当前位置: 仪器信息网 > 行业主题 > >

加抑制剂矿物油氧化特性测定仪

仪器信息网加抑制剂矿物油氧化特性测定仪专题为您提供2024年最新加抑制剂矿物油氧化特性测定仪价格报价、厂家品牌的相关信息, 包括加抑制剂矿物油氧化特性测定仪参数、型号等,不管是国产,还是进口品牌的加抑制剂矿物油氧化特性测定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合加抑制剂矿物油氧化特性测定仪相关的耗材配件、试剂标物,还有加抑制剂矿物油氧化特性测定仪相关的最新资讯、资料,以及加抑制剂矿物油氧化特性测定仪相关的解决方案。

加抑制剂矿物油氧化特性测定仪相关的资讯

  • 氧化安定性测定仪检测氧化安定性的主要目的
    氧化安定性测定仪测试的一般原理是在一定量的测试油样中,放入金属片作为催化剂,在一定的温度下输入一定量的氧气,经规定的试验时间后,测定油样氧化后的酸值、黏度、沉淀物和金属片的质量变化以及酸值达到规定值所需试验时间。  润滑油的氧化安定性除了主要取决于自身的化学组成外,还与测试的温度、氧压、金属催化片、金属接触面积、氧化时间等条件有关。因此须根据所测试润滑油品的实际使用环境来选择合理的试验条件,目前常用的测试方法GB/T加抑制剂矿物油的氧化特性测定法。该方法概要为检测试样在水和铁-铜催化剂存在的条件下,在95℃条件下与氧反应,定期测定试验的酸值,酸值达到2.0mgKoH/g或试验时间达到10000h,试验结束,使酸值达到2.0 mgKOH/g的试验时间称为试样的“氧化寿命”。由于GB/T试验时间较长,在实际检测中也多采用SH/T润滑油的氧化安定性的测定-旋转氧弹法来评价不同批次相同组成润滑油氧化安定性的连续性或润滑油的剩余氧化试验寿命。  氧化安定性的检测目的:  1.监测润滑油的氧化安定性的变化,防止因润滑油的氧化变质,生成更多有机酸,使设备润滑部件发生腐蚀。  2.防止因润滑油氧化严重所产生的更多油泥、胶质和沥青质,增大润滑油的黏度,不利于设备的润滑和散热。也防止因过多的油泥堵塞油路而影响润滑油的流动,增加设备的磨损。  3.润滑油的氧化变质还会使油品的添加剂发生裂解失效,使油品的有关理化性能发生劣化,如油品的泡沫性、乳化性、抗磨性能等都会明显下降。
  • 展会现场|北京得利特参加废矿物油处理技术交流会
    上周,北京得利特派技术代表参加了废矿物油处理技术交流会。有很多客户进入我们的展示台 。向我们咨询了润滑油测定仪。我们销售人员很专心给客户讲解了关于运动粘度测定仪、开口闪点测定仪、液相锈蚀测定仪、抗乳化测定仪、泡沫特性测定仪、空气释放值测定仪。客户很认可我们的产品,进行了进一步沟通和了解。 会议主要内容:一、肯定了再生油专委会工作并取得成绩,指出废矿物油综合利用进一步得到规范,相关的法律法规也在逐步完善,特别是免征消费税政策的延续将进一步促进废矿物油综合利用的发展,希望通过本次会议共谋废矿物油综合利用的健康有序发展。二、从促进产业发展的角度,对废矿物油综合利用提出了几点要求:1、要高质量发展;2、创新驱动,发展废油加工自主先进技术;3、从废油的源头到产品以绿色引领行业发展;4、标准先行,制定并完善废矿物油综合利用行业相关标准;5、以提高再生油产品质量,增加企业效益为发展目标;6、加强技术、生产及市场的协作;7、多向政府提供行业发展的建议和意见,争取政策及政府部门的支持,8、企业和行业要共同规范,做到自律自强,不能为企业的私利,要从整个行业角度出发。得利特公司整合石化科学研究院,中国计量科学研究院,北京铁道科学研究院,计量总站等油品方面、仪器方面、设备方面的专家技术班底,集思广益,推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等产品,得到用户的广泛赞誉。公司以技术实力为用户提供专业贴心的咨询培训服务,包括设备润滑咨询服务,设备润滑知识培训,润滑系统方案设计、实验室建设方案,第三方油品检测。帮客户解决设备润滑的相关问题。
  • ASTM D4378-22《蒸汽、燃气及联合循环涡轮机矿物油在运行中监测的标准实施规程》标准解读
    长期以来,发电行业一直认为涡轮机油的运行监测是确保涡轮长期无故障运行的必要手段。用于发电的两种主要类型的固定式涡轮机为蒸汽涡轮机和燃气涡轮机;涡轮机可以作为单独的涡轮机,也可以配置为联合循环涡轮机。联合循环涡轮机有两种类型:第一种连接燃气轮机和蒸汽轮机,具有单独的润滑回路。第二种将蒸汽和燃气轮机安装在同一轴上,并具有共同的润滑回路。润滑要求非常相似,主要重要的区别就是燃气轮机油受到明显较高的局部热点温度和水污染的可能性较小。汽轮机油通常可以使用很多年。相比之下,燃气轮机油的使用寿命较短。燃气轮机的优点之一是能够快速响应发电调度要求。因此,越来越多的现代燃气轮机被用于峰值负载或循环负载(频繁的机组停止和启动),使润滑油处于可变条件(非常高到环境温度),这给润滑油增加了额外的压力。为了确保工厂设备的安全、可靠和具有成本效益的运行。我们就需要通过对在用润滑油进行有意义的取样和测试,来帮助用户验证润滑油在整个生命周期中的状态。收集数据和监测显示润滑油退化迹象的趋势进行相应的处理和补救措施。现行标准ASTM D4378-22《Standard Practice for In-Service Monitoring of Mineral Turbine Oils for Steam, Gas, and Combined Cycle Turbines》,中文译为《蒸汽、燃气及联合循环涡轮机矿物油在运行中监测的标准实施规程》第一版发布于1984年,上一版为2020年,最新版为ASTM D4378-22。本操作规程涵盖了有效监测蒸汽和燃气轮机(作为单独或联合循环涡轮机)中使用的矿物涡轮机油的要求。本操作规程包括取样和测试计划,以验证润滑油在整个生命周期中的状态,并通过确保所需的改进,使润滑油的当前状态达到可接受的目标。本操作规程的目的是帮助用户,特别是电厂运行和维护部门,保持涡轮所有部件的有效润滑,防止出现与油降解和污染有关的问题。本操作规程中提到的各种试验参数的值是指示性的。事实上,要对结果进行正确的解读,需要考虑设备类型、操作工作量、润滑油回路设计、补油水平等诸多因素。涡轮机油的性能多数涡轮机油由深度精制的石蜡基矿物油复合抗氧化剂和防锈剂而成。依据其质量等级不同,还可以添加少量的其他添加剂,如金属钝化剂、降凝剂、极压添加剂和消泡剂。涡轮机油的主要功能是润滑和冷却轴承和齿轮。在有些设备中,涡轮机油也可以充当调节液压油。新涡轮机油应具有良好的抗氧化性,并提供足够的防锈性、抗乳化性以及抗泡特性,同时能抑制油泥和漆膜沉积物的形成。然而,这些油在涡轮润滑系统中使用期间不能保持不变,因为润滑油会经历热应力和氧化应力,这些应力使润滑油中的基础油的化学成分降低,并逐渐耗尽润滑油中的添加剂。在不损害系统安全或效率的情况下,可以容忍某些恶化。良好的监测手段是必要的,以确定何时润滑油性质发生了足够大的变化,以证明可以在很少或没有损害生产计划的情况下实施纠正措施。影响涡轮机油使用寿命的因素影响涡轮机油使用寿命的因素有:(1)系统的类型和设计,(2)油系统运行前条件,(3)新油的质量,(4)系统的运行条件,(5)油品受污染状况,(6)补油率,(7)油品的处理和储存条件。涡轮机油检测项目、异常原因及处理措施涡轮机油的闪点,与大多数润滑油一样,涡轮机油的闪点必须远高于最低适用安全标准要求。然而,闪点对于测定涡轮机油废油的降解程度意义不大,是因为正常涡轮机油降解对其闪点值的影响不大。闪点测试对于检测涡轮机油中低沸点溶剂的污染非常有意义(燃油稀释)。在ASTM D4378-22的最新发布标准中,更新了常用的闪点测定方法包含了D6450(连续闭杯法),D7094(连续闭杯法),D92(克利夫兰开杯法)和D93 (宾斯基马丁闭杯法)。每次使用相同的测试方法,以确保闪点的准确趋势。 —开杯闪点:适用于评估散装润滑油(新油)性质及其在运输中的安全性能。 —闭杯闪点:适用于评估设备运行中润滑油(在用油)的性质。闭杯闪点值与润滑油中非常少量的轻组分(低至0.1%)息息相关。即我们所说的润滑油污染分析或燃油稀释。在用油目测项目、异常原因及处理措施注1:为了保持一致性,建议如下: (1)在静置5分钟后进行目视检查,(2)使用透明的样品容器,(3)使用聚焦照明来增强目视观察取样后,涡轮机油的气味检查:是否具有异常气味;静置1小时后,涡轮机油的气味检查:刺激性难闻气味;异常原因:过热导致机油开裂;处理措施:调查原因。检查粘度,酸值,闪点等指标。汽轮机油检测项目、异常原因和处理措施注1:采样频率:新涡轮机安装完12个月内,建议的采样频率为每1至3个月,或与润滑油或状态监测供应商商定。正常运行为每4至6个月一次,或与润滑油或状态监测供应商商定。以上述采样频率仅作为参考。对于服务年限较长的,易出现故障的涡轮机或接近使用寿命的机油,建议增加采样频率(建议采样间隔缩短减半)。本检测项目可适用于大多数涡轮机。采样频率基于连续运行或总累计使用时间得到。注2:对于燃气轮机(见表6)和蒸汽轮机(见表5)具有独立润滑回路的联合循环系统,应遵循单个涡轮类型的试验项目。燃气轮机油检测项目、异常原因和处理措施单轴联合循环涡轮机油检测项目、异常原因和处理措施A. 警戒极限值适用于润滑油使用的任何阶段,除非另有说明。闪点:在用润滑油闪点比新油的下降15°C或更多(相同闪点测试方法)。 —异常原因:可能润滑油被污染了。 —处理措施:查明原因。结合其他试验结果比较,考虑处理或换油。C. 如果怀疑润滑油被污染了,其他测试(如闪点、泡沫性、水分、锈蚀和空气释放值)可能有助于确定污染的程度和影响。外部供应商或油品供应商也可以协助进行更深入的分析。闭杯闪点方法更适合于评估设备在用润滑油的性质。闭杯闪点值与润滑油中非常少量的轻组分(低至0.1%)息息相关。润滑油闪点测定解决方案油闪点测定解决方案1987年,奥地利格拉布纳仪器公司Grabner Instruments成立;1992年设计和生产了世界上第一台微量闭口闪点测定仪MINIFLASH;1999年,由Grabner根据MINIFLASH编写和提交的ASTM D6450(常闭杯闪点方法)(已编译成电力行业DL/T 1354,石化行业SH/T 0768,出入境行业SN/T 3077.1);2003年,由Grabner根据MINIFLASH编写和提交的ASTM D7094(改进常闭杯闪点方法)(已编译成出入境行业SN/T 3077.2)标准发布。ASTM D6450/D7094标准充分考虑闪点测试的危险性,Grabner发明了连续闭杯闪点测试方法和仪器MINIFLASH系列闪点测定仪。使其成为最安全的闪点测定仪器。微量闪点测定仪+12位自动进样器全自动微量闭口闪点测定仪MNIFLASH FPH VISION 作为Grabner最新的工业4.0智能化的全自动微量闭口闪点测定仪,因其微量1ml、快速3-5min、电弧点火、无明火、无刺激性气体、点火保护技术、爆炸探测技术、空气补偿控制等先进技术,使其成为最安全的闪点测定仪。1、高安全性、无明火、无刺激性气体、连续闭口测试过程 2、微量:1ml样品量3、快速:测试时间3-5min4、测试温度高达400℃5、燃烧稀释功能用于状态监控,判断在用油污染和泄漏情况6、完全适用于变压器油、汽轮机油或其他油样的闪点测试7、完全满足DL/T 1354, ASTM D6450/D7094, SH/T 0768, SN/T 3077.1/28、全自动、一键式操作过程9、10英寸全彩触摸屏10、便携式设计,可现场测试
  • 油+油,鬼见愁|食用油中矿物油检测难点一文解读
    仪器信息网讯2024年7月17日,食用油中矿物油的检测——Easy选型直播活动圆满落幕!本次活动由仪器信息网携手上海仪真分析仪器有限公司(以下简称“仪真分析”)联合主办,特别邀请了矿物油检测领域的资深专家,深入探讨了食用油中矿物油检测的技术动态及未来趋势,并展示了全自动矿物油分析解决方案及真机操作。此次线上活动现场累计超4000人观看,专家互动答疑环节观众提问踊跃。主题圆桌——食用油中矿物油检测技术难点及发展趋势近期,“罐车混用”事件再次引发公众对食品油安全的深切关注,使得“矿物油”问题成为社会焦点。在此背景下,本次论坛紧密追踪热点话题,专门设立了“食用油中矿物油检测技术及其未来发展趋势”的圆桌讨论环节。此环节特别邀请到在矿物油检测领域深耕多年的北京市科学技术研究院分析测试研究所矿物油分析测试研究室武彦文研究员和仪真分析仪器有限公司技术总监朱丽敏博士两位行业专家,共同探讨矿物油检测技术、食用油中矿物油的检测难题以及矿物油检测技术所面临的挑战,圆桌论坛主持由仪器信息网编辑蔡小芳担任。圆桌对话矿物油(MOH)源自石油与合成油,主要包含饱和烃(MOSH)及芳香烃(MOAH)两部分,它们或容易蓄积在人体,或有致癌和致畸毒性。矿物油会通过环境污染、种(养)殖采收、生产加工、包装储存等多种途径迁移进入食物,给人类健康带来风险。北京市科学技术研究院分析测试研究所矿物油分析测试研究室武彦文研究员对于开展矿物油分析研究工作的契机,武彦文老师分享到:当初我在研究食用油脂时发现,我国矿物油污染物的分析技术与国外差距很大,特别是由于我国的标准方法远远落后于国外,给油脂企业特别是出口企业造成很大困扰。于是,她迅速转变科研方向,开启矿物油分析测试技术的研发工作。她首先研读了几乎所有相关文献,发现我国在这个细分领域的研究几乎处于空白,不仅在理论理解上偏差,检测仪器也相去甚远,因此她开启了“精彩”的矿物油分析研究之路。仪真分析仪器有限公司技术总监朱丽敏博士仪真分析在矿物油检测始于对食品新型污染物检测技术的关注。2015年,朱丽敏博士在瑞士参观了一家专注于矿物油检测的实验室,意识到国内在该领域缺乏成熟的解决方案。2018年,仪真分析便凭借其技术实力和良好的商业信誉,获得了德国Axel Semrau公司的青睐,成为其在中国地区的独家技术合作伙伴。达成合作后,仪真分析坚持将技术本土化,来更好地满足中国客户的需求。2018年,仪真分析成功改装了第一台本土化的LC-GC在线分析平台,并将其推广到国内市场。获得了国家粮油检测部门、国际食品企业和第三方检测机构的广泛认可,并成功应用于食用油、食品接触材料、婴幼儿配方奶粉多个细分领域。两位老师在分享了开启矿物油检测的契机后,针对矿物油分析检测技术和食用油中矿物油检测难点展开讨论。武老师指出,矿物油分析检测技术包括GC-FID、LC-GC、GCxGC-MS等,其中LC-GC被誉为“金方法”,尤其适用于复杂样品如食用油,并通过在线溶剂挥发技术实现大体积进样,提高灵敏度。但食用油中矿物油检测仍面临诸多挑战,如样品基质复杂、干扰物众多、谱图解析困难、标准品缺乏和溯源难度大等。为解决上述难点,研究人员和企业积极探索解决方案,例如LC-GC全自动分析平台、在线净化技术、LC-GC-MS/MS、数据库建设和标准化等方法。在谈到矿物油分析检测未来的发展趋势,朱博士认为,矿物油检测技术正朝着更精细的成分分析、标准化方法和精确溯源的方向发展。将通过LC-GC-MS/MS联用技术将毒性更强的MOAH实现更精确的定性和定量分析;针对不同食品基质,如婴幼儿配方奶粉和食用油,将制定标准化的检测方法,以确保结果的可比性和一致性;此外,建立和完善矿物油溯源数据库,并开发先进的溯源技术,将有助于实现对矿物油来源的精准定位,从而更好地保障食品安全。精彩报告——《全自动矿物油分析解决方案》报告人:上海仪真分析仪器有限公司高级产品经理 张鸿矿物油检测长期以来一直是非常有挑战的难点,首先要将样品中矿物油与复杂的介质分离,再通过气相色谱检测。由于矿物油无处不在,获得干净的仪器很重要。为了达到足够的灵敏度,需要大体积进样技术。矿物油在2011年被报道发现以来,欧洲的分析化学家经过多年努力,终于实现了矿物油可靠分析方法(在线LC-GC-FID)。仪真分析在过去的20多年来一直关注食品分析方面的研究,在2018年开始涉足矿物油检测,并推出了全自动在线LC-GC二维色谱联用矿物油分析系统。全自动矿物油分析系统全自动矿物油分析系统以其卓越的性能优势显著提升了矿物油检测效率和质量。系统采用了清洁和改装技术,有效去除了背景干扰,确保了分析结果的准确性。通过液相色谱和硅胶柱的高效分离技术,矿物油能够从油脂等复杂介质中被精确提取。部分溶剂蒸发技术保证了样品在气相色谱中的超低量分析,而双通道双FID技术则实现了对MOSH和MOAH的同时定量检测,大大缩短了分析时间。全自动氧化铝和全自动环氧化技术的应用,也进一步增强了样品分析的灵敏度和准确度。最后,软件的兼容性能够与市场上所有主要品牌的LC和GC实现无缝对接,为用户提供了极大的便利。最后,张鸿还介绍了仪真分析的FAT/SAT服务,仪真分析提供的FAT服务(Factory Acceptance Test)确保了在实验室内使用标样对系统进行彻底测试,以确认其良好运行。在完成测试并拆卸包装后,仪真分析能够保证用户现场快速安装并投入试用。SAT服务(Site Acceptance Test),仪真分析提供详细的产品安装准备条件书,其中包括化学试剂的选择和前处理的准备工作等。仪真分析还为用户提供培训,详细讲解矿物油分析过程中的注意事项,确保用户能够熟练操作并维护系统。真正实现交钥匙工程!真机演示——走进仪真分析,进一步体验上机操作除了精彩纷呈的专家讲座和深入浅出的技术解析,本次直播活动还特别设置了“真机演示”环节,张鸿老师带领观众走进仪真分析,亲身感受全自动矿物油分析平台的强大功能。平台选用性能优良的安捷伦气液相色谱部件给客户带来了更好的体验,仪真分析和安捷伦的专家强强联合在现场进行专业讲解,详细介绍了系统各个组件的功能和工作原理,并针对观众可能遇到的操作疑问进行解答。精彩内容之外,直播间还进行了丰富多样的互动抽奖活动,贴心的准备了精美礼品回馈积极参与答题互动的用户们,也将直播间的热度推向高潮。
  • 合力推动中国矿物油分析发展 ——“矿物油分析测试技术研究合作实验室”揭牌仪式 暨矿物油分析技术最新进展学术交流
    p style="text-indent: 2em "strong仪器信息网讯/strong 2019年8月27日,北京市理化分析测试中心与德国Axel Semrau公司的“矿物油分析测试技术研究合作实验室”揭牌仪式暨矿物油分析技术最新进展学术交流成功召开。北京市科学技术研究院副院长刘清珺、北京市粮食和物资储备局副局长阎维洪、中国分析测试协会汪正范、北京市科学技术研究院技术转移处处长郭鲁钢和科研处副处长李彦雪,北京市理化分析测试中心副主任高峡、研究员武彦文,以及德国Axel Semrau公司执行总监Dr. Andreas Bruchmann、仪真分析仪器有限公司技术总监朱丽敏、安捷伦大中华区战略规划总监何峻等20多人参加了合作实验室揭牌仪式和矿物油分析技术最新进展学术交流活动。 /pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/b6953265-6131-47f1-a5c3-6ed3461420f3.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center "span style="font-size: 14px "strong活动现场/strong/span/pp style="text-indent: 2em "从各自未来发展战略需求出发,北京市理化分析测试中心与德国Axel Semrau公司成立了“矿物油分析测试技术研究合作实验室”。合作实验室将开展仪器应用、方法培训与标准验证等方面的工作。双方希望通过合作,优势互补,共同推动液相色谱-气相色谱联用的矿物油分析技术在中国的本土化应用,特别是食品中矿物油的测定方法标准的建立,为中国食品安全出力,为未来具备矿物油在国内食品中分布的筛查、降低膳食中有害物质含量等,提供技术储备和方法支持。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/9933b358-d5da-4070-9b37-c1a9fae3b75a.jpg" title="1_副本.jpg" alt="1_副本.jpg"//pp style="text-align: center "strong style="font-size: 14px text-indent: 2em "北京市科学技术研究院副院长刘清珺博士/strong/pp style="text-indent: 2em "北京市科学技术研究院是北京市属的大型多学科高水平科研机构,立足应用基础研究、战略高技术研究、重大公益研究和科技服务发展定位。刘清珺简介了北京科学技术研究院的六大中心三大平台的概况,其中检测分析与测试平台即以北京市理化分析测试中心为主,形成了仪器设备开放共享的新型运行机制,加强应用研究、高新技术研究和重大科技攻关,不断提高科研开发和自主创新能力,形成竞争领先优势。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/32d335da-719a-4300-bcce-9dcd20990b76.jpg" title="6.jpg" alt="6.jpg"//pp style="text-indent: 2em text-align: center "strongspan style="font-size: 14px "北京市理化分析测试中心副主任高峡博士/span/strong/pp style="text-indent: 2em "经过近40年的发展,北京市理化分析测试中心成为了首都地区唯一的综合性分析科学研究机构、最大的开放共享分析测试平台。目前,中心综合实力在全国地方分析测试中心中位居第2,进入全国第三方理化分析检测机构前10名,中心连续四年实现经济总量超亿元。/pp style="text-indent: 2em "北京市理化分析测试中心围绕着食品药品安全、环境监测、材料分析、生物技术、国产科学仪器应用示范等主要领域开展分析测试科学研究和技术服务工作,形成了食品药品质量安全检测技术、水土气环境监测与检测技术、未知物成分分析与鉴别技术等技术品牌。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/0b03a027-e367-49f7-b0ba-6fe69288b4a0.jpg" title="13.jpg" alt="13.jpg"//pp style="text-indent: 2em text-align: center "span style="font-size: 14px "strong德国Axel Semrau公司执行总监Dr.Andreas Bruchmann/strong/span/pp style="text-indent: 2em "在过去的35年里,Axel Semrau及其员工一直致力于样品制备、色谱、化学合成以及应用优化工作站的开发、销售和支持。Axel Semrau公司正在开发自己的硬件和软件,以便能够提供独特、强大的食品分析特别是粮油在线全自动样品前处理和多维色谱联用的解决方案。Axel Semrau的目标是以优秀的应用解决方案结合基于自身开发的优秀软件而闻名于世。此外,Axel Semrau这个名字将与卓越的客户服务和客户关系密切相关,包括客户、供应商或合作伙伴。/pp style="text-align: center "span style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/f6d8ceb5-aea2-41d4-9b9b-d88b2fbf10f7.jpg" title="16.jpg" alt="16.jpg"//pp style="text-align: center "span style="font-size: 14px "strong仪真分析仪器有span style="font-size: 14px "限公司技术/span总监朱丽敏博士/strong/spanbr//pp style="text-indent: 2em "上海仪真分析仪器有限公司(仪真分析)成立于2005年,具备研发、集成、生产、代理、销售和技术服务的仪器供应商,为环境监测、食品安全和临床检测等分析实验室提供样品前处理到分析测试全方位解决方案。仪真分析的技术团队由多位留学博士及硕士和专业培训的工程师组成,在上海、北京及广州设有主要的办公室,上海设有研发试验和培训实验室。/pp style="text-indent: 2em " 仪真分析与Axel Semrau 公司合作,应用Axel Semrau的软件平台,与仪器公司合作开发适合中国应用的包含软件与硬件的解决方案。2018年,仪真分析成为了安捷伦VAR合作伙伴,推出食品中矿物油检测的解决方案。/pp style="text-align: center "span style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/01eab20c-b922-482a-83d1-c1dbb5245aaf.jpg" title="14.jpg" alt="14.jpg"//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/0e392f1d-f066-4b4e-8bda-3353c882bbce.jpg" title="8.jpg" alt="8.jpg"//pp style="text-align: center "span style="font-size: 14px "strong德国Axel Semrau公司执行总监Dr. Andreas Bruchmann和/strong/spanbr//pp style="text-align: center "span style="font-size: 14px "strong北京市理化分析测试中心副主任高峡签署合作协议/strong/span/pp style="text-align: center "span style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/c7422c93-8773-442a-aab6-d804de491c30.jpg" title="11.jpg" alt="11.jpg"//pp style="text-align: center "span style="font-size: 14px "strong北京市粮食和物资储备局副局长阎维洪和北京市科学技术研究院副院长刘清珺为合作实验室揭牌/strong/span/pp style="text-align: center "span style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/1af6c700-d21b-4b3a-b7f4-7965fe8fad38.jpg" title="12.jpg" alt="12.jpg"//pp style="text-align: center "span style="font-size: 14px "strong向北京市理化分析测试中心武彦文、仪真分析仪器有限公司技术总监朱丽敏颁发证书仪式/strong/span/pp style="text-align: center "span style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/c9d190e2-168a-4fa8-8006-67e474ec655a.jpg" title="9_副本.jpg" alt="9_副本.jpg"/img src="https://img1.17img.cn/17img/images/201908/uepic/2afede2e-9415-477f-a40c-f07069dcadb9.jpg" title="7_副本.jpg" alt="7_副本.jpg" style="max-width: 100% max-height: 100% "//pp style="text-align: center "span style="font-size: 14px "strong嘉宾致辞(北京市科学技术研究院技术转移处处长郭鲁钢、中国分析测试协会汪正范、安捷伦大中华区战略规划总监何峻)/strong/spanbr//ppspan style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/df342eba-ec56-4282-9c99-c4b7f9944b3f.jpg" title="2_副本.jpg" alt="2_副本.jpg"//pp style="text-align: center "span style="font-size: 14px "strong北京市科学技术研究院科研开发处副处长李彦雪主持活动/strong/span/pp style="text-indent: 2em "矿物油源于石油,是C10~C50的烃类化合物的总称,主要包括直链、支链烷烃和烷基取代的环状饱和烷烃(MOSH)以及烷基取代的芳香烃(MOAH)两个类型,而如今普遍认为MOAH 具有可能致癌和致突变的隐患,而 MOSH(特别是C16~C35) 容易在身体器官中积累并可能造成损伤,所以对矿物油的检测显得至关重要。/pp style="text-indent: 2em "近年来,食品中的矿物油污染问题备受关注。食品接触材料特别是回收或再生包装纸中的残留油墨,食品原料在收割、晾晒、加工过程中接触的发动机润滑油、未完全燃烧的汽油、轮胎和沥青碎屑,食品加工使用的白油,以及环境污染等,都是食品中矿物油污染的主要来源。然而,由于组成复杂、数量巨大、基质干扰严重,使得矿物油的检测是行业公认的技术难题。德国联邦风险评估研究所(BfR)明确要求用于食品包装的接触材料MOSH迁移量小于2mg/kg, MOAH小于0.5mg/kg。2017年,欧盟发布了关于“监测食品以及食品接触材料和物品中矿物油烃类”的建议性指导文件,指出矿物油可以通过环境污染、收获和食品生产等残留在食品中。随后,欧盟推出了EN16995矿物油分析方法,大力推动欧盟内部或输欧食品中矿物油污染调查。北京理化分析测试中心的武彦文团队从2015年开始开展矿物油分析方法的研究,目前其开发的方法及测试水平均已步入国际前列。/pp style="text-indent: 2em "合作实验室揭牌仪式后,与会人员就矿物油分析技术最新进展展开了学术交流。德国Axel Semrau公司执行总监Dr. Andreas Bruchmann、北京市理化分析测试中心武彦文博士分别就国内外矿物油分析研究进展及标准制定等内容进行了分享。关于该项技术的推广应用与会者进行了热烈的讨论,期待互相合作、共同推动该技术的进一步发展。/pp style="text-align: center "span style="font-size: 14px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/1d28b593-14b0-4622-8649-727425cb392f.jpg" title="3.jpg" alt="3.jpg"//pp style="text-align: center "span style="font-size: 14px "strong国际矿物油分析技术的最新进展/strong/spanbr//pp style="text-align: center "span style="font-size: 14px "strong德国Axel Semrau公司执行总监Dr. Andreas Bruchmann/strong/span/pp style="text-indent: 2em "Axel Semrau公司优化了原始 LC-GC 方法,成功推出CHRONECT LC-GC 食品中矿物油分析系统,与欧盟方法EN16995完全一致,通过特殊的阀设置将LC和GC分离互相结合,使得在一次分析中测定 MOSH 和MOAH 馏分成为可能。/pp style="text-indent: 2em "通过独立的大体积进样系统进行GC进样,进样量可达450μL;2通道GC进行两次平行和正交分离,随后进行FID检测。因此,样品中MOSH和MOAH含量的结果在30分钟后即可获得。CHRONOS软件控制采样、LC、GC、阀门连接,从而构成对方法和样品制备的完全自动控制。该解决方案应用于快速检测不同基质中的矿物油污染物,如化妆品、食品、油脂、饲料和包装材料。/pp style="text-align: center "span style="font-size: 14px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/cf5aa040-5566-482d-bd91-2ef1bdd54e52.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "span style="font-size: 14px "strong我国矿物油分析方法的研究进展/strong/spanbr//pp style="text-align: center "span style="font-size: 14px "strong北京市理化分析测试中心武彦文博士/strong/span/pp style="text-indent: 2em "气相色谱-氢火焰离子化检测器(GC-FID)是目前公认的矿物油检测方法,FID对所有烃类化合物的响应几乎完全一致,可以无需标准品对照对矿物油进行准确定量。但同时也存在着对鼓包峰的灵敏度仅为尖峰的百分之一、作为通用检测器也意味着没有选择性这两大需要解决的问题。而On-line HPLC-GC技术,由于HPLC柱的填料颗粒小、柱效高,分离效率好;LC-GC将分离、浓缩和测定联为一体,避免了人工操作,自动化程度高,方法重现性好等优点,使得LC-GC成为了测定矿物油的理想技术。/pp style="text-indent: 2em "北京市理化分析测试中心武彦文研究员于2015年开始了矿物油分析方法的研究。2018年国内第一台“全自动在线LC-GC二维色谱联用矿物油分析系统”落户武彦文的实验室,使得她的研究实现了由手动向全自动化的转变。/pp style="text-indent: 2em "仪器安装使用不到两个月的时候,武彦文团队即参加了国际能力验证,获得了“with great success”的成绩。经过1年多的时间,武彦文团队在将国际先进分析方法本土化实现的同时,在样品前处理方面,尤其是在提取技术方面实现了多项创新。短短的时间内,该团队已经发布了10多篇高水平论文,并且计划制定3项方法标准。如:行标“粮油检验 大米中矿物油的测定”,采用了SPE结合普通GC以及HPLC-GC联用的方法;行标“粮油检验 动植物油脂中饱和烃和芳香烃矿物油的测定”采用了HPLC-GC联用的方法。除了食用油中矿物油污染物的研究,武彦文团队还进行了婴幼儿配方乳粉、巧克力和咖啡中的矿物油分析等研究工作。下一步,武彦文计划在继续拓展不同基质食品中矿物油研究的同时,还将开展将该方法应用于环境领域的探索工作。/pp style="text-align: center "span style="font-size: 12px "strong/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/b7041e77-aee3-4026-8ae1-d55b1986d51e.jpg" title="15.jpg" alt="15.jpg"//pp style="text-align: center "span style="font-size: 14px "strong合影/strong/span/ppstrong附录/strong:/pp style="text-indent: 2em "北京市理化分析测试中心(理化中心)成立于1979年,隶属于北京市科学技术研究院,是公益性大型综合分析测试科学事业机构,围绕着食品药品安全、环境监测、材料分析、生物技术等主要领域开展分析测试科学研究和技术服务工作。理化中心坚持以分析测试为核心业务,以公益技术支持、公共技术服务和科学技术创新为立足点的发展定位,依靠高素质的分析方法开发与检验检测队伍,采用先进的分析测试技术和手段,为全社会提供全方位多层次的分析测试服务。/pp style="text-indent: 2em "德国Axel Semrau公司致力于开发,销售和支持样品制备和色谱自动化专业解决方案的,如在线SPE,以及LC,LCMS,GC和GCMS其他高效前端解决方案,还包括基于LC-GC和GCMS-系统的应用优化的工作站。Axel Semrau公司开发的产品如专业色谱软件解决方案和LC-GC系统,已在全球上市和销售。/pp style="text-indent: 2em "上海仪真分析仪器有限公司(仪真分析)是一家专业的,具备研发,集成,生产,代理,销售和技术服务的仪器供应商,为环境监测、食品安全和临床检测等分析实验室提供样品前处理到分析测试全方位解决方案。仪真分析拥有一流的由多位留学博士及硕士和专业培训的工程师组成的技术团队,销售团队覆盖大中国区的整个区域;致力于市场研究与应用开发,将世界领先的分析技术与行业标准与中国分析技术发展相结合,将先进分析技术及解决方案本土化。/pp style="text-align: right "  采访撰稿编辑:刘丰秋/ppspan style="text-indent: 2em "/spanbr//ppbr//p
  • GERSTEL守护食用油安全——应对矿物油、氯丙醇酯及缩水甘油酯污染
    近期,“罐车混用”事件再次将食品安全问题推向风口浪尖,引发社会广泛关注。油罐车在未经彻底清洗的情况下,从运输煤制油等化工类液体转而装运食用油,导致食用油可能遭受化工残留物的污染。有专家表示,长期摄入含有这些化工残留的食用油,可能导致人体中毒,出现恶心、呕吐、腹泻等症状,甚至对肝脏、肾脏等器官造成不可逆的损害,但消费者很难分辨出来。鉴于此,仪器信息网特此发起“油罐车混装事件:仪器检测如何护航食用油安全?”主题征稿活动。此次邀请到GERSTEL分享食用油中矿物油、氯丙醇酯及缩水甘油酯污染的解决方案。 01 请介绍贵单位有哪些仪器成果或解决方案应用于食用油安全检测? GERSTEL 一直以来关注食品安全,以精密的样品前处理设备助力检测结果的准确性和高效性、以智能的控制软件提高使用感受并灵活满足应用需求、以强大的分析软件解决复杂繁琐的数据处理。我们成熟的矿物油污染HPLC-GC-FID检测方案、氯丙醇酯和缩水甘油酯污染检测方案,提供高效、准确的食用油安全的检测和评估,深受全球消费者的欢迎。 同时使用同一个平台还可以实现更多的检测项目,如PAHs,橄榄油中的烷基酯、蜡、甾醇、萜烯醇、豆甾二烯进行高效,准确的分析。GERSTEL矿物油污染HPLC-GC-FID 检测方案:GERSTEL 矿物油污染MOSH MOAH 解决方案实现了对食品、饲料、个人护理产品和包装提取物中矿物油残留的高效自动样品制备和分析。该系统基于在线耦合的 HPLC-GC-FID 系统,使用 GERSTEL 多功能进样器 (MPS)进行自动样品制备和进样。首先在 LC 步骤中,矿物油残留被分离成两个部分:矿物油饱和烃(MOSH)和矿物油芳香烃(MOAH)。然后,这些部分被分别转移到两个独立的 GC 柱中,在一个组合的双通道GC 系统中进行单独分析。该解决方案符合 DIN EN 16995:2017-08 标准的要求。双通道 GC 分离和 FID 检测使得MOSH MOAH 的完整分析仅需30分钟。此方法的关键是在 MOSH 和 MOAH 进入 GC 色谱柱前,需要准确的去除大量溶剂(LC洗脱液)并保证两个馏分精确的被分配到两个 GC 色谱柱中。GERSTEL 使用保留间隙技术(通过色谱前柱保留组分)和自主研发的 “溶剂汽化出口 Early Vapor Exit(EVE),可以精确控制 MOSH 和 MOAH 馏分的分配以及汽化溶剂的排出时间和体积。GERSTEL供完整的自动化样品前处理方案,包括环氧化、皂化、氧化铝净化以及馏分收集,大大提高结果的正确性和更低的检测限,同时大大降低繁琐的手动操作的工作量和时间。数据分析软件ChroMOH,帮助自动分析MOSH和MOAH的组分,提供100%可靠、稳定、快速的数据结果并自动生成报告,降低手动处理可能造成的误差,节省时间。HPLC-GC-FID 检测方案带有自动环氧化、氧化铝、皂化样品前处理功能的HPLC-GC-FID检测方案通过ChroMOH 软件自动积分MOSH和MOAH的各组分,并生成到最终报告中。GERSTEL氯丙醇酯和缩水甘油酯污染检测方案:GERSTEL 提供全面的3-MCPD和缩水甘油的检测自动化方案,可高效、准确、可靠地测定食品中氯丙醇及其脂肪酸酯含量。&bull 同位素稀释-气相色谱-串联质谱法 (对应 ISO18363-4法)&bull 碱水解-气相色谱-质谱法 (对应 ISO18363-1法)&bull 酸水解-气相色谱-串联质谱法 (对应 ISO18363-3 法)GERSTEL的自动化解决方案,严格遵守标准方法GB 5009.191-2024第二篇第一法,使用内标13C3-3-MCPD 二酯和13C3-2-MCPD 二酯作为内标,得到的3-MCPD酯、2-MCPD酯和缩水甘油酯的标准曲线非常好, 分别为0.999、0.998、0.997。有回收率高,转化率稳定可靠,样品通量高的优势。02请分享1-2个仪器检测技术在食用油安全检测中的最新应用与进展举例1:意面、麦片、面包干、葡萄干及其包装中的矿物油实际含量上图分别为意面、麦片、面包屑、葡萄干(依次从上到下)的MOSH和MOAH色谱图,每个样品检测三次,重现性非常好。举例2:实现食品安全国家标准 GB 5009.191-2024 -高效、准确、可靠地测定食品中氯丙醇及其脂肪酸酯、缩水甘油酯GB 5009.191-2024第二篇第一法,即13C同位素稀释-气相色谱-串联质谱法,使用13C3-3-MCPDE 作为内标,准确量化转化为缩水甘油的3-MCPD的量,修正由碱水解所带来的缩水甘油测定值偏高的问题,并且可以直接从样品中测定缩水甘油。基于分析前建立的校准曲线在一次测定中确定3-MCPD酯、2-MCPD酯、和缩水甘油酯3种分析物。GERSTEL的自动化解决方案,严格遵守标准方法 GB 5009.191-2024第二篇第一法, 使用内标13C3-3-MCPD 二酯和13C3-2-MCPD 二酯作为内标,得到的 3-MCPD酯、2-MCPD 酯和缩水甘油酯的标准曲线非常好, 分别为0.999、0.998、0.997,有回收率高,转化率稳定可靠,样品通量高的优势。循环对比试验中样品的成功分析证明了自动化样品制备过程、方法和分析系统的高质量。 不同基质中所有分析物的 RSD 介于0.1%和10%之间。 自动化可实现24/7全天候运行,优先样品可轻松插入运行序列。03您认为哪些检测技术可能会进入食用油检测标准中?目前经典的检测方法是德国BfR推荐方法,即使用手工SPE过柱实现MOSH和MOAH的分离,然后使用GC-FID和GC-MS进行定量分析。很多方法如ISO17780-2015 和中国出入境检验检疫行业标准SN/T 4895-2017 都与德国的BrR类似。在此方法基础上的自动化在线LC-GC-FID法,欧盟标准方法EN16995-2017《基于植物油和以植物油为基础的食品的在线HPLC-GC-FID分析测定矿物油饱和烃(MOSH)和矿物油芳烃(MOAH)》,我认为将会进入食用油中矿物油的检测方案。此标准方法通过自动的LC柱在线净化和分离,大大提高了MOSH和MOAH的分离效率和准确率,并且大大降低一次性的耗材和人力劳动的使用,是未来分析方法的方向。
  • 如何高效准确地进行矿物油含量检测分析?
    近日,新京报报道指出,部分罐车在卸载煤制油后,未进行清洗便直接用于装载食用油,此事件迅速引起社会各界的广泛关注,油脂质量和我国人民群众身体健康之间的关系极为密切。◀ 矿物油组成及毒性▶ 01矿物油是C10-C50烃类化合物的总称,主要由饱和碳氢化合物(mineral oil saturated hydrocarbons, MOSH)、芳香族碳氢化合物(mineral oil aromatic hydrocarbons,MOAH)以及少量的多环芳烃(PAH)和含硫、含氮化合物构成。矿物油可以通过多种途径进入食品,传统的包括环境污染、采收运输、生产加工、包装销售等,整个产业链均可能发生矿物油迁移,从而污染食品。有毒理学研究表明,MOSH是人体中累积量最大的污染物,主要来源于食物的摄入。进入体内的矿物油,在小肠和肝脏被代谢为脂肪酸和脂肪醇后,部分MOSH会蓄积在人体的皮下脂肪、肝脏、肾脏、脾脏和肠系膜淋巴结等器官和组织中。相比MOSH,MOAH虽然没有蓄积效应,但其毒性很大,其中含3个以上苯环的MOAH具有遗传毒性和致癌性。◀ 矿物油检测方法分析▶ 01目前,高效液相色谱-气相色谱-氢火焰离子化检测器在线联用技术(HPLLC-GC-FID)是测定食品中矿物油的理想方法(DIN EN 16995-2017),原因是FID对所有烃类化合物的响应几乎完全一样,相同浓度的任一碳氢化合物的FID响应信号(峰高或峰面积)接近,因此,无需寻找与目标物对应的参考标准,仅采用任一内标物即可对不同化学组成的矿物油进行准确定量。气相色谱的作用是可以将矿物油按照沸程由低到高分离,从而可以通过色谱图了解矿物油的碳数范围信息。然而,仪器复杂且造假昂贵导致改方法普及程度不高。国内的两个标准GB/T 5539和GB/T 37514,采用了皂化法和氧化铝薄层色谱法,方法不足之处在于方法只能用于定性, 不能用于定量,而且检测限较高。02ISO 17780:2015,GC-FID(离线方法)装填的层析柱或SPE柱借助硝酸银渍来提高MOAH和烯烃的保留能力,使得MOSH分段流出。该方法与食品接触领域,相关检测标准SN/T4895-2017《食品接触材料 纸和纸板 食品模拟物中矿物油的测定气相色谱法》相近。SN/T4895-2017的检测原理是:经迁移试验获得的食品模拟物,经正已烷萃取富集,用固相萃取柱洗脱分离矿物油MOSH部分和MOAH部分,浓缩定容后,采用气相色谱火焰离子检测器(FID)测定,用内标物定量计算。依据此标准,睿科集团推出的0.3% AgNO3-Silica Glass, 3g/6mL(P/N:RC-204-AS306)定制固相萃取柱,可以较好分离MOSH和MOAH。◀ 仪器设备和耗材解决方案▶ 仪器设备检测项目设备类型技术性能设备型号矿物油含量全自动浓缩设备全自动的水浴氮吹浓缩仪-Auto EVA 60高通量全自动平行浓缩仪-Auto EVA 80高通量全自动平行浓缩仪耗材检测项目耗材矿物油含量固相萃取柱:0.3%硝酸银硅胶玻璃柱货号:RC-204-AS306◀ 样品制备自动化实验流程▶
  • 矿物油、氯丙醇酯和缩水甘油酯、真菌毒素、农残检测要点一网打尽!
    为了促进粮油行业分析测技术交流,研讨国内外最新研究应用进展,仪器信息网在8月1-2日举办第三届“粮油食品质量安全及品质检测新技术”主题网络研讨会。我们特别邀请了行业专家及相关厂商技术人员参与本次网络研讨会,把最新的科研成果和检测技术呈现给大家。会议紧密关注时事热点和技术市场动态,于8月1日聚焦粮油质量安全检测技术,深入探讨了粮油中矿物油、氯丙醇酯、缩水甘油酯、真菌毒素和农药残留等关键议题,进行了精彩的技术交流。8月2日会议针对近两年来备受关注的粮油品质检测技术,特邀国内顶尖研究专家,分别就食品多组学技术在粮油研究中的应用、橄榄油中生物酚精确定量技术难题、纯油体系中抗氧化剂界面活性研究等多个领域进行了深入研讨。点击图片 免费回看01矿物油检测武彦文老师指出,矿物油分析检测技术包括GC-FID、LC-GC、GCxGC-MS等,其中LC-GC被誉为“金方法”,尤其适用于复杂样品如食用油,并通过在线溶剂挥发技术实现大体积进样,提高灵敏度。但食用油中矿物油检测仍面临诸多挑战,如样品基质复杂、干扰物众多、谱图解析困难、标准品缺乏和溯源难度大等。为解决上述难点,研究人员和企业积极探索解决方案,例如LC-GC全自动分析平台、在线净化技术、LC-GC-MS/MS、数据库建设和标准化等方法。02氯丙醇酯和缩水甘油酯检测氯丙醇酯以及缩水甘油酯在消化过程中会水解并高效释出游离氯丙醇和缩水甘油。氯丙醇酯水解产物3-MCPD是公认的食品污染物,具有潜在的致癌性、神经毒性、免疫毒性、遗传毒性和生殖毒性;缩水甘油酯降解产物缩水甘油同样具有致癌风险。GB 5009.191-2024《食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定》将替代原有的GB 5009.191-2016标准并在8月8如正式实施。值得注意的是,新标准中新增了气相色谱-三重四极杆质谱(GC-MS/MS)的检测方法,并且首次将缩水甘油酯纳入检测范围,标志着我国食品安全检测技术的进一步提升。张鸿老师向听众深入解析了标准中提及的三种检测方法,并逐一阐述了每种方法的独特优势和应用特点。“食品5009”标准作为中国的一套食品卫生检验方法标准,是保障食品安全的重要手段之一。该标准涵盖了多种食品卫生检验方法,包括食品中各种成分的测定方法,以及食品接触材料的环保测试等。在这样的背景下,仪器信息网特别策划了“2024年食品检测标准全面解读——GB 5009系列”主题约稿,诚邀各位专家和仪器厂商踊跃投稿,共同探讨和分享食品及农产品行业分析检测技术的最新研究与应用。03真菌毒素检测真菌毒素是真菌在适宜环境条件下产生的次级代谢产物,在农作物、食品、饲料及中药中污染较为普遍。真菌毒素是天然存在而非人为添加的,尽管污染量小,但危害性大。在适宜的环境因素(如温度、湿度)条件下,食品可以直接感染真菌并被其产生的毒素污染,且这种污染可以发生在食品链的任何阶段如生产、加工处理、运输和储藏过程等。据联合国粮农组织(FAO)统计,全球每年有25%的食品会受到不同程度的真菌毒素污染。许多真菌毒素还可在体内积累后产生致癌、致畸、致突变和免疫毒性,这些均对人和动物的生命与健康造成重大威胁。我国食品安全限量标准《食品安全国家标准 食品中真菌毒素限量》(GB 2761-2017)中规定了6种真菌毒素在不同类别食品中的限量值。董恒涛老师介绍了岛津LC-MS/MS生物毒素数据库,包含了谷物、水果、水产品中常见的100余种生物毒素的化合物信息、MRM参数、分析方法及操作指南,帮助用户快速建立分析各种毒素的方法。同时董老师还分享了多个LC-MS/MS法测定真菌毒素的应用案例。黄曲霉毒素B1是真菌毒素中的一种,也是国际卫生组织认定的一类致癌物。耿旭辉老师介绍了以紫外LED替代氙灯为光源(寿命是氙灯的6~7倍),自研制基于光电二极管(PD)的微光探测器替代光电倍增管(PMT)探测荧光,设计“紧贴式”荧光光路和首创的微池光衍生化器,研制出我国首套黄曲霉毒素荧光检测器,对黄曲霉毒素B1检测限2.4 ng/L,灵敏度比国际同类仪器高数倍。微光探测器已出口美国,经中国仪器仪表学会成果鉴定为动态范围和长期稳定性达国际领先水平。黄曲霉毒素荧光检测器已在中粮集团、美国Agilent公司等多家权威机构长期应用示范,经中国仪器仪表学会分析仪器分会成果鉴定为填补国内空白、性能达国际领先水平。04农药残留检测在粮谷种植过程中合理使用农药能够防治病虫害、清除杂草,保障粮食的产量和质量。不合理使用农药可能导致终端产品中存在农药残留,带有农残的粮食进入食物链后,可能会对人体健康造成潜在风险。为共同提升粮谷中农残检测的技术水平,确保食品安全,王李平老师介绍了粮谷中农药的作用、各种农药残留的限量要求和检测方法、相关农产品检测技术及注意事项和有效的质量控制措施等内容。《食品安全国家标准 食品中农药最大残留限量》 (GB 2763) 是目前我国统一规定食品中农药最大残留限量 (MRLs) 的强制性国家标准。2022 年 11 月 11 日, 国家卫生健康委员会、农业农村部和国家市场监督管理总局联合发布《食品安全国家标准食品中 2, 4-滴丁酸钠盐等112 种农药最大残留限量》 (GB 2763. 1-2022) 标准, 自 2023 年 5 月 11 日起正式实施。GB 2763. 1-2022是GB 2763-2021的 增补版,可以配套使用。近日,农业农村部 公布 了 《食品中2甲4氯异辛酯等83种农药最大残留限量(征求意见稿)》和《动物源产品中胺苯吡菌酮等57种农药最大残留限量(征求意见稿)》实施后也将于GB 2763配套使用。
  • 矿物油分析最新进展-德国奶粉事件分析方法解读
    10月25日,中国中央电视台CCTV 13“新闻直播间”报道了“德机构称部分婴幼儿奶粉检出矿物油残留”的食品安全新闻。中国安捷伦科技与仪真分析多年前就关注矿物油食品安全问题,并与欧洲保持同步,将欧洲最新的矿物油分析解决方案提供到国内。目前,国内已经有多家用户在使用此分析系统。导读中央电视台所称的德机构,实际上是德国著名的公益检测机构foodwatch。他们最近在德国、法国和荷兰随机抽样了16种罐装婴儿配方奶粉和婴儿奶制品,分析是否含有矿物油残留。并在2019年10月24日,公布了其检测方法和结果。以下是该报告中使用的分析方法的解读。1分析方法参照欧盟JRC(联合研究中心)方法:在线LC-GC-FID二维色谱联用法定量,检测限0.5 mg/kg;使用GC*GC-TOF联用法定性。2参与分析的实验室3家经过认可的实验室。3实验前处理用氧化铝除去MOSH干扰物、环氧化去除MOAH测量干扰。4实验结果4.116种受试产品中,有15种产品的MOSH/POSH含量高于0.5mg/kg的定量限,在5 mg/kg以上至8.4 mg/kg的范围内有4个样品。4.216份样本中,有8份(50%)检测到MOAH阳性,含量范围为0.5mg/kg至3.0mg/kg。阳性产品中MOAH含量表明它们受到了未完全纯化的矿物油的污染。4.3使用GC*GC-TOF分析技术对MOAH阳性物质中相应的标记物质和物质组的阳性结果进行分析验证,证明了污染物来自矿物或化石来源。4.4矿物油污染来源不能完全确定,可能来自生产链,也可能来自包装材料。虽然此次抽检的产品是从德国市场取样,但是这些奶粉工厂生产的产品是否也销售至需求量庞大的中国市场,是一个值得探究的问题。虽然中国目前奶粉的各项检测指标中,并没有关于芳香烃类矿物油(MOAH)的抽检。但作为事件的扩展,这些企业的中国方面也正对国内配供的婴幼儿配方奶粉做出安全的保证。矿物油矿物油(MOH)是以石油、煤或天然气为原料,经过加工提炼,获得的一类碳原子个数不同的烃类混合物,常见的碳数在C10-C50之间。外观类似日常的油脂,但又不来自于动物或植物。为了和动植物油脂有所区别,故称矿物油。常见的矿物油种类繁多,可能是燃料油、润滑油、白油、蜡油和除尘剂等等。随着产品的大量使用,矿物油逐渐渗入到我们的食物链中。矿物油的毒性和法规根据毒理程度,矿物油目前被分成两类,一类是由直链、支链或环烷烃组成的饱和烃类矿物油(MOSH),另一类是含有苯环的芳烃类矿物油(MOAH)。研究表明,碳数在C16-C35之间的饱和烃类矿物油(MOSH)在体内不易被代谢,在组织中出现蓄积现象,长期食用会在淋巴结、肾脏和肝脏等组织内蓄积。芳香烃类矿物油(MOAH),常含有一个至多个苯环,含有多于三个苯环的MOAH被认为可能具有致突变和致癌性。德国联邦风险评估研究所(BfR)明确要求用于食品包装的接触材料 MOSH 迁移量小于 2mg/kg, MOAH 小于 0.5mg/kg。2017 年,欧盟发布了关于“监测食品以及食品接触材料和物品中矿物油烃类”的建议性指导文件,指出矿物油可以通过环境污染、收获和食品生产等残留在食品中。矿物油分析解决方案(Chronec LC-GC-FID)矿物油检测长期以来一直是非常有挑战的难点,首先要将样品中矿物油与复杂的介质分离,再通过气相色谱检测。由于矿物油无处不在,获得干净的仪器很重要。为了达到足够的灵敏度,需要大体积进样技术。由于矿物油中MOSH和MOAH的毒性不同,欧盟要求必须分开定量。矿物油在2011年被报道发现以来,欧洲的分析化学家经过多年努力,终于实现了矿物油可靠分析方法(在线LC-GC-FID)。方法初始,分析仪器由科学家自行搭建而成。仪器可靠性和耐用性方面一般。欧洲著名的仪器方法集成公司德国Axel Semrau公司,在5个博士组成的硬件和软件攻关团队集体努力下,实现了可靠性和耐用性非常高的分析系统。系统组成和特点如下:系统清洁和改装技术,去除背景使用液相色谱和硅胶柱将矿物油从介质(油脂等)中分离;部分溶剂蒸发技术保证450ul的样品在气相色谱中的分析,满足超低量分析;双通道双FID技术对MOSH和MOAH同时定量检测(它们分别是成千上万的混合物),节省分析时间;全自动氧化铝和全自动环氧化技术,进一步提高样品分析灵敏度与准确度;具有馏分收集功能,可以由GC*GC-QTOF对MOAH定性分析,确定来源;可使用LC-GC*GC-TOF 联用直接对矿物油各成分进行定性分析;软件Chronect可以兼容市场上所有主要品牌的LC和GC,无缝对接。Chronect 矿物油分析系统用户Chronect矿物油分析系统在欧美已经成功拥有了超过70家用户,包括BfR (德国联邦风险评估研究所),Eurofins(欧陆科技),德国SGS,德国IFP实验室, 费列罗(Ferrero)等著名欧洲食品检测实验室。本次foodwatch使用的3家独立实验室均使用Axel Semrau的分析系统:在线LC-GC-FID定量和GC*GC*TOF 定性。或许有被模仿,但AS在矿物油分析的专业性从未被超过,AS公司技术的矿物油分析方案的检测限为0.5 mg/kg。仪真分析和安捷伦中国仪真分析历来密切关注食品卫生安全的动态,为消费者提供咨询、建议及检测决方案。德国Axel Semrau公司选择了仪真分析作为大中国区的合作伙伴,授权并传授了其矿物油分析系统的设立,改装和分析技术。仪真是中国安捷伦科技的合作伙伴(VAR),首先共同推出安捷伦液相和气相色谱平台上的构建的Online-LC/GC-双通道FID+MS全自动矿物油检测方案,完全符合欧盟标准方法,并被国标或行标,如粮油系统行标-矿物油在油脂中的检测(草案),以及矿物油在大米中的检测(草案)作为推荐方案,被多位中国用户成功使用,食品企业未雨绸缪,已经建立内部监控计划,以可靠的数据应对突发事件。德中合作的矿物油分析实验室(仪真分析和北京理化分析测试中心共享实验室)已经于2019年8月正式揭牌,成为国内科研检测人员研究矿物油分析方法的平台。揭牌过程由仪器信息网全程跟踪报道(https://www.instrument.com.cn/netshow/SH101203/news_492242.htm)。欢迎光临2019.10.30-31的北京CIFSQ仪真分析展台或者2019.11.5-8 布拉格RAFA2019的Axel Semrau展位,有矿物油全自动分析系统及其它食品分析热点仪器展出。 请联系仪真分析或安捷伦科技,获取更多产品信息。
  • 打响餐桌保卫战!食安科技检测盒让矿物油无所遁形
    打响餐桌保卫战!食安科技检测盒让矿物油无所遁形在食品安全日益成为公众焦点的今天,一起“煤制油罐车装运食用油”的事件如同惊雷般炸响,不仅在网络上掀起了轩然大波,更触动了每一位消费者的神经。民以食为天,食以安为先,食用油作为日常生活中不可或缺的烹饪原料,其安全性直接关系到千家万户的健康与幸福。当“化工油”污染的阴影悄然逼近餐桌,这无异于向民众的健康“投毒”,自然引发了社会各界的强烈反响与高度关注。面对这一严峻挑战,各大知名粮油企业迅速响应,联合监管部门展开了一场系统而深入的专项大排查,誓要揪出隐患,守护舌尖上的安全。然而,作为消费者,我们同样需要掌握一些实用的知识与方法,来辨别食用油是否遭受了“化工油”的侵袭。幸运的是,科技的进步为我们提供了有力的武器。食安科技推出的食用油中矿物油快速检测盒,以其简便快捷、高效准确的特性,成为家庭厨房中的“安全卫士”。只需简单三步操作,大约15分钟,即可完成对食用油中矿物油残留物的快速筛查,确保每一滴油都纯净无害,让消费者吃得安心,用得放心。【小知识:矿物油究竟是何方神圣,为何能引发如此大的恐慌?】矿物油、煤制油等作为工业生产中的重要原料,广泛应用于燃油、化学品等多个领域。然而,这些物质中蕴含的重金属、芳香烃及长链烷烃等有害物质,对人体健康构成了严重威胁。长期摄入含有矿物油的食品,不仅会引发消化系统障碍,更可能导致急性或慢性中毒,破坏人体细胞,损害神经系统及呼吸系统,甚至危及生命。因此,加强食用油的质量安全检测,刻不容缓。除了矿物油残留外,食安科技还提供了针对食用油中黄曲霉毒素、酸价、过氧化值、极性组分、有害表面活性剂以及多种非法添加油脂(如蓖麻油、大麻油、巴豆油等)的快速检测产品,全方位守护食用油的安全防线。
  • 2022 CIFSQ丨仪真分析与您共同关注食品中矿物油污染新进展
    2022年10月26日-27日,第十六届中国国际食品安全与质量控制会议在上海盛大举办。本次大会采取线上线下同步进行的模式,多达600名致力于食品安全和消费者保护的监管机构、科学家、行业高管、技术专家和学者出席,分享对食品安全最新进展的见解。仪真分析时刻关注食品安全议题,聚焦并赞助了本次大会分论坛——食品中矿物油污染物,论坛上,各位大咖多方位多角度地分享了食品中矿物油污染物研究的最新进展,内容精彩纷呈。汪龙飞老师,雀巢中国食品安全研究院化学分析科学家,分享《食品中矿物油检测的挑战》报告,介绍了雀巢公司在食品中矿物油研究中的最新进展情况。隋海霞老师,国家食品安全风险评估中心研究员,评估三室副主任,分享《中国0-3岁婴幼儿辅食中矿物油的风险评估》报告,展示了婴幼儿辅食中矿物油调查方法和目前的现状。张鸿,上海仪真高级产品经理,分享《矿物油样品前处理方法最新进展》报告,介绍了最新的环氧化前处理方法和全自动前处理平台。武彦文老师,北京市科学技术研究院分析测试研究院(北京市理化分析测试中心)研究员,分享《纸质食品包装材料迁移矿物油的研究进展》报告,展示了纸质食品包装材料矿物油迁移的研究方法和调查数据。曹文明老师,丰益(上海)生物技术研发中心有限公司教授,分享《粮油食品中矿物油污染物的定量分析策略与实践》报告,通过自身的实践,提出合理的定量分析策略。同时还有海外专家以国际化视角对食品中矿物油污染进行了深入的探讨。Giorgia Purcaro教授,比利时列日大学,分享《LC-GC×GC-TOFMS/FID: 一个更好了解矿物油污染的验证平台》报告,介绍了LC-GCxGC-TOFMS/FID在矿物油定量和定性中的应用。Stefanka Bratinova,欧盟联合研究中心科学家,分享《采用更协调的方法测定某些具有挑战性基质中的MOSH/MOAH》报告,介绍了JRC中心在MOSH/MOAH分析过程中遇到的挑战和解决方法。Matthias Wolfschmidt,Foodwatch国际策略总监,分享《无矿物油污染的食物之路—非政府欧洲消费者组织Foodwatch的贡献》报告,介绍了Foodwatch公司在欧洲推动政府重视和控制食品中MOSH/MOAH污染问题的贡献。 会议期间,仪真分析同时展出CHRONECT LC-GC 联用矿物油分析系统,报告后,部分用户至展台进行深入交流。仪真分析是德国Axel Semrau公司中国区独家合作伙伴,2018年在国内推广矿物油分析系统,已经成功为雀巢、玛氏、益海嘉里等多家知名企业提供矿物油解决方案。仪真分析在上海设有Demo实验室,可以对LC和GC进行改装,实现LC-GC联用功能。可以提供“交钥匙”解决方案。此外,仪真分析还可以提供MCPD/GE、甾醇、塑化剂、脂肪酸及PAH等全自动解决方案。
  • 矿物油入侵洋奶粉?LC-GCGCMS检测方案来帮忙
    近日,德国公益组织“食品观察(Foodwatch)”在官网上发布一份调查报告称,该组织对购自多国的婴幼儿奶粉进行检测,在部分奶粉中检出芳香烃矿物油残留物。 关于矿物油矿物油是原油经过物理分离(蒸馏、萃取)和化学转化(加氢反应、裂解、烷基化和异构化)过程形成的烃类混合物,主要存在于油墨、回收纸板和石蜡等。在人体中,会积蓄在肝脏、肾脏、脾脏和肠系膜淋巴结,具有急性毒性、慢性毒性、基因毒性和致癌性、免疫毒性和生殖毒性。未处理和粗处理过的矿物油,是国际癌症研究协会认定的确定致癌物,原因是其中含有大量的多环芳烃。通常,食品中的矿物油,主要来源于以下三个方面:一 包装材料与液体或半固体食物直接接触发生传质作用所导致的迁移:食品接触材料中矿物油的来源主要是回收纸或再生包装中残留的印刷油墨;聚苯乙烯和聚烯烃等塑料包装中的润滑剂,蜡纸、麻质纤维包装中的粘合剂也会产生矿物油迁移; 二 食品工艺过程中涉及的矿物油和白油:如我国GB 2760-2011中规定矿物油和白油可作为加工助剂(润滑剂、消泡剂、脱模剂等)用于油脂、糖果、膨化食品和豆制品等的生产;欧盟等许多国家和地区也允许食品级白油用作口香糖的胶姆糖基础剂和水果、蔬菜的表面处理剂; 三 环境污染:食品从原料的收割、晾晒到加工过程中接触到柴油发动机的润滑油、没有完全燃烧的汽油、轮胎和沥青的碎屑以及不洁净空气等,都会使食品受到矿物油污染;矿物油以气相的形式迁移到干性食品中,而后者是矿物油迁移的主要形式。食品中矿物油残留限量标准Standard for mineral oil residue limits in foods欧洲部分国家针对食品包装材料中矿物油有迁移限量要求。如2014年德国农业部&德国联邦风险评估所发布针对回收纸板(干性和非脂类食品)中矿物油的第3版立法草案,其中要求用于食品接触回收纸矿物油含量≤24mg MOSH/1kg纸或纸板,≤6mg MOAH/1kg纸或纸板。在食品中的迁移限值:≤4mgMOSH(C17-C20)/1kg;≤2mgMOSH(C20-C35)/1kg;≤0.5mg MOAH(C20-C35)/1kg 矿物油如何检测呢?l GC-FID方法快速、简便、高效、经济,但是无法分离处理那些结合态的目标物质;也无法高效彻底分离一些极性差异不明显的物质。GC-FID方法检测矿物油灵敏度低与选择性差。 l LC-GC&GC/MS矿物油分析仪赛默飞推出了一款高效液相色谱(HPLC)与气相色谱仪/气质联用(GC&GC/MS)的矿物油分析仪器。它通过在线净化、富集,有效提高了矿物油的浓度和纯度,大体积进样技术提高了检测方法的灵敏度,优化了对矿物油主成份MOAH和MOSH的分离,一针进样同时达到对MOAH和MOSH的测定。同时兼具高灵敏度、自动化程度高、能有效避免污染等优点。—TRACE 1300矿物油方案——ISQ 7000 MS/FID矿物油方案——高分辨轨道阱气质矿物油方案— 赛默飞GC&GC/MS分析矿物油方案技术特点:1 一次进样,完全分离MOSH和MOAH组分,分别进行定性定量,并获得低至0.1ppm甚至更低的检出限。2 采用专利技术,极大提高矿物油的检测灵敏度。3 自动化程度高,避免了复杂的人工前处理流程,极大提高样品分析通量。4 已在20多家欧盟政府单位,食品企业及第三方实验室成功应用,稳定可靠。5 丰富配置,满足不同的应用需求,提供TRACE 1300气相色谱方案、ISQ 7000单四极杆气质方案以及Q Exactive高分辨轨道阱气质方案。—LC-GC-FID分析MOAH组分——LC-GC-FID分析MOSH组分— 色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 热点应对|罐车混运?食用油中矿物油检测的气相柱应对方案
    近日,知名媒体报道的罐车运输食用油乱象问题[1],再一次引发了大众对于食品安全风险的讨论和担忧——涉事油罐车装卸食用植物油前,已经装卸过煤制油等化工品,且未做清洗措施,已经严重违反了《食品安全法》第三十三条的规定[2]。植物油与煤制油的混运,会导致矿物油(mineral oil)、多环芳烃(Polycyclic Aromatic Hydrocarbons, PAH)等风险物质混入其中,危害消费者的健康。据悉,有关部门已成立联合调查组,将彻查食用油罐车运输环节相关问题。 区别于作为食品加工助剂和添加剂的白油(液体石蜡),食品中的矿物油污染物涵盖了C10~C50范围内的碳氢化合物,其中大部分为脂肪烃矿物油(mineral oil saturated hydrocarbons, MOSH),少部分为芳香烃矿物油(mineral oil aromatic hydrocarbons, MOAH),此外,还存有极少量的多环芳烃。其中MOSH具有对于肝、肾及神经有低毒性,MOAH和PAH则存在强致癌风险,尤其是对于血液系统具有较大损害。目前,关于食品及食品接触材料中矿物油的测定,国内外现行标准如下。其中,我国测定食用油中的标准方法仍然采用操作简便的皂化法和薄层色谱法,但仅限于定性检测。定量检测则需采用气相色谱法以及在线液相色谱-气相色谱联用法。表1 国内外矿物油相关的现行检测标准由于矿物油的沸点分布范围较广,部分目标物沸点较高(n-C40沸点超过500℃),因此在选择色谱柱时需要注意以下事项:01. 优先采用非极性(100%聚二甲基硅氧烷)或弱极性(5%苯基95%聚二甲基硅氧烷)固定相,保证目标物按照沸点顺序出峰;02. 需采用耐受高温(400℃)的气相色谱柱(SH-I HT柱);03. 兼顾柱流失,建议采用薄膜短柱(0.1μm,15m);04. 为避免进样口残留,尽量采用程序升温进样口(PTV进样口)或柱头直接进样(搭配0.53mm脱活毛细空管)。针对矿物油的检测,SGLC可提供以下多种规格的耐高温GC配套色谱柱:点击立即询价矿物油解决方案使用SH-Mineral Oil检测柴油和机油色谱柱: SH-I-1HT(15 m x 0.25 mm x 0.10µ m, P/N: R227-36087-01)样品: 2号柴油/矿物油溶剂: 正己烷浓度: 5000 ng/µ L进样量: 1 µ L, 分流进样分装比: 10: 1进样口温度: 275 °C 程序升温: 40 ℃(保持 0.1 min), 20 ℃/min升温至 400 ℃(保持 1.9 min)载气: H2, 恒流模式柱流量: 1.75 mL/min检测器: FID @ 420 °C补充气体类型: N2 补充气体流量: 50 mL/min氢气流量: 40 mL/min空气流量: 450 mL/min数据采集速率: 20 Hz参考来源:[1]新京报,罐车运输乱象调查:卸完煤制油直接装运食用大豆油,2024-07-02https://www.bjnews.com.cn/detail/1719878490168127.html[2]《中华人民共和国食品安全法》
  • 得利特发布得利特A1050液相锈蚀测定仪石油新品
    A1050液相锈蚀测定仪符合 GB/T11143、ASTM D665 主要用于评定加抑制剂矿物油、汽轮机油和水混合时对铁部件防锈能力的测定;A1050 同样适用于液压油、循环油防锈能力的测定。可广泛应用于电力、石油、化工、商检及科研等部门。 仪器特点 1、液晶屏幕中文显示界面,菜单提示式输入2、电脑控温,自动定时,精度高,准确度好3、显示年月日及当前时钟等多种参数提示4、采用不锈钢浴体。 技术参数 控温范围: 室温~100℃控温精度: ±0.5℃控时范围: 0~99 小时任意设置搅拌转速: 1000r/min耗电功率 2500W盛样孔: 4 个环境温度: 室温~35℃相对湿度: ≤85%电源电压: AC220V±10% 50H仪器重量:9.5kg 标准配置 序号名称规格、型号单位数量备注1液相腐蚀测定仪A1050台12电源线根13搅拌桨个44保险丝15A个25烧杯托架个46实验烧杯个47烧杯盖个48实验棒个49实验棒手柄个410说明书A1050份111装箱单份1 创新点:液相锈蚀测定仪符合 GB/T11143、ASTM D665 主要用于评定加抑制剂矿物油、汽轮机油和水混合时对铁部件防锈能力的测定;A1050 同样适用于液压油、循环油防锈能力的测定。可广泛应用于电力、石油、化工、商检及科研等部门。得利特A1050液相锈蚀测定仪石油
  • 固定化酶技术在中药酶抑制剂筛选中的研究现状
    中药资源丰富,历史悠久,在预防与治疗疾病中扮演着重要的角色。然而,中药的化学成分多种多样,作用机制更是复杂多样,如何从中药中筛选疾病相关药效物质是当前亟待解决的关键问题。大量研究表明,人体许多疾病过程都与体内生物酶调节作用相关,如痛风[1]、阿尔茨海默症[2]、糖尿病[3-5]等。而且,中药在治疗各种疾病中也扮演着重要角色,如白芷提取物能促进新生血管形成与成熟,从而提高自发2型糖尿病小鼠创面愈合速率和质量[6];绞股蓝叶水提物能够降低链脲佐菌素诱导的糖尿病大鼠的血糖,其作用机制可能与增加骨骼肌肌膜葡萄糖转运体4蛋白表达和抑制骨骼肌炎症有关[7]。因此,基于酶在疾病发生发展的重要性,以酶为靶点从中药中筛选新药是一有力途径,而且开发一种快速、高效的酶抑制剂筛选方法是当前首要任务。固定化酶技术是20世纪60年代发展起来的,该技术利用物理或化学方法将游离酶固定在相应的载体上用于筛选酶抑制剂。固定化酶技术可以有效提高酶的催化性能和操作稳定性,并降低成本,是目前广泛使用的技术[8]。此外,相比于游离酶,固定酶更有利于酶-配合物的分离纯化,在pH耐受性,底物选择性,热稳定性和可回收性等方面表现出优越的性能[9-10]。不同的酶发挥催化作用的活性部位不同,将酶进行固定时,要使载体材料与酶的非活性部位结合,才可以保留酶的活性,因此载体材料的选择是固定化酶技术发挥作用的关键。本文以固定载体材料(表1)为分类综述了近10年固定化酶技术在中药酶抑制剂[α-葡萄糖苷酶(α-glucosidase,α-Glu)、脂肪酶等] 筛选中的研究现状,希望可以为后续的相关研究提供一定的参考依据。1 磁性载体磁性载体材料是利用铁、锰、钴及其氧化物等化合物制备的一类具有磁性的材料[11],通过改变磁力大小和外部磁场的方向来改变粒子的运动轨迹,从而使酶与载体的结合与分离可以在可控条件下完成,便于固定化酶的分离和收集,并用于酶抑制剂的筛选[12]。以磁性载体为材料的固定化酶技术的最大优点在于利用磁力吸引可使固定化酶快速从反应体系中分离,且固定化方法简单,能有效减少筛选时间及实验试剂的消耗。因此,通过不同方法对磁性载体材料进行功能化修饰,在充分发挥磁性材料优势的基础上改善其表面性质,提高对不同类型目标物的特异性,从而在各类复杂样品的前处理过程中有着良好的应用潜力[13]。目前,磁珠是近年来发展起来的一种常用的磁性载体材料,也叫做磁性纳米粒子,包括氧化铁(Fe3O4和γFe2O3)、合金(CoPt3和FePt)等。其中,Fe3O4纳米粒子具有生物相容性和无毒性等优点,被广泛应用于酶的固定化。中药酶抑制剂筛选中的常用磁珠其磁核以Fe3O4纳米粒子为主,壳层为二氧化硅、琼脂糖、葡聚糖等,是具有超顺磁性的小球形磁性粒子[14-15],可借助外部磁场从生物催化体系中分离酶抑制剂。该方法机械稳定性高、孔隙率低,利于降低反应中的传质阻力,提高了固定化酶的重复使用性。由于其具有操作稳定性高、磁响应强、磁分离速度快等优点,在生物和药物研究中得到了广泛的应用[16]。在进行酶抑制剂筛选时,磁珠的修饰位置不同,所固定的位点也不同。因此,在实验中,往往要根据靶蛋白的分子结构选择合适的磁珠或将某一磁珠进行修饰后作为固定载体。将酶固定在合适的磁珠上会增强酶与待筛选酶抑制剂的亲和力,利用磁力将固定化酶及其抑制剂从提取液中分离,然后洗去与酶不相互作用的化合物,随后可得到酶固定化磁珠配体配合物,最后通过洗脱溶剂使配体释放进而通过质谱表征[17]。在这种方法中,潜在的配体与酶相互作用,生成酶配体配合物,这有利于利用磁性[18-23]从复杂混合物中分离活性化合物。在酶抑制剂的筛选中,磁性载体材料是最常用的固定化载体材料[24-30]。1.1 无机载体材料二氧化硅是磁性纳米粒子表面修饰最常用的无机材料[23,31-34],此外还有二氧化钛[35]、介孔二氧化硅[16]等。Li等[23]首先将Fe3O4分散在水中加入聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)室温搅拌得到产物。然后在超声作用下将产物分散在含有异丙醇和氨水的混合溶剂中,室温搅拌下缓慢加入正硅酸乙酯(tetraethylorthosilicate,TEOS)溶液得到SiO2@Fe3O4磁性微球,并加入3-氨丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane,ATPES)对其表面进行改性。最后将α-淀粉酶固定在表面改性的SiO2@Fe3O4磁性微球上。将制得的酶固定化磁性微球用于黄花草中α-淀粉酶抑制剂的筛选,最终得到3种黄酮类化合物对α-淀粉酶具有较好抑制作用。Liu等[35]采用溶剂热法(也称水热法或水热合成法)制备了Fe3O4@TiO2纳米粒子,并通过静电相互作用固定脂肪酶。采用透射电镜、傅里叶变换红外光谱和X射线衍射等方法对磁性纳米粒子进行表征,以确定脂肪酶是否已经被固定。研究中应用脂肪酶固定化Fe3O4@TiO2纳米粒子从6种具有脂肪酶抑制活性的藏药中筛选出脂肪酶抑制剂,获得5种具有与临床常用减肥药物奥利司他活性类似的化合物,其中1种化合物(山柰酚)的抑制活性优于奥利司他。Yi等[16]将谷胱甘肽S-转移酶固定在介孔二氧化硅磁性微球表面筛选紫苏中的酶抑制剂,利用高效液相色谱和四极飞行时间质谱法进行鉴定,筛选出6种具有谷胱甘肽S-转移酶抑制作用的物质,其中,迷迭香酸、(−)表没食子儿茶素-3-没食子酸酯和 (−)-表儿茶素-3-没食子酸酯具有较好的抑制活性。最后利用分子对接技术确定潜在抑制剂与谷胱甘肽S-转移酶的结合方式。首先,用FeCl3与柠檬酸三钠和乙酸钠合成Fe3O4,然后将其分散在含有乙醇、去离子水和氨水的混合溶液中,搅拌均匀后加入TEOS制得SiO2@Fe3O4磁性微球。为进一步合成介孔二氧化硅磁性微球(mSiO2@SiO2@Fe3O4),将SiO2@Fe3O4磁性微球分散在十六烷基三甲基氯化铵、去离子水和三乙醇胺中并滴加TEOS,产物用磁铁分离并清洗除杂后得mSiO2@SiO2@Fe3O4磁性微球。最后用PDA对mSiO2@SiO2@Fe3O4磁性微球进行表面改性并将谷胱甘肽S-转移酶固定在其表面。1.2 有机载体材料在酶抑制剂的筛选中,有机载体材料相比于无机载体材料应用较少。目前,用于磁性纳米粒子表面修饰的有机载体材料有聚酰胺(polyamidoamine,PAMAM)[36]、共轭-有机骨架[37]和金属-有机骨架[38]等。Jiang等[36]以PAMAM包覆磁性微球为基础,建立了一种筛选和鉴定赤芍提取物中α-Glu抑制剂的方法。首先,采用微修饰法合成了Fe3O4-COOH微球。然后,通过Fe3O4-COOH微球表面羧基与PAMAM氨基的偶联反应,制备了Fe3O4@PAMAM微球。最后,通过GA的交联,成功地将α-Glu连接到其表面。结果表明,没食子酸和(+)-儿茶素对α-Glu均具有较好抑制作用。Zhao等[37]将乙酰胆碱酯酶(acetylcholinesterase,AchE)固定在适配体功能化磁性纳米颗粒共轭有机骨架上构建固定化酶反应器,并将该方法用于酒石酸、(−)-石杉碱A、多奈哌齐和小檗碱4种AchE抑制剂抑制活性的测定,发现酒石酸的IC50与已报道的结果相当,证明了该固定化酶反应器的可行性。Wu等[38]将α-Glu固定在磁性纳米材料Fe3O4@ZIF-67上,构建了快速筛选α-Glu抑制剂的生物微反应器。然后,将酶生物微反应器通过外加磁场固定在连接高效液相色谱仪(high performance liquid chromatography,HPLC)和微注射泵2端的管中,形成一个磁性在线筛选系统。以信阳毛尖粗茶提取物为实验对象,对该在线筛选方法进行验证,利用该在线筛选系统筛选出3种抑制剂(儿茶素、表没食子儿茶素没食子酸酯和表没食子酸酯)。与传统方法相比,该方法可将筛选、洗脱和分析结合起来,可以简单、高效、直接地从天然来源筛选和鉴定潜在的α-Glu抑制剂。磁珠分散性好,磁分离速度快,酶结合量大,酶活性高,是固定化酶的理想载体,现已广泛应用于酶抑制剂的筛选中。将酶固定在特定的磁珠上,可实现酶抑制剂的分离。此方法操作较稳定,非特异性结合率低。因此,酶固定化磁珠技术因其快速的生物分析、导向性分离和从复杂混合物中直接捕获配体而受到越来越多的关注。2 非磁性载体2.1 无机载体材料2.1.1 石英毛细管 毛细管电泳(capillary electrophoresis,CE)具有分离效率高、分析速度快、操作简单和样品消耗少以及可与多种检测手段联用等优点,在酶分析研究中越来越受到关注[39-41]。近年来,固定化酶微反应器与生物活性靶向技术相结合已应用于中药酶抑制剂的筛选[42]。该方法将酶固定在经过修饰的石英毛细管内,捕获抑制剂后,洗涤未结合组分,进而通过蛋白质变性洗脱活性结合配体,允许直接并可重复注射生物样品到高效液相色谱上进行检测,筛选和分离一步完成,大大缩短了操作时间。但该方法制备过程中是比较复杂繁琐的[43-44],而且载体的孔隙率[45]、孔径[46]和表面化学[47-48]等因素也很容易影响固定化酶的性能。Wu等[49-50]用PDA对石英毛细管进行表面改性,并与氧化石墨烯共聚形成聚多巴胺/氧化石墨烯涂层,增加了固定化酶的结合率,并将该方法成功用于凝血酶和凝血因子Xa以及黄嘌呤氧化酶抑制剂的筛选。有研究者用3-氨基丙基三乙氧基硅烷对石英毛细管进行表面改性,采用戊二醛交联法进行酶的固定,并成功用于酶制剂的筛选。Rodrigues等[51]将此修饰方法用于黄嘌呤氧化酶(xanthine oxidase,XOD)抑制剂的筛选,成功地从不同天然产物中筛选出30个潜在的XOD抑制剂。Zhang等[52]将此修饰方法用于组织蛋白酶B抑制剂筛选,并从中药中发现了17个具有抑菌潜力的活性成分,发现山柰酚等5种天然产物有潜在的抑制作用,并以分子对接进行验证。Tang等[53]将此修饰方法用于脂肪酶抑制剂的在线筛选,结果发现6种天然产物对脂肪酶活性均有抑制作用。Zhao等[54]将此修饰方法用于神经氨酸酶抑制剂的筛选,发现了6种天然产物为潜在抑制剂。进一步测定了这6种化合物对神经氨酸酶潜在的抑制活性,由大到小分别为:甲基补骨脂黄酮A>补骨脂甲素>黄芩素>黄芩苷>白杨素和牡荆素。此外,还有研究者采用单片毛细管固定化酶反应器与液相色谱-串联质谱联用技术,成功用于酶抑制剂的筛选[55-56]。毛细管的高表面体积比有利于足够高浓度的酶用于酶促反应[57-58]。此外,由于注入的底物溶液直接与固定化酶分子接触,使传统的采样、反应、分离和检测多步操作简化为一步操作,因此该分析变得更简单,不需要额外的混合程序。与磁性载体相比,该技术将筛选和分离集成为一步,大大缩短了操作时间。该技术适用于复杂混合物中酶抑制剂的快速筛选,而且样品消耗量少,节省了试剂成本,可以实现酶抑制剂的快速分离。2.1.2 硅酸铝纳米管 硅酸铝纳米管(halloysite nanotubes,HNTs)是一种天然存在的硅酸盐纳米管,由于其优异的物理特性,引起了人们越来越多的兴趣。HNTs的内径为20~30 nm,外径为30~50 nm,长度为1~2 µm,为药物、酶和杀菌剂的储存提供了理想的纳米级包埋系统。更重要的是,HNTs的外表面主要由O-Si-O基团组成,内表面由Al2O3组成,为酶提供了更多的选择性结合位点,从而减少了配体在HNTs上的非特异性吸附[59]。因此,有研究者将HNTs作为一种新的酶固定载体材料用于酶抑制剂的筛选。Wang等[59]通过静电吸附作用将脂肪酶固定到羟基纳米管上用于厚朴中脂肪酶抑制剂的筛选,发现厚朴三酚和厚朴醛B 2种化合物对脂肪酶抑制活性较好。HNTs的内外表面为酶提供了更多的选择性结合位点,降低了非特异性吸附,但其合成较为复杂,收率较低,因此应用有限。2.1.3 多孔二氧化硅 多孔二氧化硅材料具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,同时还具有耐高温和低温、电气绝缘、耐氧化稳定性、耐候性、难燃、耐腐蚀、无毒无味以及生理惰性等特性[60]。Hou等[61]首先将α-Glu结合到脂质体囊泡中,然后采用反蒸发法将其负载到多孔二氧化硅表面,制备成受体脂质体生物膜色谱柱,用于五味子提取物的α-Glu抑制剂筛选,并通过体外实验进一步证实了五味子苷的降糖作用。2.2 有机载体材料2.2.1 中空纤维 中空纤维是一种具有孔径和内腔的有机聚合物,具有比表面积大、生物材料和有机溶剂消耗低,且设备便宜、用于中空纤维制备的材料来源丰富,是酶、细胞、脂质体等生物材料的理想载体,已被应用于酶固定化中。首先,对中空纤维进行活化。然后,将酶与已活化的中空纤维孵育使酶被吸附在中空纤维上。最后,将待测物与中空纤维固定化酶孵育,筛选待测物中潜在酶抑制剂。Zhao等[62]提出了一种基于吸附中空纤维固定化酪氨酸酶(tyrosinase,TYR)的方法,从葛根提取物中筛选潜在的TYR抑制剂。通过液相色谱-质谱分析,成功地检测出了7种潜在活性化合物,并进一步结合体外实验,发现葛根素、葛根素-6-O-木糖苷、葛根素和阿片苷具有良好的TYR抑制活性。中空纤维因其具有孔径、内腔及比表面积大等优点,为酶提供了充分的附着空间,但由于其清洗较为困难,导致重复利用率低。2.2.2 生物传感器 生物传感器是一种对生物物质敏感并可将其浓度转换为电信号进行检测的仪器。丝网印刷电极因其具有批量生产、低成本、高重现性、小尺寸等特点而被广泛应用于分析领域。所谓酶生物传感器法,是将酶固定在经过修饰的丝网印刷电极上,当与抑制剂接触时会发生电信号变化,通过检测电信号的变化,达到分析检测的目的。Elharrad等[63]为筛选药用植物中潜在的XOD抑制剂,研制了一种简便、灵敏的安培生物传感器,并用于测定多种药用植物对黄嘌呤氧化酶的抑制率,发现留兰香和马齿苋2种植物对黄嘌呤氧化酶抑制活性较高。以普鲁士蓝修饰丝网印刷电极表面,极大降低了生物传感器的检测电位,使该装置具有较高的选择性。该传感器具有结构简单、选择性好、成本低、稳定性好、结果快速等优点。2.2.3 纸 自2007年Whiteside研究小组首次提出微流体装置概念以来,纸作为一种新的载体材料,以其良好的生物相容性、大的比表面积、易于修饰、价格低廉等优点,在环境监测、化学检测、生物医学诊断等领域具有广阔的应用前景[64]。(1)滤纸:三维打印技术是利用一种纸分析仪器将纸张制作成为一种特殊的微流体装置,该装置成本低,具有较高的比表面积,易于结合分子吸附蛋白质。使用过的纸张设备可以很容易地通过燃烧来处理,可减少实验消耗品造成的污染。Guo等[65]将三维打印技术用于酶抑制剂的筛选,首先,用3D印刷的聚己内酯对滤纸进行改性,形成疏水区。然后,对滤纸进行准确切割,得到既具有亲水性又具有疏水性的改性纸。接下来,用壳聚糖对亲水区进行改性。最后,将α-Glu固定在亲水区,制备出具有独特微流体结构的三维打印技术微装置,并成功地将该方法用于筛选植物提取物中具有α-Glu抑制活性的物质,发现绿原酸、槲皮素-3-O-葡萄糖醛酸、异槲皮素和槲皮素4种化合物对α-Glu的抑制活性较好。该方法结合一些便携式探测器,如手机和照相机,可以获得定性和定量的结果。因此,很容易判断酶在纸上的固定化效果。(2)纤维素滤纸:纤维素滤纸(cellulose filter paper,CFP)具有成本低、来源广、表面积大、生物相容性好、表面羟基含量高等优点,被选为新型酶固定化载体,而且CFP可以快速从酶反应混合物中分离并终止反应,从而缩短了操作时间,简化了其他载体(如纳米材料和磁性纳米颗粒)所需的分离过程。Li等[66]以纤维素滤纸为载体,对α-Glu进行固定化。利用多巴胺的自聚-粘附行为,通过希夫碱反应和迈克尔加成反应,将聚多巴胺复合层包覆α-Glu与改性后的CFP共价结合形成固定化酶(CFP/DOPA/α-Glu)。用CFP/DOPA/α-Glu筛选11种中药中的α-Glu抑制剂,发现诃子对α-Glu的抑制作用最强。Zhao等[67]以CFP为载体,以壳聚糖为物理包覆剂引入氨基基团,然后以戊二醛为交联剂,通过希夫碱反应,将AchE与氨基功能化的CFP共价键合进行固定化酶。最后,将CFP固定化AchE应用于17种中药的抑制剂筛选。2.2.4 金属-有机骨架 金属-有机骨架(metal- organic framework,MOFs)为一种杂化多孔材料,由有机连接体和金属节点通过强的化学键组装而成。MOFs具有可调节孔径、大比表面积和热稳定性等优点。有研究表明,酶被固定在MOFs上后,其在可重用性、催化活性和稳定性方面的性能都有了很大的提高。Chen等[68]首先将ZrCl4和氨基对苯二甲酸溶于N,N-二甲基甲酰胺溶液中进行超声,然后分别加入HCl和HAc,得到混合物。随后,将混合物转移到不锈钢聚四氟乙烯内衬的高压釜中密封加热,反应混合物在空气中冷却至室温,然后离心。沉淀物用新鲜N,N-二甲基甲酰胺和无水乙醇洗净,后减压干燥,合成了金属有机骨架UiO-66-NH2。UiO-66-NH2通过沉淀交联固定化猪胰脂肪酶(porcine pancreatic lipase,PPL),得到的PPL@MOF具有较高的PPL载量和相对活力恢复率,并将PPL@MOF复合物用于筛选夏枯草脂肪酶抑制剂,发现了13种潜在的脂肪酶抑制剂。与磁珠、纳米粒子相比,MOFs材料酶固定量大、相对活力恢复率高。2.2.5 酶微柱 有研究者采用酶微柱法用于酶抑制剂的筛选,该方法属于固相萃取技术,操作简单,可与高效液相色谱耦合,实现了在线筛选,提高了酶抑制剂的筛选和分析效率。首先将硅胶分散在乙醇中,加入3-氨基丙基三乙氧基硅烷形成氨基功能化硅胶,然后将氨基功能化的硅胶与酶液混合,使酶固定在硅胶表面,洗去未结合酶,最后将酶固定化硅胶填入不锈钢微柱中形成酶微柱。Peng等[69]运用该方法成功的从金银花中筛选和鉴定XOD抑制剂。该方法与高效液相色谱的在线耦合提高了筛选和分析效率。与传统的与二维色谱耦合相比,该方法为直接与HPLC耦合,缩短了分析检测时间。3 总结与展望中药含有的化学成分复杂、种类繁多、作用机制比较复杂,一直是获取活性成分或者先导化合物的重要来源。以酶为靶标进行药物筛选是发现和寻找新药的重要环节之一。随着固定化酶技术的发展,研究者将固定化酶技术与中药酶抑制剂的筛选相结合,并通过高效液相色谱-质谱联用技术进行鉴定,筛选得到很多具有酶抑制活性的化合物,在一定程度上明确了中药发挥作用的活性成分及其作用机制。本文以不同载体材料为分类,综述了固定化酶技术在中药酶抑制剂筛选中的应用。磁珠是最常用的磁性载体材料,该类材料利用磁力吸引可使固定化酶配体配合物快速从体系中分离,且固定化方法简单,而且使用后的磁珠可以回收利用,能有效减少人力物力的投入。非磁性载体材料主要以石英毛细管应用最为广泛。此外,还有中空纤维、纳米管、生物传感器等材料用于筛选中药中的酶抑制剂,丰富了固定酶的载体材料。固定化酶技术在酶抑制剂筛选上的应用前景十分广泛,不仅节省了人力物力而且提高了新药研发的效率。目前,固定化酶技术仍然存在一些问题,如酶与载体材料的结合率较低、固定化酶的活力也会有所下降等。但相信随着科学技术的不断发展及酶抑制剂研究的不断深入,固定化酶技术会成为酶抑制剂筛选最有前景的方法之一。利益冲突 所有作者均声明不存在利益冲突
  • 仪器信息网“食用油/矿物油安全检测知多少”系列活动火热开启!
    近期,“罐车运输食用油乱象”事件次将食用油安全问题推向风口浪尖,引发社会广泛关注。油罐车在未经彻底清洗的情况下,从运输煤制油等化工类液体转而装运食用油,导致食用油可能遭受化工残留物的污染。有专家表示,长期摄入含有这些化工残留的食用油,可能导致人体中毒,出现恶心、呕吐、腹泻等症状,甚至对肝脏、肾脏等器官造成不可逆的损害,但消费者很难分辨出来。早在2017年,就有报道指出,在对国内市场上包括海天、老干妈等在内的10多款畅销油辣椒产品进行测评时,均发现了不同程度的成分问题。这些问题包括矿物油超标、含有谷氨酸钠、多环芳烃化合物、增塑剂以及增味剂等。其中,食品用油中检测出矿物油超标成分的情况尤为引人关注。基于此仪器信息网特别策划“食用油安全与检测知多少”系列活动,帮助大家了解食用油安全检测相关热点、检测新技术及检测标准等最新动态,提供检测仪器、解决方案、行业会议等内容。主题策划一:《仪器护航食用油安全》活动专题——》》》点击进入众所周知,在食品安全领域,“标准先行”是至关重要的原则。此次安全事件的爆发,再次将食用油的安全检测标准推向了风口浪尖。小编也将正在实施的食用油产品国家标准进行整理,发现在产品标准中检测指标包含感官指标、理化指标、 污染物指标、营养成分指标、其他指标等。其中,污染物指标中并未对矿物油成分进行规定。  那么如何检测出食用油中的矿物油残留?那些方法有可能会被纳入标准呢?小编也将常用的食品中矿物油检测方法进行整理:  (一)皂化法:利用矿物油不能皂化而食用油可皂化的特性,将样品与碱液共热,经过一系列处理后,观察是否有不皂化物存在。  (二) 气相色谱(GC):对样品进行前处理,提取其中的烃类物质,然后注入气相色谱仪进行分析,利用不同物质在色谱柱中的保留时间和分离效果的差异进行检测。应用较多的是固相萃取-气相色谱-氢火焰离子化检测器(FID),FID是唯一可以做到对所有矿物油组分响应几乎完全一致的检测器,且重复性好,定量准确。  (三) 高效液相色谱(HPLC):样品处理后,通过高效液相色谱仪进行分离检测,根据化合物在流动相和固定相之间的分配系数差异实现分离和检测。  (四)红外光谱:制备样品的红外光谱,对照标准图谱,判断是否存在矿物油的特征吸收峰,矿物油和食用油在红外光谱中的吸收峰存在差异。  (五)液相色谱-气相色谱-氢火焰离子化检测器(HPLC-GC-FID):简化了前处理步骤,降低了样品被污染的风险,提高了检测效率,因此该方法是目前公认的检测食品中矿物油较为理想的方法。  (六)二维气相色谱:相较于气相色谱法,全二维气相色谱法前处理更简单,检出限更低。  (七)质谱:质谱分析能够识别和定量分析矿物油样品中的化合物组分,通过电离和分离来获得样品中各组分的质量信息。其中气相色谱-质谱法、液相色谱-气相色谱联用法,在婴幼儿产品、食品接触材料中的方法探究较为完善。  (八)核磁共振法:核磁共振法是一种无损检测方法,可以用于分析矿物油在食品中的含量。该方法利用核磁共振仪器对样品进行扫描,并通过分析峰的积分面积或峰高来确定矿物油的含量。NMR方法非常准确且快速,无需样品前处理,适用于大规模食品样品的快速分析。主题策划二:《油品检测,我们能做什么》——》》》点击进入讨论区“罐车运输食用油乱象”事件再次将食品安全问题推向风口浪尖,引发社会广泛关注。本次事件与食用油安全检测息息相关,欢迎广大读者参与话题讨论。主题策划三:《Easy选型——食用油安全检测》系列直播活动在“罐车卸完煤制油直接装运食用油”事件爆出的当下,粮油食品安全问题引发热议。为了深入探讨此次事件的相关问题,为大众答疑解惑,我们特举办以“食用油安全检测”为主题的直播活动,从行业标准,市场应用,选型原则,技术进展,案例分享等多个维度,为用户带来食用油安全相关信息及经验。系列直播第1期“食用油中矿物油的检测”即将播出,敬请关注。主题策划四:《食品检测,共筑食用油安全屏障》解决方案共建专题仪器信息网特别开设食用油安全检测共建专题,旨在通过本网相关渠道,加强大家对食用油安全检测的相关认识。同时,仪器信息网也现面向所有仪器同仁发出食用油安全检测相关解决方案征稿邀请。主题策划五:《第三届粮油食品质量安全及品质检测新技术》主题网络会议——》》》点击报名8.1日仪器信息网特别举办”第三届粮油食品质量安全及品质检测新技术网络会议“本次会议特别设立了“粮油质量安全检测技术” 专题,其中对食用油中矿物油的检测技术进行了深入探讨。届时,我们将特别邀请行业专家及相关厂商技术人员参与本次网络研讨会,把最新的科研成果和检测技术呈现给大家。部分报告专家:主题策划六:《仪器检测如何护航食用油安全》大型征稿——》》》点击去投稿仪器信息网特此发起“油罐车混装事件:仪器检测如何护航食用油安全?”主题征稿活动。我们诚挚邀请行业内的专家学者、技术精英以及仪器厂商积极参与,共同探索并分享。附问题:您可以根据下述某一个问题或多个问题进行稿件撰写,也可以由此展开相关话题。1、 请介绍贵单位有哪些仪器成果或解决方案应用于食用油安全检测?(矿物油检测、多环芳烃化合物检测、污染物检测......)2、 请分享1-2个仪器检测技术在食用油安全检测中的最新应用与进展。3、 您认为哪些检测技术可能会进入食用油检测标准中?我们期待您的真知灼见,共同为守护民众“舌尖上的安全”贡献力量。回稿时间:2024年7月31日前投稿邮箱:caixf@instrument.com.cn更多活动策划,快来访问仪器信息网(www.instrument.com.cn )搜索“油罐车混装”或“食用油安全检测”查看相关内容吧!点击下方链接,一键直达:https://search.instrument.com.cn/w/?keywords=%E6%B2%B9%E7%BD%90%E8%BD%A6%E6%B7%B7%E8%A3%85&tab=template 如有意向参与活动,请联系wanxin@instrument.com.cn
  • 津津有卫 | 油罐车混拉食用油?岛津矿物油解决方案了解一下(在线&离线法)
    近期,一则“煤油车装运食用油”的消息冲上热搜。两辆刚刚卸完煤制油的罐车,在完全未洗罐的情况下,直接装上了食用油,两家涉事企业均为国内知名企业。煤制油属于矿物油,油罐车混拉食用油的行为,必然会造成食用油污染。矿物油在GB 2760-2014《食品安全国家标准 食品添加剂使用标准》中,可作为“需要规定功能和使用范围的加工助剂”;但在明年2月即将实施的新版GB 2760-2024中,矿物油已经全面禁用。世界卫生组织将矿物油定义为“未处理或低级处理的工业品形态”,作为1号致癌物的一类。多项研究也表明,矿物油对人体健康存在潜在风险,如肝脏毒性、致突变性和致癌性。那么如何检测食品中的矿物油呢?目前主流方案包括离线法和在线法两种,如下表所示:以上两种方案,岛津均有成熟应用案例可供各位用户参考。离线法——固相萃取-PTV-GC 法测定食用油脂中饱和烃矿物油气相色谱仪 Nexis GC-2030PTV-GC气相色谱参数色谱柱:5%苯基-甲基聚硅氧烷石英毛细管柱(耐高温柱),0.1μm×0.25mm×15mPTV温度参数:45°C(1min)_250°C/min_360°C(22 min)PTV 分流比参数:200:1(1min),关闭分流阀(2 min),100:1(至结束)进样量:50 uL色谱柱程序升温:35°C(4 min)_25°C/min_370°C(10 min)进样口温度:360°C载气控制模式:恒线速度载气流量:1.3 mL/min载气类型:氮气FID 检测器温度:380°CFID 尾吹流量:30 mL/minFID 空气流量:400 mL/minFID 氢气流量:40 mL/min部分实验结果表1 食用油样品中MOSH含量(mg/kg)表2 食品油样品的加标回收率及相对标准偏差(n=6)图1 食用油样品MOSH谱图在线法——HPLC-GC-FID 测定大米中矿物油含量液相色谱仪Nexera LC-40HPLC参数色谱柱:硅胶柱,2.1mm×250mm流动相:正已烷/二氯甲烷梯度洗脱程序:0~0.1min,100%正已烷(流速0.3mL/min);3.5~9.5 min,70%正已烷/30% 二氯甲烷(流速 0.3 m/min);9.5~18.5 min,100%二氯甲烷反冲柱子(流速 0.5 mL/min);18.5~28.5 min,100%正已烷平衡柱子(流速 0.5 mL/min)柱温:40℃进样量:50 μL注入时间:2.0~3.5 min(MOSH);4.0~5.5 min(MOAH)检测波长:230nmGC 参数色谱柱:5%苯基-甲基聚硅氧烷石英毛细管柱(耐高温柱),0.1μm×0.25mm×15m柱温程序:35℃(4 min)40℃/min 370℃(5 min)流速:45 cm/sec进样模式:分流进样(180:1)1min,随后关闭分流口2.4min,之后再开启分流口(分流比100:1)FID检测器:380℃样品前处理大米样品粉碎后,精确称取10 g,加入20 μL内标(浓度为300 μg/mL),加入20 mL正已烷静置过夜,离心取10 mL上清液。采用SPE柱净化上清液,氮吹浓缩定容到1mL,注入 HPLC-GC-FID分析。部分实验结果图2 矿物油标准曲线图3 大米中MOSH的GC谱图以上两种解决方案,可前往岛津官网-资源中心-应用文章下载完整版。岛津长期致力于食品安全领域研究,可为用户提供全方位应用支持,欢迎咨询。本文内容非商业广告,仅供专业人士参考。
  • 欧盟或将加强对食品中矿物油MOH的管控
    提交的文件重新评估了MOH的毒性、欧洲公民的饮食摄入量,以及对欧盟人口健康风险的最终评估。 MOH对食品的影响 MOH是一种被用于食品接触材料(FCM)中的添加剂,例如塑料、粘合剂、橡胶制品、纸板和印刷油墨。在食品加工或FCM制造过程中,MOH还被用作润滑剂、清洁剂。 此外,食品包装的意外污染和环境污染也可能成为食品中MOH的来源之一。MOH不仅可以从食品接触材料(FCMs)中迁移至食品,在加工过程中和食品包装中也会迁移。而由于再生纸和纸板制成的食品包装中可能会使用非食品级的报纸油墨,所以这类食品包装特别容易含有MOH。 EFSA将对MOH持续评估 负责MOH评估的EFSA小组公布了评估情况:一组研究发现矿物油芳香烃(MOAHs)会对细胞造成损害,并会有导致癌症的风险。并表示,由于对某些MOAH的毒性缺乏更深层次的理解,这些物质是否会对人类健康构成威胁将令人担忧。另一组研究矿物油饱和烃(MOSHs),根据食品链污染物小组(Contam)的评估被认为并不存在健康问题。虽然该类物质在大鼠实验中显示出不良影响,但某种特定的大鼠种类并不是测试人类健康问题的合适模型。 MOH的广泛使用和不断变化的风险状况,使得EFSA需要对其进行持续的监测和评估,以保障欧洲公民的食品安全。此次更新是EFSA对2012年MOH风险评估的重新审视,会重点考虑自上次评估之后发表的新研究和现有数据,根据现有结论更加全面地评估MOH对人体健康的影响。
  • 彩色瓜子“走进”实验室 检出非食用色素、矿物油
    新闻闪回:记者调查发现,市场上销售的散装彩色瓜子其实是用色素泡制的,此外,还有商贩用抛光手段为瓜子“扮靓”。   12月13日下午2时许,大润发超市2楼内散货干果区,一排排已经包装好的各种散货干果摆在货架上,唯独没有了绿茶瓜子。记者 王冠楠 摄   记者将这些外表鲜艳的瓜子送到沈阳农业大学食品学院检验。在孙希云博士的实验过程中这些瓜子都褪下彩色的外衣。视频截图  推荐词:彩色瓜子  词解提要:昨日下午,记者走访了家乐福、乐购、大润发等沈城多家大型超市。超市内已均无散装彩色瓜子销售。  昨日下午2时许,大润发超市2楼散货干果区,一排排已经包装好的各种散货干果摆在货架上,唯独没有了绿茶瓜子。  看到一位理货员正在工作,记者以“回头客”身份上前询问,“绿茶瓜子怎么没有了,以前买过的。”当理货员听到“绿”字时,突然抬头打量记者,随后谨慎地表示,“是没有了,原来卖过。 ”  当记者追问不卖的原因时,她并没有回答,而是低头急忙理货,之后迅速消失在记者视线内。  此时,一位同样在选购干果的顾客看到记者询问绿茶瓜子时,好心地提醒,“你还买绿茶瓜子?没看报纸都曝光了么? ”  而在沈阳市铁西区家乐福金牛店内,也没有了绿茶瓜子的踪迹。在乐购超市铁西店,理货员表示,曾经销售过绿茶瓜子,但是现在不卖了,以后是否还会卖并不知情。  彩色瓜子走进实验室现原形  12月13日上午,记者带着从市场上买来的多种彩色瓜子来到了沈阳农业大学食品学院的实验室。该学院的孙希云博士通过实验为我们揭开了彩色瓜子的秘密。  在实验台上,非食用色素、矿物油成分现出原形。  实验一:非食用色素现原形  看了记者手中的瓜子,孙博士也觉得颜色有些奇怪,“如果纯植物泡制,很难会这么绿,可能是添加了色素。 ”  孙博士介绍,色素分为食用色素和非食用色素,如果商家使用非食用色素将会对人体健康有一定影响。  先将记者带来的红、绿两色瓜子分别置于两个小烧杯中,加入清水。 2分钟后,与记者之前的实验一样,清水分别变成了红色和绿色。而瓜子本身变成灰白色。  过滤后,将变红、变绿的滤液分别收集于洁净的烧杯中备用。  分别取红绿色滤液10毫升,加入浓度为0.1g/ml氯化钠溶液1毫升,混合均匀,放进脱脂棉0.1克,加热搅拌片刻,取出脱脂棉,用水洗涤。  此时,两块白色脱脂棉分别变成红色和绿色。  将已经变色的脱脂棉放入蒸发皿中,加1%浓度的氨水溶液10毫升,加热数分钟,取出脱脂棉水洗,两块脱脂棉均未褪色。“脱脂棉未褪色,证明溶液中含有非食用色素。 ”孙博士解释称,非食用色素在氯化钠溶液中,可使脱脂棉染色,而这种被染色的脱脂棉经氨水溶液洗涤后不会褪色。  孙博士告诉记者,如果食品中添加了非食用色素或者过量添加食用色素,对于食用者的健康来说都是很大的威胁,“如果食用过多轻则出现肠胃疾病,重则可能引发癌症。 ”  实验二:矿物油显形  那么又是什么让黑瓜子变亮呢?抓起一把油亮的瓜子,孙博士端详后发现,不少亮瓜子上挂着白色结晶,“正常煮出来的瓜子绝对不会这么亮,这白色结晶应该就是问题所在。 ”  将一把亮瓜子放入烧杯,用70℃以上的热水将烧杯填满,然后用洁净的牙签轻轻搅动一分钟,加入温度计放置。  半小时后,温度计示数为46℃,烧杯中液体表面出现细微的油珠。  1小时后,温度计示数10℃,油珠开始聚集在一起。“这结晶体,就是矿物油。”孙博士介绍,由于矿物油的熔点在50℃以上,在高于50℃的水中,它会溶于水,低于50℃以后,会从水中分离,并且由于比重较低,将浮于水面。“其实,用矿物油为黑瓜子抛光,已经是行业中公开的秘密了。 ”孙博士说。  孙博士称,市民在吃瓜子时,量都比较小,所以很少有人在吃完瓜子后马上身体就会有反应得病,“很多时候这些有毒物质都是慢慢在人体内积累,让人防不胜防,而这恰恰是最危险的。”  孙博士建议市民在购买瓜子时应注意以下两点:一是应选购正规企业生产的产品,切不可贪图便宜在街头巷尾的小作坊或小摊贩处购买散装产品 二是在商场购买袋装瓜子时要看清包装上的产品标签、生产日期、保质期等,“切记要选有‘QS’标志的产品。”  染色瓜子为啥没人管?  昨日,有多位读者打电话来向本报发表看法。  读者胡晓青看到报道后吃了一惊,她说瓜子曾经是自己最喜欢的零食,彩色瓜子也曾经买过,“当时吃,就觉得味不对,可是没细想。 ”  读者李平凡表示以后一定不会再买散装的瓜子,“过去一直认为包装好的瓜子没有散装的实惠,没想到有这么严重的问题。”“为什么发现问题的总是媒体,而不是相关的职能部门? ”读者曲静表示,彩色瓜子的出现,职能部门要负主要责任。“这种染色瓜子会长期在市场上销售,难道就没人管管吗? ”读者徐强认为,干果市场需要引起相关职能部门的重视。
  • 7月17日火热开播:武彦文主任谈食用油中矿物油的检测
    近期,“罐车运输食用油乱象”事件次将食用油安全问题推向风口浪尖,引发社会广泛关注。油罐车在未经彻底清洗的情况下,从运输煤制油等化工类液体转而装运食用油,导致食用油可能遭受化工残留物的污染。罐车运输油罐混用对人体有何危害?行业有何规范标准?有哪些仪器成果或解决方案应用于食用油安全检测?哪些检测技术可能会进入食用油检测标准中?种种问题亟待行业专家进行解答。7月17日下午14:00,欢迎锁定仪器信息网视频号“Easy选型——食用油中矿物油的检测”直播活动。矿物油检测专家将从政策解读,用户需求,仪器性能,应用支持,标准提升等多个维度,为用户制定实验室仪器设备更新计划带来全方位的信息和经验。 直播日程日期日程报告人14:00-15:00专家圆桌论坛议题方向:食用油中矿物油检测技术及发展趋势(拟定)我国矿物油研究领域的现状,挑战与对策矿物油分析检测技术在过去几年的重要突破?目前常用的矿物油分析仪器技术? 食用油中矿物油检测的发展趋势?专家团队嘉宾1:武彦文 北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)研究室主任/研究员嘉宾2:朱丽敏 上海仪真分析仪器有限公司 技术总监主持人:蔡小芳 仪器信息网 食品编辑15:00-15:05第一轮抽奖15:05-15:35《全自动矿物油分析解决方案》张鸿 上海仪真分析仪器有限公司 高级产品经理15:35-15:40真机演示短视频15:40-15:45结语及第二轮抽奖预约报名【直播亮点】油脂检测领域重磅专家做客直播间,共话食用油安全检测问题
  • 极压润滑油氧化特性测定仪适用标准SH/T0123 ASTM D2893
    A1102极压润滑油氧化性能测定仪适用标准:SH/T0123 ASTM D2893仪器特点:1、试样在95°C下,通入恒压干燥的空气,试验312h,通过测定试样100°C运动粘度的增长值和沉淀值的变化。2、温度范围:室温~150°C3、控温精度:0.1°C4、可同时做5个试样5、形式:落地式结构,底部有轮子,可方便移动。6、智能化程度:基于微处理器的智能仪表控温,数字显示温度,具有温度修正功能,自动定时,蜂鸣器提示.7、电源电压:AC220V 50Hz8、外形尺寸: 500*600*1450 、重量: 20kg技术参数:控温方式:PID数显温控器控温精度:150±0.1℃加热方式:电热管加热 油浴计时方式:数显计时器整机功率:2.5KW工作单元:6管流量控制:精密流量计
  • 婴配奶粉也中招!六大品牌检出芳香烃矿物油
    p style="text-indent: 2em "配方奶粉具有丰富的营养成分,是除母乳外妈妈喂哺宝宝的首选。近年来,很多年轻父母为了给宝宝选到一款好奶粉,都会选择海淘,认为海淘奶粉相对于国内奶粉更安全。然而近期德国却爆发了“芳香烃门”事件。/pp style="text-indent: 2em "位于德国总部的公益组织“食品观察”在官网上发布一份调查报告称,该机构抽检了在德国销售的16款奶粉(德国4款,法国8款,荷兰4款),其中有8款产品检出芳香烃矿物油成分。据悉,此次卷入“芳香烃门”的奶粉总共涉及到6大品牌,分别是:strong雀巢、诺优能、悠蓝、英雄宝贝、宝怡乐、佳丽雅。/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201910/uepic/d625a705-8c7a-42ae-afb1-526b5932ccef.jpg" title="11.jpg" alt="11.jpg"//pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong食品中过量芳香烃物质或对身体器官造成损伤/strong/span/pp style="text-indent: 2em "“食品观察”组织发布的检测报告显示,这些受影响奶粉中的芳香烃矿物油含量在每公斤0.5毫克至3毫克之间,这一污染程度暂不会引起任何急性疾病症状。/pp style="text-indent: 2em "资料显示,芳香烃简称芳烃,是苯及其衍生物的总称,主要包括直链、支链烷烃和烷基取代的环状饱和烷烃(MOSH)以及烷基取代的芳香烃(MOAH)两个类型,而如今普遍认为MOAH 具有可能致癌和致突变的隐患,而 MOSH(特别是C16~C35)容易在身体器官中积累并可能造成损伤。目前还未有相关研究证实,低剂量的芳香烃物质对人体健康能产生多大影响。/pp style="text-indent: 2em "食品中矿物油残留可能来自生产加工产品的机器,也可能来自纸质包装上的油墨、食品原料在收割、晾晒、加工过程中接触的发动机润滑油、未完全燃烧的汽油、轮胎和沥青碎屑,食品加工使用的白油,以及环境污染等。目前欧盟及德国没有针对食品中芳香烃矿物油残留颁布法定限量。/pp style="text-indent: 2em "strongspan style="color: rgb(255, 0, 0) "食品中芳香烃矿物油未入检测体系 相关检测方法仍不少/span/strong/pp style="text-indent: 2em text-align: justify "利用化学及仪器对食品中各种矿物油分析的方法有很多,包括荧光法、皂化法、红外光谱法、薄层色谱法、气相色谱法、气相色谱—质谱联用、在线联用的高效液相色谱-气相色谱-氢火焰离子化器检测法、离线固相萃取法、二维气相色谱法等。据悉,本次“食品观察”实验室使用的是在线LC-GC-FID定量和GC*GC*TOF 定性,该产品源自Axel Semrau的分析系统。/pp style="text-indent: 2em text-align: justify "近年来,我国对食品安全十分重视,安全状况日益改善。但我国目前在烃类矿物油检测领域尚有不足。目前国家对矿物油等指标尚未纳入检测体系,每年的食品安全监督抽检并未包含该项检测,而欧美等国家已将其纳入相关检测体系。/pp style="text-indent: 2em text-align: justify "我国食品安全管控体系尚不完善,除了要增加监督和检测指标数量外,还应实现对整个生产链条的全程监测,加强对慢性食品安全风险的管控,实现对危害食品安全行为的有效控制,为食品安全保驾护航。/ppbr//p
  • 油中有你,精彩纷呈——访北京市科学技术研究院分析测试所矿物油分析研究室主任武彦文研究员
    矿物油(MOH)源自石油与合成油,主要包含饱和烃(MOSH)及芳香烃(MOAH)两部分,它们或容易蓄积在人体,或有致癌和致畸毒性。矿物油会通过环境污染、种(养)殖采收、生产加工、包装储存等多种途径迁移进入食物,给人类健康带来风险。我国在矿物油高灵敏分析领域的前期研究基础较弱,北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)矿物油分析测试研究室率先在该领域做出了突出贡献,目前该研究室的分析检测能力丝毫不输于国际顶尖实验室。日前,仪器信息网特别采访了该研究室主任武彦文研究员,请她分享了矿物油相关的科研历程以及国内外最新进展情况。对于开展矿物油分析研究工作的契机,武彦文说道:当初我在研究食用油脂时发现,我国矿物油污染物的分析技术与国外差距很大,特别是由于我国的标准方法远远落后于国外,给油脂企业特别是出口企业造成很大困扰。于是,她迅速转变科研方向,开启矿物油分析测试技术的研发工作。她首先研读了几乎所有相关文献,发现我国在这个细分领域的研究几乎处于空白,不仅在理论理解上偏差,检测仪器也相去甚远,因此她开启了“精彩”的矿物油分析研究之路。作为唯一受邀在国际矿物油分析会议上分享工作的中国学者,也是唯一参加国际标准修订方法比对的中国政府实验室的负责人,武彦文在科研工作中取得了诸多亮眼的成果:2019年她负责的矿物油分析测试研究室获得了CMA资质,2020年获得了CNAS资质,2020年牵头组织举办了我国首届国际矿物油分析研讨会等等。采访中,武彦文还分别介绍了欧洲对食用油、奶粉、食品接触材料、动物饲料、印刷油墨等相关产品的最新监管要求,并且分享了团队为食品企业寻找污染来源的小故事。武彦文介绍说,目前矿物油分析领域还有很多问题没有得到解决,如缺乏标准物质,基质干扰问题,特别是还没有有效可靠的食品接触材料(包括功能阻隔材料)的迁移评价方法等。更多详细内容请观看视频:
  • 矿物油分析国际研讨会线上开幕倒计时,更多精彩等您来!
    p style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "“矿物油分析国际研讨会”将于strong2020/strongstrong年/strongstrong9/strongstrong月/strongstrong15/strongstrong日与/strongstrong16/strongstrong日下午/strong在ZOOM线上平台召开。本次会议邀请了国内外矿物油分析领域最活跃的专家学者和重点企业,针对近年来公众广泛关注的矿物油污染食品的问题,就矿物油的分析检测技术的最新进展及其面临的挑战进行深入讨论,共同推动矿物油分析检测工作的创新发展,增强对食品中矿物油污染的风险管理和控制,加强相关领域的国际交流以及相关技术的接轨。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "谨此,我们诚挚邀请您参与本次会议,这里有最热点的话题,最前沿的技术,最精彩的分享,欢迎您的莅临。/span/pp style="margin-top: 8px line-height: 1.75em text-align: center "span style="font-family: 宋体, SimSun "strong会议议程/strongstrong/strong/span/ptable border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse border:none"tbodytr style=" height:26px" class="firstRow"td width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun "strongspan style="font-family: 宋体, SimSun line-height: 115% "时间/span/strong/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun "strongspan style="font-family: 宋体, SimSun line-height: 115% "报告人/span/strong/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun "strongspan style="font-family: 宋体, SimSun line-height: 115% "单位/span/strong/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun "strongspan style="font-family: 宋体, SimSun line-height: 115% "报告题目/span/strong/span/p/td/trtr style=" height:26px"td width="123" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "2020年9月15日/span/pp style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "14:00-14:10/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "刘清珺副院长/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "北京市科学技术研究院/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "领导致辞/span/p/td/trtr style=" height:26px"td width="123" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "2020年9月15日/span/pp style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "14:10-14:40/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "曹文明博士/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "丰益全球研发中心/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "食用油中矿物油污染物的离线与在线检测方案及其应用/span/p/td/trtr style=" height:26px"td width="123" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "2020年9月15日/span/pp style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "14:40-15:10/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "熊志傑经理/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "日清全球研发中心/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "食用油中MOSH/MOAH分析的现状与挑战/span/p/td/trtr style=" height:26px"td width="123" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "2020年9月15日/span/pp style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "15:10-15:40/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "卢格· 布鲁尔博士/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "德国MRI研究所/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "德国在食用油中MOSH/MOAH分析方法改进方面的最新进展/span/p/td/trtr style=" height:26px"td width="123" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "2020年9月15日/span/pp style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "15:40-16:10/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "汪龙飞博士/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "雀巢(中国)食品安全研究所/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "LC-GC-FID分析矿物油的良好实践/span/p/td/trtr style=" height:26px"td width="123" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "2020年9月15日/span/pp style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "16:10-16:40/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "隋海霞博士/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "国家食品安全风险评估中心/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "我国0-6个月婴儿矿物油的风险评估/span/p/td/trtr style=" height:26px"td width="123" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "2020年9月15日/span/pp style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "16:40-17:00/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "武彦文博士/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "北京市理化分析测试中心/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "混合溶剂提取法测定奶粉中的总矿物油/span/p/td/trtr style=" height:26px"td width="737" colspan="4" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="26"br//td/trtr style=" height:55px"td width="123" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="55"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "2020年9月16日/span/pp style="text-align: center line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "14:00-14:30/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="55"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "托马斯· 古德博士/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="55"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "瑞士质量检测服务公司(SQTS)/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="55"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "矿物油检测的差距与机遇——方法比较/span/p/td/trtr style=" height:55px"td width="123" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="55"p style="text-align: center line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "2020年9月16日14:30-15:00/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="55"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "苏珊· 库恩博士/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="55"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "德国柏林基尔霍夫研究所 (IKB)/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="55"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "矿物油分析的挑战/span/p/td/trtr style=" height:61px"td width="123" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="61"p style="text-align: center line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "2020年9月16日15:00-15:30/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="61"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "席琳· 莱西厄博士/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="61"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "法国达能集团/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="61"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "从行业的角度看矿物油分析面临的挑战/span/p/td/trtrtd width="123" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "2020年9月16日15:30-16:00/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "钟怀宁研究员/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "广州海关技术中心食品接触材料国家检测重点实验室(广东)/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "基于GC× GC的婴幼儿奶粉中MOSH& MOAH测定及可能来源/span/p/td/trtrtd width="123" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "2020年9月16日16:00-16:30/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "毛鲁斯· 比德曼博士/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "瑞士苏黎世州官方食品控制局/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "全面的二维GC× GC-FID / MS用于MOSH和MOAH组分的表征以及3-7环MOAH的定量/span/p/td/trtr style=" height:52px"td width="123" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="52"p style="text-align: center line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "2020年9月16日16:30-17:00/span/p/tdtd width="115" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="52"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "安德烈亚斯· 布鲁奇曼博士/span/p/tdtd width="161" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="52"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="line-height: 115% font-family: 宋体, SimSun "德国AS仪器公司/span/p/tdtd width="204" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="52"p style="text-align: center vertical-align: bottom line-height: 1.75em "span style="font-family: 宋体, SimSun line-height: 115% "MOSH/MOAH样品净化和数据分析自动化程序的新进展/span/p/td/tr/tbody/tablep style="text-indent: 37px line-height: 1.75em "span style="font-family: 宋体, SimSun " /span/pp style="margin-top: 8px break-after: avoid line-height: 1.75em text-align: center "span style="font-family: 宋体, SimSun "strong嘉宾简介/strongstrong/strong/span/pp style="margin-top: 8px break-after: avoid line-height: 1.75em "span style="font-family: 宋体, SimSun "strong/strong/span/pp style="text-align: center "span style="font-family: 宋体, SimSun font-size: 16px "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/be5d3e7b-83d0-4024-b7bb-19d00998289c.jpg" title="刘清.jpg" alt="刘清.jpg"//pp style="text-align: center "span style="font-family: 宋体, SimSun font-size: 16px "strong刘清珺/strong/spanbr//pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 14px font-family: 宋体 "北京市科学技术研究院副院长,研究员,清华大学力学博士。/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "2003/spanspan style="font-size: 14px font-family: 宋体 "年从新加坡留学归国。同时担任北京市计算中心书记,中国分析测试协会理事、北京分析测试学会名誉理事长、全国防伪协会常务理事、技术专家,北京发明协会副理事长、北京市食品安全专家委员会委员、中国创新方法研究会标准化委员会委员、科学工具专业委员会副理事长秘书长等职务。长期从事科技开发和科研业务管理工作,承担过/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "20/spanspan style="font-size: 14px font-family: 宋体 "多个国家和省部级科研项目,包括国家科技支撑计划重大项目、国家科学仪器装备重大专项项目。/span/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/00a50da5-6ec0-40da-ac22-1f13bfb179e0.jpg" title="曹文明.jpg" alt="曹文明.jpg"//pp style="line-height: 1.75em text-indent: 0em text-align: center "span style="font-family: 宋体, SimSun font-size: 16px "strong曹文明/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 14px font-family: 宋体 "博士,丰益全球研发中心研究员。现任全国粮油标准化委员会委员、国家质量控制重点监管办法标准化技术委员会委员、中国科协食品真实性与可追溯性分会常务理事,中国粮油学会油脂分会主任、江南大学食品科学研究所研究生导师、上海科技大学讲座教授。国家科技专家数据库专家。南京大学学士、硕士,江南大学石油化学与工程博士。曹老师在上海市食品科学研究院科研工作/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "10/spanspan style="font-size: 14px font-family: 宋体 "年,担任上海粮油标准化技术委员会两会主任。从事食品分析技术研发及配套服务、油脂化学及标准化技术研究,主持完成多项国家标准和/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "10/spanspan style="font-size: 14px font-family: 宋体 "多项省部级资助科研项目,获中国粮油科技奖获上海市标准化促进奖、中国商业联合会科学技术奖等。/span/span/ppspan style="font-family: 宋体, SimSun font-size: 16px "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/1f2a1d57-2437-453a-b24a-c9a54826efb3.jpg" title="熊志.png" alt="熊志.png"//pp style="text-align: center "strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "熊志/span/span/strongstrongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "傑/span/span/strong/pp style="line-height: 1.75em text-indent: 2em text-align: justify "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 14px font-family: 宋体 "熊志傑于/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "2010/spanspan style="font-size: 14px font-family: 宋体 "年获得东京农业技术大学的农业硕士学位。毕业后加入了日清集团,一直从事油脂研究和新产品开发。他与同事成功地将一种新的食用油产品实现商业化,同时获得了该油脂加工技术的专利。/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "2015/spanspan style="font-size: 14px font-family: 宋体 "年,他调任至马来西亚的日清全球研发中心。现任分析与专利部经理,从事油脂成分分析和食品污染物分析。/span/span/span/ppspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "/span/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/32190432-5335-4980-b604-bf096052db39.jpg" title="卢格.jpg" alt="卢格.jpg"//pp style="text-align: center "strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "卢格.布鲁尔/span/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 14px font-family: 宋体 "德国明斯特大学食品化学博士,科学家。/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "1993/spanspan style="font-size: 14px font-family: 宋体 "年进入德国联邦营养与食品研究所,在位于德特莫尔德的马克斯· 鲁伯纳研究所担任科学家。布鲁尔博士的研究领域涉及油脂中营养成分与污染物分析,冷榨油脂的质量标准制定等;他参与了多个国际项目,是德国油脂分析程序标准化委员会主席与德国脂肪科学学会成员。/span/span/span/pp style="line-height: 1.75em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "/span/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/99c34b77-ae43-4d87-b282-7fc86088e28a.jpg" title="汪龙.jpg" alt="汪龙.jpg"//pp style="text-align: center "strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "汪龙飞/span/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 14px font-family: 宋体 "汪龙飞是雀巢食品安全研究所(中国)的化学分析科学家,他于/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "2008/spanspan style="font-size: 14px font-family: 宋体 "年加入雀巢,担任食品科学部的化学分析工程师。随后,他调到雀巢食品安全研究所,领导研发高分辨率质谱仪平台,用于筛选兽药、食品原料中的农药和食品接触材料中的/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "NIAS/spanspan style="font-size: 14px font-family: 宋体 "等污染物。/span/span/span/pp style="line-height: 1.75em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "/span/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/bc0cd790-7685-48cf-ba73-ec4f9ee3d7a0.jpg" title="隋.jpg" alt="隋.jpg"//pp style="text-align: center "strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "隋海霞/span/span/strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "br//span/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 14px font-family: 宋体 "博士,国家食品安全风险评估中心研究员。主要从事食品安全研究,重点开展食品中化学物的风险评估,包括风险评估技术以及模型构建的研究。负责我国食品接触材料的风险评估。构建了化学物累积暴露评估和集聚暴露评估模型,主持撰写了毒理学关注阈值法在食品安全风险评估中的应用指南、我国食品接触材料安全性评估指南等技术文件。主持完成/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "//spanspan style="font-size: 14px font-family: 宋体 "开展了塑化剂、双酚/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "A/spanspan style="font-size: 14px font-family: 宋体 "、矿物油等多项国家食品安全风险评估优先评估项目。现任第二届食品安全风险评估专家委员会产品分委会委员、第二届食品安全国家标准审评委员会食品相关产品分委会委员、/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "AOAC/spanspan style="font-size: 14px font-family: 宋体 "中国分部第一届中国专家委员会委员、/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "ISO/TC52/spanspan style="font-size: 14px font-family: 宋体 "薄壁金属容器国际标准化技术委员会委员。/span/span/span/pp style="line-height: 1.75em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "/span/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/8ec00d31-a8f5-4193-b49d-3d1407864bac.jpg" title="彦文.jpg" alt="彦文.jpg"//pp style="text-align: center "strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "武彦文/span/span/strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "br//span/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 14px font-family: 宋体 "博士,北京市理化分析测试中心研究员。主要研究方向为食品分析检测方法开发,先后主持和参与国家、省部级课题/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "10/spanspan style="font-size: 14px font-family: 宋体 "多项,发表论文/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "100/spanspan style="font-size: 14px font-family: 宋体 "多篇,出版学术著作/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "4/spanspan style="font-size: 14px font-family: 宋体 "部,获得授权发明专利/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "4/spanspan style="font-size: 14px font-family: 宋体 "件,制定国家标准和行业标准/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "5/spanspan style="font-size: 14px font-family: 宋体 "项,获得中国分析测试协会、中国粮油学会等行业协会、学会及北京市科研院级奖项/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "6/spanspan style="font-size: 14px font-family: 宋体 "项。/span/span/span/ppspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "/span/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/b509fea4-b2e1-4696-91bb-11f240d2b816.jpg" title="托马斯.jpg" alt="托马斯.jpg"//pp style="text-align: center "strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "托马斯.古德/span/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 14px font-family: " Times New Roman" , serif "Thomas Gude/spanspan style="font-size: 14px font-family: 宋体 "是瑞士/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "SQTS/spanspan style="font-size: 14px font-family: 宋体 "的副主管。他在德国柏林学习食品化学,在柏林联邦卫生局(/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "Federal Health Service/spanspan style="font-size: 14px font-family: 宋体 ",/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "Berlin/spanspan style="font-size: 14px font-family: 宋体 ")获得兽药领域的博士学位,之后一直在欧盟一家参比实验室工作,在制药和化学领域具有/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "10/spanspan style="font-size: 14px font-family: 宋体 "余年的研究和质量管理经验。他在/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "SQTS/spanspan style="font-size: 14px font-family: 宋体 "工作/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "17/spanspan style="font-size: 14px font-family: 宋体 "年,负责食品和非食品检测实验室。此外,/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "Tude/spanspan style="font-size: 14px font-family: 宋体 "还在苏黎世联邦理工学院等数家机构和大学授课。/span/span/span/ppspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "/span/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/e694a475-0f64-4b0f-8672-8d0628edef5f.jpg" title="苏珊.jpg" alt="苏珊.jpg"//pp style="text-align: center "strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "苏珊.库恩/span/span/strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "br//span/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 14px font-family: " Times New Roman" , serif "Susanne K/spanspan style="font-size: 14px font-family: 宋体 "ü /spanspan style="font-size: 14px font-family: " Times New Roman" , serif "hn/spanspan style="font-size: 14px font-family: 宋体 "拥有环境与分析化学博士学位,专长是分离科学中的高级分析技术,在德国联邦材料研究与测试研究所(/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "BAM/spanspan style="font-size: 14px font-family: 宋体 ")担任科学助理。自/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "2017/spanspan style="font-size: 14px font-family: 宋体 "年起,她一直担任柏林基尔霍夫研究所(/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "IKB/spanspan style="font-size: 14px font-family: 宋体 ")的实验室主管,研究方向是食品中的矿物油污染物分析。/span/span/span/pp style="line-height: 1.75em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "/span/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/63079291-d76e-4b85-a73d-89484fb0e222.jpg" title="席琳.jpg" alt="席琳.jpg"//pp style="text-align: center "strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "席琳.莱西厄/span/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 14px font-family: 宋体 "维也纳自然资源和生命科学大学的分析化学博士,达能食品安全分析治理团队的负责人。拥有超过/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "15/spanspan style="font-size: 14px font-family: 宋体 "年在分析化学经验,在分析残留物和污染物方面经验丰富,尤其专注于质谱分析。/span/span/span/pp style="line-height: 1.75em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "/span/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/b95463bb-cb92-4335-adea-ec16dd3f90f8.jpg" title="钟.jpg" alt="钟.jpg"//pp style="text-align: center "strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "钟怀宁/span/span/strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "br//span/span/pp style="line-height: 1.75em text-indent: 2em text-align: justify "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 14px font-family: 宋体 "第二届食品安全国家标准审评委员会委员,海关总署专业技术委员会委员,国家食品直接接触材料及制品标委会塑料、纸制品分委会委员、暨南大学包装工程硕士生导师等。从事食品接触材料迁移检测和安全评估工作已有/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "20/spanspan style="font-size: 14px font-family: 宋体 "年;曾于/spanspan style="font-size: 14px font-family: 宋体, SimSun "2008/spanspan style="font-size: 14px font-family: 宋体 "年作为访问学者在欧州/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "Joint Research Center/spanspan style="font-size: 14px font-family: 宋体 "食品接触材料基准实验室学习工作;主要研究方向为食品接span style="font-size: 14px font-family: 宋体, SimSun "触材/span料污染物迁移分析,矿物油污染解析,以及再生包装材料安全评估;主持和参与制定二十几项食品接触材料安全国家标准和/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "SN/spanspan style="font-size: 14px font-family: 宋体 "标准;承担和参与多项国家重点研发和省部级研究项目,在/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "Talanta/spanspan style="font-size: 14px font-family: 宋体 "、/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "Food Packag.Shelf Life/spanspan style="font-size: 14px font-family: 宋体 "等核心期刊和学术会议发表/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "60/spanspan style="font-size: 14px font-family: 宋体 "余篇论文;同时还当选第一届中国食品工业协会食品接触材料专家委员会主任委员、国际生命学会欧洲(/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "ILSI EU/spanspan style="font-size: 14px font-family: 宋体 ")食品接触材料科学委员会委员、《食品安全质量检测学报》编委等。积极通过科学交流来推动食品接触材料安全研究和管理工作。/span/span/span/ppspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "/span/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/7140e587-5eeb-44ba-a269-d12cf9980f66.jpg" title="毛鲁斯.jpg" alt="毛鲁斯.jpg"//pp style="text-align: center "strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "毛鲁斯.比德曼/span/span/strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "br//span/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 14px font-family: " Times New Roman" , serif "Maurus Biedermann/spanspan style="font-family: 宋体, SimSun font-size: 14px "是瑞士苏黎世州官方食品控制局的化学分析师和实验室负责人。他在食品分析方面有30年的经验,主要使用在线联用/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "LC-GC/spanspan style="font-size: 14px font-family: 宋体 "、/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "GC-MS/spanspan style="font-size: 14px font-family: 宋体 "和全面的二维/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "GCxGC/spanspan style="font-size: 14px font-family: 宋体 "进行痕量分析,致力于气相色谱的大体积柱上进样和高效液相色谱与气相色谱联用技术的研发。/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "Maurus/spanspan style="font-size: 14px font-family: 宋体 "和他的同事开发了橄榄油掺假检测方法,他研究了油炸过程中丙烯酰胺形成机制,并且在此基础上优化了油炸条件/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "./spanspan style="font-size: 14px font-family: 宋体 "目前的工作主要是分析食物接触材料迁移的综合分析。/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "Maurus/spanspan style="font-size: 14px font-family: 宋体 "在欧洲和亚洲教授气相色谱、气相色谱进样技术等相关技术的应用课程。/span/span/span/ppspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "/span/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/c90fa616-954e-47bc-b2bb-047afe0d5ef6.jpg" title="安德烈.jpg" alt="安德烈.jpg"//pp style="text-align: center "strongspan style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "安德烈亚斯.布鲁奇曼/span/span/strong/pp style="text-indent: 2em line-height: 1.75em "span style="font-family:宋体"span style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 14px font-family: 宋体 "毕业于波鸿鲁尔大学(/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "University of Bochum/spanspan style="font-size: 14px font-family: 宋体 "),获得分析化学博士学位。/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "1992/spanspan style="font-size: 14px font-family: 宋体 "年进入德国/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "AS/spanspan style="font-size: 14px font-family: 宋体 "公司,先后担任/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "LIMS/spanspan style="font-size: 14px font-family: 宋体 "系统、热裂解系统、色谱和自动化等业务的产品经理与部门主管,目前是/spanspan style="font-size: 14px font-family: " Times New Roman" , serif "AS/spanspan style="font-size: 14px font-family: 宋体 "公司的股东、总裁与董事。/span/span/span/pp style="text-indent: 2em line-height: 1.75em "br//pp style="text-indent: 2em line-height: 1.75em "strongspan style="font-family: 宋体, SimSun text-indent: 0em "指导单位/span/strongspan style="text-indent: 0em font-family: " Times New Roman" , serif " /spanspan style="font-family: 宋体, SimSun text-indent: 0em "北京市科学技术研究院/span/pp style="text-indent: 2em line-height: 1.75em "strongspan style="font-family: 宋体, SimSun text-indent: 0em "主办单位/span/strongspan style="text-indent: 0em font-family: " Times New Roman" , serif " /spanspan style="font-family: 宋体, SimSun text-indent: 0em "北京市理化分析测试中心/span/pp style="margin-top: 13px text-indent: 2em "strongspan style="font-family: 宋体, SimSun font-size: 16px "承办单位span style="font-size: 16px font-family: " Times New Roman" , serif " /span/span/strongspan style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 16px font-family: " Times New Roman" , serif " /span北京市食品安全分析测试工程技术研究中心/span/pp style="margin-top: 13px text-indent: 0em "span style="font-family: 宋体, SimSun text-indent: 0em " 北京对外科学技术交流中心/span/pp style="margin: 13px 0px 0px 28px text-indent: 0em "strongspan style="font-family: 宋体, SimSun font-size: 16px "协办单位span style="font-size: 16px font-family: " Times New Roman" , serif " /span/span/strongspan style="font-family: 宋体, SimSun font-size: 16px "span style="font-size: 16px font-family: " Times New Roman" , serif " /span玛氏全球食品安全中心/span/pp style="margin: 13px 0px 0px 28px text-indent: 0em "span style="font-family: 宋体, SimSun text-indent: 0em " 上海仪真分析仪器有限公司/span/pp style="margin: 13px 0px 0px 28px text-indent: 0em "span style="font-family: 宋体, SimSun text-indent: 0em "br//span/pp style="margin-top: 13px text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "strong会议时间:/strongspan style="font-size: 16px font-family: " Times New Roman" , serif "2020/span年span style="font-size: 16px font-family: " Times New Roman" , serif "9/span月span style="font-size: 16px font-family: " Times New Roman" , serif "15/span日和span style="font-size: 16px font-family: " Times New Roman" , serif "16/span日下午span style="font-size: 16px font-family: " Times New Roman" , serif "14:00-17:00/span/span/pp style="margin-top: 13px text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "strong会议形式:/strongspan style="font-size: 16px font-family: " Times New Roman" , serif "ZOOM/span线上会议平台/span/pp style="margin-top: 13px text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "strong会议语言:/strong中英文(span style="font-size: 16px font-family: 宋体, SimSun "配字幕/span)/span/pp style="vertical-align: middle text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px " /span/pp style="margin-top: 13px break-after: avoid text-indent: 2em "span style="font-family: 宋体, SimSun font-size: 16px "strong报名方式:/strongstrong/strong/span/pp style="vertical-align: middle text-indent: 2em "span style="font-size: 16px font-family: 宋体, SimSun "请扫描下方二维码填写参会调查问卷并报名/span/pp style="vertical-align:middle"span style="font-family: 宋体, SimSun font-size: 16px " /span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202008/uepic/9460a7f4-a3da-4939-9651-fb48cd70b6f1.jpg" title="会议.png" alt="会议.png"//pp style="vertical-align:middle"span style="font-family: 宋体, SimSun font-size: 16px " /span/pp style="vertical-align: middle text-indent: 2em line-height: 1.75em "span style="font-size: 16px font-family: 宋体, SimSun "报名成功后,会务组将向您发送确认邮件并邀请您加入会议交流群。观看链接将在会议开始前span style="font-size: 16px "2/span天内在交流群公布。/span/pp style="line-height:150%"span style="line-height: 150% font-family: 宋体, SimSun font-size: 16px " /span/ppbr//p
  • 人冠状病毒广谱抑制剂的研究进展及展望
    展鹏教授团队分享了聚焦冠状病毒生命周期中的药物靶点,综述了现有广谱冠状病毒抑制剂的研究进展,以期为研发抗冠状病毒药物提供参考,更好地应对当下及未来的冠状病毒疫情。人冠状病毒广谱抑制剂的研究进展(一)(点击查看)人冠状病毒广谱抑制剂的研究进展(二)(点击查看)4.3靶向冠状病毒多聚蛋白裂解过程的抑制剂SARS-CoV-2进入细胞后完成生命周期并制 造出子代病毒的关键步骤是多聚蛋白的裂解,这个过程依赖的是病毒自身产生的蛋白酶Mpro和 PLpro[84]。测序结果表明,编码SARS-CoV-2和 SARS-CoV蛋白酶的RNA序列显示出高度的一 致性[85]。因此针对上述蛋白酶的抑制剂是阻断各种冠状病毒在宿主细胞内增殖的有效手段。在抗病毒药物治疗中已经有多种蛋白酶抑制剂在临床上用于治疗HIV等病毒感染。随着对 NT。活性催化位点及其周边结构的认识不断深入(图10),基于靶标的合理药物设计也促进了此类 药物的发现与发展。在针对SARS-CoV-2的治疗 中,大多数蛋白酶抑制剂仅处于计算机模拟(in silico)研究阶段,急需进一步的体外与临床研究数据。4.3. 1 主蛋白酶(Mpro)抑制剂洛匹那韦(lopinavir,20,图11)是已经上市的 拟肽类HIV蛋白酶抑制剂[86]。利托那韦 (ritronavir,21,图11)可抑制药物代谢酶,常与洛匹那韦联合应用以起到增效作用[87],二者组成的复方制剂Kaletra相对于单一的洛匹那韦作用时 间更长[88]。2004年一项非盲临床试验显示,在 SARS-CoV感染者中,服用洛匹那韦-利托那韦 (400 mg:100 mg)的试验组产生负面临床结果的风险以及病毒载量明显降低[89]。洛匹那韦针对 MERS-CoV也有抑制作用師如,但仍需进一步的 临床试验确认。洛匹那韦在体外细胞中抑制 SARS-CoV-2 的 EC50值为 26.1μmol• L-1,但单 一的利托那韦无抗病毒活性。洛匹那韦-利托那 韦复方疗法在新冠治疗中受到普遍关注[92-94]。N3(22,图12)是含有迈克尔加成受体的拟 肽类冠状病毒抑制剂[95]。作为共价抑制剂,N3 分子的乙烯基与SARS-CoV-2的Mpro催化中心的 Cysl45共价结合,并通过3个侧链分别结合于催化中心周边的各个口袋,形成额外的作用力。此外,α-酮酰胺片段被看作高效的共价结合基团,可增强分子柔性、提高稳定性和透膜性,常用于病毒蛋白酶抑制剂的设计[96]。基于此,Zhang等[97]设计了一系列以α-酮酰胺为“共价弹头”的广谱主 蛋白酶抑制剂,针对α属、β属冠状病毒与肠病毒Mpro 均有良好的抑制活性。其中代表化合物为 23(图12),其抑制 SARS-CoV 与 HCoV-NL63 主 蛋白酶的IC50值分别为0.71μmol• L-1和12.27μmol• L-1,在 Huh-7 细胞系中针对MERS- CoV的EC50值达到0. 0004 μmol• L-1。为进一步提高酮酰胺类抑制剂针对SARS-CoV-2的抑制作 用,Zhang等[98]对化合物23的结构进行修饰,将疏水性过强的肉桂酰基替换为具有一定亲水性的基团从而得到一系列化合物,其中化合物24(图 12)抑制 SARS-CoV-2、SARS-CoV与MERS-CoV 主蛋白酶的IC50值分别为(0.67±0.18)、(0.90 ±0.29)、(0.58 ±0.22) μmol• L-1。Rupintrivir ( AG7088,25,图12)对肠道病毒 EV71与鼻病毒有突出的抑制作用,但对冠状病毒活性不佳[99]。Dai等[100]通过解析AG7088与EV71 3Cpro的共晶结构,以醛基共价弹头取代了易水解失活的α,伊不饱和酯基,并结合数个蛋白 酶抑制剂的优势结构,设计了 一类靶向肠道病毒 EV71 3C蛋白酶的共价抑制剂。高亲电性的醛 基作为共价弹头,与主蛋白酶Cysl45的疏基结合稳定,广泛用于设计高活性的蛋白酶抑制剂。其中代表化合物26(图12)对各种肠道病毒、鼻病毒有广谱抑制作用。与先导化合物及同时合成的其他修饰物相比,化合物26具有更好的药代动力学特性与广谱抗冠状病毒作用,对SARS-CoV-2 Mpro。及病毒复制均有较好的抑制作用(IC50 = 0.034μmol• L-1 ,EC50 =0. 29 μmol• L-1)。四川大学杨胜勇团队基于SARS-CoV-2的 Mpro催化中心周边结构,结合已上市蛋白酶抑制剂的优势片段,设计了以双环脯氨酸为核心骨架的拟肽分子,部分化合物为27~32(图13)[101]门, 并首次在动物模型中测定了所合成化合物对Mpro 的抑制作用。该类化合物以环状γ-丁内酰胺基团(P1)靶向S1区域,脂肪稠环结构(P2)靶向S2 区域,并以结构多样的取代芳环(P3)靶向S4区域(图14)。在P2提高分子刚性与疏水性、增强 靶标结合力的同时,P3大小合适的疏水芳基有助 于进一步增强分子的活性与代谢稳定性。抑酶活性结果显示,化合物29、30、31的IC50值分别为7.6 ,7.6,9. 2 nmol• L-1。在 Vero E6 细胞中,化合物28,31,32抑制SARS-CoV-2复制的 EC50值分别为 0. 53,0.67,0.54μmol• L-1(表 2)。在体内活性测试中,化合物32的药代动力学性质较好,在鼠体内有效抑制了SARS-CoV-2的增殖,显著降低了病理损伤,经治疗的感染小鼠 未出现任何体重损失与异常状况。4.3.2 PLpro抑制剂PLpro在不同的冠状病毒中具有类似的氨基 酸序列与空间构象,显示出高度相似性(图15)。因此,针对特定冠状病毒PLpro抑制剂也具有开发 为广谱PLpro抑制剂的潜力。Figure 15 The conformation and amnio acid sequence of SARS-CoV PLpro ( PDB:2FE8 ) and SARS-CoV-2 PLpro(PDB:7CMD)Ratia等[102]建立了基于荧光的高通量筛选方法,在包含上万种类药分子的化合物库中发现了先导化合物33(图16),其R型异构体抑制SARS- CoV PLpro的 IC50值为(8.7±0.7)μmol• L-1 此类分子结构按药效团可分为“头部-链接基团-尾 部”三部分,其中,“头部基团”一般是1-萘基或2-萘基,而“链接基团”中的亚氨基作为氢键供体对分子活性至关重要,N-甲基化修饰的化合物34(图 16)活性则明显减弱(IC50=22.6μmol• L-1)。为进一步提高药效,Bdez-Santos[103]结合此 类分子中的先导化合物35(图17-A)与SARS- CoV PL。,。的共晶结构以及构效关系,设计了尾部 含有不同取代苯基的新一代SARS-CoV PL。”抑 制剂36 -39(图17-A)。共晶结构显示,此类分 子结合于Tyr269与活性中心围绕而成的狭长空 腔内(图17-B、C),活性与代谢稳定性均有提高, 活性数据如表3所示。双硫仑(disulfiram, 40,图18)是乙醛脱氢酶抑制剂,用于辅助矫正酒精成瘾[104]。2018年, Lin等[105]发现双硫仑针对SARS-CoV主蛋白酶 具有竞争性抑制作用,针对MERS-CoV PLpro。则具 有变构抑制作用。证据表明,双硫仑通过分子中 的硫原子与金属离子配位,或与蛋白质疏基相互作用,因此可以靶向PLpro和NT。中具有催化作用 的半胱氨酸[106]。在以往的临床实践中,双硫仑 表现出毒副作用小、作用机理明确、成本低的独特优势。但其针对包括SARS-CoV-2在内的多种冠 状病毒的体外实验及临床试验尚待完成。疏瞟吟即6-疏基瞟吟(6-MP,41,图18)早已 广泛用于治疗急性淋巴细胞白血病和急性髓细胞白血病。2008年,Chou[107]等首先报道了疏嚓吟作为SARS-CoV PLpro小分子可逆抑制剂的活性。 在MERS-CoV与SARS-CoV的蛋白酶的相似性 被确证之后,Cheng等[109]质旳又发现了疏瞟吟针对 MERS-CoV PLpro的竞争性抑制作用。但不可忽视的是,PLpro抑制剂的设计与研发 相对存在一定难度。候选分子中的游离疏基可能 与人体内各种蛋白质的半胱氨酸残基发生作用,导致专一性较差以及毒副作用增强[108]。此外, 宿主细胞的去泛素酶与PLpro 的相似性还会带来 抑制剂脱靶的风险。Figure 18 The structures of disiilfiram (40) and6-MP(41)5 结语与展望本文作者总结了靶向冠状病毒刺突蛋白、RdRp、蛋白酶及宿主靶标的一系列冠状病毒广谱抑制剂,对抗击新冠肺炎疫情、预防未来的冠状病 毒传播具有重要意义。针对冠状病毒的高效广谱抑制剂,是疫情爆发初期迅速响应危机、并在第一时间治疗患者的法宝[109]。对冠状病毒广谱抑制剂的发现、评估和修饰,是人类对抗未来的公共卫生危机的重要 战略举措。对于具有“老药新用”潜力的已上市药物,要尽快开展科学严谨的大规模双盲临床实 验,为大范围推广提供最真实可靠的依据,最大程 度保护患者的生命健康。长远看来,从头研发出一款针对新型冠状病 毒的“魔弹”药物需要进行漫长的设计、开发及疗效验证。一方面,不同的冠状病毒生命周期中发 挥关键作用的生物大分子有明显的种间同源性,为基于靶标结构寻找广谱抑制剂提供了重要信息;另一方面,从治疗新型冠状病毒的中药方剂中寻找天然来源的先导化合物,也是开发抗冠状病 毒药物的重要源泉。参考文献见 中国药物化学杂志 第31卷 第9期,2021年9月总173期
  • 得利特新品推荐---全自动润滑油氧化安定性测定仪
    能源是当今社会发展的三大支柱之一,是制约国家经济发展的瓶颈。目前我国能源结构主要是煤,石油,天然气,核能等,这些能源都是一次性不可再生且污染的能源,所以油品的合理利用能促使社会可持续发展,通过加强油品质量检验,能够有效的检验出油品质量的高低,及时的发现油品的质量问题,确保企业的利益不受到损害。血液的健康关乎人体的生命与健康,通过血液检查能够了解人体的健康。同样,通过油品检测能够及时的了解机器设备的健康损耗状况。润滑油是工业机器设备运行中及为关键的一环,正如人体中的血液对于生命及健康的重要性一样,润滑油保护着设备的关键部件并改善其运行状态。通过油品检测能够及时的发现问题解决问题,挽救机器设备于危难,帮助企业规避风险,降低设备维修成本。而油品检测分析基于一系列专为评估设备内部硬件及润滑油状态的测试,是一项通过分析油品成分监测设备状态的快速,非侵入性方法。润滑油检测出的结果,性能,污染物,磨损金属等因素由油品检测专家在实验室进行分析。通过定期测试,企业得以监控油品状况。确保机器及其它关键设备达到使用寿命。基于此油品检测的重要性溢于言表,我们得利特全新打造升级了全自动润滑油氧化安定性测定仪。下面是具体产品的介绍:A1100润滑油氧化安定性测定仪是依据SH/T0193 、ASTM D2272标准设计制造的,适用于测定具有相同组成的(基础油和添加剂)新油和使用中汽轮机油的氧化安定性。技术参数1.工作电源:AC220V±10%,50H2.加热功率:≤3.4KW3.控温范围:室温~200℃控温精度:±0.1℃数字式精密压力4.传感器精度:±2‰5.电机转速:100±3r/min6.外形尺寸:600mm×750mm×850mm产品升级特点:1.仪器采用微机自动进行检测、计算和控制,整个测试过程中无需人员值守,自动化程度高。同上位机实时通讯,连接方式简单、可靠。2.可随时校对温度和压力,确保压力和温度的准确性。自动记录测试过程中的数据和测试结果。可以对过往记录进行查询、比对,并打印出压力变化曲线。3.自动判断压力拐点,并自动结束试验。4.**旋转装置,转速稳定且噪音小。可同时实验两组油样。5.**水银滑环,信号可靠,寿命长。
  • 人冠状病毒广谱抑制剂的研究进展(二)
    上期,展鹏教授团队分享并阐述了冠状病毒的基本结构、冠状病毒的生命周期、抗冠状病毒药物的主要靶点等内容,本期将分享靶向冠状病毒刺突蛋白、RdRp、蛋白酶及宿主靶标的一系列冠状病毒广谱抑制剂,以及其对抗击新冠肺炎疫情、预防未来的冠状病毒传播具有的重要意义。本文讨论的冠状病毒广谱抑制剂是针对冠状 病毒与宿主的关键靶点开发的抗病毒化合物。现 阶段,根据这类化合物靶向的生理过程不同,分别靶向冠状病毒的侵入过程、RNA复制过程、多聚 蛋白裂解过程以及宿主靶标。4.1靶向冠状病毒侵入过程的抑制剂在抗病毒药物中,侵入抑制剂可以使病毒的生命周期停止在第一步,使其对宿主的危害最小化。SARS-CoV和SARS-CoV-2是通过刺突蛋白与人类呼吸道上皮细胞的ACE2结合而侵入[16], 而MERS侵入所利用的胞外受体是CD26,也称 作二肽基肽酶(DPP4)。刺突蛋白是一种I型跨膜蛋白(图3),分子 表面高度糖基化,它组装成三聚体后,分布在病毒颗粒的最外层,形成了冠状病毒独特的外观。所有冠状病毒刺突蛋白的胞外部分都是由两个相同的结构域结合而成:氨基端的S1亚单位与受体结 合相关,含有受体结合域(receptor binding domain,RBD);羧基端的S2亚单位含有融合肽 (fusion peptide),与病毒融合相关。在S1完成结合后,S2被细胞表面的TMPRSS2蛋白酶裂解,该过程是病毒与宿主细胞膜融合所必需的[17]。因此,靶向S蛋白或TMPRSS2的分子可成为有效的冠状病毒侵入抑制剂。Figure 3 (A-B ) Structure of S protein trimer, from different angles of view ( PDB code :6XM5) ; ( C) Structure of S protein monomer and location of NTD and RBD; (D) Binding mode of S protein with ACE2 ( PDB code: 7KNY)4.1.1 靶向S蛋白的侵入抑制剂在S蛋白抑制剂中,肽类具有高效、低毒的优势[18]。基于ACE2胞外序列设计的水溶性肽 作为潜在的侵入抑制剂曾受到重视,但其体内半衰期短,难以转运到肺泡[19]。为提高成药性, Lei[20]将ACE2片段与人免疫球蛋白IgGl的Fc结构域结合,提高了血浆中稳定性并增强了结合力。目前,已设计并合成了一系列模拟ACE2的N端螺旋结构域的肽类化合物,如Barh[21]通过扫 描现有的抗菌、抗病毒肽类数据库,得到了10个可能有效阻断S蛋白RBD区域与人ACE2作用 的肽类,但其体内外活性有待进一步研究。在此 基础上,Larue[22]设计了一系列针对刺突蛋白的 ACE2多肽类似物(SAP1 ~SAP6,表1),并在编码荧光素酶并负载SARS-CoV-2刺突蛋白的慢病毒侵染HEK293T-ACE2细胞体系中测定各个多 肽对病毒侵入的抑制作用,各物质活性以半数抑 制浓度(IC50)计量,活性最好为SAP6[(1.90 ± 0. 14) mmol • L-1 ]。同时,上述多肽对SARS- CoV-2刺突蛋白RBD区域的亲和力(Kd)最高为 (0.53 ±0.01) mmol-L-1(SAPl)。Table 1 Amino acid sequence of ACE2 derivatives targeting S proteinCompd.SequenceLocationSAP127-TFLDKFNHEAEDLFYQ42Helix-1SAP237-EDLFYQSSLS5Helix-1SAP379-LAQMYPL-85Helix-3SAP4352-GKGDFRYL-359Helix-11SAP524-QAKTFLDKFNHEA-36Helix-1SAP637-EDLFYQ42Helix-1Curreli等[23]基于ACE2蛋白结合区中30个 氨基酸残基长度的螺旋结构,以8 ~11碳的不饱 和炷链连接肽链上一定跨度的邻近氨基酸,设计了 4个高度螺旋化的装订肽(stapled peptide) NYBSP-1~NYBSP-4,并在 HT1080/ACE2 细胞 与人肺A549/ACE2细胞系中使用基于假病毒的 单循环方法测定了上述多肽分子的EC50值。其中3 个多肽分子显示出了潜在的抗病毒活性:HT1080/ ACE2 中的 EC50值为(1. 9 ~ 4. 1 )μmol• L-1 , A549/ACE2 中 EC50值为(2. 2 ~ 2. 8) μmol • L-1,且在最高测试剂量时,未显示出任何细胞毒性。使用SARS-CoV-2病毒侵染Vero E6细胞时, NYBSP-1显示出了最高的抑制活性,在 17.2 μmol• L-1的浓度完全阻止了细胞病理效应。NYBSP-2和NYBSP-4活性稍低,EC100值为 33 μmol • L-1,NYBSP-4在血浆中的半衰期为289 min,代谢稳定性好。Glasgow 采用“受体陷阱”,(receptor trap)策略,合成出高亲和性、高溶解性的ACE2胞外部分结构域,阻止病毒刺突蛋白与人体细胞表面的 ACE2的结合与入侵[24]。基于此策略设计的肽类分子使冠状病毒难以产生抗药性,并可以抑制几乎所有通过ACE2侵入细胞的冠状病毒[25]。在进一步研究中,Glasgow[24]利用计算机/实验组合的蛋白质工程方法,重新设计了能与SARS- CoV-2刺突蛋白结合的ACE2胞外可溶性区域 (氨基酸18-614) 。最终得到的ACE2变体对于单体刺突蛋白RBD区域的KD app ( apparent binding affinity)值已接近100 pmol• L-1。同时,最理想的 “受体陷阱”分子抑制SARS-CoV-2假病毒和真正 SARS-CoV-2 病毒的 IC50值已达到(10~100) ng-mL-1的范围。这类多肽分子有望真正实现针对利用ACE2入侵宿主细胞的冠状病毒的广谱抑制。由于S蛋白分子高度糖基化,可与多糖衍生物产生多种相互作用,引导人们去探索针对S蛋 白的多糖类抑制物。早在2013年,Milewska就证实了N-(2-羟丙基)-3-三甲氨基甲壳素氯化物 (HTCC,1,图4)及其疏水性修饰的同系物(HM- HTCC)是HCOV-NL63的潜在抑制剂[26],并制备 了不同比例的氨基被甲壳素取代的HTCC衍生物, 各自具有对不同种类人冠状病毒的抑制作用[27]。近期,文献报道了在人呼吸道上皮细胞中,HTCC 具有抑制 SARS-CoV-2 和 MERS-CoV 的 活性。尽管HTCC中单个正电基团对于靶标的作用较弱,但冠状病毒连环化的特性和多聚物分 子中的多个位点协同作用使得HTCC可以稳定 结合S蛋白。目前,虽然HTCC仍未被批准用于 临床,但实验已经证明其在肺部局部给药的可行 性,且毒副作用极低口旳。综合考虑,上述各种甲 壳素衍生物联合使用,有望成为广谱抗人冠状病 毒感染的防治药物。Griffithsin(2,图4)是由海藻中分离得到的天 然血凝素,可利用糖基结构域结合病毒包膜糖蛋白中特定的寡糖[29]。已有研究表明,griffithsin可以与多种病毒表面的糖蛋白相互作用,包括HIV gpl20 以及 SARS-CoV 的 S 蛋白[30-31]。2016 年,Millet 等[32]报道了 griffithsin 对于 MERS-CoV 的抑制作用。在2μg • mL-1 浓度下,griffithsin抑制了 MERS 病毒对 Huh-7、MRC-5 和 Vero-81 细 胞系90%以上的感染性。针对迅速爆发的新冠 肺炎疫情,一系列针对griffithsin抗新冠病毒活性 的研究正在展开。Xia等[33]首先发现griffithsin 对SARS-CoV-2假病毒侵染呈现剂量依赖性地抑 制作用,EC50值为293 nmol• L-1 Cai等[34]网进一 步在体外试验中测定了 griffithsin对SARS-CoV- 2的抑制活性,结果表明,griffithsin对SARS-CoV- 2活病毒的EC50值达63 nmol• L-1,同时对S蛋白 介导的细胞间融合的EC50 值为323 nmol-L-1值得注意的是,该研究团队还报道了 griffithsin与肽 类冠状病毒侵入抑制剂EK1的协同作用。未来, griffithsin可以单独或与EK1联合制成鼻喷剂、吸入剂或凝胶,以预防或治疗新冠肺炎。4. 1.2 TMPRSS2 抑制剂在SARS-CoV或 MERS-CoV的刺突S蛋白 发挥作用之前,要依赖宿主细胞的跨膜蛋白酶 TMPRSS2将其裂解为S1和S2亚单位[35]。针对 这类蛋白酶的抑制剂也可用于阻断各种冠状病毒 的入侵过程。蔡莫司他(nafamostat,3,图5 )最初用于治疗 胰腺炎,后发现也是TMPRSS2抑制剂,对MERS- CoV具有拮抗活性[36]。进一步研究发现,蔡莫司 他甲磺酸盐对SARS-CoV-2的EC50值达到了纳摩尔级[37]。同时,在日本批准用于治疗胰腺炎的 药物甲磺酸卡莫司他(camostat mesilate,4,图5) 同样具有抑制TMPRSS2的活性[17],在微摩尔浓度即可有效抑制MERS-CoV感染中合胞体的形成[38],EC50值达到 0.11 μmol• L-1[39]:对 SARS- CoV-2的EC50值为87 nmol• L-1[37]o现阶段仍无 法确定该化合物能否在肺部达到抑制病毒的有效浓度[40],但已有临床研究正在评估其对新冠肺炎的治疗作用。4. 1. 3 宿主细胞激酶抑制剂病毒在生命周期中利用了宿主细胞的若干信 号通路。冠状病毒以内吞方式入侵宿主细胞的过 程中,除S蛋白与ACE2的作用外,还需要Abel- son激酶(Abl)的介导。Abl是细胞中重要的管 家蛋白,参与正常细胞的多个生理过程,同时也与 病毒的入侵与复制密切联系,是开发广谱冠状病 毒抑制剂的有效靶点[41]。伊马替尼(imatinib ,5, 图5)是Abl的抑制剂,已被批准用于治疗慢性粒 细胞白血病。已有研究证实,伊马替尼通过阻断病毒颗粒与胞内体膜融合,从而抑制病毒以内吞 路径入胞,并在感染早期抑制SARS-CoV和 MERS-CoV的增殖關。据报道,伊马替尼抑制 SARS-CoV-2 增殖的 EC50值达到130 nmol-L-1 , 同时对SARS-CoV-2 S蛋白的RBD区域结合活 性高达2. 32 pimol-L-1,可通过双靶点作用有效 抑制SARS-CoV-2的侵入關。但在细胞实验中, 其毒性较为明显,用于治疗新冠肺炎或其他冠状 病毒感染前还要经过充分评估。目前,世界范围 内已有多项伊马替尼针对新冠肺炎的临床试验正 在进行(NCT04394416、EudraCT2020-001236-10、 NCT04357613)。4. 1. 4 组织蛋白酶L与Furin蛋白酶抑制剂组织蛋白酶L位于宿主细胞的胞内体,在无 TMPRSS2表达的细胞中,组织蛋白酶L发挥裂 解活性,介导病毒粒子与胞内体膜融合,从而完成侵入过程[44]。2003年,SARS-CoV疫情引起了人 们对组织蛋白酶L抑制剂研发的重视。随后的十几年内,已发现数种具有抗冠状病毒活性的组 织蛋白酶L抑制剂。其中,K11777(6,图5)是通 过筛选2 000余个人组织蛋白酶抑制剂发现的[45],其对人体或某些寄生虫的半胱氨酸蛋白酶具 有显著抑制作用。K11777抑制SARS-CoV和 MERS-CoV感染的EC50值分别达到0.68 nmol• L-1与46 nmol• L-1,但其不可逆的共价结合机制可能导致较强的毒副作用。目前,K11777仅作为锥虫 病治疗药物进行临床试验M ,其针对SARS- CoV-2的抑制作用有待于进一步确证。SARS-CoV-2 S蛋白的裂解过程也可依赖 Furin蛋白酶进行。Cheng[47]研究了以蔡基荧光 素(naphthofluorescein, 7,图5 )为代表 的数个 Furin蛋白酶抑制剂,证实了此类分子可抑制SARS-CoV-2的感染进程及细胞病理效应。但冠状病毒侵入细胞的不同路径中的关键酶具有互补作用,因此单一种类的蛋白酶抑制剂难以起效[48],而多种抑制剂联用的毒性可能大幅度增加。针对冠状病毒生命周期中宿主蛋白酶的药物应用尚存在一定的风险与挑战。4.2靶向冠状病毒RNA复制过程的抑制剂针对冠状病毒另一类极为重要的治疗靶标是 RNA依赖的RNA聚合酶(RdRp),由非结构蛋白 nspl2、nsp7与nsp8结合构成。其活性位点高度保守,包括在一个β转角中突出的两个连续的天 冬氨酸残基样[49],在不同的正链RNA病毒如冠状病毒和HCV中结构相似[50]。RdRp作为RNA复 制的工具,在病毒的复制中具有重要作用[51]。同 时该酶结构高度特异化,人体无同源酶,是药物开 发的优良靶点。4. 2. 1 RNA依赖的RNA聚合酶抑制剂瑞德西韦(remdesivir ,8,图6-A)是一种腺昔 酸类似物,作为RNA聚合酶的广谱抑制剂,能够抑制人与鼠冠状病毒[52]。更为重要的是,研究证明瑞德西韦在体外针对SARS-CoV-2具有抑制活性, 其抑制 SARS-CoV-2 的 EC50值为 0.77μmol• L-1, 且CC50值大于100 μmol• L-1[53]。基于“老药新用”的原则,2020年10月23日,瑞德西韦获得美 国FDA的正式使用批准,用于治疗12岁以上的新冠肺炎患者[54]。作为一种核昔类似物,瑞德西韦可以与 SARS-CoV、MERS-CoV 和 SARS-CoV-2 RdRp 的 NTP结合位点相互作用。其代谢后以核昔母体9 (GS-441524,图6-A)的形式掺入新生的子代 RNA链中,但允许子链RNA的进一步延长。瑞 德西韦在新生链中移动到-4位时,分子中1,-氰基 与RdRp侧链的Ser861残基发生空间上的碰撞,阻碍了 RdRp在RNA链上的进一步移动,进而导致RNA复制终止(图6-B)。由于终止作用是在瑞德西韦结合RdRp后发生的,该过程称为延迟链终止[54]。延迟链终止机制的RdRp抑制剂针对冠状病 毒具有一定的抗耐药性。包括SARS-CoV-2在内 的冠状病毒会编码具有核酸外切酶活性的nspl4,该酶可以在3,端切除掺入RNA链的异常 碱基,并重启正确的RNA合成[56]。在此机制下, 导致RNA合成即时终止的分子,如去除3,羟基 的核甘类似物,在插入后会被nspl4切除。相对地,在一定延迟后使RNA链合成终止的RdRp抑制剂可有效逃脱nspl4的校对。但研究证实,核酸外切酶仍会识别并切除部分含有瑞德西韦的子 链RNA,并重启RNA复制[57]。同时,病毒体外 传代实验中发现了针对瑞德西韦的耐药现象。与 SARS-CoV-2相似的鼠肝炎病毒(MHV)传代培 养至23代后,其RdRp中出现了不利于瑞德西韦 结合的氨基酸突变[58]。一系列瑞德西韦的临床试验也引起了研究人 员对其临床疗效的争议。2020年5月,原研公司 吉利德发布了适应性试验的“最终报告” (NCT04280705)[59],称瑞德西韦在临床中可缩短住院时间,改善呼吸系统症状。但WHO在2020 年12月2日发表的“团结实验” (NCT04315948) 结果显示,瑞德西韦无法显著改善总体死亡率、通气时间与住院时间,疗效仍待改进[60]。Spin-ner[61]在为期11天的周期内研究了瑞德西韦针 对新冠肺炎轻中症患者的疗效(NCT04292730), 结果表明,在治疗期间,虽然患者的某些临床数 据出现显著改变,但并不表示任何程度的病情改善。近H,Li[62]在一系列细胞实验中比较了瑞德 西韦与核昔母体GS-441524在体外细胞中的抗病毒能力。结果显示,GS-441524在Vero E6细胞 系中对SARS-CoV-2的抑制能力略强于瑞德西韦,但在Calu-3和Caco-2细胞系中活性稍弱。GS-441524亦可显著提高感染鼠肝炎病毒 (MHV)小鼠的生存率,初步展示出广谱抗病毒作用。由于GS-441524合成方便、成本低、可口服, 同样有望成为治疗SARS-CoV-2的候选药物。法匹拉韦(favipiravir, 10,图7)最早在日本上 市,用于治疗流感,其通过与RdRp活性位点结合 发挥抑制活性[63],对所有种类及亚型的流感病毒均有拮抗作用,具有治疗多种RNA病毒感染的 潜力。此外,法匹拉韦在抑制病毒RdRp的同时, 不对哺乳动物机体的RNA及DNA合成路径产生影响[64-65]。虽然法匹拉韦在体外试验中对 SARS-CoV-2的抗病毒活性较低(EC50 = 62μmol• L-1),但在两次临床试验中均显示出良 好的效果3项7]。利巴韦林(ribavirin, 11,图7)是已上市的广谱抗病毒药物,已被批准用于治疗丙型肝炎与呼吸道合胞病毒感染。其作用机制是通过靶向病毒 RdRp而使病毒基因组RNA中出现多位点突变, 最终导致病毒mRNA加帽终止,进而抑制病毒 RNA合成[68]。利巴韦林的疗效已经在SARS- CoV和MERS感染者中得到了证实,但严重的不 良反应限制了其临床应用[69]。且在体内外实验中,利巴韦林对SARS-CoV-2感染的疗效约为瑞德西韦的1 /100[53]。综合考虑,利巴韦林治疗 SARS-CoV-2感染的药效、安全性及潜在的毒性 作用有待在临床试验中进一步研究。Galidesivir( BCX4430,12,图 7 )也是腺昔酸 类似物,最初为病毒RNA聚合酶抑制剂,曾被用 来治疗丙型肝炎,且对多种RNA病毒如SARS- CoV,MERS-CoV, Ebola 病毒和 Marburg 病毒具 有广谱抑制活性。在生物体内,galidesivir首先被 转化成相应的三磷酸核昔,再以此形式插入病毒 新合成的RNA链中,导致RNA转录或复制的提 前终止[70]。因此,其有望成为治疗新冠肺炎的候 选药物[71]。阿兹夫定(azvudine,FNC,13,图7)是首个核 首类双靶点HIV抑制剂,针对多种HIV耐药毒株有良好的抑制活性[72]。新冠肺炎疫情爆发后,在我国进行的一项临床试验(CTR2000029853)显 示,阿兹夫定可以显著缩短新冠肺炎轻中症状患 者的核酸转阴时间,对重症患者也具有潜在的治 疗作用。同时临床上未观察到任何与药物有关的 不良反应,安全性有充分保障。目前针对阿兹夫 定更大样本的临床试验正在进行中[73]。核苷类似物B-D-N4-羟基胞昔(14,NHC/EI- DD-1931,图8)针对多种RNA病毒具有广泛抑 制作用[74]。研究已证明,NHC可有效抑制α属 冠状病毒HCoV-NL63和β属冠状病毒SARS- CoV、MERS-CoV[75-76],且针对 SARS-CoV-2 感染,其在 Vero E6( EC50 =0. 3μmol• L-1)和 Calu-3(EC50=0.08μmol• L-1)细胞中作用显著如。 同时化合物14的酯类前药莫那匹韦(molnupira- vir,15,图8)针对SARS-CoV-2的EC50值也达到 0. 22 μmol• L-1[77]。与其他的核昔类似物相同, NHC或莫那匹韦在细胞内代谢为三磷酸核昔,并作为假底物与RdRp结合。由于NHC的碱基存 在互变异构形式,两种异构体分别可与腺喋吟 (A)及鸟喋吟(G)配对结合(图8),插入病毒 RNA后可导致由G到A和由C到U的碱基突变。突变积累至一定程度即产生功能错误或丧失 的子代RNA,且无法被核酸外切酶校正,最终导 致病毒增殖活动终止[74,78]。虽然细胞水平研究显示NHC有对哺乳动物 造成突变的风险[79],但NHC的前药莫那匹韦已 在治疗SARS-CoV-2的I期临床试验中充分证明 其安全性,m期临床评估正在展开「"°此外, NHC 口服吸收好,给药方便,有望使发病早期居 家隔离的患者显著降低恶化率与住院率。4. 2. 2 DHODH 抑制剂二氢乳清酸脱氢酶(DHODH)是哺乳动物体内嚅嚏生物碱合成的关键酶病毒的增殖必须依赖宿主的核昔酸等物质,因此该酶的抑制剂具有开发为广谱抗RNA病毒药物的潜力。来氟米特(leflunomide, 16,图9)与其体内代谢物特立氟胺(teriflunomide, 17,图9)是目前仅有的FDA批 准上市的DHODH抑制剂,用于治疗自身免疫性疾病[77]。李洪林团队的研究结果表明[83],在Veto E6细胞系中,来氟米特与特立氟胺针对SARS- CoV-2 的 EC50 值 分别为 26. 06μmol• L-1和 63. 56μmol• L-1该团队基于靶标结构,进一步设计了一系列DHODH抑制剂,其中S312(18,图9)与S416(19,图9)在相同条件下对 SARS-CoV-2 的 EC50 值分别为(1. 56 ± 0. 32 )μmol• L-1 和(0.017 ±0.002)μmol• L-1。特别是 S416的选择指数达到10 000以上,且无激酶抑制 活性,在治疗浓度下对宿主细胞毒性极小,基本克 服了脱靶效应,作为广谱抗冠状病毒抑制剂具有 极大的开发潜力。此外,DHODH抑制剂有望在 新冠肺炎的治疗中发挥免疫抑制作用,降低“细 胞因子风暴”产生的炎症损伤。参考文献见 中国药物化学杂志 第31卷 第9期,2021年9月总173期
  • 防锈性能实验仪适用于液压油、循环油等石油产品的防锈能力的测定
    防锈性能实验仪符合 GB/T11143、ASTM D665 主要用于评定加抑制剂矿物油、汽轮机油和水混合时对铁部件防锈能力的测定;A1050 同样适用于液压油、循环油防锈能力的测定。可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点1. 液晶屏幕中文显示界面,菜单提示式输入2. 电脑控温,自动定时,精度高,准确度好3. 显示年月日及当前时钟等多种参数提示4. 采用不锈钢浴体。技术参数控温范围: 室温~100℃控温精度: ±0.5℃控时范围: 0~99 小时任意设置搅拌转速: 1000r/min耗电功率:小于等于2500W盛样孔: 4 个环境温度: 室温~35℃相对湿度: ≤85%工作电源: AC220V±10% ,50Hz重  量:9.5kg
  • 得利特A1360润滑油过滤性测定仪新品上市
    技术变革引领着仪器仪表的研发创新和更新换代,只有不断满足生产,生活需求,仪器仪表行业才能不断有新鲜血液注入,才能有更大的发展空间. 仪器仪表行业作为制造业的重要组成部分,在工业制造中发挥着不可替代的作用。随着各项技术的发展,仪器仪表产品也在不断的更新换代。近期,我公司为客户研发了一款新品-润滑油过滤性测定仪。一、仪器引用标准及范围1、引用标准中华人民共和国石油化工行业标准 SH/T 0805—2008 《润滑油过滤性测定法 — 干法》。2、范围本标准规定了测定以矿物油为基础油的润滑油,尤其是液压系统中液压油的过滤性能的方法。本标准适用于按GB/T 3141黏度分类规定的黏度等级不超过100的油品。本标准不适用于以其他材料为基质的液体,如难燃液,因其可能与本标准所用的过滤膜存在兼容问题,本标准也不适用于一些具有特殊性能的液压油,因其含有不能溶解或部分溶解的添加剂或特殊的大分子物质。二、仪器规格外形尺寸长*宽*高:245mm×395mm×700mm;重量:15kg。三、仪器的安装1、开箱须知清理包装箱上的尘土和污物,要取出仪器时不可抓、抬调压阀和过滤器,避免损坏部件。2、仪器安装把仪器放置水平的工作台上,首先将快插接头安装在气罐的减压阀上,然后调压阀进气端连接高压气管至快插接头上。四、仪器的维护和保养1、仪器应放在干燥、通风、防震及不受有害气体影响的房间,室内应保持清洁,实验室温度要求为15℃~25℃,24h内温度变化不超过±2℃。2、仪器用完后,切断电源,将仪器罩上塑料罩,仪器保持清洁,定期清理。五、仪器的成套性表1 仪器的成套性序号名称单位数量备注1涡轮机油过滤性测定仪台12Φ47-0.45μm过滤膜片1003Φ47-0.8μm过滤膜片1004平头镊子个1自备5计时器个1自备,最小刻度0.2s,具有双停功能6烘箱台1自备,可控制温度70℃±2℃7培养皿个1自备,带盖8压缩气体罐1自备,压力范围50kPa~200kPa9减压阀个1自备10活动扳手个1自备11取样量筒个1自备,容量250mL,有10mL和300mL刻度,附录A给出了这两个刻度的添加方法12注射器个1自备,可以量取320ml±5mL的样品
  • 节能环保自动化仪器----绝缘油氧化安定性测定仪
    近年来世界石油市场的主要特点:一是美国西德克萨斯轻质原油(WTI)与布伦特原油价格倒挂日渐频繁 二是轻质原油和重质原油价差缩小 三是石油的金融属性更加明显,投机商继续青睐石油期货市场 四是石油需求大幅下降,但降幅逐季收窄 五是欧佩克减产履约率呈现前高后低走势,剩余产能大幅增加 六是石油库存居高不下。通过对市场、贸易、油价、运输和劳动成本等方面的分析,鉴于欧美严格的环保要求,以及市场的成熟度,欧美等地区对基础化学品和大宗石化产品的需求已趋于饱和,这就迫使西方发达国家紧缩本国石化生产,全球化工行业发展的重心逐步向原料产地(中东)和产品市场(亚洲)转移。中东和包括中国在内的亚太地区将是全球炼油和石化产能增长最快的地区,亚洲将成为世界较大的石化市场。同时,世界石化工业发展趋向大型化、基地化和炼化一体化,产业集中度越来越高。A1250绝缘油氧化安定性测定仪适用标准:SH/T0811-2010和SH/T0206-1992。适用于测定绝缘油的氧化安定。绝缘油氧化安定性测定仪是变压器油的生产、使用单位,各相关院校、科研部门等测试变压器油的氧化安定性能稳定的一种自动化仪器。仪器特点1、采用金属浴加热,无需加油,节能环保,使用简便。2、PID 控制能够在达到目标温度后快速的保持稳定 ,节省等待时间。3、内置超温保护装置,使用可靠。4、配置皂泡流量计可准确检测气体流量。5、配置计时器可自动计时。6、可提供计量检定证书。技术参数工作电源:AC220V±10%,50Hz功 率:≤1100W控温范围:室温~160℃控温精度:±0.5℃试样数量:6路
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制