当前位置: 仪器信息网 > 行业主题 > >

超高分辨热场发射扫描显微镜

仪器信息网超高分辨热场发射扫描显微镜专题为您提供2024年最新超高分辨热场发射扫描显微镜价格报价、厂家品牌的相关信息, 包括超高分辨热场发射扫描显微镜参数、型号等,不管是国产,还是进口品牌的超高分辨热场发射扫描显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超高分辨热场发射扫描显微镜相关的耗材配件、试剂标物,还有超高分辨热场发射扫描显微镜相关的最新资讯、资料,以及超高分辨热场发射扫描显微镜相关的解决方案。

超高分辨热场发射扫描显微镜相关的论坛

  • 场发射扫描电镜和环境扫描电镜有什么不同?

    扫描式电子显微镜的系统在设计上,主要是电子枪 (Electron Gun) 发射电子束组成,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径 (Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜 (Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron) 或背向散射电子 (Backscattered Electron) 成像。[align=center][img]http://www.gdkjfw.com/bdimages/upload1/20181106/1541469521405510.jpg[/img][/align]场发射电子枪分别比钨丝和六硼化镧丝亮10至100倍,电子能量分散仅为0.2-0.3eV,因此使用目前可用的高分辨率扫描电子显微镜。场发射型电子枪具有高达1nm或更小的分辨率。目前,有两种场发射电子枪:冷场发射(FE),热场发射(TF)。当真空中的金属表面经受108V / cm的电子加速电场时,发射相当大量的电子。该过程称为场发射。原理是高电场引起电子潜在无序的肖特基效应,即使屏障的宽度较窄且高度较低,因此电子可以直接“扫过”狭窄的能量屏障并离开阴极。场发射电子从尖锐的阴极尖端发射,因此它们可以非常薄并且高电流密度的电子束可以达到电子枪的热量的数百倍甚至数千倍。选择用于场发射电子枪的阴极材料必须是高强度材料,以承受在高电位置施加到阴极尖端的高机械应力。由于高强度,钨是优选的阴极材料。场发射枪通常是下一个。阳极用于产生拾取电子、,聚焦、和加速电子的功能。由阳极的特殊形状产生的静电场可以聚焦在电子上,因此不再需要Weiss盖或栅极。第一个(顶部)阳极主要目的是改变场发射的提取电压以控制尖端场发射的电流强度,而第二个(下部)阳极主要决定加速电压以将电子加速到所需的能量。为了从非常细的钨尖端场发射电子,金属表面必须完全清洁,其表面上没有任何外来物质原子或分子,即使只有一个外来原子落在表面上,它也会减少电子场发射,所以场发射电子枪必须保持超高真空,以防止原子在钨阴极表面积聚。由于超高真空设备的极高价格,除非需要高分辨率SEM,否则通常较少使用场发射电子枪。冷场发射型的最大优点是电子束直径最小,亮度最高,因此图像分辨率最佳。能量分散最小,因此可以改善低电压操作的效果。为了避免针尖被外来气体吸附,场发射电流减小。并且发射电流不稳定,冷场发射型电子枪必须在10-10托的真空下工作。但是,必须定期将尖端加热到2500K(这个过程称为闪蒸)以除去吸附的气体原子。另一个缺点是发射的总电流最小。热场电子枪在1800K下操作,这避免了大部分气体分子吸附在针尖表面上,因此消除了对针尖闪烁的需要。热模式可以保持更好的发射电流稳定性并且可能很差。在真空(10-9托)下操作。尽管亮度类似于冷型,但其电子能量分布比冷型大3~5倍,并且图像分辨率差,通常较少使用。

  • 怀化学院德国蔡司Sigma HD型热场发射扫描电子显微镜

    湖南怀化学院德国蔡司公司SigmaHD型热场发射扫描电子显微镜于2015年10月正式投入使用并可对外提供测试服务。仪器配备:镜筒内二次电子(In-lens)、二次电子(SE2)、背散射电子(BSE)及能谱仪(EDS)等探测器。二次电子像分辨率可达1.0 nm (30 kV)。测试样品基本无需排队、可随到随测,2-4个工作日内给出测试结果。联系人:杨老师联系电话:18152731699

  • 超高分辨显微镜及其在生物医学领域的应用

    [align=center][font='times new roman'][size=16px][b]超高分辨[/b][/size][/font][font='times new roman'][size=16px][b]显微镜及其在生物医学领域的应用[/b][/size][/font][/align][align=center][font='times new roman'][size=14px]刘皎[/size][/font][font='times new roman'][sup][size=14px]1[/size][/sup][/font][font='times new roman'][size=14px],[/size][/font][font='times new roman'][sup][size=14px] [/size][/sup][/font][font='times new roman'][size=14px]吴晶[/size][/font][font='times new roman'][sup][size=14px]1[/size][/sup][/font][/align][align=center]1. [font='times new roman']北京大学医药卫生分析中心,北京,[/font][font='times new roman']100191[/font][/align][font='times new roman'][b]摘要[/b][/font][font='times new roman'][b] [/b][/font][font='times new roman']超高分辨显微镜([/font][font='times new roman']Super-Resolution Microscopy[/font][font='times new roman'])作为一类强大的科学工具,可以突破传统光学显微镜的分辨极限,实现对微小结构的高分辨率成像,已经在生物医学领域引起了广泛的关注和应用。本文将探讨超高分辨显微镜的不同类型和原理,介绍[/font][font='times new roman']其[/font][font='times new roman']在生物医学领域的应用[/font][font='times new roman']及展望其未来发展[/font][font='times new roman']。[/font][font='times new roman'][b]Abstract[/b][/font][font='times new roman']Super Resolution Microscopy[/font][font='times new roman'], as a powerful scientific tool, can break through the resolution limit of traditional optical microscopes and achieve high-resolution imaging of small structures. It has attracted widespread attention and application in the biomedical field. This article will explore the different types and principles of Super Resolution Microscopy, introduce their applications in the biomedical field, and look forward to their future development[/font][font='times new roman'].[/font][font='times new roman'][b]关键词[/b][/font][font='times new roman']超高分辨[/font][font='times new roman']显微镜,[/font][font='times new roman']成像技术[/font][font='times new roman'],应用[/font][font='times new roman'][b]1 [/b][/font][font='times new roman'][b]引言[/b][/font][font='times new roman']显微镜的产生和发展对于生命科学研究的进步有至关重要的作用[/font][font='times new roman'],它将微观世界呈现在大家面前,包括微生物的存在、组织细胞结构及生理病理活动等。显微镜技术的不断革新将成像分辨率不断提高,但相当长一段时间内光学成像无法突破一个极限值,即[/font][font='times new roman']xy[/font][font='times new roman']轴横向分辨率约[/font][font='times new roman']200nm[/font][font='times new roman'],[/font][font='times new roman']z[/font][font='times new roman']轴纵向分辨率约[/font][font='times new roman']500nm[/font][font='times new roman'],因此小于这个尺寸的生命活动和结构[/font][font='times new roman'],如病毒、亚细胞结构等,[/font][font='times new roman']是无法清楚地观察到的[/font][font='times new roman']。[/font][font='times new roman']聚焦点的光强会根据点扩散函数([/font][font='times new roman']point spread functio[/font][font='times new roman']n[/font][font='times new roman'],[/font][font='times new roman']PSF[/font][font='times new roman'])而展开[/font][font='times new roman'],[/font][font='times new roman']对于圆形孔径,[/font][font='times new roman']PSF[/font][font='times new roman']呈现为艾里斑([/font][font='times new roman']Airy disk[/font][font='times new roman'])的模式[/font][font='times new roman']。[/font][font='times new roman']激光扫描共聚焦显微镜([/font][font='times new roman']Confocal Laser Scanning Microscopy, CLSM[/font][font='times new roman'])的分辨率取决于[/font][font='times new roman']PSF[/font][font='times new roman']的大小,如果焦点很小,则每个像素[/font][font='times new roman']点[/font][font='times new roman']获取到的信息也很小,从而得到清晰锐利的图像;反之,则结果图像变得模糊。因此,[/font][font='times new roman']CLSM[/font][font='times new roman']成像的[/font][font='times new roman']主要挑战在于实现越来越小的[/font][font='times new roman']PSF[/font][font='times new roman']以获得更好的分辨率。德国物理学家恩斯特[/font][font='times new roman'][/font][font='times new roman']阿贝([/font][font='times new roman']Ernst Abbe[/font][font='times new roman'],[/font][font='times new roman']1840-1905[/font][font='times new roman']年)在[/font][font='times new roman']19[/font][font='times new roman']世纪[/font][font='times new roman']70[/font][font='times new roman']年代首次[/font][font='times new roman']提出阿贝衍射极限,即[/font][font='times new roman']由于衍射效应,[/font][font='times new roman']PSF[/font][font='times new roman']大[/font][font='times new roman']小与[/font][font='times new roman']λ/NA[/font][font='times new roman']成正比([/font][font='times new roman']d=0.61λ/NA[/font][font='times new roman']),其中[/font][font='times new roman']λ[/font][font='times new roman']是光的波长,[/font][font='times new roman']NA[/font][font='times new roman']是物镜最重要的参数[/font][font='times new roman']——[/font][font='times new roman']数值孔径[/font][font='times new roman']。由于可见光波长范围在[/font][font='times new roman']400-760nm[/font][font='times new roman']之间,[/font][font='times new roman']NA[/font][font='times new roman']值最大在[/font][font='times new roman']1.7[/font][font='times new roman']左右,所以分辨率极限在[/font][font='times new roman']200nm[/font][font='times new roman']左右。随着物理学和测量技术的进步,突破衍射极限的显微镜不断涌现,目前公认的超高分辨显微镜主要有三类,包括[/font][font='times new roman']结构照明显微镜([/font][font='times new roman']Structured Illumination Microscopy[/font][font='times new roman'],[/font][font='times new roman']SIM[/font][font='times new roman'])[/font][font='times new roman'],受激发射减耗显微镜([/font][font='times new roman']Stimulated Emission Depletion Microscopy[/font][font='times new roman'],[/font][font='times new roman']STED[/font][font='times new roman']),和[/font][font='times new roman']单分子定位显微镜。单分子定位显微镜包括光敏定位显微镜([/font][font='times new roman']Photoactivation Localization Microscopy[/font][font='times new roman'],[/font][font='times new roman']PALM[/font][font='times new roman'])和随机光学重建显微镜([/font][font='times new roman']Stochastic Optical Reconstruction Microscopy[/font][font='times new roman'],[/font][font='times new roman']STORM[/font][font='times new roman'])[/font][font='times new roman']。[/font][font='times new roman']2014[/font][font='times new roman']年三位科学家[/font][font='times new roman']史蒂芬[/font][font='times new roman'][/font][font='times new roman']霍尔([/font][font='times new roman']Stefan W. Hell[/font][font='times new roman'])[/font][font='times new roman']、埃里克[/font][font='times new roman'][/font][font='times new roman']贝兹([/font][font='times new roman']Eric Betzig[/font][font='times new roman'])和威廉[/font][font='times new roman'][/font][font='times new roman']莫纳([/font][font='times new roman']William E. Moerner[/font][font='times new roman'])因他们在超[/font][font='times new roman']高[/font][font='times new roman']分辨显微镜技术领域的贡献而获得了诺贝尔化学奖。[/font][font='times new roman'][b]2 [/b][/font][font='times new roman'][b]不同类型的超高分辨显微镜[/b][/font][font='times new roman'][b]2.1[/b][/font][font='times new roman'][b] [/b][/font][font='times new roman'][b]结构照明显微镜([/b][/font][font='times new roman'][b]Structured Illumination Microscopy[/b][/font][font='times new roman'][b],[/b][/font][font='times new roman'][b]SIM[/b][/font][font='times new roman'][b])[/b][/font][font='times new roman']SIM[/font][font='times new roman']本质是利用两束激发光在样品上进行干涉,产生明暗交替的莫尔条纹,高空间频率的莫尔条纹会放大激发条纹与样品空间频率不一致的结构,从而将样品中的高频信息整合入收集到的图像中。[/font][font='times new roman']通过投射特殊的光照明模式如格点或条纹光栅,以一定的模式照射样品,引入空间频率信息,采集多个图像并经过复杂的数据处理之后,重建高分辨率图像。由于每个图像都采用不同的结构照明模式,包含了不同的信息,合并后的图像能够展示出比传统显微镜更多的细节[/font][font='times new roman']。[/font][font='times new roman']相比于其他超高分辨成像技术,[/font][font='times new roman']SIM[/font][font='times new roman']最大的优势就是宽场[/font][font='times new roman']成像,速度快,基本可以达到实时观察。[/font][font='times new roman']SIM[/font][font='times new roman']技术的前身可以追溯到[/font][font='times new roman']20[/font][font='times new roman']世纪[/font][font='times new roman']70[/font][font='times new roman']年代初。当时,光学学家特奥多尔[/font][font='times new roman'][/font][font='times new roman']赫普恩([/font][font='times new roman']Theodor [/font][font='times new roman']H?upl[/font][font='times new roman'])首次提出了使用周期性光栅照明来提高显微镜分辨率的想法。这奠定了[/font][font='times new roman']SIM[/font][font='times new roman']技术的基础,尽管当时还没有实际的[/font][font='times new roman']SIM[/font][font='times new roman']显微镜。[/font][font='times new roman']21[/font][font='times new roman']世纪初期,史蒂芬[/font][font='times new roman'][/font][font='times new roman']霍尔([/font][font='times new roman']Stefan W. Hell[/font][font='times new roman'])和埃里克[/font][font='times new roman'][/font][font='times new roman']贝兹([/font][font='times new roman']Eric Betzig[/font][font='times new roman'])等科学家分别独立开发了[/font][font='times new roman']SIM[/font][font='times new roman']的现代版本。[/font][font='times new roman']SIM[/font][font='times new roman']技术开始广泛传播,吸引了生物学家和显微镜专家的关注。它被认为是一种相对低成本的[/font][font='times new roman']超高分辨[/font][font='times new roman']率成像方法,因为它不需要昂贵的激光设备或复杂的样品准备。[/font][font='times new roman'][b]2.2 [/b][/font][font='times new roman'][b]受激发射减耗[/b][/font][font='times new roman'][b]显微镜([/b][/font][font='times new roman'][b]Stimulated Emission Depletion Microscopy[/b][/font][font='times new roman'][b],[/b][/font][font='times new roman'][b]STED[/b][/font][font='times new roman'][b])[/b][/font][font='times new roman']STED[/font][font='times new roman']技术的概念最早由斯德哥尔摩大学的斯蒂芬[/font][font='times new roman'][/font][font='times new roman']霍尔([/font][font='times new roman']Stefan W. Hell[/font][font='times new roman'])提出。他的想法是通过将激发光束与一个特殊的抑制光束结合,从而实现对荧光标记物的光抑制,[/font][font='times new roman']通过受激辐射淬灭光斑外围的荧光分子,[/font][font='times new roman']使其在空间上变得更加紧凑,[/font][font='times new roman']减少[/font][font='times new roman']PSF[/font][font='times new roman']从而提高分辨率。[/font][font='times new roman']我们也叫“甜甜圈”技术。[/font][font='times new roman']STED[/font][font='times new roman']显微镜背后基本思想就是利用非线性光学设计一个低于阿贝衍射极限的更小[/font][font='times new roman']PSF[/font][font='times new roman']。[/font][font='times new roman']分辨率与[/font][font='times new roman']STED[/font][font='times new roman']光强有关,提高[/font][font='times new roman']STED[/font][font='times new roman']光的强度可以使荧光光斑焦[/font][font='times new roman']点中心直径趋于[/font][font='times new roman']0[/font][font='times new roman'],但是实际应用中,光损伤较大,[/font][font='times new roman']STED[/font][font='times new roman']光强不可能无限增加,顾[/font][font='times new roman']其分辨率[/font][font='times new roman']最高[/font][font='times new roman']可达到[/font][font='times new roman']3[/font][font='times new roman']0[/font][font='times new roman']nm[/font][font='times new roman']左右[/font][font='times new roman']。[/font][font='times new roman']目前的[/font][font='times new roman']STED[/font][font='times new roman']只能应用于较薄的组织器官或细胞,光毒性较强,成像厚度有限不太适合活体或活细胞长时间成像。[/font][font='times new roman']STED[/font][font='times new roman']光路较为复杂,对系统稳定性要求较高。[/font][font='times new roman'][b]2.3 [/b][/font][font='times new roman'][b]单分子定位显微镜[/b][/font][font='times new roman']单分子定位显微镜[/font][font='times new roman']中荧光标记的单个分子被分别激发和检测。单分子的中心可以以极高的精度确定从而实现高分辨率,包括光敏定位显微镜([/font][font='times new roman']Photoactivation Localization Microscopy[/font][font='times new roman'],[/font][font='times new roman']PALM[/font][font='times new roman'])和随机光学重建显微镜([/font][font='times new roman']Stochastic Optical Reconstruction Microscopy[/font][font='times new roman'],[/font][font='times new roman']STORM[/font][font='times new roman'])。[/font][font='times new roman']PALM[/font][font='times new roman']的历史可以追溯到[/font][font='times new roman']2006[/font][font='times new roman']年,由埃里克[/font][font='times new roman'][/font][font='times new roman']贝兹([/font][font='times new roman']Eric Betzig[/font][font='times new roman'])和哈拉尔德[/font][font='times new roman'][/font][font='times new roman']赫斯([/font][font='times new roman']Harald Hess[/font][font='times new roman'])提出了单分子定位这一概念。在[/font][font='times new roman']PALM[/font][font='times new roman']中,样品中的分子被标记上特定的荧光染料。这些染料可以通过光激活从一个基态转变到一个激发态,此过程可通过使用激活光(通常是紫外光)来实现。同期[/font][font='times new roman']STORM[/font][font='times new roman']的成像技术也发展起来,代表科学家是华人庄小威。[/font][font='times new roman']STORM[/font][font='times new roman']的工作原理与[/font][font='times new roman']PALM[/font][font='times new roman']类似,是通过特殊的分子标记和随机活性化,实现单分子定位进而实现超高分辨率成像。具有光激活能力的标记物通常在某种光照条件下会发光,但也会在某一时刻被随机地熄灭。这种随机光熄灭是[/font][font='times new roman']PALM[/font][font='times new roman']技术的关键,因为它允许在不同时间点捕获标记物的位置。通过记录标记物的位置,可以得到它们的坐标。这一过程需要在短时间内多次拍摄样品,以获得足够多的数据点。最后,通过将多个标记物的坐标叠加在一起,可以生成高分辨率的图像。这种以成像时间换取空间分辨率的形式,使得[/font][font='times new roman']PALM[/font][font='times new roman']或[/font][font='times new roman']STORM[/font][font='times new roman']的分辨率通常能够达到数十纳米。[/font][font='times new roman'][b]3 [/b][/font][font='times new roman'][b]应用领域和未来发展[/b][/font][font='times new roman']超高分辨显微镜可以探索微观世界的无限可能性,已经彻底改变了科学研究的方式。在细胞生物学领域,它被用于研究[/font][font='times new roman']亚细胞结构,如微丝、微管、肌动蛋白等,[/font][font='times new roman']细胞器[/font][font='times new roman']如线粒体、溶酶体等,[/font][font='times new roman']分子分布和细胞膜动态、观察蛋白质的相互作用;在神经科学领域,它可用于观察神经元的亚细胞结构和突触的细节,有助于解剖和理解神经系统的结构和功能,以及神经系统相关疾病的机制;在癌症研究领域,被用于研究癌细胞的特征、蛋白质分布以及肿瘤微环境,这对于癌症的早期诊断和治疗规划非常重要;在材料科学领域,它被用于研究纳米材料的结构和性质、帮助科学家精确控制和制备纳米结构;在药物研发领域,它可用于研究药物靶标蛋白的定位和与其他分子的相互作用,这对于药物设计和筛选非常重要[/font][font='times new roman'];在微生物领域,对于研究细菌[/font][font='times new roman']结构变化至关重要,规避了电子显微镜无法进行活体成像等弊端,可以更加推进微生物学发展。[/font][font='times new roman']当然,[/font][font='times new roman']超[/font][font='times new roman']高[/font][font='times new roman']分辨成像技术[/font][font='times new roman']也有一定的挑战。超高分辨成像技术[/font][font='times new roman']通常需要高度复杂的设备和精密的校准,这使得其设备成本相对较高,[/font][font='times new roman']再加上样本制备的困难,[/font][font='times new roman']限制了其广泛应用。[/font][font='times new roman']样品准备在超高分辨成像中具有重要作用,新的标记技术和荧光探针的发展将提高成像的灵敏度和特异性[/font][font='times new roman'],[/font][font='times new roman']开发更友好、无损伤的样品准备方法,以减少对样品的干扰[/font][font='times new roman'],[/font][font='times new roman']甚至[/font][font='times new roman']包括无标记成像技术以减少样品标记的需求。开源软件和自动化工作流程将使超高分辨成像技术更易于使用和共享,促进科学研究的进展。[/font][font='times new roman']超高分辨技术通常对于三维成像和大样本的深度成像有限制,需要克服分辨率和深度之间的权衡。[/font][font='times new roman']同时超高分辨[/font][font='times new roman']成像的时间分辨率还可以继续提升[/font][font='times new roman']。[/font][font='times new roman']虽然[/font][font='times new roman']目前[/font][font='times new roman']SIM[/font][font='times new roman']和[/font][font='times new roman']minflux[/font][font='times new roman']更适合[/font][font='times new roman']观察[/font][font='times new roman']活细胞[/font][font='times new roman']动态过程,但时间分辨率的提高仍然是一个挑战,特别是对于极短时间尺度的现象[/font][font='times new roman'],[/font][font='times new roman']这将使科学家能够更深入地探索微观世界,并获得更多信息。[/font][font='times new roman']随着技术的不断进步,[/font][font='times new roman']超高分辨[/font][font='times new roman']成像有望在[/font][font='times new roman']包括临床医学[/font][font='times new roman']等[/font][font='times new roman']更多领域得到广泛应用[/font][font='times new roman'],未[/font][font='times new roman']来如果能实现超高分辨的动物甚至人的[/font][font='times new roman']活体成像,减少样品固定和处理的需求,允许观察生物过程的实时发生[/font][font='times new roman']将会更有现实意义[/font][font='times new roman']。[/font][font='times new roman']并且在科学研究的需求下,[/font][font='times new roman']多模态[/font][font='times new roman']或多尺度[/font][font='times new roman']成像将[/font][font='times new roman']与[/font][font='times new roman']不同[/font][font='times new roman']的[/font][font='times new roman']超高分辨[/font][font='times new roman']技术相结合,[/font][font='times new roman']例如,结合光学成像和质谱成像[/font][font='times new roman'],[/font][font='times new roman']从分子水平到组织水平[/font][font='times new roman']提供[/font][font='times new roman']生命活动[/font][font='times new roman']更全面的信息。[/font][font='times new roman']也可以[/font][font='times new roman']发展高通量的样品处理和成像技术,以便更快速地获得大规模的数据。[/font][font='times new roman']超高分辨[/font][font='times new roman']成像生成的数据量巨大,处理和分析这些大数据需要强大的计算资源和高效的算法。数据存储和传输也是挑战。[/font][font='times new roman']超高分辨[/font][font='times new roman']成像数据可能受到噪声和伪迹的影响,这需要高级的图像处理技术来减少其影响,以获得准确的图像。数据分析通常需要复杂的算法和数学模型,需要专业知识和技能。对于某些应用,如神经科学中的活体成像,需要实时数据分析,这增加了挑战。深度学习和人工智能技术[/font][font='times new roman']有望[/font][font='times new roman']在数据分析中发挥越来越重要的作用,[/font][font='times new roman']实现[/font][font='times new roman']自动处理和解释图像数据。发展实时数据分析技术,使科学家能够在数据采集过程中获得及时反馈。开发更易用的高级图像处理工具,使非专业用户也能够进行数据分析。结合不同成像技术和数据源的信息,以提供更全面的信息。开发自动化和高通量的数据分析工作流程,以应对大规模数据的挑战。促进数据共享和开放科学,以促进合作和加速科学研究的进展。未来,随着计算能力的提高和新技术的引入,[/font][font='times new roman']超高分辨[/font][font='times new roman']成像数据分析将变得更加强大和高效。这将有助于更深入地理解微观世界,并在生物学、医学、材料科学等领域推动创新和发展。[/font][font='times new roman']总的来说,尽管[/font][font='times new roman']超高分辨[/font][font='times new roman']成像面临一些挑战,但其前景充满希望。未来的发展将使这一领域更加强大,有望在科学研究和实际应用中提供更多的机会和洞察力。[/font][font='times new roman'][b]4 [/b][/font][font='times new roman'][b]结论和展望[/b][/font][font='times new roman']超高分辨显微镜的成像原理基于破解传统显微镜的分辨极限,通过结构照明、图像重建[/font][font='times new roman']和单分子成像等策略,实现对微小结构的高分辨率成像。这一技术的应用领域包括生物学、材料科学、纳米技术和医学等,有望推动科学研究的进一步发展。超高分辨显微镜已经在生物医学领域取得了显著的突破,使研究人员更深入地理解细胞和分子结构。然而,仍然存在挑战,包括样品准备和数据分析的复杂性。未来,我们可以期待更多技术的发展,以进一步提高分辨率和扩大应用领域。[/font][font='times new roman']随着技术的不断发展,我们可以期待更多超分辨显微镜技术的突破,如更高分辨率、更高灵敏度和更快成像速度。超分辨显微镜的应用也将继续扩展到新的领域,如药物研发、个性化医学和环境科学。它将为我们提供更多工具来解决生物学的重要问题,如疾病机制、药物研发和生态系统健康。总之,超分辨显微镜技术的未来展望是光明的,它将继续推动科学研究向前迈进,揭示微观世界的微小奥秘,为改善生活质量和解决全球挑战做出贡献。这个领域的不断创新将激发更多科学家的热情,共同追求更深入的科学知识和更广泛的应用。[/font][font='times new roman'][b]参考文献[/b][/font][font='times new roman']Hell[/font][font='times new roman'] [/font][font='times new roman']S [/font][font='times new roman']W[/font][font='times new roman'].[/font][font='times new roman']Far-field[/font][font='times new roman'] [/font][font='times new roman']optical[/font][font='times new roman'] [/font][font='times new roman']nanoscopy[/font][font='times new roman'][J][/font][font='times new roman'].[/font][font='times new roman']Science[/font][font='times new roman'],[/font][font='times new roman']2007[/font][font='times new roman'],[/font][font='times new roman']316(5828)[/font][font='times new roman']:[/font][font='times new roman']1153-1158[/font][font='times new roman']Hell[/font][font='times new roman'] [/font][font='times new roman']S W[/font][font='times new roman'],[/font][font='times new roman']Wichmann J[/font][font='times new roman'].[/font][font='times new roman']Breaking[/font][font='times new roman'] [/font][font='times new roman']the diffraction[/font][font='times new roman'] [/font][font='times new roman']resolution[/font][font='times new roman'] [/font][font='times new roman']limit[/font][font='times new roman'] [/font][font='times new roman']by stimulated[/font][font='times new roman']-[/font][font='times new roman']emission[/font][font='times new roman']-[/font][font='times new roman']depletion fluorescence[/font][font='times new roman'] [/font][font='times new roman']microscopy[J][/font][font='times new roman'].[/font][font='times new roman']Optics[/font][font='times new roman'] [/font][font='times new roman']Letters[/font][font='times new roman'],[/font][font='times new roman']1994[/font][font='times new roman'],[/font][font='times new roman']19(11)[/font][font='times new roman']:[/font][font='times new roman']780-782[/font][font='times new roman']Dani A[/font][font='times new roman'],[/font][font='times new roman']Huang B[/font][font='times new roman'],[/font][font='times new roman']Bergan J[/font][font='times new roman'],[/font][font='times new roman']et[/font][font='times new roman'] [/font][font='times new roman']a1[/font][font='times new roman'].[/font][font='times new roman'] Super-resolution[/font][font='times new roman'] [/font][font='times new roman']imaging of chemical synapses[/font][font='times new roman'] [/font][font='times new roman']in the brain[J][/font][font='times new roman'].[/font][font='times new roman']Neuron[/font][font='times new roman'],[/font][font='times new roman']2010[/font][font='times new roman'],[/font][font='times new roman']68(5)[/font][font='times new roman']:[/font][font='times new roman']843[/font][font='times new roman']—[/font][font='times new roman']856[/font][font='times new roman']PATTERSON[/font][font='times new roman'] [/font][font='times new roman']G[/font][font='times new roman'],[/font][font='times new roman']DAVIDSON[/font][font='times new roman'] [/font][font='times new roman']M[/font][font='times new roman'],[/font][font='times new roman']MANLEY[/font][font='times new roman'] [/font][font='times new roman']S[/font][font='times new roman'],[/font][font='times new roman']et[/font][font='times new roman'] [/font][font='times new roman']al[/font][font='times new roman']. [/font][font='times new roman']Superresolution[/font][font='times new roman'] imaging using single-molecule localization[/font][font='times new roman'][J][/font][font='times new roman'].[/font][font='times new roman']A[/font][font='times new roman']nnual Review of Chemistry[/font][font='times new roman'],[/font][font='times new roman']2010[/font][font='times new roman'],[/font][font='times new roman']6[/font][font='times new roman']1:345-367[/font]

  • 德国开发出首台可观察活体细胞的超高分辨率生物显微镜

    近日,德国IBIDI公司成功开发出一款超高分辨率生物显微镜。该公司宣称基于新型随机光学重建显微技术“(d)STORM”,利用该公司独创的特殊塑料底板“μ-Slides”可实现超高分辨率观察活体细胞。 STED,SIM,(F)PALM 和(d)STORM等新型光学显微技术可有效避免衍射极限,获得纳米级水平的超高分辨率成像。这些超高分辨率显示技术可应用到生物实验研究,观察了解组织细胞分子结构。IBIDI公司采用了创新性的含有亲水性膜涂层的塑料材质底板“μ-Slides”替代传统玻璃底板,首次实现了“活体细胞”超高分辨率观察。这种被成为“ibi-Treat”的亲水性膜涂层性能可以与标准的细胞培养瓶和培养皿相媲美。 IBIDI公司相关研发工作受到了德国联邦教研部《生命科学领域光学技术—基本细胞功能》项目的资助。

  • [分享]扫描电子显微镜入门1

    1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约 1500倍,扫描式显微镜可放大到10000倍以上。 2. 根据de Broglie波动理论,电子的波长仅与加速电压有关: λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (?) 在 10 KV 的加速电压之下,电子的波长仅为0.12?,远低于可见光的4000 - 7000?, 所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100?之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹 性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。 3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微 镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。 4. 扫描式电子显微镜,其系统设计由上而下,由电子枪 发射电子 束,经过一组磁透镜聚焦 (聚焦后,用遮蔽孔径 选择电子束的尺寸后,通过一组控制电子束的扫描线圈,再透过物镜 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子或背向散射电子成像。 5. 电子枪的必要特性是亮度要高、电子能量散布 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。 6. 热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。 7. 价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。 8. 六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。 9. 场发射式电子枪则比钨灯丝和六硼化镧灯丝的亮度又分别高出 10 - 100 倍,同 时电子能量散布仅为 0.2 - 0.3 eV,所以目前市售的高分辨率扫描式电子显微镜都采用场发射式电子枪,其分辨率可高达 1nm 以下。 10. 场发射电子枪可细分成三种:冷场发射式,热场发射式,及萧基发射式 11. 当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电 子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接"穿隧"通过此狭窄能障并离开 阴极。场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密 度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。 12. 场发射电子枪所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴 极尖端的高机械应力,钨即因高强度而成为较佳的阴极材料。场发射枪通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。第一(上)阳极主要是改变场发射的拔出电压,以控制针尖场发射的电流强度,而第二 (下)阳极主要是决定加速电压,以将电子加速至所需要的能量。 13. 要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子 或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发 射电子枪必需保持超高真空度,来防止钨阴极表面累积原子。由于超高真空设备价格 极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子枪。 14. 冷场发射式最大的优点为电子束直径最小,亮度最高,因此影像分辨率最优。能 量散布最小,故能改善在低电压操作的效果。为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子枪必需在10-10 torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除 所吸附的气体原子。它的另一缺点是发射的总电流最小。 15. 热场发式电子枪是在1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing的需要。热式能维持较佳的发射电流稳定度,并能在较 差的真空度下(10-9 torr)操作。虽然亮度与冷式相类似,但其电子能量散布却比冷 式大3~5倍,影像分辨率较差,通常较不常使用。 16. 萧基发射式的操作温度为1800K,它系在钨(100)单晶上镀ZrO覆盖层,ZrO将功函 数从纯钨的4.5eV降至2.8eV,而外加高电场更使电位障壁变窄变低,使得电子很容易以热能的方式跳过能障(并非穿隧效应),逃出针尖表面,所需真空度约10-8~10-9torr 。其发射电流稳定度佳,而且发射的总电流也大。而其电子能量散布很小,仅稍逊于冷场发射式电子枪。其电子源直径比冷式大,所以影像分辨率也比冷场发射式稍差一点。 17. 场发射放大倍率由25倍到650000倍,在使用加速电压15kV时,分辨率可达到1nm,加速电压1kV时,分辨率可达到2.2nm。一般钨丝型的扫描式电子显微镜仪器上的放大倍率可到200000倍,实际操作时,大部份均在20000倍时影像便不清楚了,但如果样品的表面形貌及导电度合适,最大倍率650000倍是可以达成的。 18. 由于对真空的要求较高,有些仪器在电子枪及磁透镜部份配备了3组离子泵(ion pump),在样品室中,配置了2组扩散泵(diffusion pump),在机体外,以1组机械泵负责粗抽,所以有6组大小不同的真空泵来达成超高真空的要求,另外在样品另有以液态氮冷却的冷阱(cold trap),协助保持样品室的真空度。 19. 平时操作,若要将样品室真空亦保持在10-8pa(10-10torr),则抽真空的时间将变长而降低仪器的便利性,更增加仪器购置成本,因此一些仪器设计了阶段式真空( step vacuum),亦即使电子枪、磁透镜及样品室的真空度依序降低,并分成三个部份来读取真空计读数,如此可将样品保持在真空度10-5pa的环境下即可操作。平时待机或更换样品时,为防止电子枪污染,皆使用真空阀(gun valve)将电子枪及磁透镜部份与样品室隔离,实际观察时再打开使电子束通过而打击到样品。 20. 场发射式电子枪的电子产生率与真空度有密切的关系,其使用寿命也随真空度变差而急剧缩短,因此在样品制备上必须非常注意水气,或固定用的碳胶或银胶是否烤干,以免在观察的过程中,真空陡然变差而影响灯丝寿命,甚至系统当机。

  • 【转帖】GE收购超高分辨率显微镜制造商Applied Precision

    上个月末,通用电气医疗集团(GE Healthcare)签署了一项协议,收购细胞成像产品制造商Applied Precision,具体收购金额不详。随着这次收购行动,GE Healthcare有望进入快速增长的细胞成像领域。  总部位于华盛顿西雅图郊外的Applied Precision开发并制造高分辨率以及超高分辨率的显微镜仪器,让研究人员能够以其他类型显微镜无法实现的规模来研究细胞过程。  一般显微镜所拥有的分辨率能让研究人员观察到200 nm及以上的物体。因此,对于大小在10 nm左右的胰岛素,一般的显微镜是无法看到的。然而,有了超高分辨率显微镜,研究人员就能看到。电镜的分辨率与超高分辨率显微镜相似,但它们不能活体观察细胞,而后者能做到。  GE Healthcare负责细胞技术的总经理Amr Abid向国外媒体透露,通过在此水平研究细胞功能,研究人员能够对功能异常细胞的机制有了更深入的了解。他举了一些例子,比如利用超高分辨率显微镜来研究HIV病毒如何穿透细胞,这为新药开发提供了信息。  几个世纪以来,科学家们都是利用光学显微镜对肉眼无法看到的结构进行观测,目前光学显微镜已经成为了实验室必备的实验器材之一,但是随着研究的深入,光学显微镜的分辨率已经无法达到科学家们的要求了。2008年,《Nature》杂志将超高分辨率显微技术评为年度技术。  Abid估计,如今整个显微镜市场大概在20亿-30亿美元。其中,超高分辨率显微镜占了约20%。Applied Precision和徕卡(Leica)是硬件方面的行业领先者,他们各自的市场份额大约为30%-35%。  GE目前不提供超高分辨率显微镜,也不曾开发它们。Applied Precision的产品是对GE细胞分析产品线的很好补充。GE也在探索一些方法,将其现有的细胞研究技术与Applied Precision的仪器捆绑起来。  目前,GE在细胞成像方面的旗舰产品是2009年上市的IN Cell平台。IN Cell Analyzer平台提供了一整套从自动化图像获取到数据的定量和深度分析以及可视化的强大工具,来协助整个高内涵分析过程。前不久,GE推出了最新版本的分析平台——IN Cell 6000。  据Abid透露,由于Applied Precision在高分辨率以及超高分辨率显微镜方面声名卓著,故GE打算保留其名称。该公司还计划保留全部130名员工,并在技术上继续投资。  GE还打算加大力度提高Applied Precision在亚太地区(如中国、印度和日本)的知名度,对于超高分辨率显微镜而言,这些区域是一个增长点,然而,Applied Precision目前的份额还很有限。

  • 【转帖】【雅俗共赏,甚推荐】扫描电子显微镜介绍

    原作在:http://140.120.61.154/fesem/ref-fe/fe-sem-intro-nchu.asp1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约1500倍,扫描式显微镜可放大到10000倍以上。2. 根据de Broglie波动理论,电子的波长仅与加速电压有关:λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (Å )在 10 KV 的加速电压之下,电子的波长仅为0.12Å ,远低于可见光的4000 - 7000Å ,所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100Å 之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。4. 扫描式电子显微镜,其系统设计由上而下,由电子枪 (Electron Gun) 发射电子束,经过一组磁透镜聚焦 (Condenser Lens) 聚焦后,用遮蔽孔径 (Condenser Aperture) 选择电子束的尺寸(Beam Size)后,通过一组控制电子束的扫描线圈,再透过物镜(Objective Lens) 聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子 (Secondary Electron) 或背向散射电子 (Backscattered Electron) 成像。5. 电子枪的必要特性是亮度要高、电子能量散布 (Energy Spread) 要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。6. 热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。7. 价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。8. 六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。9. 场发射式电子枪则比钨灯丝和六硼化镧灯丝的亮度又分别高出 10 - 100 倍,同时电子能量散布仅为 0.2 - 0.3 eV,所以目前市售的高分辨率扫描式电子显微镜都采用场发射式电子枪,其分辨率可高达 1nm 以下。10. 场发射电子枪可细分成三种:冷场发射式(cold field emission , FE),热场发射式(thermal field emission ,TF),及萧基发射式(Schottky emission ,SE)11. 当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接"穿隧"通过此狭窄能障并离开阴极。场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。12. 场发射电子枪所选用的阴极材料必需是高强度材料,以能承受高电场所加诸在阴极尖端的高机械应力,钨即因高强度而成为较佳的阴极材料。场发射枪通常以上下一组阳极来产生吸取电子、聚焦、及加速电子等功能。利用阳极的特殊外形所产生的静电场,能对电子产生聚焦效果,所以不再需要韦氏罩或栅极。第一(上)阳极主要是改变场发射的拔出电压(extraction voltage),以控制针尖场发射的电流强度,而第二(下)阳极主要是决定加速电压,以将电子加速至所需要的能量。13. 要从极细的钨针尖场发射电子,金属表面必需完全干净,无任何外来材料的原子或分子在其表面,即使只有一个外来原子落在表面亦会降低电子的场发射,所以场发射电子枪必需保持超高真空度,来防止钨阴极表面累积原子。由于超高真空设备价格极为高昂,所以一般除非需要高分辨率SEM,否则较少采用场发射电子枪。14. 冷场发射式最大的优点为电子束直径最小,亮度最高,因此影像分辨率最优。能量散布最小,故能改善在低电压操作的效果。为避免针尖被外来气体吸附,而降低场发射电流,并使发射电流不稳定,冷场发射式电子枪必需在10-10 torr的真空度下操作,虽然如此,还是需要定时短暂加热针尖至2500K(此过程叫做flashing),以去除所吸附的气体原子。它的另一缺点是发射的总电流最小。15. 热场发式电子枪是在1800K温度下操作,避免了大部份的气体分子吸附在针尖表面,所以免除了针尖flashing的需要。热式能维持较佳的发射电流稳定度,并能在较差的真空度下(10-9 torr)操作。虽然亮度与冷式相类似,但其电子能量散布却比冷式大3~5倍,影像分辨率较差,通常较不常使用。16. 萧基发射式的操作温度为1800K,它系在钨(100)单晶上镀ZrO覆盖层,ZrO将功函数从纯钨的4.5eV降至2.8eV,而外加高电场更使电位障壁变窄变低,使得电子很容易以热能的方式跳过能障(并非穿隧效应),逃出针尖表面,所需真空度约10-8~10-9torr。其发射电流稳定度佳,而且发射的总电流也大。而其电子能量散布很小,仅稍逊于冷场发射式电子枪。其电子源直径比冷式大,所以影像分辨率也比冷场发射式稍差一点。17. 场发射放大倍率由25倍到650000倍,在使用加速电压15kV时,分辨率可达到1nm,加速电压1kV时,分辨率可达到2.2nm。一般钨丝型的扫描式电子显微镜仪器上的放大倍率可到200000倍,实际操作时,大部份均在20000倍时影像便不清楚了,但如果样品的表面形貌及导电度合适,最大倍率650000倍是可以达成的。18. 由于对真空的要求较高,有些仪器在电子枪及磁透镜部份配备了3组离子泵(ionpump),在样品室中,配置了2组扩散泵(diffusion pump),在机体外,以1组机械泵负责粗抽,所以有6组大小不同的真空泵来达成超高真空的要求,另外在样品另有以液态氮冷却的冷阱(cold trap),协助保持样品室的真空度。19. 平时操作,若要将样品室真空亦保持在10-8pa(10-10torr),则抽真空的时间将变长而降低仪器的便利性,更增加仪器购置成本,因此一些仪器设计了阶段式真空(step vacuum),亦即使电子枪、磁透镜及样品室的真空度依序降低,并分成三个部份来读取真空计读数,如此可将样品保持在真空度10-5pa的环境下即可操作。平时待机或更换样品时,为防止电子枪污染,皆使用真空阀(gun valve)将电子枪及磁透镜部份与样品室隔离,实际观察时再打开使电子束通过而打击到样品。20. 场发射式电子枪的电子产生率与真空度有密切的关系,其使用寿命也随真空度变差而急剧缩短,因此在样品制备上必须非常注意水气,或固定用的碳胶或银胶是否烤干,以免在观察的过程中,真空陡然变差而影响灯丝寿命,甚至系统当机。

  • 场发射扫描电镜和热发射扫描电镜电子枪性能问题

    场发射扫描电镜和热发射扫描电镜电子枪性能问题

    扫描电镜高质量应用,意味着高分辨高信噪比,在一定扫描电镜时间内,追求小束斑大电流,对于钨灯丝和六硼化X阴极材料的热发射枪扫描电镜,束斑尺寸增加,束斑电流增大,图像信噪比提高,但分辨率降低。束斑尺寸和束斑电流关系如下图LaB6和W,二者呈线性关系,很好理解。但场发射枪扫描电镜,高分辨范围内,在束斑尺寸也就是分辨率变化很小情况下,束斑电流变化两个数量级,接近100倍,这是什么原因呢? 见下图 Feild Emssion Gun 曲线小驰请有操作经验的兄弟姐妹解惑,谢谢!http://ng1.17img.cn/bbsfiles/images/2017/03/201703161732_01_3123849_3.jpg

  • 扫描电子显微镜原理

    课程内容提纲 第一部分:扫描电镜第一章:扫描电镜1.1 慨论1.2扫描电镜原理1.3扫描电镜结构1.4扫描电镜的分辨率1.5扫描电镜图像的形成第二章:高分辨扫描电子显微镜2.1 场发射扫描电子显微镜2.2 SE和BSE之差做为信号的方式2.3 工作距离2.4 使用强磁物镜的方式第三章:扫描电子显微镜的实践3.1 扫描电子显微镜的操作3.2 扫描电子显微镜图像的毛病3.3 扫描电子显微镜的保养3.4 扫描电子显微镜的安装条件3.5 扫描电子显微镜的验收与维护3.6小结第四章:计算机图像演示第二部分:能谱分析第一章、引 言第二章、EDS系统的工作原理1.系统概述2.吸收和处理过程3.计数率的考虑4.谱仪的分辨率第三章、X 射线的产生和与物质的相互作用1.萤光产额2.连续辐射的产生3.莫塞莱定律X射线定性分析4.X射线的吸收5.二次发射(萤光)第四章、X射线测量第五章、能量定性分析1.检出限2.探测器的效率3.空间分辨率3.谱仪分辨率4.伪峰(“artifact”peaks)5.定性分析结果的表示方法第六章、电子显微镜的操作及其参数的选择1.加速电压2.电子源3.孔径光栏选择4.镜筒的合轴5.样品/探测器的几何条件第七章、定 量 分 析1.脉冲计数统计误差2.块状试样的定量分析第八章、能谱的定性和定量分析的方法与步骤1.定性分析概述2.定量分析概述第九章、能谱失真与杂散幅射 1.谱峰的失真2.背底的失真3.杂散辐射第十章、能谱的验收与维护第三部分:实际操作

  • 求推荐场发射扫描电镜(日立or蔡司)

    具体要求:1. 预算300万以内,包括场发射扫描电子显微镜,能谱仪,离子溅射仪;2. 主要从事锂离子电池电极材料研究,磁性样品会比较多,低电压下最好能有较好的分辨率;3. 维护成本低,易上手。此前考察的有蔡司sigma 500和日立su8010,一个是热场,一个是冷场,请专家给给意见~

  • “光敏定位超高光学分辨率显微镜系统”通过验收

    http://www.cas.cn/ky/kyjz/201207/W020120712608069274506.jpg验收专家现场核查设备情况 7月11日,中国科学院计划财务局组织专家在生物物理研究所对徐涛研究员负责的“光敏定位超高光学分辨率显微镜系统”仪器研制项目进行了现场验收。 验收专家组听取了研制工作报告及经费决算报告、用户报告和技术测试报告,现场核查了设备的运行情况,审核了相关文件档案及财务账目。经过提问与讨论,验收专家组一致认为该项目实现了预期的研制目标,完成了实施方案规定的各项任务,同意通过验收。 2006年9月,美国科学家Eric首次在Science杂志上提出光敏定位显微镜(PALM)的概念,使得光学显微镜能够获得与电子显微镜相匹配的分辨率。PALM的基本原理是将荧光分子附著在目标蛋白上,利用全内反射显微镜(TIRFM)技术和单分子定位技术得到细胞内荧光蛋白纳米级分辨率的精确定位。“光敏定位超高光学分辨率显微镜系统”研制项目总体设计灵活高效,结合了TIRFM、EMCCD成像系统、闭环锁焦系统等技术,提出了新的单分子定位算法,实现了三维防漂移反馈校正、细胞内单分子的三维定位和超精细结构观察,完成了一套具有国际领先水平的超高分辨光学显微成像系统,具有较高的创新性。 目前,该系统已在细胞内单分子(如微管蛋白、离子通道等)成像方面发挥了关键作用。研究人员在Nature Methods、PNAS等杂志上发表了世界领先的研究成果,可应用于细胞生物学的超高分辨荧光成像,具有广泛的应用前景。 该项目研制的仪器符合目前蛋白质科学和系统生物学对创新仪器设备和技术的有关需求,有望产生一定的经济效益。

  • 电子显微镜的现状与展望(ZT)

    摘要: 本文扼要介绍了电子显微镜的现状与展望。透射电子显微镜方面主要有:高分辨电子显微学及原子像的观察,像差校正电子显微镜,原子尺度电子全息学,表面的高分辨电子显微正面成像,超高压电子显微镜,中等电压电镜,120kV,100kV分析电镜,场发射枪扫描透射电镜及能量选择电镜等,透射电镜将又一次面临新的重大突破;扫描电子显微镜方面主要有:分析扫描电镜和X射线能谱仪、X射线波谱仪和电子探针仪、场发射枪扫描电镜和低压扫描电镜、超大试样室扫描电镜、环境扫描电镜、扫描电声显微镜、测长/缺陷检测扫描电镜、晶体学取向成像扫描电子显微术和计算机控制扫描电镜等。扫描电镜的分辨本领可望达到0.2—0.3nm并观察到原子像。 关键词 透射电子显微镜 扫描电子显微镜 仪器制造与发展 中图法分类号 TN16 O766.1 Q336    电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展[1]。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖[2]。   电子与物质相互作用会产生透射电子,弹性散射电子,能量损失电子,二次电子,背反射电子,吸收电子,X射线,俄歇电子,阴极发光和电动力等等。电子显微镜就是利用这些信息来对试样进行形貌观察、成分分析和结构测定的。电子显微镜有很多类型,主要有透射电子显微镜(简称透射电镜,TEM)和扫描电子显微镜(简称扫描电镜,SEM)两大类。扫描透射电子显微镜(简称扫描透射电镜,STEM)则兼有两者的性能。为了进一步表征仪器的特点,有以加速电压区分的,如:超高压(1MV)和中等电压(200—500kV)透射电镜、低电压(~1kV)扫描电镜;有以电子枪类型区分的,如场发射枪电镜;有以用途区分的,如高分辨电镜,分析电镜、能量选择电镜、生物电镜、环境电镜、原位电镜、测长CD-扫描电镜;有以激发的信息命名的,如电子探针X射线微区分析仪(简称电子探针,EPMA)等。 半个多世纪以来电子显微学的奋斗目标主要是力求观察更微小的物体结构、更细小的实体、甚至单个原子,并获得有关试样的更多的信息,如标征非晶和微晶,成分分布,晶粒形状和尺寸,晶体的相、晶体的取向、晶界和晶体缺陷等特征,以便对材料的显微结构进行综合分析及标征研究[3]。近来,电子显微镜(电子显微学),包括扫描隧道显微镜等,又有了长足的发展。本文仅讨论使用广泛的透射电镜和扫描电镜,并就上列几个方面作一简要介绍。部分透射电镜和扫描电镜的主要性能可参阅文献[1]。 透射电子显微镜 1、高分辨电子显微学及原子像的观察 材料的宏观性能往往与其本身的成分、结构以及晶体缺陷中原子的位置等密切相关。观察试样中单个原子像是科学界长期追求的目标。一个原子的直径约为1千万分之2—3mm。因此,要分辨出每个原子的位置需要0.1nm左右的分辨本领,并把它放大约1千万倍。70年代初形成的高分辨电子显微学(HREM)是在原子尺度上直接观察分析物质微观结构的学科。计算机图像处理的引入使其进一步向超高分辨率和定量化方向发展,同时也开辟了一些崭新的应用领域。例如,英国医学研究委员会分子生物实验室的A.Klug博士等发展了一套重构物体三维结构的高分辨图像处理技术,为分子生物学开拓了一个崭新的领域。因而获得了1982年诺贝尔奖的化学奖,以表彰他在发展晶体电子显微学及核酸—蛋白质复合体的晶体学结构方面的卓越贡献[4]。 用HREM使单个原子成像的一个严重困难是信号/噪声比太小。电子经过试样后,对成像有贡献的弹性散射电子(不损失能量、只改变运动方向)所占的百分比太低,而非弹性散射电子(既损失能量又改变运动方向)不相干,对成像无贡献且形成亮的背底(亮场),因而非周期结构试样中的单个原子像的反差极小。在档去了未散射的直透电子的暗场像中,由于提高了反差,才能观察到其中的重原子,例如铀和钍—BTCA中的铀(Z=92)和钍(Z=90)原子[5]。对于晶体试样,原子阵列会加强成像信息。采用超高压电子显微镜和中等加速电压的高亮度、高相干度的场发射电子枪透射电镜在特定的离焦条件(Scherzer欠焦)下拍摄的薄晶体高分辨像可以获得直接与晶体原子结构相对应的结构像。再用图像处理技术,例如电子晶体学处理方法,已能从一张200kV的JEM-2010F场发射电镜(点分辨本领0.194nm)拍摄的分辨率约0.2nm的照片上获取超高分辨率结构信息,成功地测定出分辨率约0.1nm的晶体结构[6]。 2.像差校正电子显微镜 电子显微镜的分辨本领由于受到电子透镜球差的限制,人们力图像光学透镜那样来减少或消除球差。但是,早在1936年Scherzer就指出,对于常用的无空间电荷且不随时间变化的旋转对称电子透镜,球差恒为正值。在40年代由于兼顾电子物镜的衍射和球差,电子显微镜的理论分辨本领约为0.5nm。校正电子透镜的主要像差是人们长期追求的目标。经过50多年的努力,1990年Rose提出用六极校正器校正透镜像差得到无像差电子光学系统的方法。最近在CM200ST场发射枪200kV透射电镜上增加了这种六极校正器,研制成世界上第一台像差校正电子显微镜。电镜的高度仅提高了24cm,而并不影响其它性能。分辨本领由0.24nm提高到0.14nm[7]。在这台像差校正电子显微镜上球差系数减少至0.05mm(50μm)时拍摄到了GaAs〈110〉取向的哑铃状结构像,点间距为0.14nm[8]。 3、原子尺度电子全息学 Gabor在1948年当时难以校正电子透镜球差的情况下提出了电子全息的基本原理和方法。论证了如果用电子束制作全息图,记录电子波的振幅和位相,然后用光波进行重现,只要光线光学的像差精确地与电子光学的像差相匹配,就能得到无像差的、分辨率更高的像。由于那时没有相干性很好的电子源,电子全息术的发展相当缓慢。后来,这种光波全息思想应用到激光领域,获得了极大的成功。Gabor也因此而获得了诺贝尔物理奖。随着Mollenstedt静电双棱镜的发明以及点状灯丝,特别是场发射电子枪的发展,电子全息的理论和实验研究也有了很大的进展,在电磁场测量和高分辨电子显微像的重构等方面取得了丰硕的成果[9]。Lichte等用电子全息术在CM30 FEG/ST型电子显微镜(球差系数Cs=1.2mm)上以1k×1k的慢扫描CCD相机,获得了0.13nm的分辨本领。目前,使用刚刚安装好的CM30 FEG/UT型电子显微镜(球差系数Cs=0.65mm)和2k×2k的CCD相机,已达到0.1nm的信息极限分辨本领[10,11]。

  • 【原创】普通生物显微镜可变成媲美共焦显微镜的高分辨率显微镜

    分子级高分辨率的激光扫描共焦显微镜和结构照明显微镜是在细胞生物学和其他相关领域强有力的研究工具,但是它们高昂的价格也使很多潜在用户望而却步。波士顿大学的科学家最近开发出一种显微新技术 (HiLo Microscopy),能够将普通的广域荧光显微镜变成可与激光扫描共焦显微镜和结构照明显微镜相媲美的高分辨率生物显微镜。这一技术包括一个简单的可以在均衡光源和结构光源之间自由转换的显微镜附件和一套功能强大的图像处理软件。该软件仅通过处理在均衡光源和结构光源条件下拍摄的两张分辨率不同的照片就可以得到全分辨率的三维图像。这一技术可用于任何现有的广域荧光显微镜,而成本大大低于激光扫描共焦显微镜和结构照明显微镜。由于成像机理简单,该技术的成像速度是常用的生物显微技术中最快的,而且操作简便,不受样本移动的影响。波士顿大学目前正在积极寻求企业合作,争取早日将这一突破性的技术推向市场。

  • 【原创大赛】扫描电子显微镜原理与应用

    【原创大赛】扫描电子显微镜原理与应用

    植物中某些组织在发育早期非常的小,肉眼无法辨别它的表面结构,一般的光学显微镜也无法满足观察需求,这个时候就需要高分辨率的扫描电子显微镜来帮助植物科研工作者来揭开这些微小组织器官的面纱,把真实表面结构展现给大家。扫描电子显微镜是怎样的工作原理,和其他显微镜的差别在哪里,它为何能有如此高的“分辨率”呢?这些都得从他的工作原理说起。扫描电子扫描电子显微镜(Scanning Electron Microscope),简写为SEM,它是由电子光学技术、真空技术、精细机械结构以及现代计算机控制技术等共同组成。在加速高压作用下,由电子枪发射的电子经电子光学系统(由聚光镜和物镜组成)聚集成束照射到样品表面,对样品进行逐行扫描,从样品表面反射出多种电子,包括二次电子、饿歇电子、反射电子、X射线等,其中二次电子为SEM主要采集信号,通过检出器采集,再经视频放大形成图象信号,经显示器显示成直观的图象信息。相对于光学显微镜而言,SEM具有放大倍数高、分辨率高、成像清晰、立体感强、样品制备简单等诸多优点。1938年第一部扫描电子显微镜就研发成功了,不过直到1965年第一部商用SEM才出现。现在,扫描电子显微镜在植物方面可以对分阶段连续取得的样品进行细胞发生和发育学方面的微观动态研究。除了在植物方面应用,SEM还被广泛应用与动物、医学、化学、物理、地质、机械等多个行业。不少研究者和厂家从二次电子图像分辨率,放大倍数,适用性等方面努力提高SEM的性能,满足人们对SEM的需求。http://ng1.17img.cn/bbsfiles/images/2015/07/201507121833_555080_3023439_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/07/201507121834_555081_3023439_3.jpg

  • 【原创大赛】束斑面积和扫描电镜分辨率关系辨析

    最近坛子里面有人将电子束束斑面积和扫描电镜的分辨率形成因果关系,这也是一个片面的观点。照他的论断场发射也没有意义,把钨灯丝的电子束斑搞小不就可以了? 其实影响扫描电镜分辨能力的因素有很多。而这些因素有许多还相互影响着。要是分开来看就电子枪这个因素来说也不是束斑面积,最关键的是束流密度,最后归结为电子枪的约化亮度(有厂家称为归一化亮度)。束斑面积越小束流强度也会相应的减少,要保证小束斑的束流强度满足有较好的信噪比,就必须有较高的束流密度。这就是各种不同的电子枪获得的分辨能力不同的根本原因。根据蔡司提供的数据,冷场枪的归一化亮度最大是热场枪的两倍,而场发射枪和热发射枪亮度的差别在数量级这个级别上。所以从电子枪亮度来看冷场枪的分辨能力最强。电子枪对扫描电镜分辨能力产生影响的另外一个因素就是电子枪的能量发散度,也就是我们所说的色散。这个指标也是冷场枪最好。能量发散度越小色差也会越小,电镜的分辨能力也会越强。目前FEI发展的所谓超高分辨能力热场扫描电镜麦泽伦就是通过能量过滤来改变电子束的能量发散同时也将电子束束流减少95%左右,基本上将热场变成冷场来做高分辨。不过我们要说的是后天的改善是很难达到先天优势水准的,它和冷场分辨能力上的差别是无法弥补的。我至今还没有看到它拍出让人信服的高分辨照片(8MM工作距离,把80万倍的图像做出来看看)。再一个与电子束有关的因素就是真空度,高分辨图像需要高的真空度以减少电子束的裙散现象。一般的热场真空度偏低,环扫就更低了,这些都会对高分辨图像产生影响的。因此麦泽伦和蔡司的MERLIN真空度都被大幅提高了。热场所谓的低真空要求对高分辨图像合适吗?电子束束斑面积和扫描电镜分辨能力不是一点关系也没有。在能保证足够的束流密度以维持较好的图像信噪比以及相同的加速电压情况下,小束斑会带来较高的分辨能力。

  • 请教:场发射扫描电镜可以做显微偏析吗?

    我正在做材料的显微偏析(S和P),去年我用EPMA做,可是EPMA的成像不好(比不上扫描电镜),我没办法分辨微区(几个微米左右),另外材料中S含量很低,只有几十个ppm左右,SEM打不出来。我想问问大家,我这种情况,用场发射扫描电镜可以实现吗?如果不行,还有什么其他的方法可以实现啊?谢谢,我就靠这个博士毕业呢,呵呵。。。

  • 请教:场发射扫描电镜可以做显微偏析吗?

    我正在做材料的显微偏析(S和P),去年我用EPMA做,可是EPMA的成像不好(比不上扫描电镜),我没办法分辨微区(几个微米左右),另外材料中S含量很低,只有几十个ppm左右,SEM打不出来。我想问问大家,我这种情况,用场发射扫描电镜可以实现吗?如果不行,还有什么其他的方法可以实现啊?谢谢,我就靠这个博士毕业呢,呵呵。。。

  • 【原创大赛】官人代发:扫描电镜加速电压与分辨力的辩证关系

    [b]作者:[/b][font=&]安徽大学现代实验技术中心 林中清[/font]对于扫描电镜加速电压与分辨力关系的认识,存在着两种相互矛盾的观点。即“加速电压越低分辨力越好“、“加速电压越高分辨力越好”。形成这种相互矛盾表述的原因在于我们那种机械、单调的思维模式。在一次偶尔观看的综艺节目中,有嘉宾提到“两面性看问题”这种辩证法的观点对我触动很大,由此开始尝试将辩证法的观点引入到对扫描电镜的认识中来,从而获得许多有意思的结果。由于篇幅原因,本文将只探讨加速电压对扫描电镜分辨力的影响。[color=#00b0f0][b]一、 自然辩证法及其三大规律[/b][/color]《自然辩证法》是德国哲学家弗里德里希恩格斯一部未完成的著作。在著作中对当时的自然科学成就用辩证唯物主义的方法进行了概括,提出了对事物认识中存在的“对立统一”、“否定之否定”、“量变到质变”三大规律。这三大规律告诉我们:任何事物都存在着相互矛盾、相互否定的几个方面,而这些方面各自间的量变会导致事物整体发生质的变化。比如,我们人类一出生,每个个体就包含了“生、死”这两种相互矛盾、相互否定的因素。起先 “生”是主因,因此我们人类就处在一个成长的过程中。但是随着年岁的增长这个主因会做减速变化,而另一个主因“死”会做增速的变化。达到一定时候,也就是“人到中年”,我们将进入生命最旺盛的时期,同时我们也达到了“生、死”这两个主因的主导地位发生变化的关口。接下来 “死”这个因素将占据主导地位,生命个体也开始走入死亡阶段,由此发生质的变化。这就是 “量变到质变”,一切取决于“度”。扫描电镜测试条件的改变对结果影响也遵循这样的规律。任何一个条件的改变必然带来正、反两个方面效果。当正面效果是主导因素时,这个条件增加带来的结果就越好。但随着条件进一步增加反面效果必然占据主导地位,此时该条件继续增加,所带来的结果就会变差。下面以扫描电镜加速电压这个因素的改变,来讨论其对图像细节分辨力这个结果的最终影响。[color=#00b0f0][b]二、扫描电镜加速电压与分辨力的基本认识[/b][/color][b]2.1几个相关名词:[/b]分辨力、加速电压、电子束发射亮度、电子枪本征亮度、样品的信号扩散2.1.1分辨力:“分辨力”指的是扫描电镜分辨细节的能力。分辨力越强我们获取的样品细节也就越多。许多时候我们喜欢用“分辨率”这个概念来描述,但是分辨率这个概念往往和某一确定的数值有关。扫描电镜分辨率的值到底是多少?其影响因素非常多,我们目前还无法找到合适的标样或公式来进行令人信服的科学验证。因此本人倾向用“分辨力”这个模糊的概念来代替。2.1.2 加速电压:电镜的电子枪都设计为三级结构:钨灯丝为阴、栅,阳;场发射是阴、第一阳极、第二阳极。电子束是由阴极、栅极(钨灯丝)或阴极、第一阳极(场发射)形成。该电子束由加载在阴极、阳极或阴极、第二阳极上高压形成的电场加速,给电子束提供能量以形成高能电子束。该电压称为“加速电压”。加速电压越高,形成的电子束能量越大。 2.1.3电子束的发射亮度:电子光学中的亮度定义基本延续光学中关于亮度的定义,只是将功率改成了电流强度。其定义为:单位立体角内的束流密度,量纲是A/cm2.sr。该值受加速电压影响,基本与加速电压成正比关系。但加速电压对其的调整必须在一个水平线上进行,这个水平线就是电子枪的本征亮度(或称为约化亮度)。从电子束发射亮度的定义可以看到,发射亮度越大束流密度也越大、固体角越小。固体角小可以保证形成的信号范围小,高束流密度保证小范围产生大信号量。因此发射亮度大就保证样品在很小范围内产生更多的样品信息,有利于形成样品的高分辨像。2.1.4电子枪的本征亮度:电子枪是电子显微镜的光源。对于显微镜来说光源系统是基础,决定着显微镜品质的高低。描述电子枪品质的参数就是其“本征亮度”或称为 “约化亮度”。量纲是A/cm2.sr.KV。这个值扣除了加速电压影响,反映的是电子枪品质高低。本征亮度越大电子枪品质越好,越有利于形成高分辨像。不同类型电子枪的本征亮度是不同的。电子枪本征亮度是一个常数,一旦电子枪制作完成其本征亮度也就确定了。钨灯丝、六硼化镧、热场、冷场这些不同类型的电子枪,本征亮度依次增大,由其为基础所制造的扫描电镜分辨能力也依次增强。2.1.5样品信号的扩散:电子束与样品相互作用产生样品的各种信息。其中二次电子、背散射电子是扫描电镜表面形貌像的主要信息源。这些信息在样品中会有一定的扩散范围。扩散范围越大对图像的清晰度影响也越大,严重到一定程度就会影响到图像的细节分辨,从而降低图像的分辨力。信号的扩散范围与加速电压、样品特性以及所选的信号能量大小有关。加速电压越大、样品密度越低以及所选的信号能量越强,信号的扩散范围也就越大。图像分辨力也就越差。加速电压对样品信号扩散的影响如下图: [align=center][img]https://img1.17img.cn/17img/images/201910/uepic/d9345286-9fa2-4321-a8a5-b7778aeeba5a.jpg[/img][/align][align=center][b]电子束与样品相互作用产生的二次电子信号及溢出范围示意图[/b][/align]上图所示,电子束轰击到样品后所形成的每一种类样品信息都包含两部分(以二次电子为例):一部分是电子束直接激发并溢出样品表面,称为SE1;另一部分是由样品内部的背散射电子所激发并溢出样品表面,称为SE2。SE1主要集结在电子束周围,因此其扩散范围小,对样品表面细节信息影响也小。SE2由内部背散射电子产生,因此它们离散在电子束周边较宽的范围,且加速电压越大离散范围就越大对图像细节影响也越大。[b]2.2电子枪本征亮度、电子束发射亮度、加速电压之间的关系[/b]电子枪本征亮度、电子束发射亮度、加速电压之间遵循着以下关系:[align=center][img]https://img1.17img.cn/17img/images/201910/uepic/1472813d-72df-437f-b19c-02bf1315466a.jpg[/img][/align]由于电子枪本征亮度是一个定值,由此公式可见:加速电压和电子束发射亮度成正比,加速电压越高发射亮度也就越大。[b][color=#00b0f0]三、 加速电压对扫描电镜分辨力的影响[/color][/b]任何仪器设备在测试过程中只做两件事:产生样品信息,接收及处理样品信息。因此对最终结果的影响,也必然是这两方面的综合效果。各种因素的叠加,起决定性的因素称为“最短板”,也就是影响最大的因素。最短板会随着测试条件的选择、样品的特性以及所需要的样品信息不同而发生改变。扫描电镜测试中需进行四大测试条件的选择:加速电压、束流、工作距离以及探头。其中加速电压和束流的选择主要影响的是信号产生,工作距离和探头的选择主要影响的是信号接收。自然辩证法的观点:任何一个条件的选择都会对最终结果形成正、反两个方面的影响。加速电压的选择也是一样,任何一次加速电压的改变都会带来电子束发射亮度以及信号扩散的变化。以加速电压的提升为例:升高加速电压会带来电子束发射亮度的提升,有利于我们获取样品高分辨像;同时会带来样品信息溢出区域的扩大,不利于我们获取样品高分辨像。加速电压的提升对最终结果影响是有利还是不利,取决于那个因素是“最短板”。信号扩散是最短板,加速电压越高则图像分辨能力越差。[align=center][img]https://img1.17img.cn/17img/images/201910/uepic/18861c0d-0bc8-4dce-b058-1a3670030c7f.jpg[/img][/align][align=center][b]上图为介孔材料在四个不同加速电压下的结果[/b][/align]从上图可见,加速电压小于2KV时,SE1为信号主体,电子束发射亮度是“最短板”,此时,如上面两张图片所示,加速电压越高分辨力越好。当加速电压超过2KV时,SE2将变成信号主体,信号扩散将转变为“最短板”,我们看到下面两张图片的结果,加速电压越高细节分辨越差。因此我们可以看到,任何条件的改变都会带来正、反两方面的结果,而最终结果取决于 “最短板”。 “最短板”也会随着测试条件的改变而发生变化。加速电压改变对分辨力的影响从电子束发射亮度的角度出发来分析,同样也是充满着自然辩证法的规律。想要获得高质量、高分辨的扫描电镜图像,电子束的发射亮度必须达到一定值,可以将这个值定义为:基本亮度。这个值就如同扫描电镜灯丝饱和点一样,在没有达到 “基本亮度”时,加速电压的改变对高分辨像影响的 “最短板”出现在电子束发射亮度上,此时加速电压越高分辨率越好。而电子束发射亮度超过这个值以后,电子束发射亮度提升对最终结果的影响将大大减少,加速电压提升形成的信号扩散将成为影响最终结果的“最短板”,此时加速电压越高仪器的分辨力将大大的减弱。通过2.2中给出的关系式,我们可以清晰的解释为啥钨灯丝必须选择较高的加速电压,而低加速电压测试是场发射电镜的优势所在,也是场发射电镜高分辨测试的基本保证。钨灯丝电子枪的本征亮度要大大低于场发射电子枪,因此要想获得高分辨所需的“基本亮度”,就必须提高加速电压来满足需求,提高加速电压带来的结果就是信号扩散的增加。钨灯丝扫描电镜需要加速电压高于10KV才能获得高分辨像所需的“基本亮度”值,而这个值往往会使得样品信号扩散成为影响最终结果的主要因素,这就是钨灯丝电镜分辨率低的主要原因。扫描电镜高分辨像对加速电压选择的要求:信号扩散尽可能的小,电子束发射亮度尽可能的大。只有提升电子枪的本征亮度才能满足这个要求,这也是电子枪本征亮度越大分辨力也越强的缘由。过高的电子枪本征亮度也会对样品形成热损伤,当热损伤成为对最终结果影响的主体时,分辨力也就无从谈起。He离子镜就是实例。[color=#00b0f0][b]四、 结 束 语[/b][/color]自然辨证法的精要在于:认识中的唯实践论,方法上的唯矛盾论。它以自然科学、人文科学、社会学等学科为基础,总结出了以“对立统一”、“否定之否定”、“量变到质变”三大规律为基础的世界观、认识论以及方法论。和我国传统哲学思想中的“中庸之道”、“过犹不及”等思维模式有着异曲同工之处。对我们认识事物,从事各种实践活动(科学、社会、人文等)都有着现实的指导意义。做任何事情、解决任何问题时都要正确认识到其所存在的两面性、矛盾性,避免单调的思维模式,正确把握适度性原则,将会使我们获得最佳的结果。

  • 【求助】请教原子力显微镜分辨率与扫描器的关系?

    [color=#0162f4][size=4]新进了一台原子力显微镜,配的扫描器是20μm的,不知道分辨率是多少?我也检索了关于原子力显微镜的分辨率的一些问题,但不知道原子力的分辨率是不是与扫描器有关,不同扫描器除了扫描范围不一样,得到的扫描图像的精度也不一样,是不是就是说分辨率不一样呢?关于分辨率的问题常常都在困扰这我,这个问题说简单很简单,说复杂也觉得挺复杂的,请教各位,原子力显微镜分辨率与扫描器的关系如何?如果我希望能看到更高精度的图像,是不是需要升级我现在的20μm的扫描器?衷心感谢各位的解答![/size][/color]

  • 【分享】新一代电子显微镜将会如何发展

    一、高性能场发射枪电子显微镜日趋普及和应用 场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子--纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。 常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。 二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率 球差系数:常规的透射电镜的球差系数Cs约为mm级;现在的透射电镜的球差系数已降低到Cs0.05mm。 色差系数:常规的透射电镜的色差系数约为0.7;现在的透射电镜的色差系数已减小到0.1。 场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具。 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率。即从0.19nm提高到0。12nm甚至于小于0.1nm。 利用单色器,能量分辨率将小于0.1eV。但单色器的束流只有不加单色器时的十分之一左右。因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。 聚光镜球差校正器把STEM的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。 在球差校正的同时,色差大约增大了30%左右。因此,校正球差的同时,也要同时考虑校正色差。 三、电子显微镜分析工作迈向计算机化和网络化在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。 不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变,电镜参数的调整等。以实现对电镜的遥控作用。 四、电子显微镜在纳米材料研究中的重要应用 由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。观察样品中的单个原子像,始终是科学界长期追求的目标。一个原子的直径约为1千万分之2-3mm。所以,要分辩出每个原子的位置,需要0.1nm左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以及其结构与性能之间关系的研究成为人们十分关注的研究热点。 利用电子显微镜,一般要在200KV以上超高真空场发射枪透射电镜上,可以观察到纳米相和纳米线的高分辨电子显微镜像、纳米材料的电子衍射图和电子能量损失谱。如,在电镜上观察到内径为0.4nm的纳米碳管、Si-C-N纳米棒、以及Li掺杂Si的半导体纳米线等。 在生物医学领域,纳米胶体金技术、纳米硒保健胶囊、纳米级水平的细胞器结构,以及纳米机器人可以小如细菌,在血管中监测血液浓度,清除血管中的血栓等的研究工作,可以说都与电子显微镜这个工具分不开。 总之: 扫描电镜、透射电镜在材料科学特别纳米科学技术上的地位日益重要。稳定性、操作性的改善使得电镜不再是少数专家使用的高级仪器,而变成普及性的工具;更高分辨率依旧是电镜发展的最主要方向;扫描电镜和透射电镜的应用已经从表征和分析发展到原位实验和纳米可视加工;聚焦离子束(FIB)在纳米材料科学研究中得到越来越多的应用;FIB/SEM双束电镜是目前集纳米表征、纳米分析、纳米加工、纳米原型设计的最强大工具;矫正型STEM(Titan)的目标:2008年实现0.5Å分辨率下的3D结构表征。 五、低温电镜技术和三维重构技术是当前生物电子显微学的研究热点低温电镜技术和三维重构技术是当前生物电子显微学的研究热点。主要是研讨利用低温电子显微镜(其中还包括了液氦冷台低温电镜的应用)和计算机三维像重构技术,测定生物大分子及其复合体三维结构。如利用冷冻电子显微学测定病毒的三维结构和在单层脂膜上生长膜蛋白二维晶体及其电镜观察和分析。 当今结构生物学引起人们的高度重视,因为从系统的观点看生物界,它有不同的层次结构:个体®器官®组织®细胞®生物大分子。虽然生物大分子处于最低位置,可它决定高层次系统间的差异。三维结构决定功能结构是应用的基础:药物设计,基因改造,疫苗研制开发,人工构建蛋白等,有人预言结构生物学的突破将会给生物学带来革命性的变革。 电子显微学是结构测定重要手段之一。低温电子显微术的优点是:样品处于含水状态,分子处于天然状态;由于样品在辐射下产生损伤,观测时须采用低剂量技术(lowdosetechnique);观测温度低,增强了样品耐受辐射能力;可将样品冻结在不同状态,观测分子结构的变化,通过这些技术,使各种生物样品的观察分析结果更接近真实的状态。 六、高性能CCD相机日渐普及应用于电子显微镜中 CCD的优点是灵敏度高,噪音小,具有高信噪比。在相同像素下CCD的成像往往通透性、明锐度都很好,色彩还原、曝光可以保证基本准确,摄像头的图像解析度/分辨率也就是我们常说的多少像素,在实际应用中,摄像头的像素越高,拍摄出来的图像品质就越好,对于同一画面,像素越高的产品它的解析图像的能力也越强,但相对它记录的数据量也会大得多,所以对存储设备的要求也就高得多。 当今的TEM领域,新开发的产品完全使计算机控制的,图象的采集通过高分辨的CCD摄像头来完成,而不是照相底片。数字技术的潮流正从各个方面推动TEM应用以至整个实验室工作的彻底变革。尤其是在图象处理软件方面,许多过去认为不可能的事正在成为现实。

  • 【转帖】(很好的电镜综述)新一代电子显微镜的发展趋势及应用特点

    新一代电子显微镜的发展趋势及应用特点2007年BCEIA分析测试仪器评议微观结构专业组新一代电子显微镜的发展趋势及应用特点一、高性能场发射枪电子显微镜日趋普及和应用。场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子--纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率。球差系数:常规的透射电镜的球差系数 Cs约为mm级;现在的透射电镜的球差系数已降低到 Cs0.05mm.色差系数:常规的透射电镜的色差系数约为 0.7;现在的透射电镜的色差系数已减小到 0.1。场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具.物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm提高到0.12nm甚至于小于0.1nm.利用单色器,能量分辨率将小于0.1eV.但单色器的束流只有不加单色器时的十分之一左右.因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。聚光镜球差校正器把STEM的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。在球差校正的同时,色差大约增大了30%左右. 因此,校正球差的同时,也要同时考虑校正色差.三、电子显微镜分析工作迈向计算机化和网络化。在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变, 电镜参数的调整等。以实现对电镜的遥控作用.四、电子显微镜在纳米材料研究中的重要应用。由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。观察样品中的单个原子像,始终是科学界长期追求的目标。一个原子的直径约为1千万分之 2-3mm。所以,要分辩出每个原子的位置,需要 0.1nm 左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以 及其结构与性能之间关系的研究成为人们十分关注的研究热点。利用电子显微镜,一般要在200KV 以上超高真空场发射枪透射电镜上,可以观察到纳米相和纳米线的高分辨电子显微镜像、纳米材料的电子衍射图和电子能量损失谱。如,在电镜上观察到内径为 0.4nm 的纳米碳管、Si-C-N 纳米棒、以及Li 掺杂Si 的半导体纳米线等。在生物医学领域,纳米胶体金技术、纳米硒保健胶囊、纳米级水平的细胞器结构,以及纳米机器人可以小如细菌,在血管中监测血液浓度,清除血管中的血栓等的研究工作,可以说都与电子显微镜这个工具分不开。总之:扫描电镜、透射电镜在材料科学特别纳米科学技术上的地位日益重要。稳定性、操作性的改善使得电镜不再是少数专家使用的高级仪器,而变成普及性的工具;更高分辨率依旧是电镜发展的最主要方向;扫描电镜和透射电镜的应用已经从表征和分析发展到原位实验和纳米可视加工;聚焦离子束(FIB)在纳米材料科学研究中得到越来越多的应用;FIB/SEM双束电镜是目前集纳米表征、纳米分析、纳米加工、纳米原型设计的最强大工具;矫正型 STEM (Titan)的目标:2008年实现0.5Å 分辨率下的3D结构表征。

  • 高通量(场发射)扫描电子显微镜技术进展

    分享一篇关于高通量SEM的文献。《电子显微学报》2023年4月,第42卷第2期。本文重点阐述高通量扫描电镜概念与发展的过程,具体介绍了高通量扫描电镜拟要解决的问题和对应的设计思路,给出了综合数据通量的定义和影响因素。同时阐述了相应的实现手段,分别从重要模组角度介绍高通量扫描电镜的核心性能。通过实际案例计算,分析比较了高通量扫描电镜与标准场发射扫描电镜间的结果差异。探讨了高通量扫描电镜适合应用的领域,同时指出了目前的设计还存在的不足并展望该技术今后的发展前景。

  • 扫描电镜(SEM)分辨率的四个基本影响要素

    扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观形貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。[align=center][b][color=#ff0000]扫描电镜的优点[/color][/b][/align]①有较高的放大倍数,20-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。[align=center][b][color=#ff0000]影响扫描电镜(SEM)的几大要素[/color][/b][/align][b][color=#ff0000]分辨率[/color][/b]影响扫描电镜的分辨本领的主要因素有:A. 入射电子束束斑直径:为扫描电镜分辨本领的极限。一般,热阴极电子枪的最小束斑直径可缩小到6nm,场发射电子枪可使束斑直径小于3nm。B. 入射电子束在样品中的扩展效应:扩散程度取决于入射束电子能量和样品原子序数的高低。入射束能量越高,样品原子序数越小,则电子束作用体积越大,产生信号的区域随电子束的扩散而增大,从而降低了分辨率.C. 成像方式及所用的调制信号:当以二次电子为调制信号时,由于其能量低(小于50 eV),平均自由程短(10~100 nm左右),只有在表层50~100 nm的深度范围内的二次电子才能逸出样品表面, 发生散射次数很有限,基本未向侧向扩展,因此,二次电子像分辨率约等于束斑直径。当以背散射电子为调制信号时,由于背散射电子能量比较高,穿透能力强,可从样品中较深的区域逸出(约为有效作用深度的30%左右)。在此深度范围,入射电子已有了相当宽的侧向扩展,所以背散射电子像分辨率要比二次电子像低,一般在500~2000nm左右。如果以吸收电子、X射线、阴极荧光、束感生电导或电位等作为调制信号的其他操作方式,由于信号来自整个电子束散射区域,所得扫描像的分辨率都比较低,一般在l 000 nm或l0000nm以上不等。[b][color=#ff0000]放大倍数[/color][/b]扫描电镜的放大倍数可表示为M =Ac/As式中,Ac—荧光屏上图像的边长;As—电子束在样品上的扫描振幅。一般地,Ac 是固定的(通常为100 mm),则可通过改变As 来改变放大倍数。目前,大多数商品扫描电镜放大倍数为20~20,000倍,介于光学显微镜和透射电镜之间,即扫描电镜弥补了光学显微镜和透射电镜放大倍数的空挡。[b][color=#ff0000]景 深[/color][/b]景深是指焦点前后的一个距离范围,该范围内所有物点所成的图像符合分辨率要求,可以成清晰的图像;也即,景深是可以被看清的距离范围。扫描电子显微镜的景深比透射电子显微镜大10倍,比光学显微镜大几百倍。由于图像景深大,所得扫描电子像富有立体感。电子束的景深取决于临界分辨本领d0和电子束入射半角αc。其中,临界分辨本领与放大倍数有关,因人眼的分辨本领约为0.2 mm, 放大后,要使人感觉物像清晰,必须使电子束的分辨率高于临界分辨率d0 :电子束的入射角可通过改变光阑尺寸和工作距离来调整,用小尺寸的光阑和大的工作距离可获得小的入射电子角。[b][color=#ff0000]衬 度[/color][/b]包括:表面形貌衬度和原子序数衬度。表面形貌衬度由试样表面的不平整性引起。原子序数衬度指扫描电子束入射试祥时产生的背散射电子、吸收电子、X射线,对微区内原子序数的差异相当敏感。原子序数越大,图像越亮。二次电子受原子序数的影响较小。高分子中各组分之间的平均原子序数差别不大;所以只有—些特殊的高分子多相体系才能利用这种衬度成像。

  • 【原创大赛】【官人按】扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)

    【原创大赛】【官人按】扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)

    [b][color=#00b0f0]【作者按】[/color][/b]看得更远、观察得更微小是人类探索宇宙的两个面向。人眼的理论分辨极限是50微米(教科书的观点是明视距离25cm处,可分辨100微米),要想观察得更微小就需要借助显微镜。显微镜的组成:光源、透镜系统以及信号接收及处理系统。光源提供一个激发样品信号的激发源(可见光、电子束),透镜系统是对该激发源以及激发样品信息的过程进行操控,信号接收、处理系统主要是对样品被激发的信息进行接收、处理形成样品放大图像。电子显微镜还可进行区域的元素及晶体结构、取向分析。显微镜依据光源和透镜的类型分为:光学显微镜和电子显微镜:光学显微镜是以可见光为光源,采用光学玻璃透镜系统,接收及信号处理系统为人眼或一些光学探头及配套的专用软件。电子显微镜基本组成:三极电子枪产生的高能电子束形成光源,采用电磁透镜系统对电子束进行操控(会聚、发散、放大、缩小),信号接收、处理系统采用的是荧光屏或各类探头及配套的专用软件。显微镜的成像方式主要有两类:散射束(电子显微镜是平行束)成像和会聚束成像。散射束(平行束)成像:散射束(平行束)成像是最早期的一种成像方式。绝大部分光学显微镜以及早期透射电镜都采用这种成像模式。上世纪70年代透射电镜增加了会聚束成像模式(STEM),使分辨率达到原子级。散射束成像模式是将一束散射光(电子显微镜采用平行光)打在样品上产生含有样品特征的透射光或反射光(体视镜),由透镜系统对其进行会聚、放大、成像。透射电镜的成像模式类似于幻灯机。[align=center][b][img=,690,183]https://ng1.17img.cn/bbsfiles/images/2020/08/202008280937459642_9510_3389662_3.jpg!w690x183.jpg[/img][/b][/align][align=center][b]透射电镜的成像模式,节选自章效峰《显微传》[/b][/align]散射束成像模式的成像速度快(一次同步成像),有利于显微系统的原位动态观察,但分辨能力不如会聚束成像模式。因此目前在透射电镜超高分辨观察中,获取高分辨原子像常采用聚光镜球差校正的会聚束成像模式(STEM),高分辨原位操控及动态观察常采用物镜球差校正的散射束(平行光)成像方式。会聚束成像:该模式主要在电子显微镜中应用,因此以电子显微镜为例。会聚束成像是将电子束会聚成极细的电子探针。该探针由交变磁场(扫描线圈)拖动,在样品上来回扫描,激发样品各点信息,被专用探头接收、处理形成样品放大的图像。扫描电镜采用的正是会聚束成像模式。该模式具有较高的分辨能力,但是成像时间较长,容易形成热损伤。下面就扫描电镜结构组成及工作原理、放大倍数、分辨率这三部分内容进行较为详细的探讨。[align=center][b][color=#00b0f0]一、扫描电镜的结构及工作原理[/color][/b][/align][b] 1.1扫描电镜的结构组成如下图:[/b][align=center][img=,690,472]https://ng1.17img.cn/bbsfiles/images/2020/08/202008280937580737_7536_3389662_3.jpg!w690x472.jpg[/img][/align][b]1.2结构及功能简介[/b]整机分为:镜筒部分以及电气部分1.2.1镜筒部分:(1)光源:三极电子枪:产生高能电子束。热发射的束斑直径小于50um,场发射束斑直径小于10nm。(2)透镜系统:聚光镜:会聚电子枪产生的电子束。物镜:会聚电子束并将其会聚在样品表面。扫描线圈:产生交变磁场拖动电子束在样品表面扫描消像散线圈:消除因镜筒精度原因造成磁场不均匀而产生电子束强度的各向差异。将椭圆斑校成圆斑。极靴:引导、改善磁流体。形成高强度、均匀、封闭的磁场。(3)真空系统:各类机械泵。给电镜提供工作所需的真空环境。1.2.2电气部分:(1)工作电源:对应镜筒各部件(电子枪、各类透镜及真空泵)(2)信号接收及处理:探头、信号放大、信号处理、显示器(3)功能:给镜筒各个部件提供工作电源,接收、处理样品产生的特征信息。1.3工作原理三极电子枪产生高能电子束,经聚光镜系统会聚后,由物镜将其会聚于样品表面,形成电子探针。该电子探针将激发样品表面的各类信息。其中背散射电子、二次电子以及特征X射线是扫描电镜成像以及进行各种分析(元素分布及含量、晶体取向、应力等)的主要信号源。这些样品信息由各类探头接收,经各种专门软件分析形成样品的形貌像、成分像并进行区域元素定性、半定量、特殊样品的区域定量分析,也可对晶体样品进行区域的结构、取向、应力等分析。电子束固定不动,只可获得某点的信息,想获取样品整个表面信息就必须利用扫描线圈产生的交变磁场拖动电子束在样品表面来回扫描,将样品各点信息激发出来,形成样品的整体信息进行分析处理,完成扫描电镜分析的整个工作过程。[align=center][color=#00b0f0][b]二、扫描电镜的放大倍数[/b][/color][/align]放大倍数是扫描电镜的重要指标之一。各种显微系统由于工作原理不同,计算放大倍数的方式也不同。但是相同点都是“原始图像的大小”除以“物体的大小”。[align=center][img=,516,86]https://ng1.17img.cn/bbsfiles/images/2020/08/202008280938116540_3877_3389662_3.jpg!w516x86.jpg[/img][/align]扫描电镜放大倍数的调整方式是:图像尺寸保持不变,通过改变加载在镜筒扫描线圈上的锯齿波信号幅度来调整电子束在样品上的扫描范围,从而改变扫描电镜的放大倍数。早期的扫描电镜图像尺寸约定俗成为5英寸相片的长: 即2.54x5=12.7cm。但是冷场电子枪(日本人专利)的出现,欧美电镜厂商开始将计算放大倍数的图像尺寸加大,出现了几种不同的放大倍数计算方式:图像放大、屏幕放大。图像放大倍数(欧美厂家又称为“宝丽来放大”):采用12.7cm边长的图像尺寸来计算放大倍数。屏幕放大倍数:采用成像的屏幕尺寸来计算放大倍数,这个值非常混乱,早期是30cm近来出现27cm等几种不同尺寸。这使得同一个样品、同一个位置、同样的放大倍数出现不同大小的图像。想获得统一的结果必须进行转换,要转换就必须先确定图像属于那种放大模式。确定图像放大模式的方式如下:[align=center][img=,690,233]https://ng1.17img.cn/bbsfiles/images/2020/08/202008280938206307_6626_3389662_3.jpg!w690x233.jpg[/img][/align]屏幕放大和图像放大的转换方式如下:[align=center][img=,653,197]https://ng1.17img.cn/bbsfiles/images/2020/08/202008280938310264_6464_3389662_3.jpg!w653x197.jpg[/img] [/align]左图图像放大,右图屏幕放大。从图像上看,同样的样品,左图7万倍的图像比右图15万倍的图像都大。两者的等效结果如何?首先要明确这是由那种模式等效到那种模式。如果图像放大等效屏幕放大(300mm),则做如下计算:屏幕尺寸 ÷ 图像尺寸放大倍数,即300÷127×7=16.5万倍。结果就是图像放大7万倍等效于屏幕放大(300mm)的16.5万倍。 欧美厂家的特朗普式退群做法给我们正确分析扫描电镜的测试结果制造了麻烦。统一放大倍数的性质将方便我们将各不同厂家扫描电镜形貌图像对应起来。掌握正确的转换方式,才能正确读取扫描电镜的图像信息,避免由于放大倍数特性不一致引起的图像假象。[align=center][b][color=#00b0f0]三、分辨率[/color][/b][/align]电镜分辨率定义为:仪器所能分辨的两点间最小距离。一直以来,分辨率被认为是显微系统最关键的性能指标,没有之一。但是扫描电镜分辨率指标由于缺乏令人信服的标样来验证,所以它又是一个最不可靠的指标。各厂家可以在这个指标上随意的发挥(现在都写到0.6nm),因为我们没有标样来验证它的正确或不正确。金颗粒标样一直都被认为是验证扫描电镜分辨率的不二选择,但是它符合标样的要求吗?标样必须满足的三要素:(1)明确的细节标示。样品中要有被明确标示尺寸的细节,或者样品有极为规律的结构且标明尺寸(例如:光栅等)。(2)稳定的性能。样品必须稳定,不能今天这样,明天那样。(3)可溯源。标样都有可以被追溯的源头,并被权威机构所验证。金颗粒标样是一条都不满足,如何成为标样呢?目前流传着一个计算分辨率的软件,被某些厂家所推崇。但我认为即便它的计算方法极其科学且被大家所认可(其实被质疑点很多),那也是针对图像灰度差来计算,这个灰度差是否表示该处存在样品的细节信息?这是无法给出。就如空中楼阁般,虽然构造很完美,但没有根基,所以问题多多。接下来我们看看那些小于1nm的扫描电镜分辨率指标是否可靠。我们知道扫描电镜分辨率指的是:仪器所能分辨的样品最小细节,因此分辨率的影响因素应当归结到样品信号溢出范围及溢出量、样品仓环境和接收系统的能力。即便只考虑样品信号溢出范围及溢出量。影响因素也由两部分组成:激发源、样品本身的性质。激发源考量的是电子束面积、强度、能量、会聚角,这些归结为电子束的发射亮度【β'=电子束流强度(I)/(电子束面积*会聚角)】和加速电压。样品本身性质考量的是:形态(晶态、非晶态)、平均原子序数、密度等等。如果按传统观点只考虑电子束面积,分辨率又是多少呢?[align=center][img=,270,223]https://ng1.17img.cn/bbsfiles/images/2020/08/202008280938423492_354_3389662_3.jpg!w270x223.jpg[/img][/align]上图是一张经典的束流和束斑对照图。我们可以看到扫描电镜的电子束最小束斑直径是:冷场电子枪(产生最小电子束斑),在加速电压30KV、束流1pA时电子束直径为1.2nm左右。按照传统观念,扫描电镜的分辨率不可能优于1.2nm,考虑二次电子信号溢出呈高斯分布,那么分辨率最多能到1nm左右。低于1nm基本无法想象。现实测试中我所观察到的最好分辨率是十二面体ZIF-8的微孔,1.5nm左右。该细节被BET(氮气吸附脱附等温曲线)法证明存在。[align=center][img=,582,223]https://ng1.17img.cn/bbsfiles/images/2020/08/202008280939586979_7324_3389662_3.jpg!w582x223.jpg[/img][/align]图中可以看到在十二面体上有许多小孔按照红箭头所示方向排列,用仪器自带测量软件测量孔的直径大致在1.5nm以下。上面分析了,扫描电镜分辨率指标是一个无法被验证的不可靠指标,那么那个指标能充分反映扫描电镜分辨力?[align=center][b]电子枪的本征亮度,量纲为:A/cm2.sr.kv[/b][/align][align=center][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2020/08/202008280940135554_2764_3389662_3.jpg!w690x457.jpg[/img][/align][align=center](注:图片截自国外资料,图中"工作真空"后的单位精确地说应为mbar,10[sup]-10[/sup]mbar=10[sup]-8[/sup]Pa)[/align]电子枪本征亮度反映的是电子源品质,它随电子枪的构成而固定。各类电子枪都有其明确的被检测值,因此其量化也是十分明确的。本征亮度大有利于我们充分选择测试条件获得更多的样品信息。图像细节更丰富,分辨能力也更强大。当然任何因素的改变都将符合辩证法的规律,其影响是正、负两个方面。本征亮度的负面影响主要来自样品热损伤,但也有一个度。冷场电子枪的热损伤是次要因素,它带来的高分辨结果却是主要因素。我对扫描电镜的认识及所形成的理论,是以我对实际操作中的经验总结为基础。与很多传统的理念有背离,不足之处希望大家能指出探讨。百花齐放、百家争鸣将帮助我们更全面的认识事物。[color=#00b0f0][b]参考书籍:[/b][/color]《扫描电镜与能谱仪分析技术》张大同2009年2月1日.华南理工出版社《微分析物理及其应用》 丁泽军等 2009年1月.中科大出版社《自然辩证法》 恩格斯 于光远等译 1984年10月.人民出版社《显微传》 章效峰 2015年10月.清华大学出版社

  • 《场发射扫描电镜的理论与实践》新书发布

    [font=宋体]到人类对自然的探索永无止境,为了了解和研究自然,人类最初通过肉眼来观察自然中的各种现象。但是人眼的观察能力有限,在正常情况下,人眼可分辨的最小尺寸约为[/font]0.2 mm[font=宋体]。为了把人眼的观察范围拓展到微观领域,就必须借助显微镜,将微观形貌放大,来满足人眼观察的需要。[/font][font=宋体]不管哪种类型的显微镜,其工作原理都相似,一束极细的照明光束[/font]([font=宋体]电子束[/font])[font=宋体]以一定的方式照射到样品上,照明光束[/font]([font=宋体]电子束[/font])[font=宋体]和样品间的相互作用产生带有样品信息的信号,将这些信号收集、放大和成像,形成样品的放大图像,最后被记录介质记录。[/font][font=宋体]扫描电镜以聚焦电子束为照明源,聚焦电子束以周期性方式逐点逐行扫描样品,产生带有样品信息的各种信号,包括背散射电子、二次电子和特征[/font]X[font=宋体]射线。信号接收装置收集、放大和处理这些信号,从而获得微区放大图像和微区元素组分信息。[/font][align=left][font=宋体]如何使用扫描电镜?如何处理电镜获得的微观图像?[/font][/align][align=center][font=宋体][img=,225,304]https://ng1.17img.cn/bbsfiles/images/2024/04/202404231030103572_8293_1603833_3.png!w225x304.jpg[/img]《场发射扫描电镜的理论与实践》[/font][/align][align=center][font=宋体]作者:李永良,徐驰,李文雄,张月明 著[/font][/align][align=center][font=宋体]出版社:人民邮电出版社[/font][/align][align=center][font=宋体]出版时间:2024-4[/font][/align][align=center][font=宋体]书号:9787115631954[/font][/align][align=left][font=宋体]内容简介[/font][/align][align=left][font=宋体] [/font][/align][align=left][font=宋体]场发射扫描电镜的出现,标志若扫描电镜进入一个崭新的时代,扫描电镜技术取得了巨大进步。新型电子枪、浸没式物镜、穿镜二次电子探测器、模拟背散射、E×B和电子束减速等新技术的应用,极大地提高了扫描电镜的性能,场发射扫描电镜已经成为各类分析测试实验室必备的仪器。[/font][/align][align=left][font=宋体]本书系统地论述了扫描电镜基础理论、扫描电镜的结构和成像原理,通过实操案例详细地介绍了扫描电镜的调试和参数选择,重点介绍了样品制备及场发射扫描电镜在生物、环境和材料领域中的应用。 本书适合材料、化学、生物、微电子、半导体和环境等领域的科研院所和高校相关专业师生阅读,可为相关行业研究人员和从业者提供有益参考。 [/font][/align][align=left][/align][align=left][/align][font=宋体][/font][align=left]本书特点[/align][align=left][/align][align=left]1. [font=宋体]理论研究[/font]+[font=宋体]实践操作的强大作者团队[/font][/align][align=left][/align][font=宋体][/font][align=left][font=宋体]本书作者[/font][font=宋体]李永良在北京师范大学分析测试中心电镜室从事电子显微镜的教学和测试工作30余年,具有丰富的扫描电镜操作和分析经验,能够深入了解初学者、进阶者在不同使用阶段面临的具体问题,同时有多位具有丰富扫描电镜使用和管理经验的从业者共同编著,提供专业的指导和帮助。[/font][/align][align=left][/align][font=宋体][/font][align=left] [/align][align=left][/align][align=left]2. [font=宋体]从电镜结构到成像原理,帮助读者全面了解场发射扫描电镜[/font][/align][align=left][/align][font=宋体][/font][align=left][font=宋体]本书系统论述了场发射扫描电镜的理论与实践。在前两个章节分别介绍了扫描电镜基础理论、结构和成像原理。[/font]=[font=宋体],能够帮助刚接触到扫描电镜的实验室新手、行业新入门者建立牢固的基础,应对更多更复杂的实验室使用场景。[/font][/align][align=left][/align][align=left]3. [font=宋体]从参数选择到样品制备再到问题图像处理,从实践角度指导操作[/font][/align][align=left][/align][font=宋体][/font][align=left]仪器的调试和工作参数对扫描电镜的最终图像影响很大,本书通过实操案例介绍了扫描电镜的调试过程及不同工作参数对图像的影响,总结了包括粉末样品、截面样品等一些常见样品的制备方法,结合具体图像分析了图像散焦、辐照损伤等问题图像处理的办法。[/align][align=left][/align][align=left]4. [font=宋体]具体案例出发,展示扫描电镜在多个领域的具体应用[/font][/align][align=left][/align][font=宋体][/font][align=left][font=宋体]本书分别选择扫描电镜在植物花粉、纳米材料、[/font]PM?s[font=宋体]颗粒物、建筑材料、沉积膜、磁性粉末和纳米催化剂等方面的应用,列举了大量的实例和图片,希望为帮助多个学科领域的读者正确理解扫描电镜。[/font][/align][align=left][/align][font=宋体][/font][align=left]推荐读者[/align][align=left][/align][font=宋体][/font][align=left] [/align][align=left][/align][font=宋体][/font][align=left]本书的读者包括开设相关课程的部分职业学校的学生、生化环材物理等学科的大学生、研究生以及电镜操作人员。 [/align][align=left]扫描电镜已经普及,在国内部分高职院校开设了培训课程,很多大学也开设了扫描电镜的选修课或者培训课程,本书可以作为参考书,也适合于企业、研究所的电镜培训班使用。[/align][align=left][/align][font=宋体][/font][align=left]作者简介[/align][align=left][/align][align=left][font=宋体]李永良 北京师范大学分析测试中心副研究员,1988年入职北京师范大学分析测试中心电镜室,从事电子显微镜的教学和测试工作30余年,在国内外期刊上合作发表论文超150篇,其中第一作者论文38篇。 徐驰 北京师范大学核科学与技术学院讲师、硕士生导师,兼任北京师范大学分析测试中心透射电子显微镜主管工程师。中国核学会射线束技术分会理事,主要研究方向为金属材料辐照损伤、极端环境材料腐蚀机理,以及[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color]等离子体氧化技术应用。 李文雄 2005年进入电子显微镜行业,从业以来,努力将碎片化的销售和管理经验进行系统化梳理。中国人民大学商学院硕士,中国人民大学北京校友会副秘书长,中国人民大学西南校友会副会长。 张月明 2017年毕业于钢铁研究总院,师从李卫院士,研究领域为稀土永磁材料。数年来一直致力于电子显微镜的推广工作,对电子显微镜在金属及磁性材料领域的应用有独到见解,现就职于日立科学仪器(北京)有限公司。 [/font][/align][align=left][font=宋体][/font][/align][align=left][font=宋体][img=,690,1190]https://ng1.17img.cn/bbsfiles/images/2024/04/202404231038403967_1874_1603833_3.jpg!w690x1190.jpg[/img][/font][/align][align=left][/align][align=left][/align][font=宋体][/font][align=left] [/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制