当前位置: 仪器信息网 > 行业主题 > >

大气环境下热电性能评估系统

仪器信息网大气环境下热电性能评估系统专题为您提供2024年最新大气环境下热电性能评估系统价格报价、厂家品牌的相关信息, 包括大气环境下热电性能评估系统参数、型号等,不管是国产,还是进口品牌的大气环境下热电性能评估系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大气环境下热电性能评估系统相关的耗材配件、试剂标物,还有大气环境下热电性能评估系统相关的最新资讯、资料,以及大气环境下热电性能评估系统相关的解决方案。

大气环境下热电性能评估系统相关的资讯

  • 《大气VOCs在线监测系统评估工作指南》在京发布
    p  11月21日,清洁空气联盟在京发布中国首个《大气VOCs在线监测系统评估工作指南》(以下简称“《指南》”)。《指南》由清洁空气创新中心联合上海市环境监测中心、深圳环境科学研究院共同编制。/pp  据了解,VOCs,即挥发性有机物,是在室温以气态分子的形态排放到空气中的所有有机化合物的总称。VOCs不仅本身具有较强毒性,还是影响我国区域大气复合污染的重要前体物和参与物。“十三五”规划纲要首次把VOCs纳入约束性指标,环保部发布了一系列VOCs监测标准和治理方案。目前我国已有北京、上海等17个省份开征VOCs排污费。上海、天津、深圳等城市明确要求在线监测。/pp  本《指南》是VOCs在线监测领域首份框架性和指导性文件。《指南》基于目前上海、深圳等城市开展VOCs在线监测评估工作中的经验,形成了大气VOCs在线监测系统的评估框架和基础方法,以支持省市开展大气VOCs在线监测管理,完善城市大气VOCs监测的技术体系,同时促进该行业的规范化发展。/pp  VOCs作为臭氧和PM2.5的重要前体物,是我国当前区域复合型空气污染的主要贡献者之一。VOCs以及其所形成的二次污染物会对人体健康带来负面影响,部分VOCs还有基因毒性和致癌性。同时,部分VOCs有明显异味,会造成区域矛盾和投诉。随着我国灰霾防治政策更新的加速,VOCs治理政策也在快速集中出台。目前,VOCs治理已经成为十三五大气污染防治的工作重点之一,各地的相关工作都在陆续展开。/pp  然而,VOCs的监测和管理却是极具挑战的。一方面,VOCs的来源广泛,大体分为自然源和人为源。在我国大部分城市,人为排放的VOCs远高于自然源,主要来自固定源燃烧、道路交通、溶剂产品使用和工业过程。另一方面,VOCs的组成复杂,它并不是一种物质,而是一类物质的组合(主要包括烷烃、烯烃、芳香烃、卤代烃、含氧烃、氮烃、硫烃、低沸点多环芳烃等),物理和化学性质差异大。我国目前对于发起VOCs在线监测方法的评估研究相对薄弱,而国际上也缺乏先例。/pp  “VOCs的监测是一项非常精细化的工作,我们每一步都不能松懈,才能把它做好”,上海市环境监测中心有机分析特聘专家林长青表示。/pp  中国环科院研究员高健在发布会上表示,“这本指南很好的规范了当前VOCs在线监测技术市场的状况,为获得准确可靠、科学有效的监测数据提供了科学保障”。/pp  在VOCs在线监测领域,上海开展工作较早。“依托空气超级站和工业区空气特征污染监控网的建设与应用,近年来,上海市大胆创新、勇于实践,探索了VOCs在线监测技术和体系,应用了在线色谱、质谱、光谱和传感器等主流方法,初步建立大气污染监管新模式,在有效提升VOCs监测能力方面取得了一定成效。”上海市环境监测中心高级工程师高松介绍到。/pp  上海市环境监测中心崔虎雄在会上表示,“市场上VOCs在线监测仪品牌众多,差异较大,很需要从框架角度给VOCs仪器选择明确的指导”。/pp  研究显示,深圳2014年PM2.5化学组成中,有机物质量占比最大,而臭氧从2015年开始取代PM2.5成为深圳市首要大气污染物,说明VOCs对深圳市PM2.5和臭氧污染的影响越来越显著。为了改善深圳市大气环境质量,实现2020年PM2.5浓度达到25微克/立方米的目标,加强VOCs的精细化控制和管理显得尤为必要。深圳市环境科学院介绍:“深圳市于2016年启动了VOCs在线监测试点工作,选取了6家企业3个仪器商的仪器设备进行在线设备性能评估,在试点工作的基础上将逐步推动挥发性有机物重点排放企业的在线监测。”为了加强VOCs污染排放控制,《深圳市大气环境质量提升计划(2017-2020年)》提出“2019年底前,全市挥发性有机物产生量超过200吨的重点监管企业全部配套在线监测系统”。/pp  “该指南是一个为VOCs在线监测系统评估、选型、建站及人员培训提供技术支持与参考的文件。”清洁空气创新中心高级项目经理凌炫提到,“指南在设计上更多的从用户友好性的角度,给出了专业解释与要点提炼,同时还引入了实际应用案例,以便读者能够更快的利用该指南开展工作”。/pp  纵观全球,欧美都经历了几十年的VOCs防治历程,到现在,VOCs仍是欧美大气污染防治的重点领域。国际经验表明,VOCs的治理市场将是一个快速成长的市场,并将长期稳定。“VOCs监测目前仍是一个新兴领域,据我们预测,该领域在未来或将迎来百亿的市场空间”,清洁空气创新中心主任解洪兴表示。/p
  • 【热电资讯】厚度方向热电性能评价系统ZEM-d正式开放免费样品测试预约
    日本ADVANCE RIKO公司50多年来专业从事“热”相关技术和设备的研究开发,一直处于相关领域的技术前沿。2018年初,Quantum Design中国子公司与日本ADVANCE RIKO公司就新先进热电材料测试技术开展合作,将小型热电转换效率测量系统Mini-PEM、塞贝克系数/电阻测量系统ZEM、热电转换效率测量系统PEM及大气环境下热电材料性能评估系统F-PEM引进中国。 2018年中下旬,Quantum Design中国子公司与日本ADVANCE RIKO正式达成合作协议,作为其热电材料测试设备在中国的代理商继续深度合作,并将日本ADVANCE RIKO的相关设备引入到中国大陆、香港和澳门地区进行进一步推广。2019年,在日本ADVANCE RIKO公司的通力支持下,Quantum Design中国子公司在北京建立了部分热电设备示范实验室和用户服务中心,更好地为中国热电技术的发展提供设备支持和技术服务。 日本ADVANCE RIKO公司塞贝克系数与电阻测量系统ZEM系列在全球销售量超过300台,广获全球科研及工业用户的赞誉,成为热电材料领域应用广泛的测试设备。2019年,在此前的成功基础上,ADVANCE RIKO公司推出了专门用于评价聚合物厚度方向上热电性能的全新设备ZEM-d。 与之前ZEM系列产品(ZEM-3/ZEM-5)不同,新型号ZEM-d主要测量聚合物薄膜厚度方向上的塞贝克系数和电阻率,可以测量的样品薄为10 μm。此外,ZEM-d与采用激光闪光法测量薄膜的热扩散率/导热系数测量方向一致,其测量结果可广泛应用于薄膜热电材料的性能评价。 为更好服务国内热电材料研究领域的客户,满足客户体验需求, Quantum Design中国子公司与日本ADVANCE RIKO公司携手推出 厚度方向热电性能评价系统ZEM-d免费样品测试活动。活动时间自即日至2020年5月15日止,如您有样品测试需求,欢迎通过官方微信平台(QuantumDesignChina、电话010-85120280或邮箱info@qd-china.com联系我们,公司将有专人对接,与您协调具体的样品测试工作。
  • 中国环境科学学会发布大气环境领域权威进展报告
    p  2016年5月7日,中国环境科学学会《2014-2015环境科学技术学科发展报告(大气环境)》图书发布仪式在京举行,中国环境科学学会副理事长兼秘书长任官平先生与报告首席科学家浙江大学高翔教授共同启动仪式。/pp  这本报告是一本为大气领域科技工作者和社会各界提供系统性参考的权威工具书,全面综述和分析评述了“十二五”期间我国大气环境领域的科学研究、技术研发及管理实践进展,前后历时两年,在梳理和回顾大量科研文献和统计数据基础上凝练而成,内容包括一个综合报告作为总论,以及五个重点子领域的专题报告,即 “大气环境基础研究”、“大气环境监测技术”、“大气环境与健康”、“大气污染治理技术”和“大气环境质量管理技术与实践”./pp  报告执笔人均为大气环境领域资深科学家,编写团队由高翔教授领衔,主要成员包括北京大学邵敏教授、中科院合肥物质科学研究院刘建国研究员、复旦大学阚海东教授和清华大学王书肖教授。/pp  近年来,我国的大气环境污染问题成为国内国际关注的热点和焦点,大气环境治理深刻关系到国计民生,国内学者取得了许多重要进展和成果,学科得到长足的发展。/pp  任官平先生指出,学科发展研究及报告编写作为中国环境科学学会一项长期和基础性工作,对引领学科发展具有重要意义,本次报告编写聚焦于大气环境这一焦点领域,充分结合我国目前严峻的大气环境污染问题、社会各界对大气环境学科知识体系不了解等具体需求,深入浅出地描绘了学科发展现状和发展趋势。/pp  高翔教授表示,“大气环境科学技术学科发展研究及本书出版,让我们对当前的学科研究范围、研究重点、研究手段、学科进展及发展趋势等有了更深的认识。当前,大气环境学科研究范围正从自然科学、工程与技术科学不断向与社会学融合的跨学科领域拓展 研究重点从支撑污染物总量控制逐步向全面支撑环境质量改善转变 研究手段从传统技术方法向大力发展交叉学科促进技术创新转变,现代信息技术、生物技术、新能源技术、新材料和先进制造技术等的融合发展为大气环境科学技术创新创造了新的机遇。”/pp  “通过我们的研究,归纳起来,大气环境学科进展主要体现在五个方面”,高翔教授总结说,“一是大气污染的来源成因和传输规律研究成果在一定程度上揭示了我国区域性污染的特征和成因,为有效管控提供了科学依据。二是大气污染健康评估结果为我国促进政府环境健康管理和加强公众环保意识提供了数据支持。三是初步形成了满足常规监测业务需求的大气环境监测技术体系,支撑了我国“十二五”空气质量新标准的实施。四是多项大气污染治理关键共性技术实现了突破,支持了各重点行业大气污染物排放标准的制修订和实施,减少了主要大气污染物的排放。五是提高了空气质量管理决策支撑技术水平,为解决 PM2.5、O3等多个大气环境问题提供科学控制规划。”/pp  另外,高翔教授强调,“在总结学科各方向进展及存在不足的基础上,结合我国大气污染防治要求和形势,报告提出了今后5-10年具有前瞻性的技术研究方向。即通过深化大气污染的成因机制及其健康影响等基础研究,突破大气污染精细化监测预警、重点污染源全过程控制、空气质量改善管理支持等核心技术,加快构建我国国情的大气污染防治技术体系。”/pp  高翔教授对报告研究成果做了概括总结,作为导读为读者呈现:/pp  在大气环境基础研究方面,我国研究者通过外场观测、实验室模拟和数值模型等方法对大气环境的物理过程、化学过程等进行了多角度多层次的研究,其中较为关注的问题主要包括:大气复合污染的来源研究、大气环境的氧化过程和污染成因以及大气污染的传输输送等。通过研究,初步认清了我国京津冀、长三角和珠三角等三大城市群区域大气细颗粒物(PM2.5)和臭氧(O3)污染的状况和特征,解析了大气PM2.5和O3的来源,定量分析了PM2.5及化学组成对大气能见度的影响,初步量化了二次细颗粒物和O3与前体物的非线性关系。这些研究成果支撑了当前对我国严重雾霾形成的基本认识,认清了京津冀及其他地区雾霾的主要成因是不利气象条件下的大气复合污染,气象和污染的共同作用导致区域性雾霾快速地恶化和蔓延。/pp  在大气环境监测技术方面,PM2.5、O3、VOCs等污染物监测技术和设备取得了显著进展,如恶臭自动在线监测预警仪器、大气细颗粒物化学成分在线监测设备、大气细粒子与臭氧时空探测激光雷达系统、环境大气中细粒子监测设备等实现了产业化,部分高端科研仪器如气溶胶雷达、单颗粒气溶胶飞行时间质谱仪等也开始得到应用,初步形成了满足常规监测业务需求的技术体系,支撑了我国“十二五”空气质量新标准的实施。/pp  在大气污染与健康方面,我国的研究起步较晚,近年来正在逐步加强大气污染对人体健康影响的研究,在大气污染毒理学和流行病学研究方法、理论和成果上均有显著的进步。针对不同的健康效应(急性健康效应、慢性健康效应和干预效应),已初步获得了一批有价值的结果。大气PM2.5对心肺系统、免疫系统、代谢系统甚至皮肤和中枢神经系统等的毒性研究得到了较大发展 大气污染流行病学研究从生态学研究发展到回顾性队列研究,对大气污染与健康危害之间因果关系的论证力度也越来越强,对大气污染的人体致病机制认识越来越深入。/pp  在大气污染治理技术方面,针对工业源、移动源、面源等主要大气污染源,我国正经历从末端污染控制为主向全过程污染治理转变,从单一污染物排放控制向多种污染物系统协同控制转变,从污染物达标排放向深度治理实现超低排放转变,正逐步构建源头削减-过程控制-末端治理的全过程大气污染治理技术体系。如燃煤电站污染治理已实现多种烟气污染物的超低排放,甚至优于我国燃气发电机组排放限值要求,扭转了传统“燃煤=污染”的观念,推动了煤炭集中清洁高效利用技术的发展 机动车污染治理方面已形成满足国四排放标准的成套后处理技术与装备,并在国产柴油车上实现了规模化应用,有效支撑了全国范围内柴油车国四标准实施。整体上,初步构建了具备国际竞争力的大气环保技术装备供应体系,部分关键共性技术达到国际先进水平,为我国实施大气环保装备“走出去”战略提供了支持。/pp  在大气环境质量管理技术与实践方面,在多尺度高分辨率动态排放清单、天地空相结合的立体观测、大气污染预报预警与过程分析、大气污染多维效应综合评估、大气污染控制成本效益分析和决策支持等多项技术都取得了较大进步,建立了我国主要大气污染物总量减排管理体系,并正在逐步由总量减排向空气质量达标管理及风险防控的模式发展。在珠三角建成了我国第一个联防联控技术示范区和支撑技术平台 同时SO2和NOX总量减排管理技术体系研究,以及主要污染物环境基准和健康风险的预研究,支撑了《环境空气质量标准(GB3095-2012)》修订和国家相关总量减排计划等的实施。此外,我国自主开发的大气污染源排放清单技术及大气化学模式等广泛应用于国家和重点区域大气污染防治工作,为多项国家政策、技术文件颁布实施和业务平台运行提供了关键科技支撑。典型大气污染防治技术应用案例已形成《大气污染防治先进技术汇编》、《工业烟气(脱硫、脱硝、除尘)污染防治可行技术案例汇编》等,推动了一批先进适用的技术和产品的示范应用及产业化。/pp  与欧美发达国家相比,研究发现“十二五”期间我国在过去5年间发表的SCI论文数呈逐年上升趋势,进一步对比发现国内各主要研究机构的SCI论文篇均影响因子与国外先进水平仍存在一定差距。可以说,与欧美发达国家相比,近年来我国大气环境学科研究已实现显著进步,但总体上仍处于落后阶段,仅有部分研究领域已达到或接近国际先进水平。/pp  当前我国大气环境整体恶化趋势尚未得到根本遏制,大气环境质量总体上进入了以多污染物共存、多污染源叠加、多尺度关联、多过程耦合、多介质影响为特征的复合型大气污染阶段。以PM2.5和O3为代表的大气复合污染仍呈现恶化的趋势,特别是在气象条件不利时大气重污染已成新常态,对人民群众生产生活和身心健康造成了较大影响 已经完成或正在进行的相关研究尚不足以全面支撑新形势下我国环境空气质量持续改善和生态文明建设的需求,亟需构建适合国情的大气复合污染防治新理论、新方法和新技术,以基础研究的重大突破引领防治技术研发的方向,以坚实的科技体系支撑大气污染综合治理和大气环境管理决策能力的提升。因此,在未来相当长一段时期内,我国大气环境科学技术发展面临的主要难点和挑战包括:/pp  (1)如何在经济发展的新常态下,实现大气污染排放量的最小化和控制途径的最优化,特别是实现季节性散煤污染的有效治理 /pp  (2)如何加快扭转污染恶化趋势、消除重污染天气,并实现重点区域及全国空气质量的长效改善 /pp  (3)如何实施有效环境监控,提升大气污染防控措施的有效性及公众健康保障能力 /pp  (4)如何构建中国特色的大气污染综合防控技术体系,支撑我国大气污染问题的根本解决。/p
  • 专业与专注,成就大气环境综合绩效服务商
    近年来,每逢国家重大活动及国际赛事,就有一批环境监测科技人员利用先进的雷达激光立体监测技术,为活动和赛事提供环境检测服务——他们来自无锡中科光电技术有限公司。中科光电成立于2011年8月,由聚光科技(杭州)股份有限公司和中国科学院安徽光学精密机械研究所刘文清院士团队共同发起创建。截至目前,他们的客户已遍布全国33个省直辖市的环保、气象、科研高校系统,激光雷达的国内市场份额已经达到60%以上。产品先后获得了3项江苏省高新技术产品、江苏省专精特新产品、国家专利优秀奖等多项荣誉。在经过各项国家级、省级、市级重大科技项目的参与过程中,中科光电的激光雷达产品系列,取得了阶段性的进展,并先后参与了2013年南京亚青会、2014年南京青奥会、2015年青运会、2015年乌镇物联网大会、2016年上合组织政府首脑理事会、2016年G20峰会、2017北京一带一路大会等空气质量保障工作。为活动保障工作准确判断污染的时间、程度、评估大气污染类型,预判污染物的走向及污染过境时的大气整体状况提供了详实的第一手信息。◆ 专业专注 是中科光电最主要的企业基因在企业化发展过程中,他们始终坚持产学研一体化,将物联网技术与立体监测技术相结合、将大气环境科学与仪器工程相结合,共同联合开发生产了多波长颗粒物激光雷达、高能扫描颗粒物激光雷达、臭氧激光雷达、多轴差分紫外光谱仪、激光测风雷达、激光温湿雷达、立体走航监测车等多款立体监测产品。相比于国内外同类激光雷达,中科光电的产品具备特有的技术优势。多波长激光雷达为豪焦级激光器,激光能量高,在重污染天气状况下,能够穿透霾层探测高空8~10km范围内的污染物分布信息、监测边界层完整的变化过程,同时多波长设计,可有效获取颗粒物的尺度分布信息,全粒径响应,实现更细小颗粒物的占有比,适用于中国目前典型的细粒子环境污染现状。此款雷达是国内首款多波长激光雷达,也是引领环境监测部门对雷达应用需求的创新产品。高能扫描颗粒物激光雷达为国内首台基于快速扫描振镜的产品,能够同时获得区域内垂直(0-270o)、水平(0-360o)立体监测数据,为说清区域内污染排放特征、污染源分布等提供重要信息。同时,也是国内首台在时速120km/h范围内仍然能边走边测的车载遥感监测设备,可针对污染源进行快速溯源、应对污染突发事件、对污染团进行追踪监测。臭氧探测激光雷达采用一体化结构设计技术,能够有效保护光路稳定、抑制灰尘累积、降低光损耗、保证产品稳定性能。该产品可同时监测颗粒物后向散射系统及臭氧浓度的时空分布,是国内首台颗粒物和臭氧时空分布信息能够同时监测的激光雷达设备,可有效监测臭氧的空间变化过程及臭氧与细粒子之间的转化过程。无锡中科光电针对跨区域环境污染现象、污染来源无法说清、预警预报不精确等地方重大环境管理需求,在立体监测装备的支撑下,开发形成了多套应用解决方案,如:车载快速溯源解决方案、车载遥感监察解决方案、立体网格化监测解决方案、区域环境质量保障解决方案、大气监测超级站解决方案、城市与区域立体监测解决方案等,为地方政府与环境管理部门提供大气环境综合分析与监控预警应急决策一体化的整体支撑服务。◆坚守创新 做细分行业的“隐形冠军”在细分领域专注专业地工作,是中科光电支持的发展之路。 作为科技型企业,“技术创新”是企业的灵魂,是企业发展、立足生存的根本。一是对原有激光雷达技术进行优化,提升产品质量,不断推进产品零部件国产化率,降低成本,改变国内高端设备依靠进口的市场格局;二是加大研发投入、关注客户实际需求,对现有技术与新技术、新需求进行结合,赋予产品更强大、更丰富的功能,提高产品性价比,为客户创造更大的价值空间;三是满足日益国际化的竞争趋势,保持对国际、国内科技前沿的紧密关注,对公司的发展战略方向持续性提出质疑并快速反应,开发生产环境监测领域立体监测技术新产品;四是坚持产品创新与应用创新全面发展,加强企业先进制造水平,提升高端的供给能力,坚持以服务改善空气质量为导向,将中科光电打造成有内涵、有竞争力的国有科技型企业,在环境立体监测这一细分领域做大做强,为实现“中国蓝”贡献自己的力量,也能够早日走向国际,彰显中国智造的力量。◆不忘初心 引领“智慧环保”前行目前国内立体监测激光雷达产品的种类还比较单一,其中颗粒物激光雷达相对成熟,但大气成分监测激光雷达(O3、SO2、NOX、CO、VOCS)、气象激光雷达(风、温、湿、水汽)技术还处于起步和筹划阶段。中科光电已经做好了针对以上产品的应用扩展研究计划和产品开发计划,该系列产品将如中科光电的颗粒物激光雷达一样引领行业市场发展。激光雷达目前还没有正式的国家规范标准,很多单位对于激光雷达的性能校验也一直存在着疑问。为了保持激光雷达的有效探测距离及探测精度、保证激光雷达的稳定性及准确性,保证雷达数据的有效性和一致性,我们将与中科院安光所刘文清院士团队共同设计相关的技术规范标准,并积极推进相关管理部门及行业用户的认可。为立体监测行业的发展贡献一份力量。统一产品运营维护标准、提供高端运营维护服务,是中科光电目前正在部署的发展战略。他们将运用信息化系统管理,调配专业的环境工程服务人才组成客服团队,实现售前、售中监控,售后定期维护的全过程服务,使客户服务成为公司强有力的竞争王牌。我国全指标、多样化的大气环境监测工作起步较晚,大多数情况,监测数据开发利用不足,缺少针对性强的监测数据分析,从而找不出存在的主要环境问题、对区域环境质量的变化解释不清。对监测站汇总数据进行特色加工形成监测报告,站在全局的角度思考,找出环境存在的问题,分析环境问题形成的原因,针对存在的问题提出相应的合理可行的建议,是中科光电未来三年发展的业务方向之一。中科光电正在并将持续组建专业化、标准化的环境咨询服务队伍,为各有关部门提供定制化的综合数据分析服务,共同研究、探索各监测数据间的相关性,扩展监测数据的应用价值,构建成熟的数据分析模型,使得综合分析业务成为可以效仿的工作形式,给各级地方政府当“参谋”、做“大气环境医生”,为地方空气质量达标与持续改善提供更有力的支撑。 (新闻来源:《中国环境报》)
  • 2578万元 中山市大气环境网格化系统升级
    中山市大气环境网格化监管系统服务采购项目预算金额2577.6万元,对现有的网格化监测系统升级。据查,2018年7月,中山市环境保护局采购了“中山市大气环境网格化监管系统项目一期服务项目”,包括100台大气微观监测站的运维、数据分析等内容;2018年12月,中山市环境保护局采购了“中山市大气环境网格化监管系统项目二期服务项目”,包括200套大气环境微观站监测设备的运维、数据分析等。上述两个项目一共花费2581.62万元,项目结束期分别为2021年7月4日和2020年11月25日,服务商均为太原罗克佳华工业有限公司。这也从项目背景可以看出,此次招标文件中,项目背景提到“中山市按照 2km*2km 大气网格化布点监测工作,2018 年完成 100 台固定微观站的安装,2019 年又增加了 200 台固定微型空气质量检测仪,总计 300 台固定微型空气质量检测仪,监测指标有 PM2.5、PM10、CO、NO2、SO2、O3、温度、湿度、风速、风向,其中 60 台增设 TVOC 传感器。”服务期结束之后,中山市再次招标,主要内容包括:旨在对现有 300 台微型空气质量检测仪进行设备升级,以保证设备的稳定性和监测数据的准确性,为环境管理部门提供污染精准定位及溯源分析,从区域角度进行整体研判分析,及时提出联防联控措施建议,实现环境污染防治的精准治污、科学治污、依法治污。同时增加 11 套高空瞭望设备,搭载无组织焚烧 AI 识别模型,对中山市无组织焚烧及烟雾事件进行实时监测和监管,发现露天无组织焚烧现象时形成事件并及时给出预警信息,同时在烟火发生后将告警信息推送到平台。对现有软件平台进行升级,提供生态环境大数据平台服务,为环保部门提供数据支撑和决策依据。通过大气监测系统实时监测的空气质量数据,根据历史监测数据、气象数据等内容,环境专家团队与数据工程师合作,运用大气研究手段、数据分析软件、环境算法模型等技术,定期对区域的大气的污染状况进行综合分析和研究,对污染防治工作进行专业性指导。保证网格化监测设备 3 年内的正常运行,提供专业化运维服务。本次对微型站的升级包括对微观站监测设备的整机更换升级和对监测传感器的更换升级。要求单台设备能够同时监测 17 项监测指标。内置最多 9 种类型传感器,包括 6种气态污染物和 PM2.5、PM10、TSP 等,并可外接风向、风速、温度、湿度、大气压、负氧离子、噪声、摄像头等 8 种传感器。本项目配置监测指标为 PM2.5、PM10、CO、NO2、SO2、O3、TVOC、温度、湿度、风速、风向,需预留其他指标接口以备后期扩展。可以看出,对大气微型站的要求越来越高。项目详情如下:项目概况中山市大气环境网格化监管系统服务采购项目的潜在投标人应在中山市东区东苑南路101号大东裕贸联大厦北塔2号2508室(深圳市合创建设工程顾问有限公司中山分公司)获取招标文件,并于2021年7月13日09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:442000-2021-08933项目名称:中山市大气环境网格化监管系统服务采购项目预算金额:25776000.00元最高限价(如有):25776000.00元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)1.标的名称:中山市大气环境网格化监管系统服务采购项目2.标的数量:1项3.简要技术需求或服务要求:(1)项目内容:网格化微型空气质量检测仪设备升级及运维服务、高空瞭望设备服务、无组织焚烧AI识别服务、生态环境大数据平台服务、运营维护服务、数据分析服务等;(2)招标编号:SZHCZS-2021009;(3)需求:详见招标文件第二部分《用户需求书》;(4)本项目不允许提交备选方案。4.其他:/合同履行期限:自合同签订之日起,服务期3年,详见用户需求。二、申请人的资格要求1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业采购的项目。3.本项目的特定资格要求:(1)投标人应具备《中华人民共和国政府采购法》第二十二条规定的条件:1)具有独立承担民事责任能力;【提供在中华人民共和国境内注册的法人(或事业单位法人证书或社会团体法人登记证书或执业许可证)或其他组织的营业执照复印件;如依法经国务院批准免予登记的社会组织的,应提供相应文件证明其依法免予登记复印件】;2)具有良好的商业信誉和健全的财务会计制度 (提供近12个月内任意1个月编制的财务报表或2020年度经审计的财务报告复印件并加盖公章,或银行出具的资信证明材料复印件并加盖公章) ;3)具有履行合同所必需的设备和专业技术能力(按招标文件第六部分投标文件格式填写);4)具有依法缴纳税收和社会保障资金的良好记录【提供投标截止日前12个月内任意1个月依法缴纳税收和社会保障资金的相关材料复印件并加盖公章(如依法免税或不需要缴纳社会保障资金的,提供相应证明材料)】;5)参加政府采购活动前三年内,在经营活动中没有重大违法记录(按招标文件第六部分投标文件格式提供“资格声明函”);6)法律、行政法规规定的其他条件。(2)投标人为在中华人民共和国境内注册的法人(提供营业执照或事业单位法人证书或执业许可证)或其他组织(具备民政部门颁发的登记证书),独立于采购人和采购代理机构。(3)投标人未被列入“信用中国”网站中“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”的记录名单;不处于“中国政府采购网”中“政府采购严重违法失信行为信息记录”的禁止参加政府采购活动期间(以采购代理机构或采购人于资格审查时在上述网站查询结果为准,如在上述网站查询结果均显示没有相关记录,视为没有上述不良信用记录。同时对信用信息查询记录和证据截图存档。如相关失信记录已失效,供应商须提供相关证明资料)。若为联合体投标,对联合体所有成员进行信用记录查询,联合体成员存在上述不良信用记录的,视同联合体存在不良信用记录。如相关失信记录已失效,需提供相关证明资料。(4)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得同时参加本采购项目投标。(5)为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动。(6)投标人须在中山市公共资源交易中心网登记参与投标并在采购代理机构购买招标文件。(7)本项目接受不多于两家单位组成的联合体投标。联合体各方应按规定提交共同签署的联合体投标协议书,明确联合体主体方和各方的权利义务;以联合体形式参加投标的,联合体各方不得再单独参加或者与其他投标人另外组成联合体参加同一项目的投标。三、获取招标文件时间:2021年6月21日至2021年6月28日(提供期限自本公告发布之日起不得少于5个工作日),每天上午09:00至12:00,下午14:30至17:30(北京时间,法定节假日除外 )地点:中山市东区东苑南路101号大东裕贸联大厦北塔2号2508室方式:现场购买售价(元):300四、提交投标文件截止时间、开标时间和地点2021年7月13日09点30分(北京时间)(自招标文件开始发出之日起至投标人提交投标文件截止之日止,不得少于20日)地点:中山市博爱六路22号行政服务中心二楼中山市公共资源交易中心(详见开标当天开标室安排)。五、公告期限自本公告发布之日起5个工作日。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:中山市生态环境局地址:中山市中山三路26号市政府第二办公区联系方式:0760-883185752.采购代理机构信息名称:深圳市合创建设工程顾问有限公司中山分公司地址:中山市东区东苑南路101号大东裕贸联大厦三期北塔2号2508室联系方式:0760-888888643.项目联系方式项目联系人:冯先生、林先生电话:0760-88888864
  • 网格化监测系统成为大气环境管理重要一环——访北京师范大学教授赵传峰和先河环保崔厚欣
    p  strong仪器信息网讯/strong 2018年5月,2018空气污染控制成本效益与达标评估及亚太地区多尺度空气质量模型系统联合国际会议在北京成功举办。开幕式上,生态环境部污染防治司逯世泽强调,随着我国大气污染治理进入攻坚阶段,末端治理潜力越来越小,相应的大气环境管理难度越来越大。美国爱荷华大学教授Gregory CARMICHAEL指出,空气质量预测需要更高精度的数据。/pp  在我国大气环境管理领域,利用低成本、高密度的网格化监测设备来识别污染来源已渐渐成为一种常规手段,国家为此也出台了相应标准。为了解网格化监测网络的最新技术进展和应用情况,仪器信息网在此次会议上采访了北京师范大学全球变化与地球系统科学研究院赵传峰教授和河北先河环保科技股份有限公司研究院主任崔厚欣。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/84b54a64-b519-4894-8dab-7f6dda14aff7.jpg" title="IMG_2979_副本.jpg"//pp style="text-align: center "strong北京师范大学全球变化与地球系统科学研究院 赵传峰教授/strong/pp style="text-align: center "strongimg src="http://img1.17img.cn/17img/images/201806/insimg/290df8dc-9d6e-44e7-8376-d3d3b4d73aa2.jpg" title="IMG_2983_副本.jpg"//strong/pp style="text-align: center "strong河北先河环保科技有限公司研究院主任 崔厚欣/strong/pp  “目前,‘2+26’通道城市中有16个城市安装了先河的网格化监测设备,2017 -2018年秋冬大气攻坚行动计划中被评为优秀的11个城市中有9个城市安装了先河的网格化监测设备。”从崔厚欣对先河网格化监测系统所取得成就的介绍中,可以看出网格化监测系统已成为地方政府大气环境管理的重要工具。而在使用过程中,数据质量和数据挖掘方面还有很多工作值得研究。/pp  span style="color: rgb(0, 176, 240) "strong数据质量:从硬件和软件提升数据深度和质量/strong/span/pp  span style="color: rgb(0, 176, 240) "可监测参数的扩展。/span目前网格化监测系统关注比较多的参数为PM2.5、PM10、二氧化氮、二氧化硫、一氧化碳、臭氧和VOC。崔厚欣介绍说,未来可开发监测更多参数的监测设备,扩大应用领域。赵传峰老师认为,目前对臭氧和VOCs污染情况的关注度还不够,未来氨气污染可能从研究领域进入监测领域。/pp  span style="color: rgb(0, 176, 240) "传感器技术的进步。/span虽然目前传感器技术基本能满足网格化监测系统的应用,但其本身还是有很大的改进空间。针对传感器易受温湿度影响、气体交叉干扰的问题,可以通过多种手段提高其稳定性,如传感器材料优化、电解液的优化、温度补偿措施的应用等。随着传感器应用量的增加和用户对其要求的不断提高,传感器技术也会不断进步。/pp  数据质控体系的提升。赵传峰教授介绍说,在大气领域,以前研究数据来源主要有卫星遥感、地面观测和飞机观测,为保证数据质量,研究人员会开发很多不确定性分析方法。而对于网格化监测系统,目前常用的数据质控体系包括:一是通过标气和标准设备不断标定的硬件方法,如先河环保采用的四级校正方法中的标物校准法、组合校准法 二是采用大数据的软件方法,对一定范围内的仪器数据漂移进行及时调整,以先河环保为代表的业内公司,也都进行大数据软件为基础的数据校准。/pp  span style="color: rgb(0, 176, 240) "strong数据挖掘:从应用和研究角度充分开发/strong/span/pp  目前,网格化监测数据的主要用途是快速定位污染来源,以利于政府及时确定责任人并消除影响。“未来,网格化监测数据可以结合气象、交通数据,挖掘出更多对污染控制和污染治理有效的信息。”崔厚欣说到。/pp  “以前,基于卫星遥感、地面站观测和飞机观测的大气环境研究在时间或空间分辨率上均存在一定局限性,无法满足对于建筑物和下垫面复杂的城市区域的研究。而有了空间分辨率和时间分辨率都大大提高的网格化监测数据,我们可以对城市区域内大气环境有更深入的研究。”赵传峰介绍道。/pp  赵传峰预测,未来可能的应用包括:一是判断局地污染源贡献来优化环境达标规划。通过加密监测,判断局地污染受本地污染贡献和异地迁移的影响,从而制定更准确的局地环境达标规划 第二个是通过智能学习来进行空气质量预测。经过一两年的数据积累,可以对各种气象条件下不同污染情况进行聚类分析,当出现类似气象条件时就可以用历史数据对未来空气质量进行预测,这也称之为统计预测、经验预测或半经验预测。与模型预测相比,此方法速度快、成本低,特别适合县级城市使用 第三是污染过程统计分析。网格化监测数据可以监测到污染爆发、扩散和消散的全过程,通过多次污染过程观察,可以计算不同污染源控制方案降低污染事件的概率,从而优化污染源控制方案 第四是优化现有空气监测站点的布置。通过长期大量密集的空气质量监测,可以充分了解当地的微气候和污染情况,从而找到具有更高空间代表性的站点。/pp  strong后记:/strong/pp  随着政府职责和企业责任的清晰化,各级政府的关注点从环境治理转向了环境管理,而科学管理是各级政府需要不断探索的课题。在多个领域,政府开始注重监测数据对环境管理的支持能力,如大气环境管理中采用网格化的精细管理方式、“土十条”中规定对不同污染程度的土壤分类利用、《斯德哥尔摩公约》和《关于汞的水俣公约》等国际履约过程中通过全国系统性监测数据对履约效果进行评估。随着数据应用方式的改变,未来环境监测方式也可能会出现更多形式,从而更好地支持“绿水蓝天梦”的实现。/pp  strong人物简介:/strong/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "赵传峰,北京师范大学全球变化与地球系统科学研究院教授,入选中组部“千人计划”青年人才项目。研究集中在温室气体、气溶胶、云物理及其气候效应等领域。曾参与美国能源部大型观测项目" 大气辐射观测计划" 和重大气候模式项目" 气候模式中云-气溶胶参数化的改进" ,及其它中小型项目。现为1项863课题负责人和1项973全球变化项目重要骨干。学术成果包括发表在世界顶级期刊(如Nature, Tellus B, J. Climate, JGR, GRL 等)上的SCI论文12篇,总引用近200次。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  崔厚欣,博士,教授级高工,出生于1980年10月。2007年3月毕业于天津大学,获得博士学位,目前任职河北先河环保科技股份有限公司先进技术研究中心主任。作为任务负责人承担2012年国家重大科学仪器设备开发专项1项 作为项目负责人承担2013年中关村国家自主创新示范区“十百千工程”重大项目1项 作为课题负责人承担北京市科技计划课题2项。2014年被评为昌平英才 2015年被评为2015年度北京市科技新星。/span/p
  • 禾信亮相第23届中国大气环境科学与技术大会
    12月8日~9日,由中国环境科学学会大气环境分会、中国环境科学研究院和国家大气污染防治攻关联合中心联合主办的“第23届中国大气环境科学与技术大会——暨中国环境科学学会大气环境分会2017年学术年会”在北京召开。来自五湖四海的700多名大气环境专家、学者和科研人员聚首一堂,探讨大气领域最新的热点和前沿问题,为“打赢蓝天保卫战”出谋划策。在此会议上,禾信公司不仅参与了相关环境科学领域的科研讨论,还展示了VOCs在线监测的明星产品SPI-MS 2000与DT-100,备受各方专家与环境从业者们的关注。 本次中国大气环境科学与技术大会的召开为我国大气环境领域顶尖专家、学者以及相关仪器厂家提供了交流合作的平台,为“大气重污染成因与治理攻关”的后续研究工作提供了思路、启迪和前沿仪器技术。会议期间,禾信公司的产学研合作基地——暨南大学质谱仪器与大气环境研究所的多位老师做了精彩的大会报告。 李梅老师介绍了基于单颗粒质谱的在线源解析理论与技术研究进展,现场人气居高不下,多位学者对相关研究表现出了相当浓厚的兴趣;而高伟老师则为听众介绍了《在线质谱法在大气VOCs在线监测和溯源质谱法应用进展》,高老师从国内VOCs的污染现状及现实问题出发,深入浅出的概括了目前主流的VOCs在线技术,并系统介绍了禾信的在线质谱在走航监测及恶臭溯源等方便的应用。 另一方面,李磊博士全方位展示了新一代高性能单颗粒气溶胶质谱的研制进展,新一代仪器不论是从粒径范围、检测速度还是浓度适应性都得到了极大的提升;成春雷博士的报告《The photochemical production of oxalic acid in PRD: the role of iron in oxalic acid-containing single particles》也表达了别树一帜的观点,与各路专家学者展开了热烈的讨论。 会上展出的多款大气监测设备当中,禾信展出的两款VOCs的环境监测仪器SPI-MS 2000和DT-100受到专家学者以及行家的热烈追捧,前来咨询的人员络绎不绝。目前市场上环境监测类仪器百舸争流,禾信仪器会继续奋力前进,顶着压力迈步向前,既要“做中国人的质谱仪器”,更要做好中国人的质谱仪器。
  • 刘文清院士:给大气环境“把脉”
    “一束光打过去,就知道污染物浓度是多少。像医生给病人做CT一样,我们是给大气环境做CT的人。”作为我国环境光学这一新领域的领军人物,中国工程院院士、中科院合肥研究院安光所学术所长、中国仪器仪表学会副理事长刘文清率先提出了开展光学与环境交叉科学的创新研究。 刘文清院士在大气痕量气体探测载荷定标现场认真查看定标数据   光学、环境科学,在普通人看来风马牛不相及的两个学科,为何能产生交集? 刘文清院士在“总碳柱观测网合肥站”(Tccon Hefei)查看地基高光谱数据   “空气中的各种成分,包括污染物,都有自己的特征吸收光谱。通过设备对污染物进行立体垂直探测,就可以知道光路上不同高度的污染物的成分和含量。”刘文清介绍,目前,他率领团队建立了包括400多种大气污染物、100多种水体污染物、20多种土壤重金属污染物的光谱特征数据库,研发了污染物光谱定量解析算法和工程化应用软件,不仅能为大气环境“把脉”,还能“诊断”水体、土壤的污染情况。 今年安徽高考,语文作文的素材是“双奥之城”北京。对两次承担奥运会环境监测任务的刘文清团队而言,这是道“送分题”。2008年,北京奥运会,当时正是我国大气污染问题突出的时期。刘文清率领团队建立覆盖北京及周边地区的大气环境立体综合监测系统,为空气污染预警和制定减排措施提供科学数据支撑。2022年,北京冬奥会,刘文清团队研发的车载激光雷达,能够快速精确获取大气颗粒物的区域分布特征,并成功预测了冬残奥会第一天的沙尘污染。 从北京奥运会到北京冬奥会,14年间,刘文清带领团队聚焦国家重大战略需求,加快突破关键核心技术,为建设天蓝、水清、草美的生态环境,打造了一个“天、地、空一体化”的立体综合监测网。 2018年5月9日,高分五号卫星成功发射,搭载了安光所自主研制的大气痕量气体差分吸收光谱仪、大气主要温室气体监测仪、大气气溶胶多角度偏振探测仪。从此,我国可以获得全球的污染气体分布数据,不仅能为我国大气污染控制决策提供技术支持,还能为国际环境外交提供有力的数据支撑。作为卫星3个有效载荷的总设计师,刘文清坚定地认为:“国之重器不能依靠进口,必须应用自主仪器设备!” 2020年初,新冠肺炎疫情突如其来。大气环境因素对疫情传播和防控具有重要作用,而武汉却缺乏高时空分辨率的大气环境数据。刘文清临危受命,亲赴武汉,带领团队加班加点改装大气环境立体监测车,搭载了气溶胶和臭氧探测激光雷达等7套先进设备。从雷神山、火神山医院到方舱医院、隔离点,监测车开展走航观测实验,获取第一手大气环境数据,为病毒传播风险评估、环境影响因素分析提供了科技支撑。 “我们积极探索、不断创新,就像今年高考作文主题一样,实现了‘跨越,再跨越’。目前,我国的大气环境光学监测技术已经可与欧美发达国家‘并跑’。”刘文清谦逊地说,“如果高考作文满分10分,我得给自己扣2分。这2分寄希望于年轻的科技工作者们,希望他们能够继续攻克难关,在一些关键技术领域突破发达国家对我国的‘卡脖子’问题,开发出更多具有自主知识产权、更加先进的光学监测技术和设备。” 刘文清,1954年生于安徽蚌埠,原籍江苏徐州。中国工程院院士、中国科学院合肥物质科学研究院学术委员会主任、安徽光学精密机械研究所学术所长、中国仪器仪表学会副理事长。主要从事环境监测技术和应用研究,发展了环境光学监测新方法,研发了系列环境监测技术设备并实现产业化,集成了大气污染综合立体监测系统并进行应用示范,开拓形成了我国环境光学监测技术新领域。获国家科技进步二等奖3项,省部级科学技术一等奖5项,发明专利授权50余项,荣获“全国先进工作者”称号。
  • 四厂家瓜分广州市大气环境监测1.11亿项目
    近日,广州市大气环境预警防控网络建设项目中标结果全部公布,四个厂家总中标金额11125.73万元。《生态环境监测规划纲要 (2020-2035年)》指出,目前我国生态环境监测对污染防治攻坚战精细化支撑不足。现有监测网络的覆盖范围、指标项目等尚不能完全满足生态环境质量评估、考核、预警的需求,大数据平台建设和污染溯源解析等监测数据深度应用水平有待提升。未来,需要“完善全国大气颗粒物化学组分监测网和大气光化学评估监测网,为不同尺度大气污染成因分析、重污染过程诊断、污染防治及政策措施成效评估提供科学支持。其中,颗粒物组分监测覆盖全部PM2.5超标城市,重点区域辅助增加地基雷达监测和移动监测。光化学评估监测覆盖全部地级及以上城市,统一开展非甲烷总烃监测,重点区域、臭氧超标城市及重点园区按要求开展VOCs组分监测。”此次广州市大气环境预警防控网络建设项目,采购的仪器是为了建设广州市空气组分监测网,加强完善臭氧前体物和 PM2.5成分在线监测能力及污染物溯源能力。可以说是,上述政策的具体实施案例。因此,此次项目采购对未来我国其他城市的大气颗粒物化学组分监测网和大气光化学评估监测网的建设具有很高的借鉴意义。仪器信息网专门整理了此次采购的仪器全清单。序号所属监测网类型仪器名称仪器数量1臭氧及其前体物监测网HCHO(甲醛)在线监测仪12太阳总辐射在线监测仪23能见度在线监测仪14臭氧激光雷达25风廓线雷达36温湿廓线雷达37VOCs 在线监测仪(含配套辅件) 108全二维气相色谱-飞行时间质谱联用仪29PANs 在线监测仪1210光解速率在线监测仪311PM2.5组分监测网NH3在线监测仪312HONO在线监测仪313边界层大气成分二维高光谱扫描与分析仪514在线离子色谱315黑炭在线仪116大气重金属在线监测仪317高性能单颗粒气溶胶质谱仪418OCEC在线仪219监测车环境空气六参数在线监测仪120在线预浓缩气相-质谱联用仪121气象参数在线仪1其中红色字体仪器是被列为此次采购“核心产品”的仪器。从上表可以看出,臭氧及其前体物监测、PM2.5组分监测所需的仪器种类还是很多的。经过近一个月的招标采购,此项目最终招标结果如下:此项目共分为三个子项目七个包组,其中最大赢家是广州禾信仪器股份有限公司,总中标三个包组,合计金额5942.05万元;其次为河北先河环保科技股份有限公司,中标两个包组,合计金额2638.68万元。具体情况如下:包组采购仪器中标厂商中标金额项目一包组一HCHO(甲醛)在线监测仪等设备一批广州伊创科技股份有限公司947万项目一包组二臭氧激光雷达等设备一批广州鋆达科技有限公司1598万项目一包组三VOCs在线监测仪等设备一批广州禾信仪器股份有限公司1415.3万项目二包组一臭氧及其前体物监测网、PM2.5组分监测网等广州禾信仪器股份有限公司2470.45万项目二包组二监测车与常规仪器河北先河环保科技股份有限公司879.5万项目三包组一VOCs在线监测仪(含配套辅件)、PANs在线监测仪、光解速率在线监测仪、在线离子色谱、OCEC在线仪、大气重金属在线监测仪、高性能单颗粒气溶胶质谱仪广州禾信仪器股份有限公司2056.3万项目三包组二VOCs在线监测仪(含配套辅件)、PANs在线监测仪、光解速率在线监测仪、在线离子色谱、OCEC在线仪、大气重金属在线监测仪、高性能单颗粒气溶胶质谱仪河北先河环保科技股份有限公司1759.18万
  • 安光所第三代大气环境激光雷达监测系统通过验收
    11月10日,中科院合肥物质科学研究院安光所大气光学研究中心研制的第三代测污激光雷达“AML-3大气环境激光雷达监测系统”在北京通过验收并交付中国环境科学研究院使用。  “AML-3大气环境激光雷达监测系统”是一台可移动大气环境质量监测系统,能够监测大气边界层气溶胶,O3、SO2和NO2的时空变化,系统配备的地面大气参数测量分系统能够同时测量近地面O3、SO2、NO2、温湿度、大气压力和风速风向等大气成分和气象参数。  在项目合作方北京国科世纪激光技术有限公司的参与下,验收专家组对激光雷达系统进行了现场测试,测试显示系统各项指标均符合研制合同要求,专家组一致同意通过验收。  验收会上,用户对系统的研制工作给予了高度评价,并与研制方达成共识——AML-3大气环境激光雷达监测系统的圆满交付是开展合作的良好开端,此举将为双方在大气环境质量监测领域进行更广泛深入的合作交流打开局面。     验收会会场  可移动大气环境质量监测系统
  • 大气环境监测移动实验室仪器配置及性能指标详解
    p  随着我国经济的快速发展,大气环境污染事故频发,气象灾害日益增多,雾霾污染严重。大气环境监测移动实验室已在大气、噪声、光等污染防治的监督管理等领域得到越来越广泛的应用,移动监测监督稽查将得到生态环境部重视。日前,全国移动实验室标准化技术委员会发布关于通知,对《大气环境监测移动实验室通用技术规范》征求意见。/pp  “大气环境监测移动实验室通用技术规范件”是大气环境监测标准体系中的一个重要组成部分,对污染源进行移动特性识别,建立规范移动特性参数和配备设施及设备等一系列特性条件,有利于保证移动监测车在移动中队污染源的检测效性,为推动国家环境移动实验室健康发展起作重要作用。本标准为首次制定,技术归口单位为全国移动实验室标准化技术委员会,起草单位有江西江铃汽车集团改装车股份有限公司、武汉天虹环保产业股份有限公司、聚光科技(杭州)股份有限公司、北京雪迪龙科技股份有限公司、中国环境监测总站、沈阳质量监督检验研究院等。/pp  标准中给出了大气环境监测移动实验室宜配备大气环境监测仪器设备及性能指标。明确指出:移动实验室所有配置的仪器设备应完全自动化、智能化,并具有移动特性,符合GB/T 29476-2012中的规定;移动实验室应配备服务器数据处理系统,具备现场进行数据分析及数据输出和远程在线交互能力;移动实验室的采样及监测设备,满足设备监测性能,可独立或集中分离采样;移动实验室设备应具备自校准功能;移动实验室设备应具备时间同步功能,测试数据与时间同步,报告日期不可修改;移动实验室的实验舱内设备、器具与载具的安装连接应牢固、可靠,根据设备性能要求增加减振措施;移动实验室设备应具备电磁兼容性,应符合GB/T 18268.1的规定。/pp  详细要求如下:/pp style="text-align: center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"strong仪器设备监测内容/strong/a/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="115"p style="text-align:center "监测类别/p/tdtd width="138"p style="text-align:center "监测内容/p/tdtd width="85"p style="text-align:center "性能指标/p/tdtd width="267"p style="text-align:center "参考标准或依据/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"空气VOC/a/p/tdtd width="138"p style="text-align:center "VOC/p/tdtd width="85"p style="text-align:center "见附录A/p/tdtd width="267"p style="text-align:center "环保部《2018年重点地区环境空气挥发性有机物监测方案》的通知,VOC监测项目/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"常规气态污染物/a/p/tdtd width="138"p style="text-align:center "S02、NOx、CO、O3/p/tdtd width="85"p style="text-align:center "见附录B/p/tdtd width="267"p style="text-align:center "HJ/T 193-2013中附录A表A.1/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"颗粒物/a/p/tdtd width="138"p style="text-align:center "PM2.5/PM10/p/tdtd width="85"p style="text-align:center "见附录C/p/tdtd width="267"p style="text-align:center "HJ/T 193-2005中附录A表A.2/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气气象参数/a/p/tdtd width="138"p style="text-align:center "风速、风向、温度、湿度、气压/p/tdtd width="85"p style="text-align:center "见附录D/p/tdtd width="267"p style="text-align:center "HJ/T 193-2005中附录A表A.3/p/td/trtrtd width="115"p style="text-align:center "a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"自动校准设备/a/p/tdtd width="138"p style="text-align:center "-/p/tdtd width="85"p style="text-align:center "见附录E/p/tdtd width="267"p style="text-align:center "HJ/T 193-2005中附录A表A.4/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录A a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气环境挥发性有机物监测项目/a/strong/ptable width="605" border="1" cellpadding="0" cellspacing="0"tbodytr class="firstRow"td width="121"p序号/p/tdtd width="123"p类型名称/p/tdtd width="395" valign="top"p style="text-align:center "监测项目/p/td/trtrtd width="121"p1/p/tdtd width="123"p监测项目/p/tdtd width="395" valign="top"p style="text-align:left "非甲烷碳氢化合物、含氧有机物、卤代烃/p/td/trtrtd width="121"p2/p/tdtd width="123"p目标物名称/p/tdtd width="395" valign="top"p1、监测因子:非甲烷碳氢化合物58种 br/ 序号 名称 化合物 化学式 br/ 1 Ethane 乙烷 C2H6 br/ 2 Ethylene 乙烯 C2H4 br/ 3 Propane 丙烷 C3H8 br/ 4 Propene 丙烯 C3H6 br/ 5 isobutane 异丁烷 C4H10 br/ 6 n-Butane 正丁烷 C4H10 br/ 7 Acetylene 乙炔 C2H2 br/ 8 trans-2-Butene 反—2—丁烯 C4H8 br/ 9 1-Butene 1-丁烯 C4H8 br/ 10 cis-2-Butene 顺—2—丁烯 C4H8 br/ 11 isopantane 异戊烷 C5H12 br/ 12 Isobutene 异丁烯 C4H8 br/ 13 1,3-Butadiene 1,3-丁二烯 C4H6 br/ 14 1-Pentene 1—戊烯 C5H10 br/ 15 Pentane 正戊烷 C5H12 br/ 16 trans-2-Pentene 反—2—戊烯 C5H10 br/ 17 Isoprene 异戊二烯 C5H8 br/ 18 cis-2-Pentene 顺—2—戊烯 C5H10 br/ 19 2,2-Dimethylbutane 2,2—二甲基丁烷 C6H14 br/ 20 2,3-Dimethylbutane 2,3—二甲基丁烷 C6H14 br/ 21 2-Methylpentane 2-甲基戊烷 C6H14 br/ 22 Cyclopentane 环戊烷 C5H10 br/ 23 3-Methylpentane 3-甲基戊烷 C6H14 br/ 24 1-Hexene 1-己烯 C6H12 br/ 25 n-Hexane 正己烷 C6H14 br/ 26 2,4-Dimethylpentane 2,4-二甲基戊烷 C7H16 br/ 27 Methylcyclopentane 甲基环戊烷 C6H12 br/ 28 2-Methylhexane 2-甲基己烷 C7H16 br/ 29 2,3-Dimethylpentane 2,3-二甲基戊烷 C7H16 br/ 30 Cyclohexane 环己烷 C6H12 br/ 31 3-Methylhexane 3-甲基己烷 C7H16 br/ 32 Benzene 苯 C6H6 br/ 33 2,2,4-Trimethylpentane 2,2,4-三甲基戊烷 C8H18 br/ 34 n-Heptane 正庚烷 C7H16 br/ 35 Methylcyclohexane 甲基环己烷 C7H14 br/ 36 2,3,4-Trimethylpentane 2,3,4-三甲基戊烷 C8H18 br/ 37 2-Methylheptane 2-甲基庚烷 C8H18 br/ 38 3-Methylheptane 3-甲基庚烷 C8H18 br/ 39 Toluene 甲苯 C7H8 br/ 40 Octane 正辛烷 C8H18 br/ 41 Tetrachloroethylene 四氯乙烯 C2Cl4 br/ 42 Ethylbenzene 乙苯 C8H10 br/ 43 n-Nonane 正壬烷 C9H20 br/ 44 m/p-Xylene 对/间二甲苯(p/m﹚ C8H10/C8H10 br/ 45 o-Xylene 邻﹙O﹚二甲苯 C8H10 br/ 46 Styrene 苯乙烯 C8H8 br/ 47 Isopropylbenzene 异丙苯 C9Hl2 br/ 48 n-Propylbenzene 正丙基苯 C9H12 br/ 49 m-Ethyltoluene 3-乙基甲苯 C9H12 br/ 50 p-Ethyltoluene 4-乙基甲苯 C9H12 br/ 51 1,3,5-Trimethylbenzene 1,3,5-三甲基苯 C9H12 br/ 52 O-Ethyltoluene 2-乙基甲苯 C9H12br/ 53 1,2,4-Trimethylbenzene 1,2,4-三甲基苯 C9H12 br/ 54 1,2,3-Trimethylbenzene 1,2,3-三甲基苯 C9H12 br/ 55 1,3-Diethylbenzene 1,3-二乙基苯 C10H14br/ 56 1,4-Diethylbenzene 1,4-二乙基苯 C10H14br/ 57 Udecane 正十一烷 C11H24br/ 58 Dodecane 正十二烷 C12H26br/ 含氧有机物13种 br/ 序号 化合物 化合物 化学式 br/ 1 acrolein 丙烯醛 C3H4O br/ 2 Propanal 丙醛 C3H6O br/ 3 Acetone 丙酮 C3H6O br/ 4 Acetonitrile 乙腈 C2H3N br/ 5 MTBE 甲基叔丁基醚 C5H12O br/ 6 Methacrolein 2-甲基丙烯醛 C4H6O br/ 7 n-Butanal 正丁醛 C4H8O br/ 8 Methylvinylketone 甲基乙烯基酮 C4H6O br/ 9 Methylethyl ketone 甲基乙基酮 C4H8O br/ 10 2-pentanone 2-戊酮 C5H10O br/ 11 3-Pentanone 3-戊酮 C5H10Obr/ 12 n-pentanal正戊醛 C5H10Obr/ 13 n-Hexanal 正己醛 C6H12O br/ 卤代烃31种 br/ 序号 化合物英文名称 化合物中文名称 化学式 br/ 1 Freon114(C2F4Cl2) 氟利昂114 C2F4Cl2 br/ 2 Chloromethane 氯甲烷 CH3Clbr/ 3 Vinylchloride 氯乙烯 C3H3Clbr/ 4 Bromomethane 溴甲烷 CH3Br br/ 5 Chloroethane 氯乙烷 C2H5Cl br/ 6 Freon11(CFCl3) 氟利昂11 CCl3F br/ 7 1,1-Dichloroethylene 1,1-二氯乙烯 C2H2Cl2 br/ 8 Freon113(C2F3Cl3) 氟利昂113 C2F3Cl3 br/ 9 Methyl iodide 碘甲烷 CH3I br/ 10 Dichloromethane 二氯甲烷 CH2Cl2 br/ 11 1,1-Dichloroethane 1,1-二氯乙烷 C2H4Cl2 br/ 12 cis-1,2-Dichloroethylene 顺-1,2-二氯乙烯 C2H2Cl2 br/ 13 Chloroform 氯仿 CHCl3 br/ 14 1,1,1-Trichloroethane 1,1,1-三氯乙烷 C2H3Cl3 br/ 15 Carbontetrachloroide 四氯化碳 CCl4 br/ 16 1,2-Dichloroethane 1,2-二氯乙烷 C2H4Cl2 br/ 17 Trichloroethylene 三氯乙烯 C2HCl3 br/ 17 1,2-Dichloropropane 1,2-二氯丙烷 C3H6Cl2 br/ 18 Bromodichloromethane 溴二氯甲烷 CHBrCl2br/ 20 trans-1,3-Dichloropropene 反-1,3-二氯丙烯 C3H4Cl2 br/ 21 cis-1,3-Dichloropropene 顺-1,3-二氯丙烯 C3H4Cl2 br/ 22 1,1,2-Trichloroethane 1,1,2-三氯乙烷 C2H3Cl3 br/ 23 Tetrachloroethylene 四氯乙烯 C2Cl4 br/ 24 1,2-Dibromoethane 二溴乙烷 C2H4Br2 br/ 25 Chlorobenzene 氯苯 C6H5Cl br/ 26 1,3-Dichlorobenzene 1,3-二氯苯 C6H4Cl2 br/ 27 1,4-Dichlorobenzene 1,4-二氯苯 C6H4Cl2 br/ 28 Benzylchloride 苄基氯﹙氯甲苯)C7H7Cl br/ 29 1,2-Dichlorobenzene 1,2-二氯苯 C6H4Cl2 br/ 30 Bromoform 溴仿CHBr3br/ 31 1,1,2,2-Tetrachloroethane 1,1,2,2-四氯乙烷 C2H2Cl4/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录B a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气环境监测移动实验室系统/a/strongstrong(NO2、SO2、O3、CO)监测仪器性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="128" rowspan="2"p style="text-align:center "检测项目/p/tdtd width="510" colspan="4"p style="text-align:center "性能指标/p/td/trtrtd width="128"p style="text-align:center "NO2分析仪器/p/tdtd width="128"p style="text-align:center "SO2分析仪器/p/tdtd width="128"p style="text-align:center "O3分析仪器/p/tdtd width="128"p style="text-align:center "CO分析仪器/p/td/trtrtd width="128"p style="text-align:center "零点噪声/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/tdtd width="128"p style="text-align:center "≤0.25 ppb/p/td/trtrtd width="128"p style="text-align:center "最低检出限/p/tdtd width="128"p style="text-align:center "≤2 ppb/p/tdtd width="128"p style="text-align:center "≤2 ppb/p/tdtd width="128"p style="text-align:center "≤2 ppb/p/tdtd width="128"p style="text-align:center "≤0.5 ppb/p/td/trtrtd width="128"p style="text-align:center "量程噪音/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤1 ppb/p/td/trtrtd width="128"p style="text-align:center "示值误差/p/tdtd width="128"p style="text-align:center "± 2%F.S./p/tdtd width="128"p style="text-align:center "± 2%F.S./p/tdtd width="128"p style="text-align:center "± 4%F.S./p/tdtd width="128"p style="text-align:center "± 2%F.S./p/td/trtrtd width="128"p style="text-align:center "20% 量程精密度/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤5 ppb/p/tdtd width="128"p style="text-align:center "≤0.5 ppm/p/td/trtrtd width="128"p style="text-align:center "80% 量程精密度/p/tdtd width="128"p style="text-align:center "≤10 ppb/p/tdtd width="128"p style="text-align:center "≤10 ppb/p/tdtd width="128"p style="text-align:center "≤10 ppb/p/tdtd width="128"p style="text-align:center "≤0.5 ppm/p/td/trtrtd width="128"p style="text-align:center "24h零点漂移/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 1 ppm/p/td/trtrtd width="128"p style="text-align:center "24h20%量程漂移/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 5 ppb/p/tdtd width="128"p style="text-align:center "± 1 ppm/p/td/trtrtd width="128"p style="text-align:center "24h80%量程漂移/p/tdtd width="128"p style="text-align:center "± 10 ppb/p/tdtd width="128"p style="text-align:center "± 10 ppb/p/tdtd width="128"p style="text-align:center "± 10 ppb/p/tdtd width="128"p style="text-align:center "± 1 ppm/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录C a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"空气质量可吸入颗粒物自动监测仪/a/strongstrong技术性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="425" colspan="2"p style="text-align:center "测量范围/p/tdtd width="213"p style="text-align:center "0~1mg/m3或0~10 mg/m3(可选)/p/td/trtrtd width="425" colspan="2"p style="text-align:center "50%切割粒径/p/tdtd width="213"p style="text-align:center "10 μm± 1μm空气动力学直径/p/td/trtrtd width="425" colspan="2"p style="text-align:center "最小显示单位/p/tdtd width="213"p style="text-align:center "0.001mg/m3/p/td/trtrtd width="425" colspan="2"p style="text-align:center "采样流量偏差/p/tdtd width="213"p style="text-align:center "≤± 5%设定流量/24h/p/td/trtrtd width="425" colspan="2"p style="text-align:center "仪器平行性/p/tdtd width="213"p style="text-align:center "≤± 7% 或5μg/m3/p/td/trtrtd width="425" colspan="2"p style="text-align:center "校准膜重现性/p/tdtd width="213"p style="text-align:center "≤± 2%标准值/p/td/trtrtd width="213" rowspan="3"p style="text-align:center "与参比方法比较/p/tdtd width="213"p style="text-align:center "斜率/p/tdtd width="213"p style="text-align:center "1± 0.1/p/td/trtrtd width="213"p style="text-align:center "截距/p/tdtd width="213"p style="text-align:center "0± 5 μg/m3/p/td/trtrtd width="213"p style="text-align:center "相关系数/p/tdtd width="213"p style="text-align:center "≥0.95/p/td/trtrtd width="425" colspan="2"p style="text-align:center "输出信号/p/tdtd width="213"p style="text-align:center "模拟信号或数字信号/p/td/trtrtd width="425" colspan="2"p style="text-align:center "工作电压/p/tdtd width="213"p style="text-align:center "AC 220V± 10%,50 Hz/p/td/trtrtd width="425" colspan="2"p style="text-align:center "工作环境温度/p/tdtd width="213"p style="text-align:center "0~50 ℃/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录D a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"大气环境监测/a/strongstrong移动实验室气象设备技术性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="159"p style="text-align:center "测量项目/p/tdtd width="160"p style="text-align:center "测量范围/p/tdtd width="160"p style="text-align:center "测量精度/p/tdtd width="160"p style="text-align:center "输出信号/p/td/trtrtd width="159"p style="text-align:center "风速/p/tdtd width="160"p style="text-align:center "1~60 m/s/p/tdtd width="160"p style="text-align:center "± 0.3m/s/p/tdtd width="160" rowspan="5"p style="text-align:center "模拟信号或数字信号/p/td/trtrtd width="159"p style="text-align:center "风向/p/tdtd width="160"p style="text-align:center "0~360/p/tdtd width="160"p style="text-align:center "± 3° /p/td/trtrtd width="159"p style="text-align:center "温度/p/tdtd width="160"p style="text-align:center "-40~60 ℃/p/tdtd width="160"p style="text-align:center "± 0.2℃/p/td/trtrtd width="159"p style="text-align:center "湿度/p/tdtd width="160"p style="text-align:center "0~100%RH/p/tdtd width="160"p style="text-align:center "± 2%/p/td/trtrtd width="159"p style="text-align:center "气压/p/tdtd width="160"p style="text-align:center "300~1200 hPa/p/tdtd width="160"p style="text-align:center "± 1 hPa/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong附录E 大气环境监测移动实验室自动校准设备技术性能指标/strong/ptable border="1" cellspacing="0" cellpadding="0" width="605"tbodytr class="firstRow"td width="159"p style="text-align:center "设备名称/p/tdtd width="160"p style="text-align:center "性能指标/p/tdtd width="160"p style="text-align:center "技术要求/p/tdtd width="160"p style="text-align:center "备注/p/td/trtrtd width="159" rowspan="5"p style="text-align:center "多气体校准装置/p/tdtd width="160"p style="text-align:center "稀释比例/p/tdtd width="160"p style="text-align:center "1/200~1/2000/p/tdtd width="160" rowspan="12"p style="text-align:center "1.要求所有的稀释源使用含氧量为20.9± 0.2%的无干扰干燥气体; br/ 2.渗透室温度为渗透室中渗透管周围的温度;/p/td/trtrtd width="160"p style="text-align:center "流量计准确度/p/tdtd width="160"p style="text-align:center "± 1%/p/td/trtrtd width="160"p style="text-align:center "渗透室温度准确度/p/tdtd width="160"p style="text-align:center "± 0.1 ℃/p/td/trtrtd width="160"p style="text-align:center "臭氧发生准确度/p/tdtd width="160"p style="text-align:center "± 2%/p/td/trtrtd width="160"p style="text-align:center "工作环境/p/tdtd width="160"p style="text-align:center "0~40 ℃/p/td/trtrtd width="159" rowspan="7"p style="text-align:center "零气发生器/p/tdtd width="160"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"SO2监测分析仪/a/p/tdtd width="160"p style="text-align:center "SO2体积分数<0.5× 10?9/p/td/trtrtd width="160"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"NO2监测分析仪/a/p/tdtd width="160"p style="text-align:center "NOx体积分数<0.5× 10?9/p/td/trtrtd width="160"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"O3监测分析仪/a/p/tdtd width="160"p style="text-align:center "O3体积分数<0.5× 10?9/p/td/trtrtd width="160" rowspan="4"p style="text-align:center "用于a href="https://www.instrument.com.cn/list/main/05.shtml" target="_blank"CO监测分析仪/a/p/tdtd width="160"p style="text-align:center "NOx<5× 10?9/p/td/trtrtd width="160"p style="text-align:center "O3体积分数<1× 10?9/p/td/trtrtd width="160"p style="text-align:center "不含HC/p/td/trtrtd width="160"p style="text-align:center "CO体积分数<10× 10?9/p/td/tr/tbody/tablepbr//p
  • 南沙大气环境监测站建成
    p 南沙大气环境综合监测站日前已全面建成。中国环境监测总站郑皓皓研究员就综合监测站建设目的、主要功能、未来发展方向等问题,回答了记者的提问。/pp  问:为什么要建设南沙大气环境综合监测站? /pp  答:经过多年的努力和探索,我国大气环境监测能力不断提高、监测网络不断完善,目前已形成了目标明确、功能齐全的大气环境质量监测网。我国大气环境质量监测网主要包括城市环境空气质量监测网、区域环境空气质量监测网、大气环境背景监测网、沙尘天气监测网、酸雨监测网络以及其他专项监测网等。/pp  根据我国大气环流特点,综合考虑空间分布、地域特征和生态功能等因素,生态环境部先后投资建设16个大气环境(背景)综合监测站,分别为内蒙古呼伦贝尔、吉林长白山、福建武夷山、山东长岛、山西庞泉沟、湖北神农架、湖南衡山、广东南岭、海南五指山、四川海螺沟、云南丽江、西藏纳木措、青海门源、新疆喀纳斯、西沙、南沙大气环境综合监测站。其中,南沙大气环境综合监测站是我国大气环境背景监测网的重要组成部分。/pp  在南沙建设大气环境综合监测站,既能及时掌握南海地区环境空气质量状况,又能为南海地区国家与民众提供可靠的环境空气质量信息,同时,也是研究区域大气传输和气候变化的重要站点。/pp  问:目前南沙大气环境综合监测站配备了哪些监测仪器设备?/pp  答:南沙大气环境综合监测站配置了PM2.5、PM10、SO2、NO2、CO和O3等6项常规指标,CO2和CH4等2项温室气体指标,以及黑炭、气象五参数和能见度等7项指标的监测仪器和质控设备,同时,还预留有酸雨、挥发性有机物、太阳紫外辐射等指标的监测场地,初步形成了南海地区空气质量监测与气候变化观测相结合的综合监测能力。/pp  问:南沙大气环境综合监测站的主要功能是什么? /pp  答:南沙大气环境综合监测站将服务于南海地区国家和民众,为其提供及时、可靠的环境空气质量信息。它的建成填补了南海地区大气环境监测的空白, 标志着南海地区大气环境综合监测迈出坚实的一步。/pp  同时,南沙大气环境综合监测站位于西太平洋-东南亚大气传输和大气环流的重要通道,是研究西太平洋-东南亚大气传输过程的重要支点。通过长期的实地观测,为研究南海地区大气背景、温室气体、颗粒物组分和污染传输提供第一手的监测数据,从而提升区域大气传输、温室气体与气候变化研究的精度和水平,为应对全球气候变化和南海地区生态环境质量改善提供重要支撑。/pp  问:南沙大气环境综合监测站未来的发展方向是什么? /pp  答:在现有监测项目的基础上,进一步加强大气综合监测能力,不断拓展监测领域,推动国际交流与合作。一是逐步开展气溶胶光学特性、臭氧前驱体、气溶胶组分、气溶胶粒径分布、垂直探测等科学研究。二是逐步拓展海洋水质、沉积物、海洋生物、海洋生态等监测,为南海地区海洋生态环境保护提供坚强支撑。三是逐步开展南海地区海洋垃圾、微塑料分布等生态环境状况研究,评估对南海地区生态系统影响,为全球生态环境保护作出积极贡献。/ppbr//p
  • 传感器能为城市大气环境精细化管理做什么?
    山东省济南市,2017年8月,首批100辆出租车装上了能监测PM2.5和PM10的传感器,使得济南成为全国首个利用出租车进行大气监测的城市。同年10月,又有200辆出租车加装道路走航监测设备。在北京,中国环境科学研究院大气环境研究所科研楼三层楼顶,一排排精密仪器正在不停运转,一组组数据被精确记录。传感器测试观测室里多台不同品牌不同型号的大气污染物传感器正在进行性能比对,这些数据将为改进传感器性能提供基础依据。从济南到北京,从车载传感器到传感器测试观测室,新型低成本大气传感器是中国环境科学研究院大气环境研究所的研究方向之一。作为生态环境部直属科研单位的中国环境科学研究院,近年来正在不断投入开展大气传感器的相关研发,为城市大气污染监测与溯源提供更精细的技术工具和数据依据。始于需求 源自基层大气传感器应用始于基层,源自2013年的一个电话。“我们从2013年开始研究城市网格化监测和大气传感器的应用,其需求来源于2013年山西省太原市的一个电话。”中国环境科学研究院大气环境研究所副所长高健告诉记者。2013年,全国首次开展城市空气质量六项参数监测,也就是这一年,太原市夏季出现了严重的臭氧污染。为了扭转不利局面,太原市政府找到了中国环境科学研究院团队。但当时的太原只有4个监测点位,很难全面代表整个城市的污染状况。无奈之下,高健团队利用手动采样的方法在太原布设了60个监测点位,没想到效果很好,整个城市的污染地图被很好地呈现出来。从那时起,高健带领团队开始寻找便捷、低成本、有一定精度的传感器产品,来替代成本高、耗人力大但精度高的手工方法。2013年—2016年,大气污染防治领域开始出现类似产品,“微型站”开始成为“标准站”的有效补充。2016年,高健团队组织了包括国内外十余个品牌的大气传感器评测工作,为时一年的细致评测后,发布了研究论文,阐述了大气传感器的适用条件、存在问题和改进方案。在大气污染防治应用方面,大气传感器也迎来了井喷,针对工地、企业、园区、港口等目标场景的固定式应用,逐渐发展到无人机搭载、船载、车载等移动方式。例如济南市生态环境局2018年全面建成1000余个微站,在市、区县、街镇三级大气污染联防联动中得到广泛应用,实现了济南市大气污染治理向公里级网格化精细监管、快速精准溯源、联动高效治理的转变。目前,环保无人机搭载传感器设备在全国多个工业园区进行污染源位置排查、环境应急监测,锁定排放源,联动环境应急处置。船载传感器也已在江苏、上海等地示范应用,监测内河、港口等重点区域的空气质量,补全移动源监管的重要环节。小小传感器 能解大问题每个城市有各自的“基因”,决定了人与路的关系。道路是城市的血管,密集处往往是人口聚居地,是商业发达区域,是各类污染排放聚集区。在济南,从你身边经过的出租车,或许不是寻常的出租车,它可能装载着传感器。这些设备从出租车的外观上是看不出来的,因为设备藏身在车灯里。别看传感器体积小,它能弥补固定环境监测器械分布不均匀的缺陷。“在项目初期,我们考虑可以利用出租车的覆盖范围广、监测结果不受人为干预的特点,在车顶上安装传感器,可实时监测污染情况,通过与现有的空气监测站等定点大气网格化监测数据相互补充、相互校准的方式,获得监测区域的大气质量数据,高效促进大气污染源头治理。”高健告诉记者。每3秒一组数据;定位精度小于20米,精准治理;300辆车每天合计行程超过 6.9万公里,数据超过360万组,平均每天可覆盖95%以上的主城区机动车道路……这些数据弥补了定点大气网格化监测的不足,依托传感器的有力支撑,可以实现城市毛细血管的净化与疏通。获取数据只是第一步,治理才是关键。相关部门可以根据从出租车传感器上获取的实时数据,精准锁定哪些地方有道路扬尘污染,从而进行精准治理,既节约时间,也节约了成本。在安徽省亳州市,除市区所有出租车外,还投入了近百辆装有大气环境监测系统的小型车辆,做到了监管全覆盖。相关人员一旦发现手机云图上出现颜色异常,就会第一时间在微信群里反映,通知对应的部门和执法人员到现场进行处理。截至目前,全国已有40多个城市,数千辆出租车安装并应用了这一传感器。“下一步,我们将加强研究,把传感器做精、做好,利用传感器体积小、成本低的优势,帮助城市更好地解决当地空气污染问题。”高健表示。新型传感器 面向新需求生态环境治理精细化是新时代生态文明建设的新要求、新考验。数据准确、参数齐全的新型传感器正在走上舞台。大气传感器需要解决的不仅仅是高时空分辨率的数据支撑,更是要通过多参数、全方位的监测,提升我们对城市污染来源和影响的科学认识。近年来,高健团队并没有停止对传感器技术前沿的探索。“新产品、新方法、新技术如雨后春笋般不断涌现,关键是要锁定最合适的产品和技术,解决科学需求。”中国环境科学研究院大气环境研究所助理研究员沈毅成告诉记者,“我们正在将新型的粒径谱传感器、黑碳传感器应用于走航监测中。新型的测量参数能够帮助我们区分道路扬尘、柴油车、汽油车尾气和城市本底污染,实现街区尺度的颗粒物来源解析。”目前,济南市的微站网络和走航出租车搭载的PM2.5传感器已经全部升级成为粒径谱传感器,能够将颗粒物的浓度细分成31个粒径区间,可以有效区分不同类型的颗粒物对PM2.5、PM10的相对贡献。“更加先进设备不断走出去,多元化的数据不断传回来,大数据赋能智慧环保已经到来。”沈毅成表示。
  • 新型大气环境快速监测系统研发成功
    p  近日,安徽光机所承担的国家重大科学仪器设备开发专项 “大气细粒子与臭氧时空探测激光雷达系统研发与应用”项目在中科院合肥研究院安徽光机所通过中科院组织的专家验收。/pp  据悉,该项目成功研发了具有自主知识产权的大气细粒子和臭氧时空分布的快速在线监测系统,突破了多项共性关键技术,提高了我国激光雷达产业的自主创新能力和核心竞争力,为我国大气环境实时监测能力建设和数据分析提供了可靠的技术手段 长期示范运行了激光雷达系统,并进行了技术验证与优化,积累了观测数据和应用经验。/pp  通过行业内推广,有效扩大了业务应用部门对激光雷达技术的认知和接受程度 编制了企业技术规范和行业应用指南,为激光雷达的业务规范化运行提供了科学支撑。/pp  项目针对业务部门各种不同需求,形成了多种型号产品,在环境监测领域大量装备,并为灰霾和光化学污染研究提供了重要手段和高端设备 自2013年起,大气细粒子和臭氧激光雷达在京津冀地区建立了立体监测网络,数年来一直保持良好的工作状态,为环境决策和管理提供了重要科学依据。/p
  • 专家解读南沙大气环境综合监测站有关情况
    p  南沙大气环境综合监测站日前已全面建成。中国环境监测总站郑皓皓研究员就综合监测站建设目的、主要功能、未来发展方向等问题,回答了记者的提问。/pp  strong问:为什么要建设南沙大气环境综合监测站?/strong/pp  答:经过多年的努力和探索,我国大气环境监测能力不断提高、监测网络不断完善,目前已形成了目标明确、功能齐全的大气环境质量监测网。我国大气环境质量监测网主要包括城市环境空气质量监测网、区域环境空气质量监测网、大气环境背景监测网、沙尘天气监测网、酸雨监测网络以及其他专项监测网等。/pp  根据我国大气环流特点,综合考虑空间分布、地域特征和生态功能等因素,生态环境部先后投资建设16个大气环境(背景)综合监测站,分别为内蒙古呼伦贝尔、吉林长白山、福建武夷山、山东长岛、山西庞泉沟、湖北神农架、湖南衡山、广东南岭、海南五指山、四川海螺沟、云南丽江、西藏纳木错、青海门源、新疆喀纳斯、西沙、南沙大气环境综合监测站。其中,南沙大气环境综合监测站是我国大气环境背景监测网的重要组成部分。/pp  在南沙建设大气环境综合监测站,既能及时掌握南海地区环境空气质量状况,又能为南海地区国家与民众提供可靠的环境空气质量信息,同时,也是研究区域大气传输和气候变化的重要站点。/pp  strong问:目前南沙大气环境综合监测站配备了哪些监测仪器设备?/strong/pp  答:南沙大气环境综合监测站配置了PM2.5、PM10、SO2、NO2、CO和O3等6项常规指标,CO2和CH4等2项温室气体指标,以及黑炭、气象五参数和能见度等7项指标的监测仪器和质控设备,同时,还预留有酸雨、挥发性有机物、太阳紫外辐射等指标的监测场地,初步形成了南海地区空气质量监测与气候变化观测相结合的综合监测能力。/pp  strong问:南沙大气环境综合监测站的主要功能是什么?/strong/pp  答:南沙大气环境综合监测站将服务于南海地区国家和民众,为其提供及时、可靠的环境空气质量信息。它的建成填补了南海地区大气环境监测的空白, 标志着南海地区大气环境综合监测迈出坚实的一步。/pp  同时,南沙大气环境综合监测站位于西太平洋-东南亚大气传输和大气环流的重要通道,是研究西太平洋-东南亚大气传输过程的重要支点。通过长期的实地观测,为研究南海地区大气背景、温室气体、颗粒物组分和污染传输提供第一手的监测数据,从而提升区域大气传输、温室气体与气候变化研究的精度和水平,为应对全球气候变化和南海地区生态环境质量改善提供重要支撑。/pp  strong问:南沙大气环境综合监测站未来的发展方向是什么?/strong/pp  答:在现有监测项目的基础上,进一步加强大气综合监测能力,不断拓展监测领域,推动国际交流与合作。一是逐步开展气溶胶光学特性、臭氧前驱体、气溶胶组分、气溶胶粒径分布、垂直探测等科学研究。二是逐步拓展海洋水质、沉积物、海洋生物、海洋生态等监测,为南海地区海洋生态环境保护提供坚强支撑。三是逐步开展南海地区海洋垃圾、微塑料分布等生态环境状况研究,评估对南海地区生态系统影响,为全球生态环境保护作出积极贡献。/p
  • 中科光电高能扫描激光雷达技术亮相第21届中国大气环境科学与技术大会
    2015年12月9-11日,由中国环境科学学会大气环境分会主办,中山大学承办的第21届中国大气环境科学与技术大会在广州成功举行。会议针对大气环境化学与大气污染控制技术、大气边界层物理卫星遥感与仪器观测、大气环境管理与空气质量模拟预报预警、排放清单与大气污染物源解析等主题展开了交流与讨论。大会开幕式由中国环境科学学会大气环境分会理事长柴发合研究员主持,会议邀请了中国工程院院士王文兴、中国环境科学学会理事长王玉庆、中国气象局科技与气候变化司罗云峰等就国内外关注的环境前沿领域热点问题做学术报告。无锡中科光电技术有限公司技术有限公司亦受邀参加此次大会,并做学术演讲。会议现场公司新产品高能3D扫描大气颗粒物监测激光雷达技术引专家学者广泛关注。该系列雷达采用波长532nm线偏振激光对大气颗粒物进行遥感探测,通过3D扫描连续在线监测大气气溶胶的空间立体分布信息。垂直扫描探测,可反演距地面10km以内气溶胶颗粒物的空间分布信息以及时空演变特征;污染物分布扫描,可实现对工业园区、居民生活区、厂区等敏感地带污染物定量评估;走航监测扫描,可对区域上空污染团的输入、过境、沉降过程以及演变过程进行监控。
  • 第25届中国大气环境科学与技术大会第二轮通知
    第25届中国大气环境科学与技术大会暨中国环境科学学会大气环境分会2019年学术年会定于11月18-19日在四川省成都市举办。会议主题:PM2.5与臭氧协同控制,精准管理。年会的主要内容包括:1)开幕式 2)大气重污染成因与治理攻关论坛 3)分会场研讨会 4)国际研讨会 5)成都市人民政府与院士专家座谈会 6)环保科技成果转化精准对接洽谈会 7)环保管家技术交流会 8)墙报交流 9)环境科技成果展等。届时,来自中外大气环境学科的专家学者,高校、科研院所、企事业单位的研究开发、工程技术人员等将出席会议。欢迎大家踊跃报名参加。现将会议有关事宜通知如下:  一、会议组织  主办单位:中国环境科学学会大气环境分会  中国环境科学学会臭氧污染控制专业委员会  联办单位:成都市生态环境局  中国环境科学研究院  国家大气污染防治攻关联合中心  中环学(北京)科技发展中心  协办单位:成都市环境保护科学研究院  成都市环境科学学会  四川大学  成都信息工程大学  成都理工大学  西南交通大学  二、活动安排  (一)大会报告及特邀报告  1.生态环境部、成都市市委领导致辞   2.知名院士作大会报告,特邀国内外大气科学界的知名专家就大气环境科学、污染防治技术和环境管理等重大环境问题作特邀报告。  (二)分会场设置  会议安排了34个分会场(包含2个国际研讨会)、1个座谈会、1个洽谈会和1个交流会。  1.分会场:(1)大气重污染成因与治理攻关论坛 (2)大气污染源排放特征和排放清单 (3)移动源排放特征、大气效应与管理 (4)大气污染来源解析 (5)大气颗粒物观测与测量技术 (6)东部沿海大气复合污染立体观测与模拟 (7)PM2.5爆发增长化学组分急剧变化外场观测与实验室模拟 (8)大气颗粒物的非均相反应与理化性质 (9)大气颗粒物健康与毒理效应 (10)大气污染物干湿沉降 (11)污染条件下的大气新粒子生成和生长机制 (12)大气氧化性与二次污染 (13)对流层臭氧与光化学污染 (14)区域与城市臭氧污染防控 (15)挥发性有机物污染控制 (16)挥发性有机物监测与质控 (17)大气边界层物理与大气环境 (18)大气污染遥感与应用 (19)空气质量监测预报预警 (20)空气质量模式和大气成分资料同化 (21)大气环境量子化学 (22)非电烟气污染控制技术 (23)室内空气污染控制技术与创新 (24)等离子技术在大气环保领域的应用 (25)等离子体催化环保新技术 (26)工业二氧化碳减排技术 (27)电力行业污染排放及控制 (28)大气污染源头控制与资源化 (29)大气环境管理和政策分析 (30)大气污染对健康的影响 (31)大气污染与天气气候相互作用 (32)雾霾污染化学及其调控 (33)国际会场1-中日韩学会主办-大气重污染成因论坛 (34)国际会场2-中国-澳大利亚空气质量科学与管理研究中心交流论坛。  2.成都市人民政府与院士专家座谈会  围绕成都市近几年大气污染防治工作情况及重点难点问题进行交流和研讨。  3.环保科技成果转化精准对接洽谈会  宣传推介创新科技成果、分享典型工程案例,开展项目对接浅谈,围绕我国环保科技创新及应用进行交流和研讨。  4.环保管家技术交流会  邀请资深专家从方案编制、技术选择、工艺设计、设备选型、运行维护和应用实例以及重点行业排放特征、控制技术及其工程达标(验收)评估等方面给成都市重点大气污染排放企业环保负责人进行授课。  (三)墙报交流  年会期间专门设置墙报交流区域,论文作者可墙报交流研究成果,墙报尺寸宽90cm× 高120cm。  (四)评选优秀演讲报告和墙报  为鼓励优秀在校学生的研究成果,大会评选优秀学生演讲报告和墙报各10名,颁发证书。  (五)环保科技成果展  年会期间将举办监测/探测技术设备展,展示推广创新科技成果和仪器设备等。  三、会议安排  (一)会议报到时间及地点  1.会议报到:11月17日全天报到。  2.报到地点:成都市世纪城假日酒店(西楼)一层大堂(地址:成都市高新区世纪城路208号,电话:028-85348888)。  3.会议不安排接站,请参会人员自行前往报到地点。  (二)会议时间及内容  11月18日上午年会开幕式领导致辞,特邀大会报告  11月18日下午-19日全天分会场、论坛等  11月18日-19日墙报交流及环保科技成果展  四、会议费用代表类型优惠注册费(10月12日之前)标准注册费(10月12日之后或现场)一般代表1600元1900元学生(持有效证件)1200元1600元  注:参会代表10月12日(含)前汇款缴费,享受注册费优惠。会议注册费由中环学(北京)科技发展中心统一开具发票。为避免会议现场缴费等待,建议参会代表提前缴费。  汇款信息如下:  户名:中环学(北京)科技发展中心  开户行:建行北京西直门北大街支行  账号:11001174900053001105  注:缴费请务必注明“大气年会-单位-姓名”  五、论文摘要征集  会议接收论文详细摘要,摘要限制在A4纸1页之内 论文摘要发送至年会专用邮箱csesam@126.com。提交截止日期:2019年9月30日。  六、住宿安排  会议召开期间住宿安排在世纪城洲际酒店、成都世纪城假日酒店(东楼、西楼)、维也纳国际酒店(成都环球中心新会展店)、星宸假日酒店。酒店提供的会议协议价格仅对本次参会代表有效,住宿费用自理。  参会代表可提前与住宿安排联系人联系预订酒店事宜,现场报到的参会代表以报到的先后顺序予以安排。住宿安排联系人:周雅丽15828177727,贾丹15928177727,周心语13060077727。  酒店各类房型数量有限,若无法满足参会代表要求,由会务组随机分配其他房型。住店日期酒店名称房型会议团队价11月17日至11月19日世纪城洲际酒店标间880元/间/天单间780元/间/天成都世纪城假日酒店(东楼、西楼)标间520元/间/天单间370元/间/天维也纳国际酒店(成都环球中心新会展店)单/标间370元/间/天星宸假日酒店单/标间360元/间/天  七、会务组联系方式  1、会议秘书处  联系人:姚凯  电话:010-68658927  报名方式:参会人员可通过填写会议回执9月30日前发送到csesam@126.com邮箱。  附件:1.会议学术委员会、组织执行委员会  2.专题分会场及召集人清单  3.论文摘要模板  4.参会回执  中国环境科学学会大气环境分会  二〇一九年六月三十日  附件1.  会议学术委员会  主任委员:  王文兴院士,中国环境科学研究院/山东大学  唐孝炎院士,北京大学  郝吉明院士,清华大学  学术顾问:  任阵海院士,中国环境科学研究院  丁一汇院士,中国气象科学研究院  徐祥德院士,中国气象科学研究院  魏复盛院士,中国环境监测总站  陶澍院士,北京大学  江桂斌院士,中国科学院生态环境研究中心  侯立安院士,火箭军后勤科学技术研究所  刘文清院士,中国科学院合肥物质科学研究院  彭平安院士,中国科学院广州地球化学研究所  洪钟祥院士,中国科学院大气物理研究所  李宗恺教授,南京大学  朱坦教授,南开大学  张远航院士,北京大学  贺克斌院士,清华大学  朱利中院士,浙江大学  王金南院士,生态环境部环境规划院  贺泓院士,中国科学院生态环境研究中心  副主任委员:  柴发合研究员,中国环境科学研究院  谭钦文高工,成都市环境保护科学研究院  委员:(以下委员姓氏以拼音为序)  鲍晓峰、车慧正、陈扬、陈冠益、陈建民、陈军辉、  陈敏东、陈义珍、陈运法、陈长虹、陈忠明、程水源、  丁焰、丁爱军、董光辉、段二红、范绍佳、方向晨、  冯银厂、伏晴艳、高健、高阳、高会旺、葛茂发、  耿红、郭松、郝郑平、胡波、胡非、胡敏、  胡建林、胡京南、江霞、蒋靖坤、雷宇、李红、  李杰、李歆、李健军、李金娟、李俊华、李卫军、  廖宏、林金泰、刘诚、刘欢、刘莹、刘越、  刘建国、刘树华、刘晓环、陆克定、马楠、马社霞、  马永亮、孟凡、苗世光、缪育聪、牟玉静、聂玮、  宁平、潘小川、潘月鹏、彭林、秦凯、区宇波、  尚静、邵敏、邵龙义、施小明、宋国君、谭吉华、  谭钦文、唐明金、唐幸福、田贺忠、汪黎东、汪名怀、  王琳、王强、王涛、王韬、王书肖、王淑兰、  王体健、王新红、王新明、王雪梅、王智化、王自发、  吴志军、吴忠标、谢宏彬、邢佳、修光利、徐晓斌、  徐义生、薛丽坤、薛志钢、闫克平、燕莹莹、杨小阳、  姚水良、姚志良、要茂盛、叶代启、印红玲、袁自冰、  张霖、张强、张宏亮、张金良、张庆华、张庆竹、  张新民、张永生、赵毅、赵永椿、郑成斌、郑君瑜、  朱爱民、朱廷钰、竹涛、LidiaMORAWSKA、  TomoakiOKUDA、YoungSUNWOO  会议组织执行委员会  主任委员:  柴发合研究员,中国环境科学研究院  副主任委员:  孟凡、邵敏、胡敏、冯银厂、陈义珍、郑君瑜、  薛丽坤、雷宇、马永亮、刘越、李红、杨小阳  会议秘书处:  陈义珍、赵妤希、郭晴、饶阳、邓也、汪艺梅  附件2.  专题分会场及召集人清单  专题1:大气重污染成因与治理攻关论坛  召集人:郝吉明院士清华大学  刘文清院士中国科学院合肥物质科学研究院  张远航院士北京大学  贺克斌院士清华大学  柴发合研究员中国环境科学研究院  施小明研究员中国疾病预防控制中心  专题2:大气污染源排放特征和排放清单  召集人:程水源教授北京工业大学  田贺忠教授北京师范大学  谭吉华教授中国科学院大学  薛志钢研究员中国环境科学研究院  姚志良教授北京工商大学  专题3:移动源排放特征、大气效应与管理  召集人:丁焰研究员中国环境科学研究院  刘欢副教授清华大学  专题4:大气污染来源解析  召集人:冯银厂教授南开大学  王淑兰研究员中国环境科学研究院  彭林教授华北电力大学  胡建林教授南京信息工程大学  张宏亮教授复旦大学  邢佳研究员清华大学  专题5:大气颗粒物观测与测量技术  召集人:蒋靖坤教授清华大学  李卫军教授浙江大学  高健研究员中国环境科学研究院  专题6:东部沿海大气复合污染立体观测与模拟  召集人:丁爱军教授南京大学  伏晴艳高工上海市环境监测中心  薛丽坤教授山东大学  专题7:PM2.5爆发增长化学组分急剧变化外场观测与实验室模拟  召集人:陈建民教授复旦大学  陈忠明教授北京大学  专题8:大气颗粒物的非均相反应与理化性质  召集人:葛茂发研究员中国科学院化学研究所  吴志军研究员北京大学  李杰研究员中国科学院大气物理研究所  唐明金研究员中国科学院广州地球化学研究所  专题9:大气颗粒物健康与毒理效应  召集人:耿红教授山西大学  邵龙义教授中国矿业大学(北京)  李金娟教授贵州大学  尚静副教授北京大学  专题10:大气污染物干湿沉降  召集人:潘月鹏研究员中国科学院大气物理研究所  张霖教授北京大学  马楠教授暨南大学  专题11:污染条件下的大气新粒子生成和生长机制  召集人:王琳教授复旦大学环境科学与工程系  郭松研究员北京大学环境科学与工程学院  聂玮副教授南京大学大气科学学院  专题12:大气氧化性与二次污染  召集人:陆克定教授北京大学  刘诚教授中国科学技术大学  薛丽坤教授山东大学  胡波研究员中科院大气物理所  专题13:对流层臭氧与光化学污染  召集人:徐晓斌研究员中国气象科学研究院  王韬教授香港理工大学  牟玉静研究员中科院生态环境研究中心  王新明研究员中科院广州地球化学研究所  李红研究员中国环境科学研究院  张霖教授北京大学  专题14:区域与城市臭氧污染防控  召集人:郑君瑜教授暨南大学  谭钦文教高成都市环境科学研究院  陈长虹教高上海市环境科学研究院  袁自冰教授华南理工大学  专题15:挥发性有机物污染控制  召集人:张新民研究员中国环境科学研究院  郝郑平研究员中国科学院生态环境中心  修光利教授华东理工大学  马社霞研究员生态环境部华南环境科学研究所  专题16:挥发性有机物监测与质控  召集人:李歆研究员北京大学  李健军研究员中国环境监测总站  区宇波研究员广东省环境监测中心  刘莹副研北京大学  专题17:大气边界层物理与大气环境  召集人:刘树华教授北京大学  范绍佳教授中山大学  胡非研究员中国科学院大气物理研究所  苗世光研究员北京城市气象研究院  缪育聪副研中国气象科学研究院  专题18:大气污染遥感与应用  召集人:林金泰研究员北京大学  张强教授清华大学  车慧正研究员中国气象局中国气象科学研究院  秦凯副教授中国矿业大学(徐州)  燕莹莹副教授中国地质大学(武汉)  专题19:空气质量监测预报预警  召集人:李健军研究员中国环境监测总站  刘建国研究员中国科学院合肥物质科学研究院  专题20:空气质量模式和大气成分资料同化  召集人:王体健教授南京大学  王自发研究员中科院大气所  王雪梅教授暨南大学  王书肖教授清华大学  专题21:大气环境量子化学  召集人:张庆竹教授山东大学  谢宏彬教授大连理工大学  徐义生研究员中国环境科学研究院  专题22:非电烟气污染控制技术  召集人:吴忠标教授浙江大学  李俊华教授清华大学  唐幸福教授复旦大学  赵毅教授华北电力大学  专题23:室内空气污染控制技术与创新  召集人:侯立安院士火箭军后勤科学技术研究所  陈冠益教授天津大学  要茂盛教授北京大学  专题24:等离子技术在大气环保领域的应用  召集人:竹涛教授中国矿业大学(北京)  闫克平教授浙江大学  陈扬研究员中国科学院北京综合研究中心  段二红教授河北科技大学  专题25:等离子体催化环保新技术  召集人:朱爱民教授大连理工大学  叶代启教授华南理工大学  姚水良教授常州大学  专题26:工业二氧化碳减排技术  召集人:王强教授北京林业大学  汪黎东教授华北电力大学  王涛教授浙江大学  专题27:电力行业污染排放及控制  召集人:张永生教授华北电力大学  王智化教授浙江大学  赵永椿教授华中科技大学  专题28:大气污染源头控制与资源化  召集人:方向晨教高中国石化大连石油化工研究院  宁平教授昆明理工大学环境科学与工程学院  朱廷钰研究员中国科学院过程工程研究所  江霞教授四川大学建筑与环境学院  专题29:大气环境管理和政策分析  召集人:雷宇研究员生态环境部环境规划院  胡京南研究员中国环境科学研究院  宋国君教授中国人民大学  专题30:大气污染对健康的影响  召集人:张金良研究员中国环境科学研究院  董光辉教授中山大学  潘小川教授北京大学  专题31:大气污染与天气气候相互作用  召集人:廖宏教授南京信息工程大学  汪名怀教授南京大学  高阳教授中国海洋大学  刘晓环副教授中国海洋大学  专题32:雾霾污染化学及其调控  召集人:印红玲教授成都信息工程大学  王新红教授厦门大学  陈军辉研究员四川省环境保护科学研究院  郑成斌教授四川大学  专题33:国际会场1-中日韩学会主办-大气重污染成因论坛  召集人:孟凡研究员中国环境科学研究院  YoungSUNWOOProf.KOSAE  TomoakiOKUDAProf.JSAE  杨小阳研究员中国环境科学研究院  专题34:国际会场2-中国-澳大利亚空气质量科学与管理研究中心交流论坛  召集人:LidiaMORAWSKAProf.QUT  柴发合研究员中国环境科学研究院  高健研究员中国环境科学研究院  附件3.  论文摘要模板  全球温室气体控制与CCS技术  李一圣,李二圣,李三圣  (XXXX大学环境科学与工程学院上海200000)  摘要:现代化工业社会过多地燃烧煤炭、石油和天然气,汽车大量排放尾气,这些燃料燃烧后放出大量的温室气体。这些温室气体进入大气后发生积聚。温室气体具有吸热和隔热的功能,它们能够吸收和释放地球表面、大气和云发出的热红外辐射光谱内特定波长的辐射,在大气中积聚后形成一种无形的玻璃罩,使太阳辐射到地球上的热量无法向外层空间发散,其结果是地球表面变热。目前,温室效应已经成为全球性的环境问题,从而引起世界各国的关注。  水汽(H2O)、二氧化碳(CO2)、氧化亚氮(N2O)、甲烷(CH4)和臭氧(O3)是地球大气中主要的温室气体。此外,大气中还有许多完全人为产生的温室气体,如《蒙特利尔议定书》所涉及的卤烃和其它含氯和含溴的物质。除CO2、N2O和CH4外,《京都议定书》将六氟化硫(SF6)、氢氟碳化物(HFC)和全氟化碳(PFC)也定为温室气体。  温室效应,是大气保温效应的俗称。大气能使太阳短波辐射到达地面,但地表向外放出的长波热辐射线却被大气吸收,这样就使地表与低层大气温度增高,因其作用类似于栽培农作物的温室,故名温室效应。如果大气不存在这种效应,那么地表温度将会下降约3℃或更多。反之,若温室效应不断加强,全球温度也必将逐年持续升高。自工业革命以来,人类向大气中排入的二氧化碳等吸热性强的温室气体逐年增加,大气的温室效应也随之增强,已引起全球气候变暖等一系列严重问题,引起了全世界各国的关注。  政府间气候变化专家委员(IPCC)出版的第3次评估报告指出,自1860年以来,由于CO2大量排放,全球平均地面温度上升了0.6± 0.2℃,预测全球平均地表气温到2100年将比1990年上升1.4~5.8℃,这一增温值将是20世纪内增温(0.6℃左右)的2-10倍,是近10000年中最显著的增温。  CO2捕集技术目前分为三类:燃烧前捕集、燃烧后捕集和富氧燃烧捕集。三种方法有各自的有点和缺点,需要进一步的研究。  表1CO2捕获流程和系统概况序号12345  图1CO2捕获流程和系统概况  关键词:温室气体 辐射 CO2捕集  基金项目:国家自然科学基金(No.xxxx)  (全文大纲级别均为正文文本)  附件4.  第25届中国大气环境科学与技术大会  参会回执  时间:2019年11月18日-19日地点:成都世纪城国际会展单位地址参会人员登记姓名职务手机邮箱口头报告发言题目发言分会场发言人职务/职称墙报题目第一作者注:因增值税发票要求严格,请认真填写“发票抬头”、“纳税人识别号”等信息,已开发票不予更换。发票类型发票抬头项目会议服务费发票类型□增值税普通发票□增值税专用发票(请在所需票据前打√)纳税人识别号税务登记地址、电话开户行银行名称银行账号住宿世纪城洲际酒店880元/标间间,780元/单间间,入住日期:日成都世纪城假日酒店(东楼、西楼)520元/标间间,370元/单间间,入住日期:日维也纳国际酒店(成都环球中心新会展店)370元/单间/标间间,入住日期:日星宸假日酒店360元/单间/标间间,入住日期:日注:成都世纪城假日酒店17日15点以后可入住,其他酒店14点以后可入住备注特殊情况请说明:  请将此表于9月30日前发送至年会专用邮箱csesam@126.com
  • 专业与专注,成就大气环境综合绩效服务商 ——记无锡中科光电技术有限公司“立体监测”创新之路
    无锡中科光电技术有限公司总经理 万学平   近年来,每逢国家重大活动及国际赛事,就有一批环境监测科技人员利用先进的雷达激光立体监测技术,为活动和赛事提供环境检测服务——他们来自无锡中科光电技术有限公司。  中科光电成立于2011年8月,由聚光科技(杭州)股份有限公司和中国科学院安徽光学精密机械研究所刘文清院士团队共同发起创建。截至目前,他们的客户已遍布全国33 个省直辖市的环保、气象、科研高校系统,激光雷达的国内市场份额已经达到60%以上。产品先后获得了3 项江苏省高新技术产品、江苏省专精特新产品、国家专利优秀奖等多项荣誉。在经过各项国家级、省级、市级重大科技项目的参与过程中,中科光电的激光雷达产品系列,取得了阶段性的进展,并先后参与了2013 年南京亚青会、2014 年南京青奥会、2015 年青运会、2015 年乌镇物联网大会、2016 年上合组织政府首脑理事会、2016年G20 峰会、2017 北京一带一路大会等空气质量保障工作。为活动保障工作准确判断污染的时间、程度、评估大气污染类型,预判污染物的走向及污染过境时的大气整体状况提供了详实的第一手信息。专业专注是中科光电最主要的企业基因  在企业化发展过程中,他们始终坚持产学研一体化,将物联网技术与立体监测技术相结合、将大气环境科学与仪器工程相结合,共同联合开发生产了多波长颗粒物激光雷达、高能扫描颗粒物激光雷达、臭氧激光雷达、多轴差分紫外光谱仪、激光测风雷达、激光温湿雷达、立体走航监测车等多款立体监测产品。  相比于国内外同类激光雷达,中科光电的产品具备特有的技术优势。多波长激光雷达为豪焦级激光器,激光能量高,在重污染天气状况下,能够穿透霾层探测高空8~10km 范围内的污染物分布信息、监测边界层完整的变化过程,同时多波长设计,可有效获取颗粒物的尺度分布信息,全粒径响应,实现更细小颗粒物的占有比,适用于中国目前典型的细粒子环境污染现状。此款雷达是国内首款多波长激光雷达,也是引领环境监测部门对雷达应用需求的创新产品。高能扫描颗粒物激光雷达为国内首台基于快速扫描振镜的产品,能够同时获得区域内垂直(0-270o)、水平(0-360o)立体监测数据,为说清区域内污染排放特征、污染源分布等提供重要信息。同时,也是国内首台在时速120km/h 范围内仍然能边走边测的车载遥感监测设备,可针对污染源进行快速溯源、应对污染突发事件、对污染团进行追踪监测。臭氧探测激光雷达采用一体化结构设计技术,能够有效保护光路稳定、抑制灰尘累积、降低光损耗、保证产品稳定性能。该产品可同时监测颗粒物后向散射系统及臭氧浓度的时空分布,是国内首台颗粒物和臭氧时空分布信息能够同时监测的激光雷达设备,可有效监测臭氧的空间变化过程及臭氧与细粒子之间的转化过程。  无锡中科光电针对跨区域环境污染现象、污染来源无法说清、预警预报不精确等地方重大环境管理需求,在立体监测装备的支撑下,开发形成了多套应用解决方案,如:车载快速溯源解决方案、车载遥感监察解决方案、立体网格化监测解决方案、区域环境质量保障解决方案、大气监测超级站解决方案、城市与区域立体监测解决方案等,为地方政府与环境管理部门提供大气环境综合分析与监控预警应急决策一体化的整体支撑服务。坚守创新做细分行业的“隐形冠军”  在细分领域专注专业地工作,是中科光电支持的发展之路。  作为科技型企业,“ 技术创新”是企业的灵魂,是企业发展、立足生存的根本。一是对原有激光雷达技术进行优化,提升产品质量,不断推进产品零部件国产化率,降低成本,改变国内高端设备依靠进口的市场格局;二是加大研发投入、关注客户实际需求,对现有技术与新技术、新需求进行结合,赋予产品更强大、更丰富的功能,提高产品性价比,为客户创造更大的价值空间;三是满足日益国际化的竞争趋势,保持对国际、国内科技前沿的紧密关注,对公司的发展战略方向持续性提出质疑并快速反应,开发生产环境监测领域立体监测技术新产品;四是坚持产品创新与应用创新全面发展,加强企业先进制造水平,提升高端的供给能力,坚持以服务改善空气质量为导向,将中科光电打造成有内涵、有竞争力的国有科技型企业,在环境立体监测这一细分领域做大做强,为实现“中国蓝”贡献自己的力量,也能够早日走向国际,彰显中国智造的力量。不忘初心引领“智慧环保”前行  目前国内立体监测激光雷达产品的种类还比较单一,其中颗粒物激光雷达相对成熟,但大气成分监测激光雷达(O3、SO2、NOX、CO、VOCS)、气象激光雷达(风、温、湿、水汽)技术还处于起步和筹划阶段。中科光电已经做好了针对以上产品的应用扩展研究计划和产品开发计划,该系列产品将如中科光电的颗粒物激光雷达一样引领行业市场发展。  激光雷达目前还没有正式的国家规范标准,很多单位对于激光雷达的性能校验也一直存在着疑问。为了保持激光雷达的有效探测距离及探测精度、保证激光雷达的稳定性及准确性,保证雷达数据的有效性和一致性,我们将与中科院安光所刘文清院士团队共同设计相关的技术规范标准,并积极推进相关管理部门及行业用户的认可。为立体监测行业的发展贡献一份力量。  统一产品运营维护标准、提供高端运营维护服务,是中科光电目前正在部署的发展战略。他们将运用信息化系统管理,调配专业的环境工程服务人才组成客服团队,实现售前、售中监控,售后定期维护的全过程服务,使客户服务成为公司强有力的竞争王牌。  我国全指标、多样化的大气环境监测工作起步较晚,大多数情况,监测数据开发利用不足,缺少针对性强的监测数据分析,从而找不出存在的主要环境问题、对区域环境质量的变化解释不清。对监测站汇总数据进行特色加工形成监测报告,站在全局的角度思考,找出环境存在的问题,分析环境问题形成的原因,针对存在的问题提出相应的合理可行的建议,是中科光电未来三年发展的业务方向之一。中科光电正在并将持续组建专业化、标准化的环境咨询服务队伍,为各有关部门提供定制化的综合数据分析服务,共同研究、探索各监测数据间的相关性,扩展监测数据的应用价值,构建成熟的数据分析模型,使得综合分析业务成为可以效仿的工作形式,给各级地方政府当“ 参谋”、做“ 大气环境医生”,为地方空气质量达标与持续改善提供更有力的支撑。图为中科光电大气环境立体走航观测车为“一带一路”空气质量做保障
  • 聚光科技出席第24届中国大气环境科学与技术大会
    “第24届中国大气环境科学与技术大会暨中国环境科学学会大气环境分会2018年学术年会”于2018年11月2日-4日在青岛市隆重开幕,聚光科技(杭州)股份有限公司(以下简称“聚光科技”)董事长叶华俊应邀出席本次会议。  自1978年以来,中国大气环境科学与技术大会已成为中国大气学术界最具学术影响力的盛会。而本次会议紧紧围绕“环境空气质量持续改善之路:科学、技术与管理”主题,开设“大气污染源排放特征和排放清单”、“大气污染来源解析”“大气颗粒物观测及测量技术”“大气污染控制技术”等23个子主题分会场,邀请近20位院士和上百位国内外知名专家学者做特邀报告,参会专家学者超过千人,大会就当今中国和全球关注的大气环境科学前沿与热点问题作了空前的学术演讲和学术研讨。本届大会旨在推进大气环境科学技术领域的合作,共同探讨改善我国大气环境质量的方法途径,深化大气污染综合防治工作,为大气环境污染防治重大战略任务出谋划策。中国大气环境科学与技术大会开幕式  在由南开大学冯银厂教授等人召集的“大气污染来源解析”分会场交流活动中,国内外专家和业内人士就我国源解析技术进行了分享和深入交流。活动中,冯老师就我国大气颗粒物来源解析技术的发展历程、现状及趋势做了主题报告。聚光科技环境资源事业部操晚也向与会专家学者和业内人士就大气细颗粒物在线源解析和光化学污染监测技术进行报告分享,展示了聚光科技自主研发的系列大气环境监测仪器及大气污染防治监测综合解决方案。该方案基于PMF在线源解析软件,集成AMMS-100大气重金属分析仪、WAGA-100大气水溶性离子分析仪和大气OCEC-100碳质组分分析仪等大气颗粒物在线监测设备,具有统一进样口,自动对数据进行质控来获得有效数据集,配备智能软件平台等优势。此系统已应用于天津和海南等多个站点展开观测,表现稳定,可以为大气污染精准治理和空气质量精细化管理提供长期基础数据和技术支撑。 聚光科技环境资源事业部操晚发表《大气颗粒物在线源解析技术和光化学污染监测技术》报告  本次大气环境科学与技术大会为国内外大气环境研究学者提供了一个便捷的交流平台,在聚光科技展台区,聚光科技董事长叶华俊和环境资源事业部产品总监黄伟向多位专家学者和来访记者就颗粒物源解析与光化学污染综合监测方案进行了详细介绍和深入的交流。本次展会,聚光科技研发的AMMS-100大气重金属分析仪、OCEC-100和PANs-1000三款产品一一亮相,吸引了众多业内人士前来参观,受到参观者的一致好评。董事长叶华俊在向与会专家介绍聚光科技OCEC-100大气碳质组分分析仪  聚光科技作为中国分析仪器行业和环保监测仪器行业龙头企业,将始终坚守“绿色科技引领者”的企业愿景以及“科技感知世界,绿色改变未来”的企业使命,坚持自主研发,创新进取,以绿色科技作为产业基础提升核心竞争力,构建和谐生态,建设美丽中国。通过本次大会的交流平台,聚光科技能与更多的业内专家和学者在大气环境科学技术领域开展深入合作和交流,进一步提高国内产品自主研发的能力,共同探讨改善我国大气环境质量的方法途径,深化大气污染综合防治工作;积极响应国家环保战略,为我国重点区域空气质量持续改善、大气环境污染防治等重大战略任务建言献策。
  • 第25届中国大气环境科学与技术大会成功落幕! ——聚光科技助力大气精准管理
    11月蓉城,丹桂香,秋意浓,2019年第25届中国大气环境科学与技术大会于18-19日,来自中国大气环境科研领域的9位院士和全国各地的专家学者齐聚成都,共同探讨改善我国大气环境质量的方法途径,为大气环境污染防治重大战略任务出谋划策。  本届大会主题为“PM2.5与臭氧协同控制,精准管理”。大会由开幕式暨主旨报告会、专题分会及优秀环保技术展组成。自1978年以来,中国大气环境科学与技术大会已成为中国大气学术界最具学术影响力的盛会之一。 中国大气环境科学与技术大会开幕式聚光风采  作为此次大会的受邀参展商,聚光科技(杭州)股份有限公司(以下简称“聚光科技”)携大气环境移动监测走航车、大气颗粒物在线源解析、大气光化学污染监测和大气网格化综合监测解决方案亮相展会,重点展示和交流了大气环境科技方面的监测技术和解决方案,为我国环境空气质量持续改善,打赢蓝天保卫战出谋划策。聚光科技展会现场热点产品  本次展会,聚光科技重点带来了几款大气光化学污染在线监测产品,可应用于光化学污染监测解决方案中。光化学污染重要指示剂——PANs分析仪   PAN(CH3C(O)OONO2,过氧乙酰硝酸酯)是大气环境中重要的二次污染物,己知PAN没有天然源,全部由光化学反应生成,相比臭氧,PAN是更好的光化学烟雾污染指示剂。光化学污染状况及程度的重要指标——光解光谱仪  部分光化学反应的关键物质及自由基(如O1D、NO2、H2O2、NO3、HONO、HCHO等)的光解速率是分析大气光化学污染状况及程度的重要指标。聚光科技光解光谱仪(PFS-100)基于光谱在线连续测量大气中不同物质光解速率,应用于大气光化学污染状况分析。 移动监测先锋军——TOF-MS VOCs走航监测车  高时空分辨率VOCs走航监测车系统通过对不同区域开展走航监测,可全面、快速、实时获取整个研究区域污染全貌,精确定位重点污染企业及其内部重点污染源,可解决污染溯源,企业偷排漏排,厂界传输和应急监测等多个问题。精彩报告  除了吸睛的产品展示,本次会议上聚光科技还带来精彩报告呈现给大家,全面展示了聚光科技强大的大气监测产品线阵容以及其在各地蓝天保卫战中起到的积极作用。  比如:宿州、杭州、嘉兴等多个地市通过应用大气网格化监管解决方案,PM2.5浓度同比下降,监管成效显著;颗粒物来源解析和臭氧来源解析等综合解决方案在渭南、海口等城市落地,为污染的精细化管控进一步提供了科技支撑。 项目经理发表报告:《大气监测新技术——助力空气保障,打赢蓝天保卫战》和《大气颗粒物和臭氧污染在线监测与源解析技术》写在最后的话  本次大会为聚光科技提供一个开放、便捷的交流平台,未来我们将一如既往坚持自主研发,争做国内分析仪器和环境监测仪器行业的领军人!  聚光科技于2011年4月15日上市,是国内先进的城市智能化整体解决方案提供商,同时也是国内绿色智慧城市建设的先驱之一。聚光科技研发实力强大,目前是国内外自主研发监测仪器产品线最全的公司。曾获得2项国家科学技术进步二等奖,承担过2项IEC国际标准制定,目前拥有授权发明专利414项,并获得过中国专利金奖1项。
  • 直击 ▏中国环境科学学会大气环境分会2017年学术年会盛大召开
    12月8-9日,“第23届中国大气环境科学与技术大会暨中国环境科学学会大气环境分会2017年学术年会”在北京召开。本次大会由中国环境科学学会大气环境分会、中国环境科学研究院等联合主办,以环境空气质量持续改善之路:科学、技术与管理为主题,促进全国大气领域专家的交流和沟通。中科光电与我国大气环境领域的知名专家、学者和科技人员700余人,齐聚一堂,探讨大气领域最新的热点和前沿问题,共同为打赢蓝天保卫战出谋划策。第23届中国大气环境科学与技术大会暨中国环境科学学会大气环境分会2017年学术年会中科光电仪器展大会开幕式由大气环境分会理事长柴发合研究员主持,中国环境科学研究院王文兴院士、中国科学院合肥物质科学研究院刘文清院士、北京大学张远航院士等多位院士专家出席开幕式,就大气重污染成因与治理攻关中的关键性问题进入了深入的研讨。刘文清院士:我国立体观测设备层面有待进一步建设和完善刘院士汇报刘文清院士在大会特邀主旨报告中阐述了“天地一体化综合立体观测”的进展,指出我国立体观测设备层面有待进一步建设和完善。会上,刘院士介绍了立体监测新设备新技术即中科光电新产品——大气颗粒物监测激光雷达(双镜微脉冲激光雷达)。雷达以集成化、零盲区、便携性、多参数、可视化等优势成为现场关注的焦点。刘院士介绍双镜微脉冲激光雷达该雷达是中科光电与中科院安徽光学精密机械研究所(以下简称“安光所”)联合研发,雷达集所有功能为一体,机身小巧轻便,双望远镜光路结构设计更是真正实现激光雷达零盲区探测。该雷达体积虽小,却应用俱全,可实现垂直观测、扫描观测、走航观测、组网观测等监测需求。走航观测激光雷达在区域污染快速溯源重点应用双镜微脉冲激光雷达在总理专项中的应用在大气污染来源解析分会场中,中科光电行业市场总监牛苗苗汇报了《走航观测激光雷达在区域污染快速溯源重点应用》,应用以总理雾霾专项为背景,结合中科光电大气颗粒物监测激光雷达在京津冀及周边地区进行走航观测,对京津冀及周边地区大气重污染的成因和来源进行分析,展示了中科光电雷达的优异性能和精准的监测数据,得到了在座专家学者们的认可。会议同期展台也吸引了众多业内人员参观前来咨询双镜微脉冲激光雷达的参会者
  • 安光所大气环境遥感监测技术团队荣获“科技创新先锋团队”称号
    6月30日上午,中科院召开庆祝建党101周年表彰交流大会,合肥研究院安光所大气环境遥感监测技术创新先锋团队荣获中科院“科技创新先锋团队”称号。   大气环境遥感监测技术创新先锋团队立足于国家战略科技力量,勇担科技“国家队”的使命和责任。团队围绕“国家环境安全”“美丽中国建设”对环境监测和信息获取的需求,自主研发系列大气立体探测技术与装备,研制了污染成分、温室气体、气象要素高时空分辨探测激光雷达、傅立叶红外光谱仪和差分吸收光谱等系统,构建我国首个大气环境综合立体监测系统,应用于北京冬奥会等重大活动的空气质量保障和环境效应评估,并通过技术产业化支撑了国家环境监测网络建设;成功研制高分5号多角度偏振成像仪、主要温室气体监测仪和大气痕量气体差分吸收光谱仪等载荷并在轨运行交付,首次实现我国大气污染成分探测由地基到天基的跨越。为我国争夺环境国际话语权、打赢“蓝天保卫战”发挥重要作用。   团队始终秉承“精益求精,开拓创新”的建所理念,坚持 “信念引领科研,党建促进创新”,充分发挥“两个作用”,发扬党旗在科研一线高高飘扬的光荣传统,成员们迎难而上、担当作为,攻坚克难、努力拼搏,以自己的责任担当有效保障了科研任务的顺利完成。2020年疫情期间,刘文清院士亲自带队逆行奔赴武汉开展大气环境走航观测实验,获取了第一手的大气环境要素时分分布数据。   团队在大气环境监测技术领域已获国家科技进步二等奖4项,省部级一等奖8项等。 “十四五”期间,团队将继续怀揣“为我国环境监测事业做贡献”的初心,以国家“减污降碳”重大需求为导向,勇担“国家事”“国家责”,做足长板,在大气环境遥感监测技术与应用领域取得进一步突破,努力为建设美丽中国做出更多贡献,以优异成绩迎接党的二十大召开。刘文清院士带队逆行武汉载荷卸车出征
  • 山东发布《化工园区大气环境风险监控预警系统技术指南(试行)》
    p  在我国大气环境污染控制中,大气质量监测和污染源点源排放监测技术已经非常成熟,且建设了基本完备的监测网络。但是对于来自工业的面源污染,一直没有受到足够的重视。尤其是化工园区,其排放的挥发性有机物、臭味物质等多以面源污染的方式,虽然有些园区已经开始尝试进行监测,但是监测方案各不相同,且多依赖所选供应商的技术特长。/pp  山东省作为我国第一化工大省,近日发布了《化工园区大气环境风险监控预警系统技术指南(试行)》标准,对山东省人民政府认定的化工园区大气环境风险监控预警系统的设计、建设、验收与运行进行了规定。/pp  标准中规定的系统包括监测网络、管理平台及配套设施,其中监测网络中的监测点位包括点监测、线监测和面监测,监测因子应该根据化工园区环境风险识别结果确定,明确危险单元、风险源、主要危险物质、环境影响途径、可能受影响的环境敏感目标等内容,需包括硫化氢、氨气等重点关注的突发环境事件危险物质。/pp  对于监测方法/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/74a3b7e8-9cd0-40f4-abaf-14f04c41c310.jpg" title="推荐监测分析方法.jpg" alt="推荐监测分析方法.jpg"//pp  在大气环境特征污染物监测站点附近,因综合考虑周边地形等影响因素,增设气象监测设备,观测风向、风速等相关气象参数。/pp  标准全文如下:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201909/attachment/8bc7c5fc-19dd-4008-a942-a73512f838c9.pdf" title="化工园区大气环境风险监控预警系统技术指南(试行).pdf" style="color: rgb(0, 102, 204) font-size: 14px text-decoration: underline "span style="font-size: 14px "化工园区大气环境风险监控预警系统技术指南(试行).pdf/span/a/ppbr//p
  • 重磅!中科光电推出大气环境立体移动监测车典型系列
    大气环境立体走航观测车(以下简称“走航车”)是由中国科学院安徽光学精密机械研究所(以下简称“安光所”)的核心技术团队带领聚光科技(杭州)股份有限公司下属子公司无锡中科光电技术有限公司(以下简称“中科光电”)的小伙伴们一起自主研发的新一代产品。  走航车搭载遥测设备,结合三维高精度电子地图,可实现边走边测,既能说清污染成因、污染来源、污染趋势,也能起到及时发现来源、精确定位污染源位置的作用,为管控和监督污染源排放发挥重要作用,真正可以做到“测管”协同,在环境监测和环境监察系统都有广泛应用。在往期的文章中,小编就曾介绍过神一样存在的走航车,经过中科光电小伙伴一年多的技术论证、设计、试验,现在推出了三款不同功能的典型车系。这次小编卯足了劲,一口气向大家推荐现有的三款经典走航车。大气环境快速溯源监测车  配备高能扫描雷达和DOAS,走航和扫描相结合的方式,边走边测,快速溯源,精确定位源位置,判别污染的类型及趋势。大气综合遥感监测车  集成主要的遥感监测设备,如高能扫描雷达,风廓线雷达,微波辐射计等,形成一个可移动的遥测站点。可探测颗粒物及气象要素的垂直时空分布特征,在满足快速溯源,走航的基础上,联合风廓线雷达可计算污染物的输送通量,定量评估外来输送影响。多参数大气环境监测车  多参数移动监测车配备完整的地面站点式监测设备和空间遥测设备,如常规六参数,质谱,颗粒物雷达,臭氧雷达等,在满足监测气溶胶微物理化学特性外,还可监测污染的成因,过程及趋势,是一个综合性的移动超级监测站。  走航车主要功能有:环境监察,快速执法;快速溯源,空气保障;应急监测,科学评估;追霾行动,气团追踪;重大赛事,空气安保等。监测结果可通过网络传输,用户可第一时间在任何位置通过互联网,查看监测数据变化趋势,及时响应。走航车的开发小伙伴们具有多年立体监测设备应用和研发经验,对车体改装、仪器装车、监测应用等技术掌握熟练。
  • 重磅!中科光电推出大气环境立体移动监测车典型系列
    大气环境立体走航观测车(简称“走航车”)是由中国科学院安徽光学精密机械研究所(简称“安光所”)的核心技术团队带领中科光电的小伙伴们一起自主研发的新一代产品。走航车搭载遥测设备,结合三维高精度电子地图,可实现边走边测,既能说清污染成因、污染来源、污染趋势,也能起到及时发现源、精确定位污染源位置的作用,为管控和监督污染源排放发挥重要作用,真正可以做到“测管”协同,在环境监测和环境监察系统都有广泛应用。在往期的文章中,小编就曾介绍过神一样存在的走航车,经过中科光电小伙伴一年多的技术论证、设计、试验,现在推出了三款不同功能的典型车系。这次小编卯足了劲,一口气向大家推荐咱们中科家现有的三款经典走航车。 大气环境快速溯源监测车 配备高能扫描雷达和DOAS,走航和扫描相结合的方式,边走边测,快速溯源,精确定位源位置,判别污染的类型及趋势。 大气综合遥感监测车 集成主要的遥感监测设备,如高能扫描雷达,风廓线雷达,微波辐射计等,形成一个可移动的遥测站点。可探测颗粒物及气象要素的垂直时空分布特征,在满足快速溯源,走航的基础上,联合风廓线雷达可计算污染物的输送通量,定量评估外来输送影响。 多参数大气环境监测车 多参数移动监测车配备完整的地面站点式监测设备和空间遥测设备,如常规六参数,质谱,颗粒物雷达,臭氧雷达等,在满足监测气溶胶微物理化学特性外,还可监测污染的成因,过程及趋势,是一个综合性的移动超级监测站。 走航车主要功能有:环境监察,快速执法;快速溯源,空气保障;应急监测,科学评估;追霾行动,气团追踪;重大赛事,空气安保等。监测结果可通过网络传输,用户可第一时间在任何位置通过互联网,查看监测数据变化趋势,及时响应。我们走航车的开发小伙伴们具有多年立体监测设备应用和研发经验,对车体改装、仪器装车、监测应用等技术掌握熟练。
  • 大气环境监测卫星成功发射 减污降碳协同增效再添利器
    4月16日2时16分,我国在太原卫星发射中心成功将大气环境监测卫星发射升空。大气环境监测卫星是《国家民用空间基础设施中长期发展规划(2015-2025年)》中的一颗科研卫星,生态环境部为该卫星牵头用户,卫星和运载火箭系统均由中国航天科技集团有限公司第八研究院抓总研制。   该卫星将在国际上实现CO2的主动激光探测和大气细颗粒物的主被动结合探测,能够对气态污染物、云和气溶胶以及水生态、自然生态等环境要素进行大范围、全天时综合监测,同时可支撑开展气象、农业农村等行业的遥感监测应用工作。   大气环境监测卫星运行于705km的太阳同步轨道,星上搭载了大气探测激光雷达、高精度偏振扫描仪、多角度偏振成像仪、紫外高光谱大气成分探测仪及宽幅成像光谱仪等5台有效载荷,整星重量约2.8吨,设计寿命8年。其中,大气探测激光雷达在国际上采用双体制激光技术探测气溶胶和CO2,通过主动方式对大气CO2柱总量进行精细化探测,获取大范围、高精度的CO2浓度变化信息和气溶胶散射系数廓线、消光系数廓线、光学厚度、边界层高度等垂直分布信息,弥补以往被动观测的不足。高精度偏振扫描仪与多角度偏振成像仪联合观测可获取云和气溶胶多个角度的偏振信息,用于反演全球大气气溶胶和云的时空分布信息,观测幅宽大于1800km,此外,还可通过与大气探测激光雷达载荷的协同观测与应用,实现近地表细颗粒物的定量探测。紫外高光谱大气成分探测仪可获取O3、NO2和SO2等气态污染物浓度信息,幅宽大于2300km,具备每天一次的全球覆盖能力。宽幅成像光谱仪可获取光谱范围从可见光至长波红外(0.415-12μm)的陆表和大气多光谱信息,观测幅宽大于2300km,空间分辨率最高可达75m。   大气环境监测卫星的成功发射,将进一步提升我国的CO2和大气污染物遥感监测能力。在应对全球气候变化方面,实现全球范围CO2的主动激光高精度、全天时探测,探测精度达到优异水平,可为CO2分布和应对气候变化提供精准的遥感数据支撑;在大气环境遥感监测方面,具备对全球细颗粒物(PM2.5)、气态污染物、云和气溶胶的定量化遥感监测以及对工业排放、生物质燃烧等大气污染源的大范围、高动态遥感监测能力,可为我国大气污染防治和空气质量预报提供数据和技术支撑;在水环境遥感监测方面,可实现内陆大型水体水华、水质、水生植被以及近海海域赤潮、溢油、水质等的定量化遥感监测;在自然生态遥感监测方面,可实现生态系统关键参数的定量化遥感反演,为全国和区域生态环境状况调查与评估等业务提供重要数据支撑。   大气环境监测卫星的成功发射,将为落实“精准治污、科学治污、依法治污”、支撑深入打好污染防治攻坚战、实现减污降碳协同增效提供重要数据支撑。“十四五”期间,生态环境部还将牵头组织研制发射高精度温室气体综合探测卫星,与大气环境监测卫星组网观测,进一步提升全球主要温室气体和大气污染物遥感监测能力,为支撑国家“双碳”战略、应对全球气候变化提供遥感监测数据支撑。
  • 聚光科技鼎力支持第22届中国大气环境科学与技术大会
    10月20日-22日,第22届中国大气环境科学与技术大会暨中国环境科学学会大气环境分会2016年学术年会在中国?上海盛大召开。国内外环境领域的科研院所、监测站、知名高校以及16家仪器厂商等800余名杰出代表出席了大会,就会议主题“持续改善环境空气质量:科学、技术与策略”展开了多项议程。聚光科技(杭州)股份有限公司携大气在线监测重点产品亮相本次大会,并作了《大气在线源解析仪器与应用研究》的主旨报告。  中国大气环境科学与技术大会暨中国环境科学学会大气环境分会学术年会是环境领域规模最大的学术盛会。王文兴、郝吉明、江桂斌等7位院士,分别对中国大气污染历史、新时期我国大气污染防治任务与应对、细颗粒物表征与示踪技术等问题进行了全面且详细阐述。  会议期间,聚光科技展出了大气颗粒物在线质谱监测和源解析系统、大气OCEC在线分析仪、大气VOCs在线分析仪、大气PANs在线监测系统、大气重金属分析仪、网格化环境空气监测系统等大气在线监测产品,可适用于当前大气复合污染的热点问题研究,包括颗粒物理化特性及源解析、VOCs与O3控制、大气光化学污染和二次气溶胶形成等,得到了与会专家学者的广泛关注和一致好评。  聚光科技大气产品线总工华道柱博士作了《大气在线源解析仪器与应用研究》的报告,重点阐述了大气颗粒物中化学组分的在线监测技术。报告中聚焦当前颗粒物组分在线分析的需求,详细汇报了聚光科技大气重金属分析仪(AMMS-100),OCEC分析仪(OCEC-100)和在线单颗粒气溶胶飞行时间质谱仪(LAMPAS 3.0)原理、结构以及在仪器应用方面的研究工作。聚光科技大气产品线总工华道柱博士专题报告  21日晚,由聚光科技赞助的“聚光之夜”晚宴在上海富悦大酒店三楼宴会厅隆重举行。聚光科技董事长叶华俊先生为晚宴致辞,介绍了聚光科技的发展史,并表达了对大气环境科学与技术大会顺利召开的祝愿,传递了聚光科技“合作?共赢”的理念。宴会厅滚动播放的杭州宣传片与聚光科技宣传片,展示着西子之城的风采和聚光科技的发展,深深吸引了在场人员的目光。
  • 2013年大气环境研究与在线监测新技术交流会——西安站
    中国科学院地球环境研究所 广州禾信分析仪器有限公司2013年大气环境研究与在线监测新技术交流会——西安站 尊敬的先生/女士:  中国科学院地球环境研究所与广州禾信分析仪器有限公司联合举办的“2013年大气环境研究与在线监测新技术交流会——西安站”将于2013年7月9日-10日在西安水晶岛酒店多功能厅举办。特此邀请您及相关人员参加。  禾信公司成立于2004年,由留德归国人员周振博士创办,是集质谱仪器研发、制造、销售及技术服务为一体的国家级高新技术企业,致力于国产高端环保仪器研制与开发 注册资金4000万元,研发场地3500平方米。  通过多年努力,全面掌握具有完全自主知识产权的飞行时间质谱核心技术和全套装配工艺 多项质谱技术及产品填补了国内质谱领域与高端环保仪器行业空白,2012年实现首台国产高端质谱出口美国。产品研发得到国家 “863” 计划、国家重大科学仪器设备开发专项、国家火炬计划以及多项省市级科技攻关重点项目的支持。  禾信公司核心产品:在线单颗粒气溶胶质谱仪(SPAMS),作为目前大气PM2.5在线动态污染源解析的唯一手段,技术水平国际领先,是全球该技术产品的唯一供应商,可在我国的大气环境监测、环境研究中发挥重要的不可替代作用。2013年,在环保部的指导下,SPAMS成为解决PM2.5源解析问题全国推广的关键工具,多家环保研究及监测单位,依托禾信公司的SPAMS产品,同时承担三个环保部公益项目。  目前我国大气环境形势十分严峻,在2013年初,我国许多城市频频发生雾霾天气,波及17个省(区、市),约占国土面积1/4,受影响人口达6亿。这对相应的大气污染监测和技术手段的要求也越来越高,不断深化实施空气质量新标准监测,不仅要“说得清”空气污染多严重,还要“说得清”是什么、从哪里来,开展准确而及时的实时动态源解析工作,做好区域监控网络建设,能够满足极端条件下及时进行空气污染预警及应急。  为此,本次交流会上,诚邀全国大气环境领域知名专家与各位来宾就“在线源解析”、应急监测等技术手段进行深入交流探讨,为大气污染评估、治理等提供快速、准确的监测结果,衷心希望贵单位代表莅临现场指导。  主办单位: 中国科学院地球环境研究所   广州禾信分析仪器有限公司  有关会议安排如下:  1、会议时间  2013年7月9-10日  2、会议地点  西安水晶岛酒店 多功能厅,西安市高新区沣惠南路南段38号(橡树街区南边)  3、会议日程  7月 9日 全天,主题报告  7月10日 上午,技术研讨及实地参观  具体日程如下。会议日程时间报告内容主讲人单位7月9日 全天,主题报告8:00-9:00会议报到9:00-9:10领导致辞曹军骥所长中国科学院地球环境研究所周振研究员广州禾信分析仪器有限公司、暨南大学9:10-9:30禾信公司介绍赵刚大区经理广州禾信分析仪器有限公司9:30-10:00在线单颗粒气溶胶质谱仪(SPAMS)在大气环境研究中的应用郑玫教授北京大学环境科学与工程学院10:00-10:10茶歇10:10-10:50广东省环境空气国家超级站建立与运行经验及监测案例分析钟流举副站长、首席专家广东省环境监测中心10:50-11:20灰霾、雨雪和沙尘天气颗粒物混合状态变化研究曹军骥所长中国科学院地球环境研究所11:20-11:35抽奖游戏(三等奖)11:35-13:30午餐13:30-13:40抽奖游戏(二等奖)13:40-14:20中国典型城市颗粒物组成特征和混合状态研究李梅博士广州禾信分析仪器有限公司14:20-15:00大气重金属在线监测及源解析新方法粘慧青技术部经理广州禾信分析仪器有限公司15:00-15:10茶歇15:10-15:50在线质谱技术在多地应急监测中的应用李梅博士广州禾信分析仪器有限公司15:50-用户现场提问及交流、抽奖活动(一等奖)7月10日 上午,技术研讨及实地监测参观9:00-10:30专题讨论:大气污染监测和技术手段待定 10:30-11:30实地参观:中国科学院地球环境研究所黄土与第四纪地质国家重点实验室11:30-午餐  4、会议回执及报名西安技术交流会 回执姓名单位联系地址职务联系电话E‐Mail是否住宿(298元/间/夜)   期待您的关注与参与,请将您的信息传给:广州禾信分析仪器有限公司  陈洁  电话:13560499466 020-82071910-8039  传真:020-82071902  E-Mail:marketing@hxmass.com  赵刚  手机:13609119233  E-Mail:g.zhao@hxmass.com中国科学院地球环境研究所  周家茂  手机:18629492235  E-mail: zjm@ieecas.cn   中国科学院地球环境研究所  广州禾信分析仪器有限公司  2013年6月9日
  • 蓝天保卫战,我是行动者 | 坚守大气环境立体监测八载,中科光电一直在为蓝天而战!
    自1972年设立世界环境日以来,今年是中国首次作为主场开展宣传纪念活动,活动主题是“蓝天保卫战,我是行动者”。 今年的活动主题恰好与中科光电的聚焦立体环境监测的初衷不谋而合。聚焦立体监测2010年左右,我国大气污染复合型特征趋于明显,PM2.5等细颗粒物污染越来越严重,大气污染治理面临诸多难题,大气污染的变化过程、变化特征、变化趋势等科学问题说不清、道不明,大气污染治理成效不明显,空气质量堪忧。在此背景下,聚光科技与安光所刘文清院士团队共同发起成立中科光电,作为地基遥感光学设备产业化平台,将激光雷达技术应用到大气环境立体监测领域,构建“地空天一体化监测网络” ,有机结合近地面数据、地基遥感空间数据和卫星遥感数据,并融入大气科学、大气物理、大气化学、大气模拟、气象科学等学科的科学分析方法,形成智慧化的分析应用系统,为环境管理决策提供科技支撑。成立八年来,中科光电不忘初心,一直专注于大气立体监测装备的研发、集成和应用,立志引领细分领域发展。坚持创新驱动 创新是科技型企业持续发展、勇立潮头的立足之本。 中科光电始终坚持创新驱动发展,着力钻研产学研一体化,重点突破实际应用。 根据不同的环境管理需求,先后推出了双波长三通道颗粒物激光雷达、高能扫描颗粒物激光雷达、便携式颗粒物激光雷达;面对臭氧污染日益突出的现状,及时推出臭氧激光雷达;考虑到气象因素对污染传输具有影响,拉曼温湿雷达系列相继问世。 由于大气污染具有跨区域性,污染如何起源、来自何方、去向何处、如何精确预警预报是环境管理迫切需要回答的问题。因此,中科光电在立体监测装备的支撑下,衍生出大气环境立体走航观测车、大气环境监测执法车、光化学监测移动方舱、大气监测超级站、城市与区域立体监测网等多套应用解决方案。 随着蓝天保卫战的打响,大气污染防治进入攻坚期,必须进行精细化管理,才能实现空气质量持续改善。中科光电敏锐地捕捉到市场需求,推出了集大气环境综合分析、监控预警、应急决策于一体的技术支撑服务,及时发现污染热点,助力环境监测、监督执法联动,深入挖掘监测数据的应用价值,支撑环境管理更加“有数”、更加精确。 从单产品研制到多产品集成,从提供以产品为支撑的解决方案到推行以人才队伍和高端装备为支撑的专家团队服务,中科光电在创新发展的道路上攀登了一座又一座高峰。 迎来遍地花开 坚守八年,静待花开。 目前公司客户遍布全国33个省直辖市的环保、气象、科研高校系统,200多台激光雷达投入到蓝天保卫战中,激光雷达在国内市场份额达到50%以上。 40余台激光雷达支撑了国家“组分网”、“区域站”两大国家环境监测总站建设项目业务化运行,为总理专项发挥着科技支撑。 20多辆大气环境立体走航观测车在祖国大地奔驰,服务着各地大气污染防治,守卫着当地的蓝天。 10多支精干的专家团队在菏泽、淮安、宿迁、镇江、徐州等地驻守。他们不舍昼夜,发扬着7*24的拼搏精神,和当地的环保工作者并肩作战,为污染物浓度的降低和优良天率的提高贡献全部才智。驻守以来,各驻地佳绩频传,污染物均有明显下降,空气质量排行榜就是蓝天保卫者的光荣榜。 上海进博会、G20峰会、一带一路高峰论坛,10多次国家重大赛事活动的顺利举办,都有中科光电空气质量保障团队的默默奉献。 首届创新中国”新锐科技企业“、江苏省科技小巨人等荣誉纷至沓来。客户的肯定和市场的认可,是我们继续坚守的不竭动力。不悔不惧 继续前行 大气污染防治攻坚战进入深水区,精细化的管理对我们的产品、服务提出了更高要求,全指标、多样化、更精确、更智能,都是我们要攻克的高地。 再难啃的骨头也要迎难而上,执着、专注、专业是中科光电人流淌在血液里的基因。 不悔付出,不惧艰难,蓝天保卫战,我们是最坚定的行动者!?
  • 捉拿大气“隐藏犯”,贵州“大气环境溯源研究移动实验室”启用
    暑期的贵阳热闹非凡,人们纷纷来到避暑之都乘凉纳爽,在川流不息的街头,有一辆头顶天线,外形独特的“小白车”引人注目。“小白车 黑科技”“这个小白车我们看到好几次了,打羽毛球的和跳舞的时候都看到过。”在贵阳生活的廖阿姨说。阿姨口中的小白车,实际上是贵州首个可同步实现170余种大气参数观测,为全省大气环境管理、突发环境事件处置以及相关科学研究等提供数据和理论支撑的“大气环境溯源研究移动实验室”。一个名副其实的“黑科技”大气监测装置。群山连绵,溯源困难,是贵州省大气污染研究的痛点,尤其近年来PM2.5、臭氧污染、“蓝天也是幸福”成了百姓关注的热门话题,打好大气污染防治攻坚战是全社会共同责任。在贵州高原山地复杂气象条件和人为排放源的作用下,大气环境质量成分十分复杂,深入开展大气环境溯源研究,科学精准提出污染防治措施成了亟待解决的关键问题。自2020年以来,贵州省内有部分高校、研究院所采用传统人工离线采样分析对贵州省部分城市大气环境进行了初步研究,但传统大气环境样品采样分析手段不仅耗时长,人力、物力、财力投入大,不能实现关联高分辨率同步观测,与大气环境瞬息万变复合污染的特征不相适应。在贵州省生态环境厅安排指导下,省环境科学研究设计院历时2年,斥资1270万元,建成了具备大气颗粒物、大气臭氧及其前体物在线监测与源解析功能的“大气环境溯源研究移动实验室”。“宝藏”设备 内藏乾坤一瞬间,电脑屏幕上呈现出一系列数据翔实的表格——实验室舱内,工作人员轻点鼠标,周围170余个大气环境参数监测报告、溯源成因分析报告便一键生成。“移动实验室集结了质子转移飞行时间质谱、等离子体质谱、离子色谱、激光雷达等20余台大气环境监测精密仪器和辅助设施,分别对大气环境颗粒物的多类组分、挥发性有机污染物成分以及常规环境质量指标进行动态监测,可同步实现亚秒级时间分辨率和亿万分之一浓度分辨率的指标分析。”贵州省环境科学研究设计院大气与应对气候变化研究所所长黄代宽介绍。据了解,贵州大气环境溯源研究移动实验室集成了在线ICP-MS、WAGA-IC、PTR-TOF-MS、GC-FID/MS等20余台大气环境监测精密仪器。可同步开展常规大气环境质量6参数,气象5参数、117种挥发性有机物、24种无机元素、12种可溶性离子、有机碳/无机碳等170个参数指标的观测。可获取亚秒级至小时级时间分辨率以及从ppt至ppm级别浓度分辨率的参数指标数据。此外,实验室重点围绕臭氧和细颗粒物,集成了高时间分辨率质子转移飞行时间质谱(PTR-TOF-MS)、高时间分辨率全自动气相色谱质谱(GC-MS)、在线挥发性有机物气相色谱火焰离子仪(GC-FID)、在线挥发性有机物气相色谱火质谱(GC-MS)、臭氧激光雷达、颗粒物无机元素在线等离子体质谱(ICP-MS)、大气水溶性组分阴阳离子分析仪(WAGA-IC)、大气有机碳元素碳分析仪(OC/EC)、大气环境质量6参数、气象5参数等9套关键设备及其辅助装备,同步实现170余种大气参数观测,开发集成了智慧化的数据解析展示平台,具有较为全面的臭氧和细颗粒物动态精准溯源判别功能。通过移动或固定点连续监测、地面监测与地基垂直测、常规监测与高技术手段监测相结合,实现了空气质量多参数、高时间分辨率的立体监测,以此极大提高了工作效率和研究的全面性,是实现贵州省大气污染防控“问题精准、时间精准、区域精准、对象精准、措施精准”的利器。走进实验室,系统还配备了综合面板、数据分析、数据管理、运维管理、智能简报、走航观测等功能为一体的“大气环境溯源研究移动实验室数字平台”,通过大数据、物联网和大气环境的融合运用,实时精准辅助完成臭氧和细颗粒物污染成因分析和来源。在实现海量监测数据的快速深度挖掘和成果产出的同时,还满足了地域广、城市多、污染源情况的综合作业要求,可以将多个兴趣点大气污染溯源排查研究相串联,进行灵活的调度,为大气环境环境管理、应急救援处置、相关科学研究提供精准支撑。“结合各地大气环境现状和管理需求,近期我们会到各市(州)中心城市开展具体研究工作,运用移动实验室,打破时间、空间限制,摸清各地大气环境污染成因和污染源,这将为贵州省持续深入打好大气污染防治攻坚战提供数据和理论支撑。”黄代宽说。据悉,在8月即将举行的2023年澳门国际环保合作发展论坛及展览,以及首届贵州科技节上,“贵州大气环境溯源研究移动实验室”将作为贵州省环保“黑科技”代表进行展示,充分展现生态环境保护的“贵州智慧、贵州方案、贵州实践”。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制