当前位置: 仪器信息网 > 行业主题 > >

在线乙二醇冷冻液浓度检测系统

仪器信息网在线乙二醇冷冻液浓度检测系统专题为您提供2024年最新在线乙二醇冷冻液浓度检测系统价格报价、厂家品牌的相关信息, 包括在线乙二醇冷冻液浓度检测系统参数、型号等,不管是国产,还是进口品牌的在线乙二醇冷冻液浓度检测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合在线乙二醇冷冻液浓度检测系统相关的耗材配件、试剂标物,还有在线乙二醇冷冻液浓度检测系统相关的最新资讯、资料,以及在线乙二醇冷冻液浓度检测系统相关的解决方案。

在线乙二醇冷冻液浓度检测系统相关的论坛

  • 检测甘油乙二醇峰不见了?

    检测甘油乙二醇峰不见了?

    检测甘油,有对照乙二醇、二甘醇,内标正己醇,条件:DB-624(30m*0.53mm 3.um),进样量1ul,分流比10:1,进样口200°,FID250°,程序:起始100(维持4′),以50°/min升120°(维持10′),再以50°/min升220°(维持6′).后加设降温和平衡时间。样品处理:系统适用性性乙二醇、二甘醇,内标正己醇各100mg稀释至100ml(系统储备液),精取1ml+4g甘油样品至100容量瓶, 所 有 溶剂都是色谱甲醇。 对照液:乙二醇、二甘醇,内标正己醇各50mg至100ml(标储液),取5ml稀释至25ml。问题:6月份同样方法检测,一切正常(当时柱子新买来活化后检1批乙醇,) 这两天同一根柱子检测(中间检测了3批乙醇),结果系统适用性乙二醇出不来峰了。正己醇和二甘醇峰面积无论是储备液还是系统适用性都没什么差异。储备液中的乙二醇有峰面积,但与之前浓度相当情况下峰面积小1/3,系统适用性就出不来了,对照液要算校正因子f,之前差不多2-3左右,现在超过10了。乙二醇的安剖瓶色标5ml有之前开启后密封冷藏的,也有新开的,两种情况都差不多,批号都是081226。http://ng1.17img.cn/bbsfiles/images/2012/07/201207251613_379663_2481522_3.jpg6月份的对照液,峰依次是:乙二醇--正己醇--二甘醇。http://ng1.17img.cn/bbsfiles/images/2012/07/201207251616_379664_2481522_3.jpg6月的系统适用性,7.8′乙二醇峰还是不错的,但这次此峰消失了。后面的正己醇、二甘醇相当浓度峰面积也相当。请问问题可能在哪里呢?

  • 低温冷冻设备不同的载冷剂优缺点说明

    低温冷冻设备常用于不同环境工业冷处理环境中,不同温度段的低温冷冻设备所采用的载冷剂也是不同,那么,不同的载冷剂有什么优缺点呢?低温冷冻设备的载冷剂先在蒸发器处被冷却,获得冷量,然后被泵输送到需要冷量的各个地方,吸收热量之后又回到蒸发器再被冷却,如此循环往复,以达到连续供冷的目的,其中,常用的载冷剂有水、盐水、乙二醇、丙二醇、二氯甲烷、三氯乙烯等,使用比较多的还是水。低温冷冻设备采用水作为载冷剂的话,适合温度0度以上的制冷系统,因为水具有比热大、密度小、对低温冷冻设备组和管道腐蚀性小、不燃烧、不爆炸、化学稳定性好、价廉易得,但是由于冰点高,仅能运用在0℃以上的制冷系统,所以载冷剂水适用于制冷温度在0℃以上的场合。其次,低温冷冻设备的载冷剂-盐水可以降低凝固点温度,使低温冷冻设备载冷范围变大,常用做载冷剂的盐水有氯化钠水溶液和氯化钙水溶液,它们适用于中、低温冷冻设备制冷系统,但需要注意盐水可能对低温冷冻设备及管道具有腐蚀性。应用范围:可用于盐水制冰机和间接冷却的冷藏装置,或冷却袋装食品。还有载冷剂-乙二醇和丙二醇使用率也是可以,这两种载冷剂凝固点低,性质稳定,与水混溶,使用的温度范围广,价格便宜,热容量较大,但是,低温下溶液的粘度上升非常迅速,具有腐蚀性,一般用-乙二醇和丙二醇的水溶液作为载冷剂,适用的温度范围为0~-50℃。当然,载冷剂中的二氯甲烷和三氯乙烯也有使用到的,一般用它们的液体作为载冷剂,凝固点低,但是,他们的缺点比较明显,挥发性高,沸点低,损失大,具有腐蚀性,一般用它们的液体作为载冷剂,适用温度范围为-50~-100℃。低温冷冻设备除了上述的载冷剂之外,乙醇、丙三醇等水溶液也可以作为载冷剂使用,一般选择可按照客户需求的型号温度来选择合适的。

  • 【求助】中药口服液中的乙二醇的如何检测?

    求教各位:我的几种中药提取液中混进了防冻液(内含乙二醇),我想检测此中药提取液中乙二醇的含量,请教各位如何检测,最好详细一点,如色谱柱,检测条件,样品如何前处理等?中药提取液中是几种中药材经过提取得到的混浊药液,药液是糖浆剂,含有大量的水;个别药液中含有约10%的乙醇.

  • 工作场所空气中乙二醇能力验证样检测总结

    工作场所空气中乙二醇能力验证样检测总结

    乙二醇能力验证考核时间为2018年6月初,新标准GBZ/T 300.86-2017于2018年5月1日正式实施,原GBZ/T 160.48-2007标准作废。因此,本次能力验证样应选择新标准作为检测依据。新旧标准主要区别为乙二醇的解吸溶液,GBZ/T 160.48-2007中乙二醇的解吸液为2%的异丙醇溶液,新标准则选用甲醇作为解吸液。乙二醇在醇类化合物中极性相对较大,在检测过程中正确度及精密度差。此前也尚未对新标准进行方法变更,作为新标准发布后的首次检测经历,现将经验分享以供参考:1.准备工作: 更换进样垫及衬管,用丙酮清洗进样针,避免色谱系统或进样针污染影响样品检测。2.色谱柱选择: 因没购买标准推荐使用的FFAP毛细管色谱柱,故选择同为极性柱的CD-624(60m×0.25mm×1.4μm)和HP-INNOWAX(30m×0.32mm×0.25μm)进行比较。甲醇溶剂峰较大,CD-624柱长为60m,乙二醇与甲醇的分离效果较好,但同一浓度响应值相对偏低,峰拖尾严重。HP-INNOWAX在灵敏度上明显优于CD-624,且峰型较好,定量相对比较准确,故选用HP-INNOWAX色谱柱进行检测(见图1、图2)。[align=center][img=,690,319]http://ng1.17img.cn/bbsfiles/images/2018/07/201807092025163101_7670_3435723_3.jpg!w690x319.jpg[/img][/align][align=center]图1 CD-624色谱柱测定乙二醇(40μg/ml)[/align][align=center][img=,690,333]http://ng1.17img.cn/bbsfiles/images/2018/07/201807092021490633_4214_3435723_3.jpg!w690x333.jpg[/img][/align][align=center]图2 HP-INNOWAX色谱柱测定乙二醇(40μg/ml)[/align]3.色谱条件选择: 因能力验证样品无干扰物,考虑升温程序会导致基线上移,对乙二醇定量准确性造成影响,故柱温:170℃恒温;气化室温度:250℃;检测器温度:300℃;载气(氮气)流量:4ml/min;分流比:10:1。测试结果发现,甲醇和乙二醇都出现峰拖尾现象。改用标准推荐的升温程序:柱温初温80℃,以20℃/min升至180℃,保持2min。峰型得到很大的改善,故采用新标准推荐的色谱条件。4.标准曲线配制及样品定量: 参照GBZ/T 300.86-2017推荐的标准曲线范围0-160μg/ml进行配制检测,在绘制标准曲线过程中发现,乙二醇的线性相关性与常规物质(如苯系物等)不同,一般而言,以目标物峰面积/目标物浓度作为校正因子,曲线过原点,不同浓度的目标物其校正因子相同。但乙二醇较大的极性导致不同浓度的峰面积响应值不成倍数关系增长,高浓度的校正因子明显大于低浓度的校正因子,在绘制一次曲线回归方程过程中出现较大的负截距,回归方程为y=ax-b。 利用上述标准曲线对能力验证样浓度进行初测预判,同时测定实验室内部质控样,其低浓度真值范围为41.4μg±3.8,高浓度真值范围为87.7μg±5.4。预测结果发现,能力验证样低浓度值20μg左右,高浓度约70μg。而实验室内部质控样低浓度测试结果偏高,高浓度测试结果在真值范围内,故重新配制两条高低浓度曲线,曲线范围为能力验证样初测浓度的1/2~2倍之间,并保证其中一个浓度点与能力验证样品浓度相近。 实验室内部质控样对应使用高低浓度曲线检测,均在真值范围内。能力验证样使用标准曲线检测结果和相近标准曲线浓度点单点校正结果相对偏差不超过5%,求算平均值,结果上报。 以上为本实验室硅胶管中乙二醇能力验证样检测总结。了解检测目标物的性质,参考相关标准,在实际操作中根据实验室自身条件及仪器设备状况,对色谱柱、色谱条件等进行优化,可有效提高检测数据的准确度。[align=left][/align]

  • 如何分析丙烯酸中的乙二醛、乙二醇?

    1.如何分析丙烯酸中的乙二醛,水中乙二醇? 乙二醛会导致丙烯酸聚合,应越少越好。乙二醇为抗冻剂,检查工业水中的乙二醇含量可以确认冷冻水管是否破裂,滲漏。1.曾以GC,LC,UV,GC-MASS进行尝试,均定性不出来。 GC上曾尝试DB-WAX,HP-5,FFAP等不同的管住进行分析。 LC的管住为SB-C8,加入不同浓度的标准品,峰形却几乎不变。波长扫描后,换波长也没用。 请教各位有什么高招进行分析。

  • 【原创大赛】工作场所空气中乙二醇能力验证样检测总结

    【原创大赛】工作场所空气中乙二醇能力验证样检测总结

    乙二醇能力验证考核时间为2018年6月初,新标准GBZ/T 300.86-2017于2018年5月1日正式实施,原GBZ/T 160.48-2007标准作废。因此,本次能力验证样应选择新标准作为检测依据。新旧标准主要区别为乙二醇的解吸溶液,GBZ/T 160.48-2007中乙二醇的解吸液为2%的异丙醇溶液,新标准则选用甲醇作为解吸液。 乙二醇在醇类化合物中极性相对较大,在检测过程中正确度及精密度差。此前也尚未对新标准进行方法变更,作为新标准发布后的首次检测经历,现将经验分享以供参考:1.准备工作: 更换进样垫及衬管,用丙酮清洗进样针,避免色谱系统或进样针污染影响样品检测。2.色谱柱选择: 因没购买标准推荐使用的FFAP毛细管色谱柱,故选择同为极性柱的CD-624(60m×0.25mm×1.4μm)和HP-INNOWAX(30m×0.32mm×0.25μm)进行比较。甲醇溶剂峰较大,CD-624柱长为60m,乙二醇与甲醇的分离效果较好,但同一浓度响应值相对偏低,峰拖尾严重。HP-INNOWAX在灵敏度上明显优于CD-624,且峰型较好,定量相对比较准确,故选用HP-INNOWAX色谱柱进行检测(见图1、图2)。[align=center][img=,690,319]http://ng1.17img.cn/bbsfiles/images/2018/07/201807102106330287_6622_3435723_3.jpg!w690x319.jpg[/img][/align][align=center]图1 CD-624色谱柱测定乙二醇(40μg/ml)[/align][align=center][img=,690,333]http://ng1.17img.cn/bbsfiles/images/2018/07/201807102107180982_7478_3435723_3.jpg!w690x333.jpg[/img][/align][align=center]图2 HP-INNOWAX色谱柱测定乙二醇(40μg/ml)[/align]3.色谱条件选择: 因能力验证样品无干扰物,考虑升温程序会导致基线上移,对乙二醇定量准确性造成影响,故柱温:170℃恒温;气化室温度:250℃;检测器温度:300℃;载气(氮气)流量:4ml/min;分流比:10:1。测试结果发现,甲醇和乙二醇都出现峰拖尾现象。改用标准推荐的升温程序:柱温初温80℃,以20℃/min升至180℃,保持2min。峰型得到很大的改善,故采用新标准推荐的色谱条件。4.标准曲线配制及样品定量: 参照GBZ/T 300.86-2017推荐的标准曲线范围0-160μg/ml进行配制检测,在绘制标准曲线过程中发现,乙二醇的线性相关性与常规物质(如苯系物等)不同,一般而言,以目标物峰面积/目标物浓度作为校正因子,曲线过原点,不同浓度的目标物其校正因子相同。但乙二醇较大的极性导致不同浓度的峰面积响应值不成倍数关系增长,高浓度的校正因子明显大于低浓度的校正因子,在绘制一次曲线回归方程过程中出现较大的负截距,回归方程为y=ax-b。 利用上述标准曲线对能力验证样浓度进行初测预判,同时测定实验室内部质控样,其低浓度真值范围为41.4μg±3.8,高浓度真值范围为87.7μg±5.4。预测结果发现,能力验证样低浓度值20μg左右,高浓度约70μg。而实验室内部质控样低浓度测试结果偏高,高浓度测试结果在真值范围内,故重新配制两条高低浓度曲线,曲线范围为能力验证样初测浓度的1/2~2倍之间,并保证其中一个浓度点与能力验证样品浓度相近。 实验室内部质控样对应使用高低浓度曲线检测,均在真值范围内。能力验证样使用标准曲线检测结果和相近标准曲线浓度点单点校正结果相对偏差不超过5%,求算平均值,结果上报。 以上为本实验室硅胶管中乙二醇能力验证样检测总结。了解检测目标物的性质,参考相关标准,在实际操作中根据实验室自身条件及仪器设备状况,对色谱柱、色谱条件等进行优化,可有效提高检测数据的准确度。

  • 如何分析丙烯酸中的乙二醛,水中乙二醇?

    1.如何分析丙烯酸中的乙二醛,水中乙二醇? 乙二醛会导致丙烯酸聚合,应越少越好。乙二醇为抗冻剂,检查工业水中的乙二醇含量可以确认冷冻水管是否破裂,滲漏。1.曾以GC,LC,UV,GC-MASS进行尝试,均定性不出来。 GC上曾尝试DB-WAX,HP-5,FFAP等不同的管住进行分析。 LC的管住为SB-C8,加入不同浓度的标准品,峰形却几乎不变。波长扫描后,换波长也没用。请教各位有什么高招进行分析。

  • 气相色谱测乙二醇的浓度

    滤液中含有乙二醇、蒸馏水,现想用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测乙二醇的浓度,请问怎么测啊,这个水要除掉吗?想用取少量用丙酮萃取,不知如何?

  • 【求助】检测乙二醇水溶液用什么柱子好?

    【求助】检测乙二醇水溶液用什么柱子好?

    这个是现在用安捷伦5890检测乙二醇水溶液。出峰分别是乙醛、2-甲基-1,3-二氧环戊烷、乙二醇。填充柱Proapak Q,FID。手动进样。炉温190度。出峰不是很稳定,但乙二醇里是不是像还有别的物质??这几个谱图是平时比较有代表性的。我想换个柱子试试但不知道什么样的好。哪位告诉下该用什么条件改进。。。使乙二醇检测更准确。最好能分离出后面物质。确定是什么。(会不会是二甘醇?工艺里可能会有。。。)(有人说是乙二醇自身氢键聚合出现的。。会吗?)http://ng1.17img.cn/bbsfiles/images/2010/11/201011260832_262033_1621482_3.jpg

  • 冷冻甜玉米检测问题

    冷库里的冷冻甜玉米如果检测农药残留是否是按蔬菜累检测?执行标准应该用那个?检测农药残留应该检测那几相?

  • 关于用气相FID检测器检测聚乙二醇400的残留限度

    [color=#444444]本人最近用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]做聚乙二醇400残留溶剂方法的摸索;用的毛细管柱,从极性柱到非极性柱,基本都试了一遍;聚乙二醇400就是不出峰,用的溶剂是DMF,聚乙二醇400的浓度为250ug/ml。请问有人做过类似的实验吗,最好还是FID检测器,用的毛细管柱。[/color]

  • 2013年日本冷冻协会盲样检测

    2013年日本进口冷冻蔬菜品质安全协议会(冻菜协)组织的农残检测技术相互比较又开始了,各位大侠的实验室有参加吗?都来讨论一下吧。检测项目12项,分别为:敌敌畏,甲胺磷,三唑磷,毒死蜱,γ-666,op‘-DDT,氯氰菊酯,苯醚甲环唑,嘧霉胺,乙草胺,莠灭净,氟硅唑。

  • 高效冷冻,自动化气相液氮罐的温度控制技术

    温度控制是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐的关键技术之一,在高效冷冻和自动化方面扮演着重要角色。一种高效冷冻、自动化[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐的温度控制技术。[b]  一、温度传感器[/b]  温度传感器是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐温度控制的核心元件。目前常用的温度传感器有热电偶和温度传感器。热电偶是由两种不同材料组成的电偶,当温度变化时,两种材料产生的电势差也会随之变化。温度传感器则通过电阻值的变化来测量温度。无论是热电偶还是温度传感器,其关键在于精度和稳定性,以确保温度测量的准确性。[b]  二、温度控制算法[/b]  温度控制算法是实现高效冷冻和自动化的关键。其中一个常用的算法是PID算法(比例-积分-微分算法)。PID算法通过不断调整控制器的输出信号,使得系统的温度能够快速且稳定地达到设定值。比例项用于根据当前温度与设定值之间的偏差来调整控制器的输出,积分项用于消除系统的静态误差,微分项用于消除系统的动态误差。[b]  三、冷却系统[/b]  冷却系统是高效冷冻的关键组成部分。常用的冷却系统包括压缩机、冷凝器、蒸发器和控制阀等。在温度控制中,压缩机负责提供冷冻剂的压缩和流动,冷凝器负责将冷冻剂释放热量,蒸发器负责吸收热量,而控制阀则根据温度传感器的信号来控制冷冻剂的流量,从而实现对温度的精确控制。  四、自动化控制系统  自动化控制系统是实现[url=http://www.cnpetjy.com/qixiangyedanguan/][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐[/url]温度控制的关键。它包括温度控制器、传感器、执行器和人机界面等组成部分。温度控制器负责接收传感器的信号,并根据设定值和控制算法来控制执行器的操作。执行器则根据控制器的指令来调整冷却系统的工作状态。人机界面则提供操作者与系统交互的接口,使操作者能够监测和调整温度控制参数。[url=http://www.mvecryoge.com/]金凤液氮罐厂家[/url]  综上所述,高效冷冻、自动化[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐的温度控制技术需要依靠精确的温度传感器、高效的温度控制算法、可靠的冷却系统和先进的自动化控制系统。通过这些技术的应用,可以实现对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]液氮罐温度的快速、稳定和精确控制,提高冷冻效率,实现自动化生产,提高工作效率。

  • 聚山梨酯80(供注射用)中乙二醇二甘醇和三甘醇的检测面颊太小

    大家好,我第一次按照药典四部聚山梨酯80(供注射用)中乙二醇二甘醇和三甘醇检测,称量还是按照聚山梨酯20的方法称量配制,浓度一致,使用DB-17色谱柱,其他按照药典方法去做的,然而4个峰的相应值都很低,特别是乙二醇大约在0.6其他几个面积也只有几,面积太小误差非常大,想请教下,这是什么情况,做了几次结果也都是这样,大神们帮忙解答一下,谢谢!

  • 水性涂料中乙二醇单丁醚的检测

    我们的水性涂料中含有乙二醇单丁醚,设备有GC-2014C,想要检测其中的乙二醇单丁醚的含量,请问谁有标准的方法,具体怎么做,谢谢,还有乙二醇单丁醚有限定要求吗乙二醇单丁醚属于VOC吗?求助

  • USP药典方法检测聚乙二醇中乙二醇和二甘醇

    请问下有使用USP药典方法检测聚乙二醇中乙二醇和二甘醇过吗?色谱柱为Chromosorb WNAW 12%山梨醇,1/8''*2.0mm*1.5m,柱温140℃,在考察该方法的时候发现第一次实验空白无干扰,第二次实验空白在乙二醇和二甘醇出峰处出峰,请问下是因为前一次做的样品残留在填充柱中导致空白出峰的吗?[img]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201543024359_9780_3860760_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201543002954_9705_3860760_3.png[/img]

  • 乙二醇单丁醚如何检测

    我们的水性涂料中含有乙二醇单丁醚,设备有GC-2014C,想要检测其中的乙二醇单丁醚的含量,请问谁有标准的方法,具体怎么做,谢谢,还有乙二醇单丁醚有限定要求吗请各位专家给点意见!

  • 【求助】乙二醇甲醚残留的气相检测

    我们的一个产品用到乙二醇甲醚,需对产品中的乙二醇甲醚的残留进行控制。方法如下:色谱柱:DB-624进样口温度:200,检测器温度:300柱温 40保持4min,10/min升温至200保持7min流速:4.0ml/min分流比:1:1顶空条件顶空瓶平衡温度:140,定量环温度:150,传输线温度:160我们遇到的问题是:乙二醇甲醚在这种条件下的响应很低,500ppm的限度下峰面积为41.2,50ppm限度下无响应。而乙二醇甲醚在药典里规定的限度为50ppm请问,我们应该怎么改进条件来检测乙二醇甲醚残留?

  • 新能源汽车驱动电机测试系统中存在冷冻油的影响

    新能源汽车驱动电机测试系统在运行的时候系统中如果存在冷冻油的话,就会造成新能源汽车驱动电机测试系统故障,那么具体的冷冻油对于新能源汽车驱动电机测试系统有什么影响呢?  冷冻油在新能源汽车驱动电机测试系统中的危害使冷凝温度和冷凝压力升高;冷凝器传热恶化。因为油进入冷凝器后产生的油膜的热导率远比金属小,使热阻增大,传热系数减小。新能源汽车驱动电机测试系统中的冷冻油使蒸发温度和蒸发压力下降,压缩机产冷量下降,单位功耗增加,使冷间降温困难。原因有两方面,一方面与冷凝器的原因一致;另一方面,由于在蒸发器内积油,将使蒸发器有效面积减少。  新能源汽车驱动电机测试系统中冷冻油易造成堵塞,引起系统工作不正常。这主要是由于油的粘度大,遇到污物和机械杂质易混合成胶状的物质,这种胶状物质积聚在截面较小的管道或阀门时,极易造成堵塞,引起制冷工况的紊乱。为避免和减少油进入,新能源汽车驱动电机测试系统,除设置性能良好的油分离器和正确掌握压缩机加油量外,在运转中必须做好制冷设备的定期放油工作。另外,还应注意加入与放出油量的平衡。如果发现压缩机加油量增多,而放出的油量减少,应查明原因及时排除,并增加放油次数,以防止过多的油进入制冷系统内。  新能源汽车驱动电机测试系统中冷冻油的影响不言而喻,建议新能源汽车驱动电机测试系统采用全密闭循环管路,这样运行中不会产生油雾以及冷冻油以及其他故障。

  • 【求助】乙二醇 填充柱检测

    各位大侠,帮帮我吧。 做乙二醇标准曲线,这几天一直在试验各种试剂溶解乙二醇,结果还是不出峰。我的条件是FFAP填充柱,安捷伦7820气相色谱,FID检测器。我用过水,甲醇,二硫化碳直接就分层

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制