当前位置: 仪器信息网 > 行业主题 > >

光源器

仪器信息网光源器专题为您提供2024年最新光源器价格报价、厂家品牌的相关信息, 包括光源器参数、型号等,不管是国产,还是进口品牌的光源器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光源器相关的耗材配件、试剂标物,还有光源器相关的最新资讯、资料,以及光源器相关的解决方案。

光源器相关的论坛

  • 光纤传感器中的光源是怎样运行的

    [align=left]现在有很多人去选择使用光纤传感器,目前市面上也有很多光纤传感器的开发商,他们能够根据用户对光纤传感器的一些特殊需求进行定制,我们都知道光纤传感器是要根据光源与运作的,但是很多人不知道这个光源应该如何运作,在此OFweek Mall要仔细说一下。[/align]传感器是可以感测被测量信息的检测设备,并且可以根据某些规则将感测到的信息转换成电信号或其他所需形式。信息输出,以满足信息的传输、处理、存储、显示、记录和控制要求。首先,由于光纤传感器结构的限制,要求光源体积小,便于与光纤耦合,光源应具有足够的亮度。提高光纤传感器输出的光功率。光源发出的光的波长应该适当,以减少光穿过光纤时的能量损失。其次,光源在工作时需要具有良好的稳定性。、噪音小,可在室温下连续工作很长时间。光源应易于维护且易于使用。光纤传感器中使用了许多类型的光源。根据光的相干性,它们可以分为两类:相干光源和非相干光源。非相干光源包括白光源和发光二极管,相干光源包括各种激光器,氦气激光路径、固体激光器等。期望在大多数光纤传感器中使用相干光源。那么光纤传感器的作用是什么?为了从外界获取信息,人们必须依靠感觉器官。依靠人们自己的感觉器官,他们在研究自然现象,法律和生产活动方面的作用远远不够。为了适应这种情况,需要传感器。因此,可以说传感器是人类五感的延伸,也称为电感五感。在现代工业生产中,尤其是在自动化生产过程中,各种光纤传感器用于监视和控制生产过程的各种参数,以正常或最佳状态操作设备,以及实现产品的最佳质量。因此,可以说没有很多优秀的光纤传感器,现代生产将失去其基础。光纤传感器长期渗透到工业生产中,如、空间开发、海洋检测、环境保护、资源调查、医疗诊断、生物工程、甚至文物保护和其他极端平移场。可以毫不夸张地说,从广阔的空间,到广阔的海洋,到各种复杂的工程系统,几乎每个现代项目都离不开各种光纤传感器。综上所述,我们可以看出光纤传感器技术在经济发展中的重要作用、促进社会进步是非常明显的。世界各国都非常重视这一领域的发展。相信在不久的将来,光纤传感器技术将有一个飞跃达到与其重要地位相称的新水平。光纤传感器包含范围:[color=#333333]气体流量传感器丨绝对压力变送器丨微量氧传感器丨ph传感器丨水管温度传感器丨气压感应器丨微型压力传感器丨[/color][color=#333333]数字温湿度[/color][color=#333333]传感器丨煤气检测传感器丨h2传感器丨压阻式压力变送器丨[/color]微型传感器[color=#333333]丨一氧化碳传感器丨风速传感器丨硫化氢传感器丨光离子传感器丨ph3传感器丨光纤传感器https://mall.ofweek.com/category_62.html丨[/color][color=#333333]电化学传感器丨[/color][color=#333333]超声波液位传感器[/color][color=#333333]丨[/color][color=#333333]二[/color][color=#333333]氧化碳传感器丨百分氧传感器丨[/color][color=#333333]co2气体传感器丨[/color][color=#333333]气压传感器丨bm传感器丨氧气传感器丨超声波风速传感器丨气压传感器丨电流传感器丨voc传感器丨风速传感器丨电流传感器[/color][color=#333333]丨[/color][color=#333333]光纤应变传感器丨流量传感器[/color][color=#333333]丨超声波传感器丨[/color][color=#333333]称重传感[/color][color=#333333]器[/color][color=#333333]丨压力传感器丨meas压力[/color][color=#333333]传感器丨位置传感器丨甲烷传感器丨微流量传感器丨光纤应变传感器丨一氧化氮传感器丨称重传感器丨三合一传感器丨sst传感器丨gss传感器丨压电薄膜传感器丨ch4传感器丨氟利昂传感器丨硫化物传感器丨o3传感器丨双气传感器丨透明度传感器丨二氧化硫传感器丨氰化氢传感器丨煤气检测传感器丨燃气检测传感器丨电流氧传感器[/color]

  • 【原创】光谱类仪器的检测器和光源

    在入行两个多月以来,对光谱仪器总有点模糊的感觉,后来发现,从它们的原理和特点入手,我可以有点头绪。 先说紫外,一般是指165-360纳米的光,光源是氘灯,检测器则为电子倍增管(PMT)、二极管阵列检测器(PDA)、光电池。高级紫外,在测试的波长范围方面扩大了,如SHIMADZU生产的UV-3600等紫外分光光度计,测定范围:185-3300nm,光源为氘灯和钨灯很自然的检测器又包括了PbS、InGaAs,有的积分球附件没有InGaAs,检测器的范围:240-2600nm。 红外指800nm-1000um范围的光,分为近红外(0.78-2.5um)、中红外(2.5-25um)、远红外(25-1000um)。近红外的光源:钨灯,检测器:InGaAs;中红外的光源和远红外的光源都是陶瓷光源,检测器都是DLATGS(氘代-L丙氨酸硫酸三甘肽),二者不同的是分束器,前者是KBr,后者是CsI,近红外的分束器是CaF2。 原子吸收的光源都是锐线光源,一般都在紫外区和可见光区,所以检测器为PMT就够用了。 ICP-AES没有光源,检测器为PMT。

  • 激光器光源

    最近接触到了关于应用激光器作为分子荧光的光源,请问专家,这个与氙灯有什么区别呢?具体怎么个应用?

  • 【求助】仪器LED光源

    在线仪器的光源容易老化,各位同仁知道那里有卖分析仪表用的LED发光管的.比如分析氨氮用的LED

  • 【讨论】如果样品室在光源和单色器之间会怎样?

    正常的分光光度计的光路是光源----单色器----样品室-----检测器那要是变成光源------样品室-----单色器------检查器会怎样呢?这个问题,我还真有些迷糊。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的光路就是光源(锐线光源)----原子化器(可以看作样品室)-----单色器---检测器

  • 【有奖问答一】能用氘灯作光源的光谱仪器有哪些?

    光源是光谱类分析仪器的重要组成部分之一,它能提供足够的能量使试样蒸发、原子化、激发等过程而产生光谱。在现有的分析仪器当中,能用氘灯作为光源或辅助光源的光谱仪器有哪些呢?请回答!http://simg.instrument.com.cn/bbs/images/brow/em09505.gif

  • 【求助】荧光检测器光源的区别

    前几天看了waters的2475荧光检测器的操作指南和A的1100系列荧光检测器的操作指南,发现两者采用的光源一个是150W的氙弧灯,另一个采用的是5W或25W的闪烁氙灯,请问这两种氙灯有啥区别?

  • 有哪位高人知道耶拿的连续光源的仪器的背景校正原理啊?

    有哪位高人知道耶拿的连续光源的仪器的背景校正原理啊?

    最近,单位要购买一台原吸,有人推荐耶拿的连续光源型的仪器,型号是contr700型。关于连续光源的原理通过耶拿厂家的产品彩页的介绍基本搞懂了,可是关于该类型仪器的背景校正原理却是含糊其辞,仅仅说是一种“独特的同时背景校正”方式。至于独特在哪里,问了许多人也讲不清,甚至询问了厂家工程师也说不出个子丑寅卯来。最后找到一篇专门介绍contr700的文献来,在这6页的产品介绍中,大量的篇幅均为介绍连续光源怎么怎么好;CCD检测器如何如何好;至于“独特的背景校正”只是一带而过。见附图:http://ng1.17img.cn/bbsfiles/images/2015/05/201505281640_547842_2353015_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/05/201505281640_547843_2353015_3.jpg看过的疑问是:该类型的仪器的背景校正技术是不是一个商业秘密啊?否则为何所有介绍连续光源的资料中均未涉及背景校正的原理呢?如果真的是保密的话,对于想买该类型仪器的客户而言,会不会影响信任度呢?

  • 检测器的光源都有哪些?

    一、紫外检测器、DAD 1、氘灯 紫外光波长190nm~400nm 2、钨灯 可见光波长350nm~900nm 3、氘灯+钨灯 350nm ~400nm 二、蒸发光散射检测器 1、卤素灯 2、激光二极管 三、示差折光检测器 1、发光二级管(LED) 四、荧光检测器1、发光二极管以上的都对不,还有其它吗,检测器的灵敏度与采用不用的光源有关吗?

  • 【原创大赛】【仪器说】直读光谱高压火花光源简介

    【原创大赛】【仪器说】直读光谱高压火花光源简介

    [align=center][b][color=#cc0000]直读光谱高压火花光源简介[/color][/b][/align][b][color=#cc0000]一、【前言】 直读光谱早期使用的激发光源主要是电弧光源,有直流电弧光源,交流电弧光源,因为火花激发温度高于电弧激发温度,而后发展到火花光源,如高压火花光源,高能预火花光源。随着激发光源技术水平的提高和改良,目前使用最多的激发光源主要还是技术成熟的高能预火花光源。 虽然目前直读光谱应用最多的是高能预火花光源,大家都比较熟悉,而电弧光源及高压火花光源应用的不多,但对于直读光谱激发光源的发展来讲,适当了解电弧光源及高压火花光源是很有必要的,电弧光源相对较为简单,也许大家已较为熟悉了,但对高压火花光源不一定很熟悉。 本文简单介绍一下直读光谱高压火花光源的功能作用、火花产生、基本原理、主要特点及技术要求等,让大家对高压火花光源的有一个初浅的认识。同时以美国热电Jarell-Ash直读光谱高压火花光源为例,就直读光谱的高压火花光源做一个简单的浅析,使大家对高压火花光源有更深的了解,希望能对直读光谱操作员及技术员有一定的帮助。二、【高压火花光源的功能作用】 对于直读光谱而言,由于被检测的样品种类繁多、形状各异、元素对象、浓度、蒸发及激发难易不同,对激发光源的要求也就各不相同。关键所分析的激发光源应能满足各种被分析样品的技术要求。 直读光谱的激发光源是硬件系统中一个极为重要的组成部件,它的作用是给被检测样品提供蒸发、原子化或激发的必要能量。在进行光谱分析时,样品元素的蒸发、原子化和激发过程几乎都是同时进行的,它们之间没有明显的时间界限,这一系列过程均直接影响谱线的发射以及光谱线的激发强度。三、【高压火花的产生】 电源电压经过可调电阻后进入升压变压器的初级线圈,使初级线圈上产生10000V以上的高电压,并向电容器充电。当电容器两极间的电压升高到分析间隙的击穿电压时储存在电容器中的电能立即向分析间隙放电,产生电火花。 由于高压火花放电时间极短,故在这一瞬间内通过分析间隙的电流密度很大(高达10000 ~ 50000A/cm2,因此弧焰瞬间温度很高,可达10000K以上,故激发能量大,可激发电离电位高的元素。 高压火花放电是一种电极间不连续气体放电,是一种电容放电。高压电火花通常使用10000V以上的高压,通过间隙放电,产生电火花。目前使用的高压火花放电是 12000V和较小电容量的高压火花光源。 由于电火花是以间歇方式进行工作的,平均电流密度并不高,所以电极头温度较低,且弧焰半径较小。这种光源主要用于易熔金属合金样品的分析及高含量元素的定量分析。四、【高压火花发生器基本原理】(1)交流电压经R及变压器 T 后,产生10~25kV的高压,然后通过扼流圈 D 向电容器 C 充电,达到 G (分析间隙)的击穿电压时,通过电感 L 向 G[i] [/i]放电,产生振荡性的火花放电。(图1)(2)同步电机转动续断器M,1、2为控制间隙 G1,3、4为控制间隙 G2,2, 3为钨电极,每转动180度,对接一次,转动频率(50转/s),接通100次/s,保证每半周电流最大值瞬间放电一次。[/color][/b][align=center][b][color=#cc0000][img=,501,393]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301213442430_2197_1841897_3.jpg!w501x393.jpg[/img][/color][/b][/align][align=center][b][color=#cc0000]图1 高压火花发生器原理 [/color][/b][/align][b][color=#cc0000]五、【高压火花光源的主要特点】1、高压火花光源的主要优点:(1)放电瞬间能量很大,产生的温度高,激发能力强,某些难激发元素可被激发,且多为离子线。(2)放电间隔长,使得电极温度低,蒸发能力稍低,适于低熔点金属与合金的分析。(3)稳定性好,重现性好,适用定量分析。2、高压火花光源的主要缺点:(1)做较高含量分析没有问题,对低含量分析灵敏度较差。(2)由于高压连续放电易产生多次谐波,噪音和干扰相对较大。六、【高压火花光源的技术要求】 直读光谱的光源部件的选择是十分重要的。在选择直读光谱高压光源时应尽量满足下列要求:(1)高灵敏度,随着样品中元素浓度微小的变化,其检出信号有较大的变化;(2)低检出限,能对微量及痕量成分进行检测;(3)良好的稳定性,样品能稳定地蒸发、原子化和激发,使结果具有较高的精密度;(4)谱线强度与背景强度之比大(信噪比大);(5)分析速度快,预燃时间短;(6)构造简单,安全、易操作;(7)自吸收效应小,校准曲线的线性范围宽。七、【美国热电Jarell-Ash直读光谱仪高压火花光源简介】 美国热电Jarell-Ash直读光谱仪是我国早期70年代末至80年代初引进的大型金属分析仪器,在冶金行业发挥了较大的作用,与之同时代的直读光谱仪还有美国贝尔德、英国希尔格、法国JY等直读光谱产品。这里简介一下Jarell-Ash直读光谱仪的高压火花光源,供大家分享。图2为美国热电Jarell-Ash直读光谱仪整机外观图,该仪器使用的就是高压火花光源。[/color][/b][align=center][b][color=#cc0000] [img=,500,383]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301214529640_9061_1841897_3.jpg!w500x383.jpg[/img][/color][/b][/align][align=center][b][color=#cc0000]图2美国Jarell-Ash直读光谱仪整机外观图[/color][/b][/align][b][color=#cc0000] Jarell-Ash直读光谱仪主要由,真空系统、光学室检测系统,电源及主机控制系统、火花(激发)台系统(图3)、高压火花(激发)光源系统、数据终端处理系统等几大部件组成。[/color][/b][align=center][b][color=#cc0000][img=,504,384]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301216122560_1350_1841897_3.jpg!w504x384.jpg[/img][/color][/b][/align][align=center][b][color=#cc0000]图3 Jarell-Ash直读光谱仪火花(激发)台结构图[/color][/b][/align][b][color=#cc0000] 这里主要重点介绍一下Jarell-Ash直读光谱仪的高压火花光源,该高压火花光源是一个独立的电子部件系统,由操作面板各功能选择开关控制(图4)。 [/color][/b][align=center][b][color=#cc0000][img=,500,383]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301216493377_9564_1841897_3.jpg!w500x383.jpg[/img][/color][/b][/align][align=center][b][color=#cc0000]图4 高压火花光源外观及操作控制面板[/color][/b][/align][b][color=#cc0000] Jarell-Ash直读光谱高压火花光源的电路原理框图见图5。[/color][/b][align=center][b][color=#cc0000][img=,504,379]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301217169185_2027_1841897_3.jpg!w504x379.jpg[/img] [/color][/b][/align][align=center][b][color=#cc0000]图5 高压火花光源的电路原理框图[/color][/b][/align][b][color=#cc0000] 高压火花光源的高压火花是通过大功率升压变压器(高压升压线圈)直接升压至数千伏以上,经过高压二极管整流,限流电阻限流(图6)输出至样品激发台激发样品。[/color][/b][align=center][b][color=#cc0000][img=,500,361]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301218009689_5050_1841897_3.jpg!w500x361.jpg[/img][/color][/b][/align][align=center][b][color=#cc0000]图6 高压火花发生器高压升压线圈,限流电阻,高压二极管等器件[/color][/b][/align][b][color=#cc0000] Jarell-Ash直读光谱高压火花光源升压变压器初级线圈实际电路采用了大功率电子控制器件闸流管(图7),代替了同步转动(断续器)电机。[/color][/b][align=center][b][color=#cc0000][img=,500,375]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301218408927_4169_1841897_3.jpg!w500x375.jpg[/img] [/color][/b][/align][align=center][b][color=#cc0000]图7 高压火花光源的关键器件闸流管[/color][/b][/align][b][color=#cc0000] 在RLC脉冲发生器触发电路控制作用下(图8),控制闸流管的导通与截止,产生高压高能火花放电,其放电频率最高可达400Hz。[/color][/b][align=center][b][color=#cc0000][img=,500,349]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301219102087_278_1841897_3.jpg!w500x349.jpg[/img][/color][/b][/align][align=center][b][color=#cc0000]图8 RLC脉冲发生器触发板闸流管触发控制板[/color][/b][/align][b][color=#cc0000] 高压火花放电时放电电流和放电能量受线路中电感及电容控制(图9),[/color][/b][align=center][b][color=#cc0000] [img=,500,375]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301220019267_416_1841897_3.jpg!w500x375.jpg[/img][/color][/b][/align][align=center][b][color=#cc0000]图9 高压火花放电电感线圈[/color][/b][/align][b][color=#cc0000] 高压发生器输出的高压由于自身电压很高,放电间隙无需辅助高压引弧,自行产生放电火花,在放电能量作用下,火花台(图10)激发样品表面局部熔融均质化,以此获得发射光谱谱线。[/color][/b][align=center][b][color=#cc0000][img=,504,379]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301220308039_5032_1841897_3.jpg!w504x379.jpg[/img] [/color][/b][/align][align=center][b][color=#cc0000]图10 Jarell-Ash直读光谱火花台结构[/color][/b][/align][b][color=#cc0000] 由于工作电压较高,在空载状态时,电感电路容易产生高次谐波导致高压过高,因此在工作间隙两端增加了高压保护放电间隙(图11)。[/color][/b][align=center][b][color=#cc0000][img=,500,389]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301220576105_1327_1841897_3.jpg!w500x389.jpg[/img] [/color][/b][/align][align=center][b][color=#cc0000]图11 高压火花发生器高压保护放电间隙[/color][/b][/align][b][color=#cc0000] 通过功能选择,不同样品的能量通过仪表直观的显示出来(图12),在高能高压火花激发下产生发射光谱,经光学分光系统及电子信号采集检测系统,然后再经电路控制及数据处理,最后得到所要检测的分析结果。[/color][/b][align=center][b][color=#cc0000][img=,500,366]https://ng1.17img.cn/bbsfiles/images/2019/09/201909301221288377_830_1841897_3.jpg!w500x366.jpg[/img] [/color][/b][/align][align=center][b][color=#cc0000]图12 高压火花光源真空控制,功能选择及能量显示[/color][/b][/align][b][color=#cc0000]八、【小结】 金属和合金的光谱分析,在高压火花光源的作用下,物质由固态到气态是一个非常复杂的过程,这种过程表现在样品中各元素的谱线强度,并不在样品一经激发后立刻达到一个稳定不变的强度,而是必须经过一段时间后才能趋于稳定。这是由于样品中各元素的熔点有差异,表面各成分在放电时进入分析间隙的程度随着放电时间而发生变化。因此,在进行光谱定量分析时,必须等待分析元素的谱线强度达到稳定后的曝光时间才是最佳的,这样才能保证分析结果的准确度。 对不同的样品在不同的光源能量激发下,其曝光时间是不一样的,这主要取决于样品在火花放电时的蒸发程度,它不仅与光源的激发能量、放电气氛密切有关外,还与样品的组成、结构状态、夹杂物的种类、大小等密切相关。 由于高压火花光源的工作电压过高,连续放电产生的干扰较大,放电电流也相对较小温度不足,导致某些高熔点金属检测限及灵敏度不够理想。另外工作电压较高对器件的技术参数也要求较高,高压的不稳定也导致了高压火花光源的故障率较高,维护维修成本也随之较高。因此高压火花光源已基本被目前流行的低压高能预火花光源所替代。虽然高压火花光源已停产,但作为直读光谱技术人员对于了解直读光谱光源的发展历史及基本原理,还是有益无害的。 2019.9.30[/color][/b]

  • 氨氮检测光源滤色片及接收器选择

    有做过氨氮或者COD或者农残检测的么?或者使用过的。光源我想用冷光源,但是滤色片不知道该怎么弄了,问过一个师傅他说是他之前农残检测的仪器里滤色片带宽是6nm,但是我问了下加工厂家6nm不太好做,我想知道氨氮检测仪器目前大多数带宽是多少了也就是最大多少可以满足使用。还有就是接收器这块,我看了篇论文说是在氨氮检测中硒光电池要比硅光二极管性能好,但是我看了好多仪器的接收器都是用的是硅光二极管,有使用过这两种接收器的来说说自己的使用感受野可以啊。(注:氨氮检测我用的是纳氏试剂法检测波长在420nm)

  • 【求助】关于中红外光源及中红外传感器

    各位常接触传感器的朋友,除了西安聚星光电技术有限公司外,能告诉我西安还有哪家公司生产中红外光源和中红外传感器,最好是西安的,如果知道外省哪家公司有,请"高抬贵手"写下公司名字,不胜感激.急啊

  • 埃赛力达科技收购贺利氏特种光源,巩固其在全球特种光源市场的地位

    [size=18px][color=#3e3e3e]特种光源业务专注于研发和制造从紫外线到红外线的特种光源部件和系统解决方案,主要应用于分析仪器、工业固化、水处理、电子制造、医疗和美容治疗、电池生产等领域。[/color][/size][size=18px][color=#3e3e3e]“我们很高兴特种光源及其强大的团队现在成为埃赛力达的一部分。现在,埃赛力达和特种光源结合了各自的知识和制造专长,可提供更广泛、更丰富的光技术产品。埃赛力达科技首席执行官Ron Keating表示:“我们共享基于客户深度参与且经过实地验证的市场推广战略,这有助于取得市场成功,并确保与客户之间的长期业务关系。”[/color][/size][size=18px][color=#3e3e3e]此次收购特种光源是埃赛力达科技自2010年成立以来一系列战略性收购的最新举措。[/color][/size][size=18px][color=#3e3e3e]“我们对新合作伙伴关系带来的可能性感到非常振奋。”特种光源董事总经理Roland Eckl表示:“我们看到了重大的机遇,通过结合双方的能力,不仅能更好地服务于我们的客户群,还能持续加速实现盈利性增长。”[/color][/size][size=18px][color=#3e3e3e]该收购于2024年1月1日正式完成。交易条款未予披露。[/color][/size][align=center][b][size=18px][color=#4f81bd]关于埃赛力达科技[/color][/size][/b][/align][align=center][b][size=18px][color=#4f81bd]Excelitas Technologies Corp.[/color][/size][/b][/align][size=18px][color=#3e3e3e]埃赛力达科技是一家领先的工业技术制造商,专注于提供具有市场驱动力的创新光子解决方案,满足我们OEM和终端客户对传感、检测、成像和照明的关键需求。埃赛力达服务于医学、生命科学、工业、半导体、智能建筑、国防和航空航天领域的众多应用,致力于促进客户在众多终端市场取得成功。我们的团队由7,500多名专业人员组成,他们在北美、欧洲和亚洲工作,为全球客户提供服务。 [/color][/size][align=center][b][size=18px][color=#4f81bd]关于特种光源[/color][/size][/b][/align][align=center][b][size=18px][color=#4f81bd]Noblelight[/color][/size][/b][/align][size=18px][color=#3e3e3e]Noblelight特种光源是全球特种光源领域技术与市场的先驱者之一,产品波长覆盖从紫外线到红外线,适用于工业、科学及医疗应用,业务遍及欧洲、亚洲和美国。我们设计和制造的红外线、闪光和紫外辐射器、系统及解决方案,广泛地应用于工业制造、环保、医美、研发、分析测试技术等领域。[/color][/size][来源:贺利氏特种光源][align=right][/align]

  • 如何选光源

    光源主要分为:热辐射光源,例如,太阳、白炽灯;气体放电光源,例如,炭精灯、水银灯、荧光灯等。 激光器是一种新型光源,具有发射方向集中、亮度高、相干性优越和单色性好等特点。 那么在实验中如何选择合适的光源?答案很明显就是选择合适的光源,首先要确定使用的波长范围。 那么现在我们就地对几种生活、实验和科学研究中常用的光源的特点进行介绍。第一种: 氙灯:200-2500nm(250-1800nm) 1:具有很高的辐射度,色温高达6000K 2:发光区域小,容易用来做准直光束 3:光谱覆盖范围宽 4:背反射镜设计结构,可提升50%以上的光使用效率 5:紫外波段输出能量高,适合用来做激发光源 6:模拟太阳光谱第二种:氘灯:200-400nm 1:常高效的紫外光源 2:外波段内光谱平滑 3:有多条特征谱峰,可用来作为波长校准光源第三种:溴钨灯:700nm(300-2500nm) 1:有很高的输出稳定度 2:覆盖范围宽 3:射镜设计结构,可提升50%以上的光使用效率 4:范围内光谱连续且平滑 5:来标定成为标准白光光源第四种:红外光源:1-16μm1:光谱覆盖范围宽2:使用寿命长其他光源:1:低压汞灯光源:拥有多个特征峰,用于光谱仪器波长校正,或者用作紫外激发光源2:光谱辐射度标准光源:用于光谱仪器系统响应校正3:太阳光模拟器:用于模拟太阳光4:复合光源:根据光谱覆盖的需要,由两个灯经过光路优化复合而成(选自网络)

  • 【讨论】LED 光源算冷光源吗?

    现在体视显微镜配LED 光源的开始流行了,LED 算冷光源吗?LED光源优点: 高节能:节能能源无污染即为环保。直流驱动,超低功耗(单管0.03-0.06 瓦)电光功率转换接近100%,相同照明效果比传统光源节能80%以上。 寿命长:LED光源有人称它为长寿灯,意为永不熄灭的灯。固体冷光源,环氧树脂封装,灯体内也没有松动的部分,不存在灯丝发光易烧、热沉积、光衰等缺点,使用寿命可达6万到10万小时,比传统光源寿命长10倍以上。 多变幻:LED光源可利用红、绿、篮三基色原理,在计算机技术控制下使三种颜色具有256级灰度并任意混合,即可产生256×256×256=16777216种颜色,形成不同光色的组合变化多端,实现丰富多彩的动态变化效果及各种图像。 利环保:环保效益更佳,光谱中没有紫外线和红外线,既没有热量,也没有辐射,眩光小,而且废弃物可回收,没有污染不含汞元素,冷光源,可以安全触摸,属于典型的绿色照明光源。 高新尖:与传统光源单调的发光效果相比,LED光源是低压微电子产品,成功融合了计算机技术、网络通信技术、图像处理技术、嵌入式控制技术等所以亦是数字信息化产品是半导体光电器件“高新尖”技术具有在线编程、无限升级、灵活多变的特点

  • 连续光源原子吸收仪器中的背景校正问题

    连续光源原子吸收仪器中的背景校正问题

    连续光源原子吸收信号本身就具有背景信息,利用这些信息可以进行背景校正,并不需要附加的装置。不过从近些时间论坛里一些讨论来看,许多朋友应该对这个问题并不太清楚。本人有一段时间研究过连续光源原子吸收系统,恰逢其会,写下一些文字加以简单说明,也为有志于深入探讨这项技术的朋友提供一些基础文字。和传统的线光源原子吸收(LSAAS)系统相比,连续光源原子吸收(CSAAS)最大的不同当然是光源,后者采用了氙气电弧灯,除了波长短于200nm以下的少数几条谱线强度较低外,这种光源能够覆盖整个原子吸收光谱谱域。然而这并不意味着仅仅是光源改变那么简单。在LSAAS系统中,由于空心阴极灯(HCL)发射的元素谱线宽度很窄,大约只有几个pm(1pm=0.001nm),因此,从单色器出射狭缝出来的辐射光的光谱成分也是很“单色”的,尽管单色器的光谱通带并不窄,通常不小于0.2nm,但依然相当于几个pm的光谱分辨率。当然,HCL还会产生其他的一些谱线,比如阴极共存元素的发射谱线、内部充入的少量惰性气体的发射谱线以及同一元素的次灵敏线和离子线。不过只要这些谱线和分析所选择的谱线距离大于光谱带宽,就不会影响对分析谱线的测定。连续光源的情况则不同,由于光源辐射整个谱域的光谱,所以常规原子吸收的光谱分辨率根本不能满足要求。这就是说,CSAAS必须使用高分率的色散系统。目前能够提供足够高的光谱分辨率的实用系统只有中阶梯光栅系统,这种系统以大的衍射谱级和大的衍射角获得很高的光谱分辨率,但问题是这种系统的衍射谱级一般在20~80之间,不同谱级的重叠部分很大,自由光谱区域(FSR)很小,因此需要采用谱级分离装置。在中阶梯光栅色散系统中,通常前置一个棱镜色散系统,后者的色散方向和前者相互垂直,起了谱级分离的作用。棱镜色散没有谱级干扰问题,正好用于这个目的。正交耦合的棱镜色散和中阶梯光栅色散系统产生的是一个二维衍射图,而不像常规光栅色散系统那样产生干涉条纹图。举个形象的例子加以说明:前者产生的是二维码图案,后者产生的仅仅是普通的条码图案。如果用固定的PMT来读取光谱信号,就得同时转动光栅和棱镜,由于棱镜色散的非线性,中阶梯光栅的高分辨率,都使得这样的调节机构变得十分复杂,且要求相当精密,因此目前为止没有人采用这种方法。第二种方法是把PMT装在一个可以二维移动的平台上,通过移动PMT读取需要的谱线信息。实际上早期的ICP发射光谱系统也有这样做的。随着半导体技术的发展,CCD图像检测器件的出现,中阶梯光栅耦合CCD器件的系统逐渐成为原子光谱全谱同时检测的主要方案,这种系统能够以很高的分辨率一次读取整个谱域内所有波长位置的信息,而不需要任何移动部件。显然,CSAAS系统意味着连续光源、中阶梯光栅色散系统以及CCD图像检测器,这与LSAAS完全不同。同时,LSAAS中经常使用的D2灯背景校正器、自吸效应背景校正器等以谱线为对象的背景校正方法也不再适用于CSAAS。理论上塞曼效应背景校正技术是可以用于CSAAS的,问题在于CSAAS获取的信息中已经包含了背景信息,因此就无需多次一举了。如附图所示。图中蓝线代表光源的辐射光谱,红线代表背景吸收,绿线代表某原子谱线(中间的一个峰)及其附近两条谱线的吸收光谱。由于原子吸收以吸光值为分析信号,所以要获得准确的元素吸光值信号,就必须测定图中谱线峰值位置(P点)的三个信号,即Ip0、Ipb及Ip,然后用lg(Ip0/Ip)-lg(Ipo/Ip)=lg(Ipb/Ip)=lg(Ipb)-lg(Ip)计算元素的峰值吸光值。Ipo可以在原子化前测定,Ip实时测定,问题是Ipb无法测定。不过因为原子吸收谱线很窄,因此背景吸收曲线(红线)可以看成一条直线,因此可以用谱线两侧的两点(例如图中的h1和h2点)的线性内插估算出Ipb。假设谱线的峰值波长为l0,h1为l1,h2为l2,那么如果测得h1和h2处的信号,就会有:lg(Ipb)=lg(Ih1)+(lg(Ih2)-lg(Ih1))*( l0- l1)/( l2- l1)。如果l0恰好在l1和l2的中间,公式还能简化成:lg(Ipb)=(lg(Ih2)+lg(Ih1))/2。(注:l0、l1、l2中的l为西腊字母lumda)很显然,CSAAS中的背景校正只需要测定谱线峰值处和两侧某两点的实时光信号,利用前述公式就可以扣除背景吸收,甚至不需要测定Ipo,并且这种方法还具有实时校正光源及检测器漂移的功能。所有这一切有个前提,即h1和h2不能被其他原子吸收谱线覆盖。如图中如果选择到侧翼的两个峰范围内,背景校正将会受到干扰,产生很大的误差。http://ng1.17img.cn/bbsfiles/images/2016/05/201605311155_595384_1189445_3.png

  • 【讨论】低压火花光源

    今天在版面中搜索了下关于光源的帖子,内容很多也很杂,有点弄不明白了多频率(脉冲)高能予燃低压火花光源高重复率(HiRep)高能预火花光源电流控制光源(CCS) 智能复合型数字化光源还有斯派克M10使用的SPECTRO 等离子发生器(SPECTRO Plasma Generator)等等这些不同类型的光源的根据什么来分类的呢?还有其他类型的光源吗?现在的应用情况如何?欢迎大家来讨论一下直读光谱用的低压火花光源

  • 水质分析仪器LED光源

    水质分析仪器LED光源

    有谁知道水质分析仪上用的LED光源吗?波长范围从350-940nm,F5圆头透明塑料封装,发光角度小且Δλ也很小,主要是分析仪器专用的LED。http://ng1.17img.cn/bbsfiles/images/2014/03/201403280909_494427_1864512_3.jpg

  • 怎么选择光源

    怎么选择光源

    1、光源均匀性 不均匀的光会造成不均匀的反射。均匀关系到三个方面。第一,对于视野,在摄像头视野范围部分应该是均匀的。简单的说,图像中暗的区域就是缺少反射光,而亮点就是此处反射太强了。第二,不均匀的光会使视野范围内部分区域的光比其他区域多。从而造成物体表面反射不均匀(假设物体表面的对光的反射是相同的)。第三,均匀的光源会补偿物体表面的角度变化,即使物体表面的几何形状不同,光源在各部分的反射也是均匀的。2、被测特征的对比度 对比度对机器视觉检测来说非常重要。机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特征的区分。对比度定义为在特征与其周围的区域之间有足够的灰度量区别。好的照明应该能够保证需要检测的特征突出于其他背景3、机器视觉光源的亮度 当选择两种光源的时候,最佳的选择是选择更亮的那个。当光源不够亮时,可能有三种不好的情况会出现。第一、东莞工业相机的信噪比不够。由于光源的亮度不够,图像的对比度必然不够,在图像上出现噪声的可能性也随即增大。其次,光源的亮度不够,必然要加大工业镜头光圈,从而减小了景深。另外,当光源的亮度不够的时候,自然光等随时光对系统的影响会最大4、光源的波长光源的颜色及测量物体表面的颜色决定了反射到摄像头的光能的大小及波长。白光或某种特殊的光谱在提取某种颜色的特征信息时可能使比较重要的因素。当分析多颜色特征的时候,选择光源的时候,色温是一个比较重要的因素5、使用寿命光源一般需要持续使用。为使图像处理保持一致的精确,视觉系统必须保证长时间获得稳定一致的图像。东莞机器视觉光源连续工作超过三万小时才进入半衰期。如果配合专用控制器间歇使用,可大幅降低光源工作温度,其寿命可延长数倍http://ng1.17img.cn/bbsfiles/images/2011/10/201110271405_326774_2395252_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/10/201110271405_326775_2395252_3.jpg

  • 拉曼光谱光源

    拉曼光谱光源,多采用激光光源,线宽窄,功率高,模式好,波长可选!有提供相关激光器的信息,可讨论讨论!谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制