当前位置: 仪器信息网 > 行业主题 > >

半导电橡塑体积电阻率试验仪

仪器信息网半导电橡塑体积电阻率试验仪专题为您提供2024年最新半导电橡塑体积电阻率试验仪价格报价、厂家品牌的相关信息, 包括半导电橡塑体积电阻率试验仪参数、型号等,不管是国产,还是进口品牌的半导电橡塑体积电阻率试验仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合半导电橡塑体积电阻率试验仪相关的耗材配件、试剂标物,还有半导电橡塑体积电阻率试验仪相关的最新资讯、资料,以及半导电橡塑体积电阻率试验仪相关的解决方案。

半导电橡塑体积电阻率试验仪相关的资讯

  • 得利特升级多款液体介质体积电阻率测定仪
    石化产业是国民经济重要的支柱产业,产品覆盖面广,资金技术密集,产业关联度高,对稳定经济增长、改善人民生活、保障国防安全具有重要作用。但仍存在产能结构性过剩、自主创新能力不强、产业布局不合理、安全环保压力加大等问题。石油化工产业作为高污染性产业,面临结构性改革的矛盾,国家政策引导对于促进石化产业持续健康发展具有重要意义。得利特顺应发展研发生产了系列石油产品分析仪器。最近技术人员仍然继续着研发工作并且将原来的产品做了部分升级改造。A1150液体介质体积电阻率测定仪符合DL/T421标准,适用于测定绝缘油和抗燃油体积电阻率,可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点采用双CPU微型计算机控制。控温、检测、打印、冷却等自动进行。采用**转换器,实现体积电阻率的高精度测量。具有制冷和加热功能。整机结构合理,安全方便。技术参数测量范围:0.5×108~1×1014Ωcm分辨率:0.001×107Ωcm重复性: ≤15% 再现性: ≤25%控温范围:0~100℃ 控温精度:±0.5℃电极杯参数:极杯类型:Y-18      极杯材料:不锈钢显示方式:液晶显示打印机:热敏型、36个字符、汉字输出环境温度:5℃~40℃ 环境湿度:≤85%工作电源:AC220V±10% ,50Hz功 率:500W外形尺寸:500mm×280mm×330mm重  量:17.5kgA1151油体积电阻率测定仪按DL421.91《绝缘油体积电阻率测定法》的电力行业标准为依据,根据有源电桥的原理研制成功的一种新型电阻率测定专用仪器。具有结构简单、线性度好、灵敏度高、测试结果稳定、操作安全等优点,其性能远高于通常的电压电流法。仪器由参数测量系统、油杯加热控温系统两部分组成,具有自动计时、液晶显示功能。可测量绝缘油体积电阻率。 技术参数测试电压:500VDC测试范围: 10 7~10 13Ωcm重复性: >10 12Ωcm ≯25% ,<10 12Ωcm ≯15% 加热功率: 100W 控温范围: 10℃~100℃ 控温精度: ±0.5℃ 测量误差: ≤±10%测试电极杯: 3个环境温度:0~40℃相对湿度:≤85% 工作电源: AC220V±10%,50Hz
  • 得利特升级油体积电阻率测定仪正式投入市场
    石油产品质量分析在其生产、储运和市场流通环节起着重要作用,石油产品分析仪器现已广泛应用于油田、炼油厂、陆海空交通运输、海关及油品质量监督部门。作为中国仪器仪表行业重要组成部分的油品分析仪器,在疫情席卷全球的情况下,仍然在各大行业中起到必不可少的作用。随着各项技术工艺的发展,仪器仪表产品也在不断的更新换代。各大分析仪器品牌如雨后春笋,在市场中同台竞技,用户可选择的产品也更多了。企业不断推出自己的品牌产品。在刚刚过去的半年里,又有不少企业研发出多项仪器仪表新品。 得利特为了跟上油品分析仪器发展大潮,不断积累经验,创新技术,研发升级自产油品分析仪,近日,又有一款升级产品投入市场,它就是油体积电阻率测定仪。下面得利特为大家讲一下它的升级点在哪里?A1151油体积电阻率测定仪按DL421.91《绝缘油体积电阻率测定法》的电力行业标准为依据,根据有源电桥的原理研制成功的一种新型电阻率测定专用仪器。技术参数测试电压:500VDC测试范围: 10 7~10 13Ωcm重 复 性:>10 12Ωcm ≯25% ,<10 12Ωcm ≯15% 加热功率: 100W 控温范围: 10℃~100℃ 控温精度: ±0.5℃ 测量误差: ≤±10%测试电极杯: 3个环境温度:0~40℃相对湿度:≤85% 工作电源: AC220V±10%,50Hz 升级点:1.采用双CPU微型计算机控制。2.控温、检测、打印、冷却等自动进行。3.采用**转换器,实现体积电阻率的高精度测量。4.具有制冷和加热功能。5.整机结构合理,安全方便。
  • 技术更新|介损及体积电阻率测定仪可测介质损耗因数
    如今市场需求总体继续扩大,但增速下降。一方面,随着城镇化和基础设施建设的不断深入,基本原材料的需求还将保持一定增速,但增速会有所降低,人们日常生活用品也不会有太大的提高;另一方面,人们的消费升级以及生活方式和消费模式的改变,将提高或改变市场需求,促进与经济发展相配套的石化化工产品升级换代。因此,预计“十四五”期间,传统石化化工产品,如成品油、大宗化工产品等,在很长的一段时间内消费保持低速增长态势,甚至有些个别产品还会有略微下降;而在与智能制造、电子通信、中高生活消费品和医药保健等有关的化工产品,主要是电子化学品、纺织化学品、化妆品原材料、快餐用品、快递服务用品、个人防护和具备特殊功能的化工新材料等,都将会有很大增幅。同时安全生产、绿色发展的要求日益提高。石化化工生产“易燃、易爆、有毒、有害”特点突出,尤其是近几年,化工行业事故频发,特大恶性事故连续不断,给人们生命财产造成重大损失,在社会各界造成极其恶劣的影响。随着我国城镇化的快速推进,原来远离城市的石化化工企业已逐渐被新崛起的城镇包围,带来了许多隐患。“十四五”期间,社会各界将更加紧盯各地石化化工企业,石化化工企业进入化工园区,远离城镇布局将成为必然要求,安全生产也将是企业必须加强的一门必修课。绿色发展已经在社会上形成共识,坚持绿色发展是行业必须要强化的理念,一方面要补足以往的环保欠账;另一方面还要针对不断提高环保标准买单,这对行业来说,是一个巨大的挑战。A1170自动油介损及体积电阻率测定仪符合GB/T5654标准,用于测定在试验温度下呈液态的绝缘材料的介质损耗因数及体积电阻率,包括诸如变压器、电缆及其它电气设备内的绝缘液体。可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点1、采用中频感应加热,室温加热至控温(90℃)并恒温自动测量仅需 15分钟。2、同时测量油介损及体积电阻率或任选一项。3、采用大屏幕液晶显示器,只需按照中文菜单提示,输入指令,仪器即可自动工作。4、具有通讯功能,可配置电脑进行实时监测,动态观察油介损值随油温变化并描绘成图。5、自动显示测量结果,并进行数据打印保存。6、具有过压、过流、短路保护,并具有高压指示,还具有报警提示功能。技术参数体积电阻率测量电压:DC500V±10%体积电阻率范围:2.5×106~2×1013Ω.m精度: 高于±10%电阻测量范围:2M~2TΩ介损测量范围:0.00001~1介损值分辨率:0.00001电容测量范围:10.0pF~200.0pF电容值分辨率:0.01pF空杯电容:60±5pF 介损值测量精度:±(1%读值+0.02%)电容值测量精度:±(1%读值+1pF)工作电源:AC220V±10%,50Hz测控温范围:室温~119.9℃测控温稳定度:±0.5 相对湿度:≤85%介损测量电压:1.5kV、2.0kV、2.5kV(常规使用2.0kV)(正接法) 环境温度:-5℃~50℃外形尺寸:480mm×400mm×420mm重  量:25.7kg
  • 【技术指导】油介损及体积电阻率测定仪的油杯三种清洗方法及常见故障
    油介损及体积电阻率测定仪油杯清洗方法、常见故障A1170技术指导产品介绍产品名称:油介损及体积电阻率测定仪产品型号:A1170概 述:油介损及体积电阻率测定仪用于测定在试验温度下呈液态的绝缘材料的介质损耗因数及体积电阻率,包括变压器、电缆及其它电气设备内的绝缘液体。可广泛应用于电力、石油、化工、商检及科研等部门。适应标准:GB/T5654油杯三种清洗方法测量前,应对油杯进行清洗,这一步骤非常重要。因为绝缘油对极微小的污染都有极为敏感的反应。因此必须严格按照下述方法要点进行。方法一:⑴ 完全拆卸油杯电极;⑵ 用中性擦皂或洗涤剂清洗。磨料颗粒和磨擦动作不应损伤电极表面;⑶ 用清水将电极清洗几次;⑷ 用无水酒精浸泡各零件;⑸ 电极清洗后,要用丝绸类织物将电极各部件的表面擦拭干净,并注意将零件放置在清洁的容器内,不要使其表面受灰尘及潮气的污染;⑹ 将各零部件放入100℃左右的烘箱内,将其烘干。有时由于油样很多,所以在测试中往往会一个接一个油样进行测试。此时电极的清洗可简化。具体做法如下:⑴ 将仪器关闭,将整个油杯都从加热器中拿出,同时将内电极从油杯中取出;⑵ 将油杯中的油倒入废油容器内,用新油样冲洗油杯几次;⑶ 装入新油样;⑷ 用新油样冲洗油杯内电极几次,然后将内电极装入油杯。这种以油洗油的方式可大大提高了测量速度,但如遇到特别脏的油样或长时间不用时,应使用方法一。方法二:⑴ 将电极杯拆开(参见油杯示意图)。⑵ 用化学纯的石油醚和苯彻底清洗油杯的所有部件。⑶ 用丙酮再次清洗油杯,然后用中性洗涤剂漂洗干净。⑷ 用5%的磷酸钠蒸馏水溶液煮沸5分钟,然后,用蒸馏水洗几次。⑸ 用蒸馏水将所有部件清洗几次。⑹ 将部件在温度为105~110℃的烘箱中,烘干60~90分钟。⑺ 各部件洗净后,待温度降至常温时将其组装好。方法三:超声波清洗方法⑴ 拆开油杯。⑵ 用溶剂冲洗所有部件。⑶ 在超声波清洗器中用肥皂水将所有部件振荡20分钟;取出部件,有自来水及蒸馏水清洗;在用蒸馏水振荡20分钟。方法四:溶剂清洗法⑴ 拆开油杯。⑵ 用溶剂冲洗所有部件,更换二次溶剂。⑶ 先用丙酮,再用自来水洗涤所有部件。接着用蒸馏水清洗。⑷ 将部件在温度为105~110℃的烘箱中,烘干60~90分钟。 当试验一组同类没有使用过的液体样品时,只要上次试验过的样品的性能优于待测油的规定值,可使用同一个电极杯而无需中间清洗。如果试验过的前一样品的性能值劣于待测油的规定值,则在做下一个试验之前必须清洗电极杯。常见故障1、屏幕显示“电极杯短路”答:首先查看内电极与外电极的定位槽是否对准,再检查“内电极”安装是否有松动。2、屏幕显示“请进行【空杯校准】”答:空杯电容值不在60±5pF的范围内的时候,需要空杯校准;①油杯的内外电极未放好或内电极未组装好,有放电现象;②油杯不干净,在内外电极之间有杂质需要进行清洗 。3、蜂鸣器响5声后仪器返回到开机界面。答:①检查空杯电容值是否在60±5pF范围之内,②检查油杯是否放 好,有无放电现象。4、在做直流电阻率时,电化60秒时间不变化。答:检查仪器的时钟是否在运转,调整时钟。5、被设电压参数个位显示不为零时,怎么办?答:用【减小】键使被设电压值变为最小,再用【增加】键调整即可。
  • 【新品上线】得利特最新推出液体介质体积电阻率测定仪
    新品推荐——液体介质体积电阻率测定仪01产品介绍产品名称:液体介质体积电阻率测定仪型号:A1153执行标准:DL/T 421-2009《电力用油体积电阻率测定法》A1153液体介质体积电阻率测定仪适用于测定绝缘油和抗燃油体积电阻率。可广泛应用于电力、石油、化工、商检及科研等部门。02仪器特点1采用双CPU微型计算机控制。反应速度快,抗干扰强。2进样,控温、检测、打印、冷却,清洗自动进行,操作简便。3采用三电极双控温结构,控温精度高,温度波动≤0.5℃,避免因温度波动影响结果。4电极采用特殊工艺加工,表面光滑度Ra≤0.012μm,确保电极间隙2mm,从而使结果更准确。5电极杯绝缘材料选用PTFE高分子材料,受热不变型,且不吸水,既能保证空杯电容又有利于清洗油杯。6同时具有制冷和加热功能,既可以做绝缘油也可做抗燃油。一机两用经济实惠。7具有开盖防触电保护功能,开盖自动切断高压。03技术参数•测量范围:0.5×106~1×1015Ωm •分 辨 率:0.001×107Ωm•重 复 性:>1010 Ωm,≯25% <1010 Ωm,≯15% •再 现 性:≤25%•控温范围:10~100℃ •控温精度:±0.5℃•空杯电容:30pF±1pF •实验电压:DC 500V•显示方式:液晶显示•打 印 机:热敏型、36个字符、汉字输出 •工作电源:AC220V±10%,50Hz•功 率:500W•外形尺寸:500mm×380mm×350mm•重 量:17.5kgEND
  • 绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?
    绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?绝缘电阻仪器体积电阻表面电阻测试仪使用前请仔细阅读以下内容,否则将造成仪器损坏或电击情况。1. ◇检查仪器后面板电压量程是否置于10V档,电流电阻量程是否置于104档。2. ◇接通电源调零,(注意此时主机不得与屏蔽箱线路连接)在“Rx”两端开路的情况下,调零使电流表的显示为0000。然后关机。3. ◇应在“Rx”两端开路时调零,一般一次调零后在测试过程中不需再调零。 4. ◇测体积电阻时测试按钮拨到Rv边,测表面电阻时测试按钮拨到Rs边,5. ◇将待测试样平铺在不保护电极正中央,然后用保护电极压住样品,再插入被保护电极(不保护电极、保护电极、被保护电极应同轴且确认电极之间无短路)。6. ◇电流电阻量程按钮从低档位逐渐拨,每拨一次停留1-2秒观察显示数字,当被测电阻大于仪器测量量程时,电阻表显示“1”,此时应继续将仪器拨到量程更高的位置。测量仪器有显示值时应停下,在1min的电化时间后测量电阻,当前的数字乘以档次即是被测电阻。7. ◇测试完毕先将量程拨至(104)档,然后将测量电压拨至10V档, 后将测试按钮拨到中央位置后关闭电源。然后进行下一次测试。8. ◇接好测试线,将测试线将主机与屏蔽箱连接好。量程置于104档,打开主机后面板电源开关按钮。从仪器后面板调电压按钮到所要求的测量电压。(比如:GBT 1692-2008 硫化橡胶 绝缘电阻率的测定 标准中注明要求在500V电压进行测定,那么电压就要升到500V)9. ◇禁止将“RX”两端短路,以免微电流放大器受大电流冲击。10. ◇不得在测试过程中不要随意改动测量电压。11. ◇测量时从低次档逐渐拨往高次档。12. ◇接通电源后,手指不能触及高压线的金属部分。13. ◇严禁在试测过程随意改变电压量程及在通电过程中打开主机。14. ◇在测量高阻时,应采用屏蔽盒将被测物体屏蔽。15. ◇不得测试过程中不能触摸微电流测试端。16. ◇严禁电流电阻量程未在104档及电压在10V档,更换试样。技术指标1、电阻测量范围 0.01×104Ω~1×1018Ω2、电流测量范围为 2×10-4A~1×10-16A3、仪器尺寸 285mm× 245mm× 120 mm4、内置测试电压 100V、250V、500V、1000V5、基本准确度 1% (*注)6、内置测试电压 100V、250、500、1000V7、质量 约2.5KG8、供电形式 AC 220V,50HZ,功耗约5W9、双表头显示 3.1/2位LED显示安全注意事项1. 使用前务必详阅此说明书,并遵照指示步骤,依次操作。2. 请勿使用非原厂提供之附件,以免发生危险。3. 进行测试时,本仪器测量端高压输出端上有直流高压输出,严禁人体接触 ,以免触电。4. 为避免测试棒本身绝缘泄漏造成误差,接仪器测量端输入的测试棒应尽可 能悬空,不与外界物体相碰。5. 当被测物绝缘电阻值高,且测量出现指针不稳现象时,可将仪器测量线屏 蔽端夹子接 上。 例如: 对电 缆测缆 芯与 缆壳的 绝缘 时,除 将被 测物两 端分 别接于 输入 端与高压 端, 再将电 缆壳 ,芯之 间的 内层绝 缘物 接仪器 “G”,以消 除因 表面漏 电而 引起的测 量误 差。也 可用 加屏蔽 盒的 方法, 即将 被测物 置于 金属屏 蔽盒 内,接 上测 量线。
  • 经典库尔特原理及其发展——颗粒表征电阻法(下)
    前文回顾:发明人库尔特的传奇人生——颗粒表征电阻法(上)一、经典库尔特原理在经典电阻法测量中,壁上带有一个小孔的玻璃管被放置在含有低浓度颗粒的弱电解质悬浮液中,该小孔使得管内外的液体相通,并通过一个在孔内另一个在孔外的两个电极建立一个电场。通常是在一片红宝石圆片上打上直径精确控制的小孔,然后将此圆片通过粘结或烧结贴在小孔管壁上有孔的位置。由于悬浮液中的电解质,在两电极加了一定电压后(或通了一定电流后), 小孔内会有一定的电流流过(或两端有一定的电压),并在那小孔附近产生一个所谓的“感应区”。含颗粒的液体从小孔管外被真空或其他方法抽取而穿过小孔进入小孔管。当颗粒通过感应区时,颗粒的浸入体积取代了等同体积的电解液从而使感应区的电阻发生短暂的变化。这种电阻变化导致产生相应的电流脉冲或电压脉冲。图1 颗粒通过小孔时由于电阻变化而产生脉冲在测量血球细胞等生物颗粒时所用的电解质为生理盐水(0.9%氯化钠溶液),这也是人体内液体的渗透压浓度,红细胞可以在这个渗透压浓度中正常生存,浓度过低会发生红细胞的破裂,浓度过高会发生细胞的皱缩改变。在测量工业颗粒时,通常也用同样的电解质溶液,对粒度在小孔管测量下限附近的颗粒,用 4%的氯化钠溶液以增加测量灵敏度。当颗粒必须悬浮在有机溶剂内时,也可以加入适用于该有机溶液的电解质后,再用此有机 溶液内进行测量。通过测量电脉冲的数量及其振幅,可以获取有关颗粒数量和每个颗粒体积的信息。测量过程中检测到的脉冲数是测量到的颗粒数,脉冲的振幅与颗粒的体积成正比,从而可以获得颗粒粒度及其分布。由于每秒钟可测量多达 1 万个颗粒,整个测量通常在数分钟内可以完成。在使用已知粒度的标准物质进行校准后,颗粒体积测量的准确度通常在 1-2%以内。通过小孔的液体体积可以通过精确的计量装置来测量,这样就能从测量体积内的颗粒计数得到很准确的颗粒数量浓度。 为了能单独测量每个颗粒,悬浮液浓度必须能保证当含颗粒液体通过小孔时,颗粒是一个一个通过小孔,否则就会将两个颗粒计为一个,体积测量也会发生错误。由于浓度太高出现的重合效应会带来两种后果:1)两个颗粒被计为一个大颗粒;2)两个本来处于单个颗粒探测阈值之下而测不到的颗粒被计为一个大颗粒。颗粒通过小孔时可有不同的途径,可以径直地通过小孔,但也可能通过非轴向的途径通过。非轴向通过时不但速度会较慢,所受的电流密度也较大,结果会产生表观较大体积的后果,也有可能将一个颗粒计成两个[1]。现代商业仪器通过脉冲图形分析可以矫正由于非轴向流动对颗粒粒度测量或计数的影响。图2 颗粒的轴向流动与非轴向流动以及产生的脉冲经典库尔特原理的粒度测量下限由区分通过小孔的颗粒产生的信号与各种背景噪声的能力所决定。测量上限由在样品烧杯中均匀悬浮颗粒的能力决定。每个小孔可用于测量直径等于 2%至 80%小孔直径范围内的颗粒,即 40:1 的动态范围。实用中的小孔直径通常为 15 µm 至 2000 µm,所测颗粒粒度的范围为 0.3 µm 至 1600 µm。如果要测量的样品粒度分布范围比任何单个小孔所能测量的范围更宽,则可以使用两个或两个以上不同小孔直径的小孔管,将样品根据小孔的直径用湿法筛分或其他分离方法分级,以免大颗粒堵住小孔,然后将用不同小孔管分别测试得到的分布重叠起来,以提供完整的颗粒分布。譬如一个粒径分布为从 0.6 µm 至 240 µm 的样品,便可以用 30 µm、140 µm、400 µm 三根小孔管来进行测量。 库尔特原理的优点在于颗粒的体积与计数是每个颗粒单独测量的,所以有极高的分辨率,可以测量极稀或极少个数颗粒的样品。由于体积是直接测量而不是如激光衍射等技术的结果是通过某个模型计算出来的,所以不受模型与实际颗粒差别的影响,结果一般也不会因颗粒形状而产生偏差。该方法的最大局限是只能测量能悬浮在水相或非水相电解质溶液中的颗粒。使用当代微电子技术,测量中的每个脉冲过程都可以打上时间标记后详细记录下来用于回放或进行详细的脉冲图形分析。如果在测量过程中,颗粒有变化(如凝聚或溶解过程,细胞的生长或死亡过程等),则可以根据不同时间的脉冲对颗粒粒度进行动态跟踪。 对于球状或长短比很接近的非球状颗粒,脉冲类似于正弦波,波峰的两侧是对称的。对很长的棒状颗粒,如果是径直地通过小孔,则有可能当大部分进入感应区后,此颗粒还有部分在感应区外,这样产生的脉冲就是平台型的,从平台的宽度可以估计出棒的长度。对所有颗粒的脉冲图形进行分析,可以分辨出样品中的不同形状的颗粒。 大部分生物与工业颗粒是非导电与非多孔性的。对于含贯通孔或盲孔的颗粒,由于孔隙中填满了电解质溶液,在颗粒通过小孔时,这些体积并没有被非导电的颗粒物质所替代而对电脉冲有所贡献,所以电感应区法测量这些颗粒时,所测到的是颗粒的固体体积,其等效球直径将小于颗粒的包络等效球直径。对于孔隙率极高的如海绵状颗粒,测出的等效球直径可以比如用激光粒度仪测出的包络等效球小好几倍。 只要所加电场的电压不是太高,通常为 10 V 至 15 V,导电颗粒譬如金属颗粒也可以用电阻法进行测量,还可以添加 0.5%的溴棕三甲铵溶液阻止表面层的形成。当在一定电流获得结果后,可以使用一半的电流和两倍的增益重复进行分析,应该得到同样的结果。否则应使用更小的电流重复该过程,直到进一步降低电流时结果不变。 在各种制造过程中,例如在制造和使用化学机械抛光浆料、食品乳液、药品、油漆和印刷碳粉时,往往在产品的大量小颗粒中混有少量的聚合物或杂质大颗粒,这些大颗粒会严重影响产品质量,需要进行对其进行粒度与数量的表征。使用库尔特原理时,如果选择检测阈值远超过小颗粒粒度的小孔管(小孔直径比小颗粒大 50 倍以上),则可以含大量小颗粒的悬浮液作为基础液体,选择适当的仪器设置与直径在大颗粒平均直径的 1.2 倍至 50 倍左右的小孔,来检测那些平均直径比小颗粒至少大 5 倍的大颗粒 [2]。 二、库尔特原理的新发展 可调电阻脉冲感应法可调电阻脉冲感应法(TRPS)是在 21 世纪初发明的,用库尔特原理测量纳米颗粒的粒度与计数。在这一方法中,一个封闭的容器中间有一片弹性热塑性聚氨酯膜,膜上面有个小孔,小孔的大小(从 300 nm 至 15 m)可根据撑着膜的装置的拉伸而变来达到测量不同粒度的样品。与经典的电阻法仪器一样,在小孔两边各有一个电极,测量由于颗粒通过小孔而产生的电流(电压) 变化。它的主要应用是测量生物纳米颗粒如病毒,这类仪器不用真空抽取液体,而是用压力将携带颗粒的液体压过小孔。压力与电压都可调节以适用于不同的样 品。由于弹性膜的特性,此小孔很难做到均匀的圆形,大小也很难控制,每次测得的在一定压力、一定小孔直径下电脉冲高度与粒度的关系,需要通过测量标准颗粒来进行标定而确定。图3 可调电阻脉冲感应法示意图当小孔上有足够的压力差时,对流是主要的液体传输机制。 由于流体流速与施加的压力下降成正比,颗粒浓度可以从脉冲频率与施加压力之间线性关系的斜率求出。但是需要用已知浓度的标准颗粒在不同压力下进行标定以得到比例系数[3]。 这个技术在给定小孔直径的检测范围下限为能导致相对电流变化 0.05%的颗粒直径。检测范围的上限为小孔孔径的一半,这样能保持较低程度的小孔阻塞。典型的圆锥形小孔的动态范围 为 5:1 至 15:1,可测量的粒径范围通常从 40 nm 至 10 µm。 此技术也可在测量颗粒度的同时测量颗粒的 zeta 电位,但是测量的准确度与精确度都还有待提高,如何排除布朗运动对电泳迁移率测量的影响也是一个难题[4]。微型化的库尔特计数仪随着库尔特原理在生物领域与纳米材料领域不断扩展的应用,出现了好几类小型化(手提式)、微型化的库尔特计数仪。这些装置主要用于生物颗粒的检测与计数,粒度不是这些应用主要关心的参数,小孔的直径都在数百微米以内。与上述使用宏观压力的方法不同的是很多这些设计使用的是微流控技术,整个装置的核心部分就是一个微芯片,携带颗粒的液体在微通道中流动,小孔是微通道中的关卡。除了需要考虑液体微流对测量带来的影响,以及可以小至 10 nm 的微纳米级电极的生产及埋入,其余的测量原理和计算与经典的库尔特计数器并无两致。这些微芯片可以使用平版印刷、玻璃蚀刻、 防蚀层清除、面板覆盖等步骤用玻璃片制作[5], 也可以使用三维打印的方式制作[6]。一些这类微流控电阻法装置已商业化。图4 微流计数仪示意图利用库尔特原理高精度快速的进行 DNA 测序近年来库尔特原理还被用于进行高精度、快速、检测误差极小的 DNA 或肽链测序。这个技术利用不同类型的纳米孔,如石墨烯形成的纳米孔或生物蛋白质分子的纳米孔,例如耻垢分枝杆菌孔蛋白 A(MspA)。当线性化的 DNA-肽复合物缓慢通过纳米孔时,由于不同碱基对所加电场中电流电压的响应不同,通过精确地测量电流的变化就可对肽链测序。由于此过程不影响肽链的完整性,如果将实验设计成由于电极极性的变化而肽链可以来 回反复地通过同一小孔,就可以反复地读取肽链中的碱基,在单氨基酸变异鉴定中的检测误差率可小于 10-6[7,8]。图5 纳米孔 DNA 测序库尔特原理的标准化 早在 2000 年,国际标准化组织就已成文了电感应区法测量颗粒分布的国际标准(ISO 13319),并得到了广泛引用。在 2007 年与 2021 年国际标准化组织又前后两次对此标准进行了修订。中国国家标委会也在 2013 年对此标准进行了采标,成为中国国家标准(GB/T 29025-2012)。参考文献【1】Berge, L.I., Jossang, T., Feder, J., Off-axis Response for Particles Passing through Long Apertures in Coulter-type Counters, Meas Sci Technol, 1990, 1(6), 471-474. 【2】Xu, R., Yang, Y., Method of Characterizing Particles, US Patent 8,395,398, 2013. 【3】Pei, Y., Vogel, R., Minelli, C., Tunable Resistive Pulse Sensing (TRPS), In Characterization of Nanoparticles, Measurement Processes for Nanoparticles, Eds. Hodoroaba, V., Unger, W.E.S., Shard, A.G., Elsevier, Amsterdam, 2020, Chpt.3.1.4, pp117-136.【4】Blundell, E.L.C.J, Vogel, R., Platt, M., Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing, Langmuir, 2016, 32(4), 1082–1090. 【5】Zhang, W., Hu, Y., Choi, G., Liang, S., Liu, M., Guan, W., Microfluidic Multiple Cross-Correlated Coulter Counter for Improved Particle Size Analysis, Sensor Actuat B: Chem, 2019, 296, 126615. 【6】Pollard, M., Hunsicker, E., Platt, M., A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics, ACS Sens, 2020, 5(8), 2578–2586. 【7】Derrington, I.M., Butler, T.Z., Collins, M.D., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J.H., Nanopore DNA sequencing with MspA, P Natl Acad Sci, 107(37), 16060-16065, 2010. 【8】Brinkerhoff, H., Kang, A.S.W., Liu, J., Aksimentiev, A., Dekker, C., Multiple Rereads of Single Proteins at Single– Amino Acid Resolution Using Nanopores, Science, 374(6574), 1509-1513, 2021. 作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。点击图片查看更多表征技术
  • 绝缘电阻测试仪测量常见的有哪些问题?
    绝缘电阻测试仪测量常见的有哪些问题?1 为什么在测量同一物体时用不同的电阻量程有不同的读数? 这是因为测量电阻时为防止过电压损坏仪器,如果出现过量程时仪器内保护电路开始工作,将测试电压降下来以保护机内放大器。在不同的电压下测量同一物体会有不同的结果。而且当测量电阻时若读数小于199,既只为三位数且di一位数为1 时,其准确度要下降。所以在测量电阻时当di一次读数从1 变为某一读数时,不应再往更高的量程扭开关以防对仪器造成过大的电流冲击。在实际使用时,即读数位数多的比读数位数少的准确度高。2为什么测量完毕时一定要将量程开关再拨到104档后才能关电源? 这是因为在测量时被测物体及仪器输入端都有一定的电容,这个电容在测量时已被充电到测量电时的电压值,如果仪器不拨到104挡后关电源这个充电后的电容器会对仪器内的放大器放电而造成仪器损坏。当被测量物体电容越大,测试电压越高时,电容器所储藏的电能越大,更容易损坏仪器,特别是在电阻的高量程或电流的低量程时因仪器非常灵敏,仪器过载而损坏的可能性更大。所以一定要将量程开关再拨到104挡后才能关电源。3为什么测量时仪器的读数总是不稳? 一般的材料其导电性不是严格像标准电阻样在一定的电压下有很稳定的电流,有很多材料特别是防静电材料其导电性不符合欧姆定律,所以在测量时其读数不稳。 这不是仪器的问题,而是被测量物体的性能决定的。有的标准规定以测量1分钟时间的读数为准。通常在测量高电阻或微电流时测量准确度因重复性不好,对测量读数只要求2位或3位。另外在测量大电阻时如果屏蔽不好也会因外界的电磁信号对仪器测量结果造成读数不稳。4为什么测量一些物体的电流时用不同的量程也会出现测出结果相差较大? 这是因为一般物体输出的电流不是恒定流,而仪器有一定内阻,若在仪器上所选量程的内阻过大以至于在仪器上的电压降影响被测物体的输出电流时会造成测量误差。一般电流越小的量程内阻越高,所以在测量电流时应选用电流大的量程。在实际使用时即只要电流表有读数时,读数位数少的小的比读数位数多的准确度高。 5 为什么测量完毕要将电压量程开关再拨到10V档后关闭电源? 这是因为机内的电容器充有很高的电压(zui高电压达1200V以上),这些电容器的所带的电能保持较长的时间,如果将电压量程开关再拨到10V档后关闭电源,则会将机内的高压电容器很快放电,不会在测量的高压端留有很危险的电压造成电击。如果仅拨电源线而不是将电压调至10V档,虽然断了电源,但机内高压电容器还有会因长时间保持很高的电压,将会对人员或其它物体造成电击或损坏。在仪器有问题时也不要随便打开机箱因机内高压造成电击,要将仪器找专业技术人员或寄回厂家修理。6为什么在测量电阻过程中不要改变对被测物的测试电压? 在测量电阻过程中如果改变对被测物的测试电压,无论电压变高或变低时都将会产生大脉冲电流,这个大的电流很有可能使仪器过量程甚至更损坏仪器。另一方面如果电压突然变化也会通过被测量物体的(分布)电容放电或反向放电对测量仪器造成冲击而损坏仪器。有的物体的耐压较低,当您改变测量电压时有右能击穿而产生大电流损坏仪器。如果要改变测量电压,在确保被测量物体不会因电压过高击穿时,要先将量程开关拨到104档后关闭电源,再从仪器后面板调整到所要求的电压。有的材料是非线性的,即电压与电流是不符合欧姆定律,有改变电压时由于电流不是线性变化,所以测量的电阻也会变化。
  • 方阻测量仪R50 | 续写KLA产品创新的光辉历史
    薄膜方块电阻和厚度测量 —KLA45年电阻测量技术创新的桌面型解决方案 在半导体芯片等器件工艺中,后道制程中的金属连接是经过金属薄膜沉积,图形化和蚀刻工艺,最后在器件元件之间得到导电连接。对于半导体、PCB、平板显示器、太阳能应用和研发等不同行业,对各种金属层(包括导电薄膜、粘附层和其他导电层)都有各种各样的电阻和厚度的量测需求,KLA Instruments&trade Filmetrics 事业部能够提供先进的薄膜电阻测量解决方案。金属薄膜的电阻测量主要包括两种技术:四探针法和涡流法。两种测量技术各有其优势,适用于不同的应用场景。我们先来了解一下这两种技术的测量原理。问什么是四探针测量技术? 四探针测量技术已经存在了 100 多年,由于其操作简单以及固有的准确性,一直备受青睐。如下图所示,四探针与导电表面接触,电流在两个引脚之间流过,同时测量另外两个引脚之间的电压。标准的(左)和备用的(右)四探针测量原理图。R50具有双配置测量方法,通常用于薄膜边缘出现电流集聚或引脚间距变化需要校正的情况。引脚的排列方式通常是线性排列或方形排列,此处主要讨论 R50 探针使用的线性排列。对于大多数应用而言,使用的是标准测量配置 (上图左)。而备用测量配置(上图右)可作为 R50 双配置测量方法的一部分,用于薄膜边缘电流集聚或需要校正引脚间距变化的情况。此处展示的测量结果仅使用了标准测量配置。问什么是涡流测量技术? 涡流 (EC) 技术是指线圈中的交变电流会在导电层中产生交变涡流。这些交变涡流反过来会产生一个磁场,从而改变驱动线圈的阻抗,这与该层的方块电阻成正比。涡流技术通过施加交变磁场,测量导电层中感应的涡流。线圈中的交变驱动电流会在线圈周围产生交变初级磁场。当探测线圈接近导电表面时,导电材料中会感应出交变电流 (涡流)。这些涡流会产生自己的交变次级磁场并和线圈耦合, 从而产生与样品的方块电阻成正比的信号变化。导电层越导电,涡流的感应越强,驱动线圈的阻抗变化就越大。 自1975年KLA的第一台电阻测试仪问世以来,我们的电阻测试产品已经革 命性地改变了导电薄膜电阻和厚度的测量方式。而R50方块电阻测试仪则是KLA超过45年电阻测量技术发展的创新之作。R50提供了10个数量级电阻跨度范围使用的4PP四探针测试技术,以及高分辨率和高灵敏度的EC涡流技术,续写了KLA在产品创新能力和行业先锋地位的历史。 R50 方块电阻测量数据分析和可视化 无论是四探针法还是涡流法,方块电阻 (Rs) 测量完成后, 用户根据自己需求,可以直接导出方块电阻值,也可以使用 RsMapper 软件中的转换功能,将数据直接转换为薄膜厚度:Rs = ρ/t其中 ρ 是电阻率,t 是薄膜厚度。上图显示了 2μm 标准厚度铝膜的方块电阻分布图和薄膜厚度分布图。根据方块电阻数据(左),利用标准电阻率(中),将数据转换为薄膜厚度分布图(右)。在某些应用中,将数据显示为薄膜厚度分布图可能更有助于观测样品的均匀性。RsMapper 软件还提供差异分布图,即利用两个特定晶圆的测绘数据绘制成单张分布图来显示两者之间的差异。此功能可以用来评估蚀刻或抛光工艺前后的方块电阻变化。问如何选择适当的测量技术?R50 分成2个型号:R50-4PP 是接触式四探针测量系统 ;R50-EC是非接触式涡流测量系统。R50-4PP能测量的最大方块电阻为 200MΩ/sq.,因而非常适合比较薄的金属薄膜。对于非常厚的金属薄膜,电压差值变得非常小,这会限制四探针技术的测量。它只能测量厚度小于几个微米的金属膜,具体还要取决于金属的电阻率。由于非常薄的金属薄膜产生的涡流很小,加上R50-EC 的探头尺寸非常小,所以使用涡流方法测量方块电阻时,金属厚度最薄的极限大约在 100 nm (或约10 Ω/sq.,与金属材料性质有关)。对于非常厚的金属薄膜,涡流信号会增加,因此对可测量的金属薄膜的最大厚度实际上没有限制。在四探针和涡流技术都可使用的情况下,一个决定因素就是避免因引脚接触样品而造成损伤或污染。对于这类样品,建议使用涡流技术。对于可能会产生额外涡流信号的衬底样品,并且在底部有绝缘层的情况下,则建议使用四探针技术。简而言之,Filmetrics R50 系列可以测量大量金属层。对于较薄的薄膜,它们的电阻较大而四探针的测量范围较大,因而推荐使用 R50-4PP(四探针)。对于非常厚的薄膜,或者需要非接触式测量的柔软或易损伤薄膜,推荐使用 R50-EC(涡流技术)。
  • 电阻为零的超导微处理器问世 能效高出半导体同类产品八十倍
    根据最近的一项估计,目前数据中心的耗能已高达全球电力的2%,这一数字在10年内有望攀升到8%。为逆转这种趋势,科学家们正考虑以全新的方式简化数据中心的微处理器。日本研究人员将这一想法发挥到了极致,创建了一种电阻为零的超导微处理器。基于AQFP的MANA微处理器。图片来源:IEEE频谱网站《IEEE固态电路》杂志报道,这种超导微处理器可为更高能效的计算能力提供潜在的解决方案,但新设计目前需要低于10开尔文(或—263℃)的超冷温度。研究人员创建的这种绝热超导微处理器,从原理上讲,在计算过程中不会从系统中获得或损失能量。这个新的微处理器原型称为MANA(单绝热集成体系结构),是世界上第一个绝热超导体微处理器。它由超导铌组成,并依赖于称为绝热量子通量参量电子(AQFP)的硬件组件。每个AQFP由几个快速作用的约瑟夫森结开关组成,这些结开关只需很少的能量即可支持超导体电子设备。MANA微处理器总共由2万多个约瑟夫森结(或1万多个AQFP)组成。研究人员解释说,用于构建微处理器的AQFP已经过优化,可以绝热运行,从而可在相对低的时钟频率(高达10GHz左右)下恢复从电源中汲取的能量。与传统超导电子产品数百吉赫兹的运行频率相比,这个数字要低得多。但这并不意味着MANA达到了10GHz的速度。实验显示,MANA的数据处理部分可在高达2.5GHz的时钟频率下运行,这使其与当今的计算技术相当。这种铌基微处理器的入门价格取决于低温和将系统冷却至超导温度的能源成本。不过,即使将冷却成本计算在内,与最先进的半导体电子设备(如7纳米鳍式场效应晶体管)相比,AQFP的能源效率仍然高出约80倍。由于MANA微处理器需要液氦水平的低温,因此它更适合于使用低温冷却系统的大规模计算基础架构,例如数据中心和超级计算机。
  • 细胞体外培养实验的成功要从用水的选择开始!
    细胞体外培养用水中水的质量要求提起细胞体外培养实验,每个经历过的实验者都会有这样的领悟吧,细胞虐我千百遍,我待细胞如初恋。明明小心翼翼的操作,细胞总会莫名其妙的被污染了!莫名其妙的挂掉啦!到底怎么回事呢?其实造成细胞污染的因素不单单是微生物,培养环境中所掺杂的物质也可能会影响细胞的生长。水是细胞赖以生存的主要环境,营养物质和代谢产物都必须溶解在水中,才能为细胞吸收和排泄。对于体外培养的细胞来说,水是细胞培养液和试剂中简单而重要的组分。所以,细胞培养对水的质量要求较高,培养用水中如果含有一些杂质,即使含量极微,有时也会影响细胞的存活和生长,甚至导致细胞死亡。水中的杂质对水质有不同影响:1.离子——平衡渗透压;一些重金属 (Cadmium)对细胞毒害大,即便剂量很低 ( 0.1 ppb); 2.微生物——污染,改变微环境如pH,影响增殖,死后释放内毒素等;3.内毒素——改变细胞外形、活化细胞、促进或抑制细胞分裂、影响细胞附着等;4.有机物——影响细胞的生长状态。水质评价常用的指标:1. 电阻率(electrical resistivity)衡量实验室用水导电性能的指标,单位为MΩ• cm,随着水内无机离子的减少电阻数值逐渐变大。2. 异体菌落数(Heterotrophic bacteria count,HBC)衡量实验室用水微生物的指标,单位为cfu/mL。3. 有机物(Total Organic Carbon ,TOC)水中碳的浓度,反映水中可氧化的有机化合物的含量,可间接反映出水中细菌和内毒素含量的高低。单位为ug/L或ppb。4. 内毒素(Endotoxin)革兰氏阴性细菌的脂多糖细胞壁碎片,又称之为“热原”,单位EU/mL。参考国际标准化组织的实验室纯水规范ISO3696,美国CLSI和ASTM D1193的试剂纯水规范,我国GBT6682和GBT 30301的试验用水指导,《实验细胞资源的描述标准与管理规范》用水指导,结合多年的实验操作经验,总结出细胞培养用水对水质的要求。细胞培养对水质的要求:1.一定要无菌:HBC 0.01 cfu/mL2.无蛋白及核酸酶和内毒素:无内毒素或无热源0.03EU/mL3.阻碍细胞生长的有机物含量要低:TOC5 ppb4.去除离子含量:电阻率≥18 MΩ• cm(@25℃)细胞体外培养用水中纯水机的配置要求细胞培养过程中,各种培养液和试剂的配制用水均需要经过严格的纯化处理,不含离子和其他的杂质,即使是储存试剂的玻璃器皿,在自来水冲洗过后也应用超纯水漂洗三次以上。目前,市场上供应的纯水装置种类较多,比如自来水进水同时制备二级纯水和超纯水的上海乐枫Genie一体化纯水装置,可以由自来水进水通过预处理柱P Pack、反渗透柱RO Pack及EDI(连续电流电去离子)模块等纯化后达到二级纯水,储存于水箱中以满足日常的清洗应用;水箱中的水再经过U Pack超纯化柱去离子,紫外灯照射杀菌并降低有机物含量,最后经终端滤器RephiBio过滤,以获得无菌、无热源、无核酸酶的超纯水。Genie G 水路图要想达到细胞培养用水的水质要求,纯水机的配置非常关键,带有消毒模块的纯水水箱、终端过滤器、取水水质的实时监测等配置都关系着产水水质是否达标。纯水的储存对保持纯水的质量是至关重要的,由于周围环境和空气中的二氧化碳更容易使水污染改变其pH,所以储存水的容器要尽量密封,避免和外界过多接触,抑制微生物生长。如Genie纯水设备可以提供的纯水水箱带有紫外消毒模块和去除二氧化碳的过滤器,能够尽量的保证水箱内的纯水水质。水箱空气过滤器(含CO2吸附剂)200/350L 水箱空气过滤器主控屏显示水箱水循环状态终端滤器可用于去除纯水中特定类型的污染物,满足不同实验的应用需求。对于细胞体外培养可以选用RephiBio Filter 纯水终端过滤器,安装在乐枫超纯水系统的出水口,可有效去除水中的热原(内毒素)、核酸酶、细菌等杂质,制备符合细胞培养用水要求的超纯水(无热原、无DNase、无RNase、无菌)。对于超纯水而言需要格外注意终端水质的TOC、电阻率、细菌和内毒素的含量,必须做到即取即用,因此取水的远程监控和水质实时监测就显得尤为重要。目前已有厂家可以提供与手柄通过无线连接的实验室纯水机(如上面提到的Genie),将水机和取水手柄分别放在洁净间的内外,通过无线控制取水手柄达到超纯水的取用和实时检测水的电阻率和TOC数值,非常适合无菌环境下的操作,尽量减少污染。无线 自由局域网无线通信技术 各单元摆脱信号线羁绊主机,主控屏,手柄摆放可自由组合 手柄触屏信息? 系统运行状态:待机,泄压,循环,产水? 水箱液位:0%或者L? 纯水(超纯水)水质参数:电阻率、TOC、温度 终 端 水 质 实 时 监 测结合上述用水要求,为大家推荐两款制备超纯水的水机,Genie G一体化纯水仪和Genie PURIST 超纯水仪。 Genie G一体化纯水仪以自来水为进水制备超纯水和 EDI 二级纯水性能指标Genie PURIST 超纯水仪以纯水(EDI 纯水,RO 水或蒸馏水等)为进水,制备实验室超纯水。性能指标【注意事项】1.超纯水应当注意使用时间,应该“即取即用”。防止超纯水吸收外界的杂质导致水质下降。2.在合适的环境使用超纯水。环境中的VOC(挥发性有机物),细菌等都会影响细胞培养。3.培养细胞的容器应当洁净无污染。 4.配制离散细胞用的消化液和细胞洗涤液时,宜采用钙、镁离子含量低的缓冲液,缓冲液用水可以选用装配乐枫低镁型纯化柱的纯水机,避免钙、镁离子促使细胞凝聚作用的产生。不同细胞体外培养用水选择指南细胞培养(cell culture)是指在体外模拟体内环境(无菌、适宜温度、酸碱度和一定营养条件等),使之生存、生长、繁殖并维持主要结构和功能的一种方法。细胞培养的整个流程中实验用水贯穿每一个环节:1.取材:组织的清洗和灌注试剂用水,如PBS缓冲液、Hanks液的配制;2.原代培养:1640、DMEM等培养基用水,明胶等支持物的配制,添加药物、检测试剂的配制;3.传代培养:胰酶等消化液的配制;4.冻存:细胞冻存液DMSO的配制。细胞体外培养的细胞类型一般分为动物细胞培养、植物细胞培养和微生物培养,其中极难的是动物细胞的培养。动物细胞的培养除了需要无菌、温度、气体、渗透压、pH等基本条件,它还需要血清、支持物等特殊物质,其中原代细胞的培养是很难的。植物细胞的培养需要光照和激素,而且培养条件和培养技术比较成熟。微生物培养多为单细胞生物,微生物人工培养的条件比动植物细胞简单得多,蛋白胨、麦芽汁、酵母膏等培养基即可满足微生物的营养要求,其中厌氧微生物培养比好氧微生物复杂,需要维持CO2等非氧惰性气体的浓度。由于细胞的种类和培养条件不同,对培养环境中杂质的含量要求也不同,那么配制培养基或试剂用水的选择大有讲究,不同细胞体外培养用水的指标如下:细胞体外培养用水选择细胞类型纯水等级电阻率(MΩcm)TOC(ppb)微生物(cfu/mL)内毒素(Eu/mL)核酸酶(pg/mL)动物细胞超纯水181010.002?ND植物细胞超纯水181010.002?ND微生物实验室Ⅱ级纯水10501NANA从上表可以看出,动物细胞和植物细胞的培养对去除内毒素和核酸酶的要求很高,用于这两类细胞培养可以选择商品化的细胞培养用水,另外去除纯水中的内毒素和核酸酶可以通过在纯水机的取水口安装终端滤器达到。各种细胞培养用水的比较细胞培养用水制备方法优点缺点商品化细胞培养用水纯水或超纯水进行多效蒸馏制成,严格控制热源、无菌、内毒素、pH、渗透压等指标水质标准程度化高,可保证实验结果的重复性价格昂贵DEPC水DEPC处理过并经高温高压灭菌的MiliQ纯水,无RNase、DNAase和proteinase。完全去除核酸酶价格昂贵,未去除内毒素终端滤器过滤超纯水采用0.22μm的过滤膜,可有效去除水中的热原(内毒素)、核酸酶、细菌等杂质。性价比高,供水量大对取水环境要求高乐枫 RephiBio 终端过滤器采用0.22μm带正电荷的双层尼龙66过滤膜,可制备符合生物领域应用要求的超纯水(无热原、无DNase、无RNase、无菌),纯水中内毒素含量低于0.001 Eu/mL,核酸酶的含量低于可检测范围,微生物的含量低于0.1 cfu/mL,可以满足动物细胞和植物细胞的需求。Tips: 通常情况下乐枫RephiBio 终端过滤器的更换周期为3 个月,以达到好的使用效果。
  • 围观半导体企业硅材料测试实验室都在用哪些仪器?
    硅材料是半导体行业应用最广泛的半导体材料,是集成电路晶圆制造的主要原料。集成电路材料产业技术创新联盟联合分析检测与技术合作服务平台是材料联盟牵头,由多家半导体领域高校、企业及实验室等共建单位积极参与建设的专业化服务平台,目前共发布320多台仪器,涉及硅材料、光刻材料、电子气体、工艺化学品、封装材料、抛光材料、溅射靶材等多个不同领域。仪器信息网特将其中硅材料测试仪器进行整理,看知名半导体企业及实验室都购置了哪些硅材料测试仪器。(所统计仪器,部分仪器可能存在并列或包含关系,未进行区分)硅材料测试用仪器共55台(套),其中电子天平、电感耦合等离子质谱仪数量最多。硅材料测试用仪器数量统计仪器台(套)数量电子天平4电感耦合等离子体质谱仪4微控数显电加热板2数字式硅晶体少子寿命测试仪2磷检区熔炉2激光粒子计数器2等离子聚焦离子束2紫外/可见分光光度计1原子力显微镜1研磨机1硝酸提纯仪1显微红外分析仪1微机控制万能(拉力)试验机1微波消解仪1透视式电子显微镜1透射电子显微镜1少子寿命分析仪1扫描电镜系统1三维光学轮廓仪1能量色散型X射线荧光分析仪1纳米粒度仪1两探针电阻率测试仪1离子色谱仪1离子色谱1扩展电阻测试仪1聚焦离子束1精密研磨机1精密切割机1金相显微镜1激光散射粒径分布分析仪1傅立叶变换红外光谱仪1非金属膜厚仪1飞行时间二次离子质谱仪1多功能颗粒计数仪1电感耦合等离子体发射光谱仪1电感耦合等离子发射光谱仪1低温傅立叶变换红外光谱仪1低温傅里叶变换红外光谱仪1导电型号测试仪1超纯水系统1半导体参数测试仪1α-粒子计数器1CNC视像测量系统(三次元)13D立体显微镜1仪器所属单位中,55台(套)仪器分别来自于9家半导体企业及实验室。仪器所属企业统计单位名称台(套)数量江苏鑫华半导体材料科技有限公司23工业和信息化部电子第五研究所(中国赛宝实验室)16上海新安纳电子科技有限公司5南京国盛电子有限公司3洛阳中硅高科技有限公司3无锡华润上华科技有限公司2沁阳国顺硅源光电气体有限公司1纳瑞科技(北京)有限公司1江阴江化微电子材料股份有限公司1以下为硅材料测试用仪器的具体信息:硅材料测试仪器及型号仪器型号所属单位飞行时间二次离子质谱仪TOF.SIMS 5工业和信息化部电子第五研究所(中国赛宝实验室)非金属膜厚仪3100江阴江化微电子材料股份有限公司金相显微镜DM8000、DM3 XL等工业和信息化部电子第五研究所(中国赛宝实验室)透视式电子显微镜Tecnai F20无锡华润上华科技有限公司透射电子显微镜FEI Tecnai G 2 F20、OXFORD 能谱工业和信息化部电子第五研究所(中国赛宝实验室)超纯水系统Milli-Q Advantage A10江苏鑫华半导体材料科技有限公司能量色散型X射线荧光分析仪EDX-720工业和信息化部电子第五研究所(中国赛宝实验室)聚焦离子束FEI DB835无锡华润上华科技有限公司纳米粒度仪NiComp 380 ZLS上海新安纳电子科技有限公司紫外/可见分光光度计UV-MINI 1240工业和信息化部电子第五研究所(中国赛宝实验室)精密研磨机UNIPOL-802江苏鑫华半导体材料科技有限公司精密切割机SYJ-150江苏鑫华半导体材料科技有限公司等离子聚焦离子束FEI-235/FEI-835/FEI-200/FEI-800纳瑞科技(北京)有限公司等离子聚焦离子束双束FIB Helios G4 CX工业和信息化部电子第五研究所(中国赛宝实验室)离子色谱仪ICS-900上海新安纳电子科技有限公司离子色谱882 Compact IC plus江苏鑫华半导体材料科技有限公司磷检区熔炉WJ-FZ30A江苏鑫华半导体材料科技有限公司磷检区熔炉FZ 350/20江苏鑫华半导体材料科技有限公司硝酸提纯仪DST-4000江苏鑫华半导体材料科技有限公司研磨机metaserv250江苏鑫华半导体材料科技有限公司电感耦合等离子发射光谱仪VARIAN 710-ES上海新安纳电子科技有限公司电感耦合等离子体质谱仪iCAP RQ沁阳国顺硅源光电气体有限公司电感耦合等离子体质谱仪7700S南京国盛电子有限公司电感耦合等离子体质谱仪8900江苏鑫华半导体材料科技有限公司电感耦合等离子体质谱仪7700S江苏鑫华半导体材料科技有限公司电感耦合等离子体发射光谱仪5100工业和信息化部电子第五研究所(中国赛宝实验室)电子天平XPE504江苏鑫华半导体材料科技有限公司电子天平XPE105江苏鑫华半导体材料科技有限公司电子天平ME-204E江苏鑫华半导体材料科技有限公司电子天平JE1002江苏鑫华半导体材料科技有限公司激光粒子计数器KC-24江苏鑫华半导体材料科技有限公司激光粒子计数器HHPC-6+江苏鑫华半导体材料科技有限公司激光散射粒径分布分析仪LA-960上海新安纳电子科技有限公司显微红外分析仪NicoletIS50+Continuum工业和信息化部电子第五研究所(中国赛宝实验室)数字式硅晶体少子寿命测试仪LT-100C洛阳中硅高科技有限公司数字式硅晶体少子寿命测试仪LT-100C江苏鑫华半导体材料科技有限公司扫描电镜系统冷场发射扫描电子显微镜 Regulus8230 热场发射扫描电子显微镜 MIRA3 XMH 离子溅射镀膜仪 Q150TS 能谱仪 Octane Elect Plus 电子背散射衍射仪相机 Hikari Plus X射线能谱仪 Octane Elect Su工业和信息化部电子第五研究所(中国赛宝实验室)扩展电阻测试仪SSM2000南京国盛电子有限公司微波消解仪MARS6江苏鑫华半导体材料科技有限公司微机控制万能(拉力)试验机CMT5105、6502工业和信息化部电子第五研究所(中国赛宝实验室)微控数显电加热板HP51江苏鑫华半导体材料科技有限公司微控数显电加热板EG20B江苏鑫华半导体材料科技有限公司少子寿命分析仪FAaST210南京国盛电子有限公司导电型号测试仪STY-3江苏鑫华半导体材料科技有限公司多功能颗粒计数仪AccuSizer 780 APS上海新安纳电子科技有限公司原子力显微镜Dimension Icon™ 工业和信息化部电子第五研究所(中国赛宝实验室)半导体参数测试仪B1500/B1500A/B15005A工业和信息化部电子第五研究所(中国赛宝实验室)傅立叶变换红外光谱仪Nicolet iS50洛阳中硅高科技有限公司低温傅里叶变换红外光谱仪CryoSAS江苏鑫华半导体材料科技有限公司低温傅立叶变换红外光谱仪CryoSAS洛阳中硅高科技有限公司两探针电阻率测试仪KDY-20江苏鑫华半导体材料科技有限公司三维光学轮廓仪VK-X250K工业和信息化部电子第五研究所(中国赛宝实验室)α-粒子计数器UltraLo-1800工业和信息化部电子第五研究所(中国赛宝实验室)CNC视像测量系统(三次元)O-INSPECT543工业和信息化部电子第五研究所(中国赛宝实验室)3D立体显微镜VHX-6000工业和信息化部电子第五研究所(中国赛宝实验室)推荐阅读:半导体行业湿电子化学品常用检测仪器及技术盘点
  • 发明人库尔特的传奇人生——颗粒表征电阻法(上)
    史上曾经有 400 多种颗粒表征技术,其中有一种以发明者命名的颗粒计数与粒度测试技术至今尚在广泛使用,并且是全球血细胞计数的标准技术,那就是被冠以科学名称电阻法(或电感应区法)的库尔特原理。此项技术自20 世纪 50 年代初发明以来[i],被广泛应用于医学以及各个工业领域,包括超过 98%的自动细胞计数器[ii,iii]。除了测量各类血细胞外,此原理还可用于表征(计数和粒度测量)合适粒度范围内的任何可悬浮在电解质溶液中的颗粒材料[iv]。在过去 70 多年中,该方法已被用来表征数千种不同的医学与工业颗粒材料,2022 年的谷歌学者搜索发现有近 16 万篇有关库尔特计数器的各类文献。 在电阻法测量中,壁上带有一个小孔的玻璃管被放置在含有低浓度颗粒的弱电解质悬浮液中,该小孔使得管内外的液体相通,并通过一个在孔内另一个在孔外的两个电极建立一个电场。 由于悬浮液中的电解质,在两电极加了一定电压后(或通了一定电流后),小孔内会有一定的电流流过(或两端有一定的电压),并在那小孔附近产生一个所谓的“感应区”。含颗粒的液体从小孔管外被真空或其他方法抽取而穿过小孔进入小孔管。当颗粒通过感应区时,颗粒的浸入体积取代了等同体积的电解液从而使感应区的电阻发生短暂的变化。这种电阻变化导致产生相应的电流脉冲或电压脉冲。通过测量电脉冲的数量及其振幅,可以获取有关颗粒数量和每个颗粒体积的信息。 1 库尔特原理示意图 本文将分为两篇。第一篇介绍库尔特先生,第二篇介绍经典库尔特原理及其最新发展。库尔特先生&库尔特原理库尔特先生是与中美两国有密切关系的一位传奇性人物。2 华莱士• 库尔特(Wallace H. Coulter,1913-1998)他出生于阿肯色州,在乔治亚理工学院学习电子工程。1930 年代,他是美国通用电气公司在中国的销售代理,住在上海和平饭店。 正当他处于热恋之中,与一位白俄罗斯美女在和平饭店品着美酒咖啡,欣赏爵士音乐,漫步月光下的外滩时,太平洋战争爆发,日军侵入了上海的公共租界。他不得不离开恋人,随着日军的不断南侵,从华南经东南亚回到美国。中美 1979 年建交后,他成为最初一批前往中国访问的美商。他与随行人员回到和平饭店那间包房,抚摸着外滩的岸墙,勾起了深深的回忆。他期望在中国政府的帮助下,寻找那在战乱中失联的情人。30多年的动荡岁月,又是一位外籍女子,那是一个达不成的愿望。他钟情一生,终身未婚,也无子女,可是中国情结却挥之不去。 3 库尔特在 1990 年代与中国代表团,右一为作者。早在 1970 年代,库尔特公司就由其英国分公司在华销售血细胞计数仪。中美建交之后的 1980 年代,库尔特公司在蔡光天开办的改革开放早期最大的英语培训学校——上海前进业余进修学校的帮助下,成为最早一批在中国开展业务的美国企业。他办公室内,桌上地下放满了与中国有关的书籍物品,每次有来自中国的访客或员工,他都会亲切地与他们会面,亲自解释库尔特原理。1940 年代,美国在日本投了原子弹后,受辐射区人们需要进行大量的血液检验,但当时的医学界缺乏快速准确的血细胞检验方法。库尔特在自家车库内埋头研究了数年。最初的设计是在一张纸上打一个粗糙的洞,然后将纸浸在液体中。经过无数次的试验与设计改动,并据说他曾经割破自己的手指滴血,来验证他的发明。库尔特最终在 1953 年发明了被世人普遍认可的库尔特原理,并为之成立了库尔特电子公司(Coulter Electronics),量产血液计数仪,给全球血液检验带来了革命性的飞跃。库尔特公司在佛罗里达州全盛时有四五千员工。 库尔特并直接促成了颗粒表征业内另外两家公司的成立与发展。他的一个员工伯格 (Rebert H. Berg, 1921-1999)考虑到工业界颗粒大小的分布一般较宽,线性电子线路无法满足, 发明了对数安排的电子线路,可以测量粒径跨越几个数量级的样品。伯格后来在 1958 年成立了规模较小的颗粒数据实验室(Particle Data Laboratories),在工业界推广库尔特计数仪。而当库尔特母校乔治亚理工学院的奥尔教授(Clyde Orr,1921-2010)与他的博士生亨德里克斯(Warren P. Hendrix,1932-2005)在 1962 年下海生产全球首款商用表面吸附仪时,已在商业上小有成就的库尔特出资促成了麦克仪器公司(Micromeritics Instrument Company)的成立。而麦克仪器公司又在 1997 年收购了由于伯格陷入尼日利亚骗局而濒临破产的公司的库尔特计数仪产品。 4 收藏在美国历史国家博物馆中最早的库尔特计数仪:型号 A当库尔特自知来日不多时, 他想起了老朋友贝克曼(Arnold O. Beckman,1900-2004)。尽管贝克曼早已退休,可是贝克曼仪器公司的文化传承很使库尔特满意,他拒绝了数家更大公司的高价,在贝克曼仪器公司保证保留他姓的条件下,在 1997 年促成了贝克曼库尔特公司的诞生。 他将出售公司获得的款项,建立了有近 5 亿美金的华莱士·H·库尔特基金,专用于通过医学与工程研究而发展医疗保健。库尔特并被美国科学历史研究所列入了名人堂。参考文献【i】 Coulter, W.H., Means for Counting Particles Suspended in a Fluid, US Patent 2,656,508, 1953. 【ii】Graham, M.D., The Coulter Principle: Foundation of an Industry, J Assoc Lab Auto, 2003, 8(6), 72-81. 【iii】 Graham M.D., The Coulter Principle: Imaginary Origins, Cytometry A, 2013, 83(12), 1057-61. 【iv】 Lines, R.W., The Electrical Sensing Zone Method, in Liquid and Surface-Borne Particle Measurement Handbook, Eds. Knapp, J.Z., Barber, T.A., Lieberman, A., Marcel Dekker, New York, 1996, Chpt.4, pp113-154. 作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。点击图片查看更多表征技术
  • 布局黄金十年 关注拉动半导体板块业绩增长的近200类仪器
    当前, 我国在半导体领域面临着被“卡脖子”的问题。为了尽快发展国内半导体产业,鼓励自主创新,及早摆脱对进口的依赖,国家陆续出台免税、补贴多项政策大力支持国内半导体产业发展。中国的半导体产业近年来保持着20%以上的高速增长率,据估计2021年国内市场将达到677亿美元。科学仪器在半导体研发中起到关键作用,半导体的纯度、杂质、性能检测都离不开科学仪器,因此越来越多的科学仪器厂商对于半导体领域愈发重视。伴随着政策的支持、资本的注入,国内半导体市场必将成为最具发展潜力的产业之一;随着半导体研发项目的增加及产量的提升,对于科学仪器的需求必将增大,这将直接拉动科学仪器企业半导体领域的仪器销量和业绩,成为备受瞩目的盈利增长点。仪器信息网综合科学仪器在硅材料、光掩模、光刻材料、电子气体、工艺化学品、抛光材料、靶材、封装材料等领域的应用整理了一份仪器清单,近200类仪器或将在伴随着未来半导体行业发展的“黄金十年”而大展拳脚。(以下仪器可能存在并列或包含关系,未进行区分)序号仪器1高频红外碳硫分析仪2高阻仪3高速老化试验箱4高温试验箱5高效液相色谱6高压离子色谱系统7高低温湿热交变试验箱8高低温冲击试验箱9高低温交变湿热试验箱10飞行时间二次离子质谱仪11颗粒仪12频谱分析仪13顶空-气相色谱-质谱联用仪14顶空-气相色谱15非金属膜厚仪16阿贝闪点仪17阳离子色谱仪18针/锥入度仪19金相显微镜20金属膜厚仪21酸开封机22透射电子显微镜23透光率/雾度测定仪24辉光放电质谱仪25超高温差热分析仪26超纯水机27超景深显微系统28超声扫描显微镜29表面缺陷检测系统30表面张力仪31色谱仪32自动研磨机33自动电位滴定仪34自动滴定仪35能量色散型X射线荧光分析仪36聚焦离子束扫描电子显微镜37聚焦离子束场发射扫描电子显微镜38聚焦离子束39耐压测试仪40网络分析仪41维氏硬度计42纳米粒度仪43红外光谱仪44紫外老化箱45紫外/可见分光光度计46精密研磨机47精密切割机48粘着力测试仪49粘度计50等离子聚焦离子束51空气粒子计数器52离子色谱仪53离子研磨仪54磷检区熔炉55磨损测试系统56硝酸提纯仪57研磨机58矢量网络分析仪59矢量信号发生器60直读光谱仪61盐雾试验箱62界面材料热阻及热传导系数测量系统63电热鼓风干燥箱64电感耦合等离子质谱仪65电感耦合等离子发射光谱仪66电感耦合等离子光谱仪67电导率仪68电子天平69电子分析天平70电化学工作站71电位滴定仪72热风回流焊73热重分析仪74热机械分析仪75热常数分析仪76热导气相色谱77热导检测器气相色谱仪78热导分析仪79激光粒度仪80激光粒子计数器81激光散射粒径分布分析仪82激光开封机83激光导热仪84漏电起痕测试仪85温度循环试验箱86混合气体试验箱87液相色谱质谱联用仪88液相色谱仪89液体颗粒计数仪90液体颗粒仪91液体粒子传感器92流变仪93水氧分析仪94水分析仪95水分仪96氧氮氢分析仪97氧弹燃烧离子色谱仪98氧化物膜厚仪99氧分仪100氦离子化气相色谱仪101氦气氟油加压检漏装置102氦检漏仪103氢火焰离子化气相色谱仪104氙灯老化机105气相色谱仪106气相色谱-质谱联用仪107气相色用仪108气体分析仪109显微红外分析仪110数字式硅晶体少子寿命测试仪111放电氦离子化气相色谱仪112摆锤冲击试验机113接触角测量仪114拉力剪切仪115扫描电镜-电子背散射衍射116扫描电镜117扩展电阻测试仪118手动磨抛机119感应偶合等离子质谱仪120恒温恒湿箱121总有机碳检测仪122快速高低温湿热交变试验箱123微量水分仪124微量氧分析仪125微波消解仪126微机控制万能(拉力)试验机127微控数显电加热板128微探针台129影像仪130库伦法卡尔费休水分仪131库仑法卡氏水分测定仪132库仑水分滴定仪133差示扫描量热仪134少子寿命分析仪135导电型号测试仪136密度仪137多参数测量仪138多功能颗粒计数仪139塑料摆锤冲击试验机140场发射扫描电镜141四探针阻抗仪142台阶仪143台式BSE扫描电子显微镜144可编程晶体管曲线图示仪145可焊性测试仪146原子力显微镜147单面抛光机148半导体参数测试仪149动态热机械分析仪150凝胶渗透色谱151冷热冲击试验箱152冷场扫描电镜153关键尺寸扫描电子显微镜154全自动色度测试仪155光学金相显微镜156光学膜厚仪157傅立叶变换近红外光谱仪158傅立叶变换红外光谱仪159低温试验箱160低温傅立叶变换红外光谱仪161二维X射线检测仪162两探针电阻率测试仪163三重四极杆ICPMS164三维立体成像X射线显微镜165三维光学轮廓仪166三坐标测量机167万能试验机168万能推拉力试验机169α-粒子计数器170X射线检测仪171X光电子能谱仪172TOC仪173纳米粒度仪174PH计175EMI扫描台176单面抛光机177CNC视像测量系统(三次元)1788寸化学机械研磨机台1793D立体显微镜18012寸晶圆缺陷检测机18112寸化学机械研磨机台182三参数测定仪可预见的是,以上仪器必将在未来的半导体领域大有可为,同时仪器厂商对于半导体板块的竞争和细分市场争夺也必将更加激烈。
  • 纯水和低电导率水的pH测量
    纯化水和其他低电导率水中测量pH值时的挑战和建议。 关键字pH值,纯水,低电导率水,低离子强度,电极,溶液。目标 以下应用说明描述了在纯化水和其他低电导率水中测量pH值时的挑战和建议。介绍 理论上,测量纯水的pH值似乎很简单。例如,纯水应该是中性的- pH 7.0,并且应该没有干扰。 纯水的pH测量是具有挑战性,因为pH电极响应往往漂移,可能是响应缓慢的,不可重复和不准确的。由于样品的低电导率、低离子强度溶液和普通离子强度缓冲液之间的差异、液体结电位的变化和二氧化碳对样品的吸收,在这些样品中测量更加困难。由于纯水溶液的电导率很低,所以溶液会像“天线”一样,电极响应可能会有干扰噪声。 通过了解在纯水和其他低导电性液体中测量pH值的挑战,您可以克服它们,并确保您的pH测量是可靠和一致的。什么是纯水?ASTM D5464将低导电性水描述为导电性 100 μS/cm的水。 超纯水的pH值一般在5.5到7.5之间,取决于水中二氧化碳(CO2)的水平。 具有非常少的离子种类的纯化水被称为碱度低,离子强度低,或具有低电导率/高电阻率。 纯水样品包括蒸馏水、去离子水、一些工艺水、井水、一些地表水、一些处理过的废水、锅炉给水和雨水。 你知道纯水pH测量的挑战是什么?最常见的三个挑战是:1. 电极漂移 低电导率水是高电阻样品。这可能会导致噪声读数和信号漂移。2. 污染的样本 由于这些水域中的离子浓度较低,它们的缓冲也很差,因此容易受到污染(例如,在取样、运输、储存、处理和测试期间,来自CO2或氨的吸收,和/或来自其他来源的交叉污染)。3. 不准确的测量 在电极内部的电极填充溶液和电极外部的样品之间的离子强度的巨大差异可能导致明显液接电位。这可能会影响精度,造成稳定时间长,并导致精度差。 优化pH值测试结果 有几个不同的因素可以优化,以提供高质量的pH测量结果。这些因素包括:选择正确的pH电极取样注意事项校准pH电极处理与维护pH电极选择pH电极 有许多不同类型的电极可用来测量pH值。在选择电极时,重要的是要考虑电极特性及其与被测样品的兼容性。 使用屏蔽良好的电极和高阻抗pH计来减少信号噪声,例如奥豪斯ST420 双液界pH电极具有良好的屏蔽效果,配合AB41PH高阻抗pH计。 由于pH值对温度敏感,使用三合一电极或自动温度校正(ATC)探头监测样品温度,并自动调整电极斜率响应。奥豪斯ST350 三合一pH/ATC电极,测量pH同时补偿温度结果使测量更为方便。取样注意事项1. 小心处理低电导率水样,尽量减少空气和二氧化碳的吸收。建议使用玻璃容器,因为空气会通过塑料扩散。2. 对于样品的运输和储存,要将样品满装取样瓶中,这样就取样瓶上部不会有空气。3. 收集后尽快对样品进行测试,以尽量减少温度变化、样品氧化和与样品容器接触时间。4. 确保所有容器和设备在使用前用纯水进行三次冲洗,以避免可能来自各种来源的交叉污染。 校准pH电极 当测量低离子强度样品时,在高离子强度缓冲液中校准pH电极将增加稳定所需的时间。此外,样品污染的可能性也会增加。对于最精确的测量,缓冲液和样品应该具有相似的离子强度。当校准标准品与样品之间的偏差在2°C以内时,得到的结果最好。使用ATC或三合一电极来监控温度。如果样品和校准标准不能在同一温度下,测量在该温度下的pH值,并使用ATC或三极管测量温度并相应地调整斜率。记录结果时,要同时报告pH值和温度读数。 电极校准后冲洗好,以避免交叉污染您的样品。只需少量的缓冲液就能显著改变纯净水的pH值。用尽可能干净的水冲洗。处理与维护pH电极 由于纯水可以从pH球泡中析出离子,将pH电极存储在电极存储溶液中,以恢复球泡敏感膜。如果响应变慢,清洁pH电极以重新激活pH球泡和液接界。如何测试纯净水和其他低导电性水的pH值1. 对于每个被测试的样品,准备一份用于测试和一个或多个用于冲洗。在放入测试样品之前,将pH电极浸入冲洗样品并轻轻搅动。2. 轻轻搅拌样品以加快电极反应。搅拌可以一直进行,但尽可能隔绝空气。3. 使用连续读数模式,让电极有足够的时间完全响应。最好的精度和准确度发生时,充足的时间以达到稳定。一旦建立了标准的响应时间,可以考虑使用定时读取来提高足够的等待时间,从而实现一致和精确的结果。4. 对于高精度的测量工作,ASTM D1293建议测试流动样品,直到漂移率最小和两个连续结果在期望的标准内一致。详见ASTM D1293 www.astm.org。 总结 在低离子强度的样品中获得一致的pH值是相当困难的,而且常常令人沮丧。通过采用一些最佳做法,并遵循本应用笔记中概述的建议,您可以提高测量精度,减少电极漂移,并防止样品污染您的pH值测量。
  • 飞秒激光在ITO薄膜表面诱导周期性透明纳米导线
    使用线偏激光照射金属、半导体、透明介质等材料产生表面周期结构(laser induced periodic surface structures,LIPSS)是一种普遍的现象,LIPSS的周期取决于激光条件和材料的性质,在接近入射激光波长到小于波长的十分之一范围变化。这些周期性纳米结构可用于有效地改变材料的性质,并在表面着色、光电特性调控、双折射和表面润湿性等方面有许多应用。氧化铟锡(indium tin oxide,ITO)具有较宽的带隙,对可见光与近红外波段有很高的透射率,ITO薄膜具有较低的电阻率,是液晶面板、新型太阳能电池等元件的重要组成部分。一直以来,发展制备ITO薄膜的新方法,调控ITO薄膜的光电特性是非常重要的研究课题,而在激光加工领域,使用激光在ITO薄膜诱导LIPSS是一个有效且简便的方法。华东师范大学精密光谱科学与技术国家重点实验室贾天卿教授课题组探究了一种通过飞秒激光直写在ITO薄膜表面加工LIPSS的方法,并详细分析了不同激光参数下加工的ITO薄膜在可见到红外光波段的透射率与其各向异性电导率的变化规律。合适的激光参数可以在ITO薄膜上有效地加工大面积低空间频率的LIPSS,这些LIPSS能够表现出独立纳米导线的特性,并且在电学特性上具有良好的一致性。结果表明,飞秒激光直写过程中并不会改变材料的性质,而且与原始的ITO薄膜相比,具有规则LIPSS的ITO薄膜在红外波段的平均透射率提高了197%。这对于将ITO薄膜表面加工规则的LIPSS作为透明电极应用于近红外波段的光电器件具有重要的意义。如图1,原始ITO薄膜的面电阻各向同性。随着激光能流密度的增加,垂直和水平于LIPSS方向的面电阻迅速增加且变化梯度不同,出现了明显的各向异性导电性,当ITO薄膜表面出现规则且独立的LIPSS结构以后,在一定能流密度范围,ITO薄膜能够在不同方向上显现出单向导电/绝缘的电学特性。图1 扫描速度为3 mm/s时,不同能流密度激光辐照后ITO薄膜的面电阻。图中给出了电学测量中横向(Transverse)与纵向(Longitudinal)的定义通过调节激光的能流密度,可以在一个较大的范围内制备出不同形貌的纳米导线(LIPSS)。图2(a)展示了不同能流密度的飞秒激光加工的纳米导线扫描电镜图像。在能流密度上升的过程中,纳米导线的宽度从537 nm降低到271 nm。纳米导线的高度从平均220 nm降低到142 nm,如图2(b)所示。纳米导线的单位电阻随着能流密度的上升从15 kΩ/mm上升到73 kΩ/mm,这是由于纳米导线的宽度与高度都在同步下降造成的,如图2(c)。图 2 (a)不同能流密度下的纳米导线的扫描电镜图像;(b)纳米导线的高度与宽度随着能流密度的变化情况;(c)纳米导线的单位电阻与电阻率随着能流密度的变化情况如图3,原始厚度为185 nm的ITO薄膜在1200~2000 nm的近红外光谱范围内的平均透射率为21.31%。经过飞秒激光直写后,当能流密度在0.510~ 0.637 J/cm2的范围内,ITO薄膜对于近红外的透过率达到54.48%~63.38%,相较原始的ITO薄膜得到了156%~197%的提高。同时,飞秒激光直写后的ITO薄膜在可见光波段的透过率略微提高且曲线较为平滑。通过调节激光的能流密度,ITO薄膜在近红外的透过率能够得到显著提高,并且能够保持较好的导电性。图 3 扫描速度为3 mm/s时,不同能流密度激光直写后的ITO薄膜的透射率。在0.637 J/cm2时红外波段(1200~2000 nm)透过率为63.38%该工作近期以“Periodic transparent nanowires in ITO film fabricated via femtosecond laser direct writing”为题发表在Opto-Electronic Science (光电科学)。
  • 岛津原子力显微镜——锂电池导电性分析(联用元素分析工具)
    锂离子电池是一种可充电蓄电池,其通过从活性材料的结构中解吸/插入Li+来充电/放电。从制作工艺而言,锂电池正极由活性材料、导电剂、粘结剂、增稠剂及溶剂去离子水等多相物质混合制成。这其中,对于提高性能和质量控制,最重要的是活性材料、粘合剂和导电添加剂的工作状态和分布状态。图1 锂电池充放电示意图目前应用最为广泛的正极材料主要有钴酸锂、磷酸铁锂、锰酸锂、三元材料镍钴锰酸锂和镍钴铝酸锂等。其中高镍三元锂离子电池正极材料NCM(锂镍锰钴氧化物;Li(Ni-Co-Mn)O2)凭借比容量高、成本较低和安全性优良等优势,成为研究的热点,被认为是极具应用前景的锂离子动力电池正极材料。为了保证电极具有良好的充放电性能,通常加入一定量的导电剂,在活性材料之间、活性材料与集流体之间起到收集微电流的作用,以减小电极的接触电阻,加速电子的移动速率。导电剂的材料、形貌、粒径及含量对电池都有着不同的影响,碳系导电剂从类型上可以分为导电石墨、导电炭黑、导电碳纤维和石墨烯。常用的锂电池导电剂可以分为传统导电剂(如炭黑、导电石墨、碳纤维等)和新型导电剂(如碳纳米管、石墨烯及其混合导电浆料等)。锂电池粘结剂是一种将活性材料粘附在集流体上的高分子化合物。专门用于粘结和固定电极活性材料,增强电极活性材料与导电剂以及活性材料与集流体之间的电子接触,更好地稳定极片的结构。聚偏氟乙烯(PVDF)是一种具有高介电常数的聚合物材料,具有良好的化学稳定性和温度特性,具有优良的机械性能和加工性,对提高粘结性能有积极的作用,被广泛应用于锂离子电池中,作为正负极粘结剂。另一方面,正极中的这三种主要物质的分布状态和工作状态决定了锂电池的充放电性能。最常遇到的不利情况包括不导电的粘结剂对活性材料的包裹导致无法参与反应,活性材料颗粒的碎裂导致隔离于反应体系,粘结剂/导电剂分散不均导致一些区域间隙过大使活性材料隔离于反应体系。在这些情况下活性材料成为死的活性材料,不再参与电极反应。图2 正极中各组分存在状态为了更全面地分析,需要结合多种仪器进行。传统上,SEM+EDS可以对正极表面形貌和元素分布。但是局限性也很大,首先,EDS仅是一种定性分析工具,不能对元素进行定量分析,需要更精确的方法;另一方面,SEM仅能观察形貌,无法观测正极的工作状态,需要一种表面电学性能观测的方法。因此本实验使用EPMA电子探针微量分析仪(EPMA-8050G)测量正极的元素分布,使用原子力显微镜(SPM-9700HT)观测表面电流分布状态。通过比较EPMA和SPM相同区域图像来评估正极表面各种组分的工作状态。比较EPMA和SPM在相同区域的分析结果。图3至图5示出了EPMA数据,图6至图8示出了SPM数据。在EPMA结果中,图3是成分图像(COMPO),图4是C和F分析的叠加图像,图5是Mn、Co、Ni和O分析的叠加图像。因为导电剂和粘结剂都含有C,图4中C的位置是导电剂和粘合剂,因为只有粘合剂(PVDF)含有F,因此F的位置是粘合剂。图5中Mn、Co、Ni和O的重叠位置是活性材料。在SPM图像中,图6是用电流模式下的SPM获得的表面形貌图像,图7是低偏压激励下小电流分布图像,图8是高偏压激励下大电流分布图像。结合图6和图5,对比可知道活性材料的分布与形貌;结合图2,可认为图8中电流区域为为导电剂;同时对比图7和图8,从图7中扣除图8的大电流区域,可认为其他小电流区域为活性材料,即活性材料A区域。但是结合图7和图5 ,可发现有些活性材料在偏压激励下并没有电荷移动(形成电流),因此可判断,未形成电流的活性材料可能是被不导电的粘合剂包裹,或者因破碎和间隙被隔离于反应体系,无法参与充放电,即活性材料B区域。由此实验可见,对于锂电池的研究,结合元素分析工具(EPMA)和电流分析工具(SPM),既可以了解到各种组分的分布,还可以深度了解个部分的工作状态及可能的失效原因,为深入理解锂电池的工作原理与过程提供可行实验方案。本文内容非商业广告,仅供专业人士参考。
  • 低温脆性试验机的技术参数和使用方法
    低温脆性试验机的技术参数和使用方法型号:BWD-C 仪器标准: 本仪器是根据 GB1682 国家标准设计的,各项技术指标符合 HG 2-162-1965 塑料低温冲击压缩试验方法和 GB5470-2008 塑料 冲击脆化温度试验方法等国家标准的要求。 技术参数: 1.控温范围:室温 -70℃(室温≤25℃) 2.恒温精度:±0.3℃ 3.降温速度:0℃~﹣30℃ 约 2.5℃/min ﹣30℃~﹣40℃ 约 2.5℃/min ﹣40℃~﹣70℃ 约 2.0℃/min 4.大外形尺寸:900×500×800mm(长×宽×高) 5.工作室有效工作空间:280×170×120mm(长×宽×高) 6.可装试样数量:1 7.数字计时器数字计时器:0 秒 -99 分钟,分辨率 1 秒8.冷却介质:乙醇或其他不冻液 9.搅拌电机:8W 10.工作电源:220V--240V,50Hz,1.5kW 11.工作温度:≤25℃ 结构原理 A、本设备由制冷压缩机主机体、加热装置、电子控制箱、冷却槽、 冷却介质循环系统、自动报警装置等部分组成。启动制冷开关后,压 缩机开始工作,制冷系统进入正式工作状态。制冷压缩机连续不断的 工作,当接近设定温度时,冷却槽中的加热装置开始按比例提供热量, 用以平衡制冷系统产生的多余冷量,以达到恒温的目的。搅拌可使冷 却槽内的冷却介质不断循环,使温度均匀一致。 B、试样夹持器 试样一边夹持 4 个试样(橡胶类),另一边夹持 15 个试样(塑料类)。 C、冲击装置 冲击装置由冲和自锁机构组成。 D、冲击器 冲击头半径为 1.6±0.1mm; 冲击时,冲击头和试样夹持器之间间隙为 6.4±0.3mm; 冲击头的中心线与试样夹持器之间的距离为 8±0.3mm。 特点及用途: 低温脆性试验机是测定材料在规定条件下试样受冲击出现破坏时的 高温度,即为脆性温度,可以对塑料及其他弹性材料在低温条件下 的使用性能作比较性鉴定。可以测定不同橡胶材料或不同配方的硫化橡胶的脆性温度和低温性能的优劣。因此无论在科学研究材料及其制 品的质量检验,生产过程的控制等方面均是不可缺少的。 适用行业: 可以用来考核和确定电工、电子、汽车电器、材料等产品,在低温环 境条件下贮存和使用的适应性,适用于学校,工厂,研位,等 单位。 使用方法 1 接通电源,温控仪和计时器显示灯亮。 2 向冷井中注入冷冻介质(一般为工业乙醇),其注入量应保证夹持 器的下端到液面的距离为 75±10mm。 3 将试样垂直夹在夹持器上。夹的不宜过紧或过松,以防止试样变形 或脱落。 4 按下夹持器,开始冷冻试样,同时启动时序控制开关(或按动秒表) 计时。试样冷冻时间规定为 3.0±0.5min。试样冷冻期间,冷冻介质 温度波动不得超过±1℃。 5 提起升降夹持器,使冲击器在半秒钟内冲击试样。 6 取下试样,将试样按冲击方向弯曲成 180°,仔细观察有无破坏。 7 试样经冲击后(每个试样只准冲击一次),如出现破坏时,应提高 冷冻介质的温度,否则降低其温度,继续进行试验。 温度,如这两 个结果相差不大于 1℃时,即试验结束。低温脆性试验机注意事项 1 在试验过程中不能切断冷却循环,否则会产生不制冷的效果。 2 气缸压力在出厂前已调节好,不能任意变动 北广精仪公司简介 北广精仪公司是一家专业从事检测仪器,自动化设备生产的高新科技企业公司, “精细其表,精湛于内”是北广精仪一惯秉承的原则。其先进的设计风格,卓越的制造技术和完善的服务体系,为科研机构、大专院校,企业和质量检测机构提供的产品和优质的服务。 北广公司保持以发展与中国测试产业相适应的应用技术为主线,通过与产业界协调发展的方式提高本公司的竞争实力和技术含量。 与此同时,本公司自成立以来,坚持走"研发生产"相结合的道路,借助国家工业研究院的理论知识和强劲的科研实力,在消化、吸收国际先进生产技术的基础上,大胆创新、锐意改革、努力创造,开发出具有中国特色的新产品,为提高中国的科研及产品质量作出了应有的贡献。 经营理念: 一、诚信待户 顾客至上 全心全意为顾客考虑,使顾客能切身感受到人性化的仪器。 二、检测 保质保量 检测是我们的责任 保质保量是我们对客户的郑重承诺 三、技术 创新理念 储备的开发人才,引进世界技术,采用先进的设计理念,打造精良的检测仪器。 北广产品广泛应用于国防、大专院校以及检测所等行业,本公司以技术的创新为企业的发展方向,以新型实用的产品引导客户的需求 北广公司所供产品严格按照国家标准生产制造,严谨的制造环节确保每一台出厂仪器质量和性能的卓越,服务优质,质优价廉 确保您的放心 !本公司是一家专门研发、制造、销售试验机设备的专业厂商。公司拥有先进的加工设备、严格的管理体系以及雄厚的技术实力和良好的售后服务。公司专注于金属、非金属等材料的机械性能测试设备的研发制造。主要完成螺纹钢、金属板材、电力金具、紧固件、铸造材料、锚杆、托盘、医疗用接骨板、接骨螺钉、弹条、钢管、铜板、弹簧、减震器、扣件、安全网、玻璃钢、塑料、橡胶、医用手套等材料和产品的拉伸、压缩、弯曲、剪切、撕裂、剥离等性能试验。满足GB、ASTM、ISO、DIN等国家和行业的标准测试要求。正在运行的400多个标准,配置合适的夹具,几乎可完成所有的力学性能测试。本公司秉承“诚信*,服务至上”的宗旨,力争为客户提供较成熟的产品和最完善的服务,使用户得到很大的满足。 售后服务 售后内容: 我公司派工程师负责安装调试及培训。 产品自客户验收之日起,免费保修 2 年,终身维修。 1、设备安装调试: 免费为用户提供所购仪器的安装调试服务。在进行安装调试前用户方应 提供相应的准备工作,并予以提前通知,具体安装调试日期双方可以协商而 定。设备安装调试由多年行业工程师免费进行。保证用户可以正确使用、 软件操作和一般维护以及应及故障的处理。 2、培 训: 我公司工程师免费为用户提供操作人员培训,直到操作人员能独立操作 为止。 3、设备验收标准: 用户方按订货技术要求进行验收。并符合国家标准要求。设备验收在用 户方进行并由我公司安装调试技术人员和用户共同在维修报告上签字以确 认仪器的调试工作完成。 4、设备维修服务: 我公司产品自用户现场调试验收合格后 2 年内免费保修,终身维护。在 2 年免费保修期内产品发生非人为质量问题,我公司为客户提供免费维修。 如产品在免费保修期外出现故障,维修服务只适当收取材料成本费。 5、技术支持: 对于所需仪器的用户,根据用户的要求提供专业的技术方案。除了常规 的仪器服务外,我公司技术部还可为用户提供各种非常规设备的技术支持。 6、售后响应: 在接到用户维修邀请后,2 小时内做出反应,并给予解决。如未解决, 我公司指派工程师及时到达用户现场,解决问题至设备正常使用为止。其他相关产品BDJC-50KV型电压击穿强度试验仪BDJC-100KV型电压击穿强度试验仪BEST-121型体积表面电阻测试仪BEST-212型体积表面电阻率测试仪BEST-991型导体和防静电材料电阻率测试仪GDAT-A型介电常数及介质损耗测试仪GDAC-C型介电常数及介质损耗测试仪BQS-37工频介电常数介质损耗测试仪BLD-600V漏电起痕试验仪BLD-6000V高压漏电起痕试验仪BDH-20KV耐电弧试验仪BWK-300系类热变形维卡温度测定仪BRT-400Z系类熔体流动速率测定仪M-200橡胶塑料滑动摩擦磨损试验机BYH-B球压痕硬度计JF-3型数显氧指数测定仪CZF-5水平垂直燃烧试验机 HMLQ-500落球回弹仪HMYX-2000海绵压陷硬度测试仪 BWN系类电子拉力试验机
  • 库尔特 细胞研究不可或缺的细胞体积分析
    生物、药物等许多的研究均需要通过观察细胞体积的变化或细胞数目增减的来判断和评估实验的效果。由于细胞所处环境的改变可促使其自身体积做出相应的变化,以便适应改变后的环境大致新的平衡。由于并不能清晰地知道该种细胞体积变化规律,因此必须检测其体积或细胞数目随条件、时间的变化。  细胞的发育与细胞分裂周期级数递增均需要连续不断的细胞增殖。  在培养液中正在增殖的细胞在其分裂前其体积将增大至原体积的两倍。然而对细胞发育与分裂的速度作如何调整才能保证细胞体积的不变并不明确。因此,测量细胞的体积的变化对了解与控制细胞的发育和周期非常重要。  细胞的死亡  细胞的增殖与细胞的死亡之间需要一个精细的平衡以保持足够的细胞数量。该种平衡容许细胞作最佳的状态调节以适应各样机能变化的需求。细胞死亡有两种清晰的机制,坏死与凋亡。坏死是一个病理生理的机制,包括细胞膨胀以及细胞膜破裂而释出内容物。凋亡则是一个程序式死亡的机制。凋亡的特征之一就是细胞收缩。细胞有缺陷的凋亡与过度凋亡,两者同样会导致严重疾病。  渗透压的补偿  任何种类的细胞都有可能因处于不利环境而死亡。细胞犹如多孔的网筛极易因渗入已溶解于周围环境的化学物而使渗透压受影响。细胞内外环境中该些溶解物颗粒数目的不平衡,将会导致水份透进细胞而使其体积涨大,或者是水份从细胞渗出使其体积收缩。  当细胞或微生物遭遇环境的变化,它们都会尝试通过自身调节来适应新的环境。  细胞平均体积(MCV)的变化  当细胞或微生物遭受环境变化时,它们将通过自身调整以图适应新的环境。一些例子中细胞需要改变自身体积以便达到适合的目标。  由贝克曼库尔特公司出品的Multisizer 3 库尔特细胞特性分析仪是目前最权威的细胞体积、细胞计数的分析仪器,应用文献多不胜数。无可逾越的领先技术更使Multisizer 3 成为分辨率最高的仪器。国外的用户统计表明,Multisizer 3 已成为细胞实验室必备的研究工具。  自华莱士• 库尔特先生发明 库尔特原理 以来,该原理已广泛应用于材料、生物、医学、制药等众多的领域。目前生物领域的细胞计数标准就是库尔特原理。美国材料实验协会ASTM将库尔特原理定为生物细胞计数的标准(ASTM-F2194)。国际血液学标准化委员会亦指定库尔特原理为计算红细胞与白细胞的标准实验室方法 (Clin. lab. Haemat. 1988. 10, 203-212.)。  作为库尔特原理及技术应用的鼻祖,美国贝克曼库尔特公司始终保持着技术领先的优势。† 库尔特计数仪(Coulter Counter)无论在研究还是在质量控制的应用均具有深远的影响力。在权威的研究机构及其发表的学术文献当中,库尔特计数仪均担当着不可或缺的角色。  多年来贝克曼库尔特公司在市场上推出了一系列的库尔特计数仪(Coulter Counter),如:ZM、TA II、Multisizer II等系列型号,为科研与产品控制的实验室颗粒/细胞的检测提供最可靠的分析手段。Multisizer 3 型库尔特颗粒/细胞计数及粒度分析仪为当今所有计数仪、粒度分析仪当中分辨率最高的仪器。  库尔特原理(Coulter Principle)  又称为电感应区技术。  悬浮于弱电解液中的细胞被抽吸而经过一个小孔,因产生外加电压而形成“感应区”。细胞经过小孔时,细胞的体积替代了电解液的相应体积。因相应体积的电解液被替代,小孔感应区产生电压脉冲而导致电阻的改变。脉冲的强度与细胞的体积成比例的关系 。  Multisizer 3 先进的DPP 数码脉冲处理器,使测量过程中的数以百万计的脉冲信号无须经压缩而保存。数据因无损失而能实现再分析功能。DPP的功能使得Multisizer 3 能够实时监测样品在分析过程中的原始变化。  DPP同样可用于检测细胞体积的改变。在许多的生化过程中细胞体积是一个重要的参考因素。如细胞发育、细胞周期、细胞死亡、渗透压的补偿、致病机理和吞噬作用等。Multisizer 3 可以观测细胞粒径与体积从几秒到几小时内的变化。  DPP技术在低温生物学中的应用  这是在冷冻过程中受渗透压影响的细胞,其平均体积(MCV)的分布曲线和20秒内连续的脉冲峰值平均值的变化。  择任意的脉冲群可以将一个粒度分布“分割”成多重的分布。因此,可获得在分析全程中的某一时段的粒度分布。如图示,可获得细胞的平均直径随时间的变化。  使用Beckman Coulter 的Multisizer™ 3 库尔特体积粒度分析仪将能方便而精确地测量细胞平均体积(MCV)的各种变化。
  • 材料变温电阻特性测试仪
    成果名称材料变温电阻特性测试仪(EL RT-800)单位名称北京科大分析检验中心有限公司联系人王立锦联系邮箱13260325821@163.com成果成熟度□研发阶段 □原理样机 □通过小试 &radic 通过中试 &radic 可以量产合作方式□技术转让 &radic 技术入股 &radic 合作开发 □其他成果简介:本仪器专门为材料电阻特性变温测试而设计,采用专用高精度电阻和温度测量仪以及四端测量法减小接触电阻对测量的影响从而提高测量精度,样品采用氮气保护可连续测量-100℃~500 ℃条件下样品电阻随温度的变化。采用流行的USB接口将高精度的数据采集器与计算机相连,数据采集迅速准确;用户界面直观友好,能极大方便用户的使用。主要技术参数:一、信号源模式:大电流模式;小电流模式;脉冲电流模式。二、电阻测量范围: 1&mu &Omega ~3M&Omega 。三、电阻测量精度: ± 0.1%FS。四、变温范围:液氮温度~900 ℃。五、温度测量精度:热电阻0.1%± 0.1℃;热电偶0.5%± 0.5℃。 六、供电电源:220 VAC。七、额定功率:500W。八、数据采集软件在Windows XP、Windows 7操作系统均兼容。应用前景:本仪器可用于金属、合金及半导体材料的电阻变温测量。适合于高校科研院所科研测试及开设专业实验。知识产权及项目获奖情况:本仪器拥有完全自主知识产权和核心技术,曾在全国高校自制实验仪器设备评选活动中获得优秀奖。
  • 新型空穴型透明导电薄膜问世
    记者1月25日从中国科学院合肥物质科学研究院了解到,该院固体物理研究所功能材料物理与器件研究部和本院等离子所等单位科研人员合作,在空穴型近红外透明导电薄膜研究方面取得新进展:他们设计并制备了新型空穴型铜铁矿薄膜,并通过参数优化让新型薄膜获得了较高的近红外波段透过率和较低的室温方块电阻。相关研究结果日前发表在《先进光学材料》杂志上。  透明导电薄膜是一类兼具光学透明和导电性的光电功能材料,在触摸屏、平板显示器、发光二极管及光伏电池等光电子器件领域有着广泛应用。目前,商用的透明导电薄膜均为电子型,空穴型透明导电薄膜由于空穴有效质量大、空穴迁移率低和空穴掺杂性差,其光电性能远落后于电子型透明导电薄膜,这严重阻碍了新型透明电子器件的发展。  在国家自然科学基金的支持下,研究人员通过理论计算发现,含有铑、氧等元素的铜铁矿结构材料是一种间接带隙半导体,其中的铜离子与氧离子的原子轨道可进行杂化,从而减弱价带顶附近载流子的局域化,实现空穴型高电导率;另一方面该材料在可见光及近红外波段表现出弱的光吸收行为,具有高透过率。研究人员在前期金属型铜铁矿薄膜的研究基础上,采用非真空工艺进一步获得了大尺寸空穴型铜铁矿透明导电薄膜。该薄膜表现出主轴自组装织构的生长特征,有利于其内载流子的传输,提高空穴的迁移率。另外,由于三价铑离子的离子半径可实现空穴型载流子重掺杂,使得镁掺杂铜铁矿结构材料具有非常高的室温导电率、较高的近红外波段透过率以及低的室温方块电阻。  这种高性能的空穴型透明导电薄膜的发现,为后续基于透明电子型及空穴型薄膜的高性能全透明异质结构的研发及应用提供了一种潜在的候选材料。
  • 磁电阻特性测试仪
    成果名称磁电阻特性测试仪(EL MR系列)单位名称北京科大分析检验中心有限公司联系人王立锦联系邮箱13260325821@163.com成果成熟度□研发阶段 □原理样机 □通过小试 &radic 通过中试 &radic 可以量产合作方式□技术转让 &radic 技术入股 &radic 合作开发 □其他成果简介:本仪器专门为材料磁电阻特性测试而设计的,采用流行的USB接口将高精度的数据采集器与计算机相连,数据采集迅速准确;用户界面直观友好,极大地方便了用户的使用。MR-150型采用电磁铁产生强磁场,高精度名牌仪表采集数据,精度高稳定性好适合科研中各类样品的磁电阻特性测试。MR-4型采用亥姆霍兹线圈产生磁场,无剩磁。采用高精度名牌仪表采集数据,精度高稳定性好适合科研中AMR、GMR、TMR各类样品的磁电阻特性测试。MR-2型采用集成化主机和多通道USB接口数据采集卡采集数据,稳定性好适合科研教学中性能较好的磁电阻样品测试。MR-1型采用手动调节磁场和人工读数,适合与大中专院校本科生研究生的专业实验中使用。主要技术参数:一、系统控制主机:内含可1路可调恒流源(0.3mA~50mA)、2路4 1/2数字电压表和1块USB接口24bit数据采集卡;功耗50W。二、自动扫描电源:0~± 5A,扫描周期8~80s。三、亥姆霍兹线圈:0~± 160Gs。四、测量专用检波与放大电路技术参数:输入信号动态范围为± 30 dB;输出电平灵敏度为30mV / dB;,输出电流为8mA;转换速率为25 V /&mu s;相位测量范围为0~180° ;相位输出时转换速率为30MHz;响应时间为40 ns~500 ns;测量夹头间隔10mm。五、计算机为PC兼容机,Windows XP或Windows 7操作系统。 六、数据采集软件在Windows XP和Windows 7操作系统均兼容。应用前景:本仪器可用于金属、合金及半导体材料的电阻变温测量。适合于高校科研院所科研测试及开设专业实验。目前该仪器已经应用在北京科技大学材料学院及哈尔滨工业大学深圳研究生院的研究生实验教学及课题组科研测量中,取得良好的成效。知识产权及项目获奖情况:本仪器拥有完全自主知识产权和核心技术,曾在全国高校自制实验仪器设备评选活动中获得优秀奖。
  • 小体积有大“热”量 林赛斯携新品亮相橡塑展——访林赛斯(上海)科学仪器有限公司技术工程师刘伟华
    p  strong仪器信息网讯/strong 第三十三届中国国际塑料橡胶工业展览会于2019年5月21日在中国广州中国进出口商品交易会展馆开幕。" CHINAPLAS 国际橡塑展" 伴随着中国塑料及橡胶行业成长逾30年,至今已发展成为亚洲最具规模之橡塑业展会,并对中国橡塑业的发展产生了积极的推动作用。目前," CHINAPLAS 国际橡塑展" 已是全球领先的塑料橡胶业展览会,业内人士更公认其影响力仅次于德国" K展" ,成为橡塑业的全球最顶尖的展会之一。 去年的展会盛况空前,展馆总面积超30万,展商数目近4000,参展国家及地区多达40个,参展人数超过18万,而今年展会预期更胜往昔。/pp  林赛斯(上海)科学仪器有限公司(以下简称“林赛斯”)携新产品参加了本次展会。仪器信息网采访了林赛斯(上海)科学仪器有限公司技术工程师刘伟华。/pp  采访视频如下:/ppscript src="https://p.bokecc.com/player?vid=4A384E89EEE440509C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptbr//pp  林赛斯在热分析仪器研发方面已经有几十年悠久历史,产品线涵盖了热导、热扩散、DSC、和热重等。此次展会,林赛斯带来他们的DSC新产品。该产品不仅体积小、检测性能高、检测速度快、方便快速更换而且成本较低。产品采用的DSC支架达到芯片级,集成了参比、加热、传感器等。林赛斯希望通过产品推广,帮助更多用户提升检测合格率,并在高分子、医药、化学、有机、无机等领域有更好的应用。/pp  刘伟华通过参加展会,发现了用户对高端产品的注重性和对产品性能可塑性的关注,感受到了用户希望通过林赛斯的产品拓宽用户产品的行业应用的渴求。林赛斯致力于给予用户更好的应用体验,未来将在全国举办用户会等活动,对用户问题进行整理和解答。最后,刘伟华欢迎全国的用户到林赛斯位于北京的实验室参观体验和进行产品检测,从而对林赛斯的产品有更好了解。/pp /p
  • 单分子蛋白质测序、单细胞代谢组学及体积电镜等上榜2023 年值得关注的七项技术 |《自然》长文
    《自然》选出将在未来一年对科学产生巨大影响的工具和技术。从蛋白质测序到电子显微镜,从考古学到天文学,本文将讲述七项有可能会在未来一年震动科学界的技术。  单分子蛋白质测序  蛋白质组体现了细胞或生物体制造的一整套蛋白质,可以提供关于健康和疾病的深入信息,但对蛋白质组的表征仍然是一项挑战性的工作。  相对于核酸来说,蛋白质是由更多的分子砌块(building blocks)组成的,约有20种天然存在的氨基酸(相比之下,组成DNA和信使RNA等分子的只有4种核苷酸) 因此,蛋白质具有更大的化学多样性。有些蛋白质在细胞中的含量较少 并且与核酸不同,蛋白质不能被扩增 ——这意味着蛋白质分析方法必须使用任何能用的材料。  大多数蛋白质组学分析使用质谱法,这是一种根据蛋白质的质量和电荷来分析蛋白质混合物的技术。这些谱图可以同时量化数千种蛋白质,但检测到的分子并不总能明确识别,并且混合物中的低丰度蛋白质常常被忽视。现在,能对样本中的许多(甚至全部)蛋白质进行测序的单分子技术可能即将问世,其中许多技术类似于用于DNA的技术。  德克萨斯大学奥斯汀分校的生物化学家Edward Marcotte正在研究一种这样的技术,称为荧光测序(fluorosequencing)[1]。Marcotte的技术报道于2018年,该技术基于一种逐步的化学过程,在此过程中,单个氨基酸被荧光标记,然后从表面偶联蛋白的末端逐个被剪切下来,此时摄像机会捕捉到所产生的荧光信号。Marcotte解释道:“我们可以用不同的荧光染料标记蛋白质,然后在切割时逐个分子地观察。”去年,位于康涅狄格州的生物技术公司Quantum Si的研究人员描述了一种荧光测序的替代方法,该方法使用荧光标记的“粘合剂”蛋白来识别蛋白质末端的特定氨基酸(或多肽)序列[2]。  其他研究人员正在开发模仿基于纳米孔的DNA测序技术,根据多肽通过微小通道时引起的电流变化来分析多肽。荷兰代尔夫特理工大学的生物物理学家Cees Dekker及其同事于2021年展示了这样一种方法,他们利用蛋白质制成纳米孔,并能够区分通过纳米孔的多肽中的单个氨基酸[3]。在以色列理工学院,生物医学工程师Amit Meller的团队正在研究由硅基材料制成的固态纳米孔器件,该器件可以同时对许多不同的蛋白质分子进行高通量分析。他说:“你可能可以同时观察数万甚至数百万个纳米孔。”  尽管目前单分子蛋白质测序只是概念上的验证,但其商业化正在迅速推进。例如,Quantum Si公司已宣布计划今年推出第一代仪器,并且Meller指出,2022年11月在代尔夫特举行的蛋白质测序会议上有一个专门针对该领域初创企业的讨论组。他说:“这让我想起了第二代DNA测序技术面世前的那些日子。”  Marcotte是德克萨斯州奥斯汀市蛋白质测序公司Erisyon的联合创始人,他对此持乐观态度。他说:“这已经不是个行不行的问题,而是这项技术几时能送到人们手上。”  詹姆斯韦勃太空望远镜  天文学家们从去年开始就翘首以盼,兴奋不已。经过20多年的精心设计和建造,美国国家航空航天局(NASA)与欧洲航天局和加拿大航天局合作,于2021年12月25日成功将詹姆斯韦布太空望远镜(James Webb Space Telescope,缩写JWST)送入轨道。因为仪器设备需要展开并确定第一轮观测的位置,全世界不得不等待了近七个月,JWST才开始正常工作。  等待是值得的。马里兰州巴尔的摩市太空望远镜科学研究所天文学家、JWST的望远镜科学家Matt Mountain表示,最初传来的图像超出了他的最高预期。“实际上天空并不空旷——到处都是星系,”他说,“理论上我们知道这一点,但真正看到这一景象带来了别样的情感冲击。”  詹姆斯韦布太空望远镜(James Webb Space Telescope)的6.5米主镜片(图中展示了18片镜片中的6片)可以探测数十亿光年外的物体。资料来源:NASA/MSFC/David Higginbotham  JWST的设计是为了接替哈勃太空望远镜的工作。哈勃望远镜可以看到令人惊叹的宇宙景象,但也有盲点:它基本上无法看见在红外范围内具有光信号的古老恒星和星系。要弥补这一点,需要一台高灵敏度的仪器,其灵敏度要能够探测到数十亿光年外发出的极为微弱的红外信号。  JWST的最终设计包括18个完全光滑的铍质镜片阵列,当其完全展开时,直径为6.5米。Mountain说,这些反射镜的设计非常精密,“要是把一块镜面等比放大到美国那么大,上面的隆起也不超过几英寸(高)。”这些反射镜配有最先进的近红外和中红外探测器。  这一设计使JWST能够填补哈勃望远镜的空白,包括捕获来自一个有135亿年历史的星系发出的信号,该星系产生了宇宙中最早的一些氧和氖原子。JWST也带来了一些惊喜,例如,它能够测量某些类型的系外行星的大气组成。  世界各地的研究人员都在排队等待观察时间。英国卡迪夫大学的天体物理学家Mikako Matsuura正在用JWST进行两项研究,调查宇宙尘埃的产生和破坏,这些尘埃可能会导致恒星和行星的形成。Matsuura说,与她所在小组过去使用的望远镜相比,“JWST拥有完全不同的灵敏度和清晰度等级”。她说:“我们看到了这些天体内部正在发生的完全不同的现象——这真令人叹为观止。”  体积电子显微镜  电子显微镜(Electron microscopy,EM)以其卓越的分辨率而闻名,但观察的主要是样本的表面。深入研究样本的内部需要将样本切成非常薄的切片,这对于生物学家来说往往不够。伦敦弗朗西斯克里克研究所(Francis Crick Institute)的电子显微镜学家Lucy Collinson解释说,仅覆盖单个细胞的体积就需要200个切片。她说:“如果你只有一个[切片],你就是在玩统计把戏。”  现在,研究人员正在将EM的分辨率应用于包含多个立方毫米体积的3D组织样本上。  此前,从2D的EM图像重建这样体积的样本(例如,绘制大脑的神经连接图)需要经历艰苦的样本准备、成像和计算过程,才能将这些图像转换为多图像堆叠。现在,最新的“体积电子显微镜”技术大大简化了这一过程。  这些技术有各种优点和局限性。连续切面成像(Serial block-face imaging)是一种相对快速的方法,它使用金刚石刀片在树脂包埋样品上切下一系列薄片,并进行成像,可以处理约1立方毫米大小的样品。然而,它的深度分辨率较差,这意味着生成的体积重建将相对模糊。聚焦离子束扫描电子显微镜(Focused ion beam scanning electron microscopy,FIB-SEM)能制备更薄的薄片样品,因此深度分辨率更高,但更适用于体积较小的样品。  Collinson将体积电子显微镜的兴起描述为一场“安静的革命”,因为研究人员专注于用这种方法得到的结果,而不是生成这些结果的技术。但这正在改变。例如,2021年,弗吉尼亚州珍利亚研究园区(Janelia Research Campus)从事电子显微镜中细胞器分割(Cell Organelle Segmentation in Electron Microscopy,COSEM)计划的研究人员在《自然》上发表了两篇论文,聚焦了在绘制细胞内部结构方面取得的重大进展[4,5]。“这是一个绝佳的原理论证。”Collinson说。  COSEM研究计划使用精密的定制FIB-SEM显微镜,在保持良好空间分辨率的同时,可将单个实验中可成像的体积增加约200倍。将这些仪器与深度学习算法结合使用,该团队能够在各种细胞类型的完整3D体积中定义各种细胞器和其他亚细胞结构。  这种样品制备方法费力且难以掌握,并且由此产生的数据集非常庞大。但这一努力是值得的:Collinson已经看到了该技术在传染病研究和癌症生物学方面产生的见解。她现在正在与同事们合作,探索以高分辨率重建整个小鼠大脑的可行性。她预计这项工作将需要十多年的时间,花费数十亿美元,并产生5亿GB左右的数据。她说:“这可能与绘制第一个人类基因组工作的数据量在一个数量级。”  CRISPR无限可能  基因组编辑工具CRISPR–Cas9作为在整个基因组的目标位点引入特定变化的首选方法,在基因治疗、疾病建模和其他研究领域取得了突破,无可非议地享有盛誉。但它的用途多受限制。现在,研究人员正在寻找规避这些限制的方法。  CRISPR编辑由短链向导RNA(short guide RNA,sgRNA)协调,sgRNA将相关的Cas核酸酶导向其目标基因组序列。但这种酶发挥作用还需要在靶点附近有一种叫做原间隔序列邻近基序(protospacer adjacent motif,PAM)的序列 如果没有PAM,基因编辑很可能会失败。  在波士顿的马萨诸塞州总医院,基因组工程师Benjamin Kleinstover利用蛋白质工程技术,从化脓性链球菌中制造出常用Cas9酶的“近乎不受PAM序列限制的(near-PAMless)”Cas变体。一个Cas变体需要由三个连续核苷酸碱基组成的PAM,其中腺嘌呤(A)或鸟嘌呤(G)核苷酸位于中间位置[6]。“这些酶现在几乎可以读取整个基因组,而传统的CRISPR酶只读取1%到10%的基因组。”Kleinstover说。  这种对PAM序列不太严格的要求,增加了编辑“脱靶”的机会,但进一步的蛋白质工程设计可以提高其特异性。作为一种替代方法,Kleinstiver的团队正在设计和测试大量Cas9变体,每个变体对不同的PAM序列表现出高度的特异性。  还有许多天然存在的Cas变体有待发现。自然条件下,CRISPR–Cas9系统是一种针对病毒感染的细菌防御机制,不同的微生物进化出了具有不同PAM序列偏好的各种酶。意大利特伦托大学的病毒学家Anna Cereseto和微生物组研究人员Nicola Segata梳理了100多万个微生物基因组,鉴定和表征了一组多样的Cas9变体,他们估计这些变体可能总共可以针对98%以上的已知人类致病突变[7]。  然而,其中只有少数能在哺乳动物细胞中发挥作用。Cereseto说:“我们的想法是测试许多种酶,看看是什么决定因素使这些酶正常工作。”从这些天然酶库和高通量蛋白质工程工作中获得的见解来看,Kleinstiver说,“我认为我们最终会有一个相当完整的编辑工具箱,能让我们编辑任何我们想要的碱基。”  高精度放射性碳测年  去年,考古学家利用放射性碳测年技术的进步,对维京探险家首次抵达美洲的确切年份——甚至是季节——进行了研究。荷兰格罗宁根大学的同位素分析专家Michael Dee和他的博士后Margot Kuitems带领的一个团队在加拿大纽芬兰岛北岸的一个聚落中发现了一些被砍伐的木材,通过对这些木材的研究,确定这棵树很可能在1021年被砍伐,而且可能是在春天[8]。  自20世纪40年代以来,科学家一直在利用有机人工制品的放射性碳测年法来缩小历史事件发生的时间范围。他们通过测量同位素碳-14的痕迹来做到这一点,碳-14是宇宙射线与地球大气相互作用的结果,在数千年中缓慢衰变。但这种技术的精确度通常仅为几十年左右。  加拿大纽芬兰省兰塞奥兹牧草地(L'Anse aux Meadows)木材的精确放射性碳年代测定显示,维京人于1021年在此地砍倒了一棵树。图片来源:All Canada Photos/Alamy  2012年,情况发生了变化,日本名古屋大学物理学家三宅芙沙(Fusa Miyake)领导的研究小组发现[9],公元774到775年之间,日本雪松年轮中碳-14含量显著升高。随后的研究[10]不仅证实了这一时期世界各地的木材样本中都存在这种碳-14含量的显著升高,而且还发现历史上存在至少五次这样的碳-14含量上升,最早的一次可以追溯到公元前7176年。有研究人员将这些碳-14峰值与太阳风暴活动联系起来,但这一假设仍在探索中。  无论其原因是什么,这些“三宅事件”的存在,能让研究人员通过检测一个特定的三宅事件,然后对此后形成的年轮进行计数,从而准确地确定木制文物的制造年份。Kuitems说,研究人员甚至可以根据最外圈年轮的厚度来确定树木被砍伐的季节。  考古学家现在正在将这种方法应用于新石器时代聚落和火山爆发遗址的研究,Dee希望用它来研究中美洲的玛雅帝国。在接下来的十年左右,Dee乐观地认为,“我们将对这些古老文明中的许多历史事件有真正精确到年代的完全记录,我们将能够以相当精细的时间尺度谈论这些历史发展。”  至于三宅,则还在继续寻找历史中的时间标尺。她说:“我们现在正在寻找过去一万年中与公元774到775年的事件相当的其他碳-14升高。”  单细胞代谢组学  代谢组学是研究驱动细胞的脂质、碳水化合物和其他小分子的科学,它最初是一套表征细胞或组织中代谢产物的方法,但现在正在转向单细胞水平。科学家们可以利用这些细胞水平的数据,理清大量看似相同的细胞的功能复杂性。但这一转变带来了艰巨的挑战。  代谢组包含大量具有不同化学性质的分子。欧洲分子生物学实验室的代谢组学研究人员Theodore Alexandrov说,其中一些分子存在的时间非常短暂,代谢周转率为亚秒级别。它们可能很难检测:尽管单细胞RNA测序可以捕获细胞或生物体中产生的近一半的RNA分子(转录组),但大多数代谢分析仅涵盖细胞代谢产物的一小部分。这些缺失的信息里可能包含了重要的生物学奥秘。  “代谢组实际上是细胞的活性部分。”伊利诺伊大学厄巴纳-香槟分校的分析化学家Jonathan Sweedler说,“在疾病状态下,如果你想知道细胞状态,你真的要研究代谢产物。”  许多代谢组学实验室使用分离的细胞,这些细胞被捕获在毛细管中,使用质谱法单独分析。相比之下,“成像质谱”方法获取了样本中不同位置的细胞代谢产物发生变化的空间信息。例如,研究人员可以使用一种称为基质辅助激光解吸/电离(MALDI)的技术,其中激光束扫过经特殊处理的组织切片,释放出代谢产物,用于随后的质谱分析。这种方法也能捕获样本中代谢物来源的空间坐标。  Sweedler说,理论上,这两种方法都可以量化数千个细胞中的数百种化合物,但要实现这一目标通常需要顶级的定制硬件设备,成本在百万美元左右。  现在,研究人员正在普及这项技术。2021年,Alexandrov团队报道了SpaceM,这是一种开源软件工具,它能用光学显微镜成像数据,使用标准商用质谱仪对培养的细胞进行空间代谢组学分析[11]。他说:“我们算是做了数据分析部分的体力活。”  Alexandrov的团队使用SpaceM对数以万计人和小鼠细胞中的数百种代谢产物进行了分析,并转向标准的单细胞转录组学方法将这些细胞分类。Alexandrov表示,他尤为热情的是后一项工作,以及构建“代谢组学图谱”的想法——类似于为转录组学开发的图谱,以加速该领域的进展。他说:“这绝对是一个前沿领域,并将对科学起到巨大的推动作用。”  体外胚胎模型  研究人员现在可以在实验室中制造出人工合成胚胎(下图),它与8天大的自然胚胎(上图)类似。来源:Magdalena Zernicka Goetz实验室  科学家们已经在小鼠和人类的细胞水平上详细描绘了从受精卵到完全形成的胚胎这一过程。但驱动这一过程早期阶段的分子机制仍不清楚。现在,“胚状体”模型的一系列活动有助于填补这些知识空白,让研究人员更清楚地了解可以决定胎儿发育成败的重要早期事件。  该领域一些最精细的模型,来自加州理工学院和英国剑桥大学的发育生物学家Magdalena Zernicka Goetz的实验室。2022年,她和她的团队证明,他们可以完全从胚胎干细胞(embryonic stem cells,ES细胞)中产生植入期的小鼠胚胎[12,13]。  与所有多能干细胞一样,ES细胞可以形成任何细胞或组织类型,但它们需要与两种类型的胚外细胞密切相互作用才能完成正常的胚胎发育。Zernicka-Goetz团队研究出了诱导ES细胞形成这些胚外细胞的方法,并表明这些细胞可以与ES细胞共培养,以产生胚胎模型,该模型的成熟度是以前的体外实验无法达到的。“它就如你能想象的胚胎模型那样。”Zernicka Goetz说,“我们的胚胎模型发育出一个头部和心脏——而且还在跳动。”她的团队能够利用这个模型来揭示个别基因的改变如何破坏正常的胚胎发育。  经过工程设计用于模拟胚胎8细胞期的细胞构成的胚状体。来源:M.A Mazid et al./Nature  在中国科学院广州生物医药与健康研究院,干细胞生物学家Miguel Esteban和同事们正在采取一种不同的策略:重新编程人类干细胞,以模拟最早的发育阶段。  Esteban说:“我们最初的想法是,实际上甚至制造合子也是可能的。”该团队没能完全实现这一点,但他们的确发现了一种培养策略,能使这些干细胞回到类似于8细胞期人类胚胎的状态[14]。这是一个至关重要的发育期里程碑,与基因表达的巨大变化相关,最终产生不同的胚胎细胞和胚外细胞谱系。  尽管还不完美,但Esteban的模型展示了自然状态下8细胞期胚胎中细胞的关键特征,并凸显了人类和小鼠胚胎如何启动向8细胞期阶段转变之间的重要差异。Esteban说:“我们发现,一种甚至在小鼠体内都没有表达的转录因子,调节着整个转化过程。”  结合起来,这些模型可以帮助研究人员描绘出仅仅几个细胞是如何发育为高度复杂的脊椎动物躯体的。  在许多国家,对人类胚胎的研究只能在发育14天以内进行,但在这些限制条件下,研究人员仍有许多工作可做。Esteban说,非人类灵长类动物模型提供了一种可能的替代方案,而Zernicka-Goetz说,她的小鼠胚胎策略也可以产生发育到第12天的人类胚胎。她说:“在这个我们能研究的胚胎阶段,仍有很多问题有待提出。”  参考文献:  1. Swaminathan, J. et al. Nature Biotechnol.36, 1076–1082 (2018).  2. Reed, B. D. et al. Science 378, 186–192 (2022).  3. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Science 374, 1509–1513 (2021).  4. Heinrich, L. et al. Nature 599, 141–146 (2021).  5. Xu, C. S. et al. Nature 599, 147–151 (2021).  6. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. et al. Science 368, 290–296 (2020).  7. Ciciani, M. et al. Nature Commun. 13, 6474 (2022).  8. Kuitems, M. et al. Nature 601, 388–391 (2022).  9. Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. Nature 486, 240–242 (2012).  10. Brehm, N. et al. Nature Commun. 13, 1196 (2022).  11. Rappez, L. et al. Nature Methods 18, 799–805 (2021).  12. Amadei, G. et al. Nature 610, 143–153 (2022).  13. Lau, K. Y. C. et al. Cell Stem Cell 29, 1445–1458 (2022).  14. Mazid, M. A. et al. Nature 605, 315–324 (2022).  原文以Seven technologies to watch in 2023为标题发表在2023年1月23日《自然》的技术特写版块上
  • Master Bond开发了双组份无溶剂体系的高韧性环氧树脂,可耐受重复热循环测试
    p  strongMaster Bond(硕士邦德)有限公司开发了一款span style="color: rgb(255, 0, 0) "双组份、无溶剂、高韧性/span的环氧树脂体系,命名为Supreme 62-1。它可在span style="color: rgb(255, 0, 0) "-60span style="color: rgb(255, 0, 0) font-family: 宋体,SimSun "℉/span至+450span style="color: rgb(255, 0, 0) font-family: 宋体,SimSun "℉/span(-51℃至+232℃)/span的温度范围内使用。最值得注意的是,即使在高温下,Supreme 62-1也具有对多种span style="color: rgb(255, 0, 0) "酸、碱、燃料和溶剂的化学抗性/span。它可被用作span style="color: rgb(255, 0, 0) "航空、电子、光学和特种OEM应用领域的粘合剂/密封胶/span。/strong/pp  span style="color: rgb(31, 73, 125) "i“Master Bond Supreme 62-1具有strongspan style="color: rgb(31, 73, 125) "出众的韧性,使其适于粘合不同热膨胀系数的基材,及使其耐受重复热循环/span/strong”,高级产品工程师Rohit Ramnath谈到。“这种配方还表现出strong8000-9000psi的抗拉强度及450000-500000psi的拉伸模量/strong。基于其同时具有的strong耐热性及高机械强度外结构/strong,我们在需要结构胶合不同基材的许多应用领域均推荐使用Supreme 62-1。”/i/span/pp  Supreme 62-1易于使用,在混合100g批量时具有优越的、超过span style="color: rgb(255, 0, 0) "12小时/span的长适用期。代表性固化时间从span style="color: rgb(255, 0, 0) "140-158span style="color: rgb(255, 0, 0) font-family: 宋体,SimSun "℉/span(60-70℃)时的4到6小时、176-212span style="color: rgb(255, 0, 0) font-family: 宋体,SimSun "℉/span(80-100℃)时的20到40分钟至257span style="color: rgb(255, 0, 0) font-family: 宋体,SimSun "℉/span(125℃)时的10到20分钟/span均可供选择。这一化合物具有span style="color: rgb(255, 0, 0) "5-10%的伸长率和75-85的邵氏硬度/span。固化后环氧树脂的体积电阻率超过span style="color: rgb(255, 0, 0) "1014ohmspan style="color: rgb(255, 0, 0) font-family: 宋体,SimSun "· /spancm/span。Supreme 62-1可以半品脱、1品脱、1夸脱、1加仑和5加仑的桶装规格购买。预混、冷冻注射器以及枪包这类特种包装形式可用于简化粘合剂处理、减少损耗及提高生产速率。/pp style="text-align: center "img title="1-1.jpg" src="http://img1.17img.cn/17img/images/201806/insimg/b3e0b7b0-96ee-4311-93b3-414da7bfba2a.jpg"//pp style="text-align: center "Master Bond抗热循环粘合剂/pp  Master Bond Supreme 62-1是一种双组份、抗高温的环氧化合物,可耐受多次热循环与振动。它提供可靠的电绝缘性,以及对包括溶剂、酸和碱在内的各种化学物质的防护。它在混合后适用期长,并有便捷的固化时间以供选择。/pp  查看更多关于Master Bond耐热循环粘合剂的讯息请联系技术支持的电话:span style="color: rgb(0, 176, 240) "+1-201-343-8983/span,传真:span style="color: rgb(0, 176, 240) "+1-201-343-2132/span和邮箱:span style="color: rgb(0, 176, 240) "technical@masterbond.com/span/p
  • 十五种分析仪器助力半导体工艺检测
    p style="text-align: justify text-indent: 2em "span style="text-indent: 2em "半导体器件生产中,从半导体单晶片到制成最终成品,须经历数十甚至上百道工序。为了确保产品性能合格、稳定可靠,并有高的成品率,根据各种产品的生产情况,对所有工艺步骤都要有严格的具体要求。因而,在生产过程中必须建立相应的系统和精确的监控措施,首先要从半导体工艺检测着手。/span/pp style="text-align: justify text-indent: 2em "半导体工艺检测的项目繁多,内容广泛,方法多种多样,可粗分为两类。第一类是半导体晶片在经历每步工艺加工前后或加工过程中进行的检测,也就是半导体器件和集成电路的半成品或成品的检测。第二类是对半导体单晶片以外的原材料、辅助材料、生产环境、工艺设备、工具、掩模版和其他工艺条件所进行的检测。第一类工艺检测主要是对工艺过程中半导体体内、表面和附加其上的介质膜、金属膜、多晶硅等结构的特性进行物理、化学和电学等性质的测定。其中许多检测方法是半导体工艺所特有的。/pp style="text-align: justify text-indent: 2em "工艺检测的目的不只是搜集数据,更重要的是要把不断产生的大量检测数据及时整理分析,不断揭示生产过程中存在的问题,向工艺控制反馈,使之不致偏离正常的控制条件。因而对大量检测数据的科学管理,保证其能够得到准确和及时的处理,是半导体工艺检测中的一项重要关键。同时半导体检测也涉及大量的科学仪器,针对于此,对一些半导体检测的仪器进行介绍。/ph3 style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/zc/537.html" target="_self"椭偏仪/a/h3p style="text-align: justify text-indent: 2em "椭偏仪是一种用于探测薄膜厚度、光学常数以及材料微结构的光学测量仪器。由于测量精度高,适用于超薄膜,与样品非接触,对样品没有破坏且不需要真空,使得椭偏仪成为一种极具吸引力的测量仪器。/pp style="text-align: justify text-indent: 2em "目前,椭偏仪是测量透明、半透明薄膜厚度的主流方法,它采用偏振光源发射激光,当光在样本中发生反射时,会产生椭圆的偏振。椭偏仪通过测量反射得到的椭圆偏振,并结合已知的输入值精确计算出薄膜的厚度,是一种非破坏性、非接触的光学薄膜厚度测试技术。在晶圆加工中的注入、刻蚀和平坦化等一些需要实时测试的加工步骤内,椭偏仪可以直接被集成到工艺设备上,以此确定工艺中膜厚的加工终点。/ph3 style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/zc/1677.html" target="_self"span style="text-indent: 2em "四探针测试仪/span/a/h3p style="text-align: justify text-indent: 2em "四探针测试仪是用来测量半导体材料(主要是硅单晶、锗单晶、硅片)电阻率,以及扩散层、外延层、ITO导电箔膜、导电橡胶方块电阻等的测量仪器。/pp style="text-align: justify text-indent: 2em "测量半导体电阻率方法的测量方法主要根据掺杂水平的高低,半导体材料的电阻率可能很高。有多种因素会使测量这些材料的电阻率的任务复杂化,包括与材料实现良好接触的问题。特殊的探头设计用于测量半导体晶片和半导体棒的电阻率。这些探头通常由诸如钨的硬质金属制成,并接地到探头。在这种情况下,接触电阻很高,必须使用四点共线探针或四线绝缘探针。两个探针提供恒定电流,另外两个探针测量整个样品一部分的电压降。通过使用所测电阻的几何尺寸来计算电阻率。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "薄膜应力测试仪/spanbr//h3p style="text-align: justify text-indent: 2em "薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,其测试的精度、重复性、效率等因素为业界所重点关注。对应产品目前业界有两种主流技术流派:1)以美国FSM、KLA、TOHO为代表的双激光波长扫描技术(线扫模式),尽管是上世纪90年代技术,但由于其简单高效,适合常规Fab制程中进行快速QC,至今仍广泛应用于相关工厂。2)以美国kSA为代表的MOS激光点阵技术,抗环境振动干扰,精于局部区域内应力测量,这在研究局部薄膜应力均匀分布具有特定意义。线扫模式主要测量晶圆薄膜整体平均应力,监控工序工艺的重复性有意义。但在监控或精细分析局部薄膜应力,激光点阵技术具有特殊优势,比如在MEMS压电薄膜的应力和缺陷监控。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "热波系统/spanbr//h3p style="text-align: justify text-indent: 2em "热播系统主要用来测量掺杂浓度。热波系统通过测量聚焦在硅片上同一点的两束激光在硅片表面反射率的变化量来计算杂质粒子的注入浓度。在该系统内,一束激光通过氩气激光器产生加热的波使硅片表面温度升高,热硅片会导致另一束氦氖激光的反射系数发生变化,这一变化量正比于硅片中由杂质粒子注入而产生的晶体缺陷点的数目。由此,测量杂质粒子浓度的热波信号探测器可以将晶格缺陷的数目与掺杂浓度等注入条件联系起来,描述离子注入工艺后薄膜内杂质的浓度数值。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "ECV设备/span/h3p style="text-align: justify text-indent: 2em "ECV又名扩散浓度测试仪,结深测试仪等,即电化学CV法测扩散后的载流子浓度分布。电化学ECV可以用于太阳能电池、LED等产业,是化合物半导体材料研究或开发的主要工具之一。电化学ECV主要用于半导体材料的研究及开发,其原理是使用电化学电容-电压法来测量半导体材料的掺杂浓度分布。电化学ECV(CV-Profiler, C-V Profiler)也是分析或发展半导体光-电化学湿法蚀刻(PEC Etching)很好的选择。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "少子寿命测试仪/span/h3p style="text-align: justify text-indent: 2em "载流子寿命就是指非平衡载流子的寿命。而非平衡载流子一般也就是非平衡少数载流子(因为只有少数载流子才能注入到半导体内部、并积累起来,多数载流子即使注入进去后也就通过库仑作用而很快地消失了),所以非平衡载流子寿命也就是指非平衡少数载流子寿命,即少数载流子寿命。例如,对n型半导体,非平衡载流子寿命也就是指的是非平衡空穴的寿命。/pp style="text-align: justify text-indent: 2em "少子寿命是半导体材料和器件的重要参数。它直接反映了材料的质量和器件特性。能够准确的得到这个参数,对于半导体器件制造具有重要意义。少子寿命测试仪可以直接获得长硅的质量参数。/ph3 style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/zc/34.html" target="_self"拉曼光谱/a/h3p style="text-align: justify text-indent: 2em "拉曼光谱是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.Raman在1928年所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息并应用于分子结构研究的一种分析方法。/pp style="text-align: justify text-indent: 2em "拉曼光谱在材料科学中是物质结构研究的有力工具,在相组成界面、晶界等课题中可以做很多工作。半导体材料研究中,拉曼光谱可测出经离子注入后的半导体损伤分布,可测出半磁半导体的组分,外延层的质量,外延层混品的组分载流子浓度。span style="text-indent: 2em " /span/ph3 style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/zc/31.html" target="_self"红外光谱仪/a/h3p style="text-align: justify text-indent: 2em "红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。/pp style="text-align: justify text-indent: 2em "红外光谱法操作简单,不破坏样品,使其在半导体分析的应用日趋广泛。半导体材料的红外光谱揭示了晶格吸收、杂质吸收和自由载流子吸收的情况,直接反映了半导体的许多性质,如确定红外透过率和结晶缺陷,监控外延工艺气体组分分布,测载流子浓度,测半导体薄层厚度和衬底表面质量。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "二次粒子质谱/span/h3p style="text-align: justify text-indent: 2em "二次粒子质谱是借助入射粒子的轰击功能,将样品表面原子溅出,由质谱仪测定二次粒子质量,根据质谱峰位的质量数,可以确定二次离子所属的元素和化合物,从而可精确测定表面元素的组成。这是一种常用的表面分析技术。其特点是高灵敏度和高分辨率。/pp style="text-align: justify text-indent: 2em "利用二次离子质谱对掺杂元素的极高灵敏度的特点,对样品的注入条件进行分析,在生产中可以进行离子注入机台的校验,并确定新机台的可以投入生产。同时,二次离子质谱对于CVD沉积工艺的质量监控尤其是硼磷元素的分布和生长比率等方面有不可替代的作用。通过二次离子质谱结果的分析帮助CVD工程师进行生长条件的调节,确定最佳沉积工艺条件。对于杂质污染的分析,可以对样品表面结构和杂质掺杂情况进行详细了解,保证芯片的有源区的洁净生长,对器件的电性质量及可靠性起到至关重要的作用。对掺杂元素退火后的形貌分析研究发现通过改变掺杂元素的深度分布,来保证器件的电学性能达到设计要求。可以帮助LTD进行新工艺的研究对于90nm/65nm/45nm新产品开发起到很大作用。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "X射线光电子能谱仪/spanbr//h3p style="text-align: justify text-indent: 2em "X射线光电子能谱仪以X射线为激发源。辐射固体表面或气体分子,将原子内壳层电子激发电离成光电子,通过分析样品发射出来的具有特征能量的光电子,进而分析样品的表面元素种类、化学状态和电荷分布等信息,是一种无损表面分析技术。/pp style="text-align: justify text-indent: 2em "这种技术分析范围较宽,原则上可以分析除氢以外的所有元素,但分析深度较浅,大约在25~100 Å 范围,不过其绝对灵敏度高,测量精度可达10 nm左右,主要用于分析表面元素组成和化学状态,原子周围的电子密度,特别是原子价态及表面原子电子云和能级结构。/ph3 style="text-align: justify text-indent: 2em "X射线衍射/h3p style="text-align: justify text-indent: 2em "当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有X射线衍射分析相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关,每种晶体所产生的衍射花样都反映出该晶体内部的原子分配规律。这就是X射线衍射的基本原理。/pp style="text-align: justify text-indent: 2em "半导体制造中的大部分材料是多晶材料,比如互连线和接触孔。XRD能够将多晶材料的一系列特性量化。这其中最重要的特性包括多晶相(镍单硅化物,镍二硅化物),平均晶粒大小,晶体织构,残余应力。/ph3 style="text-align: justify text-indent: 2em "阴极荧光光谱/h3p style="text-align: justify text-indent: 2em "阴极荧光谱是利用电子束激发半导体样品,将价带电子激发到导带,之后由于导带能量高不稳定,被激发电子又重新跳回价带,并释放出能量E≤Eg(能隙)的特征荧光谱。CL谱是一种无损的分析方法,结合扫描电镜可提供与形貌相关的高空间分辨率光谱结果,是纳米结构和体材料的独特分析工具。利用阴极荧光谱,可以在进行表面形貌分析的同时,研究半导体材料的发光特性,尤其适合于各种半导体量子肼、量子线、量子点等纳米结构的发光性能的研究。/pp style="text-align: justify text-indent: 2em "例如,对于氮化镓单晶,由于阴极萤光显微镜具有高的空间分辨率并且具有无损检测的优点,因此将其应用于位错密度的检测已经是行业内广泛采用的方法。目前也制定了相应的标准。/ph3 style="text-align: justify text-indent: 2em "a href="https://www.instrument.com.cn/zc/1016.html" target="_self"轮廓仪/a/h3p style="text-align: justify text-indent: 2em "轮廓仪是一种两坐标测量仪器,仪器传感器相对被测工件表而作匀速滑行,传感器的触针感受到被测表而的几何变化,在X和Z方向分别采样,并转换成电信号,该电信号经放大和处理,再转换成数字信号储存在计算机系统的存储器中,计算机对原始表而轮廓进行数字滤波,分离掉表而粗糙度成分后再进行计算,测量结果为计算出的符介某种曲线的实际值及其离基准点的坐标,或放大的实际轮廓曲线,测量结果通过显示器输出,也可由打印机输出。/pp style="text-align: justify text-indent: 2em "而利用先进的3D轮廓仪可以实现对硅晶圆的粗糙度检测、晶圆IC的轮廓检测、晶圆IC减薄后的粗糙度检测。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em font-size: 16px "AOI (自动光学检测)/spanbr//h3p style="text-align: justify text-indent: 2em "AOI的中文全称是自动光学检测,是基于光学原理来对焊接生产中遇到的常见缺陷进行检测的设备。AOI是新兴起的一种新型测试技术,但发展迅速,很多厂家都推出了AOI测试设备。当自动检测时,机器通过摄像头自动扫描PCB,采集图像,测试的焊点与数据库中的合格的参数进行比较,经过图像处理,检查出PCB上缺陷,并通过显示器或自动标志把缺陷显示/标示出来,供维修人员修整。/pp style="text-align: justify text-indent: 2em "运用高速高精度视觉处理技术自动检测PCB板上各种不同贴装错误及焊接缺陷。PCB板的范围可从细间距高密度板到低密度大尺寸板,并可提供在线检测方案,以提高生产效率,及焊接质量。通过使用AOI作为减少缺陷的工具,在装配工艺过程的早期查找和消除错误,以实现良好的过程控制。早期发现缺陷将避免将坏板送到随后的装配阶段,AOI将减少修理成本将避免报废不可修理的电路板。/ph3 style="text-align: justify text-indent: 2em "span style="text-indent: 2em "ATE测试机/span/h3p style="text-align: justify text-indent: 2em "广义上的IC测试设备我们都称为ATE(AutomaticTest Equipment),一般由大量的测试机能集合在一起,由电脑控制来测试半导体芯片的功能性,这里面包含了软件和硬件的结合。/pp style="text-align: justify text-indent: 2em "在元器件的工艺流程中,根据工艺的需要,存在着各种需要测试的环节。目的是为了筛选残次品,防止进入下一道的工序,减少下一道工序中的冗余的制造费用。这些环节需要通过各种物理参数来把握,这些参数可以是现实物理世界中的光,电,波,力学等各种参量,但是,目前大多数常见的是电子信号的居多。ATE设计工程师们要考虑的最多的,还是电子部分的参数比如,时间,相位,电压电流,等等基本的物理参数。就是电子学所说的,信号处理。/pp style="text-align: justify text-indent: 2em "此外,原子力显微镜、俄歇电子能谱、电感耦合等离子体质谱仪、X光荧光分析、气相色谱等都可以用于半导体检测。而随着半导体制程工艺的进步,工艺过程中微小的沾污、晶格缺陷等都可能导致电路的失效等,半导体的工艺检测也凸显的越来越重要。/p
  • 半导体行业常用的十五类材料检测科学仪器与技术盘点
    自中美贸易战以来,国家对于半导体行业的重视日渐提升。为避免关键技术被“卡脖子”,国家大力推动半导体行业的发展,先后发布了《国务院关于印发新时期促进集成电路产业和软件产业高质量发展若干政策的通知》、《关于促进集成电路产业和软件产业高质量发展企业所得税政策的公告》等政策,从财税政策、投融资政策、研究开发政策、进出口政策、人才政策、知识产权政策、市场应用政策、国际合作政策等多个层面支持国内半导体行业的自主创新。半导体材料主要包括第一代半导体材料(Si等)、第二代半导体材料(砷化镓GaAs、锑化铟InSb等)、第三代半导体材料(碳化硅SiC、氮化镓GaN、氧化锌ZnO、金刚石、氮化铝等),以及在半导体工艺环节必须用到的特种气体、靶材、光刻胶、显影液、抛光液和抛光垫、键合胶、电镀液、清洗液、刻蚀液、研磨材料、掩模版、光阻材料等。其中,大部分半导体材料依赖于对外进口,目前主要进口自美国、日本、韩国等。表1 热门半导体材料主要进口国家及地区主要半导体材料主要进口国家及地区硅片等日本、德国、韩国、美国、中国台湾砷化镓GaAs等日本碳化硅SiC等美国、欧洲特种气体美国、德国、法国、日本靶材美国、日本光刻胶中国台湾、日本、美国抛光液和抛光垫美国、日本、韩国研磨材料美国掩模版日本湿电子化学品德国、美国、日本、韩国、中国台湾光阻材料日本封装材料中国台湾半导体材料的晶体结构和缺陷杂质都将对半导体器件的性能产生较大的影响,因此半导体材料的检测对于成品质量具有至关重要的意义,以下整理了半导体检测中用到的主要科学仪器及其在半导体领域的应用。表 半导体检测仪器和用途半导体检测仪器与技术(点击下方仪器进入专场)在半导体领域的应用光学测量仪器外延层厚度测量、测定元素含量、用于高纯气体分析等电学测量仪器(四探针、三探针、扩展电阻、C-V法、霍尔测量)测量电阻率、载流子浓度、导电类型、迁移率、寿命及载流子浓度分布等X射线衍射仪缺陷及形貌观察(无损检测),检测二次缺陷的形成和消除等金相显微镜观察晶体缺陷等俄歇电子能谱表面层原子成分、含量、化学键合状态分析等二次离子质谱杂质检测等扫描电镜微区形貌观察,成分、结构分析,失效分析,缺陷检测等透射电镜半导体晶体缺陷分析等原子吸收分光光度痕量杂质检测等气相色谱气体分析高频电感耦合等离子体发射光谱微量成分分析等离子束用于分析离子注入层和外延层损伤、定位等离子探针用于薄层分析、微区分析、测量浓度分布,分析痕量杂质等电子探针成分分析等以上列举了半导体行业用到的热门半导体材料和检测仪器,日后仪器信息网也将对半导体检测解决方案进行盘点敬请期待。
  • 中科院微观磁共振重点实验室成功实现高分辨电阻抗医学成像
    p  记者从中国科学技术大学获悉:该校杜江峰院士领导的中科院微观磁共振重点实验室在医学电阻抗成像方面取得重要进展,他们利用参数化水平集方法实现了高分辨的电阻抗图像重建。该成果发表在医学成像领域国际顶级期刊《医学影像》上。/pp  电阻抗成像技术是根据生物体内不同组织在不同功能状态下具有不同电阻抗的原理,通过在生物体体表注入安全激励电流,测量体表响应电压,重建生物体内部的电阻抗分布,从而反映体内结构及功能的新型医学成像技术。由于电阻抗成像具有功能成像的特点,而且对人体无害、使用方便、设备价格相对低廉,成为近年来国内外研究的热点。但电阻抗重建图像通常分辨率较低且对模型误差极为敏感,因此开发高效、稳定且具有高分辨能力的成像算法是电阻抗技术的关键和难点。/pp  杜江峰院士团队通过利用近年来发展起来的参数化水平集方法及临床医学上现有信息,设计了新的电阻抗成像算法,成功实现高分辨的电阻抗图像重建,并通过大量仿真实验验证了算法的有效性和可行性,结果表明该算法不仅具有高分辨图像重建能力,而且对医学电阻抗成像中普遍存在的模型误差、参数优化设置方式等具有很好的稳定性。/pp  据介绍,该研究成果有望推动电阻抗成像技术向更为实用的应用方向发展,例如肺部临床电阻抗成像等。/p
  • 石墨烯 — 下一场材料革命
    2019年9月20至22日在山西煤炭化学研究所举办了第七届石墨烯青年论坛,石墨烯青年论坛于2013年发起,至今已成功举办六届,分别由浙江大学、哈尔滨工业大学、中国科学技术大学、中国科学院宁波材料技术与工程研究所、上海应用技术大学与上海交通大学(合办)、中国科学院兰州化学物理研究所举办。今年由中国科学院山西煤炭化学研究所主办,重点交流最近一年来青年科学家在石墨烯领域的最新研究进展。此届石墨烯青年论坛参会人数百余人,石墨烯青年论坛已发展成为国内石墨烯领域颇具特色和影响力的专业学术会议,弗尔德仪器携旗下有幸参与此次盛会,与该研究领域的优秀中青年科学家共同学习和交流。 参会嘉宾合影留念 在论坛大会上,首先由中科院金属所的成会明院士为大会致辞,并带来“研究中的简单美”—石墨烯研究的几个实例为题的报告,第二个是中科院山西煤化所的房倚天副所长为大会致辞,清华大学深圳研究生院的康飞宇老师为大家做“天然石墨深加工与石墨烯粉体制备技术”为题的报告,与现场石墨烯领域的中青年学者和专家进行了深入交流和经验分享。 小知识石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料[1]。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈海姆和康斯坦丁诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光";导热系数高达5300 W/mK,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/Vs,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ωcm,比铜或银更低,为目前世上电阻率最小的材料[5][1]。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 热处理CarboliteGero(卡博莱特盖罗)是弗尔德科学仪器事业部制造实验室和工业马弗炉、烘箱的专业品牌,加热温度范围30-3000℃。在石墨烯行业中,CarboliteGero具有丰富的行业应用经验,是全球知名的热处理炉供应商。卡博莱特?盖罗Carbolite ? Gero高温管式炉HTRH,可在水平位置上操作,最高温度可达1800°C。凭借多种多样的配件,HTRH系列在高温范围内可提供完整的系统解决方案。 研磨粉碎德国RETSCH(莱驰)强大、灵活的行星式球磨仪PM100满足快速将样品研磨至亚微米级的所有要求,并且保证结果具有可重复性。常被用来做高难度样品研磨,从常规的样品处理到胶体研磨和机械合金。行星球磨仪超高的离心力带来极大的粉碎能量,因此所需研磨时间非常短,可将样品研磨到纳米级的细度。 粒度粒形分析Camsizer X2采用了更高分辨率的光学系统,提供更多的分析模块可选。CamsizerX2可选的X-Fall、X-Jet和X-Flow三种模块可让您根据不同的应用和要求进行分析,由于具有足够的进样量也不受其他因素(如折射率)影响,Camsizer X2还能够准确测量到粉体的整体形态信息,比如球形度、对称性等。 元素分析仪德国Eltra(埃尔特)能够对固体样品中C/H/O/N/S元素进行精准分析。新的ELEMENTRAC CS-d是一台可靠,精准,耐用的燃烧法碳硫元素分析仪。红外检测池配置灵活,C,S测量范围宽泛,从ppm级一直到100%。ELEMENTRAC CS-d针对有机和无机样品中C,S的测量,一台仪器整合了两种炉体,即高频感应炉和电阻炉。
  • 【热电资讯】新一代塞贝克系数/电阻测量系统-ZEM-3连续成功落户西湖大学、上海交通大学
    导读:当今,化石能源短缺和环境污染问题凸显,能源的多元化和高效多利用成为解决能源与环境问题的一个重要途径。作为一种绿色能源技术和环保型制冷技术热电转换技术受到学术界和工业界的广泛关注。热电转换技术是利用材料的塞贝克效应与帕尔贴效应将热能和电能进行直接转换的技术,包括热电发电和热电制冷。这种技术具有系统体积小、可靠性高、不排放污染物、适用温度范围广等特点。近期,我司在西湖大学理化公共实验平台及上海交通大学材料学院连续成功交付使用了新一代塞贝克系数电阻测量系统-ZEM-3。该设备可实现金属或半导体材料的热电性能评估以及塞贝克系数和电阻的测量。其特的红外金面加热炉(高1000℃)和控制温差的微型加热器可实现温度的控制;整个测量过程由计算机全自动控制,能够在指定的温度下执行测量,允许自动测量消除背底电动势;并且ZEM-3还可实现欧姆接触自动检测功能(V-I曲线),不仅可以用创的适配器来测量薄膜,也可定制高阻型。Quantum Design中国子公司 工程师在为客户介绍设备 这两台设备于疫情期间运抵国内,为保证用户的科研使用需求,Quantum Design中国子公司调集技术力量,在满足学校防疫要求的前提下与用户紧密合作,于近日顺利完成了设备的安装培训工作,所有技术指标均符合要求,设备正式交付使用。西湖大学的设备已进入校设备共享平台,对校内外用户开放共享。目前,所有中国用户购买的ZEM系列产品,均由Quantum Design中国子公司的工程师团队负责安装及售后服务。同时,Quantum Design 中国子公司在日本Advance Riko公司的协助下,在北京建立部分热电设备示范实验室和用户服务中心,更好的为中国热电技术的发展提供设备支持和技术服务。 西湖大学理化公共实验平台网站截图 该设备为日本Advance Riko, Inc.生产。日本Advance Riko公司成立近60年来专业从事“热”相关技术和设备的研究开发,并一直走在相关领域的前端,为各地的科学研究及生产活动提供了诸如红外加热、热分析/热常数测量等系统。2018年初,Quantum Design 中国子公司引进日本Advance Riko公司的:小型热电转换效率测量系统Mini-PEM、热电转换效率测量系统PEM、塞贝克系数/电阻测量系统ZEM及大气环境下热电材料性能评估系统F-PEM等一系列先进热电材料测试设备。2018年7月,Quantum Design 中国子公司与日本Advance Riko达成协议,作为其热电材料测试设备在中国的代理商继续合作,携手将日本Advance Riko先进的热电相关设备介绍到中国。延伸阅读:为更好服务国内热电材料研究领域的客户,满足客户体验需求, Quantum Design中国子公司与日本Advance Riko公司携手推出厚度方向热电性能评价系统ZEM-d 免费样品测试活动。活动时间自即日至2020年9月30日止,如您有样品测试需求,欢迎通过留言、官方微信平台、电话010-85120280或邮箱info@qd-china.com联系我们,公司将有专人对接,与您协调具体的样品测试工作。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制