当前位置: 仪器信息网 > 行业主题 > >

电化学工作站电化学测试系统

仪器信息网电化学工作站电化学测试系统专题为您提供2024年最新电化学工作站电化学测试系统价格报价、厂家品牌的相关信息, 包括电化学工作站电化学测试系统参数、型号等,不管是国产,还是进口品牌的电化学工作站电化学测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电化学工作站电化学测试系统相关的耗材配件、试剂标物,还有电化学工作站电化学测试系统相关的最新资讯、资料,以及电化学工作站电化学测试系统相关的解决方案。

电化学工作站电化学测试系统相关的方案

  • 天津兰力科:综合电化学工作站硬件设计与实现
    随着电池行业的迅猛发展,人们对电池检测技术提出了更高的要求,迫切需要一种高效,能测量体现电池反应过程参数的检测设备。本课题目的在于研发一种综合电化学工作站满足上述需求。综合电化学工作站是一套完整的、数字化的、电化学体系的检测分析设备。它把恒电位仪,恒电流仪和电化学交流阻抗分析仪有机地结合到一起,既可以做常规的基本测试如动电位扫描、动电流扫描试验和电化学交流阻抗测量,也可以做基于这三种基本试验的程式化试验,如恒电流充电-电化学交流阻抗测量,电池寿命循环试验-电化学交流阻抗测量试验,从而完成多种状态下电化学体系的参数跟踪和分析。它可以快捷、精确的检测电池的容量、测量体现电池反应机理的交流阻抗参数。本文以交流阻抗谱为理论依据,在既定电位范围、精度、分辨率和响应速度等性能指标的要求下构建出上下位机多层次硬件体系结构,有针对性地设计了下位机的接口电路板和测量电路板,并在此设计方案下进行了大量的硬件功能调试,达到了预期的性能指标。本文的主要内容可概括为以下三点:(1)电化学工作站的功能原理研究与硬件系统设计。介绍了电化学工作站的三种基本功能和性能指标,电化学交流阻抗测量的原理,并进而提出了电化学工作站的硬件系统结构,构建了电化学工作站的硬件结构设计;(2)下位机的接口电路板和测量电路板设计,在设计中力图提高系统精度、灵活性。实现对电池电压和电流的测量和控制功能,使工作站测量和控制功能达到了功能多样化精确化,为电化学交流阻抗测量等功能实现打下基础;(3)实验及误差分析。对电化学工作站的硬件测量和控制功能进行了实验验证,分析了误差产生得原因,对固有误差进行了补偿,对不同幅值直流信号和不同幅值、频率的交流信号进行测量,达到了精确测量的性能指标。
  • 天津兰力科:综合电化学工作站系统结构的设计
    电池行业的发展对电池检测技术提出了更高的要求,迫切需要高效智能的检测设备。本课题目的是设计一种满足功能和精度要求的综合电化学工作站。综合电化学工作站在电池检测中占有重要地位,它将恒电位仪、恒电流仪和电化学交流阻抗分析仪有机地结合,既可以做三种基本功能的常规试验,也可以做基于这三种基本功能的程式化试验。在试验中,既能检测电池电压、电流、容量等基本参数,又能检测体现电池反应机理的交流阻抗参数,从而完成对多种状态下电池参数的跟踪和分析。本文从结构设计的角度,对综合电化学工作站进行了研究。根据恒电位测量、恒电流测量、交流阻抗测量三种功能的工作原理和相应的性能指标,提出以DSP处理器为控制核心的硬件结构体系。在该设计方案下,进行了大量的硬件设计调试工作和软件设计调试工作。本文的内容包括以下三点:(1)电化学工作站的系统分析。详细分析了电化学工作站三种基本功能的工作原理和性能指标,确定了电化学工作站的硬件系统结构—以DSP处理器为整个系统的控制核心,实现对六个通道的电池测量和控制,以及将数据送往PC机进行储存和处理。(2)系统硬件设计。硬件设计主要集中在DSP电路板、接口电路板、测量控制电路板的设计上。DSP电路负责发出控制信号和处理测量信号;测量电路直接与被测对象相连接,实现具体测量、控制;接口电路是DSP电路板与测量控制电路板之间的桥梁。从电路结构、芯片选型到最后布局,将各个功能电路进行细化,分步骤设计。(3)系统软件设计。结合系统工作特点和硬件结构,确定了软件总体架构。重点研究了过采样滤波软件算法和快速傅立叶变换(FFT)测算交流阻抗软件算法。
  • Gmary电化学工作站Reference 3000阻抗测量精度优于0.1%
    美国Gamry公司最新型号电化学工作站,保留了以往型号所有的优势;卓越的低阻抗测试特性,准确度到达微欧数量级。为能源材料研究特别改进了硬件和软件,电流量程3pA-3A,可以扩展到30A,电压最高32V,300K的采样速度,电浮动浮地技术;特别为电池,电容器,液流电池等能源材料设计的PWR800软件测试包等等。可以进行系列电化学测试编程。同时可以扩展位双恒电化学工作站和IMPS/IMVS系统。
  • 电化学工作站EIS教程 – 新手入门
    电化学阻抗谱(EIS)是一个强大的技术,它使用一个小振幅交流电信号去探测电解池的阻抗特征。交流信号在大频率范围扫描以产生一个测试中电化学电解池的阻抗谱。EIS与直流电技术的区别在于它可以对发生在电化学电解池的电容性,电感性和扩散过程进行研究。EIS背后的理论比直流技术更加复杂,所以建议您在入门前先对基本原理有一个基础的了解。EIS有深远的应用包括涂层,电池,燃料电池,光伏,传感器和生物化学。这个指南将集中于EIS技术在涂覆铝面板腐蚀性能分析方面的应用。先知道一些关于被调查的电化学系统的知识也是很有帮助的。有了对系统的基本了解,就可以知道电化学工作站是否能够收集所需的信息且收集到的数据是否满足精度要求。
  • 电化学工作站在文物保护方面的应用
    文章中采用了Gamary电化学工作站,GAMRY Reference 600+软件功能强大,操作简便。硬件设计独特,性能稳定。GAMRY Reference 600+电化学综合测试仪可以满足电池、材料表征、生物传感器、电化学机理、点分析化学、腐蚀与防护、痕量物质检测、电化学合成等多种电化学研究领域。
  • 用Gamry电化学工作站研究药品的导电性,稳定性和可转换的防污/抗菌性能。
    文章中采用了Gamary电化学工作站,GAMRY Reference 600+软件功能强大,操作简便。硬件设计独特,性能稳定。GAMRY Reference 600+电化学综合测试仪可以满足电池、材料表征、生物传感器、电化学机理、点分析化学、腐蚀与防护、痕量物质检测、电化学合成等多种电化学研究领域。
  • AN125_FT-IR_spectroelectrochemistry与600电化学工作站联用检测聚合物材料
    光谱电化学有机结合电化学和光谱技术。Gamry的光谱电化学系统将分光光度计和Gamry电化学工作站有机结合。每个系统都采用了微形CCD光谱仪,USB3.0通信和温度补偿。115E和115U能够轻松配置吸收或发射测试。其中钨光源光谱范围200-2500纳米。具备200-1100纳米的钨光源,可以和D2和W的光源兼容。光源包括安全快门。
  • 光谱电化学测量
    光谱电化学是一种将电化学测量与原位光谱测量相结合的实验方法。光谱测量可以透射或反射进行。光谱测量在电化学测量过程中提供有用的补充信息。它可用于在电化学测量过程中识别反应中间体或产物结构。本文着重介绍电化学工作站与光谱仪的联用,并进行了实例分析。
  • 电化学石英晶体位天平对超级电容器的表征
    近年来,大量研究涌入超级电容器领域。超级电容器有高充放电倍率、长循环寿命、宽工作温度范围和低单循环成本的优点。电化学石英晶体微天平(EQCM)是与电化学工作站一起使用的石英晶体微天平(QCM),石英晶片的一侧作为工作电极。想要了解更多关于石英晶体微天平的介绍性解释,请参看本应用报告。
  • 【EmStat3Blue电化学应用】检测植物调节剂吲哚-3-乙酸的无线电化学传感器
    基于金纳米粒子和三维还原氧化石墨烯改性丝网印刷碳电极检测植物调节剂吲哚-3-乙酸的无线电化学传感器植物激素是作物生长和生产中重要的调节物质。在这项工作中,利用金纳米粒子和三维还原氧化石墨烯(AuNPs-3DGR)修饰的丝网印刷碳电极(SPCE)成功建立了一种无线电化学传感器,用于检测植物调节剂吲哚-3-乙酸(IAA)。植物。超声辅助液相分散氧化石墨烯(GO)和Au 3+还原制备AuNPs-3DGR纳米复合材料采用水热法混合。复合材料在SPCE上滴涂改性,通过智能手机控制的无线便携式电化学工作站检测IAA,线性范围更宽(0.25~120.0 μmol/L和135.0~500.0 μmol/L),下限为检测(0.15 μmol/L,3σ/S)。之后,将该传感器应用于绿豆芽不同组织中IAA含量的检测,结果令人满意。改进的SPCE与小型蓝牙工作站和智能手机的结合对于构建便携式、低成本、简单、快速的电化学传感平台非常有用。
  • 【EmStat3Blue电化学应用】无线智能便携式石墨烯柔性传感器,应用于快速检测水产品中的磺胺类
    基于中空金纳米壳(AuNSs)修饰的一次性激光诱导多孔石墨烯(LIPG)柔性电极构建了一种低成本无线智能便携式传感器,用于磺胺类药物(SAs)的简单快速电化学检测。采用计算机控制的一步激光直写技术在聚酰亚胺基底(PI)上制备了LIPG,并通过滴涂法在LIPG电极表面修饰了AuNSs。该电极对磺胺(SN)显示出良好的电化学响应,使用传统的大型电化学工作站进行检测,线性范围为0.4 - 100 μM,最低检测限为0.035 μM,鱼和虾样品的回收率范围为96.04% - 105.00%。另外三种SAs也被检测到,它们的结果与SN相似。与采用有线传输的传统大型电化学工作站相比,采用无线蓝牙传输的便携式微型电化学工作站在磺胺类药物的食品安全现场快检方面展现出更好的可行性、实用性和优越性。
  • 【PalmSens4电化学应用】电沉积氧化对乙酰氨基酚,用于尼古丁和乙基香兰素β-D-葡萄糖苷的智能便携式比率检测
    对乙酰氨基酚氧化物(PA ox)的电沉积,用于尼古丁(NIC)和乙基香兰素β-D-葡萄糖苷(EVG)的智能便携式比率检测。在丝网印刷碳电极(SPCE)上电沉积PA氧作为新的固定状态比率参考探针。将便携式电化学工作站与智能手机相结合,作为智能便携式电化学传感平台。
  • 低阻抗锂离子电池的电化学阻抗谱测试
    电化学阻抗谱(EIS)是获取电化学系统信息的一种强有力的测试方法。它常常被应用在测试新型的能源转换和存储类电化学器件(ECS),包括电池,燃料电池和超级电容器。EIS可以被用到新设备发展的各个阶段,一直从半电解池反应的机理和动力学初始评估到电池包的质量控制。
  • 光电化学电池测试
    测试单位:北京卓立汉光仪器有限公司(Zolix Instrument Co.,LTD)测试对象:光电化学电池(PEC)实验目的:光电化学电池的IPCE
  • 【EmStat3Blue电化学应用】基于靶向诱导AIE效应结合CRISPR/Cas12a系统的双信号生物传感,用于超灵敏检测胶霉毒素
    一种新型的快速、超灵敏的电化学生物传感器,用于靶向诱导激活AIE效应和Crispr Cas12a (LbCpf1)的无差别剪切功能,实现双信号检测胶霉毒素。构建的DNA传感单元包含适配体、ssDNA-Fc和Activator1。在本系统中,激活模式分为两个步骤。首先,当靶标与适配体相互作用时,DNA传感单元迅速分解启动链转移反应,释放出大量Ac1,通过AIE效应聚集ETTC-dsDNA产生荧光信号。其次,ETTC-dsDNA在聚集过程中释放Ac2,激活LbCpf1的无差别剪切功能,极大地提高了ssDNA-Fc的剪切效率,实现了体系的信号放大和对靶标的超灵敏检测。利用该方法检测胶霉毒素,电化学信号检测限低至2.4 fM,在50 fM~1 nM范围内具有良好的线性关系,检测时间缩短至55 min,解决了以往传感器电化学信号弱的缺点。同时将不溶于水的AIE材料与DNA偶联得到水溶性ETTC-dsDNA,并成功引入水介质传感系统,作为荧光响应信号,检测限低至5.6 fM。研究结果表明,通过结合手持式电化学工作站,该传感器成功应用于5种实际样品中的胶霉毒素的检测,检测范围可达到32.0~2.09×108 pM。该方法不仅为复杂食物基质中真菌毒素的检测提供了一种新颖有效的检测平台,而且为分子成像和疾病诊断领域开辟了一条有前景的途径。
  • 电化学原位拉曼分析技术应用及解决方案
    拉曼光谱系统:共聚焦显微拉曼光谱系统、小型科研拉曼光谱仪多种型号可选。借助各类原位池或者探针台,我们可实现对原始反应状态的样品进行检测而避免将其暴露在空气中,电学可根据需求搭配客户的电化学工作中或源表等电学测量设备。
  • 多聚多巴胺遇见固态纳米孔:仿生完整表面化学调节纳流二极管功能性质
    文章中采用了Gamary电化学工作站,GAMRY Reference 600+软件功能强大,操作简便。硬件设计独特,性能稳定。GAMRY Reference 600+电化学综合测试仪可以满足电池、材料表征、生物传感器、电化学机理、点分析化学、腐蚀与防护、痕量物质检测、电化学合成等多种电化学研究领域。
  • 【PalmSens4电化学应用】全自动肠道细菌快速富集和精确检测系统--磁性电化学阻抗测量
    本文中使用一次性抛弃式的碳丝印电极,避免电极交叉污染;利用磁性增强检测物质的富集能力,检测系统中嵌入PalmSens便携式电化学分析仪进行循环伏安法和交流阻抗的电化学测试。
  • 电化学工作站研究超级电容及其应用
    超级电容器是介于普通电容器和化学电池之间的储能器件,兼备两者的优点,如功率密度高、能量密度高、循环寿命长等,并具有瞬时大电流放电和对环境无污染等特性。
  • 热电化学电池性能测试中的TEC半导体可编程温度控制解决方案
    电化学热电池(electrochemical thermcells)作为用于低品质热源的热电转换技术,是目前可穿戴电子产品的研究热点之一,使用中要求具有一定的温差环境。电化学热电池相应的性能测试就对温度和温差形成提出很高要求,特别是要求温度控制仪器具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能。本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。
  • 海能仪器:电化学中电极的分类及应用概述(电化学)
    电化学仪器在我们的生活及实际生产中发挥着重要的作用,在电化学分析中只有选择合适的电极,才能保证实验的精确度与准确性。
  • 电化学方法在微生物快速检测中的应用
    综述了传统电化学方法在微生物快速检测中的应用。将相关研究归为阻抗(电导)法、伏安分析法、电位电流分析法等三大类,回顾了阻抗法在临床微生物学、环境微生物学、食品卫生学中的研究发展过程,比较了其它几种电化学技术的检测能力和不同特点,最后讨论了电化学微生物检测方法的发展方向。
  • 天津兰力科:电化学氧化对碳纤维表面电化学性质的影响
    碳纤维表面呈现化学惰性,缺乏活性官能团,限制了碳纤维作为电化学分析电极的应用。目前,许多手段被用于碳纤维的表面改性处理。采用电化学氧化方法,在磷酸溶液中对碳纤维进行了处理,并进行了红外光谱和循环伏安试验。结果发现:处理后碳纤维的表面接上了活性官能团,大量活性碳原子被剥离出来。在K4 Fe (CN) 6 加KCl、FeSO4 加HClO4 两组混合溶液体系中的电化学响应明显改善,适合作为电化学分析电极。
  • Ni电极电化学流通池检测四环素类药品的研究
    比较Cu、Ni电极对四环素类药品的电化学响应!讨论了纯Ni电极对四环素的电催化氧化特性!提出以纯Ni以工作电极的电化学流通池,优化结构,建立了测试四环素类抗生素的电化学流通池安培检测法! 只做学术交流,不做其他任何商业用途,版权归原作者所有!
  • 【EmStat3Blue电化学应用】功能化黑磷纳米复合材料,用于芦丁超灵敏检测的便携式无线智能电化学传感器
    摘要:为了建立一种便携、灵敏的黄酮类化合物浓度监测方法,本文建立了一种新的电化学传感方法。通过使用氮掺杂碳化聚合物点(N- CPDs)锚定少层黑磷烯0D-2D异质结构(N-CPDs@FLBP)和金纳米颗粒(AuNPs)作为修饰剂,以碳离子液体电极和丝网印刷电极(SPE)作为基板电极,分别构建了传统的电化学传感器和便携式无线智能电化学传感器。详细地研究了芦丁在所制备的电化学传感器上的电化学行为与分析性能。由于芦丁的电活性基团,纳米复合材料与芦丁之间的π-π堆积和阳离子-π相互作用,芦丁在AuNPs/N-CPDs@FLBP修饰电极上的电化学反应明显增强。在最佳条件下,可实现芦丁的超灵敏检测AuNPs/N-CPDs@FLBP/SPE的检测范围为1.0 nmol L−1 至220.0 μmol L−1检测限为0.33 nmol L−1(S/N = 3)。最后,用两种传感器进行了实时性测试样品并得到了满意的结果。
  • 石英晶体微天平(eQCM)在电化学方面的应用
    石英晶体微天平是以石英晶体为换能元件,利用石英晶体的压电效应,将待测物质的质量信号转换成频率信号输出,从而实现质量、浓度等检测的仪器,测量精度可以达纳克量级。Bruckenstein等人又将QCM引入电化学研究,将QCM技术与电化学技术联用组成电石英晶体微天平系统(eQCM)。由于eQCM能在获得电化学信息的同时又能得到电极表面质量变化的信息。因此eQCM迅速引起了科学家的兴趣。
  • 电化学法快速检测微生物的发展现状及趋势
    自1898 年 Stewart 提出利用电化学法检测微生物, 电化学法已发展成为一种微生物快速检测的方法 根据检测的参数不同, 电化学微生物检测法可以分为阻抗微生物法和介电常数法 阻抗法主要用于食品工业中微生物的快速检测), 尤其用于易腐食品的微生物快速检测, 以期实现在其发生明显腐败之前得到检测结果 而介电常数则用于生物发酵过程中的微生物数量的快速测定, 可以实现在线监测微生物数量及生物发酵过程的实时控制 电化学法由于其检测迅速 可以实现自动化检测, 在工业化生产中具有广阔的应用前景。
  • 电化学氧化改性对碳纤维功能材料性能的影响
    未经过表面处理的碳纤维表面能低,约为2.7×10-3N/m,表面呈现憎液性,缺乏有化学活性的官能团,限制了碳纤维作为电极材料的应用。70年代中期发展起来的化学修饰电极(Chemically Modified Electrode,简称CME),为碳纤维电极的制备提供了新的思路。它是通过在电极表面进行分子设计,将具有优良特性的分子、离子、聚合物固定在电极表面,改变电极和电解液界面的微结构,使电极具有良好的电催化性能。CME丰富了电极材料,为直接氧化处理有机物开辟出新的途径。本文通过实验发现:采用0.5mol L-1磷酸溶液,2.0A/g的电流密度,通电5min电化学氧化处理的碳纤维为最佳方案。氧化处理后碳纤维接触角下降了约16o,表面能增加了近9倍,与环氧树脂基体粘接性能提高了33%,电化学响应明显改善。这些实验说明了电化学氧化改性是有效的手段,它使得碳纤维表面接上了数量丰富的活性官能团。通过红外光谱确定碳纤维表面接上的活性官能团主要为内酯基、羧基和羟基。系统讨论了未处理碳纤维在无机酸、无机盐和碱溶液中的电化学性质,表明碳纤维在酸性溶液中氧化最剧烈,中性溶液中的氧化较弱,碱性溶液的变化几乎可以忽略,说明选取磷酸电化学氧化碳纤维是合理的途径。分析了处理后碳纤维的电化学行为,0.5V氧化峰反映出纤维表面一些化学键发生了断裂,表面活性碳原子增加,表面已有的一些官能团被进一步氧化;0.19V氧化峰是纤维表面活性碳原子和吸附的氢氧根离子发生电化学氧化所致。实验还发现,处理后的碳纤维对电极分析标准溶液K4Fe(CN)6加KCl混合溶液、FeSO4加HClO4混合溶液有良好的电化学响应,是适合作为电化学分析的电极。将处理后的碳纤维和碳纳米管电极应用于水溶液中低浓度苯酚(低于5m mol L-1)的检测和氧化处理,发现碳纤维和碳纳米管电极可以在较低的电位(1.0VvsSCE)实现连续氧化,能克服电极吸附。恒电位氧化显示,碳纤维在1200s内保持了电极活性,能有效降低水溶液中的苯酚含量;碳纳米管电极在6000s之后仍然能保持活性,能逐渐将苯酚氧化直到完全清除。分析苯酚的氧化路径显示,苯酚被直接氧化为CO2,避免了二次污染,这证明了碳纤维和碳纳米管作为电极材料,在对污水中苯酚处理方面有应用前景。
  • 拉曼光谱技术在原位电化学研究中的应用
    用于研究电化学的方法包括循环伏安法、恒电流法、单电势阶跃法、交流阻抗法等,主要依赖电位、电流等函数的测量获得有关电极/溶液界面的结构、电极反应动力学参数和反应的机理。但是这些方法只是单纯的电化学测量,无法对反应产物或中间体的鉴定提供直接的化学信息,也不能从化学结构/分子水平上提供电极/溶液界面结构的直接证据。
  • 弯曲电极的阻抗测试
    本篇应用报告涉及电化学阻抗谱(EIS),假设您已阅读并理解应用报告“电化学阻抗谱原理”中的内容。本篇应用报告的目的在于您不仅可以用Gamry电化学工作站测试电化学池中扁平电极的EIS,也可对没有浸入液体介质的弯曲电极进行测试。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制