当前位置: 仪器信息网 > 行业主题 > >

便携式可见近红外手持反射计

仪器信息网便携式可见近红外手持反射计专题为您提供2024年最新便携式可见近红外手持反射计价格报价、厂家品牌的相关信息, 包括便携式可见近红外手持反射计参数、型号等,不管是国产,还是进口品牌的便携式可见近红外手持反射计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合便携式可见近红外手持反射计相关的耗材配件、试剂标物,还有便携式可见近红外手持反射计相关的最新资讯、资料,以及便携式可见近红外手持反射计相关的解决方案。

便携式可见近红外手持反射计相关的资讯

  • 全球首款便携式手持近红外谷物分析仪获一致好评
    总部设在美国马里兰州黑格斯敦的Zeltex公司,积累了近三十年的便携式手持近红外分析仪设计制造经验,其产品在近红外领域拥有超过30项的专利,能够在现场快速无损地检测谷物、种子和食品中的蛋白质、脂肪及水分,可以为粮食、食品科研等领域提供完整的实验方案,客户遍及政府机构、研究所、大学、农场等。 2015年初,利曼中国正式成为美国Zeltex公司手持近红外分析仪(谷物、种子、肉类等)在中国地区的独家授权代理商。几个月来,利曼员工深入国内大豆主产区之一的东北地区,先后在沈阳、哈尔滨、黑河、克东等地巡回演示世界首款、方便小巧的快速近红外分析仪。与传统笨重的实验室台式近红外分析仪相比,ZX-50IQ手持近红外谷物分析仪不仅具备轻巧、便携的特点,在数据测量方面同样具有很高的准确性与稳定性,获得当地农场、油脂厂、大豆企业的一致好评。 谈到便携式仪器,自然会联想到它的尺寸与重量,实拍图如下: 主机尺寸26 x 12 x 9 cm,重量1.5 kg,拿在手里如同半个平板电脑(厚度除外)。同时,仪器可依据用户需求,配备不同的标样杯(大豆、玉米、小麦、大麦、高梁、油菜籽、豆粕等)及样品杯。仪器整体包装为带密码锁的手提铝箱,与14寸笔记本电脑包尺寸接近,重量不足5 kg,在安全性和便携性上,可谓做工扎实。 整个测量过程十分简单,主要分为以下几步:仪器自检&mdash 标样测定&mdash 样品检测&mdash 数据读取。为获得较高数据的准确性,仪器会主动提示操作者进行多次测量并要求旋转样品杯。同时,仪器具备拓展空间,内置不同的标准曲线,允许操作者连接电脑后新建标准曲线并对测量次数做出修改。 综述,作为最新型便携式设备的ZX-50IQ手持近红外谷物分析仪,通过升级主板、固件及软件程序,较上代相比在精度和性能方面提升33%,可以更高效、准确的满足现场谷物检测工作,其特点可概括如下:■ 操作非常简单,上手容易;■ 便携式设计,体积小巧;■ 6节5号电池即可供电,亦可外接车载点烟器或交流电源;■ 样品使用量少,无需前处理,整粒无损检测;■ 分析速度快,不到1分钟即可获取结果;■ LCD显示屏直显数据,同时可外接电脑综合分析。 利曼中国自成立二十余年来,一直致力于质量控制与分析、智能科技产品的推广及应用,目前在中国拥有20多个销售联络处,6个维修服务中心,5个示范实验室,近百名员工以及众多的国内外合作伙伴。Zeltex手持近红外产品的引入,将进一步丰富利曼的产品线,更好地服务于国内分析检测领域,促进分析技术的提高。更多产品信息,请致电全国统一服务热线400-606-1718。
  • 便携式近红外光谱技术在食品分析中的应用
    HAMAMATSU(滨松) PHOTONICS近红外光谱在食品分析中的作用近红外光谱(NIR)是指在750至2500 nm的电磁光谱近红外区域内研究物质和光之间的相互作用[1]。当红外光与样品分子相互作用时,每个波长反射、透射和吸收的电磁能的量取决于样品中存在的键类型[1]。C-H、N-H和OH振动键在近红外区域最普遍,决定了给定物质的光谱形状。近红外光谱通常用于测量和量化样品的近似成分,如蛋白质、水分、干物质、脂肪和淀粉。此外,近红外光谱反映了其物理性质或特性[1]。因此,当应用于食品时,样品的近红外光谱不仅可以提供有关食品化学成分的信息,还可以通过不需要使用试剂的无损、快速和清洁的方法提供有关其功能的信息[2]。便携式仪器的影响直到最近,近红外技术才向小型化设备发展,使近红外分析从实验室进入现场成为可能。便携式近红外光谱是监测作物质量、确定最佳种植条件和收获时间的绝佳工具。鉴于食品易受含量变化的影响,需要保持新鲜以防止质量损失,以及非法掺假的可能性,控制食品质量的重要性怎么强调都不为过。此外,食品生产、配送链的复杂性以及将分析时间降至最低的需要,使便携式光谱仪在该领域向前迈出了革命性的一步[5][6]。用于食品分析的近红外光谱示例Parastar等人将计算技术应用于近红外分析仪获得的吸收光谱,能够准确区分新鲜肉和解冻肉,并根据鸡的生长条件对鸡柳进行正确分类[3]。使用类似的工具,Kucha和Ngadi能够评估猪肉末的新鲜度[4]。这些计算方法,通常被称为“化学计量学”,使用多种算法和统计技术,如多元线性回归、偏最小二乘回归和主成分分析来分析来自光谱仪的数据。这些方法将光谱信息转化为与样品相关的化学和功能特性[2]。便携式近红外分析仪改善奶牛健康,优化灌溉和收割时间便携式近红外分析仪已被用于饲料和牧草的农场监测,以评估其质量。在这个过程中,将饲料样本放在扫描仪前进行分析,并将结果提供给农民或营养学家。这使他们能够及时做出有关提要的管理决策,将获得结果所需的时间从几天缩短到几秒钟。例如,牛饲料中玉米青贮饲料的干物质含量每天变化很大,在六个月内高达41%。通过现场调整,奶牛可以获得更一致的口粮,从而改善牛群的总体健康状况。这是通过血液参数的变化和乳腺炎的减少来观察的,从而增加了产奶量。此外,这项技术可以潜在地减少饲料浪费,从而降低成本并增加收入[7]。便携式近红外光谱法的另一个有价值的应用领域是对作物生长各个阶段的实地评估。Tardaguila等人研究了在不同环境条件下生长的八个不同品种的160片葡萄叶片的吸收波长。他们专门针对含水量评估来确定葡萄酒行业灌溉的优化策略[8]。在收获季节,近红外光谱已被用于评估橄榄果实[9]、葡萄[10]和番茄[11]在树上的成熟度,从而优化收获时间,甚至使用农业机器人实现自动化水果采摘。收获后,近红外光谱技术有助于农民、消费者和质量控制官员对产品质量进行快速无损检测。这项技术还允许检测由于将传统生产的水果错误标记为有机水果而导致的菠萝欺诈[12]。FTIR光谱提供更高的通量和更好的灵敏度在近红外光谱中,分析有机材料的吸收光谱主要有两种方法。第一种方法是基于二极管阵列的光谱学。该技术使用色散光栅将从样品反射或透射的光分离为其波长分量。然后将每个分量聚焦在线性检测器阵列的不同像素上。这种方法速度相当快,可以用于实时测量。然而,二极管阵列光谱仪的光通量与其光谱分辨率成反比,这限制了其有效性。此外,在近红外区域敏感的线性阵列的高成本可能会限制其在某些应用中的应用,特别是在农业和食品中。获得吸收光谱的第二种方法是傅立叶变换干涉测量法。在这种方法中,入射光被分成两条路径,一条指向固定反射镜,另一条指向可移动反射镜。当这些路径被重新组合时,就会得到干涉图。通过对该干涉图进行傅立叶变换,可以获得入射光的光谱,并且通过适当的校准,可以确定样品的吸收光谱。使用这种技术,可以同时测量所有波长,在不影响光谱分辨率的情况下提供更好的吞吐量和更高的灵敏度(通常被称为“Fellgett的优势”)。在该技术中,仅使用单个NIR光电探测器而不是阵列,从而保持低成本。滨松光子的FTIR引擎为食品行业带来了新的曙光滨松的FTIR引擎C15511-01是一个紧凑的傅立叶变换红外光谱模块,对1.1µm至2.5µm范围内的近红外光具有灵敏度,并具有USB连接。该设备的特点是在手掌大小的外壳中有一个迈克尔逊光学干涉仪和控制电路。为了补偿元件小型化造成的光损失,滨松光子公司的工程师为FTIR引擎配备了一个大型可移动MEMS反射镜和一个高灵敏度InGaAs PIN光电二极管。这种MEMS元件的特殊设计抵消了外部振动和器件内部杂散光反射的影响。可移动MEMS反射镜的位置使用专用激光系统进行连续和精确的监测,以确保最高的波长再现性。一般来说,滨松的FTIR引擎可以提供与更大、更昂贵的台式设备相当的高灵敏度、高分辨率和高速测量。使用FTIR引擎进行红外光谱分析有两种测量方法:“反射测量”和“透射测量”。使用这些方法,我们测量了坚果(杏仁、腰果、核桃)和酒精饮料(啤酒、清酒和白兰地)的光谱。透射测量:酒精饮料吸收光谱的比较及其酒精浓度的估计FTIR引擎C15511-01用于观察几种酒精饮料产生的吸收光谱的差异。将液体放入对近红外透明的石英池中,提供1mm的光路长度。使用卤素灯作为本实验的光源。来自灯的宽带光部分被液体吸收,并通过光纤部分传输到FTIR引擎。图中所示的吸收光谱是在室温下获得的,平均128次扫描,并减去参考测量值。这些光谱的形状主要受水中的OH基团(吸收波长:1450 nm和1900 nm)和醇中的CH基团(吸收光谱波长在2100 nm和2500 nm之间)的影响。还测量了纯水和乙醇的光谱,并将其添加到图中进行比较。此外,使用2300nm处的吸收峰来估计每种饮料中的酒精浓度。该测量显示的值与液体中酒精的实际存在一致,证实了使用这种紧凑的设备和方法进行精确估计的可能性。漫反射测量:使用近红外光谱对坚果进行分类当照射到样品上的光的一部分被其表面颗粒有规律地反射时,其余的则穿透样品。在这里,光通过折射透射、光散射和表面反射反复散射,直到它离开待测量的样品。通过该测量获得的漫反射光谱与样品的吸收光谱相似。漫反射信号通常比通过透射获得的信号弱。因此,使用这种方法的主要挑战之一是提高照明效率。在传统配置中,使用光纤将来自单个卤素灯的宽带光引导到样品。滨松光子最近设计了L16462-01,这是一种针对漫反射测量进行优化的创新光源。该装置配备了多个灯,以特定角度靠近样品。通过光纤收集从样品散射的光,并将其引导至NIR光谱仪。这种配置可测量信噪比,最大限度地减少杂散光的影响。e照射到样品上的部分光被其表面颗粒规则反射,其余部分穿透样品。在这里,光通过折射透射、光散射和表面反射反复散射,直到它离开待测量的样品。通过该测量获得的漫反射光谱与样品的吸收光谱相似。食物过敏是一种遗传易感个体在食用某些食物成分后出现不利免疫反应的情况。这种反应可能导致立即或延迟的症状,可能是严重或致命的[13]。在过去的几十年里,这种免疫紊乱已经成为全世界关注的一个重要问题,在西方国家,至少有8%的儿童和5%的成年人受到影响。它给医疗系统带来了相当大的压力,并可能严重限制日常甜梅干动[14]。许多种类的坚果,包括核桃(胡桃)、腰果(西方腰果)和杏仁(甜梅干),都被欧洲法规1168/2011列为过敏原,只要存在于食品中,就需要添加到成分表中[15]。出于这些原因,坚果的检测和分类对于食品工业来说是必要的。滨松利用近红外光谱对杏仁、腰果和核桃的吸收光谱进行了研究和分类。使用FTIR引擎C15511-01和新的灯L16462-01获得测量结果。将坚果放置在光源上,无需任何预先准备,平均进行128次扫描以获得每个样品的吸收光谱。所获得的光谱的特征在于1600-1800nm处的峰,这是由从脂质和蛋白质拉伸的CH的第一泛音引起的。当观察光谱的二阶导数时,各种光谱之间的差异更加明显。通过主成分分析法可以对不同种类的坚果进行分类。结论近红外光谱在食品工业中的潜在应用已经被许多科学出版物广泛记录了几年。便携式仪器的出现正在将分析从实验室转移到现场,将结果的时间从几天大幅缩短到几秒钟。最值得注意的是,这种由滨松MEMS技术驱动的硬件小型化在不影响灵敏度或分辨率的情况下实现。新的计算技术正在不断发展,以分析和比较吸收光谱,并估计食品中特定化合物的含量。这些方法使整个行业的非技术用户越来越容易访问该技术。便携式FTIR分析仪是解决食品行业许多重大挑战的宝贵工具。例如,它们可以帮助提高作物产量,从而在面临粮食需求增加时提供一种替代毁林的方法。将这些技术融入农业可以在优化灌溉和限制整个供应链的食物浪费时限制水浪费。最后,FTIR分析仪可以帮助改善我们的食物质量,使其对我们和所有依赖我们的动物更安全、更健康。参考文献[1] K. B. Beć, J. Grabska, and C. W. Huck, “Near-Infrared Spectroscopy in Bio-Applications”, Molecules, vol. 25, no. 12, p. 2948, Jun. 2020, doi: 10.3390/molecules25122948.[2] D. Cozzolino, “The Ability of Near Infrared (NIR) Spectroscopy to Predict Functional Properties in Foods: Challenges and Opportunities”, Molecules, vol. 26, no. 22, p. 6981, Nov. 2021, doi: 10.3390/molecules26226981.[3] H. Parastar, G. van Kollenburg, Y. Weesepoel, A. van den Doel, L. Buydens, and J. Jansen, "Integration of handheld NIR and machine learning to 'Measure & Monitor' chicken meat authenticity" in Food Control, vol. 112, pp. 107149, 2020. doi: 10.1016/j. foodcont.2020.107149. [4] Kucha, C.T., Ngadi, M.O. “Rapid assessment of pork freshness using miniaturized NIR spectroscopy”. Food Measure 14, 1105–1115 (2020). https://doi.org/10.1007/s11694-019-00360-9 [5] J.-H. Qu, D. Liu, J.-H. Cheng, D.-W. Sun, J. Ma, H. Pu, and X.-A. Zeng, "Applications of Near-infrared Spectroscopy in Food Safety Evaluation and Control: A Review of Recent Research Advances" Critical Reviews in Food Science and Nutrition, vol. 55, no. 13, pp. 1939-1954, 2015. doi: 10.1080/10408398.2013.871693.[6] K. B. Beć, J. Grabska, and C. W. Huck, “Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives,” Foods, vol. 11, no. 10, p. 1465, May 2022, doi: 10.3390/foods11101465.[7] "Can On-Farm NIR Analysis Improve Feed Management?", Penn State Extension. [Online]. Available: https://extension.psu. edu/can-on-farm-nir-analysis-improve-feed-management.[8] J. Tardaguila, J. Fernández-Novales, S. Gutiérrez, and M.P. Diago, "Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer", J. Sci. Food Agric., vol. 97, pp. 3772-3780, 2017. doi: 10.1002/jsfa.8241.[9] A. J. Fernández-Espinosa, "Combining PLS regression with portable NIR spectroscopy to on-line monitor quality parameters in intact olives for determining optimal harvesting time", Talanta, vol. 148, pp. 216-228, 2016. doi: 10.1016/j.talanta.2015.10.084.[10] G. Ferrara, V. Marcotuli, A. Didonna, A. M. Stellacci, M. Palasciano, and A. Mazzeo, “Ripeness Prediction in Table Grape Cultivars by Using a Portable NIR Device”, Horticulturae, vol. 8, no. 7, p. 613, Jul. 2022, doi: 10.3390/horticulturae8070613.[11] H. Yang, B. Kuang, and A.M. Mouazen, "In situ Determination of Growing Stages and Harvest Time of Tomato (Lycopersicon Esculentum) Fruits Using Fiber-Optic Visible—Near-Infrared (Vis-NIR) Spectroscopy", Applied Spectroscopy, vol. 65, no. 8, pp. 931-938, 2011. doi: 10.1366/11-06270.[12] C. L. Y. Amuah, E. Teye, F. P. Lamptey, K. Nyandey, J. Opoku-Ansah, and P. O. Adueming, "Feasibility Study of the Use of Handheld NIR Spectrometer for Simultaneous Authentication and Quantification of Quality Parameters in Intact Pineapple Fruits", Journal of Spectroscopy, vol. 2019, Article ID 5975461, 9 pages, 2019. doi: 10.1155/2019/5975461.[13] Z. Husain and R.A. Schwartz, "Food allergy update: more than a peanut of a problem", International Journal of Dermatology, vol. 52, pp. 286-294, 2013. doi: 10.1111/j.1365-4632.2012.05603.x.[14] S. H. Sicherer and H. A. Sampson, "Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment", The Journal of Allergy and Clinical Immunology, vol. 133, no. 2, pp. 291-307.E5, Feb. 2014. doi: https://doi.org/10.1016/j.jaci.2013.11.020 [15] A. Luparelli, I. Losito, E. De Angelis, R. Pilolli, F. Lambertini, and L. Monaci, “Tree Nuts and Peanuts as a Source of Beneficial Compounds and a Threat for Allergic Consumers: Overview on Methods for Their Detection in Complex Food Products”, Foods, vol. 11, no. 5, p. 728, Mar. 2022, doi: 10.3390/foods11050728.本文来源:HAMAMATSU PHOTONICS(滨松电子),Applications for portable NIR spectroscopy in food analysis,www.hamamatsu.com供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 基于可见/近红外光谱的苹果成熟度无损检测方法和便携式仪器研发
    基于可见/近红外光谱的苹果成熟度无损检测方法和便携式仪器研发基于可见_近红外光谱的苹果成熟度无损检测方法和便携式仪器研发_张猛胜.zip
  • 便携式红外衰减全反射光谱仪用于食品分析测试
    合适的食品质量检测方法十分重要,科学家利用众多方法来测试不同的污染物。最近一种红外衰减全反射(IR-ATR)仪器在食品检测领域流行起来,它可以在几乎不需要样品制备的情况下获取倏逝场吸收,同时促进对任何聚集状态中的分析物的无损分析。食品安全控制概念 | 图片来源:© Alexander Raths - stock.adobe.com最近发表在《应用光谱学》杂志上的一项研究介绍了一种便携式的红外衰减全反射(IR-ATR)食品分析设备,可用于分析食品行业中有重要意义的物质。该系统的核心是了解脂质中脂肪酸(FAs)的组成;由于正常的脂质成分是表征鱼类等食品的质量的特征指标,但易受环境因素如水质、捕捞季节和温度的影响,因此跟踪脂肪酸是理解脂质的真实特征以及它们如何影响食物质量的关键。该系统还使用了霉菌毒素和有机溶剂作为代表进行了测试。霉菌毒素是与真菌污染相关的有害次生代谢物,它们的存在可能对人体和家畜的健康产生有害影响,因此检测它们对于食品安全至关重要。至于有机溶剂,食品行业主要将其用于从食品基质中提取成分,但由于传统方法性能优越,导致绿色提取方法不太受欢迎。这两种物质对于食品加工都是必不可少的,这也解释了为什么除了脂肪酸之外,IR-ATR 系统还主要针对它们进行测试。用傅立叶变换红外光谱仪(FT-IR)对便携式IR-ATR设备与传统实验室IR-ATR设备进行了对比测试,以展示前者系统的潜在优势。使用了三种类型的模型系统,每种系统内都含有不同的样品:溶解在水中的N,N-二甲基甲酰胺((CH3)2NCH)(DMF)、溶解于乙醇中的硬脂酸(C17H35CO2H)以及溶解于甲醇中的DON(C15H20O6)。这些分析物作为典型的化合物类别,在中红外(MIR)光谱图中具有特征波段。通过两种系统的比较证实了的两者的多个因素,包括霉菌毒素的检测、FAs的分析以及有机溶剂的定量。值得注意的是,便携型系统的分析性能与标准型系统分析能力一致。然而,在该系统投入大规模使用之前仍需要进一步的工作要做。科学家在研究中指出:“未来研究旨在分析更复杂的系统,包括真正的鱼类样品和各种含有真菌污染物/霉菌毒素的谷类作物提取物,并采用先进的数据分析方法来开发无需标记的快速筛查方法。”
  • 实用简评∣从NIR2023看当前近红外光谱的研究热点
    褚小立中国石化石油化工科学研究院,cxlyuli@sina.com第21届国际近红外光谱会议(NIR 2023)于2023年8月20日至24日在奥地利召开。由于护照和签证的延迟,很遗憾没有现场参加这次会议。最近一段时间我认真研读了会议摘要和会议墙报,深感近红外光谱的研究和应用方兴未艾。除了近红外光谱在“科学研究”、“过程分析技术”、“高光谱成像”等领域的快速深入发展,本次大会的关键词“小微型近红外光谱”、“数据融合”、“深度学习”给我留下了深刻的印象,可以说是目前近红外光谱领域的研究热点。小微型NIR虽然小微型化的近红外光谱仪在光谱范围、分辨率、信噪比等方面优势不明显,但它具有廉价、快速、操作简单、易于野外使用等诸多优点,近年来越来越受到人们的关注(O01.12)。在NIR 2023上,不仅有新的小微型近红外光谱仪器(O05.05,F05.03,P05.02)和便携式成像仪器(O07.11)的研发,还有应用方法学研究。例如,Shi等将实验室建立的土壤光谱库移植到便携式仪器上,用于田间土壤品质的快速分析(P10.09);Lippl等也开展了类似的研究工作(P10.04),以提高小型化近红外光谱仪在现场的部署效率。小型化近红外光谱仪在不同领域的应用研究仍然层出不穷。Gorji等人利用手持式近红外分析仪测量田间作物叶片的含水量,对农田精细灌溉管理具有实际应用意义(P01.22);Sherif等人一直在利用手持式近红外光谱仪建立数据库,预测奶牛的粪便成分,从而监测养分利用效率,实时调整日粮配方(P01.53);Gillay等人使用便携式近红外光谱检测奶牛的饲料,并评估这些奶牛的奶生产的奶酪,以评估改善的喂养对奶酪质量的影响(P01.21)。Popp等人花了三年时间在便携式近红外光谱仪上建立了一个校准模型,用于在田间实时直接测量药用植物的质量(PL08);Hamed等人使用便携式近红外光谱仪确定大麻中具有高经济价值的化学成分的含量,这为种植者、经销商和生产者提供了一种工具,以管理其现场的质量控制并提高作物优化(P01.24)。Ikehata研究了使用小型可见-近红外光谱传感器评估蔬菜新鲜度的可行性(O01.11);Giraudo使用廉价的便携式仪器识别加工肉制品中掺假的机械分离肉(MSM )( O 01.08);Hernandez-Jimenez等人成功使用便携式NIR仪器根据品种鉴别伊比利亚火腿(P01.25);Arroyo-Cerezo等人建立了一种利用便携式近红外光谱仪快速鉴别初榨橄榄油品质和真伪的筛选方法(P01.04);加里多-奎瓦斯等人还评估了几种便携式仪器在现场检测初榨橄榄油质量的潜力,以便用于橄榄油生产和储存过程中的质量控制(P01.19)。这些有希望的结果表明,微型近红外光谱仪可以成功地应用于直接检测市场上的食品欺诈。Rais等人研究了使用超便携近红外技术对伪造药物进行即时无损分析的可行性,包括治疗勃起功能障碍的药物和预防艾滋病毒治疗的药物(P08.09);近红外技术可以为纺织废料识别问题提供解决方案,Stipanovic等人使用手持式近红外光谱仪对消费后纺织品进行分类(P07.20)。多源数据融合近年来,多源数据融合技术通过综合优化和整合多个来源的信息,充分发挥多种光谱或/和图像之间的互补性,可以全面深入地挖掘信息,达到提高校正模型预测精度和稳定性的目的(KN11)。在NIR 2023上,出现了很多多源数据融合的应用研究实例,尤其是在食品领域。Vasefi等人开发了一种手持式多模式光谱系统,该系统结合了可见近红外(VIS-NIR)、短波红外(SWIR)和荧光(FL)光谱的反射率,用于鱼类物种识别、新鲜度评估、养殖与野生鱼识别、冷冻-解冻与新鲜鱼肉识别(O03.13);Strani等人使用拉曼光谱和近红外光谱的融合来鉴定帕尔马干酪的PDO真实性(P01.58);Bragolusi等人开发了一种基于近红外和拉曼光谱融合的光谱方法,用于快速准确地鉴定单花蜂蜜的植物来源(P01.47);Jia等人使用可见光范围(400-1000 nm)和短波红外范围(900-1700 nm)光谱成像来预测贮藏期间包装的小牛肉产品的肌红蛋白谱(P07.07)。在制药领域,Kovacs等人将近红外光谱与传统的过程控制方法相结合,预测药物的溶出度(P09.04);Tian等利用近红外光谱和中红外光谱融合技术对不同品种黄连的水分含量进行了鉴别和测定(P08.10)。在其他领域,Sormunen等人使用拉曼光谱和超光谱成像(1950-2500 nm)对高溴和低溴废塑料(O10.03)进行分类;Linderholm等人使用了五种光谱,包括分子振动光谱和原子光谱,对地质样品进行分类,多块模型的初步结果表明,光谱信息可以相互补充,提高了样本分类的准确性(P03.08);Oravec等人使用便携式近红外光谱、紫外-可见近红外光谱、拉曼光谱和ATR-FTIR光谱设备进行了文化遗产领域的材料鉴定研究(P03.09)。深度学习近年来,深度学习方法在近红外光谱和高光谱成像的定量分析、模式识别和模型迁移等方面显示出越来越多的优势。深度学习适用于处理大样本光谱数据集,尤其适合高相似样本的判别分析和高差异样本的定量分析。在NIR2023大会上,深度学习与光谱成像相结合在水果和农业方面的应用研究尤为突出。Girones等人将近红外高光谱成像与3D定制卷积神经网络相结合,用于识别水果中的指状青霉感染(F07.01);Chun等利用高光谱荧光成像数据研究了数据增强深度学习算法,用于草莓灰霉病的早期检测(P07.03);Kim等人使用高光谱VIS-NIR成像和卷积神经网络来测量东方甜瓜植物的氮水平,以实现精确的氮素供应管理(P07.08);Mo等评估了高光谱荧光成像和卷积神经网络用于测定柑橘果实成熟度的适用性(P07.15)。此外,Park等人利用田间测得的土壤NIR光谱建立了土壤含水量的深度学习预测模型(P10.07);Chiniadis等人提出了利用近红外反射光谱和深度学习方法快速预测土壤中碳酸盐含量的方法(P10.01);Benson等人提出了一种基于耳石近红外光谱和卷积神经网络的鱼类年龄新方法,该方法可以自动提取重要的光谱特征,并产生相当的精度,而且分析效率明显高于传统方法(O01.02,P01.07)。展望从仪器微型化技术的发展可以看出其对近红外光谱的推动力,从工农业生产、消费市场(如“from farm to fork”)和人们日常生活(如”point-of-care”)不断增长的需求可以看出其对近红外光谱的牵引力。在驱动力和牵引力的双重作用下,近红外光谱分析技术将在未来得到加速发展。可以预见,在上述背景下,仪器微小型化、多源数据融合和深度学习仍将是近红外光谱领域未来几年的研究热点和重点。近红外光谱无疑已经从光谱中的“丑小鸭”变成了“天鹅”,并继续与其他谱学技术一起在农业、工业、消费、甚至人类健康等领域中改变着人们的工作和生活方式,成为质量控制的新模式(KN04,PL04,F01.02,KN08,KN10)。目前,近红外光谱分析技术正处于其巅峰的前夜,我们期待着这一时刻的尽快到来。致谢:感谢臧恒昌教授、李连教授和郭隆海教授提供的NIR 2023会议摘要和墙报图片。
  • Polychromix手持式近红外分析仪圆满参展BCEIA
    Polychromix手持式近红外分析仪圆满参展BCEIA 2009年11月25日-28日,由中国分析测试协会主办的&ldquo 第十三届北京分析测试学术报告会及展览会(BCEIA)&rdquo 在北京展览馆隆重召开,德祥集团独家代理的美国Polychromix公司,Polychromix手持式近红外分析仪在BCEIA闪亮登场,并首次在BCEIA上吸引大批感兴趣的客户。 美国Polychromix公司利用提供给NASA(美国宇航局)的MEMS技术,开发出了首款实现真正意义上的手持式近红外分析仪,她便携、快速、准确的特性应用于医药、海关、食品安全、农业、饲料、塑料回收、织物回收、以及烟草等行业,为使用者带来了意想不到的方便快捷的检测方式。 Polychromix简单快速的检测,可以直接在记载微型电脑上显示出来。快速定性定量检测,方便客户根据自己的需要建立模型。 近红外线检测原理,不需任何安全生产措施投入。Polychromix和IB团队其他热卖产品在BCEIA的完美亮相Polychromix phazir首次完全整合了以下优点:★便携、无须样品制备; ★快速(少于5秒); ★近红外分光光度计; ★安全、无害的光源; ★彩色液晶显示屏幕; ★漫反射探头; ★可充电锂离子电池 ★机载计算机; ★补偿性的应用软件; ★符合美国药典标准及相关法规 更多详情请登陆http://www.tegent.com.cn/cp.asp?1,1,18,170,1963 客服热线:4008 822 822
  • 便携式电池供电激光功率测量积分球助力激光企业发展
    某现场安装激光二极管的制造公司需要一种可靠的方法用于现场测量激光功率,而无需带回实验室进行测试。激光测量系统需要完全由电池供电,因为现场没有电源。Labsphere(蓝菲光学)根据客户要求提供一套独立的、便携式且耐用的激光功率测试系统。Labsphere (蓝菲光学)提供标准的激光二极管测量积分球; 然而,还需将新功能整合到系统中,使其能被带到现场测试。 由此产生的一个小而轻的积分球系统,能够在世界任何地方进行可靠的激光功率测量。1.5 英寸开口端,用于轻松安装激光二极管组件针孔滤光片后面的制冷型 InGaAs 探测器,用于在功率低至 200 μW 的情况下进行红外范围内的辐射测量两个 FC/PC 适配器,允许通过光纤连接额外的探测器Spectralon 漫反射材料,在 UV-VIS-NIR 范围内提供近乎完美的朗伯反射,以优化测试结果的准确性为 TE 冷却器和充电装置供电的可充电电池组轻巧的手持式塑料支架可固定每个组件,并带有泡沫内衬派力肯手提箱,可确保安全运输特点电池组可为系统供电数小时,为一个项目中的多项测试提供充足的时间每个组件都包依附在安装板上,提供了极大的可移动性,而手提箱确保了产品运输过程中的安全性InGaAs 探测器在近红外范围内提供可靠的校准测量,附加的光纤适配器使系统能够灵活地在其他范围内或使用光谱仪执行附加测试Spectralon 极高的漫反射率,以及积分球内的挡板几何形状,很大限度地提高了光照射到探测器上的均匀性Labsphere(蓝菲光学) 的 HELIOSense 软件进行实时数据收集、存储和可视化,使测试变得简单易行。光谱响应
  • 2021红外/近红外光谱新品盘点:做适合应用场景的分析仪器
    随着应用需求的拓展,红外/近红外光谱技术也在不断的发展。相较于高分辨率、成像等高性能指标,越来越多的仪器厂商将重点放在了实用上,从细节处着手,着重解决用户使用过程中的实际问题。据统计,申报仪器信息网2021年度“科学仪器优秀新品评选”活动的红外/近红外光谱类仪器共计12台,其中红外光谱仪8台(含附件),近红外光谱仪4台。另外,还有7台基于红外/近红外光谱原理的专用化仪器。虽然红外光谱仪已经相对比较成熟,但是其发展却从未停滞。随着应用需求的变化,红外光谱仪近年来的发展也呈现多样化。各大厂商相继在操作的灵活性、便捷性、智能化及兼容性等多方面入手,提升仪器的性能和使用体验。2021年度,荧飒光学仪器(上海)有限公司推出多台红外光谱新品,包括,研究型傅里叶变换红外光谱仪Foli20、双样品腔傅里叶变换红外光谱仪 Foli10-R-S、移动式傅里叶变换红外光谱仪Foli10 Plus、傅里叶变换红外光谱仪 Foli10-R-T等。其中,研究型傅里叶变换红外光谱仪Foli20首次实现入光口/出光口多光路设计,光源和检测器自动切换,增加了科研的灵活性和扩展性。该产品全光谱的分辨率优于0.4cm-1,具备升级更高分辨率的能力;双样品腔傅里叶变换红外光谱仪 Foli10-R-S实现积分球漫透射及常规透/反射测量于一体。仪器可测量不同弧度的样品,可兼容不同反射角测量附件,可配置室温检测器和/或低温电制冷、低温液氮MCT检测器,双通道A/D采集自适应;移动式傅里叶变换红外光谱仪Foli10 Plus主机和平板可智能化充电,可实现户外即开即用。该产品的集成智能化红外特征峰峰位识别功能及多组分连续差减功能,可实现混合物的快速搜索,并可更换各类测量附件,一键式卡扣锁紧,适合不同应用场景;傅里叶变换红外光谱仪 Foli10-R-T,采用双样品腔双通道设计,相互独立且等效使用,并可同时实现2种大型红外附件的测试,可同时配置室温检测器和低温液氮MCT检测器,双通道A/D采集自适应,实现最快60K扫描速度。此外,天津港东科技股份有限公司推出的傅里叶变换红外光谱仪FTIR-650S在多重防潮设计和抗电磁干扰设计方面也进行了创新,产品采用了更大容量干燥剂筒结构设计,更优异的干涉仪和探测器防潮设计,大幅降低更换干燥剂的频率,有效保护红外光谱仪的光学系统和探测系统。作为一类比较成熟的仪器分析方法,红外光谱已经得到了广泛的应用,特别是在制药、生物研究以及食品和饮料的终端用户中应用非常广泛。质量控制是中药评价的关键问题,而采用单一的化学成分分析方法无法适用于成分复杂的中药体系。应用现代仪器分析手段,建立于中药整体系统上的光谱量子指纹图谱技术是中药质量一致性评价的新方法,特别FTIR红外光谱测定快速,指纹特征性强,是开展中药原料药物和中成药质量控制的简单易行方法。天津市能谱科技有限公司推出的中药红外量子指纹一致性评价系统(LZ9000FTIR)通过FTIR红外光谱法原理,对中药红外光谱指纹进行分析测试。该产品把连续光谱量子指纹化,它能按照官能团量子指纹特征峰类型对化合物进行官能团分类的定性和定量分析,通过对其准确分析进行评价,可揭示数据背后的质量变异而作为中药的质控依据,为建立中药红外量子指纹图谱提供大量特征信息数据。随着FTIR光谱仪器技术的不断进步,红外附件也在不断发展,从而促使红外光谱技术得到更加广泛的应用。比如,天津市能谱科技有限公司的珠宝漫反射附件 IRA-51是一款设计独特的仓外大样品漫反射附件产品,测量平台位于仓外,大尺寸样品可直接置于样品台上,完全摆脱了珠宝尺寸大小的局限;Specac的Arrow系列一次性ATR单次反射附件采用最新的Si芯片技术,是一款可抛弃型ATR样品盘,其采用可回收聚丙烯制成,专门用于污染、腐蚀、胶黏、强酸碱性样品。一次使用一片,即插即用,用完即可抛弃。作为一类实用型的分析方法,近红外光谱仪器的创新也更多以更加适合应用场景为目的。仪器操作的简单便捷,让近红外光谱仪走入了更多的应用领域,得到越来越多不同类型用户的认可,而小型化的产品设计给在线及系统集成提供了更多的便利。2021年度,福斯分析仪器公司推出了近红外多功能品质分析仪NIRS DS3,产品采用全新设计的操作软件ISIscan Nova,可预约定时开机,定时自检。新的软件系统将实时监控光源使用情况,并在预期寿命结束前500小时给出提醒,而且光源连接使用全新设计,无需任何工具即可徒手更换,更快更简便。海洋光学亚洲公司也推出了两款近红外光谱仪,其中高灵敏度NIRQuest+近红外光谱仪采用增强光学台和孔径设计,改善光谱仪的响应,实现更低的检测极限。同时,由于灵敏度的提升,积分时间缩短,从而降低了检测时间,在流水线或流动液体样品检测时具有很大优势;Flame-NIR+ 近红外光谱仪无移动部件,坚固耐用,可用于严苛环境。产品的小尺寸非常适合集成在手持系统中,并且客户可以根据自己的应用自行更换狭缝,来调整光谱仪的通光量及分辨率。任何一类仪器都不可能“放之四海而皆准”,针对不同行业或领域开发的专用化仪器不仅可以针对性地解决问题,而且可以提高通用仪器的利用率,并在一定程度上支撑国家产业和科技的高质量发展,成为当前科学仪器的一个重要发展方向。从2021年度申报的红外/近红外光谱仪器新品来看,在气体和油品检测方面有多款新品推出。在气体检测方面,谱育科技的EXPEC 1900 傅里叶红外气体遥测仪将可见光成像+红外成像+化学成像三合一叠加显示。对比常规的可见成像+化学成像的图像显示,增加了红外成像的叠加显示。红外成像不仅可以在夜间提供视野支持,同时可利用红外热像显现检测区域内的高温污染云团、排口等,叠加显示于化学成像的图像上,可辅助研究污染气体云团的分布与扩散趋势。另外,产品采用了云台扫描与振镜扫描相结合的速扫描方式,提高扫描效率的同时,提升了检测区域的准确性;北京乐氏联创科技有限公司推出了9100FIR 傅里叶红外气体分析仪,这是一款便携式傅里叶变换红外气体分析仪,其采用PLS偏最小二乘法,高分辨率分析模式(1cm-1的分辨率),开放气体组分化学计量方法模型构建功能,适用于对各种排放气体进行现场在线分析,包括工业废气、锅炉烟气排放、焚烧炉排放,也可用于环境空气中无机气体、有机气体的快速应急检测;此外,常州亿通分析仪器制造有限公司也推出了红外一氧化碳气体分析仪(CO) ET-3015AF。在油品检测方面,深圳市德沃仪器有限公司推出了用于成品油检测的近红外光谱仪DW-NIR-PD。该仪器属于光栅扫描型,采用德州仪器的数字镜像整列微型近红外光谱仪InGaAs探测器。据悉,该产品收集了1000多份汽油和柴油的样品和数据,样品覆盖全国各地的大小炼油厂和检测机构的数据,并针对国内使用的油样自行开发近红外数据模型;此外上海昂林科学仪器股份有限公司推出了全自动便携式红外测油仪OL1025,山东格林凯瑞精密仪器有限公司推出了新款含油量检测红外分光测油仪GL-7100,分别在仪器的便携性和智能化方面进行了改进和创新。
  • ThermoFisher推出手持式光谱仪器(拉曼、近红外)以旧换新活动
    ThermoFisher公司便携式光谱分析部门的前身是美国Ahura Scientific和Polychromix公司,产品包括手持式拉曼光谱仪和手持式近红外光谱仪。 ThermoFisher公司手持式拉曼光谱仪的经典款产品Truscan系列和手持式近红外光谱仪的经典款产品Phazir系列,以其小巧轻便的设计、卓越的性能为全球成百上千的用户提供了便捷、高效的分析检测手段。ThermoFisher公司便携式光谱部门不断创新,不断挑战自我,在原有经典款手持式光谱仪的基础上,研发出更加小巧轻便、性能更加卓越的新一代手持式拉曼光谱仪Truscan RM和手持式近红外光谱仪microPhazir系列。 为了回馈广大老用户,ThermoFisher公司决定从即日起到2012年12月21日止,老用户以经典款手持式光谱仪换购新一代产品,可以享受7折的优惠活动。手持式拉曼Truscan系列升级换购Truscan RM、手持式近红外Phazir系列升级microPhazir,均可享受以上优惠活动。 新一代产品的优势: 体积更小 重量更轻 测试速度更快 操作界面更友好(中文界面可选或可升级中文界面) 活动详情,请咨询ThermoFisher公司便携式光谱部门(手持式拉曼和手持式近红外)指定经销商-上海凯来实验设备有限公司。原版信息链接:http://www.ahurascientific.com/mkt_email/mkt_20121112_work-smarter-2.html
  • 2020红外/近红外光谱新品盘点:以应用驱动产品创新
    国外某研究机构的最新市场研究显示, 2020年全球红外光谱市场预计10亿美元,2025年将达13亿美元,复合年增长率为4.1%。作为一类比较成熟的仪器分析方法,红外光谱已经得到了广泛的应用,特别是在制药、生物研究以及食品和饮料的终端用户中应用非常广泛。而同时,这些相关行业严格的法规,以及对质量水平越来越高的追求都推动了红外光谱市场的增长。  虽然2020年COVID-19的爆发和蔓延影响了很多行业发展,也使很多工厂停工或者关闭,但同时也导致了药品和其他医疗设备产量的增加,这在一定程度上也增加了红外光谱在医疗保健和制药终端行业的需求,进而导致市场对红外光谱产品和解决方案的需求增长。  基于市场的需求,各大仪器厂家也在不断的推出新的产品。据统计,申报仪器信息网2020年度“科学仪器优秀新品评选”活动的红外/近红外光谱类仪器共计11台,其中红外光谱仪9台,近红外光谱仪2台。值得一提的是,不管是小型化、云数据管理、专用化及在线仪器等,以上新品特别注重从用户的角度考虑问题,从应用的角度着手进行产品的开发和设计。以下将根据2020年度申报新品的情况进行简单的概述:  近年来,小型化一直是仪器设计和制造的一个重要发展趋势,仪器小型化不仅能满足空间有限的分析测试现场使用需求,而且便于集成拓展,非常适合手持式/便携式仪器开发。  在本年度申报的仪器新品中,滨松光子学商贸(中国)有限公司推出了FTIR光谱仪引擎 C15511-01。基于精心重构光学干涉仪的设计思路,并采用独特的MOEMS技术,滨松光子成功开发出了一款高性能的微型化FTIR引擎。迈克尔逊光谱干涉仪和控制电路内置其中,仅手掌大小,却实现了在1.1-2.5μm区域超高的灵敏度,具有远超同类产品的高信噪比表现(10000:1),以及高光谱重现性。据悉,该产品可内置于便携式FTIR仪器中,实现整机小型化的同时,也可保证高性能的实现。  此外,荧飒光学仪器(上海)有限公司也推出了两款便携式的仪器新品:便携式傅里叶红外气体分析仪+Mobile10-G、便携式傅里叶变换红外光谱仪 Mobile10。其中,前者集成小体积长光程的9.8米气体池及内置抽气泵、电池,现场开机即可工作;后者不仅集成平板及电池,现场开机即可工作,而且具有与台式红外光谱仪一样的性能。  对于科学仪器而言,软件是一个绕不开的话题,随着应用需求的提升,用户不仅关注仪器硬件的改进,对软件及数据的云端管理也提出了新的需求。  软件在云平台和云服务方面的创新,是现代仪器发展的一个重要方向。珀金埃尔默企业管理(上海)有限公司推出的Spectrum 3™ 傅立叶变换红外光谱仪不仅提供全集成的热重-红外(TG-IR)联用(EGA4000)解决方案的FT-IR平台,涵盖近、中、远红外三个波长范围,软件自动切换光源、分束器、检测器等部件。而且,特别值得一提的是,该仪器首次将云办公软件“NetPlus”引入红外光谱检测领域,数据实现云端连接。基于Web的应用程序,允许从任何设备查看、上传/下载和管理云端数据,提供更加准确的结果、整合的工作流和团队成员间跨实验室/设备实时协作。  对于中药材的分析而言,数据分析是重点也是难点。北京鉴知技术有限公司(原同方威视拉曼)推出的IT2000中药分析仪,针对中药材质量控制,通过丰富的数据库和识别算法,一键分析实现中药饮片的真伪鉴别、品种识别、产地溯源和品质分析,光谱采集、分析、测试报告等同步自动完成。  应用拓展一直是近红外人努力的方向和目标,而找准应用环境对近红外仪器而言至关重要。很多业内人士指出,专用化和在线仪器的发展存在着较强的生命力和巨大的潜在应用市场。  瑞士万通中国有限公司推出了DS2500 L近红外光谱液体分析仪,在上一代产品的基础上,该仪器由分体式改为了一体机的形式,使得仪器本身防护等级达到了IP65。另外,其智能附件设计,为分析液体样品设计了不同光程的附件,每个附件上都带有芯片,附件插入仪器后可以被读取;荧飒光学仪器(上海)有限公司推出了为工业在线用户设计的8通道在线检测近红外光谱仪--傅里叶变换在线近红外光谱仪MASTER10-Pro,其采用完全国内自主的傅里叶变换技术,自主国产的干涉仪,立体角镜,永久准直,抗震性强。  除了红外透射、红外反射、衰减全反射(ATR)、漫反射等大家熟悉的测量方式,在本次申报的新品中,荧飒光学仪器(上海)有限公司还推出了傅里叶变换红外发射光谱仪和傅里叶变换光致发光光谱仪。红外发射光谱虽然应用范围不如红外吸收光谱广,但在一些特定研究领域有其独特的优势。荧飒光学仪器(上海)有限公司推出的傅里叶变换红外发射光谱仪 FOLI 10-RE是独立式、专用型红外发射光谱仪,其光路设计紧凑,可以明显降低辐射损失,提高辐射通量;作为一种有效的无损光谱检测手段,光致发光光谱广泛应用于半导体的带隙检测、杂质缺陷分析等。荧飒光学仪器(上海)有限公司推出的傅里叶变换光致发光光谱仪 FTPL-10具有弱信号探测能力强、测量速度快和用户操作使用简单等优势。在仪器性能方面,该仪器的光谱分辨率达到0.8nm以上,测量速度达到每秒1张谱图,信噪比超过500:1。  此外,荧飒光学还推出了旋转透射红外液体分析仪+FOLI10-RT,该仪器最多可同时配置4个不同光程的光学窗,非常适合液体的定量测量;天津恒创立达科技发展有限公司推出了MATRIX-50 傅里叶红外光谱仪,该产品采用专利的高能量红外光源,内置独特设计的反射镜,光源能量利用率远高于传统设计,可为傅立叶变换红外光谱仪的ATR及显微红外应用提供足够的能量。
  • 天津能谱全新推出大样品无损检测专用紫外可见分光近红外光度计
    为满足不同样品检测的要求,天津能谱成功研发出大样品无损检测专用紫外可见分光近红外光度计,该产品的研发具有重要的科学意义和实际应用价值:1. 拓宽应用领域:传统紫外可见近红外分光光度计通常适用于小样品或液体样品的检测,而大样品无损检测设备能够处理更大尺寸的固体样品,如建筑材料(如玻璃幕墙)等,常规最大尺寸一般控制在110mm以内,样品再大样品仓等放不进去,天津能谱成功研发出的大样品无损检测从而拓宽了该技术的应用领域。特别反射附件测试不在局限于样品大小的限制。2. 提高检测效率与准确性:这类仪器设计用于大尺寸样品,通常配备有专门的光学系统和大样品室,可以在不破坏样品的前提下,快速准确地获取样品的光谱信息,这对于需要保持样品完整性的应用尤为重要。3. 促进材料科学研究:在材料科学领域,这种设备可以用于研究材料的光学性质,如透过率、反射率和吸收特性,对于新材料的开发、质量控制及性能评估极为关键。4. 建筑材料:建筑材料的能效特性(如玻璃的透光性和隔热性),有助于环境保护和公共安全。5. 文物保护与鉴定:对于文物和艺术品的鉴定与保护,无损检测技术可以提供宝贵的信息,帮助专家了解材质老化、修复历史等,而不会对珍贵文物造成任何伤害。6. 光学质量控制:在光学制造行业,大样品镜片等的无损检测对于确保产品质量、优化生产工艺、减少浪费具有重要意义。 iCAN 3000G建筑玻璃可见光透射比/遮阳系数检测仪是iCAN 3000 紫外可见近红外分光光度计的基础上升级专门用于测定各种建筑玻璃可见光透射(反射)比、太阳光直接透射比、太阳能总透射比、紫外线透射(反射)比及有关玻璃等参数。根据所记录的图谱对被测物质进行定性或定量分析,是检测建筑玻璃参数的一个重要工具。可检测的样品有:普通平板玻璃、电浮法玻璃、夹层玻璃、离子镀膜玻璃、溅射镀膜玻璃、LOW-E玻璃、汽车安全膜等;用于建筑幕墙玻璃节能参数的测定、玻璃镀膜材料研和分析; Ø 设备可满足以下测试:紫外光透射比 Tuv可见光透射比 TV室外侧可见光反射比 pvo室内侧可见光反射比 pvi太阳光直接透射比 Te太阳光直接反射比 pe太阳红外直接透射比 TIR太阳能总透射比 g遍阳系数 SC光热比 LSG太阳红外热能总透射比 glR向室内侧二次热传递系数 qi向室内侧太阳红外二次热传递系数 qin传热系数U
  • 29家近红外厂家齐聚JASIS2019 专用仪器吸引眼球
    2019年9月4-6日,JASIS2019(Japan Analytical & Scientific Instruments Show 2019)在日本幕张国际展览中心举办。该展会云集了世界著名仪器厂商,规模亚洲最大。与近红外相关的几大巨头同聚一堂,极具代表性,具体信息如表1所示。  如表所示,能聚集29家近红外仪器厂商的展会实属不多,其特点与近红外学术交流会同时举行的近红外仪器展览不同,近红外只是各个展位展览内容之一,更多是综合参展多,再有就是通用近红外仪器展示多。表1 近红外光谱仪器参展厂商信息 Company Name1Thermo Fisher Scientific2ST Japan INC.3AIRIX corp.4SOMA OPTICS, LTD5SHIMADZU CORPORATION6Otsuka Electronics Co., Ltd.7Micro Support Co.,Ltd8Ocean Photonics9Metrohm Japan10Matsusada Precision Inc.11BeatSensing Co., Ltd.12BL TEC K.K.13Systems Engineering Inc.14NSP Ltd.15PerkinElmer Japan Co., Ltd.16Bio-Rad Laboratories, Inc., Informatics Division17Spectra Co-op18MSH Systems,Inc19BAS Inc.20Micro Emission Ltd.21Tokyo Instruments Inc.22Nihon BUCHI. K.K.23HORIBA, Ltd.24Bruker Japan K.K.25HAMAMATSU PHOTONICS K.K.26Tanaka Corporation27Hitachi High-Tech Science Corporation28Spectra Quest Lab, Inc.29Broadcom  实验室通用型近红外仪器在国内随时都可以看到,大家也非常熟悉,在此不再赘述。现就专用近红外仪做个简要介绍。  代表日本专用近红外仪器制造商的相马光学重点展示了专用近红外仪器,并推出了最新产品-便携式牛血液快速检测仪,该仪器可现场检测牛贫血,脱水等状况。要像人体血液检查一样抽取牛血、化验、出结果需要数日时间。大型养殖场的肉牛养殖数量成千上万,如果发现哪头牛有问题,在牛群中、特别是大型散养牧场牛群中寻找问题牛是件极为困难之事,为此该公司开出了这款能现场抽血和立刻出结果的近红外方法和仪器。虽然精度略低于实验室,但实现了初步筛选,解决了实际问题,此类应用尚属首次。  另外,该公司还通过体相全息衍射光栅(VPH Grating)原理进行分光,开发出近红外手持式肉类脂肪快速检测仪。据研发者说,相全息衍射光栅技术的光谱仪相对于传统的刻划光栅,具有低散射,受偏振影响小的特点。  日本有两个近红外学术组织,一个是近红外研究会,主要对日本内外组织联络近红外学术活动;一个是分光学会近红外分会,更多组织国内的学术交流。  值得一提的是配合这次展览,日本分光学会近红外光谱分会开设了近红外光谱分析等一系列讲座。此次讲座主要讲解了近红外基础、量子化学计算、化学计量学、二维相关光谱分析。我报名参加了这个讲座。感想有二:一、量子化学计算可实现光谱模拟,这也许能为虚拟近红外实验提供支撑;二、上下午4位老师授课,收费1千元人民币,竟然有60人左右参加。因为近红外研究会每年都有免费近红外讲座,每次学术年会前还有培训(收费),每次都能有数十人参加,且持续多年,让人感到欣慰。由此可知,近红外已在日本各行各业中得到广为告知。(中国农业大学 韩东海)
  • 美国Zeltex手持近红外谷物分析仪评测
    随着利曼中国成为美国Zeltex公司手持近红外分析仪(谷物、种子、肉类及其他食品方向)在中国地区的独家授权代理商后,颇受业界关注。近日,美国Zeltex公司2015款最新型手持近红外谷物分析仪抵达利曼中国北京总部,工程师团队第一时间对此产品进行了现场评测。 美国Zeltex公司专业设计制造的便携式手持近红外分析仪可在现场快速无损地检测谷物、种子、肉类及其他食品中的蛋白质、脂肪及水分,经过20多年的技术积淀,其产品在近红外领域拥有超过30项专利,能够为粮食、食品科研等领域提供完整的实验方案。这款最新型的ZX-50IQ手持近红外谷物分析仪,采用带密码锁的手提铝箱包装,尺寸46 x 33 x 12 cm,与14寸笔记本电脑包尺寸接近,重量不足5 kg。在安全性和便携性上,可谓做工扎实。 打开铝箱后,除主机(尺寸26 x 12 x 9 cm,重量仅有1.5 kg)外,产品还附带标准品及几款不同规格的样品杯,用于填充不同类型的样品,如小麦、大麦、玉米、大豆、高梁、油菜籽、豆粕等。 整个测量过程十分简单,主要有以下几步:仪器自检—标样测定—样品测定—读取数据。为获得较高准确性的数据,仪器会提示操作者进行多次测量并要求旋转样品杯。仪器已内置大量标准曲线,同时允许操作者连接电脑后新建标准曲线并对测量次数做出修改。 为验证数据的准确性,工程师特地从超市采购一袋带有营养成分标识的大豆,经过4次测定(约一分钟),实测蛋白质含量为35.7%,与标识仅有0.1%的偏差。该偏差在实验室近红外法测量大豆粗蛋白含量标准(GB/T 24870-2010)允许的偏差±0.4%范围之内,结果非常令人满意。需要注意的是,测量过程中,一定要保持样品杯透明面的清洁,填料时也要注意尽量压实。 综述,作为最新型便携式设备的ZX-50IQ手持近红外谷物分析仪,通过升级主板、固件及软件程序,较上代相比在精度和性能方面提升33%,可以更高效、准确的满足谷物现场检测工作,其特点可概括如下:■ 操作非常简单,上手容易;■ 便携式设计,体积小巧,不受使用环境限制;■ 6节5号电池即可供电,亦可外接交流电源;■ 样品使用量少,无需前处理,整粒无损检测;■ 分析速度快,不到1分钟即可获取结果;■ LCD显示屏直显数据,同时可外接电脑综合分析。 利曼中国自成立二十余年来,一直致力于质量控制与分析、智能科技产品的推广及应用,目前在中国拥有20多个销售联络处,6个维修服务中心,5个示范实验室,近百名员工以及众多的国内外合作伙伴。Zeltex手持近红外产品的引入,将进一步丰富利曼的产品线,更好地服务于国内分析检测领域,促进分析技术的提高。更多产品信息,请致电全国统一服务热线400-606-1718。
  • 引进便携式NIR 利曼中国与美国Zeltex公司正式建立合作关系
    近日,利曼中国与美国Zeltex公司签署合作协议,正式成为其手持近红外分析仪(谷物、种子及食品方向)在中国地区的独家授权代理商,全权负责该品牌产品的市场推广及售后服务工作。 美国Zeltex公司,总部设在马里兰州黑格斯敦,专业制造的便携式手持近红外分析仪可在现场快速无损的检测谷物、种子和食品中的蛋白质、脂肪及水分,其产品在近红外领域拥有超过30项专利,可以为粮食、食品科研等领域提供完整的实验方案,客户遍及政府机构、研究机构、大学、农场等。 ZX-50IQ手持近红外谷物分析仪是Zeltex公司最新的代表性产品,凭借多项近红外专利技术,准确性大大提升,可在现场(田间、粮仓、卡车)快速、准确地无损检测谷物中的蛋白质、脂肪及水分,适用于分析小麦、大麦、玉米、大豆、油菜籽、豆粕等。 其主要特点如下:■ 操作非常简单,上手容易;■ 便携式设计,体积小巧,不受使用环境限制;■ 6节5号电池即可供电,亦可外接交流电源;■ 样品使用量少,无需前处理,整粒无损检测;■ 分析速度快,不到1分钟即可获取结果;■ LCD显示屏直显数据,同时可外接电脑综合分析;■ 主机尺寸:26 x 12 x 9 cm,重量:1.5 kg。 利曼中国自成立二十余年来,一直致力于质量控制与分析、智能科技产品的推广及应用,目前在中国拥有20多个销售联络处,6个维修服务中心,5个示范实验室,近百名员工以及众多的国内外合作伙伴。Zeltex手持近红外产品的引入,将进一步丰富利曼的产品线,更好地服务于国内分析检测领域,促进分析技术的提高。更多产品信息,请致电全国统一服务热线400-606-1718。
  • 盘点:这些年近红外发生的那些事
    近红外光谱分析技术是一项基于近红外光谱技术与化学计量学分析模型技术的综合分析技术,可实现对含有C-H、N-H、O-H等有机官能团的样品进行快速、无损、定性/定量分析,是现场快速筛查和加工过程实时检测的理想手段。近红外光谱仪广泛应用于农业、饲料、粮油、食品、石油化工、环境等行业。  近红外光谱是近20年来发展最为迅速的高新分析技术之一。我国从20世纪80年代开始进行近红外光谱的研究和应用工作,90年代后期以产业链的方式逐渐应用于农业、石化、制药和食品等多个领域,在农业生产和科研中逐渐发挥着越来越重要的作用。据统计,目前中国保有的进口品牌近红外光谱仪器在2700台左右,而国产的近红外光谱仪器约500台。中国目前还只有小部分企业单位购买了近红外光谱仪器,市场增长空间非常大。  近年来,我国近红外光谱分析技术无论在研发还是应用方面都取得了长足进展。本文从近红外光谱领域发生的大事件、仪器及应用开发项目、仪器公司战略布局、销售大单、新技术新产品等方面,大略盘点了近年来近红外光谱方方面面发生的事情。  盘点一:近红外光谱领域发生的大事件  (1)2012年11月27日-29日,由近红外光谱专业委员会组织申报的&ldquo 我国近红外光谱分析关键技术问题、应用与发展战略&rdquo 第446次香山科学会议学术讨论会在京成功召开。会议围绕:a、近红外光谱仪器制造关键技术;b、国计民生重要物资品质安全与近红外分析;c、近红外分析与典型流程工业应用现状与发展趋势;d、近红外分析在环境医学领域等中心议题进行了深入讨论。袁洪福研究员作了题为&ldquo 中国近红外光谱分析关键技术问题、应用与发展战略探讨&rdquo 的主题评述报告。  (2)2014年4月15日,国家标准GB /T29858&ldquo 分子光谱多元校正分析通则&rdquo 正式颁布实施。  (3)2014年9月,中国仪器仪表学会近红外光谱分会正式宣告成立。袁洪福为分会理事长,褚小立等15位专家为副理事长,刘慧颖为常务副理事长,韩东海兼任秘书长,马放均、唐海霞为副秘书长 常务理事35名、理事61名 陆婉珍院士等为分会顾问 仪器信息网为分会挂靠单位。(注:2009年6月6日中国仪器仪表学会分析仪器分会近红外光谱专业委员会成立。)  (4)2014年9月,全国第五届近红外光谱学术会议成功召开。来自近红外光谱相关领域的专家学者、仪器用户等240多人参加了会议。会议共录用论文117篇,其中口头报告50篇,墙报22篇。赛默飞、布鲁克、瑞士万通、聚光科技等13家国内外相关的仪器公司参加同期的展览会。(注:2006年11月全国第一届近红外光谱学术会议;至今,近红外光谱分会已经连续成功举办了5届全国近红外光谱学术会议 2010年在上海召开了第二届亚洲近红外光谱学术会议。)  (5)2015年1月9日,近红外光谱分会多位顾问和理事荣获2014年国家科学技术奖。湖南大学俞汝勤院士参与的《功能核酸分子识别及生物传感方法学研究》获国家自然科学奖二等奖 清华大学罗国安、杨辉华教授参与的《中药注射剂全面质量控制及清开灵、舒血宁、参麦注射液中的应用》获国家科学技术进步奖二等奖 华中科技大学骆清铭教授主持的《单细胞分辨的全脑显微光学切片断层成像技术与仪器》获国家技术发明奖二等奖 浙江大学瞿海斌教授参与的《中成药二次开发核心技术体系创研及产业化》获国家科学技术进步奖一等奖。  盘点二:近红外光谱仪器及应用开发项目  (1)在2014年,两项近红外光谱仪器开发项目成功入围&ldquo 国家重大科学仪器设备开发专项&rdquo ,两个项目分别是:四川威斯派克科技有限公司牵头的&ldquo 便携傅立叶近红外光谱仪开发及应用&rdquo 、聚光科技(杭州)股份有限公司牵头的&ldquo 光栅型近红外分析仪及其共用模型开发和应用&rdquo 。(科技部、财政部2011年首次启动&ldquo 国家重大科学仪器设备开发专项&rdquo 。该专项强调面向市场、面向应用、面向产业化,重点支持具有市场推广前景的重大科学仪器设备开发。)  傅立叶变换型与光栅扫描型两种近红外光谱仪器都包含在内了,并且国家重大科学仪器设备开发专项支持力度非常大,每个项目支持资金都在数千万元以上,相信此举必会对国产近红外光谱仪器技术与应用的发展产生积极影响。据了解,威斯派克公司研制的样机已经在相关研究单位进行试用,其样机的性能指标等较好。(注:威斯派克科技有限公司将在四川省射洪县投资建设红外光谱等检测设备产业化项目,项目总投资30亿元人民币。项目投产后,预计年销售收入达到10亿元、利税4亿元。)  (2)2013年9月,&ldquo 十二五&rdquo 国家科技支撑计划项目&ldquo 数字化粮食物流关键技术研究与集成&rdquo 项目开题,该项目批复总经费8630万元。其中聚光科技(杭州)股份有限公司是子课题&ldquo 粮食收储近红外检测技术设备及组网研究开发&rdquo 的参与单位之一。  (3)2014年8月,北京市科委网站发布公告,北京凯元盛世科技发展有限责任公司中标&ldquo 近红外果品品质快速无损检测装备研发(招标编号:NF2014-14)&rdquo 课题。课题研究目的是开发适合京郊主要果品(梨、苹果、桃等)品质近红外快速无损检测方法及仪器设备,并在京郊果品主要产区进行应用示范。北京市科委资助资金人民币210万元。  盘点三:近红外光谱仪器公司战略布局  (1)2013年初,瑞士万通(Metrohm)宣布与福斯公司(Foss)签署战略合作协议。根据协议,Metrohm将成为Foss近红外仪器在化工、石化、制药、环保等领域的全球唯一战略合作伙伴。(多年以来,Metrohm一直专注于电化学和离子分析领域的产品研发和销售。)  (2)2013年11月,海能仪器正式与美国联合科学(Unity)公司签订中国区域的独家战略合作伙伴。由海能全权负责该品牌产品在中国区域的市场推广、技术、销售模型建立以及应用支持工作。  (3)2014年5月,瑞士步琦有限公司宣布收购德国NIR-Online GmbH。NIR-Online GmbH的核心竞争力在于开发了在线NIR及光学系统解决方案,用于在广泛的工业应用中实现过程优化。瑞士步琦通过此次收购将其技术组合从实验室领域拓展到了过程控制领域。  (4)2014年6月,德祥科技与德国ZEUTEC公司签约协议,作为其中国区的独家代理商,将全权负责其产品在中国的市场推广、销售及售后服务。德国ZEUTEC Opto-Elektronik GmbH公司致力于开发和生产专业的光谱仪系统,包含常规实验室近红外分析仪和应用分析方案。  (5)2014年11月,珀金埃尔默(PerkinElmer)宣布以2.66亿美元收购瑞典波通仪器(Perten),进一步补充其在食品质量检测领域的实力,更进一步加强巩固了公司在食品农业领域的领导地位。  (6)据了解,利曼中国已经和 美国 ZELTEX 公司签约,成为其中国区独家代理。Zeltex公司专业制造便携式手持近红外谷物、种子分析仪,可在现场快速无损检测其中的蛋白质、脂肪及水分,在近红外领域拥有超过30项专利。  盘点四:近红外光谱仪器销售大单  (1)2013年6月,聚光科技在湖北省粮油行业的总经销商仅6月份一个月就已在湖北省油菜籽行业创下10套近红外分析仪(SupNIR-2720型)的销售佳绩。  (2)2013年12月,聚光科技实验室业务发展事业部签订30台近红外分析仪采购订单,该批仪器将在种业领域应用,用于种子的真实性快速鉴别。该种子鉴别系统由聚光科技与中科院半导体所合作开发,中国农业大学严衍禄教授给予大力支持。  (3)2014年5月,布鲁克宣布最近从中国两家领先的饲料生产企业获得了25台TANGO FT-NIR和23台MATRIX-I型FT-NIR采购订单。大北农科技集团(DBN),是中国一家领先的饲料和种子产品生产厂家,订购了25台TANGO光谱仪用于遍布中国各地的产品基地的原材料和成品分析。新希望六和集团,中国最大的饲料生产商,采购了23台布鲁克 MATRIX-I傅立叶变换近红外光谱仪,以补充现有的67台布鲁克光谱仪。  盘点五:近红外光谱新产品  (1)2013年4月,美国JDSU公司目前市场上商品化体积最小的近红外光谱仪登陆中国。该产品所采用的线性渐变滤光片(LVF,Linear Variable Filter)是一种特殊的带通滤光片,使用了JDSU的光学镀膜和制造技术,制作时特意向特定方向形成楔形镀层,滤光片的穿透波长在楔形方向发生了线性变化,从而起到分光作用。在45*42mm大小的体积中,该产品包含了光源、滤光片、检测器等,完全不需要其他移动部件,其中光源采用双集成真空钨灯,检测器采用128线元非制冷铟镓砷(InGaAs)二极管阵列检测器,由USB供电(在5伏电压是电流小于500毫安)。  (2)2013年7月,江苏大学陈斌教授领衔的近红外工作室开发出Windows系统的【基于JDSU微型近红外光谱仪的分析与检测系统】软件。在此基础上,该团队成功开发了基于安卓系统掌上设备的快速检测软件系统的开发研究。能够用安卓手机、平板控制光谱仪的采谱、结合输入的模型,对光谱进行预处理(平滑、求导、正规化等),PLS等计算,从而实现检测指标的实时显示。  (3)2013年8月,德国Centec推出近红外光谱在线监测饮料中的二氧化碳,传感器是基于衰减全反射(ATR)技术。  (4)2013年8月,赛默飞推出用于饲料现场快速分析的手持近红外光谱仪microPHAZIR AG。microPHAZIR AG分析仪预置有产业领先的INGOTTM饲料配料数据库,可准确分析蛋白质、水分、油分、灰分、纤维、淀粉、和其他参数。  (5)2013年9月,日立高新技术公司发布了UH4150 紫外/可见/近红外分光光度计。  (6)2013年10月,布鲁克继2011年首先推出了世界上第一台小型化傅立叶变换近红外光谱仪&mdash &mdash TANGO-R之后,推出新一代小型化TANGO-T近红外光谱仪,该款产品是针对液体样品设计的,主要应用于石化、石油以及食用油的相关检测。  (7)2013年11月,海洋光学在中国市场发布了近红外新品:AccuNIR2100台式果品近红外分析仪,AccuNIR2200便携式果品近红外分析仪,AccuNIR3100 近红外燃油品质分析仪。这一技术的推广应用对于提高果品的种植管理水平,以及采摘、储运、经销过程中的质量监管具有重要意义。AccuNIR3100 近红外燃油品质分析仪适用于各种油品应用环境,从生产加工到存储,甚至是对油品研究的实验分析都能大显身手。  (8)2013年12月,滨松光子株式会社开发出新型多碱光阴极,其近红外灵敏度很高,将用于下一代微型PMT。产品可方便地集成到仪器中,期待能够有助于医学分析和环境监控等高精度私用仪器的开发。  (9)2014年1月,岛津与SPI( Summit Pharmaceuticals International)公司签订了以开发岛津手提式小动物用近红外荧光成像系统(使用1000 nm以上波长)新应用为目的的共同开发协议。  (10)2014年7月,波通公司发布新型近红外谷物分析仪Inframatic 8800,用于农田现场使用。Inframatic 8800采用固态硬盘和二极管阵列技术,光学部分没有任何的移动部件,更好地满足仪器的准确性和重复性的高要求。  (11)2014年10月,美国 ZELTEX 公司推出ZX-50IQ 手持近红外谷物分析仪,可在现场(田间、粮仓、卡车)快速、准确地无损检测其中的蛋白质、脂肪及水分,适用于分析小麦、大麦、玉米、大豆、油菜籽、豆粕等。  (12)福斯在2014年推出了一款近红外仪器Infratec NOVA谷物面粉分析仪,Infratec NOVA使用近红外透射技术,能够同时检测大宗粮油商品的多项参数指标(水分、蛋白、油脂、淀粉等)。(撰稿人:刘丰秋)
  • 孙旭东:歪打正着的近红外经历
    我初次接触近红外是在2005年5月,源于一次无心插柳的故事。我本科毕业于中国农业大学机电专业,硕士又调剂到中国农业大学机电专业。当时,我的导师韩东海教授在做食品异物低能X射线成像检测研究,需要一名工科背景的研究生,我有幸被老师带入了食品学院318实验室。老师让我和王加华配合,我主攻X射线成像检测,辅助加华做便携式苹果品质近红外检测仪。318的每周seminar所有同学轮流做,我做X射线成像文献汇报,并认真听了其他同学的近红外文献汇报,这给了我对近红外的感性认识。同时,韩老师帮我找了个兼职的工作,绘制电子称重式水果分选机图纸。我也没有想到后来会从事水果品质近红外分选机研究,借用导师的一句话,我是歪打正着。  真正做近红外的工作,是从2007年进入江西农业大学刘燕德教授团队工作开始。实验室有一台ASD公司的近红外光谱仪,包括液体测样附件、手持式探头等。我主要做便携式和在线水果品质近红外检测研究方面的一些工作。期间碰到很多的问题,此时才对318期间耳闻目染的近红外故事进行了深入的思考。水果分选机公司的朋友提供了一台小型的水果机械传送装置,在这个上,我开始了漫漫的水果分选路。在光谱动态获取、分选自动控制、光源检测器布置等方面做了很多的尝试。  2009随团队调入华东交通大学,与两位很擅长下位机控制、软件编程的同事,共同做出了漫反射式的水果品质在线分选机和便携式仪器,但也逐渐发现了传统称重式水果机械传输机构的局限。随后在合作公司配合下,又做出了漫透射式水果品质在线分选机。目前,已在江西、山东、河北等水果主产区应用,深受用户欢迎。现在,我继续做着水果品质在线分选机方面的研究工作。  我受益于318,成长于近红外。同窗、师兄弟、师长和朋友,都在做着近红外相关的各项工作,每次参会最期待的就是:朋友围坐,一杯清茶。漫漫长路,我不独行。  华东交通大学机电工程学院 孙旭东
  • 日立发布紫外可见近红外分光光度计UH5700新品
    从1962年推出首台商品化紫外分光光度计以来,日立凭借全球先进的光栅技术和持续创新能力,不断推出各种类型紫外分光光度计,满足用户的科研和检测需求。这次推出的台式紫外可见近红外分光光度计UH5700,融合了日立精密的光栅技术,使用了新研发的蚀刻衍射光栅,既可测定液体样品的吸收光谱,也可测定固体样品的反射和透过光谱,另外丰富的附件满足您多方面的测定需求!主要特点如下:1. 宽波长范围190-3300nm,满足所有测定需求。2. 低噪音采用连续可变狭缝,在近红外波长区测定低光量时,自动加宽狭缝;测定高光量时,自动减小狭缝宽度。支持低噪音测定超大范围波长区域3. 高速扫描采用齿轮驱动,实现了紫外-可见-近红外区域的快速扫描。4. 低杂散光、超大测光范围标配新研发的蚀刻衍射光栅和高光量单色器。5. 采用全新控制软件,操作更加便捷采用UV Solutions Plus,新增数据表和数据处理结果的列表显示功能、报告格式的自定义功能、仪器性能检查功能。6. 提供丰富的配件,支持液体到固体样品的测定各种配件一应俱全,满足分光光度计的多种测定需求,如溶液中微量样品的测定和片状样品、薄膜样品的测定等。更详细的资料请参考日立高新技术官网https://www.hitachi-hightech.com/cn/product_detail/?pn=ana-uh5700&version=创新点: 1.190~3300nm的宽波长,支持紫外-可见-近红外区,满足更多测定需求。 2.秉承日立优异的光栅制造技术,使用具有日立专利的蚀刻衍射光栅,衍射效率高,散射光量低,极大提高测光范围。 3.自动可变狭缝设计,根据样品在不同波长处的光量自动设定狭缝,实现紫外-可见-近红外宽波长内的低噪音测定。紫外可见近红外分光光度计UH5700
  • 新品速递 | 日立紫外-可见-近红外分光光度计UH5700
    从1962年推出首台商品化紫外分光光度计以来,日立凭借全球领 先的光栅技术和持续创新能力,不断推出各种类型的紫外分光光度计,满足用户的科研和检测需求。此次,全新推出紫外-可见-近红外分光光度计UH5700,开启光学检测新未来! NEW!核心特点:(1)宽波长范围190-3300 nm, 满足所有测定需求(2)低杂散光标配新研发的蚀刻衍射光栅和高光量单色器(3)低噪音连续可变狭缝,自动灵活调整(4)高速扫描齿轮驱动方式, 提高工作效率应用领域:既可测定液体样品的吸收光谱,也可测定固体样品的反射和透过光谱,还有丰富的附件满足您的测定需求。六价铬的吸收光谱和标准曲线玻璃的透过光谱(左)和 涂料的反射光谱(右)关于UH5700紫外-可见-近红外分光光度计的详情,请见链接:https://www.instrument.com.cn/netshow/sh102446/C373076.htm关于日立高新技术公司日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 赛默飞世尔科技推出通用型便携式近红外光谱仪——microPHAZIR GP
    近红外是一种强有力的无损化学分析和鉴别工具。在很多工业领域中确保产品质量和客户安全方面,快速化学确认和鉴别技术起着关键作用,例如食品、农业、林业、化学品、聚合物、石油、天然气等。 相比于赛默飞世尔科技前期推出来的几款便携式近红外光谱仪&mdash &mdash microPHAZIR AS(石棉纤维)、microPHAZIR PC(塑料和地毯回收)和microPHAZIR RX(制药企业),这次推出的microPHAZIR GP则称为通用型便携式近红外光谱仪,在众多领域,皆可为您提供快速、准确的现场材料分析。MicroPHAZIR GP适用于通过近红外光谱仪进行分析的客户,并可自定义测试方法和模型,构建自己的谱库。便携式的仪器令您的实验室工作更加便捷、高效。应用领域包括:食品、饲料和农产品分析入库化学原材料的鉴别产品质量控制和保证产品筛查旁线监控生产故障排查液体、固体和糊剂的定量分析 优势:无需制备样品,实现快速分析为非专业用户设计,准确的结果可在几秒内呈现于简单易读的液晶显屏上省时易于使用便携安全体积小、重量轻、可用于现场的快速材料鉴别无损检测,近红外既快速又安全 如需了解更多详情,请咨询上海凯来实验设备有限公司市场部,021-58955731,58955762/63。
  • 高光谱成像和深度学习成为第八届亚洲近红外光谱学术会议的热门话题——参加第八届亚洲近红外光谱学术会议的心得体会
    天津工业大学化学工程与技术学院 王瑶 吴德云 石梓彤 赵子贞 (指导教师:卞希慧)2022年11月28-30日,第八届亚洲近红外光谱学术会议(the 8th Asian NIR Symposium,ANS2022)在韩国首尔召开。来自美国、西班牙、韩国、日本、中国、印度、新加坡、泰国以及尼泊尔等10余个国家近百名学者通过ZOOM会议在线上汇聚一堂。韩国汉阳大学的Hoeil Chung教授致辞,对所有参会人员表示热烈欢迎。会议共安排了38场报告和29个墙报,包括农业食品材料(Agricultural Food Material)、高光谱成像(Hyperspectral Imaging)、基础科学与化学计量学(Basic Science and Chemometrics)和先进技术和药物应用(Advanced Technology and Pharmaceutical Application)4个主题。两位特邀专家分享高光谱成像和化学计量学建模方法会议特别邀请了美国农业部(United States Department of Agriculture, USDA)的Moon S. Kim教授和西班牙科尔多瓦大学(University of Cordoba)的Lola Pérez-Marín教授作大会特邀报告(Plenary Presentation)。Moon S. Kim教授作了题为“光谱成像技术在农业领域应用(Spectral imaging technologies for agricultural applications)”的报告。该报告首先阐述了从1999年至今先后发展起来的高光谱荧光和反射成像、高光谱近红外成像、高光谱拉曼成像、短波红外高光谱成像、在线拉曼成像等技术;然后介绍了新鲜水果、蔬菜和家禽在线检验的快速自动化系统;最后介绍了使用高光谱荧光-可见近红外反射成像系统用于评估农产品和食品成分的安全和质量。美国农业部Moon S. Kim教授的大会特邀报告Lola Pérez-Marín教授作了题为“提高近红外光谱预测模型稳健性(Aspects to increase the robustness of NIRs prediction models)”的报告。从校正集的选择、参考值的质量、光谱数据的质量、预测模型的建立和评价四个方面考虑提高模型的稳健性。她改进了采样方法、分析了样品方差的来源。通过实验标准误差(Stand Error of Laboratory)来评价参考值的数据质量。分析了仪器、样品以及实验操作对光谱数据质量的影响。预测模型的建立主要包括预处理方法的选择、判断模型是否过拟合、建模方法的选择。其建议用于建立预测模型的方法应尽可能简单,并且要与建模问题的复杂性相适应。西班牙科尔多瓦大学Lola Pérez-Marín教授的大会特邀报告六位资深专家作主题报告,分享近红外算法、仪器以及应用方面最新研究进展除了上述两位特邀报告,大会还邀请了印度贾达普大学(Jadavpur University)的Rajib Bandyoypadhyay教授、韩国忠南国立大学(Chungnam National University)的Byoung-Kwan Cho教授、日本关西学院大学(Kwansei Gakuin University)的Akifumi Ikehata教授、南开大学的邵学广教授、新加坡南洋理工大学(Nanyang Technological University)的Ying Zhu教授、泰国农业大学(Kasetsart University)的Sirinad Noypitak教授等六位亚洲近红外领域的资深专家作主题报告(Keynote speaker)。印度贾达普大学(Jadavpur University)的Rajib Bandyoypadhyay教授作了题为“利用便携式近红外光谱测定金鸡纳树皮中总生物碱(Estimation of total alkaloids in Cinchona bark using a developed portable NIR)”的报告。该研究设计开发了一种低成本的便携式近红外光谱仪来测定金鸡纳树皮中总生物碱的含量,同时开发了建模软件,包括图形用户界面、预处理和建模程序。韩国忠南国立大学的Byoung-Kwan Cho教授作了题为“高光谱成像在农产品检测中应用(Application of hyperspectral imaging for quality measurement of agricultural materials)”的报告。报告介绍了什么是高光谱成像、为什么进行高光谱成像、以及其课题组利用高光谱反射成像进行梨擦伤检测、食品化学成分检测、种子活力检测、利用高光谱拉曼成像进行小麦粉掺假检测的研究进展。日本关西学院大学的Akifumi Ikehata教授作了题为“反胶束中被限制水的扩展摩尔吸收系数(Extended molar absorption coefficients of confined water in reverse micelles)”的报告。该报告利用近红外光谱技术比较了四种不同极性基团的表面活性剂组成的反胶束内部的水状态。扩展的摩尔吸收系数分析基于浓度差异,能够明确检测到核心水。此外,他们还可以定量分析反胶束吸水率的增强。扩展的摩尔吸收分析对于理解有限环境中的分子行为具有重要意义。南开大学的邵学广教授作了为题为“温控近红外光谱分析中的化学计量学方法研究(Chemometric studies for analyzing temperature-dependent near-infrared spectra)”的报告。报告采用连续小波变换(CWT)将光谱分解为不同频率的光谱分量,然后采用蒙特卡罗无信息变量消去法(MC-UVE)评价变量对温度的依赖性。通过多级同时成分分析(MSCA)方法得到光谱与温度和浓度的定量关系,用互因子分析(MFA)提取不同温度或不同浓度下水的吸收光谱中包含的“共同”光谱特征,采用多维主成分分析(NPCA)、平行因子分析(PARAFAC)和交替三线性分解(ATLD)等高阶化学计量学算法从醇水溶液的光谱中提取结构信息。新加坡南洋理工大学的Ying Zhu教授作了题为“基于化学计量学和深度学习模型的光谱数据分类及其在结肠息肉检测中的应用(Chemometrics and deep learning models for classification of spectroscopic data with application to detection of colon polyps)”的报告。相比需要大量预处理方法的传统机器学习方法相比,卷积神经网络(CNN)将光谱预处理、特征提取和分类结合在一个架构中,可以自动训练对光谱数据进行分类。她构建了1D-CNN模型来区分癌前腺瘤性息肉和增生性息肉,并将分类性能与传统的PC-DA和PLS-DA进行了比较。结果表明所开发的1D-CNN模型能够很好地分类癌前腺瘤性息肉和增生性息肉,并且分类效果优于传统的化学计量学方法。泰国农业大学的Sirinad Noypitak教授作了题为 “一种使用近红外光谱并在智能手机上实时报告数据的便携式水分含量测定仪(A portable moisture content meter using near infrared spectroscopy with real-time data report on a smartphone)”的报告。她开发了一种新型便携式近红外含水率(NIR-MC)测定仪,用于实时测定木材的含水量。该测定仪由一个小型NIR光谱仪和智能手机组成,通过android应用程序操作,以控制NIR光谱仪在智能手机上实时采集、显示和处理光谱数据。报告使用PLSR建立了三个用于确定含水量的预测模型,所得到的R值均大于0.85,表明所开发的含水率测定仪可成为锯木厂实际工作中无损检测水分含量的一种替代方法。大会不仅安排了上述2位专家的特邀报告,6位专家的主题报告,还有30位学者通过口头报告(Oral Presentation)的形式分享了他们在近红外领域的最新成果。总结38位专家学者的报告,化学计量学方法、光谱仪器以及应用是近红外光谱分析技术的三大研究方面。深度学习、高光谱成像以及医学诊断成为本届亚洲近红外光谱学术会议的亮点,这也将是未来近红外光谱技术发展的趋势。深度学习成为化学计量学建模方法的研究热点深度学习在复杂系统光谱特征提取、分类和回归中比传统算法更有优势,成为化学计量学方法的研究热点。除了前面所述新加坡南洋理工大学的Ying Zhu教授的深度学习算法的主题报告外,还有6个关于深度学习算法的口头报告和墙报。韩国江原国立大学(Kangwon National University)的Changyeun Mo教授课题组将高光谱成像技术与CNN相结合,进行多项研究:研究生Seung-Woo Chun使用荧光高光谱成像技术结合机器学习和深度学习算法,用于快速无损检测受灰霉病感染的草莓。其所建立的VGG-19和Resnet-34模型的训练精度和测试精度都优于传统的PLS-DA,该研究验证了荧光高光谱图像光谱技术在草莓灰霉病发病阶段的适用性;研究生Hong-Gu Lee开发了一个3D-CNN模型,利用蜂群的高光谱成像来识别感染蜜蜂;研究生Nam-Wook Kim开发了基于高光谱成像的CNN算法,根据花青素含量对具有相似颜色和外观的紫色玉米进行分类,该方法可以快速准确分析花青素含量;韩国江原国立大学的Doo-Jin Song使用一维卷积神经网络(1D-CNN)网络建立了苹果中可溶性固体含量(SSC)的预测模型;南开大学段潮舒博士发展了长短记忆(LSTM)的自编码器网络用于近红外光谱定量分析;南开大学刘煦阳博士提出了一种称为Sup-自编码器的高光谱特征提取方法。除了深度学习外,光谱预处理、变量选择、建模方法等化学计量学方法的研究一直是化学计量学的主要内容。散射光的理论分析是光谱预处理的难点,日本北海道大学的Hyeonwoo Na利用分子动力学和电磁波理论对近红外光散射特性进行了数值分析;Yuki Inoue使用时间相关漫反射测量的波长相关干涉效应对脂肪乳剂中光散射的影响进行了研究。印度贾达普大学的研究生Dilip Sing利用便携式光谱仪结合SNV预处理和PLSR模型实现了红茶中茶黄素含量有效、快速的测定。韩国忠南大学(Chungnam National University)的Rahul Joshi博士将变量选择重要性(VIP)与PLSR相结合对标准溶液、芒果汁和牛奶样品中的西维因农药含量进行了定量分析。新加坡南洋理工大学的Soh Chin Gi使用了正则化的逻辑回归模型对橄榄油的产地进行了区分,正则化惩罚增强了模型系数的稀疏性和平滑性,比传统方法更方便解释系数的物理意义。高光谱成像技术是近红外光谱分析发展的趋势高光谱成像(Hyper-spectral imaging system, HSI)集光谱和成像技术的优势于一体,可以同时获得光谱和空间的三维信息,成为光谱分析技术的前沿。韩国忠南国立大学的Byoung-Kwan Cho教授课题组的研究生Rizkiana Aulia利用近红外高光谱成像来预测大豆种子中蛋白质和脂肪含量;Juntae Kim使用短波红外高光谱近红外成像系统预测牛肉胴体脂肪含量和油酸含量,为开发高光谱牛肉胴体分级系统提供了可能;日本名古屋大学(Nagoya University)的Hayato Seki使用近红外高光谱相机和激光位移计对草莓的糖含量成像,用主成分分析(PCA)和图像处理相结合的预处理方法,从果实表面提取高光谱数据,并通过Lambert对数据进行校正,从而建立3D糖含量成像;Bin Li使用一种结合HSI系统和激光分析仪获得受伤苹果的NIR-HSI数据和三维形状数据,并采用了一种基于模型的高度和角度校正方法,以增强低强度区位置的光强度,从而发现苹果早期的瘀伤;泰国朱拉隆功大学(Chulalongkorn University)的Sureerat Makmuang博士采用近红外光谱和高光谱近红外成像技术结合改进的自组织映射(SOMs)对杂草水稻进行了识别。近红外光谱技术在食品、医药和环境监测等领域的应用日趋广泛随着近红外分析仪器以及化学计量学方法的不断发展,近红外光谱分析技术在食品评估、医学诊断、环境监测等复杂体系的应用越来越广。尼泊尔特里布文大学(Tribhuvan University)的Bhupendra Lama研究了使用线性可调谐滤波器MicroNIR光谱仪结合PLS模型快速现场评估鸡肉微生物质量的可行性;韩国忠南大学Semyalo Dennis利用Vis/NIR光谱和C++编程开发了一种快速在线光谱测量和分析鸡蛋中血斑的系统,用于鸡蛋内部质量的无损检测;泰国东方皇家理工大学(Rajamangala University of Technology Isan)的Panuwat Supprung利用傅里叶变换近红外光谱(FT-NIR)、数字近红外光谱(D-NIR)和PLSR模型,快速测定木薯粉中的水分和蛋白质含量;日本名古屋大学的Te Ma利用时间分辨透射光谱法对猕猴桃贮藏过程的光散射变化进行的实验研究,用于监测猕猴桃在贮藏条件下软化过程的质量;尼泊尔加德满都大学(Kathmandu University)的Bijendra Shrestha教授在近红外光谱数据和同步热分析仪测得的参考值之间建立偏最小二乘回归模型,建立了一种基于近红外光谱技术的生物质灰分快速预测方法;泰国先皇理工大学的Suppakit Howvimanporn探讨了扫描和参考方法的重复性和再现性,以表明用于评估天然橡胶医用手套生产过程中交联密度的反射式光纤探针二极管阵列NIR短波光谱仪的精度,以及作为参考方法的甲苯溶胀和预硫化物松弛模量(PRM)测试的精度;韩国汉阳大学Hoeil Chung教授课题组的Eunjin Jang等人采用线性判别分析,通过分析人胆汁的近红外光谱来识别胆囊癌,并采用双道二维相关分析(two-trace two-dimensional correlation analysis , 2T2D)来提高模型的鉴别准确度,通过胆汁样品中5种主要纯组分光谱的线性回归构建参考光谱,准确度提高到94%;河流和海洋中的微塑料是全球关注的环境问题,实现水中微塑料的定性定量分析意义重大。汉阳大学的Yunjung Kim采用全氟己烷(PFH)捕获介质和游离的近红外吸收,定量检测水中的聚乙烯颗粒,并利用聚四氟乙烯盘作为光子扩散器,提高了近红外测量的重现性。数十位中国近红外学者积极活跃于亚洲近红外光谱会议中国学者也积极活跃于亚洲近红外光谱会议中,来自南开大学邵学广教授课题组、北京化工大学袁洪福课题组、暨南大学潘涛课题组、天津中医药大学李文龙课题组和天津工业大学卞希慧课题组等数十位中国代表参加了本届亚洲近红外光谱会议。其中,天津中医药大学李文龙课题组的吴思俊博士提出了一种基于手持式近红外光谱仪并结合集成预处理的方法,利用多种加工方法及其组合来开发的辣椒和辣椒粉校准模型,显著提高了模型性能;王龙通过PLS和BP-ANN算法来预测盐酸青藤碱缓释片的溶出曲线,发现将片剂粉末的近红外光谱、拉曼光谱、配方变量和工艺参数相结合,可以提高溶解模型的准确性;崔同灿研究生以菊花、天麻和秦艽为例,研究了直接校准方法和偏最小二乘回归两种校准转移方法,将NIR光谱信号转化为更为直观的HPLC指纹图谱的适用性和可靠性,为中药质量控制研究提供新的手段和思路。天津工业大学卞希慧副教授课题组研究生Prisca Mpango将萤火虫算法和极限学习机建模结合,用于复杂样本的光谱区间选择和定量分析,与全光谱PLS和ELM模型相比,FA-ELM具有更好预测效果。会议最后,第八届亚洲近红外光谱会议主席Hoeil Chung教授表达了对各位报告人、参会代表以及赞助商的感谢,宣布NAS2022圆满闭幕!组织委员会将上述38场报告录制的PPT都共享在第八届亚洲近红外光谱会议的官方网站上。另外,本届会议的29份墙报分别做成了3分钟内的录音海报张贴在该网站上。参会者在12月30日前可以随时回放学习。第八届亚洲近红外光谱会议主席Hoeil Chung教授宣布会议闭幕在本届亚洲近红外光谱会议圆满结束的同时,也确定了下届亚洲近红外光谱会议的召开时间地点。第九届亚洲近红外光谱学术会议拟定于2024年12月18-20日在印度加尔各答(Kolkata)的Biswa Bangla Convention Centre举行,来自贾达普大学(Jadavpur University)的Rajib Bandyopadhyay教授将担任会议主席。我们期待2024年共聚加尔各答,再话近红外!
  • 首发|日立紫外/可见/近红外分光光度计“UH5700”全面上市
    p  strong仪器信息网讯/strong 2019年12月28日,日立高新技术公司正式推出可测定紫外到近红外区的台式紫外/可见/近红外分光光度计strong“UH5700”/strong。br//pp  分光光度计是一种使用棱镜和衍射光栅,将白光分解成单色光,照射在样品上,通过对透过的光进行检测,来对物质进行鉴定和计算浓度的装置,广泛用于材料、环保、制药和生物等领域。按测量波长范围,分光光度计可分为:紫外分光光度计、紫外/可见光分光光度计、紫外/可见/近红外分光光度计。/pp  2013年9月2日,日立高新发布了UH4150 紫外/可见/近红外分光光度计。UH4150在秉承U-4100的高度可靠性的同时,提供更高通量的测定,技术更加先进。strong而此次推出的UH5700则是一款全新的台式紫外-可见-近红外分光光度计系列/strong,技术与性能得到全面升级。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 277px " src="https://img1.17img.cn/17img/images/201912/uepic/7b731a4f-8018-489a-8cbe-f6db70a60132.jpg" title="仪器图片.png" alt="仪器图片.png" width="450" height="277" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "紫外/可见/近红外分光光度计UH5700/span/pp  此次发售的UH5700可测定波长范围从紫外波长区到近红外波长区(190nm~3300nm),覆盖了分光光度计的最大可检测波长范围。丰富的附件满足固体、液体等样品的多方面测定,如用于紫外区的透射光谱测定和可见区的溶液测定,以及近红外区玻璃样品的可见光透过率和太阳光透过率、涂料的太阳光反射率等的测定。/pp  strongUH5700主要特点如下:/strong/pp  1. 采用高光量单色器和新研发的光栅,实现了同级别设备最佳的低杂散光/超大测光范围sup*1/sup/pp  2. 采用连续可变狭缝,可低噪音测定紫外波长区到近红外波长区的超大波长范围/pp  3. 台式设计占用空间小,可直接放在实验台上/pp  4. 采用全新的数据处理软件UV Solutions Plus,操作更加便捷。新数据处理软件在深受用户好评的UV Solutions上作了进一步的技术升级/pp  span style="font-size: 14px color: rgb(127, 127, 127) "*1依据日立高新技术公司的调查结果,截至2019年4月日本的在售型号(支持测定近红外波长区域、具有单色器)/span/pp  strong更多产品信息请点击以下产品链接:/strong/pp  a href="https://www.instrument.com.cn/netshow/C373076.htm" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "https://www.instrument.com.cn/netshow/C373076.htm/span/a/pp  新品的应用和产品详细信息,请锁定日立高新技术官方网站及微信公众号。/p
  • 珀金埃尔默发布LAMBDA 1050+紫外-可见-近红外分光光度计新品
    作为长期以来分光光度计的行业标准,LAMBDA1050+使用无格栅PMT检测器和Peltier冷却PbS检测器,在整个光谱范围内获得优异的测试性能,最大波长可达3300 nm。紫外-可见区域的波长精度可以达到0.025 nm,近红外区域的波长精度可以达到0.02 nm。此外,该仪器还可以配备一系列行业领先的、可控而且灵活的采样附件,包括:• 大体积双样品舱• 通用反射附件• 插入式积分球• 万能光学平台典型应用领域建筑和特殊用途玻璃节约能源的重要性越来越显著。镀膜玻璃的光谱分析可以为热效率和其他关键设计参数提供重要的信息。平板显示器在多个方面的显示性能提升需求是持续存在的。颜色、亮度、视角以及能耗都是非常重要的。光谱测试对于显示器整体性能提升是必需的。光学性能测试繁忙的光学实验室必须能够用各种测试技术处理各种类型的样品。LAMBDA系列分光光度计的采样灵活性可以帮助您面对千变万化的测试需求。太阳能研究作为可再生能源的一种来源,以硅材料为基础的太阳能电池越来越重要。但是,过高的成本使其以前只能用于空间科学和军事领域。降低太阳能电池成本、提高其性能的研究是始终不断的。LAMBDA 1050+的近红外波段测试能力使其可以对太阳能电池进行全面表征,不仅是电池活性材料,还有压花玻璃和底面反射层材料等的测试。LAMBDA独特附件设计150mm 积分球光学聚四氟乙烯涂层,涂层在可见区的反射率优于99%,长期使用不发黄变性,光学性能稳定;内径150mm.包含光阱,可直接测量漫反射和剩余反射;150mm积分球为ASTM和国际CIE推荐色度测量时采用附件;270mm积分球专为高散射样品测试开发的大尺寸积分球,可以确保经高散射样品的透过光进入积分球,获得准确的透过率数据。通过软件设置分别测试透过率和反射率。与150mm积分球配套的聚焦附件小样品聚焦附件可以把光束聚焦到1mm左右,大大提高小样品的透过、反射和吸收的测试准确度。6? 度角镜面反射附件6度角镜面反射附件俗称“剩余反射附件”,是防反膜测试的利器。双向的IV或VW型镜绝对反射附件可在8~80度的正负角度对镜材料进行透射或反射模式的高精度测量,包括激光准直及起偏器及两个反射标准镜双光栏附件可校正检测器的非线性误差,从而提高仪器的线性范围及光 度计精度通用反射附件作为绝对反射率高灵敏度测试的一个突破,通过自动改变样品角度,我们独特的专利设计的通用反射附件(URA)极大地改善了传统的测试方法。以前,多角度测试需要使用多个附件和很多手动调整。现在,鼠标单击即可预先设置测试角度,通用反射附件可以自动完成所有调整。此外,样品放置在水平采样板上,避免了垂直夹放可能造成的破坏。两个大体积样品舱加倍灵活,加倍简便。所有LAMBDA系列仪器都可以配置两个样品舱,而且是业内体积最大的样品舱。基础样品舱用于一系列标准反射与透射附件和偏振测试,而第二个样品舱可以配置用于各种智能采样附件或模块,包括积分球、通用反射附件或者透射光学组件。仅仅需要几秒钟的时间,LAMBDA 1050+就可以从标准大体积样品舱模式切换到积分球、通用反射附件或者万能光学平台。万能光学平台万能光学平台(GPOB)设计用于测试体积较大或者形状不规则的样品,为您提供几分钟内配置测试方法的灵活性。大玻璃附件独有的成品大玻璃附件:可检测大到2~3米的钢化、平板等大尺寸玻璃样品创新点:Lambda 1050+使用无格栅PMT 检测器和Peltier冷却PbS检测器,在整个光谱范围内获得良好的测试性能,吸光度可到8A。采用四扇区分光技术,波长准确度可达0.025nm,紫外-可见区域的分辨率可以达到0.05 nm,近红外区域的分辨率可以达到0.20 nm。此外,该仪器可配备一系列可控而且灵活的采样附件。LAMBDA 1050+都可以配备独特的偏振测试能力,可以满足您的分析需求。LAMBDA 1050+紫外-可见-近红外分光光度计
  • 日立发布紫外可见近红外分光光度计UH5700新品
    从1962年推出首台商品化紫外分光光度计以来,日立凭借全球先进的光栅技术和持续创新能力,不断推出各种类型紫外分光光度计,满足用户的科研和检测需求。这次推出的台式紫外可见近红外分光光度计UH5700,融合了日立精密的光栅技术,使用了新研发的蚀刻衍射光栅,既可测定液体样品的吸收光谱,也可测定固体样品的反射和透过光谱,另外丰富的附件满足您多方面的测定需求!主要特点如下:1. 宽波长范围190-3300nm,满足所有测定需求。2. 低噪音采用连续可变狭缝,在近红外波长区测定低光量时,自动加宽狭缝;测定高光量时,自动减小狭缝宽度。支持低噪音测定超大范围波长区域3. 高速扫描采用齿轮驱动,实现了紫外-可见-近红外区域的快速扫描。4. 低杂散光、超大测光范围标配新研发的蚀刻衍射光栅和高光量单色器。5. 采用全新控制软件,操作更加便捷采用UV Solutions Plus,新增数据表和数据处理结果的列表显示功能、报告格式的自定义功能、仪器性能检查功能。6. 提供丰富的配件,支持液体到固体样品的测定各种配件一应俱全,满足分光光度计的多种测定需求,如溶液中微量样品的测定和片状样品、薄膜样品的测定等。更详细的资料请参考日立高新技术官网https://www.hitachi-hightech.com/cn/product_detail/?pn=ana-uh5700&version=创新点:从1962年推出第一台商品化紫外分光光度计以来,日立凭借全球领先的光栅技术和持续创新能力,不断推出各种类型紫外分光光度计,满足用户的科研和检测需求。此次,全新推出紫外-可见-近红外分光光度计UH5700:1. 标配新研发的蚀刻衍射光栅和高光量单色器2. 连续可变狭缝,齿轮驱动方式,实现低噪音和高速扫描测定。3.使用全新控制软件UV solutions Plus,操作界面进行了大幅度改进,提升用户体验。紫外可见近红外分光光度计UH5700
  • 讲座:紫外可见近红外分光光度计在材料分析中的最新应用和通用技巧
    紫外-可见-近红外分光光度计是分析光学材料的主要工具。材料样品形状各异(如薄膜、透镜、小尺寸、大尺寸等),测量要求多变(透过、反射、角度、偏振等),对分光光度计有很高的要求。作为世界一流的光谱仪器制造商,日立高新技术公司高度关注此方面,在此为大家介绍光学材料领域的最新应用和解决方案。   在3月24日上午10:00-12:00的网络讲堂上,我们将以“日立紫外可见近红外分光光度计在材料分析中的最新应用和通用技巧”为主题,给大家介绍镀膜材料、偏振片、棱镜、遮热涂料等典型样品的应用实例,对光学性能分析常见的问题,分析原因并提供测量建议,期待大家的参与!? 报名网址:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1791关于日立UH4150紫外-可见-近红外分光光度计,请点击:http://www.instrument.com.cn/netshow/SH102446/C185793.htm 关于日立高新技术公司: 日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 富耐立与海岸带所联合推出便携式拉曼光谱仪
    物质识别检测方法有新成果——烟台富耐立仪器科技有限公司与中科院海岸带研究所联合推出便携式拉曼光谱仪 FNLY-10型便携式拉曼光谱仪部分组件  拉曼光谱是借助分子的振动谱来进行物质识别的检测方法。不同样品的分子结构不同,其振动谱也会不同。更重要的意义在于拉曼光谱是用光子做探针,测试时对样品无直接接触、无损坏,且能穿透玻璃、塑料包装直达样品,不需要对样品进行彻底破坏或进行复杂费时的样品前处理。因此拉曼光谱是一种理想的快速定性定量分析样品的方法,在医药、食品安全、环境监测、毒品甄别、考古等领域,具有非常广阔的应用前景。  烟台富耐立仪器科技有限公司与中科院海岸带研究所联合设计、开发和成功推出的便携式拉曼光谱仪,将昂贵、权威、可靠和精确的大型拉曼光谱仪转化成灵活轻便,坚固耐用,易于普及使用的产品。功能强大的便携式拉曼光谱仪将先进的检测方法和紧密衔接的工作整合到一起,并具有非凡的便携性和使用性能。  便携式拉曼光谱仪的优势  紫外-可见光谱仪、红外光谱仪和荧光光谱仪均为较常见的光谱检测仪器,与这些传统的光谱仪相比便携式拉曼光谱仪有一些独特的优势:  ●通常样品无需处理,或仅需要简单富集即可检测。与传统的检测方法需用费时费力的样品前处理相比,便携式拉曼光谱仪使用更加方便灵活,适合现场检测的需求。  ●样品可以在其塑料包装袋或玻璃或塑料瓶中直接进行测试。不能透过包装进行测试一直是FT-IR光谱仪的一个弱势,因此,多年来近红外光谱仪器经常被运用于此类分析。虽然选用合适的探头也能透过包装进行近红外分析,但是获得的光谱结果跟中红外或拉曼光谱相比特异性较差,因此近红外不是很适合做谱库检索,也仅限于某一些样品的测试。从这方面来说,人们常常认为拉曼光谱整合了中红外光谱的高度特异性和近红外光谱采样的便捷性于一体。  ●水的拉曼光谱特征非常弱,可以更加方便的分析水溶液样品。因为水的红外峰值较强,含水量较大的样品往往无法进行红外检测。紫外-可见光谱仪和荧光光谱仪虽然也可以用来分析水溶液样品,但是其光谱的特异性无法跟拉曼光谱和红外光谱相媲美,因此拉曼光谱仪是分析水溶液样品的极佳手段。  ●方便使用的光纤探头。便携式拉曼光谱仪的光纤探头可以方便的探测到样品检测所需要的位置,通过光纤探头,可以进行原位、远程分析。这种分析方法对于食品安全检测、国家安全、仓库质量控制及保存分析非常有优势,对于那些样品处理转移不方便的分析领域都非常有优势。  ●仪器性能指标远高于手持式仪器。手持式仪器虽然也具有使用方便灵活的优点,但大多数分析技术的尺寸缩小到手持尺度会导致性能的急剧下降。对光谱来说,性能的下降导致光谱低的分辨率,窄的光谱范围及噪音增大,因而增加了假阳性和假阴性的可能。对于食品安全检测和国家安全分析或者药物鉴定等应用领域而言,由手持式仪器提供的性能降低是无法接受的。许多不同的化合物拥有相似的(但不相同)的拉曼光谱,这就需要高质量的数据来区别它们。因此,便携式拉曼光谱仪既具有手持式仪器使用方便灵活的特点,又能够保持大型拉曼光谱仪的检测性能(分辨率、光谱范围等),是食品安全检测和国家安全分析或者药物鉴定等应用领域使用的最佳选择。  便携式拉曼光谱仪的结构和性能  烟台富耐立仪器科技有限公司与中科院海岸带研究所联合开发了FNLY-10型便携式拉曼光谱仪(如图所示)。其采用功率可调谐式高精度激光器作为光源,全封闭式光纤和高精密透镜、滤光片组成外部光路,手持式探头作为光谱探测端,进口光谱仪和CCD多通道探测器作为信号接收和处理系统。另外,采用自主开发的软件进行仪器操作控制、光谱处理和识别,并建立了拉曼光谱数据库,可以方便地进行光谱的存储、查询和识别。  FNLY-10型便携式拉曼光谱仪具有以下特点:  * 体积小,便于携带和使用。  * 测试时对样品无直接接触、无损坏。  * 快速,几秒钟内直接得到结果,真正实现秒测。  * 采用785nm激光光源,避免了荧光对拉曼光谱的影响。激光精度高,光斑直径小,无需显微系统最小可以测量直径0.1mm左右的样品。  * 精度高,光谱分辨率可达4cm-1,光谱检测范围覆盖150-3900cm-1,光谱数据可以与大型实验用拉曼光谱仪媲美。  * 智能软件分析系统:设备内置检测分析软件,专业光谱数据库,即时分析,快速给出结论。  FNLY-10型便携式拉曼光谱仪可用于液体和固体样品的光谱定性检测,根据分子拉曼光谱的指纹图谱鉴定样品,在食品安全、环境保护、化工医药、安全检测和珠宝鉴定等领域均有广泛的应用前景。  应用实例和同类产品比较  FNLY-10型便携式拉曼光谱仪,目前已经应用到了药品筛选和食品安全检测领域,用其检测常见的药品和农药均可得到高特异性的拉曼图谱。其图谱的噪音小,分辨率高,光谱范围宽,有利于样品的识别和鉴定。  FNLY-10型便携式拉曼光谱仪(785nm Laser)与大型拉曼光谱仪(632.8 nm Laser)测试结果比较,其峰型峰位完全吻合,其数据质量完全可以与大型拉曼光谱仪相媲美。  FNLY-10型便携式拉曼光谱仪,具有优良的光谱检测性能,方便灵活的使用方式,卓越的样品检测和分析能力,是一种方便实用高质量的现场检测仪器,在食品安全、环境保护、化工医药、安全检测和珠宝鉴定等领域均有广泛的应用前景。
  • 日立高新UH4150 紫外/可见/近红外分光光度计发售
    [导读] 本次所开发的UH4150 紫外/可见/近红外分光光度计(以下简称UH4150)具有高度的可靠性、更高的样品通量以及方便的操作性(图1)。下面将简单介绍UH4150的特点。 日立高新技术公司于2013年9月2日发布了UH4150 紫外/可见/近红外分光光度计。 紫外可见分光光度计是一种使用棱镜和衍射光栅,将白光分解成单色光,照射在样品上,通过对透过的光进行检测,来对物质进行鉴定和计算浓度的装置,广泛用于材料、环保、制药和生物等领域。 U-4100紫外/可见/近红外分光光度计可实现足以令&ldquo 著名日立光度计品牌&rdquo 自豪的精度,对于在实际固体样品检测方面需要高质量数据的用户,例如半导体开发、光学样品和新材料领域的用户而言,是最佳的选择。UH4150在秉承U-4100的高度可靠性的同时,提供更高通量的测定,技术更加先进(图1)。下面将简单介绍UH4150的特点。 图1. UH4150的外观UH4150的特点: (1)切换检测器波长时UH4150可实现高精度的测定。 安装在积分球上的多个检测器可在紫外-可见-近红外的波长范围内进行测定。由于使用日立专业的积分球结构技术和信号处理技术等,将检测器切换时(信号水平的差异)吸光度值的变化降到最小。检测器切换时附近波长测定数据例(金纳米棒的吸收光谱)(2)日立高性能的棱镜-光栅双单色器系统,可实现低杂散光和低偏振。 UH4150采用棱镜-光栅(P-G)双单色器的光学系统,秉承U-4100光学系统的特点。棱镜-光栅(P-G)系统与常见的光栅-光栅(G-G)系统相比,S和P偏振光强度没有大的改变。即使对于低透过率和反射率的样品,UH4150也可实现低噪音测定。镜面反射率测定示例(3)平行光束可实现反射光和散射光的精确测定。 入射角对固体样品镜面反射率的测定非常重要。对于会聚光束,由于入射角根据透镜的焦距等因素会不同,因此,像导电多层膜和棱镜等光学薄膜的模拟设计值将与实际测定值不同。 但对于平行光束,相对于样品入射角始终相同,实现了高精度镜面反射率的测定。此外,平行光束可用于扩散率(雾度)的评价和透镜透过率的测定。(4)可提供适合不同测定目的的多种检测器。 可使用八种不同材料、尺寸和形状的积分球。检测器产品线(5)采用全新人体工学设计。 改进样品室门,提升操作性。为了便于更换样品和附件的操作,采用了符合人体工学的设计。 (6)兼容多种U-4100附件。 通用附件适用于两种型号,U-4100型附件也可用在UH4150型,由于附件可拆卸,适合更多的测定类型。 (7)比U-4100型更高的样品通量。 在秉承U-4100型光学系统高性能的同时,UH4150提供更高通量的测定。之前型号的仪器在1 nm数据间隔下测定时,扫描速度必须是600 mm/min。UH4150型可在1,200 nm/min的扫描速度下以1 nm的间隔进行测定,显著缩短测定时间。UH4150在约2分钟内可从240 nm测定到2,600 nm。对需要在紫外-可见-近红外波长范围内测定的样品,如太阳能反射材料,尤其有效。 扫描速度为600 nm/min的太阳能反射材料的反射光谱 扫描速度为1,200 nm/min的 太阳能反射材料的反射光谱 关于此产品的更多信息请参考:http://www.hitachi-hitec.com/global/cn/zh/science/uv_vis/uh4150.html   关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是&ldquo 成为独步全球的高新技术和解决方案提供商&rdquo ,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn
  • 探秘大脑“地图”!北航汪待发,研发“世界首个”便携式近红外脑功能成像设备!
    近日,新华社“走进中国新科技”系列专题对北京航空航天大学生物与医学工程学院樊瑜波、李德玉、汪待发联合团队所研发的近红外脑功能成像技术进行了深入报道今天,带大家走近联合团队中的汪待发副教授踏足“脑功能疾病诊疗”科技前沿汪 待 发北京航空航天大学生物与医学工程学院副教授、博士生导师从事近红外脑功能成像、脑机接口、脑功能评价、神经调控等方面研究已有20余载,作为课题组长承担国家重大科学仪器研制项目1项、国家重点研发计划1项;主持国家自然科学基金面上、青年等基金课题。发表SCI论文40余篇,申请发明专利数十项。致力于近红外脑功能成像领域的研究、研发、产业化与临床应用,研发装备已在包括301医院、宣武医院、上海华山医院、清华大学等400余家单位示范应用;支撑在Human Behaviour、Journal of Cleaner Production、NeuroImage等杂志发表SCI论文120余篇。攻克世界难题研发“戴在头上的功能核磁”大脑是人类最复杂神秘的器官,思想的萌生之地,生命的承载中枢。了解大脑的功能和运行机制,可以揭示人类学习、智慧、发育的诸多奥秘,也是治疗中风、阿尔茨海默症、抑郁症、精神分裂症等重大脑疾病的基础。人类对大脑运行机制的不断探索和深刻理解,更为新一代类脑人工智能技术的飞速发展,提供了关键的生物学理论基础。自然状态下大脑活动的高分辨成像是世界难题。目前,主流的脑功能成像方法包括功能核磁共振(fMRI)、核素成像(PET)、脑电(EEG)、近红外脑功能成像(fNIRS)等。然而,大型脑功能成像系统包括fMRI、PET体积庞大,并且患者不能有头动,不适合于自然情景;EEG相对轻便,然而其空间分辨率低,并且对于头动、电磁的干扰均非常敏感。近红外脑功能成像,为自然状态下的高分辨脑成像带来了新型技术平台,亦被称为“戴在头上的功能核磁”。它和fMRI一样,探测的是大脑氧代谢的载体(血红蛋白)的浓度变化。由于采用的光学手段,它空间分辨率高(1-3cm)、适合于各种自然状态,可以一边运动一边检测、一边说话一边检测、一边治疗一边检测,为中国上亿的脑功能障碍疾病患者的诊断、疗效评价、疗效预测、用药/干预/康复方案的指导等提供了创新性手段,这包括脑卒中神经康复、精神疾病、儿童发育障碍(孤独症谱系障碍等)及神经退行性疾病(阿尔茨海默病等)等。近红外脑功能成像原理然而,高端脑影像设备的关键技术长期被发达国家垄断。例如近红外脑功能成像设备,长期被美日等垄断,单价在数百万,但却不能解决亚洲人有黑色头发覆盖区域(顶叶、枕叶等)成像的难题,限制了脑功能检查和研究的开展。汪待发副教授,是近红外脑功能成像技术第三代的践行者。2010年博士毕业后,他来到北京航空航天大学生物与医学工程学院任教。当时,北航生医学院刚刚建院不久,立意高远,把学院科研发展聚焦在解决国家重大需求牵引的医工科学和技术上。汪待发扎根北航,攻坚近红外脑功能成像领域的难题。通过自己多年如一日的努力,以及与包括樊瑜波、李德玉等北航的血流动力学分析、高精密传感专家的不断研讨和思想碰撞,经历数百次的试验、挫折和迭代验证,他终于突破了近红外超微光探测技术,攻克了亚洲人有黑色头发的脑区(顶叶、枕叶等)的快速精准成像的世界难题。汪待发团队fNIRS产品覆盖的行业应用2016年初,依托北航校地合作平台孵化,汪待发创立了慧创医疗,立志要克服成果转化这个陌生领域的重重困难,坚定地把科研成果落实在祖国的大地上。依托科技风险投资的资金支持,汪待发领导的慧创团队与北航联合团队开展合作,充分发挥产学研合作优势,2019年研发推出了世界上首个获得医疗器械注册证的、超100通道的近红外脑功能成像装置,突破性地实现了全脑成像,实现了中国近红外脑功能成像领域自主知识产权的开创性进展。世界上首个获得医疗器械注册证的、超100通道的近红外脑功能成像装置在此基础上,将超微光技术进一步数字化,汪待发带领团队研发了世界首台获医疗器械证的便携式近红外脑功能成像设备。其平板电脑大小的身形,却具备领先于进口台式设备的成像性能,让临床和科研专家惊叹,赢得了广泛的认可。世界首台获医疗器械证的便携式近红外脑功能成像设备目前,汪待发团队所转化的近红外脑功能成像系列产品及技术,已在301、北京协和、上海华山、四川华西、清华大学、北京师范大学、香港理工大学等800余家一流临床及科研单位示范应用,开展临床检查和科学研究,并已支撑专家在以Nature Human Behaviour为代表的顶级期刊上,发表了SCI论文180余篇,在国内外形成了广泛影响。在北航原始创新的加持下,慧创医疗作为唯一一家企业起草单位,与国家药监局合作,制定了中国首个近红外脑功能成像强制性国家标准。同时,近红外脑功能成像产品NirScan,因其“高精尖”装备+原创+领先的综合属性,获评江苏省首台(套)重大装备。近红外脑成像设备支持用户发表的高水平SCI论文致力于科技成果转化解决临床应用痛点为推动近红外脑功能成像更好地解决临床痛点需求,作为医工专家,汪待发积极把自己变成“最懂临床需求的科学家”。目前,他担任了中国康复医学会脑功能检测与调控康复专业委员会常务委员、第二届中国妇幼健康研究会婴幼儿心理健康专业委员会常务委员、中国康复医学会阿尔茨海默病与认知障碍康复专业委员会青年组副组长,并担任了浙江大学医学院附属精神卫生中心(杭州市第七人民医院)特聘专家、国家药品监督管理局医疗器械技术审评中心外聘专家。作为fNIRS领域TOP科学家,他每年在全国各地完成约30余场高质量的学术讲座,与临床专家深入交流,积极推动近红外脑功能成像在临床各个领域的广泛应用。同时,在樊瑜波教授的鼓励下,依托国家医学攻关产教融合平台(医工结合),汪待发所带领的团队,仅2023年就开展了多元化多层次的脑科学领域相关培训近20次,合计邀请了近70位脑科学及相关领域专家,合计线下培训人员超600人,线上培训超8000人。2021年,汪待发与国内顶级医院的临床专家一起,撰写了中国首个近红外脑功能成像专家共识,为该技术在临床的快速应用和发展做出了积极推动。2022年底,北航樊瑜波、李德玉、汪待发联合团队的“近红外脑功能成像系统开发及临床应用”成果获得了中国生物医学工程学会最高奖项——“黄家驷”生物医学工程奖。这一奖项的获得,体现了中国生物医学工程行业对北航近红外脑功能成像技术和系统成果的充分肯定。近红外脑功能成像系统荣获“黄家驷”生物医学工程奖证书近年来,在近红外脑功能成像技术的基础上,在国家重点研发计划的牵引下,汪待发团队瞄准了另一个脑科学世界级难题“阿尔茨海默症(老年痴呆症)治疗”。团队目前在阿尔兹海默症治疗方面已取得突破性进展,其研发的“近红外光脑功能治疗仪”目前已获批国家药品监督管理局(NMPA)医疗器械绿色通道(创新医疗器械设置特别审批通道)。这是国家药监局为具备重大创新的医疗器械开辟的一条审查极为严格的注册证快速申请通道。从2014年国家药监局正式颁布《创新医疗器械特别审批程序(试行)》的近十年来,仅批准了300余项。目前,在国家科技成果转化引导基金的支持下,团队正在和临床专家们合作,开展阿尔茨海默症治疗产品的临床试验。托举学子梦想培育医工行业未来作为年轻科学家,在承接前辈科学家的教诲和精神的同时,汪待发也已成长为带领年轻学子的领头人。汪待发一直将人才培养与国家需求紧密结合,以人民群众的生命健康为牵引,鼓励学生们“能人所不能,坚持解决临床核心痛点,做世界领先的高水平研究”,从临床实际中挖掘科学问题,并将研究成果应用到临床实际中去,扎扎实实地把科研写在祖国的大地上。汪代发与课题组硕博士生合影“要在学生最有梦想的时候好好引导他们,他们是祖国与行业的明天,要让他们放飞思想,追逐科技创新的梦想。”汪待发在科研之余还担任北航冯如书院本科生导师。作为导师,他悉心指导硕士、博士研究生近20人,攻坚脑功能疾病诊疗的难题。他将科研及转化的经验融入课堂教学,近三年担任《生理信号检测与处理实验》的负责人,不断完善课程建设,引导学生主动思考、发现问题、解决问题;作为《医学成像系统》和《生物医学成像技术》的主讲老师,带领学生认识行业内的新技术新成果,培养具有前沿视野的行业接班人。将科研与国家的重大需求做贴合攻坚中国脑功能疾病难题做世界领先的高端脑功能疾病诊疗装备和汪待发副教授一样在北航奋斗的广大教师们一直在脚踏实地、仰望星空潜心科研、矢志创新在建设科技强国人才强国的新征途中上下求索,砥砺前行!
  • 首个中红外波长超级反射镜制成
    来自奥地利、美国和瑞士的科学家组成的国际科研团队,研制出了首个中红外波长范围超级反射镜,有望用于测量微量温室气体或用于切割和焊接的工业激光器等领域。研究论文发表于最新一期《自然通讯》杂志。在可见光波长范围内,现有金属反射镜的反射率为99%。在近红外范围,专用反射镜涂层的反射率高达99.9997%;但迄今最好的中红外反射镜的反射率为99.99%,光子丢失率是近红外超反射镜的33倍。人们一直希望将超反射镜技术扩展到中红外领域,以促进很多领域取得重大进展,如测量与气候变化有关的微量气体、分析生物燃料,以及提升广泛应用于工业和医疗领域的切割激光器和激光手术刀的性能等。此次,研究团队研制出的中红外超反射镜的反射率高达99.99923%。为制造出中红外超级反射镜,研究团队结合传统薄膜涂层技术与新型半导体材料和方法,开发出一种新涂层工艺。为此,他们先研制出直径为25毫米的硅基板,然后让高反射半导体晶体结构在10厘米的砷化镓晶片上生长,接着将其分成更小的圆形反射镜,再将这些反射镜安装到硅基板上,得到了超级反射镜并证明了其性能。研究人员指出,这款新型超反射镜的一个直接应用是显著提高中红外气体分析光学设备的灵敏度,可准确计量微量环境标志物,如一氧化碳等。
  • 便携近红外光谱分析在手,你想测量哪些数据?
    光谱分析自从作为一项实验室技术问世以来,迄今已经取得了很大的发展。手持近红外 (NIR)光谱分析仪的尺寸在不断变小,成本也越来越低,在一定程度上,这归功于新出现的系统架构,这个系统充分利用微机电系统(MEMS)组件。我们来深入研究一下这些硬件优化如何在光谱分析行业中实现更简单且更加便携的未来。  NIR光谱分析  光谱分析可基于样本对于大范围波长的反应鉴定样本,是实现该应用的强大工具。值得注意的是,NIR光谱分析用波长范围通常在780-2500纳米之间的光来刺激样本。根据样本材料的物理状态,我们可以通过使用反射率测量值(固体)或吸收率测量值(液体和气体)精确测量光谱响应。  780-2500纳米区域内的光谱特征由诸如O-H、C-H、N-H和S-H的氢键决定。通过这种方式,NIR波段特别适合于食品和农业监视、健康诊断、石化处理和医药制造。在NIR波段内,每个光谱分析应用对于波长范围和化学计量分析都有着独特的需要。例如,一个900-1700nm仪器能够提供与水 (H2O) 和蔗糖 (C12H24O12) 含量有关的信息 [1]。若仪器的波长范围扩展至2500纳米,则可以发现额外的有机化合物特征,并且能够改进医药过程监视的效果 [2]。  选择波长范围可能影响仪器的物料清单(BOM)成本。一个短波NIR系统能够充分利用廉价探测器来实现波长范围高达1050纳米的测量。超过1050纳米的测量则通常需要一款更加昂贵的铟镓砷(InGaAs)探测器。在超过1700纳米之后,为了保持性能要求,InGaAs材料通常需要冷却,特别是与多像素线性阵列检测器一同使用时更是如此。由于昂贵的InGaAs基板和额外的冷却元件,InGaAs线性阵列技术由于价格过于昂贵而无法在低成本手持式仪器内使用。  光谱分析仪架构中的创新  考虑到用InGaAs阵列探测器实现传统色散型光谱分析时的成本难题,很多NIR光谱分析仪创新将注意力放在减少系统组件数量方面,用线性可变滤波器(LVF)取代色散光栅中继就是其中一个示例。LVF架构减少了光通量,不过也通过消除光栅到探测器的路径而极大地缩小了光谱分析仪的封装尺寸。其它创新型光设计采用透射光栅架构 这个架构在尽可能降低光损耗的同时精简了系统封装尺寸。另外一个架构使用一个扫描光栅,将光直接中继传递至单点探测器,从而免除了对于上文提到的多像素InGaAs阵列的需要。相对于阵列检测器,单点探测器在成本、尺寸和性能方面具有显著优势。  在光谱分析仪架构中采用MEMS技术并连同单点探测器一起使用可降低成本以及实现便携性。将稳健耐用的MEMS组件集成到一个光谱分析仪光路径中,不但可以缩小仪器的封装尺寸,还可以添加全新的性能。选择MEMS组件时的主要考虑因素包括性能可靠性和大批量生产制造时的稳定性。  德州仪器(TI)的DLP® NIR芯片组就是一种久经考验的MEMS技术。这项技术提供针对小巧、可编程且高性能光谱分析仪的高保真光调制。其中,TI DLP2010NIR和DLP4500NIR可实现令人激动的全新波长控制特性,比如说哈达玛图形和旋转扫描动态可编程性。其它新涌现的MEMS技术,其中包括法布里-珀罗干涉仪和迈克尔逊干涉仪,显示出仪器架构简化方面的良好发展前景,不过仍然面临着满足信噪比和分辨率标准等实验室性能需求的挑战。  虽然有很多的光谱分析仪架构选择,MEMS技术的吸引力仍与日俱增。动态可编程性、成本降低、使用单点探测器,以及免除对大型移动部件的需要只是基于MEMS的架构所能提供众多优势中的一部分。这些优势,与可靠系统集成组合在一起,在现场部署期间,会变得更加关键。图1:DLP2010NIR是这款TI DLPNIRscan? Nano 评估模块的特色所在  移动应用和行业前瞻  紧凑小巧、高性能的NIR光谱分析仪器为现场应用的涌现做出了巨大贡献,在这些应用中,现场测量能够为个人用户和工业公司带来额外的优势与价值。通过Wi-Fi或Bluetooth® 无线连通性,经由一个移动设备,将这些光谱分析仪链接至云端数据库,可以将实验室内的全预测功能引入到样本检测中。通过这种方式,集成式光谱分析仪可以作为网络边缘上的高性能光传感器。当光谱分析仪硬件使云端内的高保真数据聚合变得更加便利时,物联网(IoT)能够动态地提升处理效率。针对IoT移动感测的前沿应用包括食品安全、远程农业监视和用于医药生产的过程监视。  也许最令人激动的NIR光谱分析行业趋势就是开源模型。诸如德州仪器、Consumer Physics和Si-ware的前沿技术开发公司已经发布了多种软件开发套件(SDKs)以鼓励创新。KS 技术公司就是在工业IoT应用方面开创低成本NIR光谱分析仪架构的一个典范。除了提供用于图1中所见的DLP NIRScan Nano评估模块的免费iOS和安卓应用,以及SDK,这家公司还将他们在移动数据系统和IoT架构方面的专业知识应用于新出现的移动NIR感测市场。  这些平台的低成本和开源属性让他们能够更好地与大学化学计量专家合作,以增加对应用的了解。通过这种方法,手边的硬件与开源软件组合在一起,可以加快算法和化学计量开发,而这也反过来推动了NIR光谱分析生态系统的发展。未来的行业增长与创新将取决于专家间的通力协作。  考虑到NIR光谱分析的强大功能,这个行业将很多的注意力放在了将高性能分析由实验室转移到现场应用。NIR光谱分析仪架构领域内的行业突破正在推动着新一波创新的移动测量功能。这个创新与21世纪的移动趋势相一致,并且与IoT革命具有一个逻辑上的交汇点。当只能在实验室中运行的昂贵光谱分析发展成可以在你的手掌中产生精确数据的应用时,你将用它来测量哪些数据呢?  [1] B.M. Nicola¨ ? et al. / Postharvest Biology and Technology 46 (2007). 99–118.  [2] Chang, Cheng-Wen, "Near-infrared reflectance spectroscopic measurement of soil properties" (2000). Retrospective Theses and Dissertations. Paper 12315.作者:Dorsey Standish, 德州仪器(TI) DLP 产品先进光控项目经理
  • 中国大鲵近红外反射光谱(NIRS)研究获得新进展
    近期,陕西省动物研究所大鲵科研团队与美国孟菲斯动物学会、密西西比州立大学联合攻关的&ldquo 利用近红外技术判定大鲵性别的研究&rdquo 项目取得了部分成果,在英国IM出版社的新闻通讯部分(2015年第26卷第2期)发表,并被选做杂志封面。  NIR 讯息是国际近红外光谱学协会的新闻通讯,提供最新的近红外界内新闻。它以全面,有趣的文章展示近红外光谱学的实际应用。  近红外反射光谱研究,是通过扫描样品的近红外光谱,可以得到样品的特征信息,收集数据建立模型,进而对未知样品进行准确预测。利用近红外光谱技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,广泛应用于动物生理、营养、健康,特别是动物行为、数量统计、繁殖和疾病等方面。此技术将为我国大鲵研究提供新的技术和手段。  Near infrared reflectance spectroscopy studies of Chinese giant salamanders in aquaculture production  Carrie K. Vance, Andrew J. Kouba, Hong-Xing Zhang, Hu Zhao, Qijun Wang and Scott T. Willard  http://www.impublications.com/content/nir-news-table-contents?issue=26_2  大鲵近红外扫描
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制