x473.jpg[/img][/align][align=center][color=#cc0000]图5-1 温度波法热扩散系数测量装置示意图[/color][/align] 从上述描述中可以看出,温度波法测量装置包括彼此面对的微加热器和温度传感器,样品安装在它们之间。向加热器提供弱的正弦电功率信号,在样品表面上产生温度波。温度传感器是一种高灵敏度电阻传感器,它使用前置放大器在将弱信号进入锁相放大器之前对其进行放大。观察到的温度信号是激发温度波和背景温度信号的混合,例如环境的温度。在交流测量中,锁定放大的一个优点是能够提取和分析信号中仅一个指定频率分量的变化,抵消室温变化的影响(误差的主要来源)以及噪声成分实现高灵敏度测量。通过将实际施加的温度波幅度限制在1℃以内或更低,可以有效地抑制对流和辐射,并确保几乎不损坏样品。此外,如果采用极小的传感器尺寸则可识别更小样品区域内的热扩散系数。 总之,采用改进后的温度波法,将具备以下几方面的显著特点: (1)在样品的夹持、厚度控制和测量方面,温度波法与稳态法基本相同,可以在测量过程中对样品加载一定的压力和其他测试条件。同时,温度波法还具备了非接触瞬态法的优点,将温度和热流测量转换为高精度的频率和相位测量,减少了误差,可以实现高灵敏的测量。 (2)尽管ISO 22007-3规定的温度波测试方法是用于测量薄膜材料厚度方向的热扩散系数,但这种方法也可以用于薄膜面内方向上的热扩散系数测量,转换后的测试方法就是经典的Angstrom周期热波法[19]。 (3)从图5-1所示的温度波测量原理可以看出,只要将交流加热形式控制为直流形式,温度波法就变成了传统的热流计法,就可以用于板材样品测量,也就是说可以进行各种规格尺寸袋装和片状锂离子电池热扩散系数和导热系数的测量。 (4)更重要的特点是,改进的温度波法结构小巧,可以与其他热性能测试方法进行集成,这方面的内容将在后续报告中进行介绍。 综上所述,我们选择并开展改进型的温度波法研究,基本可以解决本文前面所提出的锂离子电池材料测试中所面临的几方面难题,同时还兼顾了测试仪器的微型化、集成化和低成本,这将是我们今后热分析仪器发展的一个方向。[size=18px][color=#cc0000]6.参考文献[/color][/size][1] Song, L., and Evans, J. W., 1999, “Measurements of the Thermal Conductivity of Lithium Polymer Battery Composite Cathodes,” J. Electrochem. Soc., 146(3), pp. 869–871.[2] Maleki, H., Al Hallaj, S., Selman, J. R., Dinwiddie, R. B., and Wang, H., 1999, “Thermal Properties of Lithium-Ion Battery and Components,” J. Electrochem. Soc., 146(3), pp. 947–954.[3] Cho, J., Losego, M. D., Zhang, H. G., Kim, H., Zuo, J., Petrov, I., Cahill, D. G., and Braun, P. V., 2014, “Electrochemically Tunable Thermal Conductivity of Lithium Cobalt Oxide,” Nat. Commun., 5, p. 4035.[4] Maleki, H., Selman, J. R., Dinwiddie, R. B., and Wang, H., 2001, “High Thermal Conductivity Negative Electrode Material for Lithium-Ion Batteries,” J. Power Sources, 94(1), pp. 26–35.[5] Song, L., Chen, Y., and Evans, J. W., 1997, “Measurements of the Thermal Conductivity of Poly(Ethylene Oxide)-Lithium Salt Electrolytes,” J. Electrochem. Soc., 144(11), pp. 3797–3800.[6] Vishwakarma, V., and Jain, A., 2014, “Measurement of In-Plane Thermal Conductivity and Heat Capacity of Separator in Li-Ion Cells Using a Transient DC Heating Method,” J. Power Sources, 272, pp. 378–385.[7] Yang, Y., Huang, X., Cao, Z., and Chen, G., 2016, “Thermally Conductive Separator With Hierarchical Nano/Microstructures for Improving Thermal Management of Batteries,” Nano Energy, 22, pp. 301–309.[8] Maleki, H., Wang, H., Porter, W., and Hallmark, J., 2014, “Li-Ion Polymer Cells Thermal Property Changes as a Function of Cycle-Life,” J. Power Sources, 263, pp. 223–230.[9] Ponnappan, R., and Ravigururajan, T. S., 2004, “Contact Thermal Resistance of Li-Ion Cell Electrode Stack,” J. Power Sources, 129(1), pp. 7–13.[10] Vishwakarma, V., Waghela, C., Wei, Z., Prasher, R., Nagpure, S. C., Li, J., Liu, F., Daniel, C., and Jain, A., 2015, “Heat Transfer Enhancement in a Lithium-Ion Cell Through Improved Material-Level Thermal Transport,” J. Power Sources, 300, pp. 123–131.[11] Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., and Balandin, A. A., 2014, “Graphene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries,” J. Power Sources, 248, pp. 37–43.[12] ASTM E1530 Standard Test Method for Evaluating the Resistance to Thermal Transmission by the Guarded Heat Flow Meter Technique[13] ASTM C177 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus[14] ASTM E1461-13 Standard Test Method for Thermal Diffusivity by the Flash Method[15] ASTM C518 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus[16] ASTM D5470 Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials[17] ISO 22007-2 Plastics — Determination of thermal conductivity and thermal diffusivity — Part 2: Transient plane heat ource (hot disc) method[18] ISO 22007-3, Plastics – Determination of thermal conductivity and thermal diffusivity – Part 3: Temperature wave analysis method.[19] A. J. Angstrom, Ann. Physik Leipzig 114, 513 (1861).[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 试验验证:纤维类隔热材料有效导热系数与真导热系数相互关系

    试验验证:纤维类隔热材料有效导热系数与真导热系数相互关系

    [quote][color=#ff0000]摘要:本文针对二氧化硅Q纤维、氧化铝Saffil纤维、APA纤维、氧化锆ZYF纤维和OFI纤维五种纤维类隔热材料,分别采用大温差的高温热流计法和小温差的瞬态步进加热法进行高温和不同气压条件下测试,通过试验得到的真导热系数和有效导热系数测试结果数据,验证真导热系数与有效导热系数之间的关系以及相互转换方法,证明了这种相互关系和转换方法的有效性。[/color][/quote]关键词:耐火材料、隔热材料、有效导热系数、真导热系数、导热系数、大温差、测试方法[align=center][b][color=#3333ff]注:文中有大量公式,但不便在网页中进行完整显示。本文的PDF格式完整版本,已在本文的结尾处附上。[/color][/b][/align][b][color=#FF0000]1. 引言[/color][/b] 对于各种耐火隔热材料的高温导热系数测量,目前常用的测试方法如图 1‑ 1所示。这些测试方法一般分为稳态法和瞬态法,但这种分类方法在实际应用中并没有多少实际意义。[align=center][img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181530195080_6467_3384_3.png!w690x216.jpg[/img][/align][align=center][color=#FF0000]图 1‑ 1 耐火隔热材料高温导热系数测试方法分类[/color][/align] 为了便于对耐火隔热材料的导热系数进行正确的描述和理解,便于对上述各种测试方法进行比较,我们对测试方法按照测试过程中样品材料上的温度梯度大小进行分类,大温度梯度归类为大温差测试方法,如热流计法和准稳态法;小温度梯度或无温度梯度归类为小温差测试方法,如保护热板法、热线法和闪光法。由此可以很容易确定出以下导热系数实际物理意义及其定义: (1)小温差或无温差(50℃)测试方法测量得到的是“真导热系数”。 (2)大温差测试方法测量得到是“有效导热系数”。 由于测试中所形成的温差不同,使得热量在样品中的热传递形式也不同,因此在不同温差下进行测量所得到的“真导热系数”与“有效导热系数”并不相同,这在对耐火隔热材料测试方法选择和测量结果数据的应用中要特别注意,否则会出现严重问题。 关于不同温差下测量得到的真导热系数和有效导热系数两者之间的转换关系,本司已发布研究报告进行过专门的理论分析论述。本文将特别针对五种不同的纤维类隔热材料,分别采用大温差的高温热流计法和小温差的瞬态步进加热法进行了高温和不同气压条件下的测试,用试验数据来验证真导热系数与有效导热系数之间的关系以及相互转换方法。[b][color=#FF0000]2. 纤维类隔热材料样品[/color][/b] 针对以下五种纤维隔热材料分别测量了真导热系数和有效导热系数,这五种纤维隔热材料参数和相应的测试结果数据来自文献。 Q纤维:Q纤维是硅基隔热材料,具有很好的隔热性能。纤维平均直径为1.3 um,Q纤维隔热材料一般密度为48.6、68.8和95.6 kg/m3,与之对应材料厚度分别为13.3、19.1和13.3 mm。 Saffil纤维:Saffil纤维是氧化铝基隔热材料,平均纤维直径为4.5 um,一般密度在24.2~96.1 kg/m3范围内,所对应的样品厚度在13.3~39.3 mm之间。 APA纤维:APA纤维也是一种氧化铝基纤维隔热材料,平均纤维直径为4.5 um、密度为107 kg/m3,APA隔热材料为大约1 mm厚的板材,而25.4 mm厚的样品被用于有效导热系数测量。 ZYF氧化锆纤维:还采用了氧化钇稳定氧化锆(ZYF)纤维隔热材料,其纤维平均直径为6 um、密度为 267 kg/m3。ZYF隔热材料为厚度大约为2.5 mm厚的薄板,在工程应用中可多层叠加使用。 OFI纤维:OFI是一类高效乳白色纤维隔热材料,是在各种纤维毡中嵌入陶瓷遮光颗粒而得到,纤维基体和陶瓷遮光剂的比例可以量身定做为特定飞行轨道/空间气动加热载荷提供一个优化的隔热效果。在纤维隔热垫中嵌入高效陶瓷遮光剂颗粒可以显著降低纤维隔热材料热传递中的辐射分量,从而使OFI成为低气压应用中非常好的隔热性能。本研究中所采用的OFI纤维隔热材料是通过在Saffil纤维隔热材料中嵌入遮光剂,总密度为202.4 kg/m3。[b][color=#FF0000]3. 测试方法及其相互关系[/color][color=#FF0000]3.1. 测试方法[/color][/b] 针对上述五种纤维隔热材料,测试方法分别选用了瞬态步进加热法和高温热流计法,这两种方法都是测量片状或板状样品厚度方向上的导热系数。 高温热流计法测试中样品的冷面温度基本保持在50℃以下,而样品热面温度则根据设定不断变化,样品热面与冷面之间的温差可以达到100~1400℃,样品尺寸为300×300×(10~70 mm)左右,测量原理如图 3‑ 1所示,其它详细内容可参考上海依阳实业有限公司官网TC-HFM-1000 型高温热流计法导热仪介绍以及美国NASA Langley研究中心热真空试验装置的相关报道。[align=center][img=,690,195]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181537268969_3588_3384_3.png!w690x195.jpg[/img][/align][align=center][color=#FF0000]图 3‑ 1 稳态热流计法高温导热系数测量原理图[/color][/align] 瞬态步进加热法测试中样品上的温差小于10℃,采用相对较小的样品(φ50mm×3~5mm)进行温度高达1500℃下的高温热扩散系数测量,其基本原理如图 3‑ 2所示,其它详细内容可参考相关文献报道。[align=center][img=,690,418]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181537448898_2666_3384_3.png!w690x418.jpg[/img][/align][align=center][color=#FF0000]图 3‑ 2 瞬态步进加热三点测温法高温热扩散系数测量原理图[/color][/align][b][color=#FF0000]3.2. 真导热系数和有效导热系数相互关系[/color][/b] 根据瞬态步进加热法和稳态热流计法法分别得到的真导热系数和有效导热系数及其相互关系,在上海依阳的研究报告“耐火隔热材料测试中有效导热系数与真导热系数的相互关系研究”中进行了详细论述。这里仅给出相对于温度变量的最终关系式,即有效导热系数λeff与真导热系数λtrue关系式为:[align=center][img=,500,65]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181538415798_7481_3384_3.png!w690x90.jpg[/img][/align] 式中的TH和TC分别代表大温差有效导热系数测量中样品的热面温度和冷面温度,T代表小温差真导热系数测量中的样品平均温度。通过公式(3.2.1)所定义的真导热系数与有效导热系数的关系,就可以进行这两种导热系数之间的转换,即通过大温差的有效导热系数测量推导出相应的小温差时的真导热系数,或根据小温差真导热系数测量推导出大温差时的有效导热系数。[b][color=#FF0000]4. 真导热系数与有效导热系数关系的试验验证[/color][/b] 以上介绍了真导热系数与有效导热系数的关系以及相互推导的具体方法,但这些只是根据一些假设进行的理论计算,关系和推导方法的正确性和准确性还需通过试验进行验证。 为了进行试验验证,选择了相同的耐火隔热材料进行取样。对于大温差的有效导热系数测量选择了高温热流计法导热系数测试方法和测量装置,对于小温差的真导热系数测量选择了步进加热三点测温测试方法和高温热扩散系数测量装置,对于无温差的真导热系数测量选择了热线法和高温导热系数测量装置。由于没有实际进行过对相同耐火隔热材料导热系数大温差和小温差的对比测试,因此选择了目前仅有的公开报道的国外文献报道数据进行计算对比。[b][color=#FF0000]4.1. 二氧化硅(Silica)Q纤维隔热材料[/color][/b] 密度为48.6kg/m^3的Q纤维在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 1中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 2中的红线所示。[align=center][img=,690,404]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181539095327_6858_3384_3.png!w690x404.jpg[/img][/align][align=center][color=#FF0000]图 4-1 在0.001 Torr氮气气压下48 kg/m3密度Q纤维样品有效导热系数测量结果与真导[/color][/align][align=center][img=,690,415]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181539230128_5966_3384_3.png!w690x415.jpg[/img][/align][align=center][color=#FF0000]图 4-2 在0.001 Torr氮气气压下48 kg/m3密度Q纤维样品真导热系数测量结果与有效导[/color][/align] 有效导热系数λeff随样品热面温度TH变化的拟合公式为:[align=center][img=,600,41]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181539395786_4790_3384_3.png!w690x48.jpg[/img][/align] 真导热系数λtrue随样品平均温度T变化的拟合公式为:[align=center][img=,600,40]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181540044886_2962_3384_3.png!w690x46.jpg[/img][/align][color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将公式(4.1.2)代入公式(3.2.1),然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC= 20.5℃。得到由有效导热系数拟合公式:[align=center][img=,600,39]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181540571338_7312_3384_3.png!w690x45.jpg[/img][/align] 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 1所示中的蓝线所示。由图 4‑ 1所示的对比结果可以看出,小温差法测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的很好,只是在热面温度为26℃时两者相差较大为18.6%,这主要是因为在大温差热流计法测量过程中的冷面温度为20.5℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,偏差百分比都小于2%。由此可见,对于Q纤维这种材料,在高真空条件下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的很好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即:[align=center][img=,500,44]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181541199078_3032_3384_3.png!w669x60.jpg[/img][/align] 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。 将式(4.1.4)直接代入与式(3.2.1)可得:[align=center][img=,600,64]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181541368044_1154_3384_3.png!w690x74.jpg[/img][/align] 将图 4‑ 1中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式(4.1.5)中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式:[align=center][img=,600,33]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181541566218_1668_3384_3.png!w690x38.jpg[/img][/align] 将有效导热系数测量结果转换成真导热系数的计算公式(4.1.6)以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图4-2中的蓝线所示。由图4-2所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的很好,全温度范围内偏差百分比都小于2.6%。由此可见,对于Q纤维这种材料,在高真空条件下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的很好。[b][color=#FF0000]4.2. 氧化铝(Alumina)Saffil纤维隔热材料(高真空下测试)[/color][/b] 密度为48kg/m^3的Saffil纤维在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 3中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 4中的红线所示。[align=center][img=,690,427]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181542233158_5453_3384_3.png!w690x427.jpg[/img][/align][align=center][color=#FF0000]图 4-3 在0.001 Torr氮气气压下48 kg/m3密度Saffil纤维样品有效导热系数测量[/color][/align][align=center][img=,690,423]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181542412398_5020_3384_3.png!w690x423.jpg[/img][/align][align=center][color=#FF0000]图 4-4 在0.001 Torr氮气气压下48 kg/m3密度Saffil纤维样品真导热系数测量[/color][/align] 在0.001 Torr氮气气压下48 kg/m3密度Saffil纤维在有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在0.001 Torr氮气气压下48 kg/m3密度Saffil纤维真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将Saffil纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=20.8℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 3中的红线所示。由图 4‑ 3所示的对比结果可以看出,小温差法测试结果转换为大温差有效导热系数后,比大温差测试结果大出很多,最大偏差百分比为74%,并随着热面温度升高,偏差百分比逐渐减小至9%左右。具体原因不详,有可能是两种方法测试结果有问题。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 3中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 4中的蓝线所示。由图 4‑ 4所示的对比结果可以看出,大温差法有效导热系数测试结果转换为小温差的真效导热系数后,要比小温差测试结果小很多,最大偏差百分比为311%,并随着热面温度升高,偏差百分比逐渐减小至3%左右。这个规律与上述真导热系数转换为有效导热系数的规律基本一致,就是与有效导热系数相关的数据总是比真导热系数相关数据低很多。具体原因不详,有可能是某种方法测试结果有问题。[b][color=#FF0000]4.3. 氧化铝(Alumina)Saffil纤维隔热材料(大气压下测试)[/color][/b] 密度为48kg/m^3的Saffil纤维在760 Torr和100 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 5中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 6中的红线所示。[align=center][img=,690,388]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181542549828_1222_3384_3.png!w690x388.jpg[/img][/align][align=center][color=#FF0000]图 4-5 48 kg/m3密度Saffil纤维样品在100 Torr氮气气压下有效导热系数测量结果[/color][/align][align=center][img=,690,426]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181543092530_4622_3384_3.png!w690x426.jpg[/img][/align][align=center][color=#FF0000]图 4-6 48 kg/m3密度Saffil纤维样品在760 Torr氮气气压下真导热系数测量结果[/color][/align] 在100 Torr氮气气压下48 kg/m3密度Saffil纤维在有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在700 Torr氮气气压下48 kg/m3密度Saffil纤维真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将Saffil纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=20.8℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 5中的蓝线所示。由图 4‑ 5所示的对比结果可以看出,小温差真导热系数测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的很好,只是在热面温度为23.6℃时两者相差略微偏大为5.2%,这主要是因为在大温差热流计法测量过程中的冷面温度为24.35±10.4℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,偏差百分比都小于5%。由此可见,对于Saffil纤维这种材料,在低真空条件接近一个大气压环境下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的很好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 5中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 6中的蓝线所示。由图 4‑ 6所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的较好,全温度范围内偏差百分比都小于5%,只是在最低温度和最高温度处偏差分别为9%和6.4%。由此可见,对于Saffil纤维这种材料,在低真空条件接近一个大气压环境下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的很好。[color=#FF0000][b]4.4. APA纤维隔热材料[/b][/color] 密度为107kg/m^3的APA纤维隔热材料在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 7中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 8中的红线所示。[align=center][img=,690,388]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181543266391_5463_3384_3.png!w690x388.jpg[/img][/align][align=center][color=#FF0000]图 4-7 氮气气压0.001 Torr下107 kg/m3密度APA纤维样品在有效导热系数测量结果[/color][/align][align=center][img=,690,425]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181543387494_7814_3384_3.png!w690x425.jpg[/img][/align][align=center][color=#FF0000]图 4-8 氮气气压0.001 Torr下107 kg/m3密度APA纤维样品在真导热系数测量结果[/color][/align] 在0.001 Torr氮气气压下107kg/m^3的APA纤维隔热材料有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在0.001 Torr氮气气压下107kg/m^3的APA纤维隔热材料真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将APA纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=19.05℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 7中的蓝线所示。由图 4‑ 7所示的对比结果可以看出,小温差真导热系数测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的较好,只是在热面温度为26.8℃时两者相差略微偏大为22.1%,这主要是因为在大温差热流计法测量过程中的冷面温度为19.05±13.6℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,偏差百分比随着热面温度升高而变大,在最高热面温度1128℃是偏差为14.6%。由此可见,对于APA纤维这种材料,在高真空条件0.001 Torr氮气气氛下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的较好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 7中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 8中的蓝线所示。由图 4‑ 8所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的很好,全温度范围内偏差百分比都小于6%,只是在常温23.6℃处偏差最大为8%。由此可见,对于APA纤维这种材料,在高真空条件0.001 Torr氮气环境下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的很好。[b][color=#FF0000]4.5. 氧化锆ZYF纤维隔热材料[/color][/b] 氧化锆ZYF纤维隔热材料在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 9中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 10中的红线所示。[align=center][img=,690,382]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181543521992_3974_3384_3.png!w690x382.jpg[/img][/align][align=center][color=#FF0000]图 4-9 氮气气压0.001 Torr下ZYF纤维样品在有效导热系数测量结果与真导热系数测量结果转[/color][/align][align=center][img=,690,414]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181544043755_4332_3384_3.png!w690x414.jpg[/img][/align][align=center][color=#FF0000]图 4-10 氮气气压0.001 Torr下ZYF纤维样品在真导热系数测量结果与有效导热系数测量结[/color][/align] 在0.001 Torr氮气气压下ZYF纤维隔热材料有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在0.001 Torr氮气气压下ZYF纤维隔热材料真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将氧化锆ZYF纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=22.05℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 9中的蓝线所示。由图 4‑ 9所示的对比结果可以看出,小温差真导热系数测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的较好,只是在热面温度为25.9℃时两者相差略微偏大为83.5%,这主要是因为在大温差热流计法测量过程中的冷面温度为22.05±0.5℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,最大偏差为6%。由此可见,对于ZYF纤维这种材料,在高真空条件0.001 Torr氮气气氛下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的很好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 9中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,由此得到转换后的真导热系数表达式: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 10中的蓝线所示。由图 4‑ 10所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的很好,全温度范围内偏差百分比都小于7.3%。由此可见,对于ZYF纤维这种材料,在高真空条件0.001 Torr氮气环境下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的很好。[b][color=#FF0000]4.6. OFI纤维隔热材料[/color][/b] 密度为202.4kg/m^3的OFI纤维隔热材料在0.001 Torr氮气气压环境下进行测试,稳态热流计法有效导热系数测量结果如图 4‑ 11中的红线所示,瞬态步进加热法真导热系数测试结果如图 4‑ 12中的红线所示。[align=center][img=,690,380]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181544213688_4307_3384_3.png!w690x380.jpg[/img][/align][align=center][color=#FF0000]图 4-11 氮气气压0.001 Torr下OFI纤维样品在有效导热系数测量结果与真导热系数测量结果[/color][/align][align=center][img=,690,416]http://ng1.17img.cn/bbsfiles/images/2018/02/201802181544329578_5158_3384_3.png!w690x416.jpg[/img][/align][align=center][color=#FF0000]图 4-12 氮气气压0.001 Torr下OFI纤维样品在真导热系数测量结果与有效导热系数测量结[/color][/align] 在0.001 Torr氮气气压下OFI纤维隔热材料有效导热系数λeff随样品热面温度TH变化测量值的拟合公式为: 在0.001 Torr氮气气压下OFI纤维隔热材料真导热系数λtrue随样品平均温度T变化测量值的拟合公式为:[color=#FF0000](1)真导热系数转换为有效导热系数[/color] 将OFI纤维真导热系数拟合公式代入公式,然后进行积分求解就可以得到相应的有效导热系数,其中设置样品冷面温度为TC=22.05℃。得到由有效导热系数拟合公式: 将真导热系数测量结果转换成有效导热系数的公式以样品热面温度为横坐标绘制有效导热系数曲线,并与有效导热系数大温差测量结果进行比较,如图 4‑ 11中的蓝线所示。由图 4‑ 11所示的对比结果可以看出,小温差真导热系数测试结果转换为大温差有效导热系数后,与大温差测试结果吻合的非常好,只是在热面温度为24.1℃时两者相差略微偏大为10.8%,这主要是因为在大温差热流计法测量过程中的冷面温度为22.05±0.5℃,温差较小使得热流密度较小所带来的误差。而在其它所有热面温度下(100℃以上)有效导热系数相比,最大偏差为7%,而且随着热面温度的上升,两者相差百分比越来越小。由此可见,对于OFI纤维这种材料,在高真空条件0.001 Torr氮气气氛下,小温差真导热系数测试结果转换为大温差有效导热系数测试结果后,与大温差有效导热系数实际测试结果吻合的非常好。[color=#FF0000](2)有效导热系数转换为真导热系数[/color] 假设真导热系数随温度变化关系是一个一元三次多项式,即: 式中的B0、B1、B2和B3是与材料自身特性有关的待定常数。将式直接代入与式可得: 将图 4‑ 11中红线所示的一系列热面温度TH和冷面温度TC下测量得到的对应有效导热系数测试数据代入公式中,得到一系列有关四个未知数B0、B1、B2和B3的关系式。通过多元回归分析,就可以得到这四个未知数,即: 将有效导热系数测量结果转换成真导热系数的计算公式以样品平均温度为横坐标绘制真导热系数曲线,并与真导热系数小温差测量结果进行比较,如图 4‑ 12中的蓝线所示。由图 4‑ 12所示的对比结果可以看出,大温差法测试结果转换为小温差的真效导热系数后,与小温差测试结果吻合的非常好,全温度范围内偏差百分比都小于4%,只是在较低热面温度(100℃以下)时偏差最大为8.9%。由此可见,对于这种OFI纤维隔热材料,在高真空条件0.001 Torr氮气环境下,大温差有效导热系数测试结果转换为小温差真导热系数测试结果后,与小温差真导热系数实际测试结果吻合的非常好。[b][color=#FF0000]5. 结论[/color][/b] 通过对五种纤维类隔热材料的六组大温差和小温差测试试验结果可以看出,尽管做了一些假设,并忽略了辐射传热对整体热传递的影响,但所建立的有效导热系数与真导热系数关系式成立,并且对这五种纤维类隔热材料应用这种关系是有效的。[b][color=#FF0000]6. 参考资料[/color][/b](1)Daryabeigi K. Heat transfer modeling and validation for optically thick alumina fibrous insulation//Proceedings of the 30th International Thermal Conductivity Conference and the 18th International Thermal Expansion Symposium. USA: NASA Langley Research Center, 2009: 23681.(2)Daryabeigi K, Cunnington GR, Knutson JR. Combined heat transfer in high-porosity high-temperature fibrous insulation: Theory and experimental validation. Journal of thermophysics and heat transfer. 2011 Oct 25 (4):536-46.(3) Gembarovic, J., and Taylor, R. E., “A Method for Thermal Diffusivity Determination of Thermal Insulators,” International Journal of Thermophysics, Vol. 28, No. 6, 2007, pp. 2164-2175.[hr/]

  • 【原创大赛】圆柱形锂离子电池径向导热系数测试:传热模型的有限元仿真和验证

    【原创大赛】圆柱形锂离子电池径向导热系数测试:传热模型的有限元仿真和验证

    [color=#cc0000][size=18px]摘要:本文特别针对圆柱形锂离子电池的径向导热系数,开展了测试方法研究。在不破坏电池和只有电池圆周外表面的边界条件下,分别采用了恒温和恒流两种测试方法建立了相应的测试模型和解析表达式,并通过有限元仿真来验证了测试模型和解析表达式的准确性,为测试仪器的设计提供了有效指导,为在其他规格锂电池热性能测试中的推广有重大意义。[/size][/color][hr/][size=24px][color=#cc0000]1. 问题的提出[/color][/size][size=18px]  锂离子电池有多种规格和外形尺寸,所以锂电池的热性能参数测量会涉及多种测试方法和测试仪器设备。我们首先选择圆柱形锂离子电池的热性能测试开展研究,特别是针对圆柱形锂离子电池径向导热系数测试技术开展研究,主要出于以下几方面的考虑:[/size][size=18px]  (1)圆柱形锂离子电池是目前最常见的电池类型之一,应用十分广泛,而圆柱形锂电池径向导热系数测试技术并未成熟,国内外都还处于阶段,所报道的各种测试方法误差较大,无法满足电池热模型和热管理的需求。[/size][size=18px]  (2)锂电池的圆柱形结构非常特殊,特别在径向方向上只有一个圆周面,在不破坏电池条件下进行热性能测试,则只有一个圆周外表面能用来进行产生相应的测试边界条件,这往往是热性能参数测试技术中难度最大的测试。如果能够在圆柱形电池径向方向实现热性能参数测试,并能够达到满足的测量精度,则可以将测试技术很容易推广应用到棱柱形和袋装电池。[/size][size=18px]  (3)圆柱形锂离子电池中的自热热量通常是最低的,要低于棱柱形和袋装电池中的热量。同样,所研究的测试方法如果能够在热量较低的圆柱形锂电池上获得满意的测量精度,则可以在棱柱形和袋装电池的高热量测量中得到更高的测量精度。[/size][size=18px]  (4)另外,通过圆柱形锂离子电池径向导热系数测试技术的研究,可以尝试实现锂电池热性能测试仪器的多功能化、模块化、快速化和低造价。[/size][size=18px]  本文将特别针对圆柱形锂离子电池的径向导热系数,开展测试方法研究。在无损电池和只有电池圆周外表面的边界条件下,建立相应恒温和恒流两种测试模型和解析表达式,并通过有限元仿真来验证测试模型和解释表达式的准确性,预期为测试仪器的设计提供有效指导。[/size][size=24px][color=#cc0000]2. 圆柱形锂电池径向导热系数测试解析模型[/color][/size][size=18px]  根据圆柱形锂电池的内部结构和传热方向,圆柱形锂电池的径向传热方式都是一个典型的径向圆周四散方式,因此采用柱坐标形式来描述圆柱形电池的测试模型,如图2-1所示,而其他形式的测试模型都无法准确描述圆柱形电池的传热方式。对于一个半径为R、高度为H的圆柱形锂电池,其径向导热系数测试的边界条件只能产生在r = R处的圆周外表面上。[/size][align=center][size=18px][img=,250,311]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070846574960_9557_3384_3.png!w533x664.jpg[/img][/size][/align][align=center][size=18px][color=#cc0000]图2-1 圆柱形锂电池径向导热系数测试模型[/color][/size][/align][size=18px]  如果假设圆柱形电池的上下两个端面为绝热面,那么电池外表面上的边界条件无外乎传热学中的三类边界条件,即恒定温度、线性升温和交变温度。由于被测电池尺寸相对较大,而且交变温度这种第三类边界条件的较难实现和解析模型非常复杂,因此我们只针对恒定温度和线性升温这第一和第二类边界条件开展相应的测试方法研究。[/size][size=18px]  对于图2-1所示的柱坐标径向加热情况,热量仅沿径向流动。因此,温度分布在空间上是一维的,热流也是一维热流,并假设径向导热系数是均匀的,并且在较小的温度区间内与温度无关。[/size][size=18px][color=#cc0000][b]2.1. 第一类边界条件:恒温测试解析模型[/b][/color][/size][size=18px]  第一类边界条件是表面温度恒定,也就是在测试过程中,起始温度为T0的电池突然放置在温度Ts的环境中,而且此环境温度要高于起始温度T0,并保持恒定不变,由此热量通过电池径向进行传递,而在电池两个端部处于绝热状态。[/size][size=18px]  以第一类边界条件进行的恒温测试,这里假设圆柱形电池是一个无限长棒传热模型,电池内的热传导方程为:[/size][align=center][size=18px][img=,690,128]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070851382180_6133_3384_3.png!w690x128.jpg[/img][/size][/align][size=18px]  其中T(r,t)是电池内坐标r处在时刻的温度,ρ、kr和Cp分别是电池的密度、径向导热系数和比热容。那么方程(1)的解为:[/size][align=center][size=18px][img=,690,100]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070852022891_578_3384_3.png!w690x100.jpg[/img][/size][/align][size=18px]  特征值λn由方程J0(λn)的根获得,J0表示第一类0阶贝塞尔函数。[/size][size=18px]  当加热时间足够长之后,方程(2)可以简化为:[/size][align=center][size=18px][img=,690,75]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070852313819_8684_3384_3.png!w690x75.jpg[/img][/size][/align][size=18px]  其中αr=kr/(ρCp)为径向热扩散系数。对方程(3)两端去对数后,得:[/size][align=center][size=18px][img=,690,69]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070853086401_7706_3384_3.png!w690x69.jpg[/img][/size][/align][size=18px]  由此可见,方程(4)是一个随时间变化的线性方程,通过其斜率m中包含着感兴趣的径向热扩散系数。对于圆柱形电池这种柱状坐标内的热传递,此时A1=1.6021,λ1=2.4048,那么方程(4)的斜率为:[/size][align=center][size=18px][img=,690,53]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070853455432_5404_3384_3.png!w690x53.jpg[/img][/size][/align][size=18px]  由此,可以通过测量获得内部温升变化数据,经过对数转换后得到一条直线,由此直线的斜率就可以通过方程(5)计算得到电池的径向热扩散系数。[/size][size=18px]  在测试过程中不允许破坏圆柱形锂电池,因此在实际测试中并不能在电池内部上插入温度传感器获得T(r,t)测量值,但可以采用热流传感器在电池外表面获得热流随时间变化曲线。同样,通过对此恒温加热过程中的热流密度变化曲线取对数,其对数随时间的变化曲线也是一条斜率为方程(5)的直线。具体推导过程不再详述。[/size][size=18px]  在此恒温测试过程中,电池比热容随温度的变化为:[/size][align=center][size=18px][img=,690,39]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070854129544_7533_3384_3.png!w690x39.jpg[/img][/size][/align][size=18px]  其中A代表电池圆周侧面受热面积,q(t)代表热流计检测的热流密度,m代表圆柱形电池的质量,dT/dt代表升温速率。[/size][size=18px]  假设在此温度变化范围内比热容是一个与温度无关的常数,那么在圆柱形电池从起始温度投入到环境温度T0中并最终达到稳定,则有:[/size][align=center][size=18px][img=,690,58]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070854434347_7090_3384_3.png!w690x58.jpg[/img][/size][/align][size=18px]  这样,通过得到的径向热扩散系数和比热容,结合圆柱形电池密度ρ的单独测量值,则可以计算得到径向导热系数kr:[/size][align=center][size=18px][img=,690,39]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070854588515_1777_3384_3.png!w690x39.jpg[/img][/size][/align][size=18px][color=#cc0000][b]2.2. 第二类边界条件:线性升温测试解析模型[/b][/color][/size][size=18px]  第二类边界条件是表面温度线性升温,也就是在测试过程中,电池外表面加载恒定热量来加热电池,并假设在整个加热过程中恒定热量不会随时间发生损失。另外由于圆柱形电池是轴心对称结构,电池四周侧面加热形式会使得电池轴心线上是一个绝热状态。由此,电池内的热传导方程和相应的边界条件为:[/size][align=center][size=18px][img=,690,209]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070855152111_5660_3384_3.png!w690x209.jpg[/img][/size][/align][size=18px]  其中θ(r,t)是高于起始温度T0的温升θ(r,t)=T(r,t)-T0,T(r,t)是电池内坐标r处在时刻t的温度,ρ、kr和Cp分别是电池的密度、径向导热系数和比热容。[/size][size=18px]  由于只有恒定热流进入系统,没有任何热损失,这个测试模型并没有一个稳定的解,从理论上讲,电池温度会随着时间不断上升。实际上,随着加热时间的增大,辐射等效应会限制电池温度的无限升高,而电池的热性能测试只在相对较低的温度范围内进行,辐射等效应可以忽略不计。因此,θ(r,t)的表达式可以通过电池的平均温度(用θm(t)表示)必须随时间线性上升而导出。已经证明,对于这种表面温度线性变化的瞬态问题,由θ(r,t)减去θm(t)得到的子问题有一个解,该解包括稳态分量s(r)和指数衰减瞬态分量w(r,t)。[/size][size=18px]  平均温升θm(t)可通过考虑电池质量的总比热容来确定。通过使用线性叠加和特征函数展开来解决剩余的子问题,最终的解被导出为:[/size][align=center][size=18px][img=,690,155]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070855468233_8537_3384_3.png!w690x155.jpg[/img][/size][/align][size=18px]  方程(10)表明,在电池中任意处的温升有三个分量:第一即随时间线性增加的分量,其斜率与比热容成反比;第二是一个随时间不变的空间变化项,与径向导热系数成反比;第三是指数衰减项,其时间常数与径向热扩散系数成反比,当时间常数足够大之后,也就是说加热时间足够长,第三项的指数衰减项可以忽略不计,也就是说此时电池内部温度变化进入了准稳态过程。一般来说,对于第二类边界条件的传热问题,基本上都是一个准稳态问题。[/size][size=18px]  在测试过程中探测的是电池表面(r=R)温度,在进入准稳态过程后,那么方程(10)可以改写为:[/size][align=center][size=18px][img=,690,63]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070856126333_2457_3384_3.png!w690x63.jpg[/img][/size][/align][size=18px]  由此可见,在进入准稳态过程后,电池表面的温升随时间变化将是一个以时间为变量的线性函数。对于这种恒定热流径向加热的测量方法,如果电池密度可以单独测量,并假设在小的温度范围内密度不随温度发生变化,那么就可以利用此线性温升函数的斜率和截距同时测定电池的比热容和径向导热系数。[/size][size=24px][color=#cc0000]3. 有限元仿真模拟[/color][/size][size=18px]  从上述获得的不同边界条件时的表面温度解析表达式,可以采用恒温和恒流两种不同测试方法来实现对电池径向导热系数和比热容的测量。依据测试方法进行测试仪器设计和实施具体测试试验前,还需进行有限元仿真模拟计算,一方面是验证测试模型的准确性,另一方面是确定被测电池样品之外其他辅助测量部件对测试模型的影响,由此对测试仪器设计、具体试验方法和校准修正进行指导。[/size][size=18px]  在有限元仿真模拟中,选择了与电池热性能相近的各向同性塑料类材料。这样做的目的一方面是有准确和可溯源的材料,另一方面是可以采用其他测试方法(如瞬态平面热源法和热流计法等)对这些材料进行准确测量以便于对比。所选材料为ABS塑料,其密度为1020kg/m3,导热系数为0.2256W/mK,比热容为1386J/kgK。有限元仿真为随时间变化的瞬态形式,起始温度为20℃,总加热时间为600s。[/size][size=18px][color=#cc0000][b]3.1. 恒温加热测试方法的模拟[/b][/color][/size][size=18px]  在恒温加热测试的仿真模拟中,为缩小瞬态仿真的计算量,根据圆柱形电池的轴对称性取圆柱形电池的四分之一进行仿真。仿真对象完全按照18650圆柱形电池尺寸设计(直径26mm,高度65mm),考虑到要在电池表面安装薄膜热流计,设计了一个厚度为0.1mm的纯铜圆筒来代表实际测试中紧贴电池表面的绝缘膜和薄膜热流计等,最终设计的测试仿真模型如图3-1所示。[/size][align=center][size=18px][img=,200,442]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070848153976_8892_3384_3.png!w323x715.jpg[/img][/size][/align][align=center][size=18px][color=#cc0000]图3-1 有限元仿真模型[/color][/size][/align][size=18px]  当圆柱形电池从起始温度20℃开始在表面温度突然提升至25℃后,在电池整体达到温度稳定后降温至20℃。对于这个完整的加热过程,仿真结果如图3-2所示,显示了仿真计算得到的电池轴心温度和电池表面热流密度随时间变化曲线。图3-3显示了表面热流密度变化曲线及其对数形式的对比。[/size][align=center][size=18px][img=,690,407]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070848451495_7520_3384_3.png!w690x407.jpg[/img][/size][/align][align=center][size=18px][color=#cc0000]图3-2 恒温加热方法有限元仿真结果:电池轴心温度和表面热流密度变化曲线[/color][/size][/align][align=center][size=18px][color=#cc0000][img=,690,407]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070849029885_9003_3384_3.png!w690x407.jpg[/img][/color][/size][/align][align=center][size=18px][color=#cc0000]图3-3 恒温加热方法有限元仿真结果:表面热流密度变化曲线及其对数形式[/color][/size][/align][size=18px]  从图3-3可以看出,电池表面热流密度曲线的对数形式是一条直线,其斜率为0.005323。根据方程(5),则可以计算得到径向热扩散系数为1.556×10-7m2/s,与仿真计算的理论值1.596×10-7m2/s相差了2.5%。同样,对获得的表面热流密度按照时间进行积分,根据方程(7),则可以计算得到比热容为1378J/kgK,与仿真计算的理论值1386J/kgK相差了0.6%。根据仿真得到的热扩散系数和比热容,则可以计算的电池径向导热系数为0.2186W/mK,与理论值0.2256W/mK相差了3.1%。[/size][size=18px]  从上述仿真结果可以明显看出,电池径向导热系数测量结果的误差主要来自径向热扩散系数,这是因为在仿真计算的测试模型中考虑了铜制薄膜所带来的影响。如果不考虑铜制薄膜而只对电池本身进行仿真,径向热扩散系数的相对误差为1.3%,比热容的相对误差为0.1%,径向导热系数的相对误差为1.3%。[/size][size=18px]  通过以上恒定温度测试方法的仿真模拟,可以得到以下结论:[/size][size=18px]  (1)证明了恒定温度测试方法的有效性,证明了用方程(5)可测量径向热扩散系数,用方程(7)可测量比热容,以及最终准确得到径向导热系数,并具有很高精度。由此可以实现只需检测圆柱形电池表面热流变化就可以同时测量电池的径向热扩散系数、径向导热系数和比热容。[/size][size=18px]  (2)恒定温度测试方法的一个显著特点是加热温度可以任意设定,即可以在一个较窄的温度区间内(如1℃范围)测试相应的导热系数和比热容,并通过温度的台阶式不断升高来覆盖较大温度范围导热系数和比热容的测量。另外,这个能力一方面可以用来测量整个被测样品内部相变过程中的热性能,另一方面可用来代替绝热量热计进行电池热失控测量。[/size][size=18px]  (3)通过仿真发现,在测试仪器设计和实际测试过程中,要考虑除电池之外的其他部件(如薄膜热流计、加热膜、均热膜和绝缘膜等)对测量的影响。因此,在实际测试过程中,要进行修正和校准,以最大限度消除这些影响。[/size][size=18px]  (4)恒定温度测试方法中,测量径向热扩散系数的误差较比热容的误差略大,虽然都可以获得较高的测量精度,而比热容的测量精度更高。[/size][size=18px]  (5)这种恒定温度测试方法的另一个特点是测试时间较长,一个温度步长的测量就需要近40分钟,如果采用多温度步长来覆盖较宽的温度区间,则需要更长测试时间。[/size][size=18px][color=#cc0000][b]3.2. 恒流加热测试方法的模拟[/b][/color][/size][size=18px]  在恒流加热测试方法的仿真模拟中,同样采用图3-1所示的仿真模型,但边界条件是恒流加热方式。当设定加热功率为0.3W时,仿真结果如图3-4所示。[/size][align=center][size=18px][color=#cc0000][img=,690,468]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070849223050_1234_3384_3.png!w690x468.jpg[/img][/color][/size][/align][align=center][size=18px][color=#cc0000]图3-4 恒流加热方式有限元仿真结果[/color][/size][/align][size=18px]  图3-4所示的仿真结果显示了电池中心轴线和外表面温度随时间的变化,为了便于观察还显示了内外温度差。从内外温差曲线可以看出,在开始加热的400s后,温差曲线开始保持恒定不再变化,完全进入了准稳态过程,400s以后的外表面温度随时间变化呈现出线性状态。线性拟合400s后的表面温升曲线,得到一个标准的线性方程θ(R,t)=0.0237t+3.0094。由方程(11)可以得到:[/size][align=center][size=18px][img=,690,66]https://ng1.17img.cn/bbsfiles/images/2020/06/202006070856479346_3131_3384_3.png!w690x66.jpg[/img][/size][/align][size=18px]  根据已知的热流密度Q、电池半径R和密度ρ,则可以同时获得电池的径向导热系数和比热容,分别为0.2376W/mK和1400J/kgK。[/size][size=18px]  将仿真模拟的计算结果与设定值比较可以发现,仿真结果得到的导热系数偏差约5%,比热容则偏差约1%。这种偏差主要是由于代入计算的0.3W加热功率并没有完全用来加热电池,部分功率用于加热了铜膜。[/size][size=18px]  对仿真测试模型进行更改,去掉铜膜,使0.3W加热功率完全作用在电池上,此时得到的径向导热系数和比热容分别为0.2269W/mK和1380J/kgK,与设定值相比误差在0.5%左右,完全与设定值吻合。[/size][size=18px]  通过上述恒定热流测试方法的仿真模拟,可以得到以下结论:[/size][size=18px]  (1)证明了用方程(11)描述准稳态过程中电池表面温升是合理的,由此实现了只需检测电池表面温度变化就可以同时测量电池的径向导热系数和比热容。[/size][size=18px]  (2)需要注意的是,用方程(11)得到的径向导热系数和比热容,是整个温升范围内的平均导热系数和平均比热容,并不是某一个温度点下的热性能数值。由于整个温升区间较小,认为在此温度区间内导热系数和比热容是常数。[/size][size=18px]  (3)测试仪器设计和实际测试过程中,要考虑除电池之外的其他部件(如加热膜、均热膜和绝缘膜等)对测量的影响,这些部件因自身热容会损耗掉一部分加热功率。因此,在实际测试过程中,要进行修正和校准,以最大限度消除这些影响。[/size][size=18px]  (4)径向导热系数测试对上述其他部件的影响最为敏感,比热容测试则并不敏感,这就是径向导热系数准确测量的难度所在。[/size][size=24px][color=#cc0000]4. 结论[/color][/size][size=18px]  特别针对圆柱形锂离子电池径向导热系数测试技术开展了研究,建立了简单易操作的测试方法,并用有限元仿真对测试方法进行了验证,整个研究工作得出以下结论:[/size][size=18px]  (1)针对圆柱形锂离子电池径向导热系数,建立了恒温和恒流两种测试时模型和相应的测试方法。有限元仿真模拟证明了这两种测试方法都具有很高的测量精度,完全可以应用在实际测试中,这对锂离子电池的热性能测试有着重要意义。[/size][size=18px]  (2)建立的两种测试方法,都可以通过一次升温试验就可以获得径向导热系数、径向热扩散系数和比热容数值。特别是恒温测试方法还可以进行宽温区范围的热性能参数随温度变化的测量,甚至可进行整个相变过程中的热性能测量。[/size][size=18px]  (3)建立的等温测试方法,已经基本具有了常用的加速绝热量热仪的功能,可代替和补充加速绝热量热仪进行电池的热失控检测。[/size][size=18px]  (4)建立的两种测试方法简单且易于实现,试验操作方便,非常适合电池性能考核中其他变量的加载,如电池充放电过程中的热性能检测。[/size][size=18px]  (5)圆柱形锂电池径向导热系数测试方法上的突破,可将恒温和恒流两种测试方法推广应用到其它规格锂离子电池的热性能测试中,可进行各种加载条件和各个方向上的锂电池热性能测试。[/size][size=18px]  (6)所研究的恒温和恒流两种测试方法原理简单,边界条件易于实现,非常有利于低价仪器化和模块化,以及与其他测试仪器的集成。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 建筑材料保温砂浆导热系数测试方法对比以及测试方法选择注意事项

    建筑材料保温砂浆导热系数测试方法对比以及测试方法选择注意事项

    [color=#cc0000]摘要:本文介绍了葡萄牙里斯本大学Gomes等人2018年发表的研究工作来说明隔热砂浆导热系数测试方法选择和正确使用的重要性,讨论和指出了测试中存在的问题,并提出了更合理的测试方法和测试过程建议,以期实现更有效和准确的砂浆材料热物理性能测试。[/color][color=#cc0000]关键词:导热系数、隔热砂浆、稳态法、瞬态法、气凝胶[/color][align=center][color=#cc0000][img=保温砂浆导热系数测试方法,690,519]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152125464573_7771_3384_3.png!w690x519.jpg[/img][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000][b]1. 概述[/b][/color]  为了满足建筑物对室内舒适性和能源效率要求日益增长的需求,已经开发出各种具有良好热性能的新型材料,例如结合了轻质骨料和纳米材料的隔热砂浆,以及添加了相变微胶囊的同时具有隔热和蓄热功能的隔热砂浆。  评价这些隔热砂浆隔热性能的重要物理性能参数是导热系数,而隔热砂浆导热系数会受到砂浆温度、硬化状态、干燥状态和水分含量的影响,同时还有多种测试方法可以用来测量砂浆的导热系数,这使得隔热砂浆导热系数的测试评价非常混乱,很多测试结果千差万别。为了评估各种因素对砂浆导热系数的影响以及各种测试方法在砂浆导热系数测试中的准确性,我们特别选取了葡萄牙里斯本大学Gomes等人在2018年发表的研究工作来说明测试方法选择和正确使用的重要性。  葡萄牙里斯本大学Gomes等人针对添加了发泡聚苯乙烯颗粒和二氧化硅气凝胶的隔热砂浆,在其硬化状态(固化28天)、干燥状态和不同水分含量条件下,测试了砂浆的导热系数。测试方法分别采用了两种稳态法和两种瞬态法。为了对这些测试方法进行比较,将所有测试结果都转换23℃下的导热系数。  本文将对Gomes等人的对比测试工作进行简要介绍,讨论和指出测试中存在的问题,并提出了更合理的测试方法和测试过程建议,以期实现更有效和准确的砂浆材料热物理性能测试。[b][color=#cc0000]2. 隔热砂浆以及样品制作[/color][/b]  在该测试对比研究中评估了两种隔热砂浆:  (1)具有发泡聚苯乙烯颗粒(EPS)()的工业隔热砂浆;  (2)在先前的工业隔热砂浆中掺入二氧化硅气凝胶(Ag)配方()。  砂浆是市售的保温砂浆,由矿物粘合剂(水泥和石灰)和轻质骨料(100%的EPS颗粒,直径小于3 mm)组成。此外,它还含有颜料、流变剂、树脂、空气夹带剂和疏水剂。另一种研究的砂浆配方是在砂浆中加入二氧化硅气凝胶,质量百分比为100%,即二氧化硅气凝胶质量与工业砂浆总质量的比值。  这种二氧化硅气凝胶具有非常低的导热系数(0.018~0.020 W/mK),堆积密度范围为60~100,并且是无定形半透明的,不具有反应性且具有良好的耐火性。  图2-1示出了混合后的砂浆,以及用于不同后续试验测量方法的各种模具(立方体,板材和圆柱形)。[align=center][img=2-01.隔热砂浆及其模具,690,333]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151936059557_5449_3384_3.png!w690x333.jpg[/img][/align][align=center][color=#cc0000]图2-1 隔热砂浆及其模具[/color][/align]  在生产两种砂浆之后,固化过程包括:(1)将样品放入聚乙烯袋中7天,进行湿固化;(2)从袋子中取出样品;(3)根据ISO 1015-11干燥固化21天。该程序在环境条件受控的室内进行:空气温度为20±5℃,相对湿度为50%。[b][color=#cc0000]3. 测试方法[/color][/b]  在这项研究中,和的导热系数采用了稳态和瞬态两类方法:  (1)两种稳态方法——热流计法(HFM),两种不同的设备,编号为1和2,以及Lee盘法。  (2)两种瞬态方法——改进型瞬态平面源法(MTPS)和瞬态热线法(TLS)。  表3-1显示了每种砂浆配方和试验评估的样品数量。[align=center][color=#cc0000]表3-1 被测样品数量和形状尺寸[/color][/align][align=center][color=#cc0000][img=表3-1 被测样品数量和形状尺寸,690,305]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151936425198_2929_3384_3.png!w690x305.jpg[/img][/color][/align][color=#cc0000]3.1. 导热系数稳态测试方法[/color]  稳态法导热系数测量是在已知厚度的样品上建立稳定的温度梯度,并测量从一侧到另一侧的热流。这些方法被认为是导热系数测量中最准确的方法,但另一方面,可能有一些缺点,例如在样品上达到稳态温度梯度需要很长时间,在某些情况下,需要校准样品,导致测量耗时很高。  在Gomes等人的研究中,根据EN ISO 8301应用了热流计法。对于这些测试,选择两种设备,一种是来自Holometrix的Rapid K(HFM1)和Senff等人描述的热流计法测量装置(HFM2),并使用不同尺寸的样品。在热流计方法中,样品位于两个等温加热板,热板和冷板的中间,一旦通过应用一维的傅里叶定律得到稳态,则可根据公式(1)确定导热系数。图3-1是该方法的示意图,图3-2表示该测试装置。[align=center][img=3-01.热流计法测量原理图,500,414]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151937304248_9888_3384_3.png!w690x572.jpg[/img][/align][align=center][color=#cc0000]图3-1 热流计法测量原理图[/color][/align][align=center][color=#cc0000][img=3-02.热流计法导热仪,690,459]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151937563278_2363_3384_3.png!w690x459.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 热流计法导热仪[/color][/align]  在Gomes等人的研究中,还采用了一种Lee式圆盘稳态测试方法,这种方法的测试仪器如图3-3所示。[align=center][color=#cc0000][img=3-03.Lee热盘稳态法测量装置,690,558]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151938151927_4397_3384_3.png!w690x558.jpg[/img][/color][/align][align=center][color=#cc0000]图3-3 Lee式热盘稳态法测量装置[/color][/align][color=#cc0000]3.2. 导热系数瞬态测试方法[/color]  瞬态方法是动态方法,是对由源发送的电热脉冲响应的测量,通过对所定义时间间隔测量的温度的数学模型进行计算。这些方法具有一些优点,例如测试过程简单快速,可同时测量不同热性能参数以及无需校准样品,但只有当样品与环境达到热平衡时才能发挥作用。  在Gomes等人的研究中,使用了改进型瞬态平面源(MTPS)和瞬态热线法(TLS),使用Applied Precision公司的设备ISOMET 2114,分别使用平面和线源探针。这些测量符合ASTM D5334、ASTM D5930和EN ISO 22007-2标准。所有测试均在20±3℃的平均参考温度下进行。图3-4和图3-5显示了用两种探头对样品的测量。  必须指出的是,使用MTPS测量时,将样品置于隔热材料板上以防止样品和工作台之间的热传导。通过TLS测量样品时用针头探针进行穿孔,使探针(100 mm)完全穿透到样品中并与砂浆完全接触。[align=center][color=#cc0000][img=,690,458]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152126392089_727_3384_3.png!w690x458.jpg[/img][/color][/align][align=center][color=#cc0000]图3-4 改进型瞬态平面热源法装置 ISOMET[/color][/align][align=center][color=#cc0000][img=图3-5 瞬态热线法装置 ISOMET,690,718]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151938546587_9416_3384_3.png!w690x718.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-5 瞬态热线法装置 ISOMET[/color][/align][b][color=#cc0000]4. 导热系数测试方法的对比分析[/color][/b]  在Gomes等人的研究中采用五种不同的设备来评估隔热砂浆的导热系数,每种都具有鲜明的特征和方法。  通过稳态方法(HFM1,HFM2和Lee式圆盘)评估导热系数需要很长时间才能达到测试样品的稳态温度梯度。此外,在某些情况下,需要进行初始校准测量(使用具有已知导热系数的样品),从而为该过程增加了更多时间。由于所选择的稳态测量程序中的步骤数量增加,这些方法也比采用的瞬态方法更依赖于操作员,例如,操作员的数据记录直到达到稳定状态(HFM1,HFM2和Lee式圆盘)和/或设备和样品操作(Lee式圆盘)。  HFM1方法需要最大的样品,在研究工作中,由于材料的稀缺性,并不总是可以生产。然而,它是许多已发表研究中使用的标准方法,允许与其他类型的材料直接比较。  HFM2方法需要比HFM1更小的样品,更容易生产,并且具有更高的测量范围,但其准确性和再现性很差,限制了其与其他方法测量结果的比较。  另一方面,Lee式圆盘法非常耗时,在测量过程中需要遵循许多步骤,这会导致相关错误的增加。尽管Lee式圆盘法的精度和重现性值很差,但它所用的样品尺寸最小。如果材料数量有限制,这种方法在开发新产品时非常有利。  通过瞬态方法(MTPS和TLS)评估导热系数比稳态方法花费的时间少得多,并且由于操作简单,并且测量程序的步骤减少,因此也不易发生操作错误。这两种方法都具有特定的准确性和可重复性。  MTPS方法需要比TLS和HFM更小的样本。但是,作为限制因素,它的阈值下限测量范围为0.04 W/mK,高于砂浆的某些导热系数值。  TLS方法是样本大小要求方面的排列第二的方法,样品尺寸要求仅次于HFM1方法,但它更快更容易操作,阈值下限测量范围为0.015 W/mK,这使得它非常有效评估低导热系数新型隔热砂浆的方法。  表4-1显示了所研究的导热率方法的定性比较分析。可以得出结论,在创新型隔热砂浆的开发的初始阶段,由于需要小样品,Lee式圆盘是一种有趣的评估方法。对于第二个开发阶段,它可以使用HFM2或MTPS和TLS方法,后者更快,更容易并且具有已知的准确性和再现性。HFM1方法仅适用于最终发展阶段,当有材料可用时,可以将获得的结果与其他研究进行比较。[align=center][color=#cc0000]表4-1 不同测试方法比较[/color][/align][align=center][color=#cc0000][img=表4-1 不同测试方法比较,690,351]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151939209178_5457_3384_3.png!w690x351.jpg[/img][/color][/align]  所有方法的导热系数均有显著变化,为0.056(平均值)±0.008 W/mK,为0.034(平均值)±0.007 W/mK(28天固化,转化温度为23℃),其对应于高达14%的偏差和21%的偏差。因此,导热系数测量方法的影响在新型隔热砂浆研究中至关重要。[b][color=#cc0000]5. 结论[/color][/b]  在Gomes等人的研究中,主要关注两种隔热砂浆(EPS和EPS+二氧化硅气凝胶)的导热性,采用了四种不同的测量方法——两种稳态方法和两种瞬态方法——使用了5种不同的设备和样品几何形状进行了测试。此外,还讨论了引入气凝胶和水分含量的影响。  与EPS基砂浆相比,以质量百分比为100%的工业砂浆引入二氧化硅气凝胶降低了砂浆的导热系数高达55%,对于干堆积密度观察到相同的趋势。  两种隔热砂浆对水分含量具有高度敏感性,具有指数趋势,这在掺入气凝胶后并未明显受到影响。值得一提的是,研究砂浆的脆性本身可能会误导水分含量带来的影响。  考虑到用于分析砂浆导热系数的所有方法及其不同的操作温度,所有结果都转换为23℃,由此可以直接比较所有方法的测试结果。观察到所有方法测试结果之间存在显著差异,在28天固化以及转化温度为23℃时,EPS基砂浆高达14%(0.056±0.008 W/mK),EPS+气凝胶砂浆高达21%(0.034±0.007 W/mK),而且通常用稳态法比用瞬态法得到更低的导热系数值。  每种方法的适用性以及它们之间的差异严格与设备的特性(量程、准确性和再现性)、样品大小、测试时间和操作的简便性(设备操作员的依赖性和测量过程中的复杂性)相关。  结果还表明,瞬态方法(MTPS和TLS)适用于小样品,与稳态方法(HFM1,HFM2和Lee的磁盘)相比,需要更少的测试时间、操作员依赖性和测量程序的复杂性。然而,标准中提到了稳态方法可以用来与其他公布的结果进行比较,特别是当新型材料的数量较多而不受限制时。  研究还证实,EPS基砂浆导热系数的所有测量结果均高于工业砂浆制造商的标称值(0.042 W/mK)。但是,制造商的技术文件缺乏关于测试条件的信息(例如测试温度或转换程序、水分含量、方法/设备的准确度、样品大小和测量范围),这使得测量结果很难进行比较。  通过此项研究所获得的结果,强调了对于具有低导热系数值材料的评估,指定导热系数测试条件和选择测试方法的重要性,否则材料性能和测试条件的变化规律很容易被测试方法和测试仪器的误差所掩盖。  [b][color=#cc0000]6. 评述[/color][/b]  通过上述对葡萄牙里斯本大学Gomes等人研究工作的介绍,可以详细了解保温砂浆从样品制备、处理、测试方法选择和导热系数测试的全过程,了解不同测试方法进行比对的具体步骤,对认识和掌握保温砂浆热物理性能的测试评价技术很有帮助。但他们的研究工作还存在一些不足,研究还停留在实验室检测的探索阶段,特别是在测试技术方面还需要进一步开展更深入的工作以真正满足新型保温砂浆的研制和生产需要。存在的不足和还需开展的工作主要体现以下几个方面:  (1)在多种测试方法对比测试过程中,通常会采用标准参考材料来进行对比测试,通过热物理性能稳定的标准参考材料来最大限度降低样品性能波动的影响,真正实现对测试方法自身测量精度的考核和对比。而在葡萄牙里斯本大学Gomes等人所进行的多种测试方法对比测试中,并未采用导热系数为0.03 W/mK附近的相应标准参考材料,如ASTM SRM 1450d,所以他们的对比测试误差中很大一部分是自制保温砂浆样品带来的影响,并不能对各种测试方法做出非常客观的评价。  (2)葡萄牙里斯本大学Gomes等人研究工作中所采用的测试方法没有问题,尽管论文发表时间为2018年,但文中所采用的测试设备普遍都比较陈旧,测量精度也相应的较差。以文中所提到的EPS基砂浆高达14%(0.056±0.008 W/mK),EPS+气凝胶砂浆高达21%(0.034±0.007 W/mK)的测试误差,在实际工程应用中对保温砂浆进行导热系数测试,就显着测量太差,这往往会造成实际建筑材料成本的无法准确控制,或实际隔热效果无法达到设计效果。以近些年来的导热系数测试技术发展水平,采用标准化的瞬态平面热源法(TPS)导热系数测试仪器完全可以在测量范围和精度方面满足要求,而且样品尺寸也非常小。  (3)综上所述,针对保温砂浆类材料导热系数等热物理性能参数的测试,稳态法保留热流计法,而瞬态法则建议采用精度更高的瞬态平面热源法。  [b][color=#cc0000]7. 参考文献[/color][/b]  (1) Gomes, M. Glória, et al. "Thermal conductivity measurement of thermal insulating mortars with EPS and silica aerogel by steady-state and transient methods." Construction and Building Materials 172 (2018): 696-705.  (2)ISO 8301 - Thermal insulation - determination of steady-state thermal resistance and related properties - Heat flow meter apparatus.  (3) L. Senff, G. Ascens?o, D. Hotza, V.M. Ferreira, J.A. Labrincha, Assessment of the single and combined effect of superabsorbent particles and porogenic agents in nanotitania-containing mortars, Energy Build. 127 (2016) 980-990.   (4)Applied Precision Ltd., Isomet 2114 Thermal properties analyzer user’s guide, Version 120712, USA, n.d.  (5) American Society for Testing and Materials, ASTM D5334 - standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure.   (6)American Society for Testing and Materials, ASTM D5930 - Standard Test Method for Thermal Conductivity of Plastics by Means of a Transient Line-Source Technique.   (7)ISO 22007-2 - Plastics - Determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source (hot disc) method, Switzerland, 2015.[align=center]=======================================================================[/align]

  • 低温绝热材料导热系数和热流密度测试方法介绍

    低温绝热材料导热系数和热流密度测试方法介绍

    [color=#990000]摘要:本文针对低温用绝热材料/系统的热性能测试,基于ASTM C1774标准指南,综合目前国际上基于低温稳态护热技术的文献报道和测试设备,介绍了各种低温绝热材料热性能的测试方法和相应测试设备,为今后国内相应低温绝热材料热性能测试方法和测试设备的建立和改进提供参考。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000][/color][/size]一、概述 低温用绝热材料/系统的热性能测试,要比其他材料的热性能测试复杂的多,这主要是由以下几方面的因素引起: (1)材料形式多样:低温用绝热材料/系统的一般形式为散装颗粒和粉末、毯子、分层、面板、以及多层复合系统。材料的例子包括泡沫(闭孔或开孔)、纤维绝热产品、气凝胶(毯子或散装或包装)、多层绝热系统、多孔玻璃泡沫复合板、聚合物复合材料或量散装料,如珍珠岩粉和玻璃泡。 (2)热导率变化范围大:低温用绝热材料/系统的使用环境通常是从真空到常压,在此真空压力范围内,低温绝热材料的热性能可以有四个数量级的变化,有效热导率范围为0.010mW/mK至100mW/mK。绝热材料和系统热性能的主要控制因素是使用和测试环境的真空压力,高真空的有效热导率通常在0.010mW/mK到2mW/mK范围内,非真空时通常在10mW/mK到30mW/mK范围内,软真空时通常介于这两个极端之间。 (3)环境压力范围大:对于低温用绝热材料的真空压力范围,按照ASTM标准指南分为三个区间:高真空(HV,即小于1mTorr)、软真空(SV,即约100mTorr)和无真空(NV,即1个大气压或约760Torr)。 (4)大温差:低温绝热材料/系统的主要功能是提供高水平的绝热性能并保持较大温差,如对于液氦、液氢和液氮制冷剂,低温绝热材料的冷面就会是4K、20K和77K,而热面则为293K的室温,由此形成200K以上的大温差。 综上所述,为了评价低温绝热材料/系统的热性能,关键是需要在有代表性和可重复的条件下进行测试,需模拟出材料实际组合和使用方式,在被测样品上建立大温差和特定残余气体的真空压力环境,并使用灵敏的技术手段检测出透过绝热材料的微小热流。除此之外,还需面对包括材料冷收缩后的厚度测量和表面接触热阻等因素的挑战。由于低温用绝热材料的热导率普遍较低,且在材料内存在巨大温差,目前的绝热材料低温热导率测试只能基于传统的稳态法。另外,由于在使用和测试过程中的穿过低温用绝热材料的热流密度极小,通常在1W/㎡以下,这已远超现有热流传感器的探测能力,因此传统的大温差稳态热流计法无法使用,绝热材料低温热导率测试方法完全基于稳态护热技术。 本文针对低温用绝热材料/系统的热性能测试,基于ASTM C1774标准指南,综合目前国际上基于稳态护热技术的文献报道和测试设备,介绍低温绝热材料热性能的测试方法,为今后国内相应低温绝热材料热性能测试设备的建立和改进提供参考。[size=18px][color=#990000][/color][/size]二、低温绝热材料热性能测试方法分类 低温绝热材料热性能测试的核心是要在大温差和特定真空压力环境下检测出流经被测样品厚度方向上一维热流。为了减少侧向热损,低温绝热材料热性能的各种测试方法基本都基于稳态护热技术,被测样品有圆筒状和平板状两种。对于圆筒状样品,测试方法借鉴了ASTM C335“管状绝热材料稳态传热性能测量的标准试验方法 ”;对于平板状样品,借鉴了ASTM C177“采用防护热板装置进行稳态热流密度和传热性能测量的标准试验方法”。 为了实现被测样品冷热面的大温差,各种测试方法或采用低温制冷剂(典型有液氦、液氢和液氮),或采用低温冷却器,给样品冷面提供制冷。 一维热流测量有采用高灵敏的蒸发量热技术,也有采用传统稳态护热法中的电功率测量技术,蒸发量热技术可以检测的漏热热流密度为0.1~500W/㎡,电功率测量技术可以检测的漏热热流密度为1~1000W/㎡,蒸发量热技术对于微小热流具有更强大的检测能力。 按照ASTM C1774“低温绝热系统热性能测试的标准指南”的规定,上述两种测试技术都可以设计制造为绝对法装置和比较法装置两类,但按照传统的测试方法分类,这两类测试技术都属于绝对法。这里的绝对法是通过测试设备和测试方法的集成设计基本消除了寄生漏热,测试腔室的寄生漏热接近于零。这里的比较法,是通过简单的部分防护,寄生热泄漏降低到可接受水平,还存在一定漏热,但整个测量装置变得比绝对法装置简单,相对简化的比较法仪器可用于大量样品、相似样品、质量控制测试和比较测试。[size=18px][color=#990000][/color][/size]三、蒸发量热法 在蒸发量热法测试绝热材料热性能时,穿过被测样品的外界热量加热测试腔室内处于饱和状态下的低温液态制冷剂,测量制冷剂受热蒸发出的气体流量可以获得热泄露的热量,依此获得等效热导率和漏热热流密度。 (1)圆柱型蒸发量热计测量装置(绝对法) 典型的圆柱型蒸发量热计热性能测量装置如图1所示,测量装置中装有低温制冷剂的测试腔桶典型尺寸是外径为167mm、长度为900mm,可为厚度50mm的样品进行测试。测试室由同样装有低温制冷剂的上室和下室进行主动热保护,使测试腔桶上下两个方向的热泄露最小。外侧的电加热器组件为样品的热面温度恒定进行控制。[align=center][color=#990000][img=低温导热系数,690,310]https://ng1.17img.cn/bbsfiles/images/2022/01/202201200837122480_3409_3384_3.jpg!w690x310.jpg[/img][/color][/align][align=center][color=#990000]图1 圆柱型蒸发量热计测量装置(绝对法):左图为总体结构示意图,右图为简化示意图[/color][/align] 被测试样一般为柔性材料,如毯式、散装式、多层绝热材料。对于散装材料可以用薄铝制的黑色圆柱型套筒允许测试散装材料。 (2)圆柱型蒸发量热计绝热材料热性能测量装置(比较法) 典型的圆柱型蒸发量热计热性能测量装置(比较法)如图2所示,用于测量绝热试样的比较热性能。装有低温介质的测量腔筒典型尺寸是132mm外径×500mm长,可测试厚度达50mm的试样。 与绝对法不同的是,为了简化测量装置,比较法中的测量腔桶上下两个方向采用的是被动防护方式并装配为一体式结构的测量组件,通过使用气凝胶材料和辐射屏组合件使得测量腔桶两个端部处的热泄露尽可能小,但护热效果显然不如绝对法中的主动护热。同样,外侧电加热器组件为样品的热面温度恒定进行控制。[align=center][color=#990000][img=低温导热系数,588,799]https://ng1.17img.cn/bbsfiles/images/2022/01/202201200837478651_2276_3384_3.jpg!w588x799.jpg[/img][/color][/align][align=center][color=#990000]图2 圆柱型蒸发量热计测量装置(比较法)[/color][/align] 这种简化后的比较法测量装置,可以拆卸整体结构的测量组件来进行被测样品的安装和拆卸,非常便于各种被测材料的拆装。 (3)平板型蒸发量热计绝热材料热性能测量装置(绝对法) 平板型蒸发量热仪(绝对法)是一种用于测量绝热材料的绝对热性能的平底测试设备。典型结构如图3所示。允许接受直径200mm、厚达30mm的被测平板样品。除边界温度外,温度传感器位于设备侧面。装有制冷剂的测试腔室由同样装有制冷剂的护热腔室进行主动热防护,可将侧向热泄露降到最低。系统绝热材料为各种环境条件下的测试提供了额外的热稳定性。被测样品可以为刚性或柔性,带或不带压缩载荷。[align=center][color=#990000][img=低温导热系数,690,786]https://ng1.17img.cn/bbsfiles/images/2022/01/202201200838020464_1315_3384_3.jpg!w690x786.jpg[/img][/color][/align][align=center][color=#990000]图3 平板型蒸发量热计测量装置(绝对法)[/color][/align] 实际上,这种平板型蒸发量热计热性能测试设备完全照搬了ASTM C177防护热板法的基本原理,只是采用了低温制冷剂的蒸发原理替换了电功率测量,也是最早用于低温绝热材料热性能测试的测试方法和设备。由于这种方法和设备的完备性,使此方法被ASTM定为标准试验方法,即ASTM C745“使用保护平板蒸发量热计测量穿过真空绝热材料热流量的标准测试方法”。 需要注意的是,由于这种方法和设备太过复杂,需要保障的边界条件太多,其复杂性和局限性削弱了其广泛使用,目前C745方法已经废除,替代标准是ASTM C1774,并极大扩展了测试中对不同几何形状、环境、材料和方法的适用性,但C1774还存在许多不可控因素,多年来迭代改进也不多,使得C1774一直未形成标准试验方法,而仅仅是标准指南。 (4)平板型蒸发量热计绝热材料热性能测量装置(比较法) 平板型蒸发量热计(比较法)是一种平板状样品测试设备,用于测量绝热材料的低温热性能,如图4所示。它可以接受直径200mm、厚达30mm的试样。测试中需要在设备上定位温度传感器,两组辐射屏蔽环与散装气凝胶一起为冷质测试腔体侧面和顶部提供被动热防护。该量热计可用于各种材料和测试条件,可对刚性和柔性材料进行测试,带或不带压缩载荷。[align=center][color=#990000][img=低温导热系数,690,325]https://ng1.17img.cn/bbsfiles/images/2022/01/202201200838140994_170_3384_3.jpg!w690x325.jpg[/img][/color][/align][align=center][color=#990000]图4 平板型蒸发量热计测量装置(比较法):左图为总体结构示意图,右图为简化示意图[/color][/align][size=18px][color=#990000][/color][/size]四、电功率测量法 采用电功率测量法的测试设备主要有以下两种。 (1)低温恒温器电功率测试设备(基于制冷剂) 基于低温制冷剂的低温恒温器电功率测试设备,如图5所示,包括一个由OFHC铜板(典型值为6mm厚)制成的等温样品盒。圆柱型外壳和底板全部用螺栓固定在一起,在样品周围形成一个等温箱。顶板放在样品顶部,柔性铜带将顶板连接到盒子以确保热平衡。热板通常配备两个温度传感器(例如电阻温度传感器和硅二极管)和一个电加热器。这三个部件都安装在一个小仪器盘内,该盘完全安装在热板内。样品盒配有硅胶二极管温度计(或其他合适的温度传感器)和电加热器。热板加热器用于为热导率测量施加热量,样品箱加热器有助于提高整体温度。该盒子热连接到一个等温(OFHC铜)真空密闭室,它被悬挂在其中。该腔室进一步放置在真空罐内,并配备有加热器和合适的温度传感器。[align=center][color=#990000][img=低温导热系数,690,380]https://ng1.17img.cn/bbsfiles/images/2022/01/202201200838262563_7022_3384_3.jpg!w690x380.jpg[/img][/color][/align][align=center][color=#990000]图5 低温恒温器电功率测试设备[/color][/align] 如果需要,这种布置允许样品室及其内部温度变化远高于真空罐(液氮或液氦)周围的制冷剂的温度。已经建造了两个圆柱型盒子(通常直径为150和200mm)加上两个方形盒子,每个盒子都有一个相应的热板。为了将仪器从热板连接到外部端子,使用了四根铜线和十六根锰铜线。这些电线通常长0.8m,直径0.13mm,以螺旋状穿过样品,从加热板到达盒子外面的端子。 对每个样品一面的中心进行加工,为放置在两块样品之间的等温铜热板腾出空间,从而确保所有热量都通过样品,除了沿着加热线传导的热量泄露到制冷剂中。典型尺寸包括样品直径为152或203mm,高度为50mm,圆形热板的直径为140mm,厚度为9mm。圆形等温铜盒的内部接触样品夹层的外表面。 (2)电功率低温恒温器设备(基于低温制冷机) 基于低温制冷机的电功率恒温器测量法基本借鉴了经典防护热板法,不同之处在于采用了被动护热方式,在被测样品厚度方向上形成大温差,并在低温和真空压力环境下进行测量。 测试设备包括一个与适当的低温制冷系统热连接的测试腔室。用于测试204mm直径圆盘型样品的这种系统的一个示例如图6所示。该设计采用将平板样品夹在一对电加热板之间,底部电加热板接受已知加热功率控制样品热面温度,顶部加热板控制样品冷面温度,顶部加热板与制冷机连接。[align=center][color=#990000][img=低温导热系数,690,302]https://ng1.17img.cn/bbsfiles/images/2022/01/202201200838382717_1558_3384_3.jpg!w690x302.jpg[/img][/color][/align][align=center][color=#990000]图6 电功率低温恒温器测试设备(基于低温制冷机):左图为总体结构示意图,右图为测试腔室示意图[/color][/align][size=18px][color=#990000][/color][/size]五、总结 综上所述,上述测试方法基本覆盖了低温用各种绝热材料热性能测试要求,对各种材料的几何形状、测试环境和材料类型等方面都有很好的适用性。美国NASA多年来已经采用蒸发量热计测试设备(包括绝对法和比较法)对各种柔性和刚性低温绝热材料进行了大范围的测试,并得到了大量材料的低温热性能测试结果。 从目前在用的低温绝热材料热性能测试标准ASTM C1774可以看出,此标准还处于标准指南阶段,说明上述测试方法还存在很多问题需要解决,特别是主动护热温度的精确控制、样品冷收缩后的厚度变化在线测量和修正,以及接触热阻和加载压力的影响等,这些都是今后工作需要面临的严峻挑战。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 新型表征参数——根据密度和导热系数关系评价材料的隔热性能

    新型表征参数——根据密度和导热系数关系评价材料的隔热性能

    [color=#990000]摘要:针对低密度隔热材料在实际工程中的应用,介绍了两个新型表征参数,分别在固定厚度和固定热阻情况下,对低密度隔热材料进行评价、选材和优化。同时,还推荐采用瞬态法测量隔热材料的热扩散系数,可以在准确表征隔热性能的同时,还能简化测试设备及其造价。[/color][hr/][b][color=#990000]1. 问题的提出[/color][/b] 在低密度隔热材料的实际工程应用中,往往存在着以下两方面的问题: (1)普遍认为隔热材料的密度越低,隔热性能越好,从而在保温板等行业内将密度视为影响保温板隔热性能的唯一因素和产品指标,但实际情况并非如此。 (2)在隔热系统设计中,往往需要根据事先明确的隔热层热阻指标,来选择合理的隔热材料并进行优化。但根据热物理性能参数(如导热系数和密度)如何对隔热材料进行正确的优化选择,并没有一个简便和有效的方法。 本文将针对以上问题,介绍了两个新型表征参数,以便更直观、更具有物理意义和更简便的对隔热材料进行评价,来满足实际工程应用中隔热材料的选择和优化需要。[color=#990000][b]2. 新表征方式的提出[/b]2.1. 密度因子(λ/ρ)[/color] 隔热材料的导热系数与材料密度有很强的相关性,大多数隔热材料都为多孔材料,随着隔热材料孔隙率的提高或密度的降低,其导热系数变小,但导热系数并不是随着密度的减小而无限降低,如图2-1所示,当密度小于某个临界值后,由于孔隙率太高,空隙中的气体开始产生对流,辐射传热也相应加强,这时隔热材料的导热系数反而增大[1]。因此对于多孔材料隔热性能的评价,不仅只采用导热系数这个参数,还要同时考虑密度的影响。[align=center][img=,618,884]https://ng1.17img.cn/bbsfiles/images/2020/02/202002172009301230_3093_3384_3.png!w618x884.jpg[/img][/align][align=center][color=#990000]图2-1 不同温度下采用不同稳态热流计法设备(PMA2和PMA4)测试不同密度氧化铝纤维毡导热系数的结果[/color][/align] 在隔热材料的各个热物理性能参数之间,有以下关系存在:[align=center][img=,690,193]https://ng1.17img.cn/bbsfiles/images/2020/02/202002172009580845_1756_3384_3.png!w690x193.jpg[/img][/align] 由上式可以看出,密度因子的大小决定了材料的隔热能力,密度因子越小代表隔热能力越强。其物理意义在于:在材料厚度固定情况下,密度与热阻乘积表征了材料的隔热能力,乘积越大,隔热能力越强。 密度因子应用的典型案例是评价不同类型膨胀聚苯乙烯(EPS)板[2],四种牌号的EPS板热物理性能如图2-2所示。从图中可以看出,四种牌号EPS板的导热系数随着蜜豆的增大而单调降低,密度越大反而导热系数越大。[align=center][img=,690,207]https://ng1.17img.cn/bbsfiles/images/2020/02/202002172010225882_6318_3384_3.png!w690x207.jpg[/img][/align][align=center][color=#990000]图2-2 四种牌号EPS板的热物理性能[/color][/align] 将四种牌号EPS板的密度因子绘制成直方图,如图2-3所示,由此可见,密度更高的EPS 150和200板具有最好的隔热能力。[align=center][img=,690,476]https://ng1.17img.cn/bbsfiles/images/2020/02/202002172010432515_6258_3384_3.png!w690x476.jpg[/img][/align][align=center][color=#990000]图2-3 密度因子的直方图[/color][/align] 另外,从上式中还可以看出,材料的隔热性能还可以通过直接测量热扩散系数进行表征,这在实际测试中有着十分重要的意义。因为导热系数的直接测量往往十分复杂,通常必须检测量热流量。此外在这种导热系数直接测试实验中,通常情况下,加热器产生的一些热量不会流过样品,而是通过辐射损失掉。而在直接测量热扩散系数的方法中,大多采用瞬态法,只需测量温度随时间的变化,往往无需考虑辐射热损带来的影响,由此可以使得测试装置大大简化,这在高温下的测试中效果尤为明显。[color=#990000]2.2. 隔热效率(ρλ)[/color] 隔热的主要功能是限制热流,当热流密度为q的热流通过厚度为d 、具有有效导热系数λ (有效热阻R )的隔热层,那么贯穿整个厚度的温差为△T ,它们之间的关系由傅里叶传热定律给出:[align=center][img=,690,259]https://ng1.17img.cn/bbsfiles/images/2020/02/202002172011074275_944_3384_3.png!w690x259.jpg[/img][/align] 因此,上式的物理意义在于:对于给定的所需热阻R,单位面积所需的隔热质量与密度和导热系数的乘积成正比。即对于任何设计要求的热阻,最小化隔热效率参数ρλ可以最小化稳态传热中每单位面积所需的隔热质量。 隔热效率参数应用的典型案例是评价航天飞行器金属热防护系统用不同类型隔热材料的评价[3,4],在0.1Pa的高真空下,测试研究了多种纤维隔热材料样品隔热效率参数作为温度的函数,如所示图2-4。所提供的数据包括密度分别为96、96、107、267和202.4 kg/m3的Q-Fiber、Saffil、APA、ZYF和OFI五种纤维类隔热材料。从图中可以看出,OFI的隔热效率参数最低,对于特定的应用,其单位面积的质量要求更低。Q-Fiber和Saffil有相似的性能。在高达1000 K的温度下,APA的性能类似于Saffil和Q-Fiber,但在较高温度下性能稍差。ZYF在整个温度范围内具有最高的隔热效率参数,但具有更高的使用温度。Q-Fiber、Saffil、APA、ZYF和OFI五种纤维类隔热材料长期使用的极限温度分别为1370、1760、1760、2200和1600 K。[align=center][img=,690,476]https://ng1.17img.cn/bbsfiles/images/2020/02/202002172011243545_7239_3384_3.png!w690x476.jpg[/img][/align][align=center][color=#990000]图2-4 空气中0.1Pa压力下多种隔热材料隔热效率参数岁温度变化的比较。[/color][/align][color=#990000][b]3. 结论[/b][/color] 综上所述,针对低密度隔热材料在不同工程应用中的评价,引入了物理意义明确的两个实用参数,即: (1)在材料厚度固定情况下对材料隔热能力进行评价时,可以选择隔热因子参数,隔热因子越小,隔热能力越强。 (2)在材料热阻固定情况下对材料隔热能力进行评价时,可以选择隔热效率参数,隔热效率参数越小,隔热效率越高。 (3)采用直接测试隔热材料热扩散系数的瞬态法,可以忽略传热边界条件对测量的影响,简化测量装置,在高温下可以采用结构非常简单的设备来完成隔热材料热扩散系数的准确测量。 总之,上述介绍两个新型表征参数对于初步比较十分有用,但隔热材料在实际使用中会经历热流、气压和周围材料温度的变化,因此它们很少达到稳定状态,这使得在复杂的瞬态环境中很难建立一个简单参数来精确比较材料的隔热性能。确定特定热系统中使用最有效的隔热材料是一项复杂的任务,不仅需要考虑隔热材料本身的瞬态热性能,还必须考虑与其他部件的相互热作用,以及在不降低性能情况下抵抗其他环境影响。然而,上述两个表征参数,至少可以在实际工程应用中粗略比较稳态条件下现有的各种隔热材料。[b][color=#990000]4. 参考文献[/color][/b](1) Wulf R, Barth G, Gross U. Intercomparison of insulation thermal conductivities measured by various methods[J]. International journal of thermophysics, 2007, 28(5): 1679-1692.(2)Lakatos á. Thermal conductivity of insulations approached from a new aspect[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133(1): 329-335.(3)Daryabeigi K, Cunnington G R, Knutson J R. Combined heat transfer in high-porosity high-temperature fibrous insulation: Theory and experimental validation[J]. Journal of thermophysics and heat transfer, 2011, 25(4): 536-546.(4)Daryabeigi,K., "Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles," NASA TM-1999-208972, February 1999.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创大赛】保温材料的导热系数测定

    【原创大赛】保温材料的导热系数测定

    保温材料的导热系数测定1. 实验原理 平板式导热仪的工作原理:在一定厚度的具有平行表面的均匀板状试件中,建立理想状态下,以两个平行的均温平板为界的无限大平板的一维恒定热流,通过测量中心计量板达到稳态后的热量Q,按照热阻的计算公式,求得试件的导热系数λ。 任何物体的热量传递都有三种形式:热传导、热辐射、热对流。不同温度流体的各部分流体之间,由于发生相对运动产生热传递称为热对流。物质的微观粒子的运动以光的形式辐射能量,称成为辐射。 在温度不平衡条件下,物体内存在温差,热能分布不均匀,在物体内部没有宏观位移的情下,热量从高温向低温部分传递,不同温度物体的互相接触时,同样存在没有物质转移而存在热量传递现象,这种借助于物质微观粒子的无序运动的热传递现象称为热传导,又称为热扩散。 http://ng1.17img.cn/bbsfiles/images/2013/11/201311251322_479096_2784284_3.jpg 根据传热学理论,垂直于无限大平板方向的热流量,沿厚度d方向与平板面侧的温度差、平板面积成正比,与平板厚度成反比(上图)。 http://ng1.17img.cn/bbsfiles/images/2013/11/201311251334_479107_2784284_3.jpg 式中,Q—垂直于平板方向传递的热量,称为热流量;t1-t2 平板两面的温度差;d—平板厚度;S为平板面积。λ—为比例系数,称为导热系数。所以导热系数的方程如下所示: http://ng1.17img.cn/bbsfiles/images/2013/11/201311251336_479108_2784284_3.jpg 上式就是导热系数的运算方程。如果用用功率P表示,P=kQ,k是系数,如果P单位为W(瓦),长度单位用m,温度单位用K(℃),则导热系数单位为W/(mK)。导热系数方程变为: http://ng1.17img.cn/bbsfiles/images/2013/11/201311251336_479109_2784284_3.jpg式(3)就是绝对测量的导热系数方程。2. 实验仪器:DZDR-P 平板法导热仪 http://ng1.17img.cn/bbsfiles/images/2013/11/201311251324_479098_2784284_3.jpg3. 试样准备试样长×宽应为300×300mm,试样厚度在1mm-50mm。试样应覆盖中心量热器和内保护装置的整个表面。4. 实验步骤打开便携式空气压缩泵开关,将压力调节至0.4MPa,抽取1分钟后关闭。打开回流装置,提升测试槽上方的冷板,将样品放入其中,降下冷板,开始测试实验,冷板温度为30℃,热板温度为50℃。5. 实验结果 http://ng1.17img.cn/bbsfiles/images/2013/11/201311251325_479099_2784284_3.jpg该保温材料的导热系数为0.02676。

  • 稳态强磁场实验装置测试系统产出新成果

    近期,中国科学技术大学朱弘教授小组利用稳态强磁场实验装置电子自旋共振等测试系统,研究了压缩应变(La,Ba)MnO3薄膜中的磁晶各向异性,其研究结果近期发表于《应用物理学杂志》(Journal of Applied Physics)。 中国科学院强磁场科学中心的科学实验测试系统包括输运实验测试系统、磁性实验测试系统、磁光实验测试系统、极低温实验测试系统、高压实验测试系统和组合显微系统。朱弘小组此次实验就是利用磁性实验测试系统中的“电子顺磁共振谱仪”,进行了一系列研究。其实验结果表明,在Sr或Ca掺杂的锰氧化物铁磁薄膜中容易磁化轴沿拉伸应变方向。该工作利用转角铁磁共振技术,发现在Ba掺杂的薄膜中情况正相反,易磁化方向对应面内的压缩应变方向。实验得到面外共振位置高达12千奥斯特(kOe),表明除了形状各向异性外,磁晶各向异性非常可观,且是易面的。这种磁晶各向异性“异常”的表现反映了锰氧化物与Bethe-Slater曲线的物理内容相一致。(La,Ba)MnO3和Co、Ni相同,易磁化轴沿压缩方向;而另两种掺杂的锰氧化物(LaCa),(LaSr)和a-Fe一样表现相反。 强磁场科学中心成立于2008年4月30日,是国家发改委支持的“十一五”国家重大科学工程。中心的长远预设目标包括强磁场的产生、强磁场下的物性研究以及依托强磁场实验装置进行科学技术发明,其实验设施包括磁体装置和科学实验测试系统。2010年,部分磁体装置及测试系统建成,已开始先期投入试运行并陆续向用户开放,基本实现“边建设边运行”。 稳态强磁场实验装置项目建设总目标是建立40T级稳态混合磁体实验装置和系列不同用途的高功率水冷磁体、超导磁体实验装置,使我国的强磁场水平跻身于世界先进行列。目前四台超导磁体中的SM3与配套核磁共振谱仪完成联调,并已开展了多项结构生物学和药物学方面的研究,SM2已调试成功,正与组合显微测试系统SMA联调。磁体装置方面,强磁场中心现已成功研制出国内首台铌三锡管内电缆导体的超导磁体以及我国首台井式真空充气保护大型铌锡线圈热处理炉系统。http://www.cas.cn/ky/kyjz/201208/W020120820347280715931.jpg

  • 【原创大赛】防护热板法导热系数测量装置基本性能的验证与考核

    【原创大赛】防护热板法导热系数测量装置基本性能的验证与考核

    隔热材料的导热系数一般会采用防护热板法导热系数测试仪器来进行测量,防护热板法导热系数测试仪器一般都来自不同的渠道,有购置的商品化设备,有定制的设备,有自行研制的设备等。这些设备在验收和正式使用前,都需要进行测量装置的基本性能验证与考核,以保证测试设备符合标准测试方法的要求和达到测量不确定度要求。为了系统和有效的进行验证与考核,根据国标GB/T 10294-2008“绝热材料稳态热阻及其特性的测定 防护热板法”,制订了以下验证和考核内容。1. 仪器中与试样接触面的平整度考核 在任何操作条件下,工作表面的平整度均应优于0.025%。如下图所示,假定一个理想平面与板的表面在P点接触,表面上任何其他点B与理想平面的距离AB与A点到参考接触点P的距离AP之比应小于0.025/100。http://ng1.17img.cn/bbsfiles/images/2017/10/2015072222513288_01_3384_3.jpg表面偏离真实平面 工作表面的平整度用四棱尺或金属直尺检查,将尺的棱线紧靠被测表面,在尺的背面用光线照射棱线进行观察,可容易地观察小到25 的偏离,大的偏离可用塞尺或薄纸测定。 2. 测试仪器电气连接和自动控制器考核 将薄的、低热阻的试样装入装置内,并让整个装置在室温中与实验室空气热平衡,所有温度传感器指示的温度应很接近室温,检查每个温度传感器的噪声,用欧姆表检查所有电器的绝缘状况。 在加热单元的金属面板与计量单元或防护单元加热器的一条引线之间,加上加热单元加热器预期的最大工作电压(应无电流流过)。如果温度传感器的接地、屏蔽、电气绝缘正常,则温度传感器的读数不会产生波动。在装置工作温度的两端重复上述检查。在低于室温时,降低电气绝缘的一个常见的原因是湿度。在高温下,电气绝缘也会有较大的变化范围。 检查不平衡检测仪表和所有自动化控制仪器的噪声及漂移。 3. 温度测量系统考核 把装有试样的放护热板组件密封于空气调节箱内,调节冷却单元的温度为其使用范围内某一适当值。把箱体内部的环境温度控制到同一温度。 不向加热单元的计量加热器和防护加热器施加电功率。此时加热单元的温度必须与冷却单元温度一致,差异应在测量系统的噪声范围内。此外,防护单元温度与计量单元温度不平衡亦应在不平衡检测仪表的噪声范围内(这种均温布置也能用于检查热电堆)。可能产生错误结果的原因是由于空气调节箱的设计不良,装置的绝缘不良或温度传感器的布线和连接不当造成。 4. 护热温度不平衡误差考核http://ng1.17img.cn/bbsfiles/images/2017/10/2015072223030430_01_3384_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2015072223042493_01_3384_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2015072223072425_01_3384_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2015072223084997_01_3384_3.jpg 不平衡检测装置的噪声和漂移必须小于在最恶劣试验条件下允许的最小不平衡电压值。 5. 热防护装置边缘热损失考核 当试样的厚度和热阻为最大,而试样的温差为最小时,边缘热损失使测量的误差最大。 检查时放入厚度和热阻接近最大设计值的试样,以设计的最小温差进行测定。测量防护单元的输入功率,它不应比理想一维条件下防护单元流过试样的热流量所需的功率相差太多。 然后必须用试验检验边缘热损失对测得的热性质的影响。可能时,唯一的直接方法是改变环境温度,观察防护单元加热器的功率和测定的热性质的变化。这项信息有助于确定任何形式的试样(均质的或非均质的,各向同性或非各向同性等)的环境温度允许漂移的范围。 当不可能改变环境温度时,确定边缘绝热或防护是否满足要求的有效方法是:在埋入试样边缘中心的薄金属片上焊上热电偶测量试样边缘中心的温度Te。 (Te-Tm)/ΔT 值应小于0.1,此处Tm 是试样的平均温度, ΔT是试样两侧的温差。本方法仅适用于均质材料。要得到最高准确度时,此值应小于0.02。 6. 装置工作面的热辐射率测量 按照标准测试方法的要求,在工作温度下,所有面板的工作表面的总半球辐射率应大于0.8。http://ng1.17img.cn/bbsfiles/images/2015/07/201507222317_556774_3384_3.jpg 7. 线性试验 装置讲过以上检查,满足要求后,装入一个(或一对)由热稳定的并且导热系数与温度成线性关系的材料制作的试样,如欧盟和美国标准机构的导热系数标准参考材料。在给定的平均温度下,以不同的温差如10K、20K 和 40K 测量导热系数,其结果应与温差无关。 以不同的平均温度重复这种检查。如果结果不理想,这有可能是边缘热损失和不平衡传感器的安装位置不合适的联合影响。 8. 综合性能检查 所有上述检查满足后,至少应对两套曾在国家认可的实验室标定过的,热性质稳定的材料进行测定。每套试样应在运行的温度范围内两个典型的平均温度下进行测定。所有测定宜在标定的90天内进行。若测定结果有差异,应详细研究其产生原因,采取恰当的措施将其消除。

  • 【原创大赛】防护热板法导热系数测试实验室间比对方案设计

    【原创大赛】防护热板法导热系数测试实验室间比对方案设计

    1. 概述 随着保温隔热材料在各个领域内的广泛应用,体现保温隔热材料性能的导热系数指标也逐渐成为重要的测试和考核参数,使得测试保温隔热材料导热系数的防护热板法测试仪器得到了广泛的应用,众多机构和实验室采用多种型号的防护热板法导热系数测试仪器对保温隔热材料的导热系数进行测试评价。但在防护热板法导热系数测试设备的应用中,出现以下问题: (1)同一保温隔热材料产品经不同实验室采用不同防护热板法设备测试后出现不同测试结果。 (2)同一保温隔热材料产品经不同实验室采用相同防护热板法设备测试后出现不同测试结果。 (3)一台防护热板法设备测试同一材料在不同时期和不同温度区间出现不同测试结果。 由此可见,由于设备、人员、环境条件和操作方法等不同存在不同的测试误差。也就是说,不同实验室和不同防护热板法设备之间,甚至同一防护热板法测试设备,存在不同“测量不确定度”造成的测试数据差异。在实际工程应用中,这些差异严重影响了保温隔热材料产品的性能评定,很多时候甚至会误导材料研制、使用和设计部门对材料的客观准确认识以及正确使用。 由于目前国内外防护热板法测试设备缺失相应的计量校准和溯源,防护热板法测试设备仅能通过美国国家标准与技术研究院(NIST)提供的有限标准参考材料来进行室温附近的校准,无法实现较宽泛范围内的防护热板法测试设备的校准。鉴于此种特殊情况,国内外测试机构和实验室一般都采用一些性能稳定的材料来进行实验室比对测试。 按照GB/T 27043-2012“合格评定能力验证的通用要求”规定,所谓实验室比对,是指在规定条件下,对相同准确度等级或者指定不确定度范围的同种测量仪器复现的量值之间进行比较的过程。测试设备实验室间比对的目的是确定实验室能力,识别实验室间的差异和实验室存在的问题,而关键是要对最终比对结果进行评价。在实验室间比对过程中,应特别考虑各参加实验室所声明的测量不确定度。在国内的以往实验室间比对中,对各实验室测试设备测量不确定的认识严重不足,几乎只注重比对测试结果的一致性,而完全忽略了结果的测量不确定度。虽然多个实验室进行了测试给出了结果,但没有提供各实验室的测量结果不确定度分析报告,使得实验室间比对工作只有组织和实施而缺少正确合理的评价,不知道结果之间相差多大为合理,多大为不合理,甚至于一味地追求结果的一致性,忽视了比对实验的真正目的。 由此可见,要提高保温隔热材料导热系数测试的准确性和可靠性,就应统一测试结构和实验室的防护热板法测试设备的检定和校准工作,正确运用测量不确定度分析,在规定的范围内开展量值传递工作,做好计量标准考核和管理工作。 其实,针对目前国内防护热板法测试设备缺失相应的计量校准和溯源的现状,防护热板法测试设备的测量不确定评定,不仅仅适应于计量机构和国际量值比对,同时更适用于各级检测实验室、校准实验室和质检机构。 因此,为了规范检测机构测试标准的运行,提高测试管理水平,保证保温隔热材料测试数据的准确可靠,客观、公正和科学反映检测机构和实验室综合技术水平,应开展各实验室防护热板法测试设备的测量不确定度分析,开展各实验室之间防护热板法测试设备比对,制定相应的实施方案,以便各实验室在参加比对工作中共同遵守。 此次保温隔热材料防护热板法导热系数测试实验室间比对只在国内少数几家具有防护热板法导热系数测试设备的重要机构和实验室内进行,通过实验室间比对,拟达到以下几方面的目的: (1)识别实验室防护热板法测试设备存在的问题,这些问题可能与诸如不适当的检测或测试程序、人员培训和监督的有效性、设备校准等因素有关; (2)建立防护热板法导热系数测试的有效性和可比性; (3)识别实验室间各防护热板法测试设备的差异; (4)确认各实验室声称的导热系数测量不确定度; (5)评估防护热板法的性能特征——通常被称为协作试验; (6)增强实验室客户的信心; (7)根据比对的结果,帮助参加实验室提高能力; (8)用于导热系数标准物质/标准样品的赋值,以及评定其用于导热系数检测或测量程序时的适用性。2. 基本原则2.1. 实验室间比对参与实验室的动机 此次保温隔热材料防护热板法导热系数测试实验室间比对的主要目的是在国内有限范围内建立防护热板法导热系数测试的有效性和可比性。此次比对并不具有通常意义上的实验室合格评定和能力验证的作用,主要是通过实验室间比对识别实验室防护热板法测试设备存在的问题、识别实验室间各防护热板法测试设备的差异和明确各自实验室导热系数测量不确定度,为改进措施的实施提供明确的方向。因此,这就需要参与比对的机构和实验室具有不怕暴露自身问题的态度,能客观真实的进行比对实验和展示比对结果,更有利于发现问题和解决问题,促进这个技术领域的发展。 总之,此次防护热板法导热系数测试实验室间比对,以及今后的其他热物理性能测试方法和测试参数的比对,都属于自发组织、自愿参加,大家一起努力来提高整个材料热物理性能测试水平。2.2. 实验室比对的组织 在进行比对时要事先制定比对计划,针对比对目的和方法,包括采用的传递标准、仪器设备的要求、数据的处理及报告、比对结果的评价及利用等环节,策划好比对方案。特别要根据比对项目的目的,确定具有相当技术能力的主导实验室和一定数量符合条件的参比实验室。组织比对时应着重考虑以下三点: (1)比对方法首选国家计量检定规程或国家计量技术规范规定的相关程序。在某些情况下也可以采用特定方法,但应通过适当途经(例如协作实验)确认。如果参比实验室的仪器设备和实验人员差异较大,或者对比对方法有歧义,则应事先对实验条件作更为详尽的说明,以便排除可能产生的干扰并识别真实差异。 (2)比对参考(指定)值通常由高等级的实验室(例如国家、大区或省市计量院)给出,也可由主导实验室和参比实验室共同协商提出。在实际工作中,有时是自行组织的人员比对、设备比对或者是两个或两个以上的实验室间比对。这时无法确定参考值,往往只能比较两个或两个以上测量结果之间的差异,而这种差异的可接受性往往可以用En值来判断。如果差异显著,则很难确定出错在哪一方。 (3)鉴于测量结果及其不确定度均要参与最终比对结果的评判,所以在比对前应列出不确定度的主要分量、评定方法,并给出相应的置信水平和自由度。2.3. 实验室比对的路线 在传统的实验室间比对过程中,典型的比对路线如图 2‑1所示,A表示主导实验室,B、C、D、E、F、G表示参比实验室。在圆环式中,传递标准首先由主导实验室A按规定程序进行校准,得出数据后传递给参比实验室B,经B校准后依次传递给其他实验室,最后由G返回到A进行复校,以验证传递标准的示值变化是否正常。该方式适用于传递标准稳定性好、便于搬运的情况。http://ng1.17img.cn/bbsfiles/images/2015/07/201507221657_556704_3384_3.jpghttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif图2‑1 实验室比对传递线路图 在星形式中,传递标准首先由主导实验室A按规定程序进行校准,得出数据后传递给参比实验室B,经B校准后直接返回A复校,以验证传递标准的示值变化是否正常。若变化在允许范围内则比对有效,可取A前后两次的平均值与B比较,计算出A、B两个实验室的差异。若差异在允许的范围内,表明符合要求;若差异显著,则应检查是否存在系统偏差。依此类推,逐次比对到G。该方式也适用于多台传递标准从A出发同时进行比对,即使某一台传递标准出问题,也只影响某一个实验室的比对结果。 花瓣式由三个小的圆环式组成, 在按圆环方式进行了两个实验室的比对后,将传递标准返回主导实验室A复校,以及时验证在此过程中传递标准示值的变化

  • 怎样测煤的导热系数,绝热材料的导热系数采用什么方法测量?

    想测煤在高温时导热系数,但是煤在温度上升过程中会有水分的挥发,而在高温情况下也会发生一些转变?如何能够更准确的测试其高温导热系数,有没有人做过类似的试验呢?还有一般的绝热材料因为导热系数比较小,那么一般采用什么方法进行测量呢? 哪个厂家的仪器比较好一点?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制