当前位置: 仪器信息网 > 行业主题 > >

多功能微波变频化学反应系统

仪器信息网多功能微波变频化学反应系统专题为您提供2024年最新多功能微波变频化学反应系统价格报价、厂家品牌的相关信息, 包括多功能微波变频化学反应系统参数、型号等,不管是国产,还是进口品牌的多功能微波变频化学反应系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多功能微波变频化学反应系统相关的耗材配件、试剂标物,还有多功能微波变频化学反应系统相关的最新资讯、资料,以及多功能微波变频化学反应系统相关的解决方案。

多功能微波变频化学反应系统相关的论坛

  • 【资料】-微波加快化学反应中非热效应研究的新进展

    [i]自然科学进展;2006,16(3):273-279[/i][b]微波加快化学反应中非热效应研究的新进展[/b][b]黄卡玛,杨晓庆[/b]摘 要:微波已经被广泛应用于加快化学反应。然而,微波加快化学反应所产生的特殊效应,特别是非热效应仍是人们争论的焦点。文中介绍了近年来微波加快化学反应中产生的非热效应、机理分析及实验方法等方面的研究进展。关键词:微波化学反应非热效应特殊效应由于微波独特的选择性加热方式和化学反应速率对温度的敏感性,人们自然联想到降微波应用于加快化学反应以提高反应速率。近年采大量的实验已证实微波可以极大地提高一些化学反应的反应速率,使一些通常条件下不易发主的反应迅速进行,微波现已被广泛应用于从无机反应到有机反应,从医药化工到食品化工,从简单分子反应到复杂生命过程的各个化学领域。近年来,当人们用微波加快化学反应时,发现了许多有别于传统加热的特殊效应,例如:1990年Rose将反应物放在装有冰水混合物的烧杯中以确保恒温,在这样的条件下,他们获得了与相同温度下传统加热方法不一样的结果 Bogdal等在1998年研究不同的有机合成实验中观察到微波加热与传统加热有不同的反应速率 Agrawal等2004年报道了材料烧结过程中发现在腔体中电场最大处和磁场最大处产生了不同的结果 2004年Barnhardt等发现很多在低温条件下不能进行的化学反应,在同样温度条件的微波辐射下可以进进行。这些与传统加热不同的效应引起了人们的关注。2004年在武汉召开的第五届全国微波化学会议,2004年在日本高松举行的微波化学会议、2005年在美国奥兰多举行的第三届世界微波化学大会上微波对化学反应的特殊效应都有专门报道。2004年在奥地利的格拉茨还专门举行了针对微波加热化学反应特殊效应的圆桌会议。 在这些特殊效应中,有一些特殊效应可以用微波的快速加热和选择性加热来解释,如过热现象。很多实验表明在微波加热下各种溶剂的沸点都有不同程度的提高。这是因为微波加热方式造成的。传统加热中,外部靠近热源的容器壁最先热起来,而那里是最容易形成气化核,当其饱和蒸气压等于液体上方气体压强时,溶剂就沸腾了,而微波加热因为是一种选择性的内加热,在内部温度较高的地方缺乏汽化核,致使液体内部因缺乏汽化核而加热到传统沸点时仍不能沸腾。再如热点现象,也是因为微波加热方式造成的。一般说来,热点形成可能由于下面3个原因:(1)具有不同介电损耗的材料的非均匀分布 (2)非均匀分布的微波场 (3)反应物内存在不同的热传导速率。美国宾州大学的Agrawal小组已经成功的观测到了在铁氧体去结晶过程中的热点,其热梯度为2000-4000℃ /mm,该热点持续了31s。还有热失控现象,在微波加热过程中随着温度上升有些物质的介电损耗也随温度增加,这便形成了一个正反馈,导致温度迅速上升将反应物烧毁。在微波加热食品、橡胶和陶瓷中已经报道有热失控现象发生。反之,有些特殊效应不能用温度的变化解释,例如前面所提到的微波低温反应等。而这些难以用温度变化和特殊温度分布来解释的现象就是人们所说的“非热效应”。很多文献中把特殊效应与非热效应等同起来,其实非热效应和特殊效应有本质差别。特殊效应是微波所特有的效应,两者区别在于特殊效应并不排除与温度的相关性。非热效应应该属于特殊效应的一种,它是无法用温度变化来解释的特殊现象。而可以用温度变化解释的特殊效应是热效应。 是否存在非热效应?这个问题一直没有定论,并且微波加快化学反应中的非热效应起源于微波对经典的Arrhenius公式中指前因子和活化能影响的争论,而这两项也正好与化学反应系统中的墒和焙相联系,那么,问题本身就在于对微波不以热的方式对化学反应系统的嫡和烙的影响上。其中Stuerga等反对存在非热效应,而Loupy等则认为存在非热效应。[color=red]最后有全文的下载[/color]

  • 求购:连续流动化学反应系统

    求购:连续流动化学反应系统

    我司计划购置1套连续流动化学反应系统,适用于初试、中试的化学反应。目前只了解到Chemtrix BV品牌,各位大侠,有其它品牌推荐吗?

  • 高通量微波消解仪的功能特点和技能要求

    高通量微波消解仪是具备化学反应过程控制的微波加速反应系统,控制, 显示和操作系统一体化集成, 具有可靠的整机防腐设计, 节省空间, 同时仪器一机多能, 可用于分析化学的样品消解, 萃取, 蛋白水解, 浓缩, 干燥,实验化学的有机/无机合成, 以及化学工艺模拟数据条件中试等各种微波化学应用。高通量微波消解仪功能特点:仪器采用微波非脉冲连续自动变频控制,延长了仪器的使用寿命和电磁波的均匀性,腔体采用66L大容积316L不锈钢腔体材料特制而成,自锁式缓冲防爆炉门,当反应异常时,缓冲结构确保操作人员人身安全和炉门结构完整无损,炉门和腔体结合紧密,微波泄漏符合国家标准。仪器采用温、压双控系统对消解实验的压力和温度进行控制,实时显示。360°往返连续旋转,微波均匀,保证各个样品微波环境相同,提高实验结果的一致性。当罐内的压力超过设定的保护值时,微波会自动停止加热。安全防爆膜具有双保险功能,当罐内的压力超过防爆膜所能承受的压力时,防爆膜先行破裂,气体泻出,防止罐体受损和对人体的伤害。技能要求质检员熟悉仪器的各部件功能及检测原理质检员了解仪器的环境要求并实时维护要求环境技术负责人熟练掌握易损部件的维护和维修工作

  • 【资料】-关于微波化学反应机理的探讨

    【资料】-关于微波化学反应机理的探讨

    [b]关于微波化学反应机理的探讨[/b][i]苏跃增 孙晓娟 刘萍(江苏石油化工学院化工系 常州 213016)[/i] 微波在化学过程中的功效,愈来愈引起人们的关注;并已将微波用于化学中更多的领域。微波具有比激光低得多的能级,却能在相同的温度甚至更低的温度下,产生比常规方法高几倍甚至几十倍的效率[1],对这种高效率,学术界的观点是不同的,至今尚没有一个严谨的理论能很好地解释微波反应的机理。这无疑制约着微波化学的发展。1 目前对微波影响化学反应机理的认识及局限性 目前,国内外学术界一般认为,微波对化学反应的高效性来自于它对极性物质的热效应:极性分子接受微波辐射能量后,通过分子偶极高速旋转产生内热效应[2],微波对极性分子的热效应是明显的,而传统的加热方式是靠热传导和热对流过程。因而,人们在研究微波反应时,总是将注意力集中在改变微波辐射功率、辐射时间、原料配比、反应容器的大小等方面[2-4]。更重要的一点是,这些研究大都以家用微波炉改装成反应装置,其微波频率是固定不变的(2450MHz),所以也从客观上使人们忽略了微波频率、调制方式等电磁波特性与反应功效是否存在一定的关系,也就是忽略了去研究一定频率的微波对不同极性分子的影响是否相同、不同频率微波对相同极性分子的影响是否一样,忽略了电磁波的相的加载方向不同是否对反应影响不同的研究,如果答案是否定的,那么微波对化学反应的影响就不只是简单的热效应,而还应存在着选择性加热的问题(即物质分子结构与微波频率的匹配关系)、存在着某些特定的非热效应的影响,或者是对分子的活化影响。[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608211034_24246_1613333_3.jpg[/img]目前的一些实验研究,揭示了一些问题的存在:很多反应在微波条件下副反应增加 有些反应在微波条件下并不比常规加热效果更好 微波可诱导一些选择性反应的发生,如在温和的反应条件下,微波效应能使N-烷氧羰基戊内酰胺选择性优先脱N-烷氧羰基[5],再如Giguere等人[6]对分子间的Diels-Alder反应,进行了研究,在下面反应中: 表现出明显的区域选择性.在通常情况下,简单烯和不对称亲烯体的反应生成异构体混合物,其中烯和亲烯体的b-碳反应所得产物b占优势,但上面的反应式清楚地表明在微波条件下是在亲烯体的a-碳上形成新键,得到产物a,而且未观察到异构体b的生成。 再如,胡希明[7]等人利用微波合成磷酸锌:[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608211036_24247_1613333_3.jpg[/img]在沸水浴中进行常规反应,不断有氨气放出,产率很低,要提高产率,就必需不断地补充尿素;而在沸水浴条件不变,增加微波辐射的情况下,氨气逸出很少,一次按化学反应计量配比投料,产率即可高达98%。这个现象用过热理论很难解释(如果认为此频率的微波与(NH2)2CO分子结构更为匹配,相当于进行了选择性加热,也降低了反应势能,促使反应;也有人的实验证明:微波有利于(NH2)2CO的分解,促使CO2的溢出,使反应也有利于向正方向进行。这样解释,似乎更为合理);另外,酞菁铜配合物的微波合成和浓硫酸作为璜化剂酞菁铜配合物的微波磺化反应研究,获得了常规加热条件下不能制备的水溶性磺化酞菁铜配合物[8]。这也表现出了微波辐射对化学反应的非热效应。 而银董红等用微波辐射对ZnCl2-HY分子筛催化剂进行了改性研究:用一定量的无水ZnCl2与焙烧制备的HY分子筛充分研磨后,在2450MHz的微波下,辐射下15min,然后将其用于苯甲醚与乙酰氯的酰化反应,发现这种催化剂有良好的初活性[9]。 在微波条件下,天然产物的变旋反应和放射化学反应[10];非溶剂条件下快速合成氨基酸盐[11],如果只用简单热效应解释,也是不圆满的。Alloum A.B. 等人进行干法有机反应[12],将吸附在KSF上的醇和酯混合物,在160W微波照射50min后,产生75%的醛及34%混合酯。而相似条件下,用普通加热方法一点也得不到醛。如此这些用简单的热效应解释,都不能得到满意的答案。 从以上大量的实验现象来看,我们认为,目前对微波化学反应的机理认识还存在着局限性,在微波化学反应中,应该既存在着热效应,还存在着一些有特殊作用的非热效应。

  • 【资料】—微波促进有机化学反应应用研究

    [b]微波促进有机化学反应应用研究[/b]柴兰琴 王喜存摘 要: 综述了近年来微波辐射技术在有机合成中的应用. 探讨了微波辐射有机反应的作用原理和特点,着重介绍了微波促进液相有机合成和非溶剂有机合成方面的研究及其应用进展,并展望了微波促进有机化学的发展前景. [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=53022]微波促进有机化学反应应用研究[/url]

  • 两款国产知名微波消解仪大比拼之蓝方观点:上海屹尧 WX-8000 专家型密闭微波反应系统

    微波消解作为一种高效的样品前处理方法,目前广泛应用于食品、纺织、石化、生物医药、环境监测等多个领域。先前我们针对外国厂商做过一次比拼,今天我们就两款国产微波消解仪(上海新仪 MDS-10 高通量超高压密闭微波消解/萃取/合成工作站)与(上海屹尧 WX-8000 专家型密闭微波反应系统)做一PK。如果您正在使用或者之前已使用过其中一家的仪器,欢迎前来分享使用经验和心得体会。同时,还可以说说您在仪器使用中遇到的问题及解决方法;如果您是某家的仪器工程师,也欢迎您就用户提出的问题进行解答,并欢迎您对仪器的参数进行解读。【本次论剑仅作参考,请勿灌水或相互攻击!】

  • 【讨论】-微波化学的兴起和发展前景

    直接利用微波辐射加速化学反应的发现还是近十年的事。近十年来,科学家们通过大量实验研究发现,微波能大大加快许多高分子化合物的合成反应;大大加速某些化合物的分解反应;微波辅助的溶液萃取较之传统的分子蒸馏和Co 超临界萃取等可大大缩短时间并获得更多有用成分等等。当前,针对这些现象所开展的大量机理性和实验研究已形成了一门新的交叉科学--微波化学。它是目前国内外发展最快的一个交叉学科领域之一,具有十分广阔的发展前景。适应这一发展,美国的CEM微波仪器公司、意大利的MILESTONE公司、澳大利亚的CSIRO公司等等都致力于各种商用微波化学系统的研制和开发,不仅先后推出了各种自动微波消解、溶液萃取、化学反应以至高温微波马弗炉,而且还推出了可连续流动式的微波化学反应系统,使合成产品的规模达数公斤的量级,大大促进了微波化学的发展进程。 微波化学这一新兴交叉领域,按照目前理论和实践的发展趋势,今后一定会有十分诱人的发展前景。

  • 讨论光化学反应仪

    光化学反应仪,又称为光化学反应釜,多功能光化学反应器,光催化反应装置,OCRS-K型多功能光化学反应仪等OCRS多系列光催化装置是开封市宏兴科教仪器厂参考国外进口光化学反应仪的基础上和国内著名实验室实践合作共同开发的新一代光化学反应装置,主要用于研究气相、液相固相、流动体系在模拟紫外光、模拟可见光、特种模拟光照射下,是否负载TiO2光催化剂等条件下的光化学反应。同时我公司为客户提供纤维状、排列状物质特殊反应容器,解决不通物质在常规反应容器内的放置问题。OCRS-K型多功能光化学反应仪适合应用于化学合成、环境保护及生命科学等研究领域,该系统具有技术合理、结构简单、操作便捷、运行稳定、保护人体、自由组合、灵活定做等独特优势!  产品特点:  1、产品电气控制部分与保护反应暗箱分开,装配、维护、升级方便合理,整机大气美观!  2、该型号主控电源控制器光照时间数显灵活控制,适合记时作业和数据对比实验使用!  3、专业稳定的模拟光源和稳定、节省空间的体积设计,特别适合空间有限的实验室配备!  4、配套有多试管磁力搅拌器反应器功能,弥补了多试管围绕光源旋转不合理性和多试管自转机械性能差的弊端,可实现同时、部分试管充气功能,多试管磁力搅拌器反应器实际实用价值性能卓越!  5、配套有多口磁力搅拌反应容器功能,可以使反应过程具有强磁力搅拌、充气、放气、密封、测温等功能!  6、配套有固体反应装置,可以对固体物质进行光催化反应,高效聚光装置提升催化速度!  7、本型号光化学反应仪增添了非实验阶段自动遮光装置,将开启光源初灯光闪烁不稳定及阶段取样的光源遮住,使实验精度提高。  8、配套有缺水报警装置,当冷却水供给出现水压不足或者漏水严重影响到实验安全性时,发出报警声,提醒操作人及时检查水源供给状况。  9、配置有冷却水供给装置,进口压缩机无氟作业,确保光源长时间稳定运行,适合连续作业实验。该低温冷却水供给装置自身配备有静音外循环泵,提供冷却水循环增压,同时节约水源的浪费。  10、冷却水供给装置采用触摸按键控制,界面大方,无传统面板仪表外观呆板之感,防水防高温,可根据客户要求增添USB电脑接口和操作软件驱动,数字化作业感优越!  11、灵活多样的产品设计,可以根据客户的要求制定产品设计方案,弘扬科技以人为本理念!

  • 【资料】—微波化学污水处理技术原理

    [color=blue]微波化学污水处理技术原理[/color]微波对流体中物质进行选择性加热,对吸波物质有低温催化作用;加速流体中固、液分离作用;低温杀菌作用;均匀加热功能;迅速升温作用;不产生二次污染等。微波化学污水处理技术是水处理领域中一场崭新的革命,是一代具有突破性、创新性、广谱性的水处理技术。微波化学污水处理技术不同于传统的污水处理方法,它通过微波场对吸波物质的选择性加热、低温催化、快速穿透等功能,达到去污除浊杀菌的效果。经微波化学污水处理技术处理后的水,可全部再利用,从而实现污水处理工程的实用、高效、节能、环保、低运行费用。 微波化学污水处理技术的基础是“极性分子理论”。外加微波场可使这些极性分子因趋向作用而发生频率极高的振荡运动,消耗能量而发热。在微波场中物质的吸波与否和吸波强弱,与该物质的电性质有关。实验证明,在单位体积的物质内被吸收的(转化为热能损耗)微波功率Pa,与电场(磁场)强度E、物质的损耗角正切tgδ和频率f成正比关系。物质在微波场中吸收的微波能全部转化为热能,所以Pa即为单位时间内在单位体积物质中产生的能量。tgδ值与该物质的介电常数、介电损耗相关的量,而物质的介电常数、介电损耗又与该物质当时的其它多种因素相关。 根据此“极性分子理论”,微波不仅可以加快化学反应,在一定条件下也能抑制反应的进行。除此之外,微波还可以改变反应的途径。微波对化学反应的作用除了对反应加热引起反应速率改变以外,还具有电磁场对反应分子间行为的直接作用而引起的所谓“非热效应”。微波对反应的作用程度除了与反应类型有关外,还与微波的强度、频率、调制方式及环境条件有关。此外,由于化学反应是一个非平衡系统,旧的物质在不断消耗,新的物质在不断生成,各相界面可能发生随机的变化;与此同时系统的宏观电磁特性也在发生变化,而且在微波辐射下这种变化还与所用的微波紧密相关。 然而,许多有机化合物都不直接明显地吸收微波,但可以利用某种强烈吸收微波的“敏化剂”把微波能传给这些物质而诱发化学反应。利用这些“敏化剂”就可以在微波辐射下实现某些催化反应,这就是所谓微波诱导催化反应。高强度连续波微波辐射聚焦到某种“敏化剂”的表面,由于“敏化剂”表面点位与微波能的强烈相互作用,微波能将被转变成热能,从而使某些表面点位选择性的被很快加热至很高温度(例如很容易超过1400℃)。尽管反应其中的水没有明显升温,但当水中的有机污染物与受激发的表面点位接触时却可发生反应。“敏化剂”的作用不仅仅在于把热能聚焦,而且还可以借它与反应物和产物相互作用的选择性而影响反应的进程。微波化学污水处理技术就是利用微波对化学反应的这些作用,对水中的污染物通过物理及化学作用进行降解、转化,从而实现污水净化的目的。此反应机理包括以下反应过程: P: 水分子、污染物种分子 M: 添加剂 SS: 悬浮物 R: 有机物种等 大家都知道OH是一种非常活跃的物质,具有很高的活性,而在水分子的周围存在着很多的灰体,这些物质如同一座无形的屏障,束缚了OH的自由活动,从而导致水体自净功能大大下降,水体污染加剧。微波能够冲破这座无形的屏障,重新释放出OH,从而能够加速水体的净化。 微波在处理水中污染物的同时,也能杀灭水中的细菌、藻类等微生物。其作用原理是由于微波辐射的热效应,即微波辐射场照射生物体,引起生物体组织器官的加热作用而产生的生理影响和抑制、伤害作用。组成细胞的极性分子在外加微波场的作用下升温发热,从而导致生物体细胞组织温度升高。当微波功率密度较大,生物体产热过多,超过了体温调节能力,生物体的温度平衡功能失调,体温上升,于是生物体发生生理功能紊乱并发生病理变化,进而死亡。[b]来源: 环球水网[/b]

  • 【国产好仪器讨论】之南京先欧仪器制造有限公司的微波超声波组合实验仪(XO-SM)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C127750%2Ejpg&iwidth=200&iHeight=200 南京先欧仪器制造有限公司 的 微波超声波组合实验仪(XO-SM)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 仪器介绍:微波超声波组合反应系统 产品简介:XO-SM系列超声微波组合反应系统获得国家发明专利号:200712134456.2,本产品由超声波、微波技术协同作用,具有超声和微波功率可调、可定时、温度等可控功能。适用于快速、高效、可控合成药物、有机化合物、无机化合物及纳米材料,具有化学选择性高、产物结晶度高、对无机、高分子聚合、金属纳米材料产品粒径非常均匀,而且可以有效克服有机物参与下的化学反应进行长时间反应产生的炭化现象等特点。通过本技术方案,可以使反应速度比单一微波或超声波催化方法加快许多倍,同时提高反应选择性和收率,使过去许多难以发生或速度很慢的化学反应或物理过程变得容易实现和高速完成。该设备包括超声波装置,微波装置,循环冷水机、升降装置、冷凝回流装置。超声波装置包括超声探头、超声波换能器、超声波电源、超声温度控制显示器、超声时间控制显示器、超声功率控制显示器;微波装置包括磁控管、波导、微波温度控制显示器、微波时间控制显示器、微波功率控制显示器;循环冷水机装置包括温度控制显示器(最低工作温度(-80℃)、时间显示控制器,循环泵;冷凝装置包括回流式冷凝器、三角瓶、玻璃导管、密封塞及循环保温材料。 南京先欧仪器制造有限公司【XO系列新款超声波微波组合反应系统】 型号 超声功率 超声频率 微波功率 微波频率 处理量 超声探头直径(随机) XO-SM50 0~900W 25KHZ 0~700W 2450MHZ 0.5~500ml Φ6 XO-SM100 0~1000W 25KHZ 0~1000W 2450MHZ 50~800ml Φ10 XO-SM200 0~1200W 25KHZ 0~1200W 2450MHZ 100~1500ml Φ20 XO-SM300 0~1800W 25KHZ 0~1800W 2450MHZ 300~3000ml Φ30 XO-SM400 0~2500W 25KHZ 0~3000W 2450MHZ 400~4000ml Φ40 XO-SM500 0~3500W 25KHZ 0~5000W 2450MHZ 1~12L Φ30(配两支发生器) 系统特点: ●系列超声波微波组合反映系统具有微波、超声波、微波超声波单独控制和协同功能,系统具有可灵活组合特....【了解更多此仪器设备的信息】

  • 【资料】-从工程角度探讨微波化学实验设备的发展

    目录 0 引言 1 微波化学需要建立系统的理论基础 2 微波化学应从电磁场的全部参数来考察应用效果 3 用家用微波炉作微波化学实验的局限性 4 微波化学专用微波炉 5 实验室微波化学试验系统 6 微波功率工程应为微波化学的产业化提前作一些考虑 0 引言 1986年加拿大Gedye教授发表了第一篇微波催化化学合成的论文(这个实验是在家用微波炉内做成的),把微波电磁场作为加速化学反应的手段,引起了世人广泛的关注。激发了化学工作者利用家用微波炉这个易得的实验条件,在化学和化工的广泛领域做了许多开创性的试验,并获得了令人振奋的成果。1992年9月在荷兰召开了第一次世界微波化学会议,正式采用“微波化学”这个术语,概括了这个科学研究的方向。化学工业界有识之士认为,发现了催化剂是化学工业快速发展的第一个里程碑,可以期待着微波电磁场辅助催化化学反应的发展,有可能成为化学工业快速发展的第二个里程碑。 微波技术工作者以十分兴奋的心情阅读了大量的微波化学的试验结果,认识到这个领域正是微波功率工程研究应该辛勤耕耘的一块土地。微波功率工程应该为微波化学的发展做好自己的工作,这是自己光荣的责任。就微波功率工程应用的整体工作来说,是一个“服务性行业”,设计考察的首要条件是服从应用学科的科学规律,微波设计应以参变的方法使微波理论的规律和应用学科的规律找到一个会合点,这是项目成功的首要条件。因此,了解应用学科的需要,按需要调整自己的研究方向,才是切合实际的。 本文的目的,是从微波工程的角度,提出自己的看法。也就是说,我们从微波技术的角度所考虑的问题,不知是否和化学试验及化学工程的具体实践的要求相符合?请化学各行专家指教。 1 微波化学需要建立系统的理论基础 从我们目前看到的微波化学的论文来看,实验的内容是相当丰富的。但缺少化学实验和电磁场理论相结合的方法,分析实验成果的系统理论。〔应当说,本人视野还有局限性〕这种系统理论,正是微波技术工作的出发点。 现在是否可以将众多实验结果的“点”演绎成为规律,而这些规律和电磁场的参数具有内在关系。 我们认为,从微波理论的角度,可以引出的理论出发点如下: 化学反应催化剂的研究已经有一百年的历史,对加快化学反应速率起着决定的作用。从电磁场理论的角度来观察,电磁场并非替代催化剂或分子筛的功能,是一种辅助功能,并不完全是取而代之,而是使原有催化剂的功能发挥得更好,发展其潜力,延长其寿命。实际上电磁场的存在改善了固体的表面效应,这些表面效应正是催化剂催化化学反应的用武之地。所以,从理论上可以预期,一些原先不可能作为催化剂的物质,在电磁场存在的前提下可以具有催化功能。理论分析是很清楚的,固体表面电磁场的存在:(1)可提高分子碰撞的概率;(2)添加分子的碰撞能量(3)改变分子能量的类型(4)改变分子碰撞的方位(5)可能延长反应分子的碰撞时间。从微波加热的特点来考虑,电磁场加热具有选择性加热的特点,催化剂的电介常数大,在催化剂颗粒或粉末的邻近,呈现着陡峻的温度梯度;所以反应分子在催化剂的邻近区域接收“强活化”的条件后,迅速离开高温区,可防止反应的逆转。传统的由表及里的传热加热方法,是不可能产生微区的高温条件的,也不可能建立不平衡的陡峻的温度梯度。 大块的金属是不可能进行微波加热的,但金属催化剂粉末或颗粒,可以进行微波加热。 从微波气体放电的理论来分析,在催化剂微粒的附近可能出现低温等离子体鞘层或电晕。 在大气压微波加热的实验中,我们常常会发生初始状态气体放电现象。从微波加热应用器设计的角度来考虑,这些气体放电现象是不会出现的;应用器不可能出现如此高的电击穿场强。这是由于加热材料的尖端效应,或高电介质常数边界切向电场连续效应(高电介常数物料邻近的切向电场远高于远区)这些效应,可以在催化剂邻近构成电晕或辉光放电,在此条件下为获得离子、新生态原子、激发态粒子、自由基等,提供了有利条件。 这些电晕或辉光放电的鞘层,可以处于星星点点的分布状态,不构成整体的等离子体现象。这些星星点点的等离子体鞘层的微区,正是化学反应取得强活化的条件。 从这里也可以看出微波催化化学反应和微波等离子体化学两者是具有内在联系的。 微波化学的内容是多学科交叉的内容,首先应当是化学反应热力学、化学反应动力学和电磁场理论的充分渗透。在这个结合点上给出微波化学的理论出发点,给工程工作指出一个方向。微波化学的发展还需要其他学科的配合,特别是材料科学的配合。也就是说微波化学的发展,是需要多个学科联合攻关的系统工程。

  • 变频是微波炉以后的发展方向么

    今天在商场了解到目前市场上的微波炉以美的和松下的二个品牌推出变频微波炉。大家认为变频是微波炉以后的发展方向么?欢迎讨论!谢谢!

  • 【资料】-微波有机合成及反应器研究新进展

    [u][i]精细化工中间体:2004,34(2):1-4[/i][/u][b]微波有机合成及反应器研究新进展[/b][i]刘福萍,陆明[/i]摘 要:综述了近年来微波辐射技术在有机合成应用中的新进展。针对微波有机合成反应技术及专用微波反应器作了重点介绍。关键词:微波化学;有机反应;微波反应器1  前言 微波是频率大约在 300 MHz~300 GHz,即波长在 1000~1 mm 范围内的电磁波,它位于电磁波谱的红外光波和无线电波之间。在 20 世纪 60 年代,N. H. Williams就曾经报道了用微波加速某些化学反应的研究结果,但在化学合成中应用微波技术则直到 20 世纪 80 年代初期才开始,当时人们并未预料到它对化学研究领域的重大作用。微波应用于有机合成的研究则始于 1986 年, Gedye 和 Smith等通过比较常规条件与微波辐射条件下进行酯化、水解、氧化等反应,发现在微波辐射下,反应得到了不同程度的加快,而且有的反应速度被加快了几百倍。至今,微波促进有机合成反应已经越来越被化学界人士所看好,而且形成了一门倍受关注的领域 —MORE化学(Microwave-Induced Organic Reaction Enhancement Chemistry) 。将微波用于有机合成的研究涉及酯化、Diels -Alder、重排、Knoevenagel、Perkin、 Witting、 Reformatsky、 Dveckman、羧醛缩合、开环、烷基化、水解、烯烃加成、消除、取代、自由基、立体选择性、成环、环反转、酯交换、酯胺化、催化氢化、脱羧等反应及糖类化合物、有机金属、放射性药剂等的合成反应。2  微波促进有机反应机理 微波广泛应用于雷达和电讯传输产品中,为了防止微波功率对无线电通讯、广播、电视和雷达造成干扰,国际上规定工业、科学研究、医学及家用微波炉等民用微波频率为 915 ±15 MHz 和 2450 ±50MHz。微波技术应用于有机合成反应,反应速度较常规方法相比有的能加快数倍、数十倍,有些反应能加速数百倍甚至数千倍。为什么微波有如此大的效果呢 ? 目前关于微波加速有机反应的机理,化学界存在着两种观点。一种观点认为,虽然微波是一种内加热,具有加热速度快、加热均匀无温度梯度、无滞后效应等特点,但微波应用化学反应仅仅是一种加热方式,与传统加热反应并无区别。他们认为微波应用于化学反应的频率 2450 MHz 属于非电离辐射,在与分子的化学键共振时不可能引起化学键断裂,也不能使分子激发到更高的转动或振动能级。微波对化学反应的加速主要归结为对极性有机物的选择加热,既微波的致热效应。1990 年,Edwin G. E.Jahngen 等研究了三磷酸腺甙 (ATP) 在微波作用下的水解反应,发现微波作用下反应速度是常规加热方式下的25 倍,但在两种加热方式下,反应动力学并没有明显的改变。1992 年, Kevin D. Raner 等通过研究微波对 2,4,6-三甲基苯甲酸与 2-丙醇的酯化反应速度的影响,也得出结果表明最终酯化产率仅与温度因素有关,而与加热方式无关。

  • 【资料】-微波有机合成反应的新进展

    [b]微波有机合成反应的新进展[/b][i]王静,姜凤超[/i]摘 要:综述了近年来微波辐射技术在有机合成应用中的新进展。 着重介绍了微波有机合成反应技术及其在重要有机合成反应中的应用。关键词:微波化学,有机反应,微波辐射  微波最早被人们认识并应用在军事通讯领域,本世纪 40 年代后期逐渐应用于工业、农业、医疗、科学研究等各种领域。 在有机合成应用中的研究始于1986 年,当年加拿大化学家 Gedye 等发现微波辐射下的 4-氰基苯氧离子与氯苄的 SN2 亲核取代反应可以使反应速率提高 1 240 倍,并且产率也有不同程度的提高。 这一发现得到人们的高度重视并引起化学界的极大兴趣。 自此,在短短的十几年里,微波辐射促进有机化学反应的研究已成为有机化学领域中的一个热点,并逐步形成了一门引人注目的全新领域——MORE 化 学 (Microwave Induced Organic Reaction Enhancement Chemistry) 。 我国近年来关于MORE化学的研究也越来越多,发表的综述文章已有多篇,现仅就最近的进展作一综述。  1. 基本原理 微波(microwave, MW)即指波长从 1 mm~1 m,频率从 300 MHz~300 GHz 的超高频电磁波,广泛应用于雷达和电子通讯中。 为避免相互干扰,国际上规定工业、科学研究、医学及家用等民用微波频率一般为 900( ±15) MHz 和 2450( ±50) MHz。 微波加速有机反应的原理,传统的观点认为是对极性有机物的选择性加热,是微波的致热效应。 极性分子由于分子内电荷分布不平衡,在微波场中能迅速吸收电磁波的能量,通过分子偶极作用以每秒 4. 9 ×109 次的超高速振动,提高了分子的平均能量,使反应温度与速度急剧提高。 但其在非极性溶剂(如甲苯、正己烷、乙醚、四氯化碳等) 中吸收 MWI 能量后,通过分子碰撞而转移到非极性分子上,使加热速率大为降低,所以微波不能使这类反应的温度得以显著提高。实际上微波对化学反应的作用是复杂的,除了具有热效应以外,还具有因对反应分子间行为的作用而引起的所谓“非热效应”,已有文献报道此观点。2. 微波有机合成反应技术 与一般的有机反应不同,微波反应需要特定的反应技术并在微波炉中进行。 微波有机合成反应技术一般分为密闭合成反应技术和常压合成反应技术等。随着对微波反应的不断深入研究,微波连续合成反应新技术逐渐形成并得到发展。[color=red]最后有全文下载[/color]

  • 【资料】-微波化学与技术

    [b]微波化学与技术[/b]——[i]节选自《环境微波化学技术》[/i]1.3微波化学与技术微波化学与技术是一门新兴的交叉性学科。它是在人们对微波场中物质的特性及其相互作用的深入研究基础上,利用现代微波技术来研究物质在微波场作用下的物理和化学行为的一门科学。微彼场可以被用来直接作用于化学体系从而促进或改变各类化学反应 微波场也可先被用来诱导产生等离子体,进而在各种化学反应中加以利用。 1.3.1 微波化学与技术的发展历程从历史上看,微波化学学科的产生源于徽波等离子体化学的研究。最早在化学中利用微波等离子体的报道始于1952年,当时Broida等人采用形成微波等离子体的办法以发射光谱法测定了氢一氘混合气休中氘同位素的含量,后来他们又将这一技术用于氮的稳定同位素的分析,从而开创了微波等离子体原子发射光谱分析的新领域。微波等离子体用于合成化学与材料科学则是1960年以后的事,其中最成功的实例包括金刚石、多晶硅、氮化硼等超硬材料,有机导电膜,蓝色激光材料c-GaN,单重激发态氧O2的合成 高分子材料的表面修饰和微电子材料的加工等,其中不少现已形成了产业。1970年。Harwell使用微波装置成功地处理了核废料。1974年Hesek等利用微波炉进行了样品烘干 次年,有人用它作生物样品的微波消解并取得了很大成功,现在这一技术己经商品化并作为标准方法被广泛用于分析样品的预处理。微彼技术用于有机合成化学始于1986年,Gedye等首先发表了用微波炉来进行化学合成的“烹饪实验”文章,以4-氯代苯基氧钠和苄基氯反应来制备4-氯代苯基苄基醚。传统的方法是将反应物在甲醇中回流12h,产率为65% 而用微波炉加热方法,置反应物和溶剂于密闭的聚四氟乙烯容器中,在560W时,仅35s使能得到相同产率的化合物,其反应速率可以快1 000倍以上。这一在微波沪中进行的有机反应的成功,导致在其后的短短四五年内,辐射化学领域中又增添了一门引人注日的全新课题——MORE化学( Micro-wave-Induced Organic Reaction Enhancement Chemistry)。此后微波技术在有机化合物的几十类合成反应中也都取得了很大成功。微波技术在无机固相反应中的应用是近年来迅速发展的一个新领域,为制备新型的功能材料与催化剂提供厂方便而快速的途径和方法 微波技术已广泛应用于陶瓷材料(包括超导材科)的烧结、同体快离子导体、超细纳米粉体材料、沸石分子筛的合成等。在催化领域,由于Al2O3,SiO2等无机载体不吸收微波.微波可直接传送到负载于载体表面的催化剂上并使吸附其上的羧基、水、有机物分子激话,从而加速化学反应的进行。已研究过的催化反应有甲烷合成高级烃类、光合作用的模拟和酸气污染物的去除等。在分析化学、提取化学方面,用微波进行了样品溶解。在蛋白质水解方面,采用微波技术建立了一种快速、高效的新方法。在大环、超分子、高分子化学方面,开展了采用微波法制备一些聚合物的研究工作。此外。微波技术在采油、炼油、冶金、环境污染物治理等方面也都取得了很多进展。可以看出,微波技术在化学中的应用己几乎遍及化学学科的每一个分支领域,微波化学实际上已成为化学学科中一个十分活跃而富有创新成果的新兴分支学科。微波化学是指利用微波辐射来对小分子极性物质产生有效作用,从而加速反应、改变反应机理或启通新的反应通道的交叉学科。一般来说,微波技术目前只用于热反应,而对于光化学反应等的催化作用鲜见报道。

  • 【求助】微波反应器和微波消解炉是不是一回事?

    我相买个微波反应器做化学反应,可以搅拌、控温、气体保护的哪种,发现很多都是微波消解的。个人感觉消解和微波反应是不同的,好像不能通用,不是很明白,请教下各位专家。另外,大家可以推荐些好的微波反应器不?

  • 多功能食品安全快速筛检系统准确性如何

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]多功能食品安全快速筛检系统准确性如何[/color][/font]多功能食品安全快速筛检系统是一种集成了多种检测技术和功能的设备,旨在快速、准确地检测食品中的有害物质,如重金属、农药残留、添加剂超标以及微生物污染等。其准确性主要取决于多个因素,包括仪器的设计、采用的检测技术、操作人员的技能以及样本的代表性等。首先,该系统的准确性与其使用的检测技术密切相关。多功能食品安全快速筛检系统通常采用了先进的光谱分析、色谱分析、电化学分析、生物传感等技术,这些技术具有较高的灵敏度和特异性,可以准确地检测食品中的各种有害物质。其次,操作人员的技能和经验也对系统的准确性产生重要影响。操作人员需要熟悉仪器的使用方法和操作流程,正确地进行样本处理、试剂添加和结果分析,以确保检测结果的准确性。此外,样本的代表性也是影响系统准确性的关键因素。样本的采集和处理需要符合相关标准和规范,确保样本具有代表性,能够真实反映食品的安全状况。总的来说,多功能食品安全快速筛检系统在设计和功能上具有高度的准确性和可靠性,能够满足食品安全检测的需求。然而,在实际应用中,还需要注意操作人员的技能和经验以及样本的代表性等因素,以确保检测结果的准确性。同时,定期进行仪器的校准和维护也是保障系统准确性的重要措施。请注意,不同品牌和型号的多功能食品安全快速筛检系统可能存在差异,因此在选择和使用时需要仔细评估其性能特点和适用范围。此外,对于某些特定的食品安全问题,可能还需要结合其他检测方法和技术进行综合分析和判断。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/03/202403211037037515_7524_6098850_3.jpg!w690x690.jpg[/img][/size]

  • 【原创】看了一则微波消解的采购公告

    各潜在政府采购供应商: 学院为了满足教学科研任务的需要,将采购“高通量密闭微波消解系统(微波消解萃取仪)(进口)”一台。该院关于高通量密闭微波消解系统(微波消解萃取仪)设备进行了详细的调研,对国际上现有的几家主要生产厂家都进行了考察,包括先后考察了上海新仪微波化学科技有限公司、广州万程微波设备有限公司和美国CEM公司。国产仪器存在精确度、耐温、耐压差、不具有垂直防爆功、同批次处理样品量小等不足。由于微波消解仪是高温高压操作的特殊设备,因此该院对安全性和对化学反应的控制能力要求如下:1)消解罐压力外罐材质为防爆纤维材料,耐温≥600℃,耐压≥10000psig,且具有垂直防爆功能;2)内罐耐温≥300℃;对于控制化学反应的能力,该院要求采用多目标控制,即必须控制每个样品罐的温度和压力安全,控温范围0~300℃,控温精度1℃。。。。。。。看来某些国产品牌并没有宣传的那么好啊。。。。。。

  • 【资料】-家用微波炉用作微波化学试验的局限性

    家用微波炉集微波源和加热器(腔体)于一身,其结构紧凑价格低廉,作为初级的化学试验仪器还是有一定的作用,并且取得了许多成果。但家用微波炉用于化学试验有许多局限性:A.功率无法连续可调;B.非满功率输出的情况下是间歇工作。例如800W的微波炉要输出50℅的功率(400W),微波炉是工作(输出800W)20秒,停止(输出0W)20秒。其平均功率是400W,这种间歇工作方式对于加热水或食品是可行的,但是对于化学反应有时很难得到正确的试验结果;C.加热均匀性欠佳;D.无法知道具体的工作状态,缺少入射功率和反射功率指示。为此,须研制适合微波化学试验的专用微波炉。

  • 【资料】-微波技术在食品分析中的应用与进展

    [i]中国卫生检验杂志:2006,16(1):120-122[/i][b]微波技术在食品分析中的应用与进展[/b][i]李文最[/i]随着科学技术的迅速发展,食品成份测定自动化程度越来越高,分析速度也越来越快,如利用等离子体发射光谱仪可在几分钟内完成十几种以至几十种元素的同时测定。但是,食品样品的预处理却往往需要几个乃至几十个小时的手工操作,显得极不协调。自 20世纪 70年代以来,国内、外逐渐发展了微波技术,利用它开展各种地质、冶金、生物、食品和化妆品等样品的消解,大大地缩短了样品预处理时间,较好地满足了分析测试的要求。本文阐述了微波消解技术的现状与发展概况以及在食品分析中的应用情况。1 微波消解技术的现状1.1 常压微波消解技术 最初的微波辅助酸消解法是利用家用微波炉在常压下以敞口容器进行的。一般在炉腔内喷涂防腐蚀涂料,并在操作过程中不断地将酸雾排出,微波功率、反应时间等都较易监测和控制。1975年,Abu-Samara 等首先用普通微波炉,成功地用 HNO3 -HClO4消解了果树叶、小牛肝等标准物质。随后有人利用常压微波消解技术处理了箭鱼、金枪鱼、牡蛎、养殖虾 、菠菜、西红柿叶 小麦粉、米粉 等各种样品。徐立强 、王大宁 等对家用微波炉进行改装,发展了一种微波技术和传统电热板加热技术相结合的溶样方法,将样品先在敞口容器中用混酸于微波炉中消解,然后于电热板上作进一步处理或将样品蒸发至近干,对蜂蜜、奶粉、猪肝、小麦粉等样品的消解,取得了满意的结果。常压微波消解法具有消解样品容量大,安全性能好等优点,但消解时间约需 20~30 min,对一些高油脂类样品较难消解完全 所用的消解容器大都为开放式容器,易受污染或挥发损失,且温度也不能超过酸的沸点。1.2 增压微波消解技术 1983年,Matther 等提出了密闭容器微波溶样方法,它具有微波加热和高压消解罐技术两者的优点,但消解罐所用材料必须是能够透过微波的。由于反应罐密封,罐内温度迅速升高,使罐内压力骤然上升,提高了试液的沸点,一些在常压下不能或很难用酸消解的试样就可能很快地被消解。溶样器一般有密闭的聚丙烯罐、聚碳酸酯瓶和聚四氟乙烯杯等。美国 CEM公司与其国家标准局 (NBS)于 20世纪 80年代初期便有了微波溶样仪器的商品,安全性能较高,其有控温、控压、定时功能,现在已发展到用计算机来控制。我国 20世纪 90年代已有商品化仪器,但只有定时控压功能。现在在文献上见到较多的有美国 CEM公司的 MDS型,我国原上海新科公司 MK型和北京美诚 WR型的仪器等。 国外的微波溶样装置,一般在密闭消解罐上附加了温度和压力传感器,将反应中容器内温度、压力的变化情况及时传输给监控系统。通过实验可确定一些常用酸单独存在或以不同比例混合使用分解样品时与微波基本参数之间关系,这些资料为设计一些未知样品的安全、准确的最佳溶样方法奠定了基础。美国 CEM公司的最新产品 MARS型智能控制微波消解系统,利用计算机监控系统来控制自动变频功率、精确温压过程控制等手段来确保溶样过程的安全性。我国原上海新科微波溶样研究所利用光纤压力自控系统来监测和控制压力、采取三道安全措施来保证溶样过程的安全性。

  • 玻璃防爆反应釜功能及特点

    [font=微软雅黑]玻璃防爆反应釜既可以提供做高温反应,也可以做低温反应,还可以抽成真空,从而做真空反应。在玻璃防爆反应釜中做不同介质的反应,应首先查清介质对主体材料有无腐蚀。对瞬间反应剧烈,产生大量气体或高温易燃易爆的化学反应,以及高压、高温或介质中含氯离子、氟离子等对不锈钢产生腐蚀严重的反应须特殊定货。除釜体和夹套为透明玻璃外,其它均为不锈钢或其它金属材料。[/font][font=微软雅黑]玻璃防爆反应釜功能及特点:[/font][font=微软雅黑]1反应釜釜体采用高硼硅玻璃,有优良的物理化学性能,瓶体透明、可见反应液料。[/font][font=微软雅黑]2主体采用不锈钢框架+铝合金材质,美观坚固耐腐蚀。[/font][font=微软雅黑]3不锈钢搅拌棒外包四氟,适用于多种溶剂搅拌,无污染耐腐蚀。[/font][font=微软雅黑]4防爆电机搅拌,运转平稳、力矩大、无火花、寿命长。[/font][font=微软雅黑]5聚四氟乙烯组件+机械密封、陶瓷轴承,专有技术、可保证良好的真空度且使用寿命长。[/font][font=微软雅黑]6本产品防爆变频调速器为转速、温度双数显(可显示釜内温度)。转速可通过调速旋扭设定,直观方便;另配有釜内温度测温探头(PT100)。[/font][font=微软雅黑]7整体结构紧凑合理,设有带刹车万向轮,可整体移动,操作方便。[/font][font=微软雅黑]8无死角玻璃斜放料阀门,可有效减少搅拌死角,放料方便。[/font][font=微软雅黑]9本产品设有真空显示功能,对高沸点物料可以选择合适的工作真空度。[/font]

  • 【资料】-微波功率控制方式,脉冲微波和非脉冲微波的概念

    化学反应过程一旦超越某一临界点,可能会迅速释放出大量气体以致超过消解各罐的压力上限(110bar)而难以驾御。因此需随时谨慎监视反应过程,并及时改变微波功率输出加以调控。一般根据控制能力可分低、中、高三档,控制能力不同,程序输入也不一样。1)开关式脉冲控制:传统的办法是采用固定功率输出,但间歇关闭微波以改变输出功率总量的方式,其特征是开关式脉冲微波。如:在10秒钟内关闭微波5次间隔1秒,功率为50%。开关式控制是第一代控制技术。研究人员发现这种控制方式不仅不易控制,还可能会直接影响到反应结果,且意外都是发生在开关方式下。根据功率发射方式把微波定义为脉冲和非脉冲,即间断发射为脉冲微波,而不间断发射为非脉冲微波。 研究表明,脉冲微波在开关瞬间会产生高阈值电磁脉冲,对消解含有机脂类和醇类的样品,其与硝酸的反应产物可能会刺激发生临界爆炸,其反应机理与炸药引爆相似。在萃取反应中也宜采用非脉冲技术,因为高阈值脉冲微波也极易破坏所萃取的有机分子形态,不能保证分子有机形态的完整,从而影响结果的一致性和可靠性。2)自动功率变频控制和非脉冲技术:这是第二代控制技术,特征是功率自动变化,输出均为非脉冲微波。特点是无须关闭微波发射,在连续微波发射条件下,根据温压反馈信号,自动线性改变微波功率输出,调整反应状态。不仅提高了反应速率,而且非常安全。由于闭环响应是基于精确可靠的在线罐内温压传感装置,从而提高了整机技术,当然成本也相应提高。非脉冲微波是在连续微波发射的条件下,自动线性调整微波的功率输出,其特征是无论功率如何变化,微波仍能持续输出,无脉冲刺激。实验结果表明,这种方式更易于控制微波辅助反应,提高消解反应的稳定性和安全性。且有机萃取反应回收率和稳定性也得到改善。大功率微波仪器最好采用非脉冲,因为其阈值太高,有潜在的危险。因此,非脉冲微波化学仪器的发展对反应动力学的研究十分有利,它实际上代表了微波技术发展的一个新方向。

  • 【资料】-微波消解溶样技术在冶金化学分析中的应用

    [b]微波消解溶样技术在冶金化学分析中的应用[/b][i]李洁,张穗忠,宋卫良[/i][u]钢铁研究 2006 年第34卷,第2期[/u]摘 要:微波溶样技术是世界上最先进的样品预处理技术之一。介绍了微波消解溶样技术的基本原理、优点及其在冶金化学分析中的应用。关键词:微波消解溶样技术 样品预处理 冶金化学分析 应用近年,微波消解技术取得了长足的进步。实验室微波样品处理系统具有能几十至几百倍地加快化学反应速度,成为现在最重要的实验室设备。微波消解溶样技术作为一种新型的试样预处理技术,已经成为无机元素分析中试样预处理的理想方法之一。在化工、塑料、催化剂、能源、合金、矿渣、难溶陶瓷、地矿、药品、生物等领域的分析检测得到了广泛的应用。1  微波消解溶样技术的基本原理1. 1  微波的特性微波是一种电磁波,是频率在300 MHz~300 GHz 的电磁波。为了防止民用微波功率对无线电通讯、广播、电视和雷达等造成干扰,国际上规定工业、科学研究、医学及家用等民用微波的频率为(2 450 土50) MHz 。因此,微波消解仪器所使用的频率基本上都是2 450 MHz。(1) 金属材料不吸收微波,只能反射微波。如铜、铁、铝等。用金属(不锈钢板) 作微波炉的炉膛,来回反射作用在加热物质上。(2) 绝缘体可以透过微波,它几乎不吸收微波的能量。如玻璃、陶瓷、塑料(聚乙烯、聚苯乙烯) 、聚四氟乙烯、石英、纸张等,它们对微波是透明的,微波可以穿透它们向前传播。这些物质都不会吸收微波的能量,或吸收微波极少。微波密闭消解溶样罐用的材料是聚四氟乙烯、工程塑料等。(3) 极性分子的物质会吸收微波,如: 水、酸等。它们的分子具有永久偶极矩(即分子的正负电荷的中心不重合) 。极性分子在微波场中随着微波的频率而快速变换取向,来回转动,使分子间相互碰撞摩擦,吸收了微波的能量而使温度升高。

  • 【国产好仪器讨论】之APL奥普乐仪器有限公司的APL奥普乐MD20H型高通量微波消解系统(MD20H型)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C90288%2Ejpg&iwidth=200&iHeight=200 APL奥普乐仪器有限公司 的 APL奥普乐MD20H型高通量微波消解系统(MD20H型)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: APL奥普乐为最为知名的微波化学仪供应商,在2012年隆重推出基于第六代MD20H型高通量智能微波消解仪,其金刚之躯采用加厚增强的特种不锈钢微波谐振腔腔体,并扩大炉腔的容积至66L,可以容纳多种消解罐和处理1-20个样品;同时配置全罐红外测温和全罐压力监控功能,非脉冲连续微波输出,双磁控管排列设计,高频闭环反馈控制等手段,可精确控制微波化学反应进程。主要特点:1.智能微波化学工作平台,可配合不同型号消解罐实现不同应用功能,配20位高通量转子和40位消解罐2. 具有金刚之躯、采用独创设计加厚增强的特种不锈钢微波谐振腔腔体,,容积达66L,内腔喷涂多达5层PFA(改性聚四氟乙烯),防止强酸的长期性腐蚀 3. 双磁控管错位和谐振排列设计,保证炉腔内微波均匀4.温度、压力双重测控;全罐红外测温和全罐压力监控确保实验均一性 红外测温监控每个消解罐温度,无需任何连接线,操作方便5. 液晶显示屏实时控制和显示温度、升温时间、恒温时间、功率及温度、时间曲线,一目了然;内置应用方法。用户调用即可 6.可应用于超高压密闭微波消解、高通量密闭微波消解、密闭有机溶剂萃取,密闭有机合成等对反应过程有高精度控制的微波实验。7.可外接PC,实现更多功能(选配)。 8.可以通过无线WIFI连接IPAD或者手机观察炉腔内消解罐的运行情况(选配) 【了解更多此仪器设备的信息】

  • 【国产好仪器讨论】之上海新仪微波化学科技有限公司的密闭式高通量微波消解/萃取工作站(MDS-15)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C196929%2Ejpg&iwidth=200&iHeight=200 上海新仪微波化学科技有限公司 的 密闭式高通量微波消解/萃取工作站(MDS-15)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: MDS-15密闭高通量多功能微波样品前处理工作站功能全面一机多用操作安全(微波消解领域的百变金刚)l首创石英全透明高压消解罐,反应过程清晰可见;l首创无线远程可视监控体系,配合石英罐体,消解合成一目了然,并可全程照相、摄像;l500ml超大容量消解罐,满足10克级大容量样品消解的特殊需求;l微波干燥样品配件,实现样品消解前的干燥处理;l独家专利多功能泄压块Safety Bolt设计,无需防爆膜等耗材;l宇航纤维外罐XtraFiber等最高等级安全防护措施;l65L超大炉腔+双磁控管结构,高能均匀微波场设计;l20年行业经验,无一例人生伤害事故;l四次荣获中国分析测试协会BCEIA金奖,用户数量全国领先;大多数业界专家推荐的微波消解品牌,唯一4次荣获中国分析测试协会BCEIA金奖,2014年《国产好仪器》上榜品牌。MDS-15密闭式高通量多功能微波样品前处理工作站结合了新仪公司20多年经验与行业最新技术全力打造而成。公司研发的多种功能性罐体,能满足实验者各种需求,是一款广泛适用于常规实验室至极端条件下特殊应用的微波样品前处理工作站。MDS-15集成了业界最新技术和高端材料,产品特色鲜明。操作安全:宇航纤维外罐、安全泄压块(专利)装置等最高级别安全防护措施;便捷高效:多种功能性罐体可选,高能均匀微波场快速消解,15分钟极速风冷;经久耐用:耐腐蚀超长寿命工业级炉腔等高品质材料的使用等。MDS-15面向客户需求及样品前处理发展方向,满足现代实验室建设需求,是您明智的选择。满足您多种样品前处理需求?常规消解:MDS-15结合16位高通量GP-100消解罐,能进行260℃/ 6Mpa以内的长时间消解工作,满足绝大部分消解需求;公司研发的8位QZ-100石英消解罐,更将消解能力提升至270℃/ 6Mpa,即使最苛刻的材料也可成功消解。配合石英消解罐的远程WiFi视频监控系统让消解过程一目了然,全程可照相和摄像。?超高取样量消解:8位LV-500消解罐组合,一次可有8个500ml超大罐体同时消解,将样品取样量提升至无可比拟的10克数量级。全罐磁力搅拌,样品消解更快速彻底。创新的安全泄压片(Safety Bolt)专利设计,能保证安全定向定量泻压与完全消解相结合。各类高取样量消解需求迎刃而解。?样品干燥:F-DRY干燥器附件支持快速均匀干燥,样品干燥速度只需传统方法的1/4,并能防止....【了解更多此仪器设备的信息】

  • 【讨论】- 微波的热效应和非热效应

    微波能促进化学反应的机理,大都从微波的热效应和非热效应来解释。热效应仅指微波能引起极性分子震动,从而高效率的加热,促进化学反应的进行;非热效应是有些研究者认为,仅仅从高效率加热来解释微波能促进化学反应不合适,还有非加热方式的因素在起作用。 如果有非热效应存在,那么微波加热食品时,会不会让食品产生化学变化,生成一些对人体有害的物质? 大家是怎样认为的呢?

  • 【讨论】什么叫光化学反应?

    【讨论】什么叫光化学反应?

    光化学过程是地球上最普遍、量重要的过程之一,绿色植物的光合作用,动物的视觉,涂料与高分子材料的光致变性,以及照相、光刻、有机化学反应的光催化等,无不与光化学过程有关。近年来得到广泛重视的同位素与相似元素的光致分离、光控功能体系的合成与应用等,更体现了光化学是一个极活跃的领域。但从理论与实验技术方面来看,在化学各领域中,光化学还很不成熟。   光化学反应与一般热化学反应相比有许多不同之处,主要表现在:加热使分子活化时,体系中分子能量的分布服从玻耳兹曼分布;而分子受到光激活时,原则上可以做到选择性激发,体系中分子能量的分布属于非平衡分布。所以光化学反应的途径与产物往往和基态热化学反应不同,只要光的波长适当,能为物质所吸收,即使在很低的温度下,光化学反应仍然可以进行。   光化学的初级过程是分子吸收光子使电子激发,分子由基态提升到激发态。分子中的电子状态、振动与转动状态都是量子化的,即相邻状态间的能量变化是不连续的。因此分子激发时的初始状态与终止状态不同时,所要求的光子能量也是不同的,而且要求二者的能量值尽可能匹配。   由于分子在一般条件下处于能量较低的稳定状态,称作基态。受到光照射后,如果分子能够吸收电磁辐射,就可以提升到能量较高的状态,称作激发态。如果分子可以吸收不同波长的电磁辐射,就可以达到不同的激发态。按其能量的高低,从基态往上依次称做第一激发态、第二激发态等等;而把高于第一激发态的所有激发态统称为高激发态。   激发态分子的寿命一般较短,而且激发态越高,其寿命越短,以致于来不及发生化学反应,所以光化学主要与低激发态有关。激发时分子所吸收的电磁辐射能有两条主要的耗散途径:一是和光化学反应的热效应合并;二是通过光物理过程转变成其他形式的能量。  光物理过程可分为辐射弛豫过程和非辐射弛豫过程。辐射弛豫过程是指将全部或部分多余的能量以辐射能的形式耗散掉,分子回到基态的过程,如发射荧光或磷光;非辐射弛豫过程是指多余的能量全部以热的形式耗散掉,分子回到基态的过程。   决定一个光化学反应的真正途径往往需要建立若干个对应于不同机理的假想模型,找出各模型体系与浓度、光强及其他有关参量间的动力学方程,然后考察何者与实验结果的相符合程度最高,以决定哪一个是最可能的反应途径。   光化学研究反应机理的常用实验方法,除示踪原子标记法外,在光化学中最早采用的猝灭法仍是非常有效的一种方法。这种方法是通过被激发分子所发荧光,被其他分子猝灭的动力学测定来研究光化学反应机理的。它可以用来测定分子处于电子激发态时的酸性、分子双聚化的反应速率和能量的长程传递速率。   由于吸收给定波长的光子往往是分子中某个基团的性质,所以光化学提供了使分子中某特定位置发生反应的最佳手段,对于那些热化学反应缺乏选择性或反应物可能被破坏的体系更为可贵。光化学反应的另一特点是用光子为试剂,一旦被反应物吸收后,不会在体系中留下其他新的杂质,因而可以看成是“最纯”的试剂。如果将反应物固定在固体格子中,光化学合成可以在预期的构象(或构型)下发生,这往往是热化学反应难以做到的。   地球与行星的大气现象,如大气构成、极光、辐射屏蔽和气候等,均和大气的化学组成与对它的辐照情况有关。地球的大气在地表上主要由氮气与氧气组成。但高空处大气的原子与分子组成却很不相同,主要和吸收太阳辐射后的光化学反应有关。   大气污染过程包含着极其丰富而复杂的化学过程,目前用来描述这些过程的综合模型包含着许多光化学过程。如棕色二氧化氮在日照下激发成的高能态分子,是氧与碳氢化物链反应的引发剂。又如氟碳化物在高空大气中的光解与臭氧屏蔽层变化的关系等,都是以光化学为基础的。

  • 【欢迎评论】BCEIA金奖TOP10:MSP-100D型化学用微波样品制备系统(北京雷明)

    [img]http://www.instrument.com.cn/lib/editor/uploadfile/20051024121233539.JPG[/img]北京雷明科技有限公司 MSP-100D型化学用微波样品制备系统MSP-100D微波样品制备系统溶合有多位科学家的智慧,有多项专利技术,产品经过由北京大学、清华大学、吉林大学、国家环保部门、国家质检部门、中国石油化工、中国科学院等单位组成专家的鉴定,确认产品达到同类产品的先进水平。 1. 微波的激活特性使样品的溶解和化学反应更容易,结合密闭容器提高的压力和温度,提高了化学反应的速度,因而微波样品制备大大降低制样时间,约是传统方法的10%。 2. 保持易挥发元素或组分在制样过程中不损失,如As(砷)、Hg(汞)、Pb(铅)、B(硼)、Cr(铬)、Sb(锑)、Se(硒)、Sn(锡)等沸点低的元素和挥发油、乙醇等沸点低的组分; 3. 试剂用量少,降低测定空白值及废液对环境的污染; 4. 减少酸雾对实验室工作人员的损害; 5. 排除了环境对制备样品的污染; 本产品适用于[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url](AAS),电化学方法测定(ECD),等离子体光谱仪(ICP-AES及MIP-AES),质谱仪(GC/LC/[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]),[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]/液相色谱仪(GC/LC)和紫外-可见分光光度计(UV-VIS)及其它化学分析方法制样。适用于食品、生物/植物、环境保护、冶金、农业土壤、地质、技术监督、考古、航天材料、化妆品、农林特产、临床检验和商品检验等样品消解和萃取的预处理。 中国已进行二十多年微波化学研究的专家做技术支持,保证客户的工作和科研需要。产品有科学的设计,过硬的部件,顶尖的材料,认真的培训和意外的防护

  • 上海新仪丘比特高通量微波消解、萃取工作站创新点讨论

    上海新仪丘比特高通量微波消解、萃取工作站创新点讨论

    采用高效的非脉冲微波功率自动变频控制技术,不但实现了微波功率对温度压力的精确闭环控制,而且提高了磁控管的微波发射效率,节能高效。12罐/批次的高通量消解能力,极大地提升了实验室样品前处理效率。创新点:可达12罐/批次的高通量处理能力;独家专利多功能爆裂块设计,无需防爆膜等耗材;宇航纤维外罐等最高等级安全防护措施;大屏彩色软件界面,操作直观明了,炫彩灵动、智能便捷;电脑链接控制,安全远程操作,无限方案存储数据库;小体积VS大炉腔,先进工业设计、完美操作体验;http://ng1.17img.cn/bbsfiles/images/2013/12/201312311440_486002_1636300_3.jpg

  • 【分享】中国科学家首次观测到化学反应中分波共振现象

    [b]大化所杨学明小组首次观测到化学反应中分波共振现象[/b][align=center][b]  研究成果发表在美国《科学》杂志上,图像达到了光谱精度[/b]   [/align][align=center][img=500,360]http://bimg.instrument.com.cn/lib/editor/UploadFile/20103/20103239343687.jpg[/img][/align][align=center][font=楷体_GB2312]  实验测量到的F+HD反应中后向散射HF(v=2,j=6)产物强度随碰撞能量的变化(实圆点)。红实线是理论计算的结果。观测到的三个振荡峰被归属为J=12,13,14的分波共振。图中的三维图是在1.285kcal/mol碰撞能下HF产物在各个方向的散射微分截面图。B代表后向散射方向,F代表前向散射方向。[/font][/align]  在实验上观测由特定分波引起的动力学现象,一直是化学动力学研究领域的一个极具挑战的课题。如今,通过设计一个世界上最高分辨率的交叉分子束散射实验,中国科学院大连化学物理研究所杨学明研究小组首次在实验中观察到了化学反应中的这种分波共振。研究成果发表在3月19日出版的美国《科学》杂志上。杨学明说:“这一反应共振动力学图像已经完全达到了光谱精度,为反应共振态动力学研究提供了一个教科书式的例子。”  这是杨学明和中国科学院大连化学物理研究所研究员张东辉等近年来在反应共振态研究方向的又一个新的突破。在同期出版的《科学》杂志上,英国剑桥大学Althorpe教授发表评述文章,详细介绍了这项工作的学术意义。  化学反应是旧化学键断裂、新化学键生成的过程,是化学学科的核心科学问题。在所有[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]分子反应中,新化合物的形成都是通过两个反应物之间的碰撞而达成的。每一个反应必须先经过一个“过渡态区域”,在这个区域中,反应物分子中的旧化学键即将断裂、生成物分子中的新化学键即将生成。而所有的反应碰撞都是在特定的碰撞参数条件下,通过过渡态区域而进行的。这些特定的碰撞参数在量子力学中是一个“好量子数”,因此在整个反应过程中是守恒的,这些特定的碰撞参数相当于反应体系特定的转动量子态,一般被称为“分波”(PartialWave)。  过渡态的分波结构是影响化学反应的决定性因素,也是化学动力学研究的重要基础课题。由于反应过渡态寿命非常短(飞秒量级,1飞秒等于10-15秒),分波一般在能量上很宽且重叠在一起,因此很难在实验室观测到单个分波的结构。在绝大多数情况下,即使完全量子态分辨的交叉束实验测量的微分截面也是不同分波叠加后的平均值,因此,观测单个特定的分波结构是动力学研究领域的一个极大挑战。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制