数字实验触发器逻辑分析仪

仪器信息网数字实验触发器逻辑分析仪专题为您提供2024年最新数字实验触发器逻辑分析仪价格报价、厂家品牌的相关信息, 包括数字实验触发器逻辑分析仪参数、型号等,不管是国产,还是进口品牌的数字实验触发器逻辑分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合数字实验触发器逻辑分析仪相关的耗材配件、试剂标物,还有数字实验触发器逻辑分析仪相关的最新资讯、资料,以及数字实验触发器逻辑分析仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

数字实验触发器逻辑分析仪相关的厂商

  • 杭州科晓化工仪器设备有限公司是一家专注于实验室分析仪器销售和服务的公司,成立于1995年5月,总部位于美丽的西子湖畔——杭州,从2001年开始,公司相继在合肥、苏州、济南、沈阳、广州、南昌、上海和重庆设立了8家独立销售分公司。同时在武汉、石家庄、南宁、郑州成立了4家销售服务联络处,是一家具有在全国有着12个分支机构的公司。  杭州科晓公司主要代理销售国内一流品牌,如上海精科(上分、物光、雷磁和天平)的基础实验室分析仪器,上海伍丰科仪的液相色谱仪,上海博迅的箱式仪器,岛津(技迩)的岛津耗材和GL公司的液相色谱柱,上海中惠的安捷伦耗材,大连依利特的液相色谱柱,中科院兰化所的毛细柱子,北京精华苑的气体发生器,北京中兴汇利的项空进样器,上海安科的离心机和安亭电子的卡氏水份仪,杭州科晓是这些厂家全国最大的代理商。为了满足不同客户的品牌要求,公司还经销国内其他品牌的产品,如上海越平的电子天平和红外水份仪,上海申光的旋光仪、熔点仪和阿贝折射仪,北分瑞利的原子吸收和原子荧光,北京普析通用的可见紫外、原子吸收和原子荧光,上海棱光的分子荧光和可见紫外,上海亚荣的旋蒸,苏州赛分和上海易创的液相色谱柱,上海傲普的火焰光度计,北京海光的原子荧光,Waters的515、1525简版液相色谱仪等厂家的一级经销商;另外如梅特勒的电子天平和电化学产品,赛多利斯的电子天平和红外水份仪,岛津的苏州工厂和日本原厂的部分产品,Waters耗材和维修件,热电的耗材和柱子,安捷伦的7820、7890和1260整机,瑞士万通的水份仪等产品也有很好的渠道和价格优势。十几年来,科晓仪器凭借优质的产品资源和专家式的销售服务,赢得了全国广大用户的支持和信赖,同时也博得了国内外众多知名厂商的肯定。  2011年初,杭州科晓为了更好地打造自主品牌,在杭州市西湖区科技园注册了一家研发生产型公司——杭州捷岛科学仪器有限公司,把杭州科晓公司原来开发生产的产品:如GC1690,GC1650,GC1690Ⅱ气相色谱仪,LC-10B系列液相色谱仪,V10(容量法)卡尔费休水份测定仪,C10(库仑法)卡尔费休水份测定仪,T10全自动电位滴定仪,WJK-2LB空气泵,SGH-300A氢气发生器,DGFM便携式数字气体流量计(N2,H2,Air),GPI气体净化器等产品整体转入杭州捷岛公司生产,而捷岛科仪每年也将有几款自主研发的新产品投放市场,以保证不同客户对产品的需求。捷岛公司生产的产品由杭州科晓全权代理销售,捷岛的产品用户就是科晓在全国各地的分公司。  科晓的发展和捷岛的成长,离不开广大客户的信赖,离不开众多供应商的支持,在未来的岁月里,我们将一如既往地为您提供更优质的产品和服务,有了你们的支持和科晓人的不懈努力,我们坚信,科晓仪器一定会成为国内分析仪器行业最具影响力的公司之一,成为您未来工作中伴。
    留言咨询
  • 400-860-5168转4121
    睿谱诞生在国内分析仪器行业百家争鸣、转型升级、迅速发展的时代。睿谱踏浪而来,务实进取,产品可靠,成为离子色谱行业的一股清流。 踏踏实实做事,推出用户喜爱、市场需要的产品是睿谱追求的目标。一直以来睿谱把满足用户需求做为产品开发的出发点,研发团队多年来已经养成细心、严谨、追求完美的工作习惯和作风,推出的产品深受用户喜爱。 公司团队拥有近20年离子色谱工作经验,致力于提升国产离子色谱仪技术水平,并逐步替代进口部件,多年的积累使公司在成立之初就已掌握多项先进技术,同时与各科研院所和高校保持了良好的合作关系,在动态量程电导检测器、电化学抑制器、样品在线处理、淋洗液发生器、智能控制等方面研究深入,成果显著。 2006年启动WLK系列抑制器研发工作,包括WLK阴离子抑制器和阳离子抑制器,目前该系列产品被广泛用于替代进口仪器的抑制器,应用于各型号离子色谱仪。 2017年睿谱率先推出数字动态量程检测器,填补国内空白,突破量程限制,可同时分析高低浓度离子,必将引领离子色谱检测器未来的发展方向,推动整个离子色谱行业的发展。 2018年睿谱RPIC-2017离子色谱仪取得型式评价证书,正式上市销售。 2018年睿谱推出推出免维护阴阳离子抑制器,解决困扰广大用户的抑制维护和保养难题,WLK系列抑制器正式进入抑制器3.0时代。 2018年睿谱推出淋洗液发生器及外围产品,可方便实现淋洗液多阶梯度分析,有效扩展了离子色谱分析范围。 2019年睿谱推出2mm抑制器,同步推出2mm离子色谱系统,成功应用于西安交通大学,整机灵敏度较4mm系统提高4倍,检测限达到ng/L级别,。 2019年睿谱推出成熟的抑制法阳离子分析系统,首先成功应用于山西中瑞恒晟环保科技有限公司,用于抑制法阳离子检测,非常适合酸性基体标样定量,检测限为μg/L级别。 从用户需求出发开发仪器,以科学严谨、客观务实的工作满足用户日益不断的使用需求是我们一直坚持的指导思想。逐步推出可替代进口产品的离子色谱核心部件及高度集成的色谱整机,为广大用户降低使用成本。 睿谱愿与高校和科研机构展开广泛的合作,包括方法开发和仪器定制方面,目前已经与中科院、海洋大学等单位展开了多方位的合作。 科技发展永无止境,睿谱也将继续探索创新,在发展中不断进步,为用户提供更优质产品和更专业服务!
    留言咨询
  • 南京长友宜分析仪器有限公司是国内著名的分析仪器研发生产厂家,重合同守信用企业。公司集研发、生产、销售、培训、维修、技术咨询为一体,汇集了一批长期从事分析仪器的高科技资深专业人才。引用国内外最新的微机与传感器技术、红外技术与光学、机械、检验等技术结合,从客户的实际需要出发,研究开发出了一系列高速分析仪器及配套检测设备,如:炉前碳硅分析仪、炉前熔炼测温仪、红外碳硫分析仪、多元素分析仪、光谱分析仪、金相分析仪、五大元素分析仪、铜合金铝合金分析仪、矿石分析仪等化验检测设备。
    留言咨询

数字实验触发器逻辑分析仪相关的仪器

  • CODmax II 铬法COD分析仪典型应用污染源污水排口;市政污水进排口;工业废水排口CODmax II铬法COD分析仪仪器特点:● 经典重铬酸钾氧化与全新测试技术的结合;● 活塞泵技术和抗腐蚀的管路设计;● 自我泄露监测;● 自我状态诊断;● 自动校准功能;● 自动清洗功能;● 安全防护面板;CODmax II 铬法COD分析仪检测原理水样、重铬酸钾、硫酸银溶液(催化剂使直链芳香烃化合物氧化更充分)和浓硫酸的混合液在消解池中被加热到175℃,在此期间铬离子作为氧化剂从VI 价被还原成III 价而改变了颜色, 颜色的改变度与样品中有机化合物的含量成对应关系,仪器通过比色换算直接将样品的COD 显示出来。主要干扰物为氯化物,加入硫酸汞形成络合物去除。 CODmax II 铬法COD分析仪测试方法 重铬酸钾高温消解,比色测定测试量程 10~5,000mg/L分辨率 1mg/L准确度 ± 10%重现性 &le 5%响应时间(90%) 20min消解时间 自动,3、5、10、20、30、40、60、80、100 或120分钟可选测量间隔时间 连续测量、1~24小时间隔测量、触发启动测量,自定义间隔校准间隔 按选定间隔自动进行清洗间隔 按选定间隔自动进行用户维护 每月仅需1小时的维护时间试剂消耗 约1个月连续测量状态模拟输出 2路0/4-20 mA模拟输出继电器控制 2路24V 1A继电器高低点控制服务接口 RS232数字通讯 标准MODBUS RS485或Profibus,可实现双向通讯和远程控制显示 大屏幕LCD图表显示数据存储 2000组环境温度 +5~+40℃电源 220 VAC ± 10%/50-60 Hz功耗 约100VA尺寸 550mm × 810mm × 390mm重量 约25 kg(不包括试剂)
    留言咨询
  • HSIC 协议触发器和解码分析软件 HSIC电气验证和协议解码软件提供了在HSIC规范中指定的电气测量合规性测试和协议解码。 PGY-HSIC 电气验证和协议解码软件在泰克示波器中运行,单击按钮即可提供电气测量和协议解码。 这允许工程师快速检查 HSIC 合规性和灵活性以调试故障。 除了这个工程师可以解码HSIC调试通信的命令和响应。 PGY-HSIC 利用 MSO 的数字通道,并提供 HSIC 数据线的解码。Features产品特点如下:HSIC 协议解码使用数据信号或数据和选通信号强大的 HSIC 协议感知触发功能CRC 错误、数据包字节计数错误的错误检查; PID无效,数据包结束;数据包长度,PID字节不匹配协议解码支持对空闲、挂起、复位等总线状态条件进行解码协议数据包的总线图显示以及电波形长时间数据解码支持以捕获更多数量的 HSIC 事件 使用实时通道数据和存储文件进行协议分析查找协议事件的搜索功能过滤器视图可以查看数百个 HSIC 数据包中感兴趣的数据包过滤功能以仅查看感兴趣的信息通过以 CSV 和 TXT 文件格式导出数据的文档报告生成深圳市欧奥电子科技有限公司(OIOSYS)是Prodigy在中国区代理商,负责Prodigy产品在中国区的市场推广,销售及售后技术支持等服务。公司在国内拥有多名在UFS/SD/SDIO/eMMC等领域工作经验丰富的值得信赖的技术工程师,为客户提供高效、专业的产品技术支持服务。欧奥电子(OIOSYS)代理的Prodigy MPHY, UniPro, UFS 3.1/4.0 总线协议分析仪测试解决方案不会收到EAR进出口方面的管制。同时还代理其他总类的协议分析仪,包括嵌入式设备用的eMMC5.0/5.1 SDIO协议分析仪, QSPI协议分析仪及训练器, I3C协议分析仪及训练器, RFFE协议分析仪及训练器等。欧奥电子(OIOSYS)还代理SPMI协议分析仪及训练器, 车载以太网分析仪,以及各种相关的基于示波器的解码软件和电性测试软件。同时,欧奥电子还提供高难度焊接,以及高速信号如UFS,DDR3/DDR4,USB type C等高速协议抓取和分析的服务。客户涉及电信、计算机、汽车、消费电子、移动、航空航天和国防以及视频行业等。我们帮助他们测量、分析和测试下一代设备,以确保精确的性能、可靠性和兼容性。
    留言咨询
  • 氙灯电源及触发器 400-860-5168转1431
    型号150W 氙灯电源200W 氙灯电源300W 氙灯电源500W 氙灯电源图适用光源氙灯(连续照明)150W200W300W500W尺寸131mm(长)70mm(宽)60mm(高)125mm(长)170mm(宽)60mm(高)135mm(长)200mm(宽)60mm(高)187mm(长)280mm(宽)81mm(高)输入输入电压(①/②)(50/60Hz)① AC90~132V② AC180~264V① AC90~132V② AC180~220V① AC90~132V② AC180~264V① AC90~132V② AC180~264V电压切换方式(①/②)用开关切换用基板上的端子切换输入功率420VA MAX(视在功率)420VA MAX(视在功率)700VA MAX(视在功率)950VA MAX(视在功率)限制浪涌电流可控硅方式三端双向可控硅控制输出额定电压DC18~24VDC23~27VDC15~23VDC18~22V额定电压7.5A8.0A15A25A额定功率150W200W300W500W输出功率160W210W336W550W电流变动率4% MAX3% MAX4% MAX4% MAX电流波动5%峰值或更低10%峰值或更低电流调节端子有风扇DC24V(需要强制空冷)有使用环境工作环境温度范围0~40℃工作环境湿度范围30%-90%RH(无冷凝)触发器触发器型号150W触发器200W触发器300W触发器500W触发器图
    留言咨询

数字实验触发器逻辑分析仪相关的资讯

  • 得利特技术创新的四层逻辑生成 探索油液水分含量分析国产路径
    石油工业踏着改革开放的节拍,走得越来越从容自信。从能源“凛冬”到油气饭碗端在自己手里,我国石油工业一路高歌猛进。与石油工业一同加速的还有其检测行业。作为油品质量的“把关人”,油品检测作用日益凸显。   滚石上山、爬坡过坎。对得利特(北京)科技有限公司(以下简称“得利特”)技术经理王志强来说,油液分析与他共度半生。“油品检测产品要增强核心竞争力、迈出技术高水平自立自强坚实步伐。”王志强一语道出现阶段油品检测的动力,同时解读了得利特的发展逻辑和产业路径:挑战、创新、扩张与精进。   坚韧性挑战:研发力从“量变”到“质变”   “2000年离开无线电元件厂后,我进入了油分析仪器仪表行业。”王志强回忆。长久的钻研让王志强看到行业更多可能性,同时极具挑战性的科研工作强烈吸引着王志强。“我喜欢挑战,科研毫无疑问是属于这种工作。”科研成就感和价值感让王志强在油品分析仪器仪表路上越走越远、越走越深。   加入得利特后,王志强迎来了更多挑战机会,这得益于得利特的发展思路:注重原创技术攻关,走自主创新的可持续发展道路。在得利特创立初期,王志强秉持上述企业思路,与技术团队加大科技投入,专注核心技术研发,心无旁骛地啃技术“硬骨头”。   掌握核心技术绝非朝夕,需要年复一年技术积累。在王志强与技术团队的共同努力下,得利特推出精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等多款仪器。如今,适合采用库伦法测量微量水分的测定仪设备面世,实现企业研发力从量的积累迈向质的飞跃。   突破性创新:满足精确微量水分测定需求   水分含量分析是油液检测的重要项目。“石油产品中的水分蒸发时吸收热量,发热量降低;而在低温情况下,燃料中的水会结冰,堵塞燃料导管和滤清器,阻碍发电机燃料系统的燃料供给。此外,石油产品中有水会加速油品的氧化生胶,润滑油中有水时不但会引起发动机零件的腐蚀,而且水和高于100℃的金属零件接触时会变成水蒸气,破坏润滑油膜。”王志强解释。   轻质油品密度小、黏度小,油水容易分离,而重质油品则相反,不易分离。这一特性对微量水分检测仪器的自动化、便捷度提出更高要求。久居油品检测技术场,王志强察觉,相比其他水分检测方法,库伦法测量自动化、节省人工等优势备受青睐。基于该种方法的测量仪器能够在尽可能节省人工的同时得到更精确数据。   “微量水分检测数据的精度、便捷度大幅提高,这是得利特库伦法测量微量水分测定仪的突破性创新点。”王志强补充。基于两个核心优势,以及智能自检等新功能,该款微量水分的测定仪受众广泛,在油液水分含量分析市场中占达到了一定份额。下一步,得利特将侧重于设备测量时的自动化,脱离人工干预,并通过电子监测,更加准确地判断出油液中水的含量。   体系性扩张:产研结合扩充技术链条   挑战、创新让得利特尝到甜头。得利特微量水分的测定仪等多款产品广泛应用于石化、电力、环保、医药、军工、航空等领域,并得到用户充分认可。如何实现持续性研发,保持企业机动力?这是技术企业在“后创新时代”思考的问题。   在王志强看来,产学研结合能够及时丰富技术创新力量,扩充技术链条。这一想法不仅与得利特的技术班底相映照,更与产学研融合的政策相呼应。   实际上,得利特成立之初就整合石化科学研究院、中国计量科学研究院、北京铁道科学研究院、空军计量总站等单位的油品、仪器方面专家,将其作为企业技术班底,加速成果转化,优势互补、互惠互利。“我们正在与多家大学、电科院联合研发新产品。”   产学研融合为得利特建造了人才高地,推动预见性与实践性并存,调和国产仪器研、产不对等矛盾,解决油液水分析多个难题。同时,人才补充和研发合作鼓足得利特底气,其以北京为研发销售中心,开拓吉林、山东为生产加工中心,扩充企业链条。   精进性守业:精确性与智能化并进   技术跟上后,石油分析检测形势一片大好,但王志强直言:“国内对油液水含量的分析还能有很大的提升空间。**设备检测准确性高,但相对价格高;国产设备价格低,但稳定性、工艺水平有待提高。”基于上述难题,王志强带领团队提高优化电解液的配方,增强实验结果的广泛适用性、稳定性,提高关键部件工艺水平,在促进实验结果的重复性等方面下工夫,为油液水分含量分析的稳定性与工艺水平献力。   精确性技术攻克热火朝天。与此同时,更加长远、持久的计划箭在弦上。今年年初,多部门联合发布《关于“十四五”推动石化化工行业高质量发展的指导意见》,指出加快改造提升,实施智能制造,推进石化产业数字化转型。   提及石油化工检测技术发展方向,王志强说道:“强化检测技术的数字化,控制技术的智能化是我所期待重点的发展方向。”   他认为“十四五”高质量发展的主要目标是基本形成自主创新能力强、结构布局合理、绿色安全低碳的高质量发展格局,这一格局离不开数字变更。5G、大数据、人工智能等新一代信息技术与石化化工行业逐渐融合,检测过程数据获取能力不断增强,基于工业互联网的产业链监测、精益化服务系统正在完善。“高端油液检测产品还应提高智能化程度,增强核心竞争力,迈出高水平自立自强的坚实步伐。”王志强补充。   王志强透露,得利特将沿着自动化方向和智能化趋势,为国内企业提供高性能的自动化油品分析仪器和专业化的技术咨询、培训等服务,帮助企业以高效率、精细化管理、解决油品检测、设备润滑管理方面存在的问题。   后记:国产石油分析检测企业如何在产业扩张中顺势而为,与**品牌分庭抗礼,是摆在石油石化分析检测行业面前的一道必答题。面对错综复杂的行业形势,作为一股国产油液分析检测力量,得利特在王志强及技术团队把控下,按照四层增长逻辑和既定节奏,由高速转向高质量发展,积极构建创新型、智能化产业。   百尺竿头,更进一步。拥有突破性创新、体系性扩张,积极精益求精时,企业产能规模自然更上一层。这四层增长逻辑不仅带来良性增长,更难能可贵的是,其或将成为众多国产油液分析检测企业的范本。
  • 《碳中和:逻辑体系与技术需求》出版
    近日,由中国科学院院士丁仲礼、张涛领衔,多位院士、专家共同撰写的《碳中和:逻辑体系与技术需求》一书由科学出版社正式出版。该书入选了中宣部2022年主题出版重点出版物。力争2060年前实现碳中和,是以习近平同志为核心的党中央经过深思熟虑作出的重大战略决策,是我们对国际社会的庄严承诺,也是当前社会各界普遍关心的热点问题。作为最大的发展中国家,我国实现这个宏伟目标时间紧、压力大、任务重。在此背景下,如何绘制具有较强前瞻性和可操作性的“碳中和”路线图,以利于我国在展现大国担当的同时顺利实现产业体系的绿色低碳化转型,是政策制定背后的重大科学问题。为此,中国科学院于2021年设立了“中国碳中和框架路线图研究”重大咨询项目,组织百余位院士专家,围绕“我国实现碳中和需要研发什么样的技术体系”这一主题,从固碳、能源、政策三个方面开展前瞻性研究,力求描绘出我国碳中和的框架路线图。项目对“为什么要实现碳中和”“怎样实现碳中和”等社会各界普遍关心的问题进行了深入解读,尤其是较为全面地列出了实现碳中和需要研发的技术需求清单,在国内外尚属首例。项目专家们在项目成果的基础上,补充必要的材料,最终形成了这本碳中和研究的权威著作。《碳中和:逻辑体系与技术需求》一书从实现碳中和的基本逻辑入手,追本溯源,系统阐述了碳中和的问题由来及相关概念,然后以技术需求清单的方式,从技术内涵、现状及发展趋势和需解决的关键科技问题等方面,立体化地展现了发电端构建新型电力系统的前沿技术、能源消费端的低碳技术、固碳端的生态系统固碳增汇技术以及碳排放与碳固定核查评估技术。此外,书中还简要介绍了世界主要国家设立的碳中和目标及技术、行政、财税、法规等措施,提出了对我国构建碳中和政策体系的启示。
  • 超灵敏生物医学检验! 苏州医工所在DNA逻辑电路构建方面取得进展
    基于DNA碱基之间的互补配对原则,可以设计组装多种复杂的二级结构,进而开发出具有特定功能的DNA分子器件,包括分子开关、纳米机器、分子框架、逻辑电路等。这些分子器件不仅在生命科学研究领域内发挥着重要的作用,而且在能源、信息、生物计算等研究领域内都具有重要的意义。DNA逻辑门是将DNA等生物分子或其他外界信息作为输入(input),通过DNA结构变化引发的各种表征结果作为输出(output),布尔运算后可以使得各种输入之间的相互识别关联关系得以明确。此外,通过将前一个逻辑门的输出作为后一个逻辑门的输入,可以构建多个级联的逻辑门,即逻辑电路。逻辑电路的组合、信号输出方式具有多样化的特点,具有广泛的应用前景。近期苏州医工所缪鹏研究员课题组发展了一种基于DNA双足步行的电化学纳米机器,并通过级联链置换构建出一系列的DNA逻辑电路,用于研究复杂生物样本中多种生物分子的关联关系。首先在电极界面修饰茎环结构的轨道探针分子;在上游均相体系中引入目标触发的链置换聚合反应用于特定序列单链的大量合成;利用DNA三通结结构完成双足步行链的组装;在茎环结构驱动链的存在条件下使其在电极界面交替行走,完成电化学信号分子的富集探测(图1)。进一步地,利用不完整三通结及双链结构的设计,进行级联链置换反应构建出AND, OR门,并与NOT门联合发展出NAND, NOR, XOR, XNOR门。所构建的双输入逻辑电路表现出良好的逻辑运算、操作性能(图2)。随后,通过四通结及双链结构的设计完成了三输入AND, OR门的搭建。发展的一系列逻辑电路不仅可应用于超灵敏生物医学检验,也为生物分子信息控制、通信、生物计算机等领域的研究工作提供了新的思路。相关工作得到了国家重点研发计划(2017YFE0132300)、国家自然科学基金(81771929)等项目的资助。结果已发表ACS Cent. Sci. 2021, 7, 1036-1044 (IF=14.553)。  论文链接:https://pubs.acs.org/doi/abs/10.1021/acscentsci.1c00277 图1 DNA双足步行器的示意图及结果 图2 双输入的逻辑电路示意图及结果 图3 三输入的逻辑电路示意图及结果

数字实验触发器逻辑分析仪相关的方案

数字实验触发器逻辑分析仪相关的资料

数字实验触发器逻辑分析仪相关的试剂

数字实验触发器逻辑分析仪相关的论坛

  • 逻辑分析仪原理及应用

    一般来说,逻辑分析仪能看到比示波器更多的信号线。对于观察总线上的定时关系或数据 ——例如微处理器地址、数据或控制总线时,逻辑分析仪是特别有用的。逻辑分析仪能够解码微处理器的总线信息,并以有意义的形式显示。总之,当您通过了参数设计阶段,开始关注许多信号间的定时关系和需要在逻辑高和低电平码型上触发时,逻辑分析仪就是正确的测试工具。[b]逻辑分析仪[/b]大多数逻辑分析仪实际是合二而一的分析仪:一部分是定时分析仪,另一部分是状态分析仪。定时分析仪的信息显示形式与示波器的相同,水平轴代表时间,垂直轴代表电压幅度。由于这两种仪器上的波形都与时间相关,因此称为“时域”显示仪。[b]选择正确的采样方法[/b]定时分析仪好像是一台具有 1bit 垂直分辨率的数字示波器。由于只有 1bit 分辨率,因此只能实现两种状态 —高或低的显示。定时分析仪只关心用户定义的电压阈值。如果采样时信号高于该阈值,就以高或 1 显示,低于阈值的采样信号用低或0显示。从这些采样点得到一张由 1 和 0 组成,代表输入波形 1bit 图的表格。这张表格保存在存储器中,并可用来重建输入波形的 1bit 图,如图1所示。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278254695.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278254695.jpg[/img][/url][/align][align=center][size=12px]图 1 定时分析仪的采样点[/size][/align]定时分析仪趋向于把各种信号拉成方波,这似乎会影响到它的可用性,但如果您需要同时观察几条甚至几百条信号线以验证信号间的定时关系,那么定时分析仪就是正确选择。应记住每个采样点都要使用一个存储器位置。分辨率越高(采样率越快),采集窗就越短。[b]跳变采样[/b]当我们捕获如图2 所示带有数据突发的输入线上的数据时,我们必须把采样率调到高分辨率(例如 4ns),以捕获开始处的快速脉冲。这意味着具有 4K(4096 样本)存储器的定时分析仪在 16.4ms 后将停止采集数据,使您不能捕获到第二个数据突发。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255647.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255647.jpg[/img][/url][/align][align=center][size=12px]图2 高分辨率采样[/size][/align]在通常的调试工作中,我们采样和保存了长时间没有活动的数据。它们使用了逻辑分析仪存储器,却不能提供更多的信息。如果我们知道跳变何时产生,是正跳变还是负跳变,就能够解决这一问题。这一信息是有效使用存储器的跳变定时基础。为实现跳变定时,我们可在定时分析仪和计数器的输入处使用“跳变探测器”。现在定时分析仪只保存跳变前的那些样本,以及两个跳变之间的时间间隔。采用这种方法,每一跳变就只需使用两个存储器位置,输入无变动时就完全不占用存储器位置。在我们的例子中,根据每一突发中存在多少脉冲数,现在能捕获到第二、第三、第四和第五个突发。并同时保持达到 4ns 的高定时分辨率(图3)。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255224.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255224.jpg[/img][/url][/align][align=center][size=12px]图3 使用跳变探测器采样[/size][/align][b]毛刺捕获[/b]毛刺脉冲因为会随机出现,造成灾难性的后果而声名狼藉。定时分析仪可采样输入数据,保持对采样间所产生任何跳变的跟踪,容易捕获毛刺。在分析仪中,把毛刺定义为相邻两次采样间穿越逻辑阈值一次以上的任何跳变。为了识别毛刺,我们要“教会”分析仪保持对所有多个异常跳变的跟踪,并将它们作为毛刺显示。毛刺显示是一种很有用的功能,能够提供毛刺触发和显示超前毛刺的数据,从而帮助我们确定毛刺产生的原因。这种能力也使得分析仪只捕获毛刺产生时所要的数据。回顾本节开始时提到的例子。我们有一个系统周期性地因毛刺出现在一条信号线上而崩溃。由于毛刺发生具有偶然性,您即使能保存整个时间上所有数据(假定有足够的存储能力),也很难在巨大的信息量中找到它。另一种方法是使用没有毛刺触发功能的分析仪,您必须坐在仪器前,按运行按钮,等待看到毛刺为止。[b]定时分析仪的触发[/b]逻辑分析仪连续捕获数据,并在找到跟踪点后停止采集。这样,逻辑分析仪就能显示出被称为负时间的跟踪点前的信息,以及跟踪点后的信息。[b]码型触发[/b]设置定时分析仪的跟踪特性与设置示波器的触发电平和斜率稍有一点区别。许多分析仪是在跨多条输入线的高和低码型上触发。为使某些用户更感方便,绝大多数分析仪的触发点不仅可用二进制( 1 和 0),而且可用十六进制、八进制、ASCII或十进制设置。在查看4、 8、16、24、32bit宽的总线时,使用十六进制的触发点会更加方便。设想如果用二进制设置24bit总线就会麻烦得多。[b]边沿触发[/b]在调节示波器的触发电平旋钮时,您知道是在设置电压比较器的电平,这个电平将告诉示波器在输入电压穿越该电平时触发。定时分析仪的边沿触发与其基本相似,但触发电平已预设置到逻辑阈值。大部分逻辑器件都与电平相关,这些器件的时钟和控制信号通常都对边沿敏感。边沿触发使您能与器件时钟同步地捕获数据。您能告诉分析仪在时钟边沿产生(上升或下降)时捕获数据,并获取移位寄存器的所有输出。当然在这种情况下,必须延迟跟踪点,以顾及通过移位寄存器的传播延迟。[b]状态分析仪基础[/b]如果您从未使用过状态分析仪,您可能认为这是一种极为复杂的仪器,需要花很多时间才能掌握使用方法。事实上,许多硬件设计师发现状态分析仪中有许多极有价值的工具。一个逻辑电路的“状态”是数据有效时对总线或信号线的采样样本。例如,取一个简单的“D”触发器。“D”输入端的数据直到时钟正沿到来时才有效。这样,触发器的状态就是正时钟沿产生时的状态。现在,假定我们有8个这样的触发器并联。所有8个触发器都连到同样的时钟信号上。当时钟线上产生正跳变时,所有8个触发器都要捕获各自“D”输入的数据。这样,每当时钟线上正跳变时就产生一个状态,这8条线类似于微处理器总线。如果我们把状态分析仪接到这8条线上,并告诉它在时钟线正跳变时收集数据,状态分析仪将照此执行。除非时钟跳到高电平,否则输入的任何活动将不被状态分析仪捕获。定时分析仪由内部时钟控制采样,因此它是对被测系统作异步采样。而状态分析仪从系统得到采样时钟,因此它是对系统同步采样。状态分析仪通常用列表方式显示数据,而定时分析仪用波形图显示数据。[b]理解时钟[/b]在定时分析仪中,采样是沿着单一内部时钟的方向进行,从而使事情非常简单。但微处理器系统中往往会有若干个“时钟”。假定某个时刻我们要在RAM中的一个特定地址上触发,并查看所保存的数据;再假定使用的微处理器是Zilog公司的 Z80。为了用状态分析仪从Z80捕获地址,我们要在MREQ线为低时进行捕获。而为了捕获数据,需要在WR线为低(写周期)或RD线为低(读周期)时让分析仪采样。某些微处理器可在同一条线上对数据和地址进行多路转换。分析仪必须能让时钟信息来自相同的信号线,而非来自不同的时钟线。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255919.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255919.jpg[/img][/url][/align][align=center][size=12px]图 4 RAM 定时波形图[/size][/align]在读写周期期间,Z80首先把一个地址放在地址总线上。接着设定MREQ线在该地址对存储器的读或写有效。最后根据现在是读还是写对RD或WR线断言。WR线只有在总线数据有效后才被设定。这样,定时分析仪就作为多路分配器在适当的时间捕获地址,然后在同一信号线上捕获产生的数据。[b]触发状态分析 [/b]像定时分析仪一样,状态分析仪也提供限定所要保存数据的功能。如果我们要寻找地址总线上由高低电平构成的特定码型,可告诉分析仪在找到该模式时开始保存,直到分析仪的存储器完全装满。这些信息可以用十六进制或二进制格式显示。但在解码至汇编码时,十六进制可能更为方便。在使用处理器时,应把这些特定的十六进制字符与处理器指令相比较。大多数分析仪制造商设计了称为反汇编器的软件包,这些软件包把十六进制代码翻译成易于阅读的汇编码。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255303.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255303.jpg[/img][/url][/align][align=center][size=12px]图 5 把十六进制码翻译成汇编码[/size][/align][b]序列级和选择性保存[/b]状态分析仪具有帮助触发和存储的“序列级”数据。序列级使您能比单一触发点更精确地限定要保存的数据。也就是说可使用更精确的数据窗,而不必存储不需要的信息。选择性的保存意味着可只保存较大整体中的一部分。例如,假定我们有一个计算给定数平方的汇编例程。如果该例程不能正确计算平方,我们就告诉状态分析仪捕获这一例程。具体做法是先让状态分析仪寻找该例程的起点。当它找到起始地址时,我们再告诉它寻找终止地址,并保存两者之间的所有信息。当发现例程结束时,我们告诉分析仪停止状态保存。[b]探测解决方案[/b]为进行调试,向数字系统施加的物理连接必须方便可靠,对被调试的目标系统只有最小的侵扰,这样才能使逻辑分析仪得到精确的数据。普通的探测解决方案是每条电缆有 16 个通道的无源探头。每个通道的两端用100kΩ并联8pF 端接。您可将这种无源探头与示波器探头的电气性能作一比较。无源探测系统除了更小的尺寸和更高的可靠性外,还能把探头端接在与目标系统的连接点上。这就避免了从大的有源探头接口夹到被测电路之间大量引线所产生的附加杂散电容。因此您的被测电路就只“看到”8pF的负载电容,而不再是前述探测系统的16pF。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255595.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255595.jpg[/img][/url][/align][align=center][size=12px]图6 分析探头[/size][/align]把状态分析仪接到微处理器系统需要进行机械连接和时钟选择。某些微处理器可能需要外部电路对一些信号进行解码,才能得到用于状态分析仪的时钟。分析探头不仅能提供与目标系统快速、可靠和正确的机械连接,而且能提供必要的电气适配能力,如为正确捕获系统运行提供的时钟和多路分配器。[b]结语[/b]绝大多数逻辑分析仪都由定时分析仪和状态分析仪这两个主要部分组成。定时分析仪更适于处理多线的总线型结构或应用。它能够在信号线上的码型上,甚至在毛刺上触发。状态分析仪常被看成是一种软件工具,事实上它在硬件设定也很有用。由于它从被测系统得到时钟,因此捕获的数据也就是系统在时钟上的数据。逻辑分析仪为数字电路设计工程师提供了强大的设计工具。[table=349][tr][td][url=https://yqj.mumuxili.com/?from=YQSQ2-7/1]https://yqj.mumuxili.com/?from=YQSQ2-7/2[/url][/td][/tr][/table]

  • 【资料】正确选择和使用逻辑分析仪

    正确选择和使用逻辑分析仪一、逻辑分析仪的发展  自20世纪70 年代初研制成微处理器,出现4位和8位总线,传统示波器的双通道输入无法满足8位字节的观察。微处理器和存储器的测试需要不同于时域和频域仪器。数域测试仪器应运而生。HP公司推出状态分析仪和Biomation公司推出定时分析仪(两者最初很不相同)之后不久,用户开始接受这种数域测试仪器作为最终解决数字电路测试的手段,不久状态分析仪与定时分析仪合并成逻辑分析仪。  20世纪80 年代后期,逻辑分析仪变得更加复杂,当然使用起来也就更加困难。例如,引入多电平树形触发,以应付条件语句如IF、THEN、ELSE等复杂事件。这类组合触发必然更加灵活,同时对大多数用户来说就不是那样容易掌握了。  逻辑分析仪的探头日益显得重要。需用夹子夹住穿孔式元件上的16根引脚和双列直插式元件上的只有0.1″间隙的引脚时,就出现探头问题。今天的逻辑分析仪提供几百个工作在200MHz频率上的通道信号连接就是个现实问题。适配器、夹子和辅助爪钩等多种多样,但是最好的办法的是设计一种廉价的测试夹具,逻辑分析仪直接连接到夹具上,形成可靠和紧凑的接触。  今天的发展趋势  逻辑分析仪的基本取向近年来在计算机与仪器的不断融合中找到了解决的办法。Tektronix公司TLA600系列逻辑分析仪着重解决导向和发展能力,亦即仪器如何动作和如何构建有特色的结构。导向采用微软的Windows接口,它非常容易驱动。改进信号发现能力必然涉及到仪器结构的变动。在所有要处理的数据中着重处理与时间有关联的数据,不同类型的信息采用多窗口显示。例如,对于微处理器来说,最好能同时观察定时和状态以及反汇编源码,而且各窗口上的光标彼此跟踪相连。  关于触发,总是传统逻辑分析仪中的难题。TLA600系列逻辑分析仪为用户提供触发库,使复杂触发事件的设置简单化,保证你精力集中解决测试问题上,而不必花时间去调整逻辑分析仪的触发设置。该库中包含有许多易于掌握的触发设置,可以作为通常需要修改的触发起始点。需要特殊的触发能力只是问题的一部分。除了由错误事件直接触发外,用户还希望从过去的时段去观察信号,找出造成错误的根源和它前后的关系。精细的触发和深存储器可提高超前触发能力。  在PC机平台上使用Windows,除了为广大用户提供了许多熟知的好处之外,只要给定正确的软件和相关工具,即可通过互联网进行远程控制,从目标文件格式中提取源码和符号,支持微软公司的CMO/DCOM标准,而且处理器可运行各种控制操作。  二、逻辑分析仪的选择  如果数字电路出现故障,我们一般优先就考虑使用逻辑分析仪来检查数字电路的完整性,不难发现存在的故障;但是在其他情况下你是否考虑到使用逻辑分析仪呢?譬如说:第一点如何观察测试系统在执行我们事先编制好的程序时,是不是真正地在按照我们设计好的程序来执行呢?如果我们向系统写入的是(MOV A,B)而系统则是执行的(ADD A,B),那会造成什么样的后果?第二点:怎么样真正地监测软件系统的实际工作状态,而不是用DEBUG等方式进行设置断点后,查看预先设定的某些变量或内存中的数据是我们预先想得到的值。在这里我们有第三、第四等等很多问题有待解决。  通常我们将数字系统分成硬件部分和软件部分,在研发设计这些系统时,我们有很多事情要做,譬如硬件电路的初步设计、软件的方案制定和初步编制、硬件电路的调试、 软件的调试、以及最终的系统的定型等等工作,在这些工作中几乎每一步工作都要逻辑分析仪的帮助,但是鉴于每个单位的经济实力和人员状况不同,并且在很多系统的使用中都不是要把以上的每个部分都进行一 遍,这样我们就把逻辑分析仪的使用分成以下几个层次:  第一个层次:只要查看硬件系统的一些常见的故障,例如时钟信号和其他信号的波形、信号中是否存在严重影响系统的毛刺信号等故障;  第二个层次:要对硬件系统的各个信号的时序进行很好的分析,以便最好地利用系统资源,消除由定时分析能够分析出的一些故障;  第三个层次:要对硬件对软件的执行情况的分析,以确保写入的程序被硬件系统完整地执行;  第四个层次:需要实时地监测软件的执行情况,对软件进行实时地调试。  第五个层次:需要进行现有客户系统的软件和硬件系统性的解剖分析,达到我们对现有客户系统的软件和硬件系统全面透彻地了解和掌握的功能。  对以上的几个层次的要求,我们可以看出,他们并不都需要很高档的逻辑分析仪,对于第一层次的使用者,他们甚至用一台功能比较好的示波器就可以解决问题,针对以上的几个使用层次,在选择仪器时可以选用相应的仪器。实际上逻辑分析仪也有几个层次,他们有:  1、 普通2~4通道的数字存储器,例如TDS3000系列(加上TDS3TRG高级触发模块),利用它的一些高级触发功能(例如脉冲宽度触发、欠幅脉冲触发、各个通道之间的一定的与、或、与或、异或关系的触发)就可以找到我们希望看到的信号,发现并排除一些故障,况且示波器的功能还可以作为其他使用,在这里我们只不过用了一台示波器的附加功能,可以说这种方式是最节省的方式。  2、当示波器的通道数不够时,也可以选用一些带有简单的定时分析功能的多通道定时分析仪器,如早期的逻辑分析仪和现在市面上还有的混合信号示波器,如Agilent的546××D示波器。  3、一些功能比较简单,速度不是特别快的的计算机插卡 式,基于Windows、绝大部分功能都由软件来完成的虚拟仪器,这类产品在国内的很多厂家都有生产。  4、采样速率、触发功能、分析功能都很强大的不可扩展的固定式整机。例TLA600系列。  5、功能更强扩展性更好的模块化插卡式整机;对不同的用户,可以针对需要,选择不同档次的仪器。  逻辑分析仪的一些技术指标:  1、逻辑分析仪的通道数 :在需要逻辑分析仪的地方,要对一个系统进行全面地分析,就应当把所有应当观测的信号全部引入逻辑分析仪当中,这样逻辑分析仪的通道数至少应当是:被测系统的字长(数字总线数)+被测系统的控制总线数+时钟线数。这样对于一个16位机系统,就至少需要68个通道。现在几个厂家的主流产品的通道数多达340通道以上。例Tektronix等。  2、定时采样速率 :在定时采样分析时,要有足够的 定时分辨率,就应当足够高的定时分析采样速率,我们应当知道,并不是只有高速系统才需要高的采样速率(见下表)现在的主流产品的采样速率高达2Gs/S,在这个速率下,我们可以看到0.5ps时间上的细节。  以下是一些很常见的芯片的工作频率和建立/保持时间的列表,我们可以看出,即使它们的工作频率很低,但在时间分析(Timing)中要求的分辨率也很高。表一:典型的数字设备  3、状态分析速率:在状态分析时,逻辑分析仪采样基准时钟就用被测试对象的工作时钟(逻辑分析仪的外部时钟)这个时钟的最高速率就是逻辑分析仪的高状态分析速率。也就是说,该逻辑分析仪可以分析的系统最快的工作频率。现在的主流产品的定时分析速率在100MHz,最高可高达300MHz甚至更高。  4、逻辑分析仪的每通道的内存长度:逻辑分析仪的内存是用于存储它所采样的数据,以用于对比、分析、转换(譬如将其所捕捉到的信号转换成非二进制信号【汇编语言、C语言 、C++ 等】,等在选择内存长度时的基准是“大于我们即将观测的系统可以进行最大分割后的最大块的长度。  5、逻辑分析仪的探头:逻辑分析仪通过探头与被测器件连接,探头起着信号接口的作用,在保持信号完整性中占有重要位置。逻辑分析仪与数字示波器不同,虽然相对上下限值的幅度变化并不重要,但幅度失真一定会转换成定时误差。逻辑分析仪具有几十至几百通道的 探头其频率响应从几十至几百MHz,保证各路探头的相对延时最小和保持幅度的失真较低。这是表征逻辑分析仪探头性能的关键参数。Agilent公司的无源探头和Tektronix公司的有源探头最具代表性,属于逻辑分析仪的高档探头。  逻辑分析仪的强项在于能洞察许多信道中信号的定时关系。可惜的是,如果各个通道之间略有差别便会产生通道的定时偏差,在某些型号的 逻辑分析仪里,这种偏差能减小到最小,但是仍有残留值存在。通用逻辑分析仪,如Tektronix公司的TLA600型或Agilent公司的HP16600型,在所有通道中的时间偏差约为1ns。因而探头非常重要,详见本站“测试附件及连接探头”。  a)探头的阻性负载,也就是探头的接入系统中以后对系统电流的分流作用的大小,在数字系统中,系统的电流负载能力一般在几个KΩ以上,分流效应对系统的影响一般可以忽略,现在流行的几种长逻辑分析仪探头的阻抗一般在20~200KΩ之间。  b)探头的容性负载:容性负载就是探头接入系统时,探头的等效电容,这个值一般在1~30PF之间,在现在的高速系统中,容性负载对电路的影响远远大于阻性负载,如果这个值太大,将会直接影响整个系统中的信号“沿”的形状改变整个电路的性质,改变逻辑分析仪对系统观测的实时性,导致我们看到的并不是系统原有的特性。 c)探头的易用性:是指探头接入系统时的难易程度,随着芯片封装的密度越来越高,出现了BGA、QFP、TQFP、PLCC、SOP等各种各样的封装形式,IC的脚间距最小的已达到0.3mm以下,要很好的将信号引

  • 逻辑分析仪 (Logic Analyzer)

    逻辑分析仪 (Logic Analyzer) 1. 隔离独立界面的负载效应须具备: Isolated interface of Loading Effect - 高阻抗/ 低电容输入 - 互相隔离的电源界面 Isolated power interface - 互相隔离的接地电路设计 Isolated ground of circuits interface 2. 启动触发信号满足最小的Setup Time和Hold Time 3. 足够大的频宽 4. 越大的内存深度越能满足您未来的设计需求 (例如video streaming, PCI streaming 等) 频率产生器 (Clock Generator)1. 足够高的频脉输出足以应付将来的须要 (例如DDR, PCI-x, ARM & DSP, embedded system) 2. 快速的上升和下降时间 (Rising and Falling Time)3. 大的Vp-p 4. 低输出容值

数字实验触发器逻辑分析仪相关的耗材

  • 触发分配器
    触发分配器,trigger distribution 可以提供10路脉冲同步输出,信道间无抖动,内置1KHZ的频率发生器,是多通道脉冲分配器。触发分配器应用 通用触发 同步触发多个装置 触发分配器特点 ?10个同步输出 ?信道间无抖动 ?内置频率发生器为1kHz ?输出电压为30V(50?) ?音频和视觉指示灯 ?闭塞触发装置指示灯 ?110 / 240 V 交流电源触发分配器规格 触发装置 通用5V,50?,+ve 阈值 通过前面板微调1~4V 触发器的输出抖动 ≤10ps RMS 通道间抖动 约0(使用无源分配器) 触发延迟 约17ns 输出 10(BNC) 振幅 为30V为50欧姆 上升时间 1ns 脉冲波形 快速上升、缓慢衰减,脉宽约10ns FWHM 脉冲重复频率 高达1kHz 功能 外部触发 内部触发(0.1~1000Hz) 单幅触发(前面板按钮) 音频指示器 开/关 触发指示灯,闭塞或100ms的脉冲 机械规格 3U x 42HP (约134mm x 214mm) 电源 交流电100 / 240V
  • 触发再同步器
    触发再同步器在收到触发信号后会即时产生超低抖动的脉冲输出与RF波形同步,非常适合那些要求任意时间都与RF波形同步的触发信号的应用。触发再同步器规格 高电压输出的最大重复率为25KHz 5V输出电压的最大重复率为 4MHz 触发输入灵敏度:要求 1.5V为50? 发生触发 触发输入时间:装置触发初始为5ns,2.5V(到50?脉冲) 触发感:低电压输出状态与在RF边缘的触发输入时相同。该触发再同步器可用于脉冲正沿或负沿目的,不能用于交流耦合的高电压输出,此时只能从脉冲正沿进行操作。抖动装置只适用于正沿触发。 射频带宽:1MHz-1GHz(抖动装置在带宽高度500MHz时有效)。 射频灵敏度:300mV(峰值),110MHz 750mV(峰值),500MHz 输出:电压输出5V时将提供大约5V 为50欧姆负荷 电压输出30V时将提供30V,开路或是15V为50欧姆负荷 但是,该输出是反向终止到50欧姆,此时不必终止电缆。如果输出短路,反向终止会降低失败概率。如果删除反向终止,该触发再同步器将提供30V为50欧姆负荷,但随时可能会短路。 触发沿方向:该触发再同步器指定只使用正沿,但原理上正/负沿都会与时钟边沿同步。注意:输出电压是交流耦合的结果,只与正向脉冲沿同步。然后输出将衰减。在检测到射频RF边沿,触发输入低前,输出电压保持在5V。 抖动:测量到的约为50ps, 500MHz但部分或大部分抖动可能是由射频源的噪声造成的。 指示灯:通电(红) 检测到射频RF(黄色) 触发(绿色) 输入电源:通用 85 -264 V , A.C.,功率为 47 -440Hz. 2A保险丝,T型(防喘振) 该触发再同步器有自动复位热跳闸,额定温度在70°C 最大平均功耗为10W 连接器:电源:IEC 触发输入:BNC 射频输入:BNC 5V输出:BNC 30V输出:BNC型触发再同步器总结 脉冲发生器 振幅 T /上升 /PW PRF RMS 功能 选项 抖动APG1 100V 150ps/150ps 10kHz 10ps S/DASG1 200V 100ps/8ns step 1kHz 10ps St/DSPSV 1kV 0.7ns/1,2,4,8,10 & 12ns 100Hz 10ps S/DCPS1 2kV 150ps/2ns延迟 1kHz 20ps /SCPS2 4kV 150ps/2ns延迟 100Hz 20ps /SCPS3 6kV 50ps/2ns 延迟 10Hz 20ps /SHMP1 4kV 120ps/5ns 100Hz 10ps S/D/Q/V/FHMP2 2 x 4kV 120ps/5ns 100Hz 10ps S/D/Q/V/FPBG1 6.5kV 100ps/5ns 100Hz 10ps S/D/V/FPBG2 8.5kV 00ps/5ns 100Hz 10ps S/D/V/FPBG3 12.5kV 100ps/5ns 100Hz 10ps S/D/V/FPBG5 24kV 150ps/3ns 1kHz 20ps S/D/V/F/BPBG7 45kV 150ps/3ns 500Hz 20ps /B触发再同步器功能和选项 S 整形脉冲 St 阶跃脉冲 D 内部切换时延、速率发生器,触发指示灯,辅助低电平输出 Q 快速上升时间(快速) V 可变输出(约60%-100%) F 1kHz重复频率(一些脉冲发生器没有这个选项也可以达到1KHZ重复频率,具体请咨询厂商) B 平衡输出 装置可进行多同步输出, 例如PBG5脉冲发生器驱动16个50?输出电压为6.4kv 负荷为50?,正/负极输出都可以。从小型到大型装置;定制的脉冲发生器可用于广泛的应用程序。Kentech 仪器有限公司制造大量的脉冲发生器,并且根据顾客要求建立装置系统。如果这里没有列出您需要的合适设备,请咨询厂商讨论您的要求。Kentech仪器公司还生产了一系列的时间分率和成像设备用于X射线和光学波长。该公司还特别生产门控光学图像增强器系统,门宽小至50ps和带宽为GHz的高重复率的系统。关于X射线,该公司提供门控成像仪和超高速扫描相机。
  • 触发分配器 FPKEN-Trigger-distributio
    触发分配器trigger distribution 可以提供10路脉冲同步输出,信道间无抖动,触发分配器内置1KHZ的频率发生器,是多通道脉冲分配器。触发分配器应用 通用触发 同步触发多个装置触发分配器特点 ?10个同步输出 ?信道间无抖动 ?内置频率发生器为1kHz ?输出电压为30V(50?) ?音频和视觉指示灯 ?闭塞触发装置指示灯 ?110 / 240 V 交流电源触发分配器规格 触发装置 通用5V,50?,+ve 阈值 通过前面板微调1~4V 触发器的输出抖动 ≤10ps RMS 通道间抖动 约0(使用无源分配器) 触发延迟 约17ns 输出 10(BNC) 振幅 为30V为50欧姆 上升时间 1ns 脉冲波形 快速上升、缓慢衰减,脉宽约10ns FWHM 脉冲重复频率 高达1kHz 功能 外部触发 内部触发(0.1~1000Hz) 单幅触发(前面板按钮) 音频指示器 开/关 触发指示灯,闭塞或100ms的脉冲 机械规格 3U x 42HP (约134mm x 214mm) 电源 交流电100 / 240V
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制