当前位置: 仪器信息网 > 行业主题 > >

定制烧杯痕量分析同位素检测

仪器信息网定制烧杯痕量分析同位素检测专题为您提供2024年最新定制烧杯痕量分析同位素检测价格报价、厂家品牌的相关信息, 包括定制烧杯痕量分析同位素检测参数、型号等,不管是国产,还是进口品牌的定制烧杯痕量分析同位素检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合定制烧杯痕量分析同位素检测相关的耗材配件、试剂标物,还有定制烧杯痕量分析同位素检测相关的最新资讯、资料,以及定制烧杯痕量分析同位素检测相关的解决方案。

定制烧杯痕量分析同位素检测相关的资讯

  • 中石化自主开发微痕量气体组分同位素分析新技术
    近日,石油勘探开发研究院无锡石油地质研究所实验研究人员应用自主开发的微痕量气体组分同位素分析新技术,对鄂尔多斯盆地的富烃类气藏、云南腾冲的温泉气、济阳坳陷地区二氧化碳气藏中的气体进行氢同位素分析,收到让地球化学研究人员满意的分析效果。历经40多年发展的无锡石油地质研究所实验研究中心在稳定同位素分析领域方面有着深厚的技术积累,逐步形成具有特色的同位素分析技术系列,得到国内外同行认可。面对油气勘探研究需要和目前同位素分析技术难题,在上级的支持下,这个所不断更新实验技术装备,引进3台不同型号的稳定同位素质谱仪,包括与其相配套的水平衡装置、预浓缩装置、气相色谱仪等先进设备。   同时,这个所着力加强技术创新和新技术的开发应用,坚持将传统技术方法与创新分析技术相结合,在原有稳定同位素分析技术的基础上,通过将稳定同位素质谱仪与其相配套的设备互相联接,成功开发了新同位素分析技术。  燃烧/高温裂解元素分析仪与稳定同位素质谱仪(Delta V)联机使用碳—氮、氢—氧同位素连续测定技术,可进行批量样品分析,具有样品量小、检测速度快、准确度高的特点,能满足沉积有机质碳、氢、氧、氮4种元素同位素组成的分析要求。使用燃烧装置能够实现一次进样同时检出样品中碳、氮同位素组成的目标,而使用裂解装置可同时在线测定其氢、氧同位素组成,还可用于水中氢氧同位素分析。  预浓缩装置与稳定同位素质谱仪(MAT253)联用测定微痕量气体组分的同位素分析技术,能满足低浓度甲烷气样品的碳氢同位素分析,同时利用天然气中各个组分在低温下被特定填料吸附的物理性能差异,对天然气中微痕量氢气的富集与分离,有效消除天然气中微痕量氢气同位素分析的技术瓶颈,为幔源流体中氢的地球化学研究提供有力技术支撑。  据悉,稳定同位素分析新技术的开发与应用,为石油天然气地质研究提供了丰富的地球化学信息,在油气成因类型判识、油气源对比、运移示踪和成藏机理研究等方面发挥着独特作用,深受课题科研攻关人员和油气田生产单位的欢迎。
  • 痕量分析用PFA材质实验室量、器具
    来自德国VITLAB的高纯PFA(全氟烷氧基聚合物)材质实验室产品是您痕量分析用量具、器具首选,它不含金属成分,无残留,具有卓越的耐化学腐蚀性和极高的耐热性,表面光滑易于清洗,性能稳定,能用热、气体进行灭菌,高透明度易于读数,可在ICP,ICP-MS,等分析中、同位素分离领域中使用,也可用于长期存放高纯化学标准品及低浓度物质。 特性 ◆ 卓越的耐化学腐蚀性,几乎能抵抗所有的化学物质腐蚀,如强酸、强碱、王水、氢氟酸和各种有机溶剂,这种化学稳定性可显著减少交差污染 ◆ 卓越的热稳定性,能在-200到+260℃范围内维持其稳定性 ◆ 高纯度、不含金属成分,如钙、铝、铁、镁、镍、铜、锰、锌等,不会因所含金属从容器中析出而污染样品 ◆ 表面光滑易于清洗,不易吸附 ◆ 可用高温高压、干热、化学消毒剂、气体、环氧乙烷、微波灭菌 ◆ 良好的透明度,良好的强度、刚度、抗蠕变性,外形稳定,可用作制造实验室精密量器具 A级容量瓶 ,带螺纹盖密封圈, PFA材质,精度符合DIN EN ISO 1042,半透明 max 121 ℃,推荐max清洗温度 60℃ 订货号  体积ml  误差± ml  高度mm  螺纹口GL  单价(RMB) 107097  10    0.04     90     18     1081.1 107197  25    0.04    115     18     1113.9 107297  50    0.06    150     18     1140.5 107397  100   0.10     180     18     1415.1 107497  250   0.15     235     25     1770.5 107597  500   0.25     270     25     2031.1 带刻度低型烧杯, PFA材质, 蚀刻刻度, 半透明 订货号   体积ml  刻度ml  高mm  ¢mm  单价(RMB) 110205   25    5     50    32    159.3 110305   50    10    59    39     204.7 110405   100    20    72    50    286.2 110605   250    50    96    67    480.8 110905   500    100   122    88    730.8 111005   1000    100   141   109    1300.3 窄口瓶, 带密封圈螺纹盖, PFA材质,宽温度耐受范围:-200到+260℃ 用于长期存放高纯化学标准品及低浓度物质, 订货号  体积ml  口径S  高度mm  ¢mm  单价(RMB) 109297  50    28    86     37    516.1 109397  100   28    120     45    784.3 108297  250   28    160     61    951.5 108397  500   28    190     76    1316.9 108497  1000   28    240     96    1815.8 经济型窄口瓶,PFA(含小部分再循环用的PFA)材质,带密封圈螺纹盖(ETFE材质) 卓越的耐化学腐蚀性,宽温度耐受范围:-200到+260℃,经济实用。 订货号  体积ml  螺纹口GL  高度mm  ¢mm  单价(RMB) 108092  50    18      90     37    306.3 108192  100    18     114     45    407.1 108292  250    25     157     61    667.8 108392  500    25     189     76    964.1 108492  1000   32      233    96    1321.9 宽口瓶 带密封圈螺纹盖, PFA材质,卓越的耐化学腐蚀性 用于长期存放高纯化学标准品及低浓度物质,宽温度耐受范围:-200 到+260℃ 订货号  体积ml  口径S  高度mm  ¢mm  单价(RMB) 109497  250    40   150     61   951.5 109597  500    40   170     76   1316.9 109697  1000   40   217     96   1815.8 109797  2000   40   245     130   3645.3 109897  2500   40   290     130   4429.1 109997  5000   40   320     175   7314.5 样品罐 带螺纹盖,PFA材质,卓越的耐化学腐蚀性 用于样品收集及存储、运输,易于清洗,宽温度耐受范围:-200到+260℃ 订货号  体积ml  螺纹口GL  高度mm  ¢mm  单价(RMB) 130297  30    40      54     38   325.1 130397  60    40      90     38   396.2 130497  90    56      62     54   436 130597  180    56     112     54   547.4 样品管 带螺纹GL25盖,PFA材质,带10ml体积环形刻度或无体积刻度 用于样品预处理,易于清洗,宽温度耐受范围:-200到+260℃ 订货号  体积ml   类型    高度mm  ¢mm  单价(RMB) 103897  15   带10ml刻线   110    22    501.5 103897 1 15  不带10ml刻线  110     22    412.7 样品管 PFA材质,带PP材质瓶塞,带10ml体积环形刻度或无体积刻度 用于样品预处理、离心机、自动进样器 订货号  体积ml   类型    高度mm  ¢mm  单价(RMB) 1037979  12  带10ml刻线   110    16    344.1 1037979  12  不带10ml刻线  110    16    263.5 经济型窄口洗瓶 PFA(含小部分再循环用的PFA)材质,ETFE螺纹盖,FEP吸管 卓越的耐化学腐蚀性,宽温度耐受范围:-200到+260℃,经济实用。 订货号  体积ml  螺纹口GL  高度mm  ¢mm  单价(RMB) 108792  250    25     157    61    880.9 108892  500    25     189    76    1277.7 108992  1000    32     233    96    1631.9 微波消解内衬管 PFA材质,用于CEM-微波消解 订货号  体积ml  高度mm  ¢mm  单价(RMB) 103997  110    110    41    557.5 圆底烧瓶 PFA材质,带标准接口NS 29/32,耐化学腐蚀性 用于旋转仪,蒸发高纯化学品,宽温度耐受范围:-200到+260℃ 订货号  体积ml  高度mm  ¢mm  单价(RMB) 107797  100    117    65    681.8 107897  250    147    88    796.32 107997  500    177    107    1095.1 蒸发皿 PFA材质,带PE卡口盖 耐化学腐蚀性,宽温度耐受范围:-200到+260℃,易清洗 订货号   体积ml  高度mm  ¢mm  单价(RMB) 103297   25    25     50    339.7 103397   50    54     50    451.1
  • 安捷伦 ICP-MS 期刊 | 水中痕量放射性同位素的新法规:使用 MS/MS 模式的 ICP-MS/MS 分离峰重叠
    ICP-MS 期刊自 1999 年创刊,每季度发布一期,集中向读者分享安捷伦 ICP-MS 在各个领域的研究进展。直至今日,ICP-MS 期刊已经推出75期,它们凝聚了安捷伦 ICP-MS 超过30年的研发精华。如今“安”家 ICP-MS 期刊在中国以及全世界范围已拥有大批粉丝。为了方便众多粉丝阅读,我们特在安捷伦官方微信上开辟了“安家 ICP-MS 期刊“专栏,并不定期向您推荐 ICP-MS 期刊精选往期内容。希望通过这些生动的研究故事,使您更好地了解安捷伦 ICP-MS 产品及其应用,以期今后安捷伦产品能够更好地服务于您,并在您的检测和科研的工作中助您实现成就。本期推荐阅读内容水中痕量放射性同位素的新法规:使用 MS/MS 模式的 ICP-MS/MS 分离峰重叠放射性同位素分布于整个环境中。一些放射性同位素(包括 Ra、Rn、Th 和 U)天然存在于岩石中的放射性矿物( 如花岗岩)中。超铀元素 Pu、Np 和 Am 等其它放射性同位素则是人造的。这些元素可能有意或无意地从核电站、工业、医疗和家用产品(如烟雾报警器)的废物处理中释放。河道中的放射性核素可能进入家庭饮用水供应,因此受到严格监管。国际标准化组织 (ISO) 近期颁布了一项新标准 ISO 20899:2018,用于使用 ICP-MS 测定水中的 239Pu、240Pu、241Pu 和 237Np。即使经过化学分离,含有 Np 和 Pu 的样品通常也含有 U。由于相邻 238U 峰拖尾,因此使用单四极杆 ICP-MS 难以进行 237Np 和 239Pu 的超痕量分析,痕量及超痕量 237Np 的测量受到样品内存在的铀的严重干扰。本文介绍了使用 Agilent 8900 ICP-MS/MS 测定10 mg/L U 基质中超痕量 Np 的方法。本方法使用配备 O2 反应气的 8900 ICP-MS/MS将 Np 质量转移为 NpO2,除了将峰尾与 238U 分离之外,还解决了可能影响 237Np 的超痕量浓度分析的各种低浓度 UHx 干扰。访问 https://www.agilent.com/zh-cn/products/icp-ms/icp-ms-systems ,了解安捷伦 ICP-MS 系统。图 1. 10 ppm 铀基质中的 237Np(NpO2 形式)校准曲线扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
  • 聚焦碳监测!Sercon同位素检测系统助力温室气体精准溯源
    引言我国的碳达峰碳中和是国际上排放规模最大、排放降速最快、转型任务最重、投入成本最高的复杂系统工程。为贯彻2021年全国生态环境保护工作会议精神,生态环境部编制了《碳监测评估试点工作方案》(环办监测函〔2021〕435号),推进碳监测评估体系建设,为落实减污降碳总要求作出积极贡献。方案选取上海、杭州太原等16个城市,试点开展大气中主要温室气体浓度监测,探索自上而下的碳排放量反演方法,形成技术指南,构建温室气体监测量值溯源体系。并试点开展盐沼、红树林、海草床和海藻养殖海洋碳汇监测,构建典型海岸带生态系统和海藻养殖碳汇监测技术体系。检测项目包括:高精度CO2、高精度CH4、高精度气象参数,碳同位素(13CO2)和碳同位素(14CO2)等。 Cercon CryoFlex- HS2022 IRMS:高效准确的温室气体同位素检测系统二氧化碳(CO₂)、氧化亚氮(N₂O)、甲烷(CH₄)是大气中主要的温室气体。产生温室气体的因素复杂多样,且排放主体难以确定。与过去更注重末端降碳减排相比,如今越来越多的城市开始将功课前移,对温室气体的“精准溯源”成为治理的第一步,实现精细化排查。英国Sercon公司开发的CryoFlex-HS2022 IRMS系统为温室气体的同位素检测提供了全面的解决方案。图1 CryoFlex-HS2022 IRMS系统左侧为CryoFlex-CryoGas系统,包含 GC柱、CO/CO2 化学捕集器及开放式杜瓦瓶液氮系统;右侧为HS2022稳定同位素比质谱其中CryoFlex是一款多功能痕量气体净化富集装置,基于冷冻富集聚焦及色谱分离原理,并借助化学捕集和热解/燃烧技术,对温室气体(CO2、CH4、N2O)以及CO、N2、NO等多种气体进行富集净化,并与HS2022稳定同位素比质谱联机,用于测定C、H、O、N等多元素的稳定同位素比值。图2 CryoFlex系统原理结构示意δ13C-CH4 测定:样品经CO/CO2化学捕集,通过低温回路T1(-196℃),去除可冷凝气体后进入热解炉将CH4燃烧生成的CO2冷凝保留在T2中,升温使CO2蒸发转移到T3,并从T3 转移到色谱柱中进行痕量气体分离。最后通过 HS2022-IRMS测定δ13C-CH4。性能测试结果图3测试表明HS2022-IRMS系统可精确测量100 mL空气样品中的δ13C-CH4和δ2H-CH4值,可达理想的识别精度(分别为0.3‰和3.0‰)。图 3 δ13C-CH4 (A)和δ2H-CH4(B), 100 and 0.8 nmol CH4天然样品中CH4同位素比值变化极大,而HS2022- IRMS系统较宽的动态范围,可将样品记忆效应的影响降至最低。图4显示HS2022-IRMS系统系统用于测定δ13C-CH4和δ2H-CH4,结果均在允许误差范围内,且未观察到明显的样品残留。 图4 同位素残留试验Sercon CryoFlex- HS2022 IRMS稳定同位素比质谱系统的优势:l HS2022稳定同位素比质谱采用全不锈钢和金属垫圈结构的质谱飞行管,确保高真空度,最小化本底;l 离子源采用高稳定性、长寿命镀钍灯丝;l 真正的差动泵真空系统,真空度低至1×10-9mbar,确保离子传输效率;l 离子源配备额外真空泵,保证离子化效率,减少副反应;l 卓越的灵敏度及联机精度;l CryoFlex痕量气体富集净化系统采用一体化设计,集转化炉和冷阱与一体,无需额外管路连接,可轻松完成痕量气体的净化富集;l CryoFlex可配置1500℃高温的裂解炉,用于CH4中H的转化;l 自动进样器可适配 6 /12/30/60/125/ 250 mL等多种规格的样品瓶;l CryoFlex也可作为多功能接口与多种外设(如TOC、LA)联机使用。
  • 激光痕量气体监测仪的新进展:性能和噪音分析
    激光痕量气体监测仪的新进展:性能和噪音分析(Recent progress in laser?based trace gas instruments: performance and noise analysis ,J. B. McManus M. S. Zahniser D. D. Nelson J. H. Shorter S. C. Herndon D. Jervis M. Agnese R. McGovern T. I. Yacovitch J. R. Roscioli, Appl. Phys. B (2015) 119:203–218)摘要我们用一些近来的数据回顾了使用中红外量子级联激光器,带间级联激光器和锑化二极管激光器的发展。这种监测仪主要用于高精度和高灵敏度测量大气中的痕量气体。在高性能软件的控制下,利用吸收光谱进行快速扫描,集成和高精度拟合。通过中红外波段,实现了出色的灵敏度。Aerodyne监测仪证明了在自然情况下痕量气体的测量精度达到1012级别,可实时测量CO2,CO,CH4,N2O和H2O的同位素。我们还描述信号处理方法,以识别和降低测量噪音。光谱信息分析的原理是将光谱加载到数组中并利用滤波片,傅立叶分析,多元拟合和成分分析进行处理。我们提供一个仪器噪音分析的实例,噪音是由电子信号与光干涉条纹混合形成。引言随着各种中红外单片固态激光器的问世,使用基于中红外激光仪器,对大气痕量气体的高精度测量已经成为常规,包括量子级联激光器(QCL),带间级联激光器(ICL)和基于锑化物的二极管激光器(TDL)。在3μm附近的波长范围内有缺口,但现在,设计人员有更多选择,在3μm附近的波长区域频率使用混合技术。在本文中,我们回顾Aerodyne Research,Inc.(下称ARI)公司使用中红外激光监测仪测量不同的痕量气体,并达到高灵敏度和/或高精度水平。这些仪器基于快速扫描和精确光谱拟合的直接吸收光谱,在高性能软件的控制下,在中红外波段,利用长光程,在减压情况下,通过热电冷却的激光和探测器实现出色的灵敏度。这里介绍了两种仪器:单激光仪器,光程长度最大为76 米;双激光仪器,光程长度最大为210 米。通过仔细选择波长,我们可以用单激光器同时测量多种气体。根据吸收率来说,仪器噪音在1 s的平均值为?5×106,可以测量1012级别大气中的气体]。这些仪器可以在多种环境中使用,包括实验室,偏远现场和移动平台(如卡车,轮船和飞机)。ARI公司仪器介绍及其性能一般来说,对于高浓度气体,几毫米的测量光程可能就足够了;但对于痕量气体来说,则需要数百米光程。Aerodyne气体监测仪仪器使用中红外快速频率扫描,直接吸收光谱并进行精确光谱拟合。仪器在减压池中利用较长吸收光程的新型红外激光源,对多种气态分子提供灵活而直接的高精度测量。光谱仪的基本配置比较简单:首先是激光源,然后是多反腔,最后是探测器。图1显示了这种装置。多反腔有确定的路径长度,符合标准的激光可以传输到检测器,对样品气体的测量基于比尔-兰伯特定律。在许多情况下,激光扫描气体出现多个吸收峰,从而测量多个不同气体。让两道或更多激光通过吸收室,或者使用单个检测器时分复用,可以测量更多的气体。Aerodyne监测仪尽可能使用反射光学元件,光学系统几乎没有色散。通过选择不同波段激光和激光驱动,选择峰值灵敏度不同的检测器来匹配,测量给定单一气体或一组气体。对于不同的测量目的,选择不同的吸收光程。一般多反腔的光程为7–76 米,一般使用宽带透镜;对于浓度非常低的气体,210米光程的窄带高反射率透镜可以提高灵敏度。仪器的优化在过去的几年中,我们持续对仪器进行了改进,比如使用了新型的电流驱动器,它提供了QCL高顺从电压情况下的低噪音电流。我们还设计了低噪音激光驱动和其他电子设备,降低整个系统的噪音。使得平均1s采样情况下,吸收噪音为?5×106,在均时100 s具有更高的精度,这相当于约5×10-7的最终吸收噪音。很多因素使得噪音超过检测器限度,特别是窄带电子噪音和光学干涉条纹。中红外激光微量气体仪器由Aerodyne Research,Inc.生产的操作软件“ TDLWintel”控制,让每条激光可以设置为时分复用。TDLWintel可控制监测仪的操作并实时处理数据。两种激光电流斜率由TDLWintel定义,然后对检测到的信号采样(16位A / D在?1-1.5 MHz下运行),同步求平均,基于HITRAN参数以及测得的温度和压力的曲线,与计算出的吸收值拟合,可以对多达16种气体混合比实时记录。数据可以以10 Hz采样频率记录,最大有效数据率由泵抽速和吸收池的大小决定。实验过程中一些情况,比如阀门开关或背景消减,也可由TDLWintel软件控制。我们展示了单激光(76米光程)和双激光监测仪(76米或者210米光程)的气体测量噪音结果(平均1s),分别在表1和表2中,测量噪音为以空气中的混合比表示,同时提供了噪音的不确定性。根据不同的吸收路径和测量情况,吸收噪音最佳的结果在1s内约为?5×106。仪器适用在各种环境中,无论是在实验室还是在野外实验中。野外现场包括偏远位置或在移动平台(例如轮船,卡车和飞机)上。我们在最近20年在许多野外现场使用过这些仪器。在过去的几年中,Aerodyne “移动实验室”已配备了多种气相仪器(单激光和双激光监测仪)以及测量颗粒物和较重的有机化合物配套仪器。如测量天然气中的甲烷排放,或者测量两种气体示踪物(例如,亚硝酸盐氧化物和乙炔),移动实验室可以直接开到附近,测量示踪气体以及甲烷。另外,通过测量乙烷(常见天然气的成分),我们可以区分来自天然气设施的甲烷和来自生物来源的甲烷。仪器的噪音分析 了解测量噪音源对于保持仪器性能水平至关重要,通常将重点放在最终的噪音源分析和讨论上,例如探测器噪音,激光噪音或散射噪音。其他噪音源,统称为“技术噪音”,可能来自光学和电子方面,并可能是噪音的主要来源。而在在短时间尺度上的噪音可能是更长的时间范围的漂移。不同的噪音源可能表现出不同的功率谱密度(PSD),例如检测器噪音,而Johnson噪音通常具有平坦的PSD(即白噪音),而激光噪音会表现出闪烁噪音(1 / f PSD)。噪音可能会在频谱中产生随机波动,或者它可能具有窄带频率。另一个复杂因素是信号处理算法对噪音信号的响应。对于Aerodyne,混合比噪音是对噪音信号,以及压力和温度变量中多元拟合的结果。了解和减少噪音的第一步是使用Allan–Werle方差工具分析混合比噪音图(方差作为平均时间的函数)以及功率谱,并将噪音划分类型。Allan-Werle方差工具是一种通用工具,可以评估短时噪音和平均时间极限。按类型划分噪音有助于指示其来源。三种常用噪音包括是暗噪音,轻噪音和成比例噪音。 “暗噪音”(即,在检测器被堵塞的情况下报告的混合比)包括检测器噪音,基本电子(Johnson)噪音以及其他多余的电子噪音。“轻噪音”(正常光照水平但吸收深度很小)包括所有暗噪音加激光噪音(1/f,即闪烁噪音和散射噪音),激光驱动电流噪音(产生幅度波动)和干涉条纹的变化。 “比例噪音”(吸收深度较大时看到的多余噪音)包括激光驱动电流噪音,压力和温度噪音以及峰值位置运动结合调谐率误差。频谱数组处理将频谱分解为许多部分,并显示出较多变量。通常应用于频谱数组的处理工具包括减去偏移量,平均值,拟合度,统计量度,变量[p],[q]或这两者的傅立叶变换,相关性,和主成分分析。尽管有很多处理的实例,但是很难提出一个通用的分析方法,帮助我们了解所看到的一切。即使我们“解剖”光谱并找到大的干涉条纹,这不一定意味着干涉条纹是多余噪音的来源,比如干涉条纹不动或它们的频率太高而无法影响拟合。为了确定,我们需要确定导致多余的噪音因素,该因素的短期波动应与混合比的波动匹配。我们通过一个噪音分析的例子说明了分析过程。结果表明,多余噪音是由两种波的混合,即光学干涉条纹和电子信号混合导致的,产生的低频成分,明显影响混合比的测定,而任一单一波则对结果几乎没有影响。结论 我们对当前Aerodyne Research,Inc.生产的微量气体激光测量仪器进行了综述。提供了一组气体,以及同位素比的测量结果。仪器在性能上的改进包括降低了电源和激光驱动噪音。另外,制造工序变得更加精简。目前吸收噪音在1s内达到?5×106。然而,为获得最佳性能,仍然需要对噪音做进一步的探索。本文中的实例显示,多余噪音是由两种波的混合,由光学干涉条纹和电子信号混合导致。仪器的相关优势1. 持续对仪器的改进及噪音的分析,测量痕量气体的精度更高,测量气体达到ppt级别,甚至在10Hz的频率仍然保持极高的精度;2. 一次同时测量多种气体,消除了多台仪器测量时气体产生的系统误差并大大提高效率;3. 仪器适用于多种环境,满足实验室测量,野外远程测量和移动测量需求。 欲了解该产品的更多特点,欢迎咨询联系澳作生态仪器有限公司
  • 2013年全国无机及同位素质谱会议日程公布
    2013年全国无机及同位素质谱学学术会议  (第三轮通知)  报到时间:11月22日(8:00-22:00)  报告时间:11月23日-24日上午  参观考察时间:11月24日下午-25日  会议日程安排 (以会议手册为准) 时间会议日程地点及主持人 11月22日08:00-22:00注册报到昆山宾馆 15:00-18:00厂家仪器及墙报布展三楼琼花厅 16:30-17:30学术委员会会议三楼秦峰厅 18:30-20:30欢迎晚宴(天瑞)二楼宴会厅 11月23 日上午8:30-8:50开幕式谢孟峡 8:50-9:20陈洪渊质谱分析与生命科学张新荣9:20-9:50庄乾坤中国分析化学状况与创新研究9:50-10:10照相及媒体采访 10:10-10:30周 立电感耦合等离子体质谱仪在环境土壤监测中的应用李 冰10:30-11:00陈焕文提高质谱仪器可靠性的可能途径11:00-11:20陈玉红ICP-MS技术的发展趋势及应用刘敦一11:20-11:50侯贤灯电感耦合等离子体质谱分析中的进样技术研究11:50-12:10荆 淼Icap Q 型电感耦合等离子体质谱仪器结构介绍12:10-14:00午餐+休息一楼咖啡厅11月23 日下午14:00-14:30王海舟待 定张玉海14:30-15:00张新荣ICP-MS 在生命科学分析中的应用潜力15:00-15:20朱 敏UCT-ICP-MS测定海水中铜、铅、锌、镉、铁、锰等元素郭冬发15:20-15:50刘敦一牙形石SHRIMP微区原位氧同位素分析 &mdash 二叠 &mdash 三叠界限海水温度变化15:50-16:10杨列坤多接收同位素质谱新技术进展与应用16:10-16:30仪器展及墙报展   续上表 16:30-16:50杭 伟电感耦合等离子体质谱的固体采样技术崔建勇 16:50-17:20邓 磊质谱应用中的全新真空解决方案 17:20-17:40蒋少涌复杂基体高精度硼同位素质谱测定方法改进及其地质应用 17:40-18:10牟凤展爱德华分子泵和干式真空泵在质谱仪中的应用丁传凡 18:10-18:40柴之芳待 定  18:40-19:30 李金英 中国质谱学会开幕晚宴    8:00-11:30分组报告(一)三楼琼花厅  8:00-11:30 分组报告(二)三楼玉峰厅 11月24 日11:10-11:40杨芃原离子轨迹的调控硬件技术和模块化蒋少涌  11:40-11:50沈 莹质谱学报情况通报  11:50闭幕式三楼琼花厅  优秀青年论文颁奖  12::00-13:00 午 餐一楼咖啡厅  13:00-15:00参观天瑞仪器公司(宾馆门口上车)   15:00-18:30 参观周庄古镇   18:30-19:30 晚 餐一楼咖啡厅   分组报告分会列表11月24日上午 第一分会场主题 报告时间报告人单位报告题目主席/地点08:00-08:20郭冬发核工业北京地质研究院国产质谱仪应用实践 宋志远 邢 志 三楼琼花厅08:20-08:40 邢 志清华大学基于低温等离子体与无机质谱在元素成像中的研究08:40-08:55胡芳菲北京有色金属研究总院直流辉光放电质谱法测定氧化铝中杂质元素08:55-09:10陈绍占北京市疾病预防控制中心雄黄在大鼠肾脏中代谢后的砷形态研究09:10-09:25张 磊中国原子能科学研究院电感耦合等离子体质谱法直接测定有机相中痕量锆09:25-9:40王 姜东华理工大学中性解吸化学电离淌度谱检测肉制品的研究09:40-09:55徐福兴复旦大学基于数字离子阱的偶极激发频率碰撞诱导解离技术汪 正 刘丽萍 三楼琼花厅09:55-10:10朱小兵东华理工大学表面解吸常压化学电离源用于离子迁移谱快速检测爆炸物的研究10:10-10:25武中臣山东大学(威海)火星探测中的质谱技术应用现状10:25-10:40魏海珍南京大学校正质谱法绝对氯原子量高精度测定10:40-10:55汪 正中科院上海硅酸盐研究所激光剥蚀电感耦合等离子体质谱应用于碳化硅陶瓷中痕量元素分析10:55-11:10姜 山中国原子能科学研究院CIAE的加速器质谱技术及其应用研究新进展 11月24日上午 第二分会场主题 报告时间报告人单位报告题目主席/地点08:00-08:20丁传凡复旦大学栅网电极离子阱质量分析器杭 伟 漆 亮 三楼玉峰厅08:20-08:40 崔建勇核工业北京地质研究院 同位素稀释测量的质量分馏校正方法 08:40-08:55漆 亮中科院地球化学研究所改进的卡洛斯管溶样ICP-MS分析硫化物中低含量Re-Os同位素08:55-09:10董晓峰东华理工大学电喷雾萃取电离源调节装置的研制09:10-09:25赵占锋哈尔滨工业大学低真空或常压环境中质谱分析的机理研究09:25-9:40黄龙珠东华理工大学化妆品中邻苯二甲酸酯的快速直接质谱分析技术的研究09:40-09:55韦冠一西北核技术研究所磁-电-四极杆级联质谱中的离子光学设计周志权 李力力 三楼玉峰厅09:55-10:10贺茂勇中科院地球环境研究所Isotope Ratio Measurements for Boron by ICP-QMS10:10-10:25杨之青中国地质科学院地质研究所超高真空中的三维样品台10:25-10:40程 平上海大学挥发性有机物(VOCs)实时、在线检测的质谱仪器的研制和应用10:40-10:55周 立天瑞仪器气相色谱-质谱联用仪在环境VOC监测中的应用10:55-11:10周志权哈尔滨工业大学(威海)质谱仪模块化电子系统设计  一、 报告:  大会报告(30分钟),邀请报告(20分钟),口头报告(15分钟),以上三种形式的报告时间均包括讨论时间。因报告安排非常紧凑,请大家不要超时,会议主持人要严格控制时间。  具体的报告安排见报到时发的会议指南。  会务组将提供多媒体设备,报告人只需要准备PowerPoint 文件,并在报到时将文件电子版交到会务组即可。如有特殊要求,请提前与我们联系。  二、 墙报展  会议提供Poster 展示场所和展板,请您在报到时务必将您的Poster (高110 CM× 宽80 CM)交给会务组,以方便工作人员代其布展。  三、 优秀青年论文评选  会议将组织对墙报和口头报告进行优秀论文评选。并给青年优秀论文获奖者颁发荣誉证书和奖金。  对于墙报的评选,要求墙报作者在规定的墙报展示时间内,在自己的墙报前根据评选评委要求讲解自己的工作内容。  四、 食宿  会议期间食宿由大会统一安排,费用自理。因房源有限,参会人数多,如果您对食宿有特殊要求,请提前与会务组人员联系,我们会在尽可能照顾参会者注册意愿的情况下进行食宿安排。  请参会人员务必携带身份证原件,学生同时还要带齐学生证。  五、 参观考察  会议组织在24日下午参观天瑞仪器和周庄古镇,25日考察苏州,请大家遵守时间和安排。苏州介绍见如下链接:  http://www.sinospectroscopy.org.cn/readnews.php?nid=14952  六、接站安排  酒店信息及路线:  酒店名称:昆山宾馆  地址:江苏省昆山市人民北路99号  酒店联系人:浦建强  手机:189 6268 3282  酒店线路图:  线路一:乘高铁至昆山南站  公交:步行至 昆山南站 乘坐 昆山33路、3路公交, 在 昆山宾馆北站、西站 下车步行至 昆山宾馆  的士:出站打的至昆山宾馆,约5.3公里/11分钟  线路二:乘飞机至上海虹桥机场  高铁:从上海虹桥机场 至 上海虹桥火车站至 昆山南站(15分钟)至 昆山宾馆  的士:从上海虹桥机场 打的至昆山宾馆 约56.5公里/49分钟  线路三:乘汽车至昆山汽车客运南站  公交:步行至 汽车客运南站 乘坐 昆山33路、3路, 在 昆山宾馆北站/西站 下车步行至 昆山宾馆  的士:出站打的至昆山宾馆,约6.1公里/12分钟  会议22日将安排车辆在昆山南站接站,其他时间到达的代表请自行前往昆山宾馆。  乘飞机到上海虹桥机场需要接站的代表,请提前把航班班次和到达时间告知会务组。董正新,电话0512-57018653 15995469909 E-mail:dzx@skyray-instrument.com  六、会务组联系人及联系方式:  肖国平,电话 010-69357572, 138 1159 7264 E-mail:xiaoguoping@vip.163.com  董正新,电话0512-57018653 15995469909 E-mail:dzx@skyray-instrument.com  中国质谱学会  无机质谱专业委员会  同位素质谱专业委员会  质谱仪器与教育专业委员会
  • 《样品前处理技术及痕量金属定量分析方法交流会》
    上海光谱联合广东省分析测试协会、中国广州分析测试中心 共同举办《样品前处理技术及痕量金属定量分析方法交流会》 由中国广东分析测试协会、中国广州分析测试中心,上海光谱仪器有限公司联合举办的样品前处理技术及痕量金属定量分析方法交流会于2008年11月28日在中国科学院广州分院学术报告厅顺利举行,中国广州分析测试中心李忠军处长受广东省分析测试协会、中国广州分析测试中心的委托,主持了本次交流会。 来自广东省100多个科研院所、质检、商检、卫生、农业、高校、企事业的230多位专家、学者、工程师和用户代表也参加了本次交流会。由上海光谱仪器有限公司多位产品经理和技术支持组成的团队为本次交流会提供了全面的服务和支持。 (来自各个领域的分析测试工作者踊跃参加此次交流会) 在现代分析测试技术中,样品前处理已经成为制约分析速度、分析质量和分析成本的重要因素。在多种萃取新技术中,快速溶剂萃取技术具有有机溶剂用量少、萃取速度快、回收率高等突出优点。但是,由于进口产品价格较高,制约了这一技术的推广与普及。 上海光谱仪器有限公司此次推出的SP-100QSE型快速溶剂萃取仪,是国家十五重大科技攻关项目,产品性价比远远优于进口产品。同时,广州分析测试中心和上海光谱应用研发中心的应用技术人员针对国内市场需求,开发了许多应用方法,为产品的推广与普及做了大量的基础工作。(广州分析测试中心和上海光谱仪器有限公司的工程师介绍前处理技术) 交流会上,以“样品前处理技术及痕量金属定量分析方法”为主题,做了多场专题讲座。中国广州分析测试中心工程师杨运云先生、上海光谱仪器有限公司应用工程师安强先生、中国广州分析测试中心工程师王畅女士及上海光谱仪器有限公司应用工程师王伟女士,分别做了主题为《固体样品前处理技术简介及加速溶剂萃取的原理和应用》、《SP-QSE系列快速溶剂萃取仪高温高压全自动样品前处理系统》、《原子吸收光谱法分析原理和分析技巧》及《原子吸收分光光度计结构、功能、使用、维护简介》的专题报告。专题报告对上海光谱仪器有限公司的“SP-QSE100快速溶剂萃取仪”的原理、应用方法、与国际上同类产品的比较等方面进行了学术上的分析,列举了大量的应用实验数据报告,提出了广泛的使用前景,引起了与会专家、学者、应用工程师和经销商的兴趣,上海光谱仪器有限公司的产品经理还一一解答了与会者的提问,许多参会者纷纷表达了求购、合作经营的愿望。 (上海光谱仪器有限公司研发生产的“SP-QSE100快速溶剂萃取仪”是目前国内唯一投产的商品化“快速溶剂萃取”设备,与国际同类产品相比,具有安全可靠、操作简便、物美价优等特点) 上海光谱仪器有限公司还在本次会议上,展示了获得2008BCEIA金奖的“SP-3800系列原子吸收分光光度计”,详尽的向参会者介绍了该产品的创新思想、技术特征、应用特点,许多代表踊跃索要产品样本和应用手册,表达了对国产分析仪器的尊重和支持。(上海光谱仪器有限公司技术支持人员在解答与会者的提问。) 此次交流会获得了广大分析工作着的积极响应,与会人数超过250人,无论是交流会规模,用户的反响的热烈程度、都是类似交流会少见的。此次交流会的成功举办,使上海光谱仪器有限公司更加坚定了“通过产、学、研、用合作,发展国产分析仪器”的信心,公司还将在近期通过与北京、上海、四川等地专业机构的合作,分别举办类似的技术交流会,使更多的用户了解发展中的国产优质分析仪器,支持中国分析仪器产业。 在提倡高效、节能、安全、环保的今天,上海光谱仪器有限公司积极响应市场需求、努力提升自身价值,踊跃参与国产仪器开发,本着“诚实诚信、用户第一”的原则,提供最优质的产品、最优秀的服务,为国产仪器事业做出自己的贡献。(撰稿:上海光谱市场部朱颖奇)
  • 滨海正红发布满足ICP、痕量、超痕量分析用酸高纯酸提纯器新品
    酸提纯器一、 产品简介:酸提纯器:又称酸纯化系统,高纯酸提纯器,酸试剂提纯器,高纯酸蒸馏纯化器等,实验室工作中常常由于酸的纯度较差,造成分析结果的偏差与错误。市售的纯酸往往由于价格较贵,难满足日常分析中对酸的大量需求。因此,提纯优化酸的质量,是为经济可行的途径,我厂的酸纯化器可用于实验室如HNO3、HCl、HF、碱溶液和有机溶剂的纯化,纯化后的酸和Merck的一样好,实验后期可配套我单位Teflon特氟龙系列试剂瓶收取高纯酸。二、工作原理:高纯酸提纯器是利用热辐射原理,保持液体温度低于沸点温度蒸发,再将其酸蒸气冷凝从而制备高纯水和高纯试剂,多应用于样品处理及分析实验中。三、我厂高纯酸蒸馏纯化器优势:1、密闭环境下提纯酸,不受环境污染,确保酸纯度;2、节约成本、方便实验:较短时间内纯化低成本的酸试剂以达到痕量分析要求;3、可以满足ICP、ICP-MS低的检测限需要及苛刻的分析应用中提供实验室超纯酸,所用容器均采用Teflon耐腐蚀无吸附塑料,可处理如HNO3、HCl、HF等实验室的常用酸;4、实验证明将金属杂质含量约10ppb的酸经过一次蒸馏后,金属杂质含量可以降低到0.01ppb左右。若对酸要求更高,可增加提纯次数;5、可拆卸清洗,避免腔体里面长期提纯,造成金属杂质含量沉积越来越多,影响提纯的质量;四、相关参数:型号CH-I 500mlCH-II 1000mlCH-Ⅲ 2000ml名称高纯酸提纯器高纯酸提纯器高纯酸提纯器产酸率30ml/h50ml/h70ml/h温控方式PID温控数显PID温控数显PID温控数显控温精度±1℃±1℃±1℃材质FEP、PTFE、硅胶电压220V/50Hz功率(W)350优势1.密闭环境下提纯酸,不受环境污染,确保酸纯度2.纯FEP、PTFE材质制造,值低无腐蚀3.结构合理,操作简单,一键式操作,蒸干自我保护4.提纯过程中,少量酸气逸出五、使用注意事项:1、所有配件(控制器、电源线、加热片等除外)放入按实验要求一定浓度的酸液中浸泡,去除杂质。2、加酸前必须做好个人防护如:防溅眼镜、防酸手套等(蒸水除外)。实验数据(仅供参考):仪器:CH-I 高纯酸提纯器;试剂:优纯HF蒸馏后,经中国地质大学地质过程与矿产资源重点实验室ICP-MS检测出HF中杂质的含量:元素测量浓度(ng/g=ppb)元素测量浓度(ng/g=ppb)Be0.01Ba0.01Mg0.02La0.01Sc0.01Ce0.01V0.01Pr0.01Cr0.03Nd0.01Mn0.01Eu0.01Co0.01Gd0.01Ni0.01Tb0.01Zn0.02Er0.01Ga0.01Tm0.01Rb0.01Yb0.01Sr0.02Lu0.01Zr0.01Hf0.01Cd0.01Pb0.01Sn0.01Th0.01Cs0.01U0.01南京滨正红仪器有限公司 创新点:加大了提取酸的容量,使用中可拆卸清洗,方便操作,无需人员值守,提取的酸的纯度可达到0.01PP满足ICP、痕量、超痕量分析用酸高纯酸提纯器
  • 药品中基因毒性杂质的痕量分析,非得用MS吗?
    目前对于药品中含有的极少量物质(如基因毒性杂质等),在对其进行痕量分析时,通常采用的检测手段是:利用先进的液质联用(如LC-MS或LC-MS/MS等)、气质联用(如GC-MS或GC-MS/MS等)设备,对其微量物质进行检测时所需液相色谱系统可能为更高级的超高效液相色谱仪。如检测药物中含有亚硝胺类基因毒性杂质NDMA,根据不同原料药的性质不同,目前国际上公布的方法主要有:GC-MS法、GC-MS/MS法、UPLC-APCI-MS/MS法,HPLC-UV法(EDQM公布)。国内官fang公布的方法主要有GC-MS法、GC-MS/MS法、UPLC-APCI-MS/MS法,如中国药典2015年版二部推荐使用GC-MS法(详见《缬沙坦》原料中N-ya硝基二甲胺的含量测定方法),不推荐使用HPLC-UV法,因为HPLC-UV法灵敏度比质谱仪的灵敏度差很多,而且专属性差些,容易受到检测干扰,故HPLC-UV法具有很大的局限性,只能准确测定那些含量相对较高的物质。然而现有检测技术中:● 质谱仪价格昂贵,运行成本高,所需的试剂要求高,抗干扰能力差,维护保养费用很高,同时对质谱仪操作人员的水平要求非常高,需要高层次的人才方能准确操控。故质谱仪普及率非常低,一般企业较少购置,对于需要使用质谱仪进行痕量分析时只能委托特定的机构使用质谱仪进行检测。● 气相色谱/质谱法操作过程繁琐,经过前处理后样品损失严重。● 高效液相色谱仪价格便宜,操作容易,覆盖面广,一般企业均很常见。但是单纯使用HPLC-UV法进行检测含量极少的物质时,其灵敏度差,不能准确定量检测出复杂原料药中含量极低的物质,且检测过程中目标化合物所受干扰亦较大,目标化合物与其它杂峰之间的分离难度较大。在缺少质谱仪的情况下,中国药企如何走出杂质痕量检测的困境呢? /Father's day/ 基于以上痕量检测的难点,没有质谱仪的帮助,实验人员是否可以通过长期大量的研究,不断尝试各项色谱条件的调试,诸如:流动相试剂的组成、梯度程序设置、柱温、流速的改变等。特别是色谱柱的筛选,如虽然同样都是十八烷基硅烷键合色谱柱,可以尝试不同品牌、不同系列的C18柱,色谱柱间填料的差异会呈现出对样品的不同选择性。另外,色谱柱规格的差异也会带来不同的检测效果,如色谱柱的内径越细灵敏度越高、色谱柱越长柱效越高、填料的粒径越小分离效率越高……光是色谱柱就有多达7项以上的可调节参数。最近就有一家药企尝试走了这样一条路,对尼扎替丁中所含痕量杂质N-ya硝基二甲胺(NDMA)检测方法进行了长期研究,最终探索出一种采用HPLC法测定样品中NDMA的方法,该方法简便快速,且测定结果准确。这就是湖南威特制药股份有限公司。在他们的开发报告中记录到:“我们首先尝试解决了色谱分离的问题,因供试品溶液浓度很大,其他峰对目标物质NDMA的干扰较多,在摸索优化检测方法的过程中,对色谱柱的选择做了大量的工作,既要不被干扰,又要保证峰形正常,且需能够增加该峰的检出能力,最后选择了特定的月旭Ultimate ODS-3 4.0×250mm,3μm色谱柱,且此型号的色谱柱批间差异较小。保证了该方法成功通过了方法学验证,并最终获得了发明专li授权。”湖南威特测试了来自至少4个色谱柱厂家的十几种C18柱,最终月旭Ultimate ODS-3 4.0×250mm,3μm这款柱子展现了其du特的分离和检测特性,4.0mm内径具有更高的灵敏度,3μm粒径也提供了更高的柱效。在这款色谱柱的基础上,客户继续配合优化其他的色谱条件,最终确定了这个简便快捷,且测定结果准确的HPLC方法。艰辛的付出,终于获得了回报。感谢湖南威特为我们示范了超高的液相方法开发水平,展示了不同色谱条件配合玩转色谱柱,为方法开发带来的无限可能!参考文献:一种HPLC法检测尼扎替丁中N-ya硝基二甲胺的方法(专li号:ZL202110045224.4;授权公告日:2023.07.28)附:Ultimate ODS-3色谱柱技术参数
  • 填补分析仪器用超纯水国产仪器空白,乐枫生物展示Genie De-ION痕量分析专用取水终端
    仪器信息网讯 2021年9月27日-29日,第十九届北京分析测试学术报告会暨展览会(BCEIA 2021)在北京中国国际展览中心(天竺新馆)召开。作为一家专业从事水纯化和实验室分离纯化产品研发制造的高新技术企业,乐枫生物携多款新品精彩亮相。仪器信息网特别采访了上海乐枫生物科技有限公司华北区销售经理潘军民,请他就参展仪器特点、公司当前发展情况及未来发展规划等方面作了详细介绍。本届展会,乐枫生物向业界推介展示了智能超纯水系统 Genie G、超纯水系统Genie PURIST等产品,并重点介绍了Genie De-ION痕量分析专用取水终端。据介绍,随着我国技术的不断发展和科研的逐步深入,如ICP-MS等痕量分析经常使用的仪器对超纯水的需求也越来越高,超纯水中痕量元素含量也要求越来越严,相应的对超纯水产品的期望值也越来越苛刻,这对相关产品厂家提出很大的挑战,而能满足此类高标准需求的厂商却很少。本次展会乐枫带来的Genie De-ION痕量分析专用取水终端是一款专门配合Genie系列使用的超低元素取水终端,能满足ICP-MS等分析仪器对ppt甚至亚ppt级痕量元素超纯水的需求。潘军民表示,近几年中美贸易摩擦以来,国外尤其是美国对中国市场限制越来越严格,相比于国外,我国厂商起步晚。乐枫通过不断创新推出的这款Genie De-ION痕量分析专用取水终端,填补了能满足此类需求的国产仪器空白。谈到今年上半年的业绩表现时,潘军民介绍,乐枫的市场科大致分为中国、美洲和欧洲三部分市场,基本上各占业务的1/3。从销售数据来看,前三季度各板块增长一直保持着强劲的增长势头。第四季度乐枫还将通过以旧换新、推动高端用户服务等手段来进一步保持增长。采访最后,潘军民也谈了自己关于国产仪器的看法,呼吁国内用户能够尝试国产仪器,给国内企业更多的机会缩小与国外产品的差距。更多内容请观看采访视频:关于乐枫乐枫生物 (RephiLe Bioscience, Ltd.) 是一家专业从事水纯化和实验室分离纯化产品研发制造的高新技术企业。乐枫公司拥有 8400 m2 的生产车间,洁净厂房和先进的制造设备,产品从研发到工厂制造都有统一的标准化流程,通过现代化管理手段,实现了公司整体有效的运营模式。公司创业团队的每个成员都在业内国际顶尖公司有 10 余年的工作经验,这些经验赋予他们先进的经营理念,对技术精益求精的态度,开阔的视野以及对市场需求把握的超高灵敏度。公司实行国际化运作管理,产品定位高技术含量,高品质,以创新为驱动,以服务为导向。短短几年,乐枫创立出了自己的品牌,拥有了自主知识产权,与国内外一些技术领先的机构开展了协作关系,而且建立了高效的全球营销网络,目前产品已销往欧美近100 个国家。
  • 国之重器 | 稀土——iCAP TQ ICPMS分析高纯稀土中痕量稀土杂质
    "工业的维生su"稀土元素被誉为"工业的维生su",具有丰富的磁、光、电等特性,在现代高新技术产业和功能材料中起到了至关重要的作用。这些材料主要包括稀土永磁材料、稀土催化材料、发光材料、贮氢材料、磁制冷材料、光导纤维、磁光存储材料、巨磁阻材料、稀土激光材料、超导材料、介电材料等,在航空、航天、信息、电子、能源、交通、医疗卫生等领域得到了广泛的应用。高纯稀土通常是指纯度高于99.99%的稀土金属或其氧化物。高纯稀土材料中存在的其它稀土杂质元素常会对最终产品的功能产生影响,随着提炼技术的不断改进,使得稀土氧化物纯度可达到6N(行业上通指稀土杂质元素含量),从而对于痕量稀土杂质测定方法提出了更高的要求。针对高纯稀土中的杂质检测会有下面难点。主基体的浓度太高,会干扰杂质元素的检测对于高纯稀土中的杂质检测,往往样品是5N(99.999%)及以上级别含量非常低,需要仪器有足够高的灵敏度案例分析测定6N级高纯稀土氧化钆(Gd2O3 )中的14种稀土杂质目前氧化钆中稀土杂质检测方法主要依据国标GB/T18115.7中的电感耦合等离子体发射光谱法( ICP-OES) 和质谱法( ICP-MS)。在ICP-OES分析中,由于Gd的谱线十分密集,对其他稀土杂质元素的谱线干扰非常严重,测定范围在0.001%-0.05%之间,难以满足更高纯度要求。单杆ICP-MS 质谱法具有更低的检出限,但Gd具有7个天然丰度同位素,当采用SQ-ICP-MS方法进行氧化钆中其它稀土杂质元素分析时,Yb和Lu将受到严重的[ 152 154 155 156 157 158 160 Gd16 17 18 O]+和[ 152 154 155 156 157 158 160 Gd 16 17 18 OH]+类多原子类干扰,在现有的GB/T18115.7标准方法中,针对氧化钆中镱和镥的测定制定了采用C272柱分离钆基体后再进行ICP-MS法测定方案,各杂质元素的最di定量下限可达0.0001%,能够实现近5N级钆纯度的测定。但这种分离技术非常费时,步骤繁琐,对方法测定结果的影响因素多。"赛默飞三重四极杆ICPMS"赛默飞三重四极杆ICPMS不经任何基体分离手段,能轻松解决高纯稀土元素中杂质元素检测的干扰问题,为高纯稀土质量提供有力质量控制手段。(点击查看大图)实验测定结果(点击查看大图)iCAP TQ 三重四极杆ICPMS-高纯稀土元素检测利器超qiang抗干扰能力利用 Q1的iMS智能化质量筛选功能可有效地将高纯稀土基体离子进行剔除,然后通过Q2碰撞反应池中加入特定的反应气体,如氧气或者氨气,将待测稀土杂质离子或者基体氧化物离子的质量数进行迁移,解决了质量数重叠干扰。简单操作赛默飞Qtegra™ 智能科学数据处理软件(ISDS™ )通过自带的Reaction Finder 软件工具,能够自动为分析任务确定最you测量模式,帮助用户方便地建立方法,节省了日常方法建立所消耗的时间。为全国稀土行业的客户提供解决方案赛默飞采用iCAP TQ ICPMS/MS三重四极杆质谱仪无需采用繁杂的分离稀土基体技术,就能轻松去除基体元素形成的干扰,从而准确测定稀土杂质元素的含量,为全国稀土行业的客户提供解决方案以满足行业发展的迫切需求。如需合作转载本文,请文末留言。
  • 饮用水中痕量重金属的快速检测方法介绍
    p style="text-align: center "strong饮用水中痕量重金属的快速检测/strong/pp style="text-align: center "上海仪电科学仪器股份有限公司/ppstrong摘要:/strong饮用水中痕量重金属的快速检测是分析测试技术上的一个难点。本文尝试使用阳极溶出伏安法,实现了饮用水中痕量重金属离子的检测。结果显示,饮用水中痕量的铅、镉和汞离子可以通过阳极溶出法进行检测,其检测下限可以达到ppb级。与其他分析测试技术相比,阳极溶出伏安法具有设备体积小,操作简单,使用成本低廉等独特优点,使得其在饮用水的现场快速分析中拥有广阔的应用前景。/ppstrong关键词:/strong饮用水,重金属,阳极溶出伏安法/pp /ppstrong一、实验原理/strong/pp长期以来电化学溶出伏安法一直被认为是检测水环境中痕量重金属的一个有效方法[8]。溶出伏安法是基于电化学原理进行的(如图1)。在一定电压条件下,先将溶液中的待测元素通过还原反应沉积在电极表面,随后通过施加反向电压,使沉积在电极表面的重金属发生氧化反应而溶解,形成峰电流,峰电流的大小或峰面积与被测金属离子浓度成正比。由于电沉积过程中的富集作用,溶出伏安法可以达到1 μg/L以下的检测下限。/ppbr//ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/09550700-f887-41a8-947c-4d9cb9759796.jpg" title="1.png" style="width: 402px height: 309px " width="402" vspace="0" hspace="0" height="309" border="0"//pp style="text-align: center "strong图1. 溶出伏安法原理图/strong/ppstrong二、 使用仪器/strong/pp便携式重金属分析仪(SJB-801,上海仪电科学仪器股份有限公司),工作电极为玻碳电极,辅助电极为铂电极,参比电极为银/氯化银双盐桥电极;纯水机(GT-30,上海仪电科学仪器股份有限公司);微量进样器(WKYVI-1000,上海求精生化试剂仪器有限公司);分析天平(BSA224S,德国赛多利斯科学仪器有限公司)。/ppstrong三、溶液和试剂/strong/pp铅标准溶液(标准物质编号GBW(E)082058,浓度1000mg/L),镉标准溶液(标准物质编号GBW(E)082061,浓度1000mg/L),汞标准溶液(标准物质编号BW085523,浓度100mg/L)采购自深圳市华测标准物质研究所,使用18.2 MΩ实验室超纯水稀释到指定浓度。/pp铅/镉电解液、汞电解液、汞清洗液、镀金液等为便携式重金属分析仪的配套试剂,由上海仪电科学仪器股份有限公司提供。/pp浓硝酸、浓盐酸等试剂为分析纯,采购自国药集团试剂有限公司。/ppstrong四、操作过程/strong/pp1、电极的准备/pp工作电极:工作电极为玻碳电极。每次使用之前需要在抛光绒布上加抛光粉进行打磨,并用去离子水冲洗,处理好的工作表面应该覆盖一层均匀的水膜。/pp参比电极:参比电极为饱和氯化钾式银/氯化银双盐桥电极。第一次使用参比电极时,配置好内溶液,打开加液塞将配备好的参比内溶液加入到参比电极内腔中(注意参比内腔要保留一小段空隙),然后将该参比电极在盛有饱和氯化钾溶液的保护瓶中浸泡至少1小时,最好浸泡一上。参比电极平时不用时要塞上加液塞和底部浸泡在保护瓶中,保护瓶中要保持有饱和氯化钾溶液。每次使用前,将电极的保护瓶拿掉用水将氯化钾溶液清洗干净,开始测试时,将加液塞打开。/pp对电极:对电极为铂电极,一般不需要处理,可直接使用。/pp2、重金属离子的分析/pp溶出伏安法测定铅、镉、汞标准溶液:准确量取超纯水100mL至烧杯中,加入1mL铅镉电解质溶液,取20mL溶液至测量杯中。仪器选择“铅镉”测定模式,扫描溶出伏安法曲线,测定结束后,记下峰面积。随后依次添加10μL、20μL、30μL、40μL20mg/L铅镉标准溶液,重复扫描操作,记录峰面积值。仪器选择“预镀金膜”模式,在镀金液中完成金膜于都操作。准确量取超纯水100mL至烧杯中,加入汞电解质溶液20mL,取20mL溶液至测量杯中。仪器选择“汞”测定模式,扫描溶出伏安曲线,测定结束后,记下峰面积。随后分别添加5次40μL 1mg/L铅镉标准溶液,重复扫描操作,记录峰面积值。/pp饮用水中铅、镉、汞的测定(标准曲线法):测定水中铅和镉离子时,先使用40 μg/L和100μg/L两种标准溶液对仪器进行标定。准确量取自来水样100mL至烧杯中,加入铅/镉电解质溶液1mL。量取20mL测试水样至测量杯中。仪器设定为测定“铅镉”,测定3次浓度值,记下数据;测定结束后,往测量杯中添加20μL 20mg/L铅/镉离子标准溶液,测定3浓度值,记下数据。测定水中汞离子时,先对工作电极进行预镀金膜操作,随后使用4 μg/L和10μg/L两种标准溶液对仪器进行标定。准确量取自来水样100mL至烧杯中,加入汞电解质溶液20mL。量取20mL测试水样至测量杯中。仪器设定为测定“汞”,开始测定3次浓度值,记下数据;测定结束后,往测量杯中添加40μL 1m g/L汞离子标准溶液,测定3次浓度值,记下数据。/pp饮用水中汞的测定(二次添加法):准确量取自来水样100mL至烧杯中,加入汞电解液20mL得到测试水样。量取20mL测试水样至测量杯中。选定测定金属“Hg”,选择标准添加法,设定第一次和第二次分别添加40μL 1mg/L汞标准液,确认后开始测量,测试结束后,记下测定的汞离子的浓度值。/ppstrong五、结果与讨论/strong/pp1、溶出伏安法测定铅、镉、汞标准溶液:/pp为验证溶出伏安法对于重金属铅、镉离子的测量性能,对0μg/L、10μg/L、30μg/L、60μg/L、100μg/L铅镉标准溶液进行分析测试。由于支持电解液中含有一定浓度的铋离子,在富集过程中,铅离子、镉离子和铋离子可以在玻碳电极表面形成共沉积。在随后的伏安扫描过程中,几种元素又可以被氧化和释放,形成尖锐的溶出峰,如图2所示。铅离子和镉离子的溶出电位分别为-0.5V和-0.8V,峰形尖锐,对称性较好,相互之间不产生干扰,因此铅离子和镉离子可以使用溶出伏安法同时测定。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/5b435af9-24f2-4698-9f3c-c62f714dd98a.jpg" title="2.png"//pp style="text-align: center "strong图2 铅离子和镉离子标准溶液的测定曲线/strong/pp采用峰面积作为相应信号,根据峰面积和浓度关系,绘制标准曲线(图3),R2分别为0.9961(Pb),0.9952(Cd),标准曲线的线性均良好,可见在0-100μg/L的浓度范围,铅离子和镉离子可以通过溶出伏安法进行同时测量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/066e6e59-eae1-4430-baa3-d45c431d2e2a.jpg" title="3.jpg" style="width: 600px height: 194px " width="600" vspace="0" hspace="0" height="194" border="0"//pp style="text-align: center "strong图3(a)铅离子标准曲线;(b)镉离子标准曲线/strong/pp汞离子标准溶液使用类似的方法进行分析。为提高汞离子的富集效果,在富集和测定前,需要对玻碳电极进行预镀金膜操作。该操作可以通过使用仪器自带的预镀金膜模式和镀金液进行。随后,不同浓度的汞离子标准溶液通过循环伏安法进行分析测试,结果如图4A所示。汞离子在金膜上的溶出电位约为0.55mV,峰形较好,对称性良好。/pp汞离子的标准曲线如图4B所示,R2为0.9878,标准曲线线性良好,可见浓度范围在0-10μg/L的汞离子,可以通过溶出伏安法进行测量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/6512c3c9-4202-40c0-91fb-7e5f1e594607.jpg" title="4.jpg"//pp style="text-align: center "strong图4 (A)汞溶出伏安曲线;(B)汞离子标准曲线/strong/pp2、饮用水中铅、镉、汞含量的测定/pp饮用水中铅镉汞离子含量采用标准曲线法进行测定,结果如表1所示。饮用水中的铅离子浓度约为1.90μg/L,重复性为± 0.4μg/L;镉离子浓度约为0.01μg/L,重复性为± 0.01μg/L;而饮用水中的汞离子浓度极地,低于溶出伏安法的最低检出限。/pp为验证溶出伏安法在饮用水中测定的可靠性,在饮用水样品中添加铅、镉、汞离子标准溶液,使得离子浓度分别提高了20μg/L、20μg/L和2μg/L。加标后的样品溶液在同样方法下进行测试,结果显示,对于铅离子、镉离子和汞离子,其加标回收率分别为98%,81%和50%。通过三种离子加标回收率,可以看出,标准曲线法在测定饮用水中铅、镉离子时,回收率较高,测试具有较高的可靠性。而对于饮用水中的汞离子,标准曲线法的测试回收率较低,测试可靠性和误差较大,这可能是由于饮用水中背景离子的存在干扰了汞离子的富集和测试过程。/ppstrong表1 使用标准曲线法测定饮用水中铅、镉、汞离子/strong/ptable width="577" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="86" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定离子/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="175" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"水样/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="200" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定值/span/pp style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"(/spanspan style=" font-family:' Arial' ,' sans-serif' "μg/L/spanspan style="font-size:15px font-family:宋体")/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="116" height="25"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"回收率/span/p/td/trtr style=" height:4px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"铅/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "1.90/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.40/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "98%/span/p/td/trtr style=" height:4px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "20 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="4"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "21.40/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.40/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"镉/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.01/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.01/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "81%/span/p/td/trtr style=" height:19px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "20 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "16.20/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.20/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="86" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"汞/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.00/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="116" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "50%/span/p/td/trtr style=" height:19px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="175" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样(加标/spanspan style=" font-family:' Arial' ,' sans-serif' "2 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="200" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.99/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.6/span/p/td/tr/tbody/tablep二次添加法是电化学分析中的常用方法,该方法通过将一定已知浓度的标准溶液加入到待测样品中,通过对加标前后的样品溶液进行分析建立标准曲线,从而进行浓度分析。由于该方法标准曲线的建立是在样品溶液背景下进行的,可以降低实际样品中背景离子的干扰,实得测量结果更准确。饮用水样样品、以及加标后的饮用水样品使用二次添加发进行了分析测试,结果显示,使用二次添加法进行测试时,汞离子测试的回收率提高到了92%,相对于标准曲线法,其测试的可靠性和准确性得到了大幅提高。/pp表2 使用二次添加法测定饮用水中汞离子含量/ptable width="570" cellspacing="0" cellpadding="0" border="1"tbodytr style=" height:32px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="83" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style="font-size:15px font-family:宋体"测定离子/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="180" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"水样/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="170" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"测定值(/spanspan style=" font-family:' Arial' ,' sans-serif' "μg/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="137" height="32"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%"span style=" line-height:115% font-family:宋体"回收率/span/p/td/trtr style=" height:19px"td rowspan="2" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch -moz-border-top-colors: none -moz-border-left-colors: none -moz-border-bottom-colors: none -moz-border-right-colors: none padding: 0px 7px " width="83" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"汞/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="180" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"饮用水水样/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="170" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "0.00/span/p/tdtd rowspan="2" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="137" height="19"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center line-height:115%"span style=" line-height:115% font-family:' Arial' ,' sans-serif' "92%/span/p/td/trtr style=" height:7px"td style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="180" height="7"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:宋体"加标水样/span span style=" font-family:宋体"(/spanspan style=" font-family:' Arial' ,' sans-serif' "2 ug/L/spanspan style=" font-family:宋体")/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="170" height="7"p style="margin-top:8px margin-right:0 margin-bottom:8px margin-left:0 text-align:center"span style=" font-family:' Arial' ,' sans-serif' "1.83/spanspan style=" font-family:宋体"± /spanspan style=" font-family:' Arial' ,' sans-serif' "0.16/span/p/td/tr/tbody/tablepstrong六、结论/strong/pp本文研究了阳极溶出伏安法在重金属离子铅、镉、汞测定中的应用。对标准溶液的测定结果表明,阳极溶出伏安法在0-100 ug/L的范围内可以实现铅、镉离子的同时检测,在0-10 ug/L的范围内可以实现汞离子的检测,结果呈现良好的重复性和线性相关性。阳极溶出伏安法可以被应用到生活饮用水中痕量重金属的检测中来。通过简单的两点校准,饮用水中的铅离子和镉离子即可被同时检测,其加标回收率在80%-100%,显示出方法具有较好的可靠性。由于饮用水中背景离子的干扰,汞离子使用标准曲线法测定的回收率仅为50%。二次添加法可以显著降低样品的背景干扰,通过采用二次添加法,饮用水中汞离子测量的可靠性和准确性得到明显改善,其测定回收率提高到92%。/pp本文使用基于溶出伏安法的便携式重金属分析仪,测定饮用水中的铅、镉、汞离子含量。实验中重金属的质量浓度和与阳极溶出的峰面积呈良好的线性关系,获得较高的回收率,实验结果较为满意,符合快速检测的要求。该设备操作简单,便于携带和操作,灵敏度和准确度高,选择性好,运行费用低,体积小,特别适合现场的快速检测。/ppbr//ppstrong作者:/strong孟旭,工程师,18616817423,mengxu@lei-ci.com, br//ppstrong通讯地址:/strong上海市嘉定区安亭镇园大路5号。/p
  • 中国金属材料产品质量分析检测大会,南京滨正红仪器赞助参展
    南京滨正红仪器有限公司专业研发、生产、销售痕量、超痕量分析器皿。产品质量可与国外品牌相媲美。为促进我国金属材料领域产品质量技术进步,优化制造流程与产品的过程控制,推动关键技术、核心装备和重大产品创新,促进在相关领域的产业化应用,发挥科研院所、高等院校资源与技术优势,搭建产、学、研、用技术对接与合作平台。在中国有色金属学会的指导下,由广东省工业分析检测中心(广东省科学院)、国家钢铁材料测试中心(钢铁研究总院)、国家轻金属质量监督检验中心(中国铝业郑州有色金属研究院有限公司)、轻质高强结构材料国防科技重点实验室(中南大学)联合主办,北方中冶(北京)工程咨询有限公司承办的“中国金属材料产品质量分析检测大会”已于 2019 年 6 月 19 日-21 日在广东省广州市隆重召开 大会现在南京滨正红展示多了个实验室新品,深受广大实验者老师的青睐!多功能电热板消解仪,耐腐蚀,四氟柱脚,分体式设计电源线套有PFA管畅销产品:特制特氟龙消解器皿,微波罐,消解瓶,消化罐,烧杯,坩埚南京滨正红真诚希望能与每位老师的合作共赢!
  • 5月18日,东莞安装安捷伦气相,电感耦合等离子体质谱仪-痕量金属元素分析技术的选择
    2021年5月18日,东莞某第三方检测公司购买我司安捷伦气相色谱 GC, 型号:6890N+ECD+NPD; 安捷伦电感耦合等离子体质谱仪 ICP-MS, 型号:7500CX ,安装调试完毕,感谢客户的支持与认可。1安捷伦气相色谱 GC 6890N+ECD+NPD 实物图片: 安捷伦气相色谱 GC 6890N内置局域网 (LAN) ,使您能够通过站点共享商业和科学数据,以便快速作出正确的决策。这种6890N气相色谱仪具有所有工业的研究和方法开发所需的灵活性和性能,耐用且可靠,适合用于那些需要多个色谱柱或阀、特定进样口或检测器、宽温度范围的常规方法。应用范围:为石油化工、食品分析、环境监测、医药溶剂残留等领域提供了完备的气相色谱仪器解决方案 1安捷伦电感耦合等离子体质谱仪 ICP-MS 7500CX 实物图片: ICP-MS已被公认为痕量金属元素分析技术的选择。当今的常规实验室要求比ICP-OES更为灵敏,比石墨炉原子吸收 (GFAAS)更为快速的分析技术。ICP-MS 可满足上述两方面的需求,它具有更宽的工作范围,并可同时测定能生成氢化物的元素及痕量Hg,同时还具备半定量及同位素比分析能力。ICP-MS又可作为一种极为理想的多功能的检测器,与色谱和激光技术联用。安捷伦电感耦合等离子体质谱仪 ICP-MS 7500CX 应用领域包括:--环境样品分析,包括自来水、地表水、地下水、海水以及各种土壤、废弃物等的分析--半导体材料分析--玻璃、陶瓷和矿冶等样品分析--地质学研究--生物食品及医药临床研究--核材料分析--石油化工样品分析--法医应用与研究--环境毒理、生命科学等领域的元素价态、形态分析
  • 理加联合参加“第二届稳定同位素生态学学术研讨会暨稳定同位素技术研修班”
    2014年5月19日-22日,第二届稳定同位素生态学学术研讨会暨稳定同位素技术研修班在北京顺利召开,会议由清华大学地球科学研究中心主办,中国生态学学会联办,会议邀请了国内外本领域的著名专家做主题特邀报告,来自全国各地近200位学者参加了学术研讨会,另有120位学者参加了技术研修班。北京理加联合科技有限公司(以下简称:理加联合)应主办方邀请,携众多生态仪器设备参加了此次盛会。 5月19日-20日,中国 北京 清华园宾馆 稳定同位素生态学学术研讨会 5月19日,研讨会开始,清华大学地球系统科学研究中心暨全球变化研究院林光辉教授主持会议。 5月20日,理加联合市场总监朱湘宁先生在大会上为专家学者介绍了LGR激光稳定性同位素分析仪的新应用,并回答了与会学者提出的一系列问题。 报告结束后,与会学者表现出浓厚兴趣,并与我们的工程师在研发项目的进展与需求方面做了深切交流。与会学者表示,稳定同位素技术在现代生态学的发展中起着极为重要的作用,美国LGR公司的OA-ICOS技术能够快速、连续、精确的测量痕量物质,对于生态学研究而言,尤其是稳定同位素生态学研究,有着很高的契合性。 5月21-22日,中国 北京 清华大学 稳定同位素技术研修班 为了确保每位学者都可以亲自动手操作专业仪器,并与我们的工程师沟通,技术研修班分四组进行。 首先,中国科学院地理科学与资源研究所生态系统网络观测与模拟实验室温学发副研究员讲解“基于稳定同位素红外光谱技术连续测定温室气体同位素比值和通量”。 讲解结束,在理加联合工程师的指导下,学员亲自动手操作仪器,了解仪器的内部构造和操作技巧;更值得一提的是,由美国LGR公司推出的温室气体分析仪,以其强大的功能、小巧的身材、可背负式的设计赢得与会学者的一致青睐。 关于理加联合主要代理产品:美国LGR公司激光痕量气体和稳定同位素分析仪美国ASD公司地物光谱仪瑞典OPSIS公司凯氏定氮仪和自动消解仪美国CSI公司闭路涡度相关和大气廓线测量系统美国Resonon公司高光谱成像光谱仪意大利AMS集团全自动化学分析仪和流动分析仪 理加联合作为专业的生态与环境仪器的供应商和服务商,一直以“为客户提供最先进的产品和最优质的服务”为目标,在不断引进国外新产品和新技术的同时,努力提升自身的技术支持、售后服务和研发能力,为用户提供更高品质的产品和服务。欲了解更多信息,请浏览公司网站:www.li-ca.com
  • 纳克ICP痕量分析仪重大专项已建成4条生产线
    2016年4月12日,北京市科学技术委员会在钢研纳克永丰产业基地主持召开了国家重大科学仪器设备开发专项“ICP痕量分析仪器的研制与应用”项目(项目编号2011YQ140147)初步验收会议。 出席会议的专家包括清华大学金国藩院士、中国分析测试协会张渝英主任、中科院北京科学仪器研究中心于科岐研究员、北京光学仪器厂骆东淼教授级高工、清华大学赵自然教授、北京科技大学刘杰民教授、北京锐光仪器有限公司周志恒教授及高工、北京化工大学袁洪福教授、首钢冶金研究院郑国经教授级高工。出席会议的领导有北京市科学技术技术委员会条件财务处李建玲处长、北京科学仪器装备协作服务中心杨鹏宇副主任、张静主任助理、项目主管朱希洪、王郅媛,钢研纳克检测技术有限公司总经理贾云海、副总经理兼项目负责人陈吉文,以及各任务单位的负责人和技术骨干。本次初步验收会由李建玲处长主持,会议成立了项目初步验收技术专家组,选举金国藩院士作为专家组组长。  专家组听取了项目及各承担单位的汇报,审阅了相关资料,进行了现场检查,经质询和讨论,最终形成了验收评审意见。 领导和专家一致认为项目验收材料齐全、规范,符合验收要求。项目成功开发出具有自主知识产权的ICP全谱光谱仪、ICP质谱仪两种痕量分析仪器整机,实现推广应用;攻克了ICP射频源、四极杆射频源、激光烧蚀固体直接进样系统、多位自动进样装置、基于中阶梯光栅和大面积CCD采集的高分辨二维分光系统、碰撞反应池、中阶梯光栅刻划、四极杆等关键部件、关键技术及核心元器件技术和工艺难题;针对国内用户的普遍特点和特殊需求,在仪器中集成了多功能开放性软件、谱线和分析方法数据库,提升国产分析仪器的国际竞争力。  项目执行期内共完成了分析方法、应用、对比报告51篇,形成行业标准8项,专利38项(其中授权专利19项),软件著作权4项,发表论文65篇。项目预期目标全部实现。 在工程化和产业化方面,项目牵头单位已经在永丰建成ICP光谱仪、ICP质谱仪产业基地,将可靠性管理的理论、工具、方法和装备应用于分析仪器开发的全流程,建立了完整的质量管理体系,建设了ICP射频源、激光烧蚀进样系统、ICP全谱光谱仪、ICP质谱仪4条生产线。  ICP全谱光谱仪已经获得生产许可证书,产品已经销售至宁夏、浙江、山东、新疆、湖南、河南及国外(伊朗)等地,产品经过安装和调试,均顺利通过验收。在项目组织管理方面,该项目建立了项目管理网站和办公室,引进VP项目管理系统对项目进度和财务情况进行监督,各任务单位之间沟通协调效果良好,保障了项目的顺利完成。 验收专家组认为该项目完成了任务书规定的任务、目标和考核指标,一致同意该项目通过验收。
  • 2013全国无机及同位素质谱会议上的仪器厂商
    仪器信息网讯 2013年11月22-24日,由中国质谱学会主办,无机质谱专业委员会、同位素质谱专业委员会、质谱仪器与教育专业委员会承办,江苏天瑞仪器股份有限公司协办的全国无机及同位素质谱学学术会议在昆山举行。来自高校、科研院所、国家自然科学基金委、企业的近200名专家学者参加了此次会议。  天瑞仪器、安捷伦科技、赛默飞、珀金埃尔默、埃地沃兹贸易、滨海正红塑料等公司参加了此次会议并设置了展位,其中天瑞仪器、安捷伦科技、赛默飞、珀金埃尔默还向与会人员介绍了无机质谱研发与应用的最新进展情况。天瑞仪器周立  近年来,农业环境污染尤其是土壤重金属污染日益成为社会关注的焦点。周立从样品前处理、参数优化、测试、数据分析等方面介绍了利用ICP-MS 2000检测环境土壤中Cu、Ni、Zn、Cd、Cr、As、Pb、Hg等元素。周立说:&ldquo 利用电感耦合等离子体质谱仪测试实际土壤样品时,需要考虑样品的均匀性问题,同时根据元素灵敏度、干扰程度大小选择合适的同位素及校正方法或CRC以获得更好的测试结果。&rdquo 另外周立还做了气质联用技术在环境VOC监测中的应用的报告。安捷伦科技陈玉红  随着ICP-MS技术的发展,其灵敏度不断提高,目前的仪器比早期提高了至少2个数量级以上,且背景降低了1个数量级以上。然而传统的ICP仍面临着耐基体能力差、来自于基质及等离子体的质谱干扰等挑战。许多ICP-MS的研发和改进均围绕着如何解决以上问题。陈玉红详细介绍了碰撞/反应池技术在消除干扰方面的应用和发展,以及气溶胶稀释法在消除基体效应、提高耐基质能力方面的应用。赛默飞陆文伟  陆文伟介绍了等离子体质谱中动能与动能歧视效应。他说:&ldquo 不知在碰撞/反应池工作模式下才可以利用动能歧视效应,标准模式下也可以 不只是碰撞气体才可利用动能歧视效应,反应气体也可以。另外还有不只是大气体流量才可利用动能歧视效应 碰撞/反应池中的碰撞气体也不仅仅是促进多原子离子的健断裂。&rdquo 珀金埃尔默朱敏  由于海水的盐分高、以及痕量金属元素基本都在微克-纳克/升的水平,因而在采用ICP-MS测定海水中的痕量金属元素时存在多原子离子干扰、等离子体的电离效率低、采样锥和截取锥甚至离子透镜系统基体沉积等问题。对于这些问题,朱敏提出利用seaFAST进样系统可实现海水在线富集和基体去除,而且不需要对海水样品进行前处理。利用通用池碰撞反应干扰消除技术,减少了由基体、溶剂及氩气等产生的多原子离子干扰。赛默飞杨列坤  杨列坤介绍了多接收同位素质谱新技术进展及应用。安捷伦科技邓磊  在质谱领域,安捷伦真空可提供分子泵、油封式旋片泵、涡旋干泵、真空计等产品。邓磊介绍了安捷伦真空推出的最新产品的特点和应用。天瑞仪器展位安捷伦科技展位赛默飞展位珀金埃尔默展位滨海正红塑料展位  相关新闻:  2013全国无机及同位素质谱会议举行  http://www.instrument.com.cn/news/20131125/117773.shtml  陈洪渊、张玉奎入选为美国分析化学杂志编委  http://www.instrument.com.cn/news/20131125/117838.shtml  张新荣:ICP-MS在生命科学领域大有用武之地  http://www.instrument.com.cn/news/20131128/118123.shtml
  • 从2017年无机及同位素质谱学术大会看岛津无机质谱技术新进展
    2017年8月19日,由中国质谱学会、表面物理与化学重点实验室主办2017年中国质谱学会无机及同位素质谱学术会议在四川成都隆重揭幕。来自高校、科研院所、以及相关企业的200余人参加了本次会议。组委会邀请了相关质谱领域的院士和著名学者进行大会报告,同时举行分组专题报告和墙报论文展示,交流无机质谱、同位素质谱以及相关技术的最新研究、仪器研发和应用成果。 大会现场传真 会议由本次会议组织委员会主任、北京师范大学教授谢孟峡主持开幕,中国质谱学会副理事长、核工业北京地质研究院郭冬发研究员,中国工程物理研究院机械制造工艺研究所王宝瑞所长,中国核工业建设集团公司研究员李金英致开幕词,期待本次大会能够增进质谱事业的发展以及质谱设备研发水平的提高。简短的开幕仪式后,进入大会报告环节。中国钢铁研究总院王海舟院士做了题为《中国材料与试验标准的发展》的报告,介绍了材料与试验标准体系现状,以及中国材料与试验团体标准CSTM的情况。他强调标准应该是前端的、与技术同步。随后,中国核工业建设集团公司李金英研究员做了题为《质谱技术在核工业领域应用研究新进展》的报告,核工业北京地质研究院郭冬发研究员题为《铀矿物质谱成像分析》的报告,清华大学林金明教授做了题为《微流控芯片质谱联用细胞分析方法研究》的报告,中国工程物理研究院材料研究所廖俊生研究员做了题为《核材料研究中的无机质谱应用技术》的报告,上述权威专家的大会报告中,与“核”相关的报告有3个之多,可见无机及同位素质谱技术在核工业领域的广泛应用。 中国钢铁研究总院王海舟院士做了题为《中国材料与试验标准的发展》的报告 中国核工业建设集团公司李金英研究员做了题为《质谱技术在核工业领域应用研究新进展》的报告 核工业北京地质研究院郭冬发研究员题为《铀矿物质谱成像分析》的报告 清华大学林金明教授做了题为《微流控芯片质谱联用细胞分析方法研究》的报告 中国工程物理研究院材料研究所廖俊生研究员做了题为《核材料研究中的无机质谱应用技术》的报告 岛津公司倾情赞助了本次大会并披露了在无机及同位素质谱的最新研究成果。在“无机质谱技术及应用”分会上,岛津公司分析测试仪器市场部的资深技术专家石欲容博士做报告,重点介绍了岛津无机质谱的联用技术,岛津公司可以提供LC、GC、IC、CE、LA与ICPMS联用的所有产品及技术支持。她在报告中主要介绍了岛津的LC-ICPMS做汞形态分析及地下水中硼、溴、碘形态价态的同时分析。汞的形态分析需要考虑汞的残留,岛津公司的联用系统采用全惰性的液相色谱,PEEK材质的泵头、管路、进样针、联机组件的切换阀,同时也采用了一根带PEEK内衬的C18柱,将汞的残留降低到最低,在等度的条件下将二价汞、甲基汞、乙基汞进行了很好的分离。由于硼大量的工业化应用,加上水臭氧消毒过程将水中的溴、碘氧化成具有一定毒性的衍生物,岛津公司采用离子色谱柱,在等度的条件下同时分析了硼、溴、碘形态分析,同时加标回收、重现性、检测限都得到理想的结果。此外,岛津公司分析中心的技术专家还发表了多篇代表岛津公司先进水平的墙报,引起与会者的关注。 岛津公司分析测试仪器市场部石欲容博士做报告 岛津展台传真 并排而列的岛津公司分析中心的墙报发表引起与会者的关注 岛津分析中心孙友宝与他的发表墙报《电感耦合等离子体质谱法同时测尿的液中多种元素》人体内的痕量元素可以分为必需元素(如Se、Mo、Co、Cu、Zn 等)和有毒元素(如Be、 Pb、Cd等)两大类。通过对尿液中痕量元素的监测,本文参考《SFZ JD0107017-2015 生物检材中32种元素的测定电感耦合等离子体质谱法》,采用直接稀释前处理方法,使用岛津ICPMS-2030型电感耦合等离子体质谱仪测定了尿液中的多种金属元素的含量并通过加标回收率实验对方法进行了验证。实验结果表明,各元素线性相关系数大于0.999,该方法精度在5%以内,元素检测线在0.001-0.07μg/L,尿液样品回收率在90%~110%之间。该方法操作简单,定量准确,线性范围宽,可满足人尿中多种金属元素成分分析的要求。 岛津分析中心盖荣银与他的发表墙报《ICPMS-2030测定中药材甘草中砷、镉、铜、汞、铅元素的含量》对于中药市场的检查发现,市场上的甘草存在硫熏、细菌、重金属超标等问题,达不到药用要求,甚至出现伪品,冒充甘草出售。所以对于中药材甘草中砷、镉、铜、汞和铅重金属的测定非常重要。本文使用岛津ICPMS-2030直接测定中药材甘草样品中重金属元素的含量,并进行加标回收实验。加标回收率在98.6%~101%之间。该方法具有灵敏度高,检出限低,精密度高,分析速度快,操作简单,可行性高等特点,可以完全满足药典规定的 岛津分析中心曾力与他的发表墙报《ICPMS 同时测定人发中多种金属元素的含量》人体含有多种必需的、非必需的和有害微量金属元素。准确检测这些微量元素,有利于指导人们的膳食结构,控制人体体液的离子平衡,保障身体健康。本文采用岛津新品电感耦合等离子体质谱仪 ICPMS-2030 结合微波消解前处理方法,测定了头发样品中的 23 种金属元素含量的方法。将所建立方法应用于人发标准物质中的金属含量分析,分析结果线性相关系数良好, r0.9998,实验结果与标准值吻合,方法准确、可靠。该方法具有灵敏度高,检出限低,易于操作的特点,为人发样品中的金属元素测定提供了有用的参考。 岛津分析中心钟跃汉与他的发表墙报《HPLC-ICP-MS 法测定环境水样中的形态汞》水环境中的汞及其化合物是全球性污染物,是欧美、日本、俄罗斯和中国等多个国家优先控制的污染物之一。本文建立了联用岛津高效液相色谱 LC-20Ai 和电感耦合等离子体质谱 ICPMS-2030,使用PEEK column InertSustain C18, 4.6*250mm, 5μm 色谱柱分离测定环境水样地表水和地下水中无机汞、甲基汞和乙基汞含量的方法。将所建立方法应用于环境水样地表水和地下水中的汞形态分析,分析结果线性相关系数良好,r0.9998,加标回收率在 83.1%~106.6%之间,方法准确、可靠。该方法不仅可以同时分析不同形态的汞,并且具有灵敏度高,检出限低,易于操作的特点,为环境水样品中的汞形态分析测定提供了有用的参考。 在大会举办前夜,岛津公司举办了招待晚宴,为全体与会嘉宾提供了一个轻松交流的平台。岛津公司分析测试仪器市场部胡家祥部长发表了热情洋溢的致辞。首先他对能够在魅力城市成都与各位新老朋友相聚表示非常高兴。他在致辞中指出,目前在各个领域无机质谱和同位素质谱所发挥的重要日益显著,岛津公司不断革新与挑战,开发生产具有高附加价值的产品。岛津推出的ICPMS-2030电感耦合等离子体质谱仪具有显著优势,在推出后短短的一年中得到了包括医药、环境、疾控、农业、独立检测等领域众多客户的高度认可与好评。他在致辞的最后表示岛津公司将继续与中国用户密切合作,持续倾听客户声音,开发出真正适合用户需求的产品与应用。 岛津公司分析测试仪器市场部胡家祥部长发表致辞,表示岛津公司将继续与中国用户密切合作,持续倾听客户声音,开发出真正适合用户需求的产品与应用
  • 纳克公司组织召开“ICP痕量分析仪器的研制和应用”学术研讨会
    2011年7月14日,由钢铁研究总院和北京纳克组织召开的&ldquo ICP痕量分析仪器的研制和应用&rdquo 学术研讨会在北京顺利召开。 参加本次研讨会的嘉宾有中国工程院院士金国藩教授、中国工程院院士李正邦教授以及来自中钢协、中国分析测试协会、中国仪器仪表学会、天津大学、中科院、中国地质科学院、北京矿冶研究总院、国家环境分析测试中心、北京理化分析测试中心的多位科学家。同时,国家科技部条财司条件处郑健副处长、北京科学仪器装备协作服务中心曹磊副主任和集团公司副总经理、北京纳克董事长李波出席会议。研讨会上,李波董事长向专家介绍集团公司发展状况和&ldquo 十二五&rdquo 规划;郑健副处长代表科技部条财司条件处介绍了&ldquo 十二五&rdquo 期间国家在&ldquo 科学仪器自主创新&rdquo 方面支持的重点方向和新举措。陈吉文经理就&ldquo ICP痕量分析仪器的研制和应用&mdash 应用驱动的科学仪器自主创新模式探索&rdquo 进行了汇报。 与会领导和专家在听取了项目汇报,参观了北京纳克生产基地后,结合所从事的研究工作,介绍了所在的冶金、半导体、环境、地质矿产等领域对ICP痕量分析仪器的具体需求,认为开发此类仪器非常必要,并对北京纳克ICP仪器研发工作以及整个产业发展提供了重要、明确的建议和意见。 本次研讨会将对北京纳克的产业发展规划和研发工作起到重要的指导作用。
  • 新品发布!喜瓶者全自动酸蒸清洗机,解决痕量样品瓶皿清洗难题
    痕量分析用于测定痕量元素在试样中的总浓度,和用探针技术测定痕量元素在试样中或试样表面的分布状况,主要用于测定Pb、As、Hg、Cd、Cr、Ni等痕量元素,常用方法有化学光谱法、中子活化分析法、质谱法、分光光度法、原子吸收光谱法、极谱法等多种方法。主要应用于化学、材料科学、生物医学、环境科学、表面科学等领域。洁净的样品反应容器是获得正确分析结果的前提。痕量分析所使用的微波消解罐、超级微波消解管、常压消解罐、玻璃器皿(试管、烧杯、容量瓶等)等的痕量清洗,对于实验人员来说,始终是一个非常繁琐而又非常重要的挑战。而酸蒸清洗很好地解决了这个问题。酸蒸超净清洗是一种自动、密闭、酸蒸汽清洗方法。通过内置可控温加热系统,利用酸蒸汽安全高效地对所有可溶于酸中的任何痕量金属污染物进行超净清洗,并将其留在液体酸中,绝不会接触正在清洗的反应容器。传统的清洗方式酸缸浸泡,有极大的弊端1、效率低 效果差,常常要浸泡24小时以上,需多买一套消解管周转,成本极高;2、酸缸存放困难,大量酸气渗出,污染实验室环境;3、 为避免交叉污染,需定期换酸,酸消耗量大,且危险;4、酸泡之后,还需手工冲洗和干燥,繁琐且二次污染。之后有了微波空消的清洗方式,虽摆脱了长时间酸缸浸泡,但清洗效果一般,且也有一定缺陷。1、每个消解管清洗需耗纯酸5mL;2、 高温高压条件下运行,减少一半消解管寿命,成本极高;3、 空消之后,还需手工冲洗和干燥,繁琐且二次污染;4、因脏酸始终在消解管内循环,清洗效果有限。然而现在使用全自动酸蒸清洗机进行清洗,逐渐被被各大实验室所接受:1、效率高,一批可处理多达66个55mL消解管;2、热蒸汽的高效淋洗,一般只需2-5小时,AC400清洗最快只需30分钟;3、一批只需100-300mL酸;4、程序控制,清洗重复性好;5、全自动型号还进行超纯水预清洗。以及在酸蒸清洗之后,自动纯水冲洗和热空气干燥,一条龙式流程。 全自动酸蒸清洗机,解决了痕量分析中样品反应容器的清洗难题,为实验的准确性于便捷性提供助力。喜瓶者,让清洗工作更幸福!
  • 稳定同位素标记化合物产业化基地建设进展-阿尔塔
    阿尔塔科技有限公司参加由中国计量科学研究院牵头的十三五“食品安全关键技术研发”重点专项,并承担了“食品检测稳定性同位素标记RM研制及产业化”任务,旨在利用阿尔塔标准品和稳定同位素标记物研发平台的优势,开发多系列食品安全检测用有机稳定同位素标记物的制备共性关键技术,研制农兽药及禁限用食品添加剂等有害物的稳定同位素标记物,建设世界一流的国产稳定同位素标记物产业化基地,为食品安全检测提供长期可靠的保障。在食品与环境安全问题中,农药和兽药等有害化学品的污染引起了世界各国的广泛关注。WHO/FAO—CAC(世界卫生组织食品法典委员会)、GB2761、GB2762、GB2763、GB31650等国际和国家标准中对食品中有害物质最高残留限量(MRL) 作了相应的规定。有些发达国家利用食品中有害物质残留限量标准及其检测技术作为对我国食品国际贸易的技术壁垒,极大地削弱了我国农产品在国际市场上的竞争力。面对当前的国际国内形势,消除此项壁垒并开发出适应新要求的食品安全检测技术变得更加迫在眉睫。近几年发布的食品检验农药残留和兽药残留方面的国家标准及行业标准中越来越多的采用了稳定同位素内标法作为规范的检测方法。在质谱的检测方法中,使用稳定性同位素标记物作为内标可以提高目标化合物的回收率和方法稳定性,有效避免基质效应、前处理和质谱检测器等因素对分析方法测定结果的影响,保证了检出结果的准确性。但是,由于我国稳定同位素标记产品短缺,在以往的国标、行标中普遍使用进口的稳定性同位素标记物,遭遇“买到什么用什么”的困境,严重影响和制约了我国食品安全分析方法开发和痕量危害物检测的发展。因此,发展具有自主知识产权的稳定同位素制备共性关键技术和产品研究,建立独立自主的产业化基地,为我国的科技创新和食品环境安全检测提供大量、可靠、经济、新型的稳定同位素内标物,摆脱“买到什么用什么”的困境,实现“想用什么买什么”,既是科研创新发展必不可少的组成部分,也符合国家发展战略的根本要求。阿尔塔科技致力于高质量标准品和稳定同位素标记化合物的开发和全套解决方案的提供,公司的标准品开发平台基于公司创始人张磊博士及分析检测和标准品领域内多名专家的广泛深入合作。此次承担“国家食品安全重大专项-食品检测稳定性同位素标记标准物质研制及产业化”项目,阿尔塔科技依托公司研发平台的优势,从现行标准中常检出农兽药及禁限用添加剂入手,开发稳定同位素标记物的制备共性关键技术,制备具有自主知识产权的稳定性同位素标记物系列产品,建成世界一流的稳定同位素标记物生产技术示范应用产业化基地,以实现对进口产品的全面替代和超越。经过阿尔塔技术专家两年来的攻坚克难,已经成功开发了有机磷类、磺胺类、喹诺酮类、瘦肉精类、塑化剂类等多系列内标物的关键共性技术,实现了上百种稳定同位素标记的量产和持续供应能力,并将在未来5年内完成五百余种稳定同位素标记标内标物的研发和稳定供应,基本扭转食品检测用稳定同位素标记物严重依赖进口的局面,初步达到让检测人员“想用什么买什么”、“需要什么能做什么”。目前,阿尔塔科技自主品牌的稳定同位素标记化合物超过1500种,已成为国内稳定同位素标记化合物品种最多的自主研发和持续供应企业。另外,阿尔塔科技设立了博士后科研工作站和院士创新工作站,通过引进和培养更多高端专业人才完成更多标准品和稳定同位素标记物的研制、新方法开发和标准制定,为我国食品安全检测行业由“跟随”到“引领”的转变提供强有力的产品及技术支持。*阿尔塔申请专利:CN 109574868A,一种四环素类及其差向异构体氘代内标物的制备方法CN 110746445A,一种头孢哌酮氘代内标物的制备方法CN 112358446A,一种稳定同位素标记的盐酸曲托喹酚的制备方法CN 112409257A,一种氘标记的去甲乌药碱稳定性同位素化合物的制备方法CN 113061096A,一种新的稳定同位素标记的克伦丙罗的制备方法CN 113149851A,一种新的稳定同位素标记氯丙那林的制备方法CN 113061094A,一种新型盐酸莱克多巴胺-D6的制备方法CN 113061070A,一种氘标记的美替诺龙稳定性同位素标记化合物 *阿尔塔发表文章:秦爽等. 稳定同位素标记化合物盐酸曲托喹酚-D9的合成与表征. 审稿中刘晓佳等. 稳定同位素氘标记的盐酸莱克多巴胺的合成与表征. 审稿中曹炜东等. 稳定同位素氘标记克伦丙罗-D7新的合成方法研究与结构表征. 审稿中韩世磊等. 稳定同位素氘标记去甲乌药碱的合成与表征. 同位素, 2021, 34(4), 317-324.韩世磊等. 稳定同位素标记化合物二氢吡啶-13C4的合成与表征. 食品安全质量检测学报, 2020, 11(18), 6372-6377.
  • 钢研纳克“ICP痕量分析仪器的研制与应用”项目取得重大进展
    由钢研纳克承担的国家重大科学仪器设备开发专项“ICP痕量分析仪器的研制与应用”取得重要进展。本专项开发内容包括二维全谱高分辨ICP光谱仪和ICP质谱仪。目前二维全谱高分辨ICP光谱仪已解决了大面积CCD采集的瓶颈问题,接近于商品水平的产品样机将于年内完成;ICP质谱仪第二代研发样机已成功组装和调试,采集到正确的谱图,这一突破标志着在第二代样机上采用的自主设计的高真空系统、接口及离子传输系统以及射频发生器系统3个关键、难点技术已经实现原理攻克。为高质量、按期完成项目任务和本单位新产品开发任务奠定了坚实的基础。
  • 纳克牵头重大专项“ICP痕量分析仪器的研制与应用”通过综合验收
    p  2017年4月17日,国家科学技术部在钢研纳克永丰产业基地主持召开了国家重大科学仪器设备开发专项“ICP痕量分析仪器的研制与应用”项目(项目编号2011YQ140147)综合验收会议。/pp  “ICP痕量分析仪器的研制与应用”项目于2011年正式立项,由钢研纳克检测技术有限公司牵头,包括9家承担单位,12个任务。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/insimg/f73e383a-8b02-480a-b9b0-b362a64a9d5a.jpg" title="评审现场.jpg"//pp style="text-align: center "评审现场/pp  出席会议的专家包括中国科学院高能物理研究所柴之芳院士、清华大学张新荣教授、四川大学段忆翔教授、暨南大学周振教授、中国科学院高能物理研究所衡月昆研究员、武汉大学胡斌教授、沈阳化工大学许光文研究员、中电集团第四十一研究所年夫顺研究员、东华理工大学陈焕文教授、哈尔滨工业大学(威海)姜杰教授、北京科技大学刘杰民教授、北京科学学研究中心伊彤副主任。/pp  出席会议的领导有科技部资源配置与管理司刘春晓副处长、科技部科技评估中心武思宏博士、项目主管李晓琴、任孝平。北京市科学技术委员会条件财务处李建玲处长、北京科学仪器装备协作服务中心孙月琴主任、项目主管朱希洪、王郅媛。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/insimg/06605ae7-307b-487a-b385-fa9821cc8958.jpg" title="柴之芳院士.jpg" width="450" height="600" border="0" hspace="0" vspace="0" style="width: 450px height: 600px "//pp style="text-align: center "柴之芳院士/pp  此外,中国钢研科技集团有限公司李波副总经理、王海舟院士兼项目技术委员会副组长、钢研纳克检测技术有限公司副总经理兼项目负责人陈吉文,以及各任务单位的负责人和技术骨干也出席了会议。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/insimg/49e975da-82ca-4ebe-b69a-ca51f19a53a8.jpg" title="王海舟院士、李波副总经理.jpg"//pp style="text-align: center "王海舟院士、李波副总经理br//pp  会议成立了项目综合验收技术专家组,选举柴之芳院士作为专家组组长。专家组听取了项目单位的汇报,审阅了相关资料,进行了现场检查,经质询和讨论,最终形成了验收评审意见。/pp  领导和专家一致认为 “ICP痕量分析仪器的研制与应用”项目验收材料齐全,符合验收要求,项目完成了任务书规定的任务,开发的仪器达到考核指标。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/insimg/5cea36ba-6f85-4540-abd8-acdcf7e683e2.jpg" title="专家组对项目现场检查.jpg"//pp style="text-align: center "专家组对项目现场检查/pp  项目开发了具有自主知识产权的ICP全谱光谱仪、ICP质谱仪两种痕量分析仪器整机 攻克了关键部件研制及工艺难题 建立了不同领域的 ICP-MS分析方法及食品检测领域数据库 建成了ICP光谱仪、ICP质谱仪产业基地,建立了完整的质量管理体系,建设生产线4条。目前,该项目形成的Plasma 2000型ICP全谱光谱仪、Plasma MS 300型ICP质谱仪两款仪器已实现良好的市场销售,成为钢研纳克仪器产业新的经济增长点。项目牵头单位法人责任落实情况良好,“两组一委”发挥了应有的组织、协调和监督作用。专家组一致同意该项目通过综合验收。/ppbr//p
  • 李攻科教授:复杂体系痕量分析样品前处理方法研究进展
    仪器信息网讯 2012年4月13日-16日,由中国化学会主办,四川大学承办的中国化学会第28届学术年会在四川大学举行。本届年会恰逢中国化学会八十华诞,受到国际国内化学界同行高度重视,来自国内国际的包括50位两院院士和第三世界院士在内的4000多名化学界代表参加了此次盛会。  在大会组织的分析化学学术分会中,中山大学化学与化学工程学院李攻科教授做了题为《复杂体系痕量分析样品前处理方法研究进展》的报告。中山大学化学与化学工程学院 李攻科教授  李攻科教授介绍说在样品分析过程当中,样品前处理时间占整个分析过程的61%,数据处理与报告占27%,样品采集和分析测定时间各占6% 而整个分析过程当中的误差来源的前两位是样品前处理占30%,操作者占19%,另外污染、样品引入、分析测定、数据处理、仪器、校正等引入的误差均在10%以下。由此可见,样品前处理已成为复杂体系分析的瓶颈问题。  2001-2011年有关样品前处理技术的SCI文章呈稳步上升的趋势,从2001年的800余篇文章增长到2011年的1600余篇。其中各种微萃取技术的论文数量从高到低为:固相微萃取、磁性微球、液相微萃取、搅拌棒萃取技术等。从2001年到2011年,固相萃取技术的论文数量增长平缓,液相微萃取和磁性微球技术论文数量增长较快。  分子印迹微萃取在复杂样品分析中的应用  李攻科教授介绍说分子印迹聚合物兼备了生物识别体系和化学识别体系的优点,能从复杂样品中选择性分离富集印迹分子及其结构类似物。适合用作“分离介质”,在复杂样品前处理领域中具有发展潜力和应用前景。从2001年-2011年,有关分子印迹样品前处理技术的论文数量也是呈上升趋势,并且从2007年-2011年每年都保持了较高的增长率。  分子印迹微萃取技术的核心是纤维涂层材料的研发,李攻科教授在报告中介绍了课题组的一些研究成果,如研发扑草净、四环素、心得安、雌二醇、2,2-联吡啶分子印迹探针的涂层,并且在大豆、玉米、血液、尿液等复杂样品分析中取得很好的效果 研发莠去津、生长素、莱克多巴胺和β-谷甾醇磁性分子印迹微球,结合了磁性分离和分子印迹技术各自的优点,具有效率高、选择性好、实现动态萃取等优点。进行了样品分析,实验结果良好 研发特丁津、磺胺二甲啊嘧啶、莱克多巴胺等分子印迹萃取搅拌棒涂层,搅拌棒通过化学键合作用涂渍的分子印迹涂层非常牢固,具有较好的机械性能,使用40-50次后涂层表面保持完好,萃取性能没有明显改变。  微波辅助样品前处理技术在样品分析中的应用  另外,李攻科教授还介绍了微波辅助样品前处理技术的发展情况,从论文数量来看,微波萃取技术的相关研究也越来越多。从应用领域来看,2001年微波萃取技术主要用在环境领域,占53.57%,而到2011年, 固相微萃取技术主要用于中草药及其他天然产物的分析,占37.69%,其次是食品分析,环境居第三位。  李攻科教授介绍了课题组正在研究的微波辅助低温萃取技术,在低温真空环境中结合微波辅助萃取技术,可避免热敏性及易氧化物质的降解和氧化,使溶剂在较低的温度下保持回流状态萃取目标物,促进溶剂和样品充分接触,提高目标物萃取率。适合于食品药物中热敏性、易氧化物质的萃取。  微波超声辅助固液固分散萃取联用技术:目标物和干扰组分在复合场的作用下同时进入萃取溶剂,干扰组分被分散吸附剂吸附,目标物则留在萃取溶剂中,分散吸附剂应有充分的活性以保留萃取液中的杂质,同时能够使目标物被洗脱。  微波辅助索氏固相萃取技术,溶剂被微波加热并回流,样品中的目标物和干扰组分同时进入萃取溶剂,干扰组分被固相吸附剂吸附,目标物则保留在萃取溶剂中。该技术集萃取、净化为一体,可分析西洋参中的农残,可拓展至其他复杂样品中极性目标物分析。
  • 祝贺2018年稳定同位素测量技术及应用学术交流会圆满成功
    五月的北京,阳光明媚美好,树木郁郁葱葱。2018年5月15日,2018年稳定同位素测量技术及应用学术交流会在中国科学院生态环境研究中心成功召开。会议由中国科学院生态环境研究中心所级公共技术服务中心主办,美国ABB LGR公司,北京理加联合科技有限公司(以下简称理加联合)协办。 本次会议主要围绕稳定同位素测量技术及应用展开,来自中国科学院生态环境研究中心、中国科学院地理科学与资源研究所、中国科学院植物研究所、中国科学院沈阳应用生态研究所、中国林业科学研究院、中国农业科学院、清华大学、北京林业大学、中国农业大学、沈阳农业大学等30余个单位200余名专家学者参加了会议。会议开始,中国科学院生态环境研究中心科技开发处副处长周益奇老师致开幕辞,欢迎前来参会的老师,并预祝本次会议圆满成功。 清华大学地球系统科学研究中心暨全球变化研究院林光辉教授与参会老师介绍了同位素景观图谱(Isoscapes)研究及其应用进展。 河海大学陈建生教授与参会专家进行了隐伏火山岩地下水补径排关系的讨论。理加联合总经理孙宝宇先生向与会老师介绍了LGR激光稳定同位素测量技术及应用案例。 中国科学院沈阳应用生态研究所白娥研究员向与会老师分享了应用氮同位素标记技术研究森林生态系统氮循环的案例。 中国科学院地理科学与资源研究所宋献方研究员向与会老师介绍了基于地球化学方法的水循环研究。 中国林业科学研究院森林生态环境与保护研究所徐庆研究员分享了稳定同位素技术在林业生态研究中的应用。 中国科学院地理科学与资源研究所温学发研究员介绍了生态系统光合和呼吸通量拆分的碳同位素理论及其应用研究进展。 南京信息工程大学肖薇教授向参会老师分享了使用几种稳定同位素法对生态系统尺度下蒸散作用进行分类的研究综述。 北京师范大学王佩副教授讲解了同位素示踪技术及其在生态水文研究中的应用 众所周知,稳定同位素技术被广泛应用于生态、环境、水文、地质、农业、能源等众多研究领域,帮助科学家解决了诸多科学问题,现已逐步成为了解生物与其生存环境相互关系的强有力的工具。随着科研需求的发展,稳定同位素技术从实验室走向了野外。激光稳定同位素测量技术的出现,不仅在实验室可得到高精度的数据,同时使得快速获取高精度的连续在线同位素测量数据成为可能,该技术可以和传统的质谱相媲美,成为一种新型、有效的测量稳定同位素的方法之一,是经典的稳定同位素质谱技术的拓展和补充。 2018年稳定同位素测量技术及应用学术交流会的成功举办,让参会老师充分了解了稳定同位素测量最新技术与应用,促进了不同学科领域学者间的交流。关于理加联合: 北京理加联合科技有限公司(简称:理加联合)成立于2005年,是一家专业的生态环境仪器供应商和技术服务商,主要产品涵盖稳定性同位素测定、痕量气体测量、地物光谱测量、水化学分析、野外便携和长期监测分析仪器。理加公司先后为国内的权威研究机构、著名大学和政府监测部门提供了大量国际领先水平的仪器。公司先后获得了多项“211”工程,“985”工程,水利部“948”项目、农业部“学科群”项目、中国生态系统研究网络(CERN)、中国森林生态系统定位研究网络 (CFERN)的大额订单。这既是用户对我们的支持和厚爱,也是对我们的服务能力和水平给予的认可和肯定。主要代理产品:美国AirPhoton公司颗粒物浊度仪美国LGR公司激光痕量气体和稳定性同位素分析仪美国ASD公司地物光谱仪意大利AMS集团全自动化学分析仪和流动分析仪美国CSI公司涡动相关、大气廓线测量系统美国Resonon公司高光谱成像仪美国ThermoFisher Scientific公司气体分析及颗粒物监测产品系列美国Agilent公司傅里叶红外光谱仪加拿大Itres公司高光谱成像仪
  • 德国元素iso FLOW GHG稳定同位素质谱检测温室气体解决方案
    大气中的温室气体是引起气候变化的主要原因,因此揭开自然界温室气体的循环机理非常重要。同时,我们寻求理解对于这些气体人为的贡献,这样我们可以开发一些成功的策略去减轻或者阻止人类对于地球可持续发展的破坏影响。德国元素iso FLOW GHG联用稳定同位素比质谱仪是一种用于研究温室气体的高度自动化的连续流处理系统,也是研究气候变化的重要的手段。借助低温预浓缩、气相色谱和化学捕集技术分析大气中痕量的CO2, N2O和CH4气体,可以实现高精度的同位素分析。除此之外,iso FLOW GHG联用稳定同位素比质谱仪也可以用来研究土壤N2O排放及其来源途径。一般情况下,土壤微生物活动是 N2O 产生的主要原因,在有氧条件下,微生物将氨氧化成硝酸根的过程中产生N2O;而在厌氧环境中,反硝化细菌将硝酸盐或亚硝酸盐还原成N2O。我们知道,N2O分子是直线结构,其中一个氮原子与另一个氮原子相连,第二个氮原子又与氧原子相连,根据15N的位置不同,N2O同位素特征值又可以分为δ15Nα和δ15Nβ,当前,越来越多的科学家通过分析氮同位素异位体位嗜值(Site preference,SP)来研究N2O的产生机制,这种研究思路的好处在于可以排除N2O前体的不确定性对分析结果的影响。SP计算公式为:SP=δ15Nα-δ15Nβiso FLOW GHG联用稳定同位素比质谱仪提供了先进的自动化控制软件lyticOS,直观的操作界面和自动的数据处理极大地方便了用户,避免了大量的人为手动计算,使分析数据更加稳定准确。
  • 首次在集约化管理草地上进行N2O的在线同位素表征测量
    首次在集约化管理草地上进行N2O的在线同位素表征测量 文献信息:B. Wolf1, L. Merbold, C. Decock et al. First on-line isotopic characterization of N2O above intensively managed grassland. Biogeosciences, 2015. doi:10.5194/bg-12-2517-2015 文献摘要:对四种主要的N2O同位素(14N14N16O,14N15N16O,15N14N16O,14N14N18O)进行了分析,特别是15N的分子内的分布(“位置偏好”,SP)被认为是区分源过程和帮助限制全球N2O预算的工具。然而,由于离散烧瓶取样和随后的实验室质谱分析相结合的研究受到有限的空间和时间分辨率的限制。量子级联激光吸收光谱(QCLAS)可以选择性高精度地分析痕量的N2O同位素,用于原位测量。这里,我们介绍了第一次实地考察的结果,这是在瑞士中部一个集中管理的草地上进行的。利用连接到自动N2O预浓缩装置的改良光谱仪,以高时间分辨率测定了大气表层(2.2m高度)的N2O摩尔分数和同位素组成。通过对压缩空气罐的重复测量确定了分析性能,结果表明δ15Nα、δ15Nβ和δ18O的测量重复性分别为0.20、0.12和0.11‰。同步涡动协方差N2O通量测量确定了土壤中N2O的通量平均同位素特征。我们的测量结果表明:总体上,硝化反硝化作用和反硝化作用是活动期间N2O的主要来源,同位素组成的变化是由于N2O被还原为N2而不是其他途径,例如羟胺氧化。管理和灌溉事件表现为分子内15N位点偏好(SP)、δ15Nbulkandδ18O值较低,表明了硝化菌反硝化和不完全异养细菌反硝化对诱导干扰的响应最强烈。集约经营草地N2O的通量平均同位素组成SP、δ15Nbuk和δ18O分别为6.9±4.3、-17.4±6.2和27.4±3.6‰。本文提出的方法能够为其他N2O排放生态系统提供长期数据集,可用于进一步限制全球N2O库存。文献监测方案:从注入S1(锚定)开始,动态稀释至50ppm,预浓缩后环境N2O的摩尔分数。用合成空气冲洗吸收池后,注入S2(校准标准)并稀释至50ppm。为了确定已经报告的轻微浓度依赖性,再次注入S1,但注入的摩尔分数更高,为67ppm(后来称为S1h)。该摩尔分数表示高浓度表层空气预浓缩后预期的摩尔分数。随后,再次注入S1并稀释至50ppm,然后将然后将细胞充满预先浓缩的环境N2O(A)。注射S1和预浓缩环境N2O的子程序(S1+A)耗时35分钟,重复三次。为了独立测定重复性,第四个样品是预先浓缩的压缩空气(目标气体)。在实验中,使用了两个压缩空气钢瓶(C1和C2,称为目标气体)。试验开始前,在实验室测定了两个储气罐的同位素组成和N2O混合比(表1)。实验室和现场分析的N2O摩尔分数和同位素组成在其分析不确定度范围内。表1为实验期间使用的参考气体和压缩空气罐。S1和S2代表锚定和校准标准。C1和C2是用于确定系统性能的目标气体。报告精度为1σ。 N2O同位素比值分析仪器装置:四种最丰富的N2O同位素物种采用了改良的QCLAS(Aerodyne Research Inc.,Billerica MA,USA)进行量化,该系统配备了光谱发射为2203cm?1的连续波量子级联激光器(cw-QCL)、像散的Herriott多通道吸收池(204 m路径长度,AMAC-200)和一个短(5 cm)的参考路径充满N2O的吸收池,以锁定激光发射频率。实验期间,QCLAS在位于涡流协变(EC)塔以西60米处的空调拖车中运行。该拖车位置对主通量的贡献小于20%,且位于主导风向的远端。样品空气入口装置布设在EC塔入口附近(2.2m高)。样气经过一个膜泵(PM 25032022,KNF Neuberger,Switzerland)通过聚四氟乙烯管(内径4mm)吸入。在泵的上端,用渗透干燥器(MD050-72S-1,PermaPure Inc.,USA)对样气进行预干燥。继泵之后,使用减压阀将压力维持在4棒过压。通过使用一个包住Mg(ClO4)2的烧碱石棉的化学捕集器定量去除气流中的湿度和CO2。最后,样气通过烧结金属过滤器(SS-6F-MM-2,Swagelok,USA)并被引导至之前详细描述的预浓缩装置。为了将N2O混合比从环境水平增加到约50 ppm N2O,需要预浓缩大约8 L的环境空气。然后,预浓缩的N2O被引入QCLAS的真空多道吸收池中。预富集过程中的同位素分馏(δ15Nα、δ15Nβ和δ18O分别增加0.31±0.10、0.34±0.16和0.29±0.07‰)通过具有已知同位素组成的N2O的预富集来量化并随后进行校正。最近在实验室间比较活动中证明了通过QCLAS进行的N2O同位素组分分析与同位素比值质谱(IRMS)实验的兼容性。 测量和校准策略确保分析系统的高精度和可重复性,测量和校准策略采用了类似于Mohn等人(2012)提出的一种方法。它基于两种不同于N2O同位素组成的标准气体,这两种气体是由纯医用N2O(瑞士Pangas)的动态稀释产生的,包含其同位素纯度(98%)14N15N16O(美国剑桥同位素实验室)和(99.95%)14N14NO(ICON Services Inc.,USA)的规定量。随后用高纯度合成空气(99.999%,Messer-Schweiz AG)进行重量稀释,得到含有90 ppm N2O(每摩尔干空气含有10-6摩尔微量气体)的加压气体混合物。这两种标准都是根据东京理工学院(TIT、Toyoda和yoshida)先前测量的主要标准进行校准,以将δ值固定在国际同位素标准刻度上。第一个标准(S1,表1)用作国际δ标度的锚定点,并用作数据分析算法的输入数据(见数据处理)。数据采集方式及频率:数据处理基于仪器软件(TDLWintel,Aerodyne Research Inc.,Billerica,MA,USA)记录的四种主要N2O同位素物种的单独混合比和光谱仪特征。 结果:(1)δ值和N2O摩尔分数无明显漂移,表明所用测量技术的稳定性。(2)土壤中N2O摩尔分数的增加与δ值的降低有关,表明土壤释放到表层的N2O比大气背景下的N2O减少了15N。(3)相比之下,溶解有机碳浓度(DOC)对管理事件没有反应,但在活动的干燥阶段较高(p0.001)。(4)该滤波器导致SP、δ15Nbul和δ18O同位素源信号的最大和平均标准误差分别为6.8(μ=2.2)‰、4.5(μ=1.4)‰和2.2(μ=1)‰。(5)在所有被调查的δ值中,只有ManaⅡ组和ManaⅢ组之间存在显著差异。(6)对于上述平均值中包括的一些中午至中午时段,因此包括夜间N2O摩尔分数至少增加12 ppb,EC系统检测到负的N2O通量(?0.17±2.1 nmol m?2s?1;n=14)。 Aerodyne仪器特点:(1)可以区分多个N2O同位素,可以实现14N14N16O,14N15N16O,15N14N16O,14N14N18O的测量;(2)量子级联激光吸收光谱(QCLAS)可以选择性地高精度地分析痕量的N2O同位素,弥补其他仪器的不足;(3)该方法能够为其他N2O排放生态系统提供长期数据集。 咨询联系电话:010-82675321
  • 莱伯泰科助力“第十一届全国环境化学大会-环境同位素技术分会”胜利召开
    2022年7月25-29日,第十一届全国环境化学大会在哈尔滨隆重召开,本届大会以“创新环境科学,低碳环保健康”为主题,以“创新、参与、合作、前瞻”为宗旨,围绕环境化学众多领域设置了58个分会场,共计1000多个报告,对环境科学与相关科学的进展进行深入探讨。本届大会约有4000多位人员注册参会,有16位院士出席大会。通过此次会议交流,将大大提升我国环境化学及相关学科的国际影响力和为国家目标服务的能力。在第41分会场--环境同位素技术分会中,来自全国各地的环境同位素领域专家齐聚一堂,共同探讨环境同位素的研究进展及未来发展方向。作为同位素分会的创会“元老”,莱伯泰科继续助力我国的环境同位素技术发展,带来了题为《The Sercon Cryoflex:痕量气体富集和激光剥蚀技术在稳定同位素分析中的应用》的报告,详细介绍了多功能气体净化富集装置在温室气体稳定同位素分析中的整体解决方案,并对激光剥蚀-稳定同位素比质谱技术在生态环境领域的应用进行了讲解,报告受到了与会学员的高度关注。Sercon CryoFlex- HS2022 IRMS稳定同位素比质谱系统的优势1、HS2022稳定同位素比质谱采用全不锈钢和金属垫圈结构的质谱飞行管,确保高真空度,最小化本底;2、离子源采用高稳定性、长寿命镀钍灯丝;3、真正的差动泵真空系统,真空度低至1×10-9mbar,确保离子传输效率;4、离子源配备额外真空泵,保证离子化效率,减少副反应;5、卓越的灵敏度及联机精度;6、CryoFlex痕量气体富集净化系统采用一体化设计,集转化炉和冷阱与一体,无需额外管路连接,可轻松完成痕量气体的净化富集;7、CryoFlex可配置1500℃高温的裂解炉,用于CH4中H的转化;8、自动进样器可适配 6 /12/30/60 /125/ 250 mL等多种规格的样品瓶;9、CryoFlex也可作为多功能接口与多种外设(如TOC、LA)联机使用。
  • 理加联合成功参加第三届全国稳定同位素生态学研讨会及技术研修班
    2016年11月28日-12月1日,第三届全国稳定同位素生态学研讨会及技术研修班暨中国生态学会稳定同位素生态专业委员会2016年学术年会在深圳金百合大酒店成功召开。来自清华大学、北京大学、复旦大学、深圳大学、厦门大学、吉林大学、南京信息工程大学、中国农业大学、中国海洋大学、中科院系统等单位近300名生态专家学者齐聚鹏城,参与了此次盛会。 应主办方盛情邀请,北京理加联合科技有限公司(以下简称:理加联合)参加了会议,展示了我们在激光稳定同位素领域的最新技术,培训了lgr激光稳定同位素分析仪的操作技巧,为用户讲解了lgr仪器的最新应用。11月28日-11月29日,第三届全国稳定同位素生态学研讨会 大会由稳定同位素生态专业委员会秘书长喻朝庆教授主持,清华大学深圳研究生院康飞宇院长、中国生态学学会刘世荣理事长、清华大学地学中心生态学科负责人林光辉教授分别为本次会议致辞,欢迎前来参会的老师,预祝会议圆满成功。 在会上,我们向参会老师展示了LGR便携式CH4、CO2、H2O、NH3分析仪,SF-3000土壤气体通量测量系统和PS-3000便携式土壤气体通量测量系统。 更值得一提的是,理加联合执行董事李晓波博士给参会老师讲解了LGR OA-ICOS激光稳定同位素分析仪与痕量温室气体分析仪的功能、应用与实践案例。 报告结束后,与会学者对LGR激光稳定同位素分析仪表现出浓厚兴趣,并与我们的工程师在研发项目的进展与需求方面做了深切交流。与会学者表示,稳定同位素技术在现代生态学的发展中起着极为重要的作用,美国LGR公司的OA-ICOS技术能够快速、连续、精确的测量同位素,对于生态学研究而言,尤其是稳定同位素生态学研究,有重大的意义。 11月29日,理加联合工作人员精心为各位与会学者准备了晚宴,在晚宴上,李晓波博士代表理加联合全体同仁,祝贺研讨会的圆满成功,并预祝为期两天的研修班顺利举办,期盼每一位参会的学员都能够有所收获,满载而归。在晚宴过程中,我们举办了别开生面的抽奖活动,由中国科学院地理科学与资源研究温学发研究员主持,将现场气氛一次又一次推向高潮,一等奖无人机最后由中国农业大学资源与环境学院的张茹楠获得。11月30日-12月1日,第三届全国稳定同位素技术研修班培训仪器:LGR 水同位素分析仪,LGR 二氧化碳同位素分析仪,LGR 氧化亚氮同位素分析仪,LGR 便携式CH4、CO2、H2O、NH3分析仪,SF-3000土壤气体通量测量系统,PS-3000便携式土壤气体通量测量系统,LI-2100全自动真空冷凝抽提系统 为了确保每位学员都能在专业的技术工程师指导下,亲自动手操作仪器,研修班采用小班教学方式,分三组进行。 研修班开始,中国科学院地理科学与资源研究所生态系统观测与模拟重点实验室温学发研究员给各位学员讲解了“稳定同位素红外光谱(IRIS)技术测定碳水稳定同位素的校正策略”。 随后,理加联合执行董事李晓波博士给各位学员讲解了基于OA-ICOS技术的LGR激光稳定同位素分析仪的技术、应用和操作技巧。 最后,各位学员在李晓波博士、技术部经理陈滨和区域经理赵晓军的指导下,亲自动手操作仪器、学习操作技巧、观测仪器数据。 通过这次系统的培训、讲解、实践操作,各位学员更深入的了解了LGR OA-ICOS激光稳定同位素技术,更熟练的掌握了lgr仪器的操作技巧,更广泛的拓宽了LGR仪器的应用领域。 本次会议,将众多生态学者聚集到一起,共同探讨稳定同位素测量技术,加强了我国稳定同位素生态学者之间的交流,及时跟进了国际最新研究前沿,推广了稳定同位素技术在我国生态学各领域研究的应用。关于理加联合 理加联合成立于2005年,是一家专业的生态环境仪器供应商和技术服务商。主要产品涵盖稳定性同位素测定、痕量气体测量、地物光谱测量、高光谱成像测量、大气空气质量监测、水化学分析、野外便携和长期监测分析仪器。 理加联合先后为国内的权威研究机构、著名大学和政府监测部门提供了大量国际领先水平的仪器。公司先后获得了多项“211”工程,“985”工程,水利部“948”项目、农业部“学科群”项目、中国生态系统研究网络(cern)、中国森林生态系统定位研究网络 (cfern)的大额订单。这既是用户对我们的支持与信赖,也是对我们的服务能力和水平给予的充分认可。主要代理产品美国LGR公司激光痕量气体和稳定同位素分析仪美国ASD公司地物光谱仪意大利AMS集团全自动化学分析仪和流动分析仪美国CSI公司闭路涡度相关和大气廓线测量系统美国RESONON公司高光谱成像仪美国Thermofisher Scientific公司气体分析及颗粒物监测产品系列美国Agilent公司傅里叶红外光谱仪加拿大ITRES高光谱成像仪
  • 理加联合参加第十届全国同位素地质年代学与同位素地球化学学术讨论会
    2013年9月23-25日,第十届全国同位素地质年代学与同位素地球化学学术讨论会在天津赛象酒店如期召开,会议由中国地质学会同位素专业委员会、中国矿物岩石地球化学学会同位素地球化学专业委员会主办,由天津地质矿产研究所、国土资源部同位素地质重点实验室承办,北京理加联合科技有限公司作为会议的赞助方,参加了此次盛会。大会开始,天津地质矿产研究所所长金若时致欢迎词,欢迎来自各地的专家、代表参加此次会议。理加联合本次展出了LGR超便携温室气体分析仪(UGGA),小巧的外形,易于操作的界面,引得参会专家纷纷驻足理加联合展台,与理加联合李晓波博士洽谈最新的研究和项目进展。 相关链接:UGGA--它采用了LGR专利设计的离轴积分腔输出光谱(OA-ICOS)技术,消除了CRDS技术在测量期间需要连续进行光腔与激光波长匹配以改善信号强度微弱的缺点,使得分析仪不再需要进行复杂的激光准直调整、温度控制和波长监控,并且可以实时显示高分辨率激光吸收光谱。UGGA采用内置计算机(Linux OS)提供数据的连续存储和测量,具有远程控制功能,用户可以通过网络在任意地点对分析仪进行操作,也可以通过远程登录实时共享数据,并进行仪器诊断,是一款进行野外研究、泄漏检测、空气质量研究和土壤通量研究的理想仪器。如欲了解更多产品详情,请点击:http://www.lgrinc.com 理加联合--北京理加联合科技有限公司是一家专业的生态环境仪器供应商和服务商,主要产品有激光稳定性同位素分析仪、激光痕量气体分析仪、全自动化学分析仪、流动分析仪和水质水量测量设备等。是美国ASD公司和LGR公司在中国的独家代理商,是AMS集团,YSI公司在中国北方区域的独家代理商。 如欲了解详情,请点击:http://www.li-ca.com 如果您想咨询关于同位素分析仪及地物光谱仪的任何问题,请拨打010-51292601;如欲获取最新消息,请关注:理加联合官方微博:http://weibo.com/LicaUnited理加联合微信公众平台:理加联合
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制