当前位置: 仪器信息网 > 行业主题 > >

感温包合格品自动分拣测试台

仪器信息网感温包合格品自动分拣测试台专题为您提供2024年最新感温包合格品自动分拣测试台价格报价、厂家品牌的相关信息, 包括感温包合格品自动分拣测试台参数、型号等,不管是国产,还是进口品牌的感温包合格品自动分拣测试台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合感温包合格品自动分拣测试台相关的耗材配件、试剂标物,还有感温包合格品自动分拣测试台相关的最新资讯、资料,以及感温包合格品自动分拣测试台相关的解决方案。

感温包合格品自动分拣测试台相关的资讯

  • 预算1638万!福建省特检院三电机+电驱动总成测试台仪器设备采购项目招标
    福建省特种设备检验研究院(以下简称“福建省特检院”),主要承担福建省(不含厦门地区)机电类特种设备的检验、检测、鉴定和作业人员考试、职业技能鉴定等技术服务工作,以及开展检验检测方法的研究和验证,下设莆田分院、泉州分院、漳州分院、龙岩分院、三明分院、南平分院、宁德分院等分支机构。近日,福建省特检院三电机+电驱动总成测试台仪器设备采购项目公开招标,预算金额为1638万元。招标公告已于2024年7月9日发布在中国政府采购网和福建省政府采购网。一、项目基本情况项目编号:[350001]ZYT[GK]2023044项目名称:福建省特种设备检验研究院三电机+电驱动总成测试台仪器设备采购项目预算金额:1638万元采购需求:采购标的简要需求或要求备注三电机+电驱动总成测试台(EDS测试台)-1该台架主要用于新能源主驱电机、三合一电驱总成、减速器/变速器等产品的试验,能满足各产品的性能及耐久试验要求。可进行控制单元参数匹配标定、环境可靠性、耐久性测试等工作,可以实现被测部件空载、带载状态下匀速、升降速等工况下的性能试验测试,并可进行道路负载模拟试验。可自动/手动的运行完成各项测试任务的操控执行。设备应满足如下标准相关要求: QC/T 1022-2015 纯电动乘用车用减速器总成技术条件 QC/T 29063-1992 汽车机械式变速器总成技术条件 GB/T 18488.1-2015 电动汽车驱动电机系统 第1部分:技术条件 GB/T 18488.2-2015 电动汽车驱动电机系统 第2部分:试验方法 GB/T 29307-2012 电动汽车用驱动电机系统可靠性试验方法。不允许进口三电机+电驱动总成测试台(EDS测试台)-2该台架主要用于新能源电动汽车驱动系统及一体化动力总成的性能研究和耐久性考核试验。可以实现被测部件空载、带载状态下匀速、升降速等工况下的性能试验测试,并可进行道路负载模拟试验。设备可自动/手动的运行完成各项测试任务的操控执行。 设备应满足如下标准相关要求: GB/T 18488.1-2015 电动汽车驱动电机系统 第1部分:技术条件 GB/T 18488.2-2015 电动汽车驱动电机系统 第2部分:试验方法 GB/T 29307-2012 电动汽车用驱动电机系统可靠性试验方法。不允许进口三电机+电驱动总成测试台(EDS测试台)-3该台架主要用于新能源电动汽车驱动系统及一体化动力总成的性能研究和耐久性考核试验。可以实现被测部件空载、带载状态下匀速、升降速等工况下的性能试验测试,并可进行道路负载模拟试验。设备可自动/手动的运行完成各项测试任务的操控执行。 设备应满足如下标准相关要求: GB/T 18488.1-2015 电动汽车驱动电机系统 第1部分:技术条件 GB/T 18488.2-2015 电动汽车驱动电机系统 第2部分:试验方法 GB/T 29307-2012 电动汽车用驱动电机系统可靠性试验方法。不允许进口本采购包不接受联合体投标。合同履行期限:合同生效后货物9个月内交货,交货后中标人须在3个月内安装、调试、培训、验收完毕。二、获取招标文件时间:2024-07-09 至 2024-07-16,每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费三、提交投标文件截止时间、开标时间和地点2024-07-30 09:00:00(北京时间)地点:福建省福州市鼓楼区工业路华润万象城(三期)S11#楼19层1910-13、15-17单元1号开标室--福州鼓楼华润四、对本次招标提出询问,请按以下方式联系1. 采购人信息名称:福建省特种设备检验研究院地址:福州市仓山区卢滨路370号联系方式:程宇/0591-887005132. 采购代理机构信息(如有)名称:福建省中亿通招标咨询有限公司地址:福州市工业路东侧、福三路北侧洪山园地块华润万象城(三期)S11#楼19层10-13办公、15-17办公联系方式:0591-856660813. 项目联系方式项目联系人:李萍、陈宇、黄静、郭梅芳电话:0591-85666081网址: zfcg.czt.fujian.gov.cn开户名:福建省中亿通招标咨询有限公司附件:福建省特种设备检验研究院三电机+电驱动总成测试台仪器设备采购项目招标文件(709165322).pdf福建省特种设备检验研究院三电机+电驱动总成测试台仪器设备采购项目招标文件(709165322).docx
  • 增加近千台仪器设备,AMD将在苏州扩建高性能CPU封测项目
    近日,苏州通富超威半导体有限公司公示了《苏州通富超威半导体有限公司高性能中央处理器等集成电路封装测试项目》。公示信息显示,苏州通富超威半导体有限公司将在江苏省苏州工业园区苏对高性能中央处理器等集成电路封装测试项目进行扩建,总投资达18.97062亿元。据了解,超威半导体技术(中国)有限公司成立于2004年3月,位于苏州工业园区苏桐路88号,是尖端的微处理器(CPU)制造企业,主要从事微处理器(CPU)、集成电路等的封装、测试,是一家有着世界顶级设备和优秀管理人员的现代化工厂。2016年05月23日,该公司名称变更为苏州通富超威半导体有限公司。苏州通富超威半导体有限公司目前主要进行CPU的生产。项目于2010计划建设13条新型可控坍塌芯片连接技术封装生产线,最终形成年产和测试13000万颗CPU的能力,但实际只建成及验收 5 条封装生产线,实际年产CPU5000万颗。由于市场需求发生变化,为抢占市场份额,企业拟购置新设备,采用倒装封装技术及先进测试技术,在新增封装线的同时对现有封装工艺五条线进行技术改造,调整现有产能,建成后预计最终年产CPU(中高端集成电路封装)1.4 亿颗。同时,本项目还将引进晶圆研磨机,用于加工半导体晶圆,使晶圆的尺寸达到公差范围内,预计年研磨片数4.0万片。同时购入圆片级测试机,新增晶圆级测试工艺,改造完成后有助于本土集成电路产业链的延伸,实现企业在晶圆制造后的全制程能力,预计可实现年产能5.0万片。根据公示信息透露出的本次扩建涉及到的设备信息,估计变化量达近千台。该项目涉及CPU封装工艺流程、产品测试工艺流程及晶片测试工艺流程等。CPU封装工艺流程晶圆检测:在高倍显微镜下对每叠芯片进行抽检,其余部分用裸眼全检,检测有没有焊球损坏或焊球变形,芯片碎裂或芯片背面损坏情况,同时在晶圆表面贴上晶圆胶带。 激光开槽:使用激光开槽机在激光切割保护液的保护下对晶圆进行开槽,随后使用纯水对晶圆进行冲洗。 机械切割:使用机械切割机对开槽后的晶圆进行进一步切割,同时使用纯水对晶圆进行冲洗、降温。UV固化:UV固化机对晶圆表面进行固化使表面膜跟晶圆更加贴合。抓取分拣:使用晶圆分拣机将晶圆按性能分拣归类。基板烘烤:使用基板烘烤机在125℃(电加热)条件下对基板烘烤约 2.5h,使其拥有更好的绝缘度。锡膏印刷:从干燥箱中取出已经烘烤结束的基板,冷却到室温,喷洒助焊剂,印刷锡膏;使用完成后的钢网需进行清洁,使用沾有异丙醇的擦拭纸进行擦拭。贴电容、贴芯片、回流焊:使用电容贴片机、晶圆贴片机分别将电容、晶圆芯片摆放在焊接位置,采用回流焊接的方式,利用热风和红外高温使焊接处的锡膏融化、回流、冷却使接点焊接牢固,焊接电容、芯片;随后进行检测,若有焊接不牢固产品,则用无尘纸沾取少量异丙醇对焊点处进行人工擦拭,然后进行返工。助焊剂清洗1:将助焊剂清洗剂与纯水按照一定比例进行配比,使用助焊剂清洗机对焊接后的半成品进行冲洗。底封胶填装:利用毛吸现象原理,使用底封胶填充机在晶元和基板间填充粘胶,来填充焊接球与基板间的缝隙,减少热应力的危害。固化:为保护电容,部分产品继续填充紫外线固化剂,后在 165℃(电加热)条件下 对半成品烘烤一定时间。锡球植球、回流焊:使用锡球植球将锡球摆放在焊接位置并喷洒助焊剂,采用回流焊接的方式,利用热风和红外高温使焊接处的锡球融化、回流、冷却使接点焊接牢固。 助焊剂清洗2:焊接后送入清洗槽内浸泡 5-10min,清洗槽内为溶有清洗剂的纯水 (50℃),将其表面粘附的助焊剂清洗干净。开闭路测试:通过开路和闭路测试,检测封装工艺是否完好,此过程会产生一定量的不良品,其中智能移动终端及图像处理集成电路及高性能中央处理器集成电路测试完成后合格品进行包装入库,CPU 流入下一工序。点胶、加盖子、烘干:使用点胶机在基板的四周点上粘胶,并用热传导贴胶机在芯片背面刷热传树脂,同时用贴盖机对集成电路加上散热盖,在烘干炉里加热烘干。产品测试工艺流程测试工艺流程1:封装后的集成电路经功能性测试、系统测试、激光打标、质量抽检、外观检测、Pin 脚测试后包装入库,测试过程均会产生一定量的不良品,外观检测时用无尘纸沾取少量无 水乙醇对进行人工擦拭(擦拭灰尘)。测试工艺流程2:对需要测试的产品进行登记记录,使用 X-ray 设备对需要进行检测的产品进行 X 光照 射进行分析,使用盐酸进行破坏性测试,根据实验结果对分析的结果进行分析并出具实验报告。晶片测试工艺流程来料接收:根据物流的到料信息,进行晶圆的到料接收,物料收入后,存放于氮气柜中。 备料:根据排料计划进行提前准备。 来料检查:对来料晶圆进行抽检,对抽样品采用裸眼全检,检测晶圆在盒中是否斜插, 有无破片划伤变色,再采用高倍显微镜抽检,确认晶圆焊球有无损坏变形缺失等异常。 探测:晶圆探测是对晶片上的每个晶粒进行针测,在检测头装上探针,与晶粒上的接点接触,测试其电性能力和电路机能,不合格晶粒会被标记淘汰,不再进行后端的一些制程,以免增加制造成本。在探针的正常维护和修理过程中,会使用无尘布沾取少量酒精对针处进行人工擦拭。出站检查:对测试后的晶圆进行抽检,对抽样品采用裸眼全检,检测晶圆在盒中是否斜插,有无破片划伤变色,再采用高倍显微镜抽检,确认晶圆焊球有无损坏变形缺失,针痕伤害等异常。存储:将需要出货的晶圆放置在氮气柜中存储。打包:将晶圆、干燥剂、湿度指示卡放入静电袋中,贴上晶圆信息的标签。若铝箔袋破损、标签信息错误,或者湿度指示卡变色,都需要废弃。出货检查:确认打包后的晶圆实物与标签一致,且标签完整,合格品厂内自用。
  • 在线近红外+人工智能实现废旧纺织品自动识别分拣——寻找光谱仪器“创新的力量”系列约稿
    《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》把创新放在了具体任务的第一位,全文160余次提到了“创新”关键词。2022年第十三届全国人民代表大会第五次会议上,国务院总理李克强所作的政府工作报告中,亦明确指出要坚持创新驱动发展。对科学仪器产业而言,“创新”更是至关重要。近年来,我国对科学仪器的创新和研发高度重视,先后设立了“科学仪器基础研究专项”、“国家重大科研仪器设备研制专项”和“国家重大科学仪器设备开发专项”等科研计划等。2021年11月,北京“十四五”规划也指出要支持开展关键仪器设备研发,支持挖掘一批服务于重大科技基础设施的定制化科学仪器和设备,重点突破研发新一代光谱等关键技术。不断高攀的前沿研究是创新,差异化的产品发展也是创新。为了展现光谱仪器的创新成果,分享光谱仪器研发和应用中的创新思维,共同促进光谱仪器产业化的创新发展,仪器信息网特别策划《寻找光谱仪器创新的力量》活动。本期,我们特别邀请了北京服装学院/塔里木大学龚龑教授,给大家分享创新成果,并探讨创新的方法和思维。北京服装学院/新疆大学龚龑教授仪器信息网:您认为目前近红外光谱仪器技术及应用有哪些创新的研究方向? 龚龑:近红外光谱仪器技术的创新主要体现在以下几个方面:(1)近红外光谱数据库的建立及更新。校准模型的预测性能直接决定了近红外光谱定量和定性分析的能力,而校准模型往往需要针对不同的样本类型单独建立,需要花费大量的人力物力。比如,已有一个地区的苹果水分含量分析的近红外光谱校准模型,这个模型适用于同一地区的苹果,却不适用于不同地区苹果的水分预测。解决这个问题的方法是扩充苹果近红外光谱数据库。如果能获得全世界苹果的近红外光谱和水分属性,那么所建立的校准模型的涵盖性就会非常强,适用于任何地区的苹果水分分析。(2)近红外光谱仪的创新。校准模型的预测能力充分依赖输入的近红外光谱数据,而光谱数据通常不一致。要获得一致的光谱数据,需要测量光谱的光谱仪长期保持性能的稳定。然而,在实际的应用中,光谱仪器件会随时间老化,测量人员的操作也会对光谱数据的一致性产生影响,这些因素都会使得已建立的校准模型失效。同时,光谱仪之间测量的偏差也会导致对同一被测物定量定性分析的失败。(3)提高检测精确度。在近红外的波段区域,含氢化合物的吸收系数较小,所以尽管使用高效的化学计量学软件建立分析模型,其最终定量分析的预测结果也始终无法达到真实值。检测限较高,通常达到0.1%左右。为了克服检测限高的问题,可采用样本预处理方法(比如固相微萃取等富集方法)提高精检度,但如此操作会使近红外光谱分析技术失去其优点和特色,反而不是最佳的分析方法。仪器信息网:近红外光谱与拉曼光谱相比,在废旧纺织品分拣中有哪些优势?龚龑:近红外光谱技术是目前世界上发展非常迅速的分析技术,它具有无损、快速,应用广泛等优点,在化工、农业、环境、医药等领域发展极为广泛。与化学计量学软件、光谱仪和应用模型结合,拓展了近红外光谱仪的应用领域。近红外光谱仪目前在过程分析技术中发挥着极其重要的作用,发展飞快。近红外光谱分析技术在几十年的发展中,不断扩大其涉足领域以及应用的实效性,除应用于农业和食品分析外,还涉及生物、高分子、制药、石油化工、纺织、纤维等学科,只要是对有机物检测分析的行业基本上均可使用近红外分析技术。在我国,近红外光谱分析研究始于20世纪80年代初,现已逐步涉及谷物等农产品分析、饲料分析、石油化工、药物分析、疫情疫病诊断等方面,并伴随出现在专著出版、仪器制造和软件开发中。随着软硬件的更新换代,NIR还有望应用于其他更多方面。拉曼光谱具有无损、快速、制样简单、可微区分析、操作简便等优点,因此,拉曼可以对实验过程进行实时监测。拉曼光谱在鉴别时,为了提升鉴别准确率,样品需要进行预处理。拉曼光谱对环境要求不高,而且非接触式稳定性高,但是在纺织领域还有待探索,在以后的废旧纺织品鉴别研究中都可以进行研究。图1 训练过程中损失值,训练精度和测试精度变化图图2 不同成分比例废旧聚酯/粘胶混纺织物近红外光谱仪器信息网:贵课题组有哪些创新的成果?最突出的创新体现在哪里?龚龑:我们课题组为突破废旧纺织品资源再生循环发展利用的瓶颈,与新疆乌鲁木齐海关、深圳海关、新疆大学、北京服装学院等单位合作,采用近红外光谱仪设计了一套废旧纺织品自动识别分拣设备(如图3所示)。该设备实现废旧纺织品从输送、检测、分拣、回收利用等生产过程中的自动化、智能化。全面提升纺织行业废旧纺织品检测、分拣的自动化水平,降低废旧纺织品带来的环境影响,以及资源的浪费,缓解劳动力紧张的局面,为推动纺织业健康可持续发展具有重要意义。图3 废旧纺织品分拣设备该设备是基于近红外光谱来识别纺织品中的纤维种类和含量。在研发过程中我们克服了算法自主编写以及工控机对接的难题,最终开发一种废旧纺织品自动识别分拣系统。该系统利用自行开发的在线近红外光谱分析装置,建立了一个在线近红外(NIR)光谱库,包括聚酯、棉花、羊毛等十几种常见纺织品。我们将人工智能技术引入到废旧纺织品的识别和分拣中,利用卷积神经网络(CNN)废旧纺织品的在线近红外定性识别模型,有效提高废旧纺织品中不同纤维成分的检测准确性水平和速度,从而提升产业化加工效率。图4 废旧纺织品检测试验仪器信息网:人工智能与废旧纺织品分拣有什么联系?龚龑:人工智能分拣设备主要通过云端大数据、人工智能算法、融合传感器(分为触觉、视觉传感系统,目前普遍应用的为视觉传感系统)、机器臂/喷气设备等软硬件配合开展工作。具体构成及运作原理如下:(1)云端大数据:采集各种各样纺织样品的图片,包含废纺织品、旧纺织品、混纺织物等各种状态下图片,形成云端数据库。(2)人工智能算法:设备中内置的人工智能算法通过云端海量图像数据对机器人进行训练。前期海量数据的采集保证了无论废旧纺织品是何种状态、是否被遮挡,机器人都可以识别。(3)融合传感器:利用计算机视觉扫描快速移动的物体,通过CCD视觉、激光视觉、近红外视觉等识别传感系统相耦合,综合判断目标物的外部特征(颜色、形状、结构等)与内部特征(材质),实现废旧纺织品精准定位与细分判别。然后将识别结果传输给协作机器,控制机器臂/喷气设备运动。(4)机器臂/喷气设备:机器臂/喷气设备从传送带上准确地抓取要回收的纺织品,投放到相对应的分类收集箱中。人工智能软件识别与机器臂/喷气设备相结合,类似于人脑的神经网络系统和人的双手相结合,具备了识别和执行的能力。(5)数据回传:分拣完成后,设备将相关的数据再返回云端,与部署在各地的智能分拣设备实现数据共享和远程智能提升。例如,部署在某纺织分拣中心的智能设备可以向部署在全国各地不同智能设备,不同设备还可以互相继承废弃物识别的经验。该数据还能用于帮助项目运营方了解设备状况及并进行产量、工作量、效益等运营维度的统计。仪器信息网:您对未来光谱仪的创新发展有什么样的展望?有哪些值得期待的技术或者应用?龚龑:从微电子机械系统(MEMS)制造工艺、大数据、深度学习算法、云计算平台、物联网等技术的发展可以看到其对近红外光谱分析技术的推动力量,从工农业生产、服务业和人们日常生活等方面的发展可以看到其对近红外光谱分析技术的需求、牵引力量。在这两种力量的作用下,未来一段时期内,近红外光谱技术将会得到加速发展,以近红外光谱为核心的商业产品将在不同业务领域进一步提供深化和细化的服务,近红外光谱有望成为与时代发展特征(如大数据、云计算和物联网等)最相关的一项分析技术。尽管近红外光谱分析技术的应用前景广阔,但仍有一些技术壁垒和难题需要攻克。例如,目前光谱数据库或模型的仪器供应商依赖(Vendorlock-in)问题,即各厂商的仪器之间存在的台间差异,使其普适性的应用迁移变得困难,需要从仪器标准化、算法和软件等多方面协同努力方能得以解决。再例如,无论是传统的机器学习算法还是深度学习算法,都是在有监督学习的框架下建立定性或定量分析模型。所谓有监督学习就是每个训练集样本是带有标签的,即每个样本的光谱对应着一组参考值(真实的浓度值或类别)。随着近红外光谱技术的广泛应用,将产生大量无标签的光谱资源,这些光谱没有对应的参考值,因此,如何充分利用大量无标签的样本信息进行半监督或无监督分析模型的构建,有可能是未来很值得研究的新方向。仪器信息网:基于光谱仪的发展现状,您在产学研的道路上开展了哪些工作?龚龑:近年来,我负责并结项了一些相关课题,包括2019年的“用于食源性致病菌快检的增强拉曼散射微流控系统关键技术与应用研究”和2020年新疆兵团科技攻关计划项目“棉纺筒纱智能分拣包装关键技术装备研发与示范应用的研究”等,同时还有一些横向课题“运用拉曼光谱技术针对纺织行业气体污染与有毒物质进行快速检测的方法应用”、“城市废旧纺织品成分快速鉴别、分拣与再利用技术”等等,都是运用光谱技术进行了应用与创新。我培养的研究生也在光谱领域进行了探索,在《The International Journal of Life Cycle Assessment》、《上海纺织科技》、《毛纺科技》等发表相关论文,在第六届、第七届中国国际“互联网+”大学生创新创业大赛中荣获一银一铜。我觉得在产学研的道路上我们还要继续前进,现阶段的学生培养模式还需继续探索,在探索的过程中,找到适合当前产学研的一种新模式。团队介绍:北服检测215实验室成立于2008年,在龚龑教授的带领下,团队主要致力于纺织服装标准的制定以及光谱分析技术。制定纺织服装标准可以加强人们的环保意识,使企业也越来越重视环保纺织品的研发、生产和加工。随着光谱学的不断发展,不同的光谱分析方法也相继建立,并出现相应的光谱分析仪器。光谱分析方法在定性、定量、结构分析方面有着优越的表现,并已广泛应用于生命科学、医学、食品、化工、医药、环境、纺织、空间探索等领域。团队近两年联合南京中拓科技有限公司在研发废旧纺织品分拣设备,运用近红外光谱进行定性分析,研发分类算法以及装备设计及制造,实现废旧纺织品从输送、检测、分拣等生产过程中的自动化、智能化,全面提升纺织行业废旧纺织品检测、分拣的自动化水平,达到废旧纺织品的再利用,降低资源对环境影响及资源浪费的目标。
  • 垃圾分拣站除臭机,垃圾分拣房植物液雾化除臭装置
    垃圾分拣站除臭机,垃圾分拣房植物液雾化除臭装置【新闻导读】众所周知,垃圾投放站、垃圾中转站、垃圾分拣站散发出的恶臭问题一直以来都是市民反映的热点问题,为了加强对城市垃圾的处理,垃圾中转站的数量也会越来越多。关于垃圾投放站、垃圾中转站、垃圾分拣站环境治理的要求也会越来越严高。  特别是在炎炎夏日,在垃圾投放站、中转站、压缩站、分拣区、堆放区等场所,各种垃圾混杂在一起都会散发着难闻的恶臭气体,大量的臭气飘散对周边或附近的住宅小区、厂区等众多场所造成很大的影响,为了解决垃圾除臭难题,采用智能垃圾站除臭设备有效改善站内环境空气质量是势在必行的。  如今,很多垃圾投放站、垃圾中转站、垃圾分拣站为了彻底解决垃圾恶臭带来的不利影响,采用了新型的科技手段—植物液雾化除臭装置--正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除湿机,实现了垃圾站环境的科学治理。这项工程不仅造福于民,更是直接关系到城市居民的身心以及市民对政府工作的满意度。  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机采用的是超声波雾化技术,将除臭剂(或植物液)均匀喷洒在整个除臭空间,只有1-10微米的雾化颗粒能够迅速扩散,在空气中快速有效去除硫化氢、氨、有机胺、硫醇、硫醚等恶臭分子 具有高效、节能、维护方便等特点,受到广大用户与环卫部门的一致好评。  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机,注入中性除味剂可自动为酒店、商场、写字楼、厕所等空间除味,注入中性消毒水可为室内自动消毒,注入自来水可为场所空气自动加湿。根据上海、广东、福建、湖北、湖南、北京等地垃圾站喷淋除臭装置试运营的情况来看,垃圾房使用该设备主要的优势有以下几点:  ◎高效除臭:将用于除异味浓缩液雾化成气态,使其能与异味分子充分混合,从而发挥高效除臭、除异味作用。  ◎杀菌灭蚊:可定时喷天然植物液不仅除臭、除异味,还能杀菌灭蚊,清新空气,大大降低使用成本维护费用。  ◎节约成本:雾气主要成分是水,成本低 添加少许除异味的浓缩液,超声波雾化技术将浓缩液的活性高效发挥。  ◎超细雾滴:经过超声后的雾滴极其细密,因此表面活性强、吸附力大,使植物液对臭味分子的包裹反应效果好。  ◎节省人工:添加一次用于除臭、除异味的浓缩液之后,半个月或一个月无需打理,自动完成喷雾除臭、除异味。  正岛植物液雾化除臭装置ZY-1800垃圾分拣站除臭机控制方式及技术参数:  正岛植物液雾化除臭装置ZY-1800垃圾分拣站除臭机,控制方式采用数字时序控制器自动循环控制,自动循环控制周期由一秒钟到九十九分钟五十九秒,可任意设置工作时间及停止时间,设定好后可连续工作,无需人员职守 配有5.5公斤水容量的自备水箱,水箱上端连接有注水口,下端配有放水开关 可根据实际需要连接⊙75mm的PVC管路,其传输距离可在5-8米左右 操作简单、维护方便!欢迎您来咨询垃圾分拣站除湿机,垃圾分拣房植物液雾化除臭装置的详细信息!  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机产品,是采用超声波高频振荡的原理,从而达到均匀喷雾除臭的目的 对于其他喷雾除臭方式的除臭机而言,具有【雾化颗粒细】 、【使用能耗低】 、【雾化能效高】,【加湿速度快】的显著优势,箱体采用全不锈钢材质,表面喷塑处理,此举既保证了外形美观大方又满足了设备防腐的要求。  正岛植物液雾化除臭装置ZY系列垃圾分拣站除臭机(型号:ZY-10/ZY-20/ZY-30/ZY-40/ZY-60/ZY-80/ZY-100)技术参数:  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机所产生的雾粒直径只有 小于10μm,颗粒均匀,能长时间悬浮于空气当中,具有空气加湿、除臭净化、消毒灭菌、以及预防静电和减少粉尘、降温降尘等多种用途 既可以较大空间进行均匀喷雾除臭,也可对特殊空间进行局部喷雾除臭,具有较高的使用灵活性,改善你我共同呼吸的空气。  杭州某个垃圾投放分拣站由于站内设备陈旧、设备设施不足等原因,造成该站运营效率不高,只能基本满足镇内各类垃圾收集和转运要求,而且密闭不严,容易产生和散发恶臭气体,苍蝇蚊子较多,尤其是夏季高温天气,臭气散发,影响环卫工人和周边街坊的工作、生活,引起群众的不满。 在使用了喷雾除臭装置--正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机后经检测显示,该站臭气浓度由原来的7244(单位:无量纲)下降至316(单位:无量纲) 氨浓度由原来的36.3(单位:PPM)下降至1.01(单位:PPM) 硫化氢浓度由原来的1.8(单位:PPM)下降至0.05(单位:PPM)。其效果比原来的掩盖除臭方法好的太多。  综上所述:一直以来,垃圾投放站、垃圾中转站、垃圾分拣站等站内的恶臭问题都是广大市民关注的一个热点问题 为了有效解决城市垃圾处理问题,垃圾投放站、垃圾中转站、垃圾分拣站的站点也会越来越多,对中转站的管理和环境治理的要求也越来越高,这是一项重大工程。  正岛植物液雾化除臭装置ZY-1800及ZY系列垃圾分拣站除臭机相比其他除臭方法来说,喷雾除臭更加简单有效,性价比也更高。相比用喷雾除臭使用掩盖臭味的方式,不但耗费人力物力财力,除臭效果也不是很好,而它不但能够有效吸附空气中的污染因子90%左右,而且耗能小,可采用自动化控制,也不耗费人工,经济实惠,是垃圾站、垃圾投放站、垃圾中转站、垃圾收集站、垃圾分拣站以及垃圾处理厂等除臭、杀菌、消毒的理想选择!以上关于垃圾分拣站除臭机,垃圾分拣房植物液雾化除臭装置的全部新闻资讯报道是正岛电器为大家提供的,仅供大家参考与学习!
  • 北京药监局二季度公告,4种药品不合格
    药 品 质 量 公 告 ([2012]第2期,总第39期) 北京市药品监督管理局发布 2012年7月 ------------------------------------------------------ 为进一步贯彻执行《中华人民共和国药品管理法》,严厉打击制售假劣药品的违法行为,保障首都人民用药安全有效,根据北京市药品抽验计划,北京市药品监督管理局组织在全市范围内对药品生产、经营、使用单位进行质量监督抽验,现将结果予以公布。 2012年第二季度,全市按照抽验计划共完成监督性抽验1124批次,其中不合格4批次,合格率为99.64%(具体品种见附表)。 对公告中的不合格药品,我局将依据《中华人民共和国药品管理法》等有关规定进行查处,并根据情况在本辖区内继续进行跟踪抽样检验。 附表:北京市2012年第二季度药品抽验不合格品种汇总表 序号 药品名称 被抽样单位 标示生产企业 批号 规格 检验机构 检验标准 不合格项目 1 愈创甘油醚糖浆 史达德药业(北京)有限公司 史达德药业(北京)有限公司 12010204 10毫升:200毫克 朝阳药检所 《化学药品地方标准上升国家标准》第十三册 性状 2 布洛芬片 北京华源仁济医药有限公司 上海皇象铁力蓝天制药有限公司 20101101 0.2g 朝阳药检所 《中国药典》2010年版 检查 3 雷公藤多苷片 北京天力泽医药有限公司 湖南协力药业有限公司 20111201 10mg 丰台药检所 《卫生部药品标准》中药成方制剂第十七册 性状 4 盐酸小檗碱片 北京泰和康源大药房 上海皇象铁力蓝天制药有限公司 20111001 0.1克 丰台药检所 《中国药典》2010年版二部 含量测定
  • 【巨哥科技】推出多光谱红外相机,快速识别材料属性
    在物料分选、材料分类、异物检测等应用领域,普通的RGB相机往往难以满足需求。多光谱红外相机探测目标对不同波段的光的吸收,形成代表材料属性的图像,提升分析的效率和准确性。巨哥科技最新推出的多光谱相机光谱响应范围900 nm至1700 nm,有效覆盖短波红外范围,适用于广泛的材料光谱分析。该相机具有7个波长通道,可提供丰富的光谱信息。一次多光谱成像时间小于0.1秒,10Hz的多光谱成像帧频确保了对动态过程的实时监控。通过收集不同波长下的光谱数据,该相机能够创建详细的材料光谱特征库,结合先进的数据处理算法构建高精度光谱模型,可实现自动化生产线上的快速材料分拣、质量控制和异物检测等任务。巨哥科技丰富的光谱分析和建模经验可以应对需要精确材料鉴别的复杂应用场景,如在复杂混合物中识别特定成分或在生产过程中实时监控材料变化。使用短波多光谱相机对不同材质的四类布料(涤纶、氨纶、棉以及使用了特殊染料的布料)进行成像。使用多光谱相机采集到的四类布料光谱数据如下图所示,可以看出不同材料在光谱上的差异。多光谱相机采集光谱通过建模算法确定图像中各点对应的材料成分后,使用伪彩色进行整体显示,可以直观看到各类布料的材质差异。多波段响应合成的伪彩色图区分不同材料基于上述原理,该款多光谱相机可用于以下领域:01 工业分拣:在生产线上,多光谱红外相机可以快速区分不同类型物质,如不同种类的纺织品或塑料,提高分拣效率。02 质量监控:通过光谱分析,实时监测PCB、水果等产品质量,快速识别并排除不合格品。03 成分分布:多光谱相机能够快速辨别材料成分,例如实时显示药物混合后的成分分布。04 异物检测:在食品加工等行业,相机能够有效识别潜在的异物,保障产品安全和消费者健康。巨哥科技多光谱红外相机的产品设计注重实用性和稳定性,确保在各种工作环境中均能提供可靠的性能。新款多光谱红外相机与现有光谱仪系列的协同作用,将为客户提供更加完善的材料属性分析工具。此外,巨哥科技为客户提供全面的技术支持和培训服务,确保客户能够充分利用我们的产品进行高效的材料分析和处理。巨哥科技致力于推动光电技术在工业和科研领域的应用,期待与客户共同探索和实现光电技术在现代工业中的更多可能。关于巨哥科技上海巨哥科技股份有限公司是专精特新和高新技术企业,自主研发光电仪器及核心芯片、智能算法和软件,获上海市科技进步一等奖。团队来自普林斯顿、清华、中科大、浙大、中科院等,获海外高层次人才、上海市优秀技术带头人等称号。巨哥科技提供全波段红外光电产品:用于电力、轨交、冶金、汽车等行业设备状态和过程监控的热像仪,用于石化等行业的气体泄漏成像仪,用于激光、半导体等先进制造领域的短波相机,用于石化、粮油、制药等领域成分分析的光谱仪等,并为材料、工程、生命科学等前沿研究提供科学级光电仪器。
  • 台式分光测色仪在纺织色彩检测的应用方案
    纺织品在现代生活中扮演着至关重要的角色,而色彩在纺织行业中扮演着极其重要的角色,它不仅是产品质量的重要指标,更是引领时尚潮流、传递品牌形象以及满足消费者多样化需求的关键元素。在纺织品的生产和设计过程中,色彩能够直接影响消费者的购买决策和情感体验。纺织品的色彩选择不仅需要符合当前市场趋势,还要与品牌定位和产品风格相匹配,以吸引目标消费者群体。一种优雅的色彩搭配能够赋予纺织品独特的个性和魅力,使其在激烈的市场竞争中脱颖而出。因此,对纺织品色彩进行准确检测和控制对于纺织行业至关重要。台式分光测色仪作为一种快速、准确的色彩测量设备,在纺织色彩检测中发挥着关键作用。作为先进的色彩测量设备,它能够高精度、快速地测量纺织品样品的色彩参数,如色差、色相、明度和饱和度等。通过台式分光测色仪的应用,纺织企业可以实现对纺织品色彩的准确分析和质量控制,确保产品批次间色彩的一致性,提高生产效率并降低色彩相关问题带来的成本。此外,非接触性的测量方式还避免了样品污染和损坏,保持了样品的完整性,从而提升了样品测试的可靠性和可重复性。台式分光测色仪的广泛应用使纺织企业能够更好地满足市场需求,提升产品品质,增强品牌竞争力,进一步推动纺织行业的发展。Ci7800台式分光测色仪是一款先进的色彩测量设备,广泛应用于纺织行业以及其他领域。该仪器采用了分光学原理,能够将白光分解成不同波长的光谱成分,并通过测量样品对各波长光的反射或透射强度,获取色彩信息。这款积分球式台式色彩色差仪能够在设计灵感、配制、生产和质量控制等方面实现精准的色彩一致性,为纺织品生产提供了关键支持。,该色差仪采用了积分球式设计,具有多孔径的特点,使其能够应对复杂的纺织品样本。不同纺织品可能具有不同的表面形态和材质,包括织物、纤维、涂层等。而多孔径设计允许色彩色差仪对不同尺寸和形态的样本进行准确的测量,确保测试结果的稳定性和可靠性。Ci7800台式分光测色仪可以与ColoriQC质量控制软件配套使用,实现了高效的色彩管理。该仪器能够快速识别样品的色彩是否处于容差范围内,一旦样品超出容差范围,将立即提供直接反馈,帮助用户及时发现问题并进行调整。值得一提的是,Ci7800色彩色差仪内置了NetProfiler状态指示灯,可以验证设备的测量性能是否经过优化。这一功能确保了设备的稳定性和准确性,为色彩测量提供可靠的基础。通过与ColoriQC质量控制软件的配套使用,Ci7800色彩色差仪为纺织行业提供了完整的色彩管理解决方案。用户可以轻松地监控纺织品的色彩质量,确保产品的色彩一致性和稳定性,满足客户的高品质需求。同时,仪器的高效性和准确性也有助于提高生产效率,降低不合格品率,进一步推动纺织行业的发展和竞争力。台式分光测色仪在纺织色彩检测中具有重要的应用价值,对纺织行业的产品质量和市场竞争力有着积极的促进作用。然而,随着科技的不断进步,台式分光测色仪还有进一步优化和创新的空间,以满足纺织产业转型升级的需求。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • 3.67亿元!238台!天津工业大学高端分析测试平台设备更新项目批复(附设备清单)
    7月4日,天津市发展和改革委员会发布了《关于天津工业大学高端分析测试平台设备更新项目可行性研究报告的批复》。经委托天津国际工程咨询集团有限公司组织专家评审,原则同意该项目可行性研究报告,项目建设主体为天津工业大学,项目代码:2405-120000-89-03-406182。该项目位于天津市西青区宾水西道399号天津工业大学现址内。主要建设内容及规模:主要购置设备238台(套),主要为基于USRP的大规模MIMO试验系统平台、低温强磁场扫描探针显微镜、纤维纳米红外光谱仪等设备;替换原有老旧设备132台(套),主要为低压透射电镜、真彩色共聚焦显微镜、冷场发射扫描电镜等设备(购置设备清单详见附件)。总投资金额为36675万元,通过申请中央资金和学校自筹等多种渠道解决。附件天津工业大学高端分析测试平台设备更新项目设备清单表序号仪器设备名称数量(台/套)1热电性能测试系统12光纤光栅解调仪13全息微观透视成像分析系统14全波段光学材料表征系统15多功能湿法纺丝制备及评价系统16阻抗分析仪17多物理场摩擦、磨损原位测试系统18人体步态体态分析系统19穿戴式身体姿态评估系统110便携式代谢测试系统111肌电与多通道生理信号测试系统112纳米级气溶胶粒子分选计数测试台113多通道薄膜压力测量及手持式自定位三维白光扫描系统114动态水蒸汽吸附分析仪115纺织材料界面风速流场测量仪116织物表面多功能电信号测量仪117多功能高分子材料成型仪118液相色谱仪119气相色谱仪120氧气透过率测试系统121可生物降解测试系统122流阻结构参数测试系统123纺丝-熔喷一体化试验机124霍尔效应测试仪125单向透湿膜材料制备及评价系统126耐高温、高精过滤材料评价系统127滤料测试及仿真模拟平台128热激励去极化电流测量系统129锥形量热仪130能源采集及测试系统131材料高频电磁参数测试系统132Materials Studio 模拟计算系统133全自动比表面积及微孔分析仪134高温燃料电池测试平台135纤维电学力学综合性能测试仪136功能材料电学综合测试系统137高温快速导热仪138头模压力及腕戴产品测试系统139红外运动分析测试系统140智能穿戴人因实体实时采集及综合分析系统141柔性电子原位测试系统142服装内热流场动态测量仪143功能纺织品润湿性评价系统144热界面材料分析仪145纺织元宇宙互动同步实训教学装置1 46纺织知识图谱与教学系统1 47柔性织物微带天线测试系统1 48纤维纳米红外光谱仪1 49基于运动学多参数生物力学采集和分析系统1 50双波长显微拉曼光谱仪1 51产业用纺织品及复合材料力学性能测试系统1 52应力动态分布可视化与裂纹预警测量系统153高性能纤维材料制备与理化环保性能测试系统15464通道无线脑电采集系统155多导睡眠/脑电监测系统156电脑测色及颜色信息管理系统157织物舒适性评价体系实验教学套装158功能纺织面料制备与性能分析实验教学套装159纤维着色与染料分散状态分析测试实验教学设备160机油滤清器流量阻力试验台161滤清器高低温脉冲试验台162滤清器效率和寿命试验台163数字化小样新型纺纱与纱线质量评定虚拟仿真系统164新型浆纱织造生产与质量检测设备系统165气囊式接触压力测试仪166纺织复合材料界面性能测试系统167热电性能分析系统168织物风格测试实验套装系统169转矩流变仪170旋转流变仪171原位X射线衍射仪172织物型水电解隔膜测试系统173纳米静电纺制备与测试系统174电极材料应力原位检测系统175落锤冲击试验机176动态和疲劳试验系统177无损检测仪器178飞秒瞬态吸收光谱系统179高低温万能材料试验机180VTC-600-3HD三靶磁控溅射仪181电动固体表面分析仪182Instron毛细管流变仪183低温强磁场扫描探针显微镜184差分式反射式高能电子衍射仪185激光解吸飞行时间质谱仪186双组份高速纺丝试验机187原位变温相位调制型光学性能分析仪188动态光散射粒度分析仪189光场耦合低温磁电输运测量仪190紫外光刻联用光学显微镜系统191高温真空磁场退火炉192激光测振仪193接触式振动试验台194纺织数据分析平台195自旋转移力矩-铁磁共振测量仪器196频谱分析仪197矢量网络分析系统198四探针测试仪199缺陷测试仪1100光谱椭偏仪1101键合丝推拉力测试机1102基于USRP的大规模MIMO试验系统平台1103高速误码率分析扫频仪1104高性能频谱仪1105故障电机系统测试台架1106电机定子测量仪1107高速电机测试平台1108电机系统振动检测设备1109电机系统局部放电检测设备1110高速高精度传感平台1111高性能多分踪录波平台1112先进电力电子器件动静态测试系统1113多通道高精度功率分析仪1114X射线CT层析仪1115功率磁件性能与损耗测试设备1116高电压局部放电测试系统1117高温栅极偏压测试系统1118高温高湿反偏测试系统1119多芯片智能贴装定位机1120器件封装强度测试仪1121热阻抗网络特性与老化测试机1122纤维面料扫描仪1123电工电子训练全过程智能检测及行为识别系统1124工业智能检测实验平台1125纺织智能制造用纱量检测及自动上纱系统1126彩色3D数据采集系统1127法学智能数据模拟分析平台1128虚实多人云协同测绘系统1129无人船载水域物理及水质分析系统1130水下三维建模系统1131空天地大尺度环境污染监测系统1132高光谱成像系统1133智慧城市实景三维测绘建模系统1134地质灾害实时监测系统1135河湖快速三维建模系统1136耕地质量野外快速监测系统1137环境专业综合训练系统1138纺织行业资源循环与污染控排分析系统1139快速金属元素分析系统1140总有机碳分析仪1141流式细胞仪1142全功能近红外光谱分析仪1143核磁共振变温分析仪1144钨灯丝扫描电子显微镜1145CGS-MTD智能材料光电气湿多场传感特性动态检测系统1146多靶位超高真空磁控溅射仪1147新型光电传感特性分析仪1148示波器1149中红外超短脉冲测量仪1150短波显微拉曼/荧光光谱仪1151柔性电子制备检测平台1152近红外超短脉冲测量仪1153脑电采集设备及运算服务器3154大规模图像数据处理设备4155极端环境医疗器械可靠性测试与评价平台1156脑电信号采集与调控平台1157动物活体成像系统平台1158三色多通道活体光纤记录系统平台1159脑重症无创快速成像系统平台1160生理教学显微成像平台1161分子束光电离飞行时间质谱仪1162发动机部件非线性振动测试系统1163叶片性能分析试验系统1164极端高压物性测试系统1165大数据智能分析实验平台1166眼动分析系统1167面部表情分析系统1168机器视觉图像处理实验平台1169小动物成像仪1170稳态瞬态荧光光谱仪1171单四级杆液相色谱质谱联用仪1172化学生物学专业实验室建设1173基础化学实验创新平台1174基础化学实验虚拟仿真系统1175高效液相色谱仪1176蛋白质纯化仪1177流式细胞仪1178全自动高通量高性能比表面及孔径分析仪1179超高速落地离心机1180高气密性自动在线光催化分析系统1181物理化学测试系统1182模块化智能高级流变仪1183综合化学实验创新平台1184细胞代谢呼吸动态分析仪1185生物分子成像仪1186在线原位光谱检测系统1187在线高通量气体吸脱附系统1188圆二色发光仪器1189手性气-质联用仪1190在线圆二色显微成像仪1191超分辨转盘共聚焦显微镜1192圆二色发光仪器1193药物在线原位分析系统1194药物质量监测与评价系统1195小角X射线散射仪1196低压透射电镜1197真彩色共聚焦显微镜1198冷场发射扫描电镜1199全自动气体吸附仪1200自动进样器的差示扫描量热仪2201Zeta电位及粒度分析仪1202X射线衍射仪1203综合热分析1204傅里叶变换红外光谱仪1205电子背散射衍射仪1206激光导热仪1207原子分辨率球差校正透射电镜1208电感耦合等离子体原子发射光谱仪1209单晶X射线衍射仪1210全自动元素分析仪1211凝胶渗透色谱仪1212与热裂解联用的气相质谱仪1213热电双倾原位透射电镜样品杆1214高效液相色谱-静电场轨道阱高分辨质谱联用仪1215透射电镜旋进电子衍射及纳米晶体分析系统1216原位电化学拉曼光谱仪1217电子万能试验机1218复合材料内部缺陷检测系统12194D显微原位CT系统1220高温RTM试验系统1221复合材料振动测试系统1222四自由度缠绕试验系统1223圆二色光谱仪(Circular Dichroism)1224台式吸收精细结构谱仪 (XAFS)1225微区电化学振幅测试系统1226比表面分析仪1227气质联用仪1228多晶合金制备系统1229蛋白质液相分析仪1230全自动耗散型压电界面分析仪1231多功能酶标仪1232高温偏光荧光显微镜1233原子力显微镜控制器及附件1合计238
  • 洗衣液抽检合格率仅50% 厂商称检测标准太落后
    中广网北京5月15日消息 据中国之声《新闻纵横》报道,据中国洗涤用品工业协会通报,由该协会对市场上50种浓缩洗衣液进行抽检显示,其中符合行业标准的浓缩洗衣液仅占样本的50%。中国洗涤用品工业协会此次抽检涉及30个洗衣液产品和20个洗衣粉产品,其中囊括洗涤用品行业的知名品牌,也检验了一定数量来自中小企业的地方品牌。协会理事长郑舞虹向记者表示,总体来看,浓缩洗衣液样品合格率很低。   中国洗涤用品工业协会检测了30个洗衣液产品,有15个产品是符合行业标准的。符合率是50%。其中爱可丽净双倍浓缩婴儿专用高效洗衣液、美赞臣婴儿柔顺洗衣液这些品牌的洗涤用品都是不合格产品。   记者随后联系被点名的美赞臣和爱可丽净。美赞臣授权经销商的气势,显然要压记者一头。   记者:你们跟美赞臣是什么关系?   美赞臣:恩,有授权的。   记者:我看中国洗协发布了一个调查,说美赞臣的产品,洗衣液产品,是不合格的。   美赞臣:恩,然后呢?!然后呢?!   记者:是"美赞臣婴儿柔顺洗衣液"。   美赞臣:恩,说哪里没达标?   记者:说你们的活性剂……   美赞臣:你是在哪里看到说没达标?   记者:中国洗协网上公布的呀。   美赞臣:恩,那你发给我看呀!这些都是谣言,很正常,自己做得正的话,怕这些东西干嘛!   相关链接:   中国洗涤用品工业协会通报显示,"质量严重低于行业标准"的情况出现在"部分中小品牌"上,同样被指"质量低于行业标准"的爱可丽净,显然不甘被定位为"中小品牌"。   记者:现在售价是多少啊,就是"全天然双倍浓缩婴儿专用高效洗衣液"?   爱可丽净:一百七十九。   记者:一百七十九是吗?   爱可丽净:对的。高档超市才有卖,低端超市没有的。中端超市、大卖场都没有。   记者:那销量多吗?   爱可丽净:挺多的啊。   当然,"不达标"的说法,爱可丽净厂商同样不认可。厂商称,不是企业标准太低,而是行业标准不够先进,企业添加的很多活性剂以通用标准检测不出来。   爱可丽净:不是不符合标准,是他检测标准太低。   记者:谁的检测标准太低?   爱可丽净:国家检测标准低,因为我的标准,我表面活性剂有20几种,他只检测其中一种。   记者:国家标准低的话你们产品不是更应该合格吗?是高标准产品啊?   爱可丽净:对啊,但是,如果,我跟你说,他只检测一种其他都不检测,我们的一种(活性剂)的话达不到他总的活性剂的要求,所以变成不合格了呀。   记者:就是你们的产品其实是没有问题的?是标准不一样?   爱可丽净:对的,标准不一样。   对这一说法,协会理事长郑舞虹的第一反应与记者类似。   郑舞虹:低他们都不能符合,要是高了他们不就更不能符合了吗?   而对"检测不出的活性剂",郑舞虹认为,并不存在。   中国洗协的检测评定中,洗衣液和洗衣粉分别以2012年11月实施的QB/T 1224-2012行业标准和GB/T 13171.1-2009国家标准进行检测和判定,在所检指标中如果有一项或一项以上指标不符合判定标准要求,就判定该产品"不符合"。但郑舞虹也坦言,这样的"不合格"判定,对于厂家来说,并没有法律效力。   郑舞虹:好多企业是按企业标准来组织生产的。我们洗衣液和洗衣粉的行业标准是推荐性的,企业似乎在钻这个空子,他去当地的质监局备案了低于国标和行标的标准,从市场上来说,他可能还是合格品。从标准化法来讲的话,推荐性标准企业是可执行、可不执行的。我们也呼吁,是不是可以对这种低于国标和行标的(企业)标准不要给予备案。   尽管浓缩洗衣液的抽检合格率是低得可怜的50%,郑舞虹也指出,不合格产品所占市场份额仅为约10%,一般选购大品牌洗衣产品,质量能够保障。总体来说,老百姓平常所见的知名品牌都是没有问题的。
  • 11台物性测试仪器荣获2021科学仪器优秀新品上半年入围奖
    仪器信息网讯“科学仪器优秀新品”评选活动2021年度上半年入围奖评审已经结束,经专业编辑团初审、网络评审团初评,现已确定2021年度上半年的入围奖名单。为了将在中国科学仪器市场上推出的创新性比较突出的国内外科学仪器产品全面、公正、客观地展现给广大国内用户,同时,鼓励各科学仪器厂商积极创新、推出满足中国用户需求的科学仪器新品,仪器信息网自2006年发起“科学仪器优秀新品”评选活动。截至2020年度,“科学仪器优秀新品”评选活动已经成功举办了15届。每年评选出的年度“优秀新品奖”受到越来越多的仪器用户、国内外仪器厂商以及相关媒体的关注和重视。经过10余年的打造,该奖项已经成为国内外科学仪器行业最权威的奖项之一,获奖名单被多个政府部门采信。“科学仪器优秀新品” 评选活动2021年度上半年申报并批准的新品共计163台,入围70台。入围名单中,物性测试仪器11台, 电子测量仪器1台。物性测试及电子测量仪器入围名单如下(排名不分先后):物性测试仪器公司名称产品名称产品型号详情链接日立分析仪器(上海)有限公司差示扫描热量计DSC600&DSC200详情大昌华嘉科学仪器泡沫分析仪Turbiscan TMIX详情大昌华嘉科学仪器全自动压汞仪BELPORE系列详情美国AMI仪器公司(中国)稳态同位素化学吸附仪AMI300SSITKA详情杨氏环境科技(东莞)有限公司大型高低温试验室YSTH-016-A详情轶诺仪器(上海)有限公司高端洛氏硬度计HAWK 652RS-IMP详情赛默飞世尔科技材料与矿物在线分析锂离子电池测厚仪LInspector详情上海沃埃得贸易有限公司弹痕分析系统Alias-005详情上海沃埃得贸易有限公司手持便携应力分析仪LTS-640V详情丹东百特仪器有限公司纳米粒度及电位分析仪BeNano 90 Zeta详情东莞市晟鼎精密仪器有限公司动态接触角测量仪SDC200S详情电子测量仪器公司名称产品名称产品型号详情链接国仪量子(合肥)技术有限公司数字延时脉冲发生器ASG8000详情入围产品创新点如下:1、日立DSC600&DSC200差示扫描热量计创新点:新登场的DSC系列提供一流的灵敏度和的基线重复精度,即使在包含痕量级热活性物质的复合材料中,也具有令人难以置信的信噪比,能够捕捉到最微小的热事件。2、大昌华嘉Turbiscan TMIX 泡沫分析仪创新点:Turbiscan TMIX科学地通过软件对泡沫气泡过程精确控制,从起泡到衰变,全过程实时全分析,测量速度间隔仅20秒,高度分辨率40um,充分高度保证测量条件完全可重复。3、大昌华嘉BELPORE系列全自动压汞仪创新点:BELPORE系列全自动压汞仪全自动垂直进汞,持续高真空;高分辨率检测多达20000个数据点;无需连接气体和液氮,可以实现安全运行和全部功能;设计紧凑,空间要求低;膨胀计的垂直布置确保了操作的安全性;通过清洁装置有效地重复使用水银;All devices are CE-certified and ISO;所有设备均通过CE认证和ISO9001认证。4、AMI300SSITKA稳态同位素化学吸附仪创新点:稳态同位素瞬变动力学分析是这台机器的创新之处,该分析为一种稳态时在同位素标记与未标记反应物间快速切换并及时记录反应物和产物的瞬变行为以得到反应的本征动力学信息的非均相催化反应动力学研究技术。这种技术在商用化学吸附仪中首次融合。5、杨氏仪器YSTH-016-A大型高低温试验室创新点:采用独特的平衡调温调湿方式,可获得安全、可靠的温湿度环境。具有稳定、平衡的加热加湿性能,可进行高精度、高温度的温湿度控制。装备高精度智能化的温度调节器,温湿度采用彩色液晶触摸显示屏,可进行各种复杂的程序设定,程序设定采用对话方式,操作简单、迅速制冷回路自动选择,自控装置具有随温度的设定值自动选择运转制冷回路的性能,实现高温度状态下的直接启动制冷,直接降温。6、轶诺HAWK 652RS-IMP凸鼻子洛氏硬度计创新点:凸鼻子175mm,喉深175mm第二Z轴测试台&载物台附件,电动滚珠轴承力传感器,闭环,力反馈系统在压头处测量试验力全高度线性滑动,无迟滞机械系统测试纵高650mm 425 x 370 大工作台和带t型槽的硬质平台200mm可移动测试台,可允许插入特殊试台 用于试样照明的LED灯内置高性能系统控制器,mSSD硬盘Win10系统,IMPRESSIONS™ 控制软件 15”工业触摸屏LAN,W-LAN,USB连接,预安装远程支持软件 ABS外壳,保护主体不受损坏可选配BIOS布氏压痕光学扫描仪,用于自动布氏测量。7、Thermo Scientific LInspector锂离子电池测厚仪创新点:测量光斑尺寸小,采样速率高,可实现无与伦比的条纹分辨率和涂层边缘缺陷分析;更快的扫描速度可覆盖更大的范围,从而降低未被检出的缺陷的发生;精确测量和自动模头控制,确保产品符合严苛的产品规范;精确的涂布宽度尺寸分析,可避免电极材料的过度浪费;基于云的数据和已识别缺陷存档,可实现产品缺陷全面追溯;基于云的数字化 IPM 和仪器性能管理,实现了对仪器健康状况和运行状态进行全天候自动化的智能监控,同时,可对数据进行安全存档,确保合规性数据的完整性和安全性;自动通知服务通过仪器健康状态诊断可实现快速服务响应,提高故障的首次修复率,从而减少停机时间,并提高生产率。8、Alias-005弹痕分析系统创新点:可以构建视觉效果丰富的3D项目符号和弹匣图像,然后提供强大的工具来使用地形敏感的彩色化以及可调整的光源和轴方向来分析它们。ALIAS图像数据由世界上最先进的瑞士制造,特定于应用的干涉仪捕获,然后使用完全现代化的64位计算和应用程序体系结构进行处理,该体系结构使用专利软件算法快速定义3D数据。ALIAS的3D,微米和纳米级分析提供了前所未有的准确性。简化的三步信息管理/可视化/确认过程可加快在成年犯案案件中定罪的时间。9、LTS-640V1mk手持便携应力分析仪创新点:重量仅为650克,方便携带;高分辨率、高灵敏度,应力灵敏度小于1MPa,允许苛刻环境监测; 分析速度快、稳定性优良; 无盲点、多点位确定应力。10、丹东百特BeNano90Zeta纳米粒度及Zeta电位分析仪创新点:BeNano 系列纳米粒度电位仪是丹东百特仪器有限公司全新开发的测量纳米颗粒粒度和Zeta电位的光学检测系统。该系统中集成了动态光散射DLS、电泳光散射ELS和静态光散射技术SLS,可以准确的检测颗粒的粒径及粒径分布,Zeta电位,高分子和蛋白体系的分子量信息等等参数,可广泛的应用于化学、化工、生物、制药、食品、材料等等领域的基础研究和质量分析质量控制用途。11、晟鼎精密SDC200S动态接触角测量仪创新点:自主研发的分析软件,衬时跟踪设备状态。可对设备测量参数进行设置,同时对设备的状态进行实时跟踪;3D形貌法和局部轮廓测试法,由于材料表面自由能难以保持趋于稳定的状态,导致液滴的3D形态与二维形态产生较大出入,用3D形貌法和局部轮廓测试法可以消除样品表面能不规则造成的影响,从而得出较准确的效果;测量功能升级,全自动实时跟踪测量数据,实时动态谱图,多种表面自由能测量,连续动态润湿性测量。12、国仪量子ASG8000数字延时脉冲发生器创新点:国仪量子全新上市新品,高达8通道,最高精确到50ps,存储高达4GB。需要特别指出的是,本次入围评选仅限于2021年上半年申报的仪器范围。有些厂商虽然在网上进行了申报,但在规定时间内没有能够提供详细、具体的仪器创新点说明,有说服力的证明材料以及详细的仪器样本,因此这次没有列入入围名单。另外,非独家代理的代理商提供的优秀国外新品也不能入选。由于本次参与申报的厂家较多,产品涉及门类也较多,对组织认定工作提出了很高的要求,因此不排除有些专业性很强的仪器未被纳入评审范围。该入围名单将在仪器信息网进行为期10天的公示。所有入围新品的详细资料均可在新品栏目进行查阅,如果您发现入围仪器填写的资料与实际情况不符,或非2021年上市的仪器新品,请您于2021年8月26日前向“科学仪器优秀新品”评审委员会举报和反映情况,一经核实,将取消其入围资格。“科学仪器优秀新品”评选活动建立了长期、稳定、高水平的四级评审体系:“专业编辑团”、“网络评审团”、“技术评审委员会”、“技术评审委员会主席团”。专业编辑之外的评审专家分别来自高校、研究所和企业,从事仪器研制、制造和应用相关工作,其中具有研究员、教授等高级职称的专家所占比例超过了90%。 “专业编辑团”承担新品初审的工作 “网络评审团”分别承担“季度入围奖”、年度“提名奖”评审工作 “技术评审委员会”承担年度“优秀新品奖”评审工作 “技术评审委员会主席团”承担各个阶段评审工作的监督、检查工作,对“季度入围奖”名录、年度“提名奖”名录、年度“优秀新品奖”名录拥有最终裁决权。各位新品评审专家按照严格的评审程序,对申报的新品进行网上、网下的评议(逐一进行打分、是否推荐并给出评审意见)。更多内容请点击详情查看。“科学仪器优秀新品”评审委员会联系方式:电话:010-51654077-8027 刘女士传真:010-82051730电子信箱:xinpin@instrument.com.cn
  • 智能扬声器的语音和音频测试
    智能扬声器已经风靡千家万户,其消费者满意度与其智能扬声器对语音命令的理解程度密切相关。语音清晰度和音质对于平台提供商至关重要。那么,如何确保您的产品能够满足消费者的严格要求?真实测试一种常用的方法是测量响应准确率(RAR),方法是回放录制好的语音命令并评估语音命令被正确感知和响应的频率。常见的错误是使用标准的扬声器和传声器,但这会错误地指示性能,因为它无法准确再现人声的指向性和频率响应。比较准确的方法是使用人嘴和人耳模拟器。智能扬声器测试标准为确保质量及其品牌,智能扬声器平台对语音再现和识别系统提出性能要求,即要求使用与人类语音特征精确匹配的设备。这对于那些希望将“智能”功能集成到其产品中以符合平台供应商推荐的仪器制造商来说至关重要。再现人类语音和听力Bruel & Kjaer提供的市场主导产品人嘴和人耳模拟器可以满足这些平台的严格要求,确保质量和可重复性。高频头和躯干模拟器(HATS)Bruel & Kjaer的5218型高频HATS系列是产品音频评估领域的新标准。配备了人耳和人嘴模拟器,高频HATS可以在最高20kHz的频率范围内进行精确测量。它具有发出语音命令和测量智能扬声器响应质量的功能,可以对智能扬声器和其他语音操作装置进行全自动测试。Bruel & Kjaer的高频头和躯干模拟器符合ITU-T P.58标准的客观测量仪器标准中定义的主要功能。嘴模拟器Bruel & Kjaer的4227型嘴模拟器是一种高性能的人工嘴,可模拟人类语音的扩散模式。嘴模拟器的紧凑包装和坚固的结构使其非常适合在研发实验室或生产测试台上使用。其高品质的结构可在较长时间内提供可靠且可重复的测量,并且符合ITU-T P.51测试标准。语音中的声散要重现人的声音并获得用于智能扬声器测试的逼真的测试环境,就必须考虑声散。 语音弥散描述了语音的振幅随角度和距离的衰减情况。ITU标准定义了相对于嘴参考点(MRP)的衰减值。嘴参考点是唇参考面(LRP)前方25mm处的一个点,并定义了相对于距嘴参考点前方500mm处的65.3dB SPL或嘴参考点上的89.3 dB SPL的dB衰减。这些点位于以MRP为中心的一个圆上,并在水平面中按0°、±15°、±30°和±90°分布,在垂直平面中按±15°和±30°分布。知乎世界上最安静的房间 | 在消声室静静是种什么样的体验 | 国产大飞机C919拍西瓜的科学依据 | 声学界吉尼斯 | 最冷的乐器 | 特别烧钱的坑还有这种操作? | 如何运用声学知识帮助沟通障碍人群?微信都说索尼大法好,究竟好在哪?声振界第一玄学之声品质 | 为何声音听起来“不舒服”?上汽通用五菱 | 更实用快速的NVH性能开发模式纯干货分享 | 7799型自由场声压法测声功率专属夏天的声音 | 用数据看蝉鸣您还可以通过如下方式联系我们,了解更多产品与应用详情:邮箱:cn.info@bksv.com官网:http://www.bksv.cn电话:400-900-3165(周一至周五9:00-18:00)
  • 涉及1556台仪器,年产100亿只芯片项目工艺流程曝光
    半导体生产流程由晶圆制造、晶圆测试、芯片封装和封装后测试组成。所谓封装测试其实就是封装后测试,把已制造完成的半导体元件进行结构及电气功能的确认,以保证半导体元件符合系统的需求的过程称为封装后测试。对此,仪器信息网特通过公开文件了解到池州华宇电子科技有限公司年产 100 亿只高可靠性集成电路芯片先进封装测试产业化项目情况。据了解,池州华宇电子科技股份有限公司投资 15800 万元在池州市经济技术开发区凤凰大道与前程大道交叉口新建“年产 100 亿只高可靠性集成电路芯片先进封装测试产业化项目”,项目占地面积 65 亩,中心坐标为东经 117.543982°, 北纬 30.705040°。建设主体工程1#厂房,配套建设办公楼、科研楼、宿舍楼等辅助工程以及储运工程、公用工程和环保工程等,购置切割机、研磨机、键合机、焊线机、 编带机、成型机、镀锡设备、双轨机、塑封压机等半导体自动化设备,建设高性能高可靠性集成电路芯片封装测试生产线,形成年产 100 亿只集成电路线宽小于等于 0.8 微米集成电路芯片封测能力。项目分两期建设,一期建设3条镀锡(自动)生产线,形成年产 50 亿只集成电路线宽小于等于 0.8 微米集成电路芯片封测能力;二期建设 3 条镀锡(1 条挂镀)生产线,形成年产 50 亿只集成电路线宽小于等于 0.8 微米集成电路芯片封测能力。该项目配置清单和工艺流程详情如下,主要配套设备一览表主要工艺流程及产污环节:本项目主要是将待封装的芯片进行封装、镀锡、测试。本项目一期工程主体工艺 流程如下。①主体工艺:项目主体生产工艺流程及产污环节图工艺流程说明:磨划片:通过研磨机将芯片磨至需要的厚度,磨片过程中用纯水冲洗,磨片完成后进行切割,切割完成后用纯水冲洗,磨划过程会产生少量废水 W1 与固废 S4; 粘片:目的是将单个的芯片固定在基材(引线框架/基板)上。该过程采用导电胶进行粘片,导电胶的成分为树脂和银粉。粘片过程会产生少量废引线基材 S1;键合:接线温度 T=120-200℃,接线时间 t=0.5-1 秒。在压力和超声波键合的共同作用下,利用高纯度的金丝或铜丝把芯片上电路的外接点和引线(框架管脚)通过引线键合的方法连接起来。该过程主要产生少量废金属 S2(废铜线等)。塑封:采用环氧树脂塑封材料将部分框架和焊线后的芯片封装,对组装件进行保护,该过程在自动塑封机内完成,主要产生少量废胶渣 S3。塑封过程中树脂熔融状态会产生有机废气 G1。激光打标:采用激光机,在相应部位打上标记。激光机在打标过程会产生有机废气 G2 和粉尘 G1。表面处理:采用电镀流水线进行无铅镀锡处理。切筋:镀锡后的元件通过引线连在一起,因此需要将引线切断,以将整条元件分割成单片。切筋后形成的单片,即为封装完成的集成电路。该过程主要产生边角料 S6。测试、检验:对封装完成的单片进行测试以及抽检。该过程产生的不合格品将返工。包装:对测试、检验合格品进行包装入库。②镀锡工艺:项目镀锡工艺流程及产污环节图工艺流程明:高温软胶(高温蒸煮槽):电子元器件在塑封时会溢出多余的环氧树脂毛刺、飞边,故需要使用化学去毛刺溶液,在 60-100℃温度下浸泡,使毛刺或飞边溶胀、溶解、 软化,以便接下来使用高压水喷射彻底去除。化学去毛刺溶液的主要成分是氢氧化钾、杂环酮类衍生物、聚乙二醇、醚类衍生物,产品浸泡后需要用水清洗,清洗时会有废水 W2-1 产生(碱性废水)。高压水去胶:通过增压系统加压自来水,使自来水压力达到 200-500kgf/cm2,用来去除已软化或松动的毛刺或飞边,产生废水 W2-2 定期处理循环利用。去氧化:去除产品表面的氧化物,使镀层与基材有良好的结合力。使用的化学品是过硫酸钠,浓度 50g/L 左右,常温使用,去氧化后需要用水清洗,清洗时会有废水 W2-3 产生(酸性废水)。预浸:主要作用是镀锡前对产品进行活化,并防止污染镀锡液,使用浓度 10%的甲基磺酸,预浸后不需要清洗,没有废水产生。镀锡:通过电化学沉积的方法,在基材上覆盖一层功能性纯锡镀层,使产品具有良好的可焊性。镀锡液主要由 150g/l 的甲基磺酸、60g/L 二价锡和 50mol/L 的表面活性剂组成,温度 30-50℃,电流密度 10-30ASD。镀锡后需要用水清洗,清洗会产生废水 W2-3(酸性废水)。中和:中和镀锡残留的酸性物质,防止镀层变色、腐蚀。中和液使用碳酸钠配置,操作温度常温,中和后需要清洗,清洗会有废水 W2-1 产生(碱性废水)。超声波清洗:采用纯水机制备的纯水,进行最后的超声波清洗,清洗温度为 50-70℃。干燥:工序最后对芯片进行干燥处理,干燥主要分为风干和烘干。退镀:镀锡线采用不锈钢钢带和夹子来夹持和传送产品进行镀锡,钢带和夹子上也会镀上一小部分的锡,需要对这部分锡进行剥除和回收。退镀液的主要成分为甲基磺酸(55g/L),使用小于 1.5V 的电压进行电解,使钢带和夹子上的锡剥除并重新沉积在回收钢板上。退镀后用超声波溢流水清洗,不新增清洗废水。项目退镀工艺流程项目需定期对沉锡工序使用的钢带和假片进行退锡。退锡周期约 1 次/月。 ①钢带退锡:采用电化学方法(利用甲基磺酸)在高速退锡线中使钢带上的锡转移到钢板上,与锡化生产线同步进行:钢板退锡是利用电解方法将钢板上的锡电解形成锡渣 S,退锡后利用纯水清洗:此过程将产生一定的酸性气体 G3-2 酸性气体,退锡清洗废水 W2。②夹片退锡:使利用化学方法使用电解液将夹片上的锡溶解到退锡液中,夹片退锡后利用纯水清洗。此过程将产生一定的酸性气体 G3-2 酸性气体,退锡清洗废水 W2。退锡工序产生的锡渣回用于镀锡工序。③其他产污环节本项目其他产污环节主要包括:反渗透法制纯水产生的浓水 W3,废气喷淋塔产生的废水 W4,一般性固态原辅料拆包装过程产生的废包装材料 S11,化学品使用过程产生的沾有化学品的容器 S7,污水处理站产生的污泥 S8,设备及地面定期清洗废水 W5,以及员工日常生活产生的生活污水 W6 和生活垃圾 S9,纯水制备过程会产生废反渗透膜 S10,生产过程中产生的不合格产品 S11。
  • 闻泰科技650V氮化镓(GaN)技术已通过车规级测试
    闻泰科技11月3日在投资者互动平台表示,安世半导体在行业推出领先性能的第三代半导体氮化镓功率器件 (GaN FET),目标市场包括电动汽车、数据中心、电信设备、工业自动化和高端电源,特别是在插电式混合动力汽车或纯电动汽车中,氮化镓技术是其使用的牵引逆变器的首选技术。目前公司的650V氮化镓(GaN)技术,已经通过车规级测试。碳化硅(SiC)产品目前已经交付了第一批晶圆和样品。2021年上半年,公司半导体业务研发投入3.93亿元(全年规划9.4亿元),进一步加强了在中高压Mosfet、化合物半导体产品SiC和GaN产品、以及模拟类产品的研发投入。在化合物半导体产品方面,目前氮化镓已推出硅基氮化镓功率器件(GaN FET),已通过AEQC认证测试并实现量产,碳化硅技术研发也进展顺利,碳化硅二极管产品已经出样。
  • 兰州食品安全检测装置项目全球招商
    在食品安全问题日益突出的今天,检测仪器的研发生产成了热门的行业。欲投资8600万元的兰州市数字化X射线食品安全检测装置项目被列入《2011甘肃重点招商项目册》已开始面向全球招商,这就意味着,食品安全检测在不久后有望用上由兰州生产的数字化X射线食品安全检测装置。   据了解,兰州三磊电子公司是专门从事X射线计算机实时成像设备的开发和生产的企业,已经开发研制出了变频控制自动定位检测小车、三可变CCD摄像机等产品。数字化X射线食品异物扫描检测仪是兰州三磊电子公司专门针对食品生产企业对食品安全检测要求开发的智能化检测仪器,可在不打开食品包装的情况下快速检测出食品中夹杂的石头、金属、塑料、骨头碎片、玻璃等异物以及检查包装物内物品缺失,并将不合格品自动检出。该装置除了满足肉类加工、家禽、鱼、冷冻食品、干鲜蔬菜、罐头食品、即食快餐等检测要求外,还要进一步研究本技术在药品、纺织、服装、化工、塑料、酿造、皮毛、玩具等加工行业原材料、半成品、制成品合格性检验。   目前,我国有50多万家食品生产加工企业,然而X射线食品异物检测产品普及率不足5%。预计未来5年内,国内将有2000多家肉食加工企业将被强制实施食品异物检测手段,保守预计X射线食品异物检测仪器的销售量超过10亿元。该公司计划在未来2年内完成满6个系列28个不同规格数字化X射线食品安全检测装置的研制与开发,以满足各个领域的应用要求。   该项目总投资8600万元,项目建成后达到年产400台数字化X射线食品安全检测装置的生产规模,年产值将达到9200万元。
  • 齿轮视觉检测仪器与技术研究进展
    齿轮视觉检测仪器与技术研究进展石照耀 1*,方一鸣 1,王笑一 2 1 北京工业大学北京市精密测控技术与仪器工程技术研究中心,北京 100124; 2 河南科技大学河南省机械设计及传动系统重点实验室,河南 洛阳 471003摘要:相对于接触式测量,机器视觉检测这种非接触式测量具有效率高、信息全、稳定性好、可识别缺陷等优点,在齿轮检测领域得到越来越广泛的应用。近十年来出现了影像仪、闪测仪、CVGM仪器、在线检测设备等多种基于机器视觉技术的齿轮检测仪器,它们既可以实现齿轮综合式测量,又可以实现齿轮分析式测量。回顾了齿轮视觉检测仪器的发展历程和特点,分析了齿轮视觉检测中边缘检测、亚像素定位、特征提取和模式识别等算法的研究和应用进展,总结了机器视觉在齿轮精度测量和齿轮缺陷检测两个方面的技术发展,并指明了齿轮视觉检测仪器与技术的发展前景。关键词:机器视觉;齿轮测量;齿轮视觉检测仪器;齿轮精度测量;齿轮缺陷检测1 引言齿轮是应用广泛的基础件,其质量直接影响齿轮传动系统的承载能力和寿命等。齿轮检测是分析齿轮加工误差来源、提高齿轮加工精度、保证齿轮产品质量的必备手段。齿轮测量可分为接触式测量和非接触式测量。由于齿轮形状复杂,精度要求高,传统的非接触式测量方法难以满足齿轮测量精度要求,因此传统的齿轮检测设备通常采用接触式测量方式。应用广泛的齿轮测量中心和齿轮双啮检查仪分别是齿轮分析式测量设备和综合式测量设备,均为接触式测量方式。随着计算机技术和视觉测量技术的进步,机器视觉测量精度逐渐提高,在一些场合已经可以满足齿轮检测的需求。相对于接触式测量,机器视觉测量具有效率高、信息全、稳定性好、可识别缺陷等优点,在齿轮测量领域应用越来越广泛。近年来出现了影像仪、闪测仪、computer vision gear measurement(CVGM)仪器、在线检测设备等多种基于机器视觉技术的齿轮检测仪器,它们既可以实现齿轮综合式检测,又可以实现齿轮分析式测量,更能进行齿轮缺陷检测。接触式测量属于串联测量模式,通过测量齿面上一系列点来完成某种测量目标,测量效率较低,大批量齿轮的在线全检是个挑战。此外,接触式测量方法只能测量齿轮的尺寸和精度,难以进行齿轮缺陷检测。目前齿轮产品的外观缺陷主要依靠肉眼筛查,一些细微缺陷还要借助放大镜、工具显微镜等辅助设备进行识别,这些设备检测效率低、误检率高,且无法对缺陷进行准确分类和溯源。齿轮视觉检测属于并联测量模式,一次测量可获取整个区域内的几何要素和外观缺陷数据,检测速度得到极大提升,可以用于大批量齿轮的全检;更重要的是能同时进行齿轮精度测量和齿轮缺陷在线检测。基于视觉的齿轮精度测量是齿轮精度理论与机器视觉技术的有机结合,作者将我国首创的齿轮整体误差理论融入齿轮视觉检测技术中,大大拓展了对齿轮误差的分析能力。齿轮缺陷在线视觉检测技术可实现对大批量齿轮的100% 全检,柔性和自动化程度高,既能实时反映生产状态,及时预警,也方便管理者掌控一定周期内产品质量变化,还可以根据大数据做进一步的质量评估、产能分析和工艺优化。2 齿轮视觉检测仪器如图1 所示,齿轮视觉检测仪器由工业相机、镜头、光源、计算机等几个主要部分组成。常用两种照明方式:图1(a)采用背光光源从待测齿轮下方照明,采集到的是齿轮投影图像,齿轮边缘锐度高、噪声小,此方式适用于齿轮精度测量;图1(b)采用正光光源从待测齿轮上方照明,采集到的是齿轮端面图像,能够凸显齿轮表面缺陷特征,此方式适用于齿轮表面缺陷检测。图1 齿轮视觉检测仪器构成(a)齿轮精度测量系统;(b)齿轮缺陷检测系统几十年来,齿轮视觉检测仪器经历了从只能“离线抽检”齿轮的“个别尺寸”,到结合齿轮精度理论做出齿轮“精度评定”,再到可以在生产现场“在线检测”的越,从通用仪器演变为专用仪器。常见的通用仪器有影像仪、闪测仪等,专用仪器有CVGM 仪器、齿轮在线检测设备等。2.1 影像仪影像仪(VMM)是小零件行业应用广泛的通用视觉检测仪器,可用于测量齿轮外径、孔径等几何尺寸。影像仪有手动式和自动式之分。手动式影像仪的成本较低,但调光、对焦、选点、修正等都依赖人工操作;测量齿轮时,需要人工取点来拟合齿顶圆、齿根圆等几何要素。世界上第一台由电机驱动的自动影像测量系统是1977 年由美国View Engineering 公司研发的“RB-1”系统。目前,国内外有众多企业生产自动式影像仪,典型有瑞典海克斯康、德国蔡司、日本三丰、深圳中图仪器、贵阳新天光电、苏州天准科技等。自动式影像仪在工作台的X、Y 和Z 轴方向可以精确移动,能够实现自动对焦,测量精度更高。通过示教或编程可以实现齿轮测量中的自动取点,但操作过程较为复杂,对操作人员要求高。自动式影像仪一般没有齿轮测量专用软件,能够测量的齿轮指标不全,不能进行精度评价和分析。传统影像仪视场一般较小,为了获取整个齿轮端面轮廓,需要进行图像拼接。手动式影像仪进行图像拼接时效率低、难度大,精度也较差。自动式影像仪可以实现图像的自动拼接,效率较高,但拼接成的图像存在亮度、对比度不均匀的现象,尺寸测量精度同样受到影响。2.2 闪测仪近年来,市面上出现一种新型的一键式影像测量仪(闪测仪),视场范围大,可以一次测量多个零件。日本基恩士的IM-8000 闪测仪可在数秒内同时完成最多100 个目标物、300 个部位的测量,可以任意摆放工件,一键自动识别,自动匹配测量。独特的亚像素处理技术可使图像分辨率达0. 01 pixel,测量精度达±2 μm。深圳中图仪器的VX8000 系列闪测仪也可实现同等级的测量精度。此外,闪测仪还可导入CAD 图,通过“比较测量”识别缺陷,如将实际齿廓图像与标准CAD 图的齿廓对比,可以得到缺齿、断齿等缺陷信息。闪测仪的测量效率相比传统影像仪显著提升,但价格昂贵,同样缺少齿轮精度评价专门功能。2.3 CVGM 仪器1980年代,日本和我国开始了齿轮激光全息测量技术研究。基本原理如图9所示,以单频的氦氖激光器为光源,首先在干涉测量系统获得参考标准齿面的全息图像,然后将标准齿面替换为被测齿面放置于干涉测量系统中,同时将已经拍摄到的全息图像置于系统中。测量时,激光经分光棱镜分光扩束后分为了测量光路和参考光路,其中测量光照射到被测齿面上。两束光线同时照射在全息图上,形成了被测齿面和参考齿面间的干涉条纹,并投影在接收屏幕上。在对条纹图像进行数据处理后,可以得到被测齿面相对于标准齿面的形状误差。在测量光与全息图像之间放入平行平晶,用来调整测量光的相位。对于模数0. 2 mm 以下的小模数齿轮,难以使用接触式方法测量齿廓、齿距、公法线长度等关键参数;现有影像式测量设备不能给出齿轮精度评价报告。如图2所示,CVGM 仪器专用于解决小模数齿轮测量难题,可在1 s内自动计算出齿廓、齿距、径向跳动、公法线长度、齿厚变动量、内孔尺寸、实际压力角等关键精度信息,自动根据齿轮精度标准ISO-1328对齿轮误差进行评级,输出完整的齿轮精度检测报告,并做出OK/NG 判断。CVGM 仪器的齿廓偏差测量精度为±3 μm,齿距偏差测量精度为±2 μm,具有强大的分析功能,可测量双向截面整体误差曲线(SJZ 曲线)。图2 CVGM 小模数齿轮测量系统(a)CVGM 软件;(b)CVGM 系统如图3 所示,CVGM 仪器使用齿轮整体误差曲线作为齿轮单项误差计算的中间体,即先由齿轮轮廓生成齿轮整体误差曲线,再由齿轮整体误差曲线计算出各单项误差;并以SJZ 曲线方式表达测量结果,大大提升了齿轮误差分析能力。图3 基于视觉的齿轮整体误差分析2.4 齿轮在线检测设备齿轮视觉在线检测设备一般都具有分选功能,根据检测结果把被测产品分成合格品、不合格品,或按齿轮精度等级分类,或按缺陷类型分类。该类设备结构形式有三种:直接集成在齿轮产品传送带上方,结构较简单;使用专用上下料机械手和其他辅助机构,结构最复杂;采用玻璃转盘式结构,应用最广泛。图4位于传送带上方的齿轮视觉在线检测设备,优点是占用空间小,但传送带运动不平稳和易磨损,产品摆放角度不固定,导致检测精度难以提高。由于传送带不透光,该设备无法获取齿轮与传送带接触面的图像,不能实现双面测量。图4 传送带式齿轮视觉检测系统图5 所示设备采用了机械手、导轨、转盘等部件,结合专门设计的自动检测装置完成齿轮上下料、检测、分选和摆盘等一系列操作。这类检测设备功能较强,但结构复杂,成本较高。图5 使用机械手和自动装置的齿轮视觉检测设备本团队研制了玻璃转盘式的注塑齿轮在线检测分选系统,如图6 所示,该系统已应用于注塑齿轮生产线,工作稳定,取得了突出的使用效果。玻璃转盘由伺服电机和精密减速器驱动,带动待检齿轮通过视觉检测工位,可保证图像采集过程中齿轮匀速平稳运动。转盘采用高透明玻璃材质,不需翻转就可得到产品底部的检测图像。由光电传感器定位齿轮在转盘上的位置,使用气动执行器将OK/NG 的齿轮吹入相应的存储盒实现自动分拣。该系统能够实现注塑齿轮黑点、毛刺、缺齿、断齿、翘曲变形等外观缺陷检测,也能完成常规几何尺寸和形位误差的测量,并能根据缺陷阈值、尺寸公差实时分选出合格品和不合格品,且具备报警功能。该系统对齿轮端面的检测时间小于0. 3 s,满足生产节拍的需求,特别是具有齿轮轴向测量功能。图6 玻璃转盘式齿轮视觉检测分选系统图7 为注塑齿轮在线检测分选系统软件界面。该软件具有自主知识产权,在软件数据库中贮存了常见齿轮型号及对应的尺寸公差和配置参数,包括CPK 分析和XR图分析,提高了参数输入效率。注塑齿轮在线检测分选系统兼具精密测量与缺陷检测功能,包括齿轮轴向高度、齿距、公法线、同心度等与齿轮精度相关的检测,齿轮外观缺陷识别准确率能满足注塑齿轮大批量在机检测需求。图7 注塑齿轮在线检测分选系统软件界面3 齿轮视觉检测技术齿轮视觉检测技术是齿轮视觉检测仪器的核心,涉及光学、电子学、计算机图形学、齿轮几何学等多个学科,内容覆盖光学成像、图像处理、软件工程、工业控制、传感器、齿轮精度理论等。近几年,与齿轮视觉检测技术相关的新技术、新理论、新方法大量出现,在多个核心问题上取得了重要的研究进展。齿轮视觉检测技术既有一般视觉检测的共性问题,又有齿轮视觉检测中的特殊问题。齿轮视觉检测的工作流程包括图像采集、图像预处理、边缘检测、齿轮精度评定或齿轮缺陷分析等,其中图像采集、图像预处理、特征提取、图像分割、边缘检测、亚像素算法等属于通用的视觉检测技术,而齿轮精度评定和齿轮缺陷识别属于齿轮视觉检测技术的个性问题。这里先从图像采集系统(硬件)和图像处理算法(软件)两个方面综述与齿轮视觉检测技术相关的共性问题的研究进展,然后从齿轮精度测量和齿轮缺陷检测两个方面介绍齿轮视觉检测技术中个性问题的研究进展。3.1 图像采集系统图像采集系统一般由计算机(主机)、图像采集卡、工业相机、镜头、光源等组成。工业相机按照传感器芯片种类可分为CCD 相机和CMOS 相机两种,传统上CCD 相机效果更好,但随着技术的发展,目前在一般应用场合CMOS 相机基本已经取代了CCD 相机。相机数据接口常见的有GigE 接口、USB 接口(USB2. 0和USB3. 0)、Cameralink 接口等。其中采用GigE 或USB 接口的工业相机可以直接通过线缆与主机通讯,不需要数据采集卡;而其他接口如Camerlink 接口的相机则需要配备图像采集卡才能与主机通讯。常用的工业镜头按等效焦距分类主要有广角、长焦、中焦、远心、微距镜头等。一般远心镜头的畸变更小,景深更大,可以消除“近大远小”的测量误差,更适合进行高精度的尺寸测量,因此在齿轮视觉检测领域使用最多的镜头为远心镜头。但远心镜头通常价格较高,对精度测量要求不高时,可用普通镜头替代。视觉检测领域常用的光源有点光源、面光源、条形光源、环形光源、穹顶光源、同轴光源等类型,其作用主要有强化特征和弱化背景、突出测量特征、提高图像信息、简化算法、降低系统设计的复杂度、提高系统的检查精度和效率。在齿轮精度测量领域常用的光源主要是面光源,面光源的光线具有更好的方向性,均匀性更好,齿廓更清晰;在齿轮缺陷检测领域主要使用穹顶光源、环形光源和同轴光源等,这些光源可使整个齿轮端面图像的照度十分均匀,突出缺陷特征。齿轮视觉检测的核心问题是测量精度和检测效率,这两个问题都与图像采集系统密切相关。为了提高测量精度,应当选用分辨率更高的相机;为了提高检测效率,需要选择分辨率低的相机,以减少需要处理的数据量,提高软件计算速度。精度和效率是一对矛盾,通过选用运算能力更强的计算机和改进图像处理算法的效率,可以部分地解决精度和效率的矛盾问题。无论是为了提高检测精度还是为了提高检测效率,选用精度更好的镜头和更加稳定的光源都可以改善整体的性能指标。3.2 图像处理算法齿轮视觉检测技术中用到的图像处理算法有图像预处理、边缘检测、亚像素定位、特征提取和模式识别等。其中图像预处理方法与机器视觉其他应用场合的预处理方法基本相同。3.2.1 边缘检测算法齿轮视觉检测中常采用的边缘检测方法有经典微分算子、小波变换和数学形态学。边缘检测算法能够把齿轮二维端面图像中的关键轮廓提取出来,得到轮廓像素点的坐标集合。根据轮廓点的坐标信息和相机标定参数就可以精确计算出齿轮的特征尺寸,包括齿顶圆直径、齿根圆直径、内孔直径、齿高、齿厚和齿距等。1)经典微分算子图像边缘一般是图像灰度变化率最大的位置,因此可用一阶/二阶导数来检测边缘,由此诞生了一系列经典微分算子。根据微分的阶数可以将经典微分算子分为两类:一类是通过寻找图像灰度值的一阶导数极值点来确定边界的一阶微分算子,有Roberts 算子、Prewitt 算子、Sobel 算子、Canny 算子;另一类是根据图像二阶导数的零点来寻找边界的二阶微分算子,有Laplacian 算子、LoG(Laplacian-of-Gaussian)算子、DoG(Difference-of-Gaussian)算子。对这些经典微分算子在齿轮边缘检测中的性能进行了比较,如表1 所示。表1 经典微分算子在齿轮边缘检测中的性能比较Canny 算子采用双阈值和非极大值抑制策略提升对噪声的抗干扰性,具有滤波、增强、检测多个阶段的优化,是性能最优良的微分算子。对于齿轮图像,采用Canny 算子提取的齿廓信息最完整,最接近实际齿廓,如图8 所示。图8 基于Canny 算子的齿廓提取2)小波变换小波变换具有良好的时频局部化特性和多尺度特性。良好的时频局部化特性使其特别适用于检测突变信号,而图像中的突变信号对应边缘,因此小波变换也适用于图像边缘检测。利用Harr 小波函数对齿轮图像进行重构,再结合Canny 算子提取重构图像的齿廓,比单独采用Canny 算子有更优的效果。多尺度特性使其能很好地抑制噪声。图像中的噪声和边缘都属于高频分量,经典微分算子引入各种形式的微分运算后必然对噪声较为敏感,而随着尺度的增加,噪声引起的小波变换的模的极大值迅速减小,而边缘的模值不变,这一特性可以很好地抑制图像噪声。提出一种基于Curvelet 变换的尺度与方向相关性联合降噪方法,该方法对齿轮图像进行降噪处理,在继承小波变换多尺度降噪的基础上,同时进行尺度内方向相关性降噪,可以为齿轮边缘检测提供高质量的输入图像。因此,小波变换是一种齿轮图像边缘提取的有效方法。3)数学形态学数学形态学是基于积分几何和几何概率理论建立的关于图像形状和尺寸的研究方法,其实质是一种非线性滤波方法,通过物体形状集合与结构元素之间的相互作用对图像进行非线性滤波。由于数学形态学提取边缘时容易造成间距小的低灰度轮廓的错位和合并,因此常将其与微分算子提取出的轮廓加权融合。相关文献就提出了一种融合Canny 算子和数学形态学的含噪声齿轮图像边缘检测算法,分别采用改进的Canny 算子和多尺度多结构元素灰度形态学边缘检测算子提取边缘;然后对两幅边缘图像进行了小波分解,得到各层子图像;最后对子图像进行自适应加权融合,并使用小波逆变换重构图像得到最终的边缘检测图像。相关文献采用数学形态学中的四邻域腐蚀法提取出边缘宽度,并将其作为单个像素的轮廓,测量分度圆直径为5 mm 以下的齿轮的齿顶圆直径和齿根圆直径,与千分尺测量结果差值的绝对值在2 μm 以内。3.2.2 亚像素定位算法数字图像是以离散化的像素形式存在的,传统边缘检测算法的测量分辨率只能达到一个像素级,提取出的边缘由像素块构成,边缘定位精度不高,如图9(c)所示。亚像素定位算法是在像素级边缘检测的基础上逐渐发展而来的,首先需要经过像素级边缘检测粗定位,然后利用粗定位边缘点周围邻域内的像素数据进行边缘点的亚像素级精确定位,如图9(d)所示。图9 亚像素边缘处理亚像素定位算法主要有三类:矩方法、插值法和拟合法。1)矩方法矩方法计算简便,应用于齿轮边缘检测可以减小测量误差。相关文献提出一种利用前三阶灰度矩进行亚像素边缘定位的算法,这是文献中最早提出的矩方法。随后基于空间矩、Zernike 正交矩的方法也相继被提出。相关文献利用基于Zernike 矩的齿廓边缘检测算法,对齿顶圆直径为49. 751 mm、齿数为23 的齿轮测得的齿顶圆直径、齿根圆直径的相对误差在0. 02% 以内,齿距累积总偏差的相对误差约5. 15%。相关文献提出一种基于灰度矩的亚像素边缘检测算法,该算法以邻域窗口的灰度均方差积表示边缘强度,灰度重心所在的方向表示灰度变化的方向,在初始边缘的基础上按求取的灰度变化方向划分为八个区域,构建一维灰度矩模型解算亚像素边缘位置,对于噪声系数为0. 005 的模拟图像,该算法的绝对定位误差为0. 013 pixel。相关文献提出了一种复合亚像素边缘检测方法,该方法基于orthogonal Fourier-Mellin moment(OFMM),可为后续齿廓缺陷检测提供精确的齿廓形状。2)插值法插值法运算速度快,应用于齿轮在线检测设备能够满足生产节拍的要求。插值法的核心是对像素点的灰度值或灰度值的导数进行插值,以增加信息。德国MVtec 公司开发的著名机器视觉算法包Halcon 在工业领域应用广泛,其中的亚像素边缘检测算子采用的就是插值法。相关文献基于Halcon 算法包中的亚像素边缘检测算子,开发了一套齿轮测量应用程序,可以得到齿廓亚像素点集合,并设定条件剔除假边缘,最终得到齿顶圆直径等参数。3)拟合法拟合法对噪声不敏感,适用于噪声较多的齿轮图像,但求解速度较慢。拟合法是通过对像素坐标和灰度值进行理想边缘模型拟合来获得亚像素边缘的。相关文献提出一种基于高斯积分曲面拟合的亚像素边缘定位算法,可最大限度地消除噪声的影响,与原有高斯拟合算法相比,该算法通过坐标变换简化了曲面拟合问题,计算速度提高1 倍,可以满足五级精度的渐开线直齿圆柱齿轮的齿廓偏差测量要求。3.2.3 特征提取和模式识别算法缺陷检测算法一般由图像预处理、图像分割、特征提取和模式识别等步骤组成,其中特征提取和模式识别是缺陷检测的关键环节。特征提取的有效性对后续目标缺陷识别精度、计算复杂度、检测鲁棒性等均有重大影响。常用的特征提取算法可以分为三种,分别是基于纹理、颜色和形状的特征提取算法。提取完特征后,还需采用模式识别算法对缺陷进行区分。模式识别算法主要有匹配识别和分类识别两类。齿轮缺陷检测常用的匹配识别算法有FAST 和SIFT 算法等,常用的分类识别算法有基于人工神经网络或支持向量机的算法。相关文献提出了一种基于FAST-Unoriented-SIFT 提取算法和BoW(Bag-of-Words)模型的行星齿轮故障识别方法,该方法将原始振动信号转换为灰度图像后,通过FAST-Unoriented-SIFT 算法直接提取灰度图像中的特征。FAST-Unoriented-SIFT 算法结合了FAST 和SIFT 算法的优点,忽略了特征的方向。最后在提取的特征的基础上建立BoW 模型,该方法对齿轮故障的整体识别率达98. 67%。相关文献提出了一种改进的GA-PSO 算法,称为SHGAPSO算法,先经过图像分割算法提取齿轮的几何形状、纹理和颜色特征,再重建BP 神经网络,并使用SHGA-PSO 算法优化结构和权重。SHGA-PSO 算法对坏齿、划痕、磨损和裂纹4 种不同的齿轮缺陷样本的识别正确率在94% 以上。相关文献基于YOLO-v3 网络实现了对金属齿轮端面凸起、凹陷和划痕三种缺陷的快速检测和定位,对每幅图像的平均检测时间为77 ms,对三种缺陷的平均精确度(AP)和平均召回率(mean recall)分别为93% 和91%,检测效果如图10 所示。图10 齿轮缺陷特征提取与模式识别3.3 齿轮精度测量齿轮形状复杂,精度要求高。为保证齿轮产品质量,需要控制的齿轮精度指标有齿距偏差、齿廓偏差、螺旋线偏差、齿厚、齿圈跳动等,其中除螺旋线偏差外,其他精度指标都可以用齿轮端截面轮廓数据进行计算。齿轮精度测量主要有两个问题需要解决,一是通过图像处理获得被测齿轮的精确的端面轮廓信息,二是根据齿轮精度理论和相关齿轮精度标准计算齿轮各项偏差值并给出齿轮精度评定结果。通过齿轮精度等级,可以确定对视觉检测系统的测量精度要求。以齿数20、模数1 mm、5 级精度的直齿圆柱齿轮为例,其齿距累积总偏差为11 μm,齿廓总偏差为4. 6 μm。按测量仪器精度为被测指标允差的1/3~1/5 估算,测量5 级精度齿轮的测量仪的精度应优于1. 6 μm。这对视觉测量而言,是非常困难的。齿轮视觉测量精度依赖于测量系统的硬件和数据处理算法。由于所用相机、镜头等图像采集系统硬件和图像处理算法等软件的不同,以及被测对象齿轮的尺寸参数和精度要求不同,齿轮视觉检测系统的测量精度的差异很大,但在齿轮被测项目评定方面,都是根据齿轮精度相关标准进行的。相关文献依据齿轮精度标准ISO1328-1,给出了视觉测量齿距偏差和齿廓偏差的评定方法,对模数为0. 5 mm 的8 级精度直齿轮测得的齿距偏差、齿廓偏差与齿轮测量中心的测量结果差值最大为4 μm。相关文献采用视觉测量方法测量模数为2 mm、齿数为90的齿轮,齿廓总偏差5 次测量的标准差为0. 028 μm,取得了很好的测量重复性。相关文献提出了视觉测量齿轮的公法线长度的方法,其测量精度能够满足工程应用要种类不全,提高缺陷识别准确率和效率是着力重点。随着人工成本的增加和产业升级需求的提升,在大规模齿轮生产过程中齿轮视觉在线检测设备的应用越来越多。齿轮视觉在线检测设备的特点有:耦合于生产线上,可高效测量批量齿轮的尺寸精度,实时监测齿轮质量,自动剔除不合格品,形成“生产-检测-分选”自动化流水线;对齿轮外观缺陷进行识别和分类,实现大批量齿轮的“应检尽检”,用“大数据”手段分析齿轮工艺问题,与生产管控系统互联,及时调整工艺参数,减少损失;实现齿轮质量长期监测,及时发现齿轮质量的异常变化;可实现网络化监管和远程监控,即使在千里之外也可以监控整个生产过程,把握生产动态。在未来,齿轮视觉检测技术必将纳入更多先进的科学技术,齿轮视觉检测仪器也将集成更多新技术,并充分发挥各项技术的优点,提升检测效率和精度。三维视觉检测技术、视觉检测设备的复合化、微型化和智能化将是齿轮视觉检测技术的发展趋势。未来每条齿轮产线的生产动态都可以集成到一个软件中进行分析,检测数据实时存储到云端,长期积累的庞大数据将为齿轮生产工艺带来巨大的变革。毫不夸张地说,视觉检测技术将会带来齿轮检测领域的革命,现在还仅仅处于入门口。(省略参考文献51篇)
  • 食品货架期 | 鸡油的氧化稳定性测试
    鸡油货架期鸡油被广泛用于鸡粉、鸡精、鸡汁等家用调味品的生产中,为美味佳肴起着增香亮色的作用。鸡油含脂肪酸、蛋白质、脂溶性维生素、固醇类 等多种成分,鸡油由于含有不饱和脂肪酸,所以容易被氧化,氧化变质的鸡油会产生异味、酸价升高、颜色变深等问题,从而降低鸡油及含鸡油食品的商品和食用价值。鸡油需要具有良好的氧化稳定性和较长的货架期,才可以最大限度保留了鸡脂风味和营养价值。传统评估食用油货架期方法• 质保期研究放在室温或者烘箱下研究随着存放时间样品发生的变化。耗时长!!!• 样品存放后的变化主要通过感官法来判断,人为主观因素比较大。没有数据支撑作为质控依据! RapidOxy 100模拟快速氧化,评价鸡油的氧化稳定性氧化反应作为含有油脂的食品变质的决定性因素,只有对其进行监控才能得到准确的货架期。通过 RapidOxy 100的加速试验,利用阿伦尼乌斯方程,只需测定三个温度点数据即可预测出常温下的货架期,相比传统恒温恒湿感官评价法,可以减少90%以上的时间,极大的提升测试效率,降低测试成本。测试条件:样品量:5g;压力:700kPa;测试温度:100℃,110℃,120℃;结束条件:20%压降。图:样品氧化后外观表:样品不同温度下测试结果样品1:鸡骨油货架期样品2:鸡脂油货架期样品3:鸡粉油货架期RapidOxy 100快速测试三个温度点下,鸡油的诱导期,采用Oxylogger 100自动计算出不同温度的鸡油货架期,由测试结果得出:取自不同部位的鸡油,氧化稳定性有明显差异,鸡脂油氧化稳定性最好,其次是鸡骨油,最差是鸡粉油。Rapidoxy 100是加速货架期实验的理想帮手,它可提供最高 1800kpa的压力,可在最高180℃的温度下进行样品测定,并且使用的样品量极少,对于固体或半固体样品只需要4g,而对于液体样品只需要5ml,利用阿伦尼乌斯方程建立货架期预测模型极大的减小了测试成本。使我们能够花费最短的时间,用最少的样品得到我们理想的测试结果。
  • 乐金涛:我国全自动拉伸试验机技术的发展、挑战与前景
    乐金涛老师乐金涛,1983年开始在宝钢集团从事金属材料力学性能检测工作,目前还兼任中国仪器仪表学会试验机分会副秘书长、广东省金属学会理化检验专业委员会副主任委员、全国冶金物理测试网力学与试样加工技术委员会副主任委员、全国钢标准化技术委员会力学及工艺性能试验分技术委员会顾问、《理化检验-物理分册》副主编、中国国际招标网机电产品评标专家等。近日,仪器信息网有幸采访了乐金涛老师,请他谈一谈国内全自动拉伸试验机技术的发展、挑战与前景。 仪器信息网:请问,为什么要研发全自动拉伸试验机技术?乐金涛老师:三年疫情给智慧制造的发展带来非常有利的机遇,如何让试验室利用先进技术提高自动化检测和抗风险的能力,在特殊情况下也可以稳定、高质量、无人值守的开展检测工作,是业内同行普遍关心问题。为了保证测试结果精准、可重复、可追溯,提高劳动生产率,利用信息化、自动化、智能化等技术建设一个可以实现整个试验过程无人值守、无人干预的钢铁材料力学性能检测全自动试验室,已经成为这个领域的发展方向。 随着工业发展至4.0时代,制造业逐渐步入智能化、数字化时代,对于钢铁材料生产企业,质量检测环节中的材料拉伸试验也向半自动化、全自动化快速发展。全自动电子拉伸试验机(薄板材料)近年来,国内钢铁企业检测系统已经在许多领域实现了全流程的自动化检测。国内一些大型钢铁企业的力学试验室,依靠多套全自动拉伸试验机一天可以轻松地完成1000多件拉伸试样的自动检测。 材料试验机如实现了自动化智能化后,可以实现试验室装备水平的大幅度提升;减少人为因素影响,提高检测精度,确保试验数据准确性;缩短检验周期;提高劳动生产率等。仪器信息网:要建设好一个自动化检测试验室,需具备哪些条件和掌握哪些关键技术?乐金涛老师:要建设好一个自动化力学性能检测试验室,必须要了解试验室的工艺流程、特点,掌握当前拉伸试验机和自动化、智能化等最新技术的发展状况。1. 钢铁企业成品力学性能检验特点和对设备配置的要求1) 检验量大,设备要耐用;2) 产品规格相对集中、检验项目相对简单,设备要专业化配置;3) 检验周期紧,试样来样量不均匀,设备配置要有一定的富余量;4) 对检验的精度要求相对较低,主要判断产品是否合格。2. 建设自动化力学检测试验室的关键技术自动化、智能化建设适合于流水线、重复性等作业,根据钢铁企业试验室的流程和特点,其比较适合开展自动化项目的建设工作。要建设一个成功的自动化力学性能检测试验室,必须包含以下基本的关键技术:1) 通过机械手实现试样自动上、下料功能;2) 样号的自动识别;3) 试样传送系统;4) 全自动试验设备;5) 样品自动收集保存等。仪器信息网:当前,我国全自动拉伸试验机已经发展到了什么程度?乐金涛老师:我国试验机制造业通过近二十年的努力,在钢铁材料力学性能检测中最主要、使用最多的拉伸试验机产量、品种和得到了快速发展,技术水平有了很大的提升。通过验证或比对试验可以证明,我们国内试验机制造行业的一线品牌的试验机制造厂家制造的静态电子试验机、微机控制电液伺服试验机的技术指标已接近或已达到国际同类产品的水平,完全能够满足如ISO6892-1和GB/T 228.1等试验方法标准的要求,虽然还存在不少的问题,但并不是想像中的那么差。国内最早使用全自动拉伸试验机大概是在2005年左右,是国内几个特大型的钢铁企业试验室开始引进的。它们主要是做薄板拉伸试验的采用往复式机械手的小吨位全自动拉伸试验机、做厚板拉伸试验的采用龙门桁架式机械手的大吨位全自动拉伸试验机。记得在那个时候,国内有试验机厂家想仿制,但由于种种原因没有成功。全自动电液伺服拉伸试验机(中、厚板和螺纹钢)2015年以来,根据钢铁企业试验室检验量大、产品规格相对集中、检验项目相对简单、检验周期紧、流水线重复性检验等作业特点,国内部分一线品牌的试验机制造厂家,运用自动化、智能化、信息化等先进技术,开发研制了各种全自动试验机,国内全自动试验机的技术才真正开始发展,大大地推进了钢铁企业智慧试验室的建设工作。其中早期的小吨位往复式机械手全自动拉伸试验机、大吨位龙门桁架式机械手全自动拉伸试验机,到目前采用比较多的多工位六轴机械手全自动拉伸试验机的开发运用,实现了对各种类型全自动试验机的全覆盖。仪器信息网:全自动拉伸试验机主要的工作流程是什么?乐金涛老师:全自动拉伸试验机试验时,试验人员根据自动接收到的试验顺序、试验项目要求等,将经过打标的试样用机械手放入试样架内或通过AGV小车送达指定的位置→机械手根据预先在试验程序上设置好的试样位置抓取试样→进行试样长度测量→进行试样平行部分位置对中测量→试样横截面尺寸测量(可取n次测量数据的最小值或者平均值等)→机械手将试样放置到试验机测试位置,在确保按平行段对中的情况下自动调用预定的试验方法进行试验→试验结束后机械手自动取下断样→自动分拣合格与不合格试样→试验数据自动保存并发送给上位机。全自动拉伸试验机的工作效率一般不低于每小时15件。仪器信息网:全自动拉伸试验机除了主机以外,其配套的主要零部件技术对于整个系统也是非常关键,请举例介绍一下其优点?乐金涛老师:简单介绍一下全自动拉伸试验机中主要的配套零部件视频引伸计在整个系统中的应用。在全自动化拉伸试验系统中常用的变形测量手段是自动化接触式引伸计,但接触式引伸计大多只能测量一组标距变形,使用中常常遇到试样断裂在标距外或是贴近标距的位置,导致测试数据的不准确甚至不可用。1) 视频引伸计采用标准化DIC技术,可非接触实现三维变形测量,在拉伸试验过程中能同时测量多组纵向和横向标距变形。配合全自动拉伸试验系统使用时,可实现同步触发、自动测量、实时以数字信号或模拟信号向试验机传输数据。2) 视频引伸计可自动识别多种标距标识,同时也可对试样进行无标识点自动识别测量,监控试样直至其断裂,可自动测量试样断裂伸长率,大大提高检测效率。3) 自动识别应变分布状态,可以在整个试验过程中自动追踪最大应变产生的实际位置,从而将原始标距L0重新定位在最高应变区域的中心。4) 与接触式引伸计相比,使用视频引伸计避免了试样断在标距外或标距附近时的无效测试,有效提高试样利用率,节省试样成本。5) 带全自动引伸计的电子拉伸试验机的普及,特别是视频引伸计开发运用,加速了应变硬化指数n值和塑性应变比r值等全自动测量技术的发展,根据宝钢湛江钢铁有限公司验证试验的文献介绍:——采用人工、半自动、全自动方法测量的r值不存在显著性差异,其中全自动测量方法测量r值的精度最高;——视频引伸计与机械接触式引伸计测量r值的结果接近,但前者的精度更高。配置视频引伸计的全自动拉伸试验机仪器信息网:据了解,为了满足用户个性化要求,国内也研发了一些有特殊功能的全自动拉伸试验机,请您介绍一下?乐金涛老师:常规的全自动拉伸试验机在一根试验结束后,机械手自动取下断样→自动分拣合格与不合格试样→机械手将断样扔到对应的料框里。但经常会碰到有些重要的、异常的断样需要试验室保留以备查验等情况,传统的模式是试验室人员要等这一批次试验全部完毕后再按编号在留样框里翻找拼接,方式原始繁琐、效率低。现在全自动拉伸试验机断样收集专用料斗的配套设计,机械手可以按需按组收集需要保留的断样,大大方便了样品留存工作。带断料回收装置全自动拉伸试验机另外,如许多钢铁企业生产的螺纹钢或圆钢,由于轧钢工艺的需要,生产出来的产品是呈盘状的,俗称盘圆或盘螺。为了保证试样可以正常的在全自动拉伸试验机上装夹或保证试验时的同轴度,此类产品在做拉伸试验前,需要对带有一定弧度的样品进行矫直处理,目前国内绝大部分试验室都是采用人工矫直的方法。目前在常规全自动试验机里配套开发的全自动盘条多轮交叉弯曲矫直系统,比较完美的避免了用其他如敲击方式在矫直过程中应力集中等缺陷的产生,提高了盘圆盘螺类产品检测精度。带自动校直全自动拉伸试验机仪器信息网:您长期在中国宝武集团检化验系统工作,能否就宝钢范围的全自动试验技术方面提供一个案例分享给读者?乐金涛老师:针对繁琐的热轧带肋钢筋外部和内在质量的检测项目和不同的试验工位,运用自动化、智能化、信息化和机器人技术,宝钢武钢有限公司成功应用了钢筋全自动测试系统。该系统由电子拉伸主机,配上全自动视频引伸计、扫码系统、称重测长装置、ABB机器人、试样架、控制系统、软件等组成,集钢筋称重、测长、拉伸试验、弯曲和反复弯曲试验等功能,在一套全自动系统里实现全部检测功能。该系统还可以通过配置钢筋全自动弯曲校直、筋肋测量装置、温度养护箱等装置,完成试样矫直、钢筋外形检测、钢筋人工时效等工序。系统自动化模式运行时,可以同时在系统的不同组件上测试不同的样品,极大的提高测试效率。宝钢武钢有限公司1000kN钢筋试验系统仪器信息网:当前国内全自动拉伸试验机急需解决的关键技术是什么?乐金涛老师:当前,国内全自动拉伸试验机急需解决的关键技术主要归纳起来分如下几个方面:1) 激光引伸计、视频引伸计、全自动引伸计、高低温引伸计等技术;2) 高精度、高分辨率、宽量程的力传感器等技术;3) 高精度、高分辨率、宽量程的试样横截面尺寸测量传感器等技术。仪器信息网:能否针对目前我国全自动拉伸试验机的现状,谈谈您的感受或想法?乐金涛老师:在国外1000KN以上的电子拉伸试验机技术已经非常成熟,在国内常规的电子拉伸试验机绝大部分企业只能做到600KN。近三年,国内几家一线品牌的试验机制造厂家已经有在开发制造1000KN的电子拉伸试验机,但据了解总数也就在十台左右。国内已经有自主研发制造的2000kN电子拉力试验机,开创了中国试验机行业在大吨位电子拉力试验机的先河,为大吨位全自动拉伸试验机的开发运用打下了良好的基础。目前国内制造的全自动拉伸试验机如主要的配套零部件力传感器、位移传感器、引伸计等品牌选型更好,在其功能、试验精度等方面,完全可以胜任日常检验任务。随着钢铁企业智慧制造风潮的兴起,由拉伸试验机和机器人组合的全自动试验机需求大增,现在许多试验机厂家都去做全自动拉伸试验机或系统。目前我们国家研发制造的全自动试验机或系统的主要特点是集成其他自动化配套装置,但平心而论对试验机本身技术没有大的提高。我们现在国内生产的全自动拉伸试验机的长期稳定性和故障率等指标,和国外同类设备比还存在一定的差距。仪器信息网:最后,请您对国内的试验机制造厂家提一点要求或希望?乐金涛老师:希望国内的试验机制造厂家要重视市场需求和技术研发,以自动化、智能化为发展目标和发展方向,来满足用户个性化需求。要多与相关试验室合作开发关键技术,在高档或专用试验设备的研发制造等方面争取再获突破,包括对原来进口全自动拉伸试验机的技术消化和升级工作,以促进我国试验设备在自动化技术方面水平的提升,切实减少全自动试验设备的进口数量。
  • 一文读懂|血氧仪用于新冠监测|血氧饱和度为何如此重要
    血氧饱和度为何如此重要(视频来源:央视频)近日,继N95口罩、布洛芬、抗原检测试剂之后,血氧仪也在热销。在淘宝、京东等平台上众多品牌的家用指夹式血氧仪,均显示没有现货。根据京东健康12月21日数据显示,近一周(12.14-12.20),血氧仪品类的成交额同比增长61倍。感染新冠肺炎后可能会出现很多症状,今年3月份,国家卫健委印发的《新型冠状病毒肺炎诊疗方案(试行第九版)》中显示,判断成人或者儿童重型指标之一是:静息状态下,吸空气时指氧饱和度≤93%。另外,成人重型/危重型早期预警指标之一就是组织氧合指标(如指氧饱和度、氧合指数)恶化或乳酸进行性升高。12月8日,张文宏团队在国家传染病医学中心、复旦大学附属华山医院感染科官方公众号“华山感染”发文提到,选择在家隔离和康复的感染者,在保证自己能够吃好,休息好的同时,还需要学会自己监测以下指标,症状、体温、脉搏,氧饱和度。如果出现持续高热(大于39度)或脉搏(心率)持续增快(超过100次/分)超过3天;或者氧饱和度下降至95%以下,应及时前往医院就诊。有基础病的老年人新冠患者建议准备家用血氧仪视频来源:广州ing 抖音号什么是血氧饱和度?人体血液中,被氧结合的氧合血红蛋白的容量占全部可结合的血红蛋白容量的百分比,即血液中血氧的浓度。血氧的饱和度是反映呼吸、循环功能的一个重要生理参数,是衡量人体血液携带氧的能力指标,是人体机能正常运作的重要指标。监测血氧指标可以很好地了解自己的呼吸系统、免疫系统是否正常,通过检测血氧来跟进治疗效果。低氧血症有哪些危害?血氧饱和度低者往往存在呼吸困难、心悸等不适;血氧饱和度越低,患者的不适如呼吸困难越严重。但国内外大量临床观察案例发现,有的新冠肺炎患者虽然血氧饱和度已经很低,但其本身并无吸困难等不适。如果不系统进行血氧饱和度的监测,患者低氧血症会被正常的呼吸频率掩盖,从而给院前的新冠肺炎患者严重程度的判断带来困难。早期识别患者的低氧血症情况非常重要。如果未能及时监测、发现严重的沉默性低氧血症患者,就有可能会延误患者就诊、救治的最佳时机,增加救治难度及患者病死率。血氧饱和度和新冠有什么关系在国家卫健委发布的《新型冠状病毒肺炎诊疗方案 (试行第九版)》中多次提到了血氧饱和度。①新冠临床表现:发热、干咳、乏力为主要表现。部分患者鼻塞、 流涕、咽痛、嗅觉味觉减退或丧失、结膜炎、肌痛和腹泻等。重症患者多在发病一周后出现呼吸困难和(或) 低氧血症,严重者可快速进展为急性呼吸窘迫综合征。同时提到静息状态下,吸空气时指氧饱和度≤93%,可作为成人及儿童早期甄别。②诊疗方案中还提到:密切监测生命体征,特别是静息和活动后的指氧饱和度等。根据患者病情,明确护理重点并做好基础护理。重症患者密切观察患者生命体征和意识状态,重点监测血氧饱和度。 危重症患者24 小时持续心电监测,每小时测量患者的心率、 呼吸频率、血压、血氧饱和度 (SpO2 ) ,每 4 小时测量并记录体温。血氧饱和度和呼吸状况可以作为临床分型的主要依据之一。血氧饱和度不断下降,是新型肺炎的主要症状之一。当人体内血氧饱和度低于正常值(93%),且出现呼吸困难症状,判断为重型,建议前往医院做进一步检测。12月9日,国家卫生健康委员会官方网站发布《关于印发新冠重点人群健康服务工作方案的通知医疗机构服务方案,当下服务工作方案的通知》中提到要提高基层医疗工生机构服务水平,加快推进乡镇卫生院和社区卫生服务中心发热门诊建设进度,2023年3月底前力争覆盖率提高到90%左右,完善设备设施,包括氧疗设备、便携式肺功能仪器、指夹式脉搏血氧仪、可穿戴健康监测设备。了解血氧仪血氧仪的产品类型可分为指夹式血氧仪、腕式血氧仪、台式血氧仪、手持式血氧仪、可穿戴血氧仪等。其中,指夹式血氧仪使用方便、价格相对低廉(接近百元左右),其功能是检测血氧饱和度、脉率,显示数值及棒图。点击进入【血氧仪】 仪器优选主页了解更多血氧仪主要测量的指标分别为:脉率、血氧饱和度、灌注指数(PI),简单来说一个人的供氧越充足血氧饱和度的指标就越好,人体的机体能力和精神状态就越好。因此血氧的监测非常重要,而血氧仪是判断缺氧与否的重要工具。肺炎监测指标之一血氧饱和度值正常数值是多少?① 95%~100%之间,属于正常状态。② 90%~95%之间。属于轻度缺氧。③ 90%以下,属于严重缺氧,尽快治疗。正常人体动脉血的血氧饱和度为98%,静脉血为75% 。它是反映机体内氧状况的重要指标,一般认为血氧饱度正常值应不低于94%,在94%以下被视为供氧不足。天眼查App显示,现有血氧仪相关专利申请信息920余条,包括“手持式血氧仪”“指夹血氧仪”“掌式血氧仪”“可加温的多功能血氧仪”“具有智能语音提示的腕式血氧仪”“便携式脉搏血氧仪”等。所有专利中,外观设计专利申请信息超510条,占比超55%,实用新型专利申请信息有280余条。目前,已经获得授权的专利有640条,占比约69%。从申请时间上看,2020年以前,相关专利申请量为数十条,2020年申请数量呈翻倍增长,2020年、2021年、2022年相关专利申请信息均有上百,2021年申请数量最多,达220余条。据国家药品监督管理局数据,目前国内获有脉搏血氧仪产品批文的企业信息有74条。涉及和心重典医疗、康尚生物、乐普智能、康恒医疗、鱼跃医疗、佳思德科技、可孚医疗等多家公司。序号注册证编号注册人名称产品名称最新获证沪械注准20222070229上海雍恩医疗器械有限公司脉搏血氧饱和度仪1粤械注准20172071519深圳市美的连医疗电子股份有限公司温度和脉搏血氧仪2粤械注准20142070347深圳市和心重典医疗设备有限公司脉搏血氧仪3苏械注准20222071911江苏康尚生物医疗科技有限公司指夹式脉搏血氧仪4沪械注准20202070571上海贝瑞电子科技有限公司脉搏血氧仪5苏械注准20212071687徐州市永康电子科技有限公司指夹式脉搏血氧仪6豫械注准20212070064河南友倍康医疗器械有限公司脉搏血氧仪7粤械注准20212070303深圳源动创新科技有限公司脉搏血氧仪8粤械注准20162070424深圳市杰纳瑞医疗仪器股份有限公司脉博血氧仪9湘械注准20202071005长沙市中豪医疗设备有限公司脉搏血氧仪10粤械注准20202071349深圳乐普智能医疗器械有限公司指夹式脉搏血氧仪11粤械注准20212071395深圳源动创新科技有限公司脉搏血氧仪12冀械注准20212070231河北乐柠医疗科技有限公司脉搏血氧仪13湘械注准20212072407湖南派博医疗科技有限公司腕式血氧仪14冀械注准20202070264河北佐慕医疗器械贸易有限公司脉搏血氧仪15湘械注准20202071465湖南磐电医疗设备有限公司脉搏血氧仪16粤械注准20222070093深圳源动创新科技有限公司脉搏血氧仪17粤械注准20222071951广东玖智科技有限公司脉搏血氧仪18粤械注准20222070716深圳市奥极医疗科技有限公司指夹式脉搏血氧仪19鲁械注准20222070053威海柏林圣康空氧科技有限公司脉搏血氧仪20京械注准20182210239北京德海尔医疗技术有限公司腕式脉搏血氧仪21京械注准20192070332北京超思电子技术有限责任公司指夹式脉搏血氧仪22粤械注准20222070171深圳市永康达电子科技有限公司指夹式脉搏血氧仪23粤械注准20182070270深圳安维森实业有限公司脉搏血氧仪24辽械注准20212070072康恒医疗器械(辽宁)有限公司指夹式脉搏血氧仪25粤械注准20192070974深圳市康坪科技医疗有限公司脉搏血氧仪26冀械注准20192070190康泰医学系统(秦皇岛)股份有限公司脉搏血氧仪27苏械注准20172071070江苏鱼跃医疗设备股份有限公司指夹式脉搏血氧仪28湘械注准20202071094湖南医翼健康科技有限公司脉搏血氧仪29粤械注准20222070789深圳市正康科技有限公司血氧仪30苏械注准20142070627江苏康尚生物医疗科技有限公司指夹式血氧仪31粤械注准20222070521深圳诺康医疗科技股份有限公司脉搏血氧仪32粤械注准20172071963佳思德科技(深圳)有限公司指夹式脉搏血氧仪33津械注准20202070802柯顿(天津)电子医疗器械有限公司医用脉搏式血氧仪34苏械注准20192070077南京盟联信息科技股份有限公司指夹式脉搏血氧仪35京械注准20202070305北京超思电子技术有限责任公司指夹式脉搏血氧仪36鄂械注准20202073078武汉久乐科技有限公司穿戴式脉搏血氧仪37浙械注准20222070274浙江健拓医疗仪器科技有限公司指夹式脉搏血氧仪38粤械注准20192070022深圳京柏医疗科技股份有限公司指夹式脉搏血氧仪39粤械注准20192070795佳思德科技(深圳)有限公司腕式脉搏血氧仪40津械注准20192070128天津超思医疗器械有限责任公司手持脉搏血氧仪41湘械注准20212071990可孚医疗科技股份有限公司指夹式脉搏血氧仪42粤械注准20202071108深圳市鼎禾医疗科技有限公司脉搏血氧仪43津械注准20202070052天津超思医疗器械有限责任公司指夹式脉搏血氧仪44粤械注准20182210270深圳安维森实业有限公司脉搏血氧仪45冀械注准20212070159河北循证医疗科技股份有限公司脉搏血氧仪46粤械注准20212071669深圳市蓝瑞格生物医疗科技有限公司指夹式脉搏血氧仪47粤械注准20212071658深圳市美的连医疗电子股份有限公司脉搏血氧仪48粤械注准20172071964佳思德科技(深圳)有限公司脉搏血氧仪49沪械注准20212070564上海贝瑞电子科技有限公司脉搏血氧仪50粤械注准20162071260广东宝莱特医用科技股份有限公司脉搏血氧仪51粤械注准20192070397深圳原位医疗设备有限公司脉搏血氧仪52粤械注准20212071426广东中科云瑞生物医疗科技有限公司指夹式脉搏血氧仪53苏械注准20152070206苏州尔达医疗设备有限公司脉搏血氧仪54粤械注准20162071392深圳市深迈医疗设备有限公司脉搏血氧仪55湘械注准20182070146湖南艾瑞特生物医疗科技有限公司脉搏血氧仪56粤械注准20212070209深圳市保身欣科技电子有限公司指夹式脉搏血氧仪57粤械注准20222070910深圳市长坤科技有限公司指夹式脉搏血氧仪58粤械注准20192070920深圳市正生技术有限公司脉搏血氧仪59苏械注准20142070375江苏康尚生物医疗科技有限公司腕式血氧仪60鲁械注准20222071096山东博科保育科技股份有限公司脉搏血氧仪61粤械注准20162071061深圳市理邦精密仪器股份有限公司指式血氧仪62粤食药监械(准)字2013第221129...深圳市美的连医疗电子股份有限公司温度和脉搏血氧仪63湘械注准20212071238湖南艾瑞特生物医疗科技有限公司脉搏血氧仪64粤械注准20212070036珠海凌特医学仪器有限公司指夹式脉搏血氧仪65苏械注准20162071250徐州市永康电子科技有限公司指夹式脉搏血氧仪66晋械注准20162070055山西洁瑞医疗器械股份有限公司血氧仪67渝械注准20192070142重庆如泰科技股份有限公司掌式脉搏血氧仪68浙械注准20182210092杭州兆观传感科技有限公司医用脉搏血氧仪69粤械注准20202070616广东宝莱特医用科技股份有限公司脉搏血氧仪70津械注准20202070145天津超思医疗器械有限责任公司腕式血氧仪71鲁械注准20222070345山东朱氏药业集团有限公司指夹式脉搏血氧仪72津械注准20202070020天津超思医疗器械有限责任公司指夹式脉搏血氧仪73粤械注准20202071597深圳源动创新科技有限公司脉搏血氧仪74粤械注准20152070428深圳市安科瑞仪器有限公司指夹式脉搏血氧仪(部分图文源于 第一财经 北京时间财经等公开报道)
  • 2013化学品测试合格实验室名单公布
    关于公布化学品测试合格实验室名单的公告   根据《化学品测试合格实验室管理办法》,经对申请实验室检查考核,现将检查考核结果公告如下:   一、通过2013年考核的化学品测试合格实验室名单(以下简称名单)及级别   (一)上海化工研究院检测中心,常规三级   (二)浙江省农业科学院农产品质量标准研究所,常规一级   (三)北京协和建昊医药技术开发有限责任公司,简易。   二、上述实验室可为化学品环境管理登记及相关化学品环境管理工作提供相应级别测试项目的生态毒理学测试数据。   三、已列入名单的实验室,应于每年1月向我部提交上年度工作报告,并接受定期检查、随机检查和有因检查。   四、我部2010年第78号公告自本公告公布之日起废止。   环境保护部   2014年1月16日
  • 2012化学品测试合格实验室名单公布
    关于公布化学品测试合格实验室名单的公告   根据《化学品测试合格实验室管理办法》,经对申请实验室的检查考核,现将检查考核结果公告如下:   一、通过2012年考核的化学品测试合格实验室名单(以下简称“名单”)及级别   (一)上海市检测中心生物与安全检测实验室,常规四级   (二)沈阳化工研究院安全评价中心,常规四级   (三)南京环境科学研究所国家环境保护农药环境评价与污染控制重点实验室,常规四级   (四)上海市环境科学研究院环境监测实验室,常规三级   (五)广东省微生物分析检测中心生态毒理与环境安全实验室,常规三级   (六)江苏衡谱分析检测技术有限公司,常规一级   (七)苏州西山中科药物研究开发有限公司,常规一级   (八)中国环境科学研究院国家环境保护化学品生态效应与风险评估重点实验室,简易。   二、上述实验室可为化学品环境管理登记及相关化学品环境管理工作提供相应级别测试项目的生态毒理学测试数据。   三、已列入名单的实验室,应于每年1月向我部提交上年度工作报告,并接受定期检查、随机检查和有因检查。   四、我部2009年第14号公告自本公告公布之日起废止。   环境保护部   2012年12月27日
  • 我国首台高平均功率太赫兹自由电子激光饱和出光
    p   由我国科学家自主研发的国内首台高平均功率太赫兹自由电子激光装置,日前在四川成都首次饱和出光。经第三方检测,实验真实可靠且装置运行稳定。我国太赫兹源从此正式进入自由电子激光时代。 /p p   8月29日,由中国工程物理研究院应用电子学研究所牵头的高平均功率太赫兹自由电子激光装置(CTFEL)首次饱和出光,并实现稳定运行。9月20日,经过专家组现场测试和中国兵器工业第205研究所第三方检测,CTFEL装置太赫兹频率在1.99THz、2.41THz和2.92THz三个频率点稳定运行,平均功率均大于10W,最高达到17.9W 微脉冲峰值功率均大于0.5MW,最高达到0.84MW。通过调节电子束能量和磁场强度,可以实现输出激光频率连续可调。 /p p   太赫兹(THz)辐射通常指频率在0.1THz—10THz区间的电磁辐射,波段位于微波和红外光之间,是人类尚未完全认识并很好加以利用的最后一个波(光)谱区间。物质的太赫兹光谱(包括发射、反射和透射)包含有丰富的物理和化学信息,研究有关物质在这一波段的光谱响应,探索其结构性质及其所揭示的新的物理内容已成为一个新的研究方向。自由电子激光(FEL)由于具有频率连续可调、功率大、线宽窄、方向性好、偏振强等优点,使得在同一台装置上实现太赫兹波段全覆盖的大功率理想太赫兹源成为了可能,故自由电子激光是目前该波段最有前途的高功率可调谐相干光源。 /p p   CTFEL装置是依托科技部支持的国家重大科学仪器设备开发专项“相干强太赫兹源科学仪器设备开发”项目,于2011年立项启动。作为一种新型相干强太赫兹光源,CTFEL装置在材料、生物医学等领域有着重要应用前景。 /p
  • 专家约稿|碳化硅功率器件封装与可靠性测试
    1. 研究背景及意义碳化硅(SiC)是一种宽带隙(WBG)的半导体材料,目前已经显示出有能力满足前述领域中不断发展的电力电子的更高性能要求。在过去,硅(Si)一直是最广泛使用的功率开关器件的半导体材料。然而,随着硅基功率器件已经接近其物理极限,进一步提高其性能正成为一个巨大的挑战。我们很难将它的阻断电压和工作温度分别限制在6.5kV和175℃,而且相对于碳化硅器件它的开关速度相对较慢。另一方面,由SiC制成的器件在过去几十年中已经从不成熟的实验室原型发展成为可行的商业产品,并且由于其高击穿电压、高工作电场、高工作温度、高开关频率和低损耗等优势被认为是Si基功率器件的替代品。除了这些性能上的改进,基于SiC器件的电力电子器件有望通过最大限度地减少冷却要求和无源元件要求来实现系统的体积缩小,有助于降低整个系统成本。SiC的这些优点与未来能源转换应用中的电力电子器件的要求和方向非常一致。尽管与硅基器件相比SiC器件的成本较高,但SiC器件能够带来的潜在系统优势足以抵消增加的器件成本。目前SiC器件和模块制造商的市场调查显示SiC器件的优势在最近的商业产品中很明显,例如SiC MOSFETs的导通电阻比Si IGBT的导通电阻小四倍,并且在每三年内呈现出-30%的下降趋势。与硅同类产品相比,SiC器件的开关能量小10-20倍,最大开关频率估计高20倍。由于这些优点,预计到2022年,SiC功率器件的总市场将增长到10亿美元,复合年增长率(CAGR)为28%,预计最大的创收应用是在混合动力和电动汽车、光伏逆变器和工业电机驱动中。然而,从器件的角度来看,挑战和问题仍然存在。随着SiC芯片有效面积的减少,短路耐久时间也趋于减少。这表明在稳定性、可靠性和芯片尺寸之间存在着冲突。而且SiC器件的现场可靠性并没有在各种应用领域得到证明,这些问题直接导致SiC器件在电力电子市场中的应用大打折扣。另一方面,生产高质量、低缺陷和较大的SiC晶圆是SiC器件制造的技术障碍。这种制造上的困难使得SiC MOSFET的每年平均销售价格比Si同类产品高4-5倍。尽管SiC材料的缺陷已经在很大程度上被克服,但制造工艺还需要改进,以使SiC器件的成本更加合理。最近几年大多数SiC器件制造大厂已经开始使用6英寸晶圆进行生产。硅代工公司X-fab已经升级了其制造资源去适应6英寸SiC晶圆,从而为诸如Monolith这类无晶圆厂的公司提供服务。这些积极的操作将导致SiC器件的整体成本降低。图1.1 SiC器件及其封装的发展图1.1展示了SiC功率器件及其封装的发展里程碑。第一个推向市场的SiC器件是英飞凌公司在2001年生产的肖特基二极管。此后,其他公司如Cree和Rohm继续发布各种额定值的SiC二极管。2008年,SemiSouth公司生产了第一个SiC结点栅场效应晶体管(JFET),在那个时间段左右,各公司开始将SiC肖特基二极管裸模集成到基于Si IGBT的功率模块中,生产混合SiC功率模块。从2010年到2011年,Rohm和Cree推出了第一个具有1200V额定值的分立封装的SiC MOSFET。随着SiC功率晶体管的商业化,Vincotech和Microsemi等公司在2011年开始使用SiC JFET和SiC二极管生产全SiC模块。2013年,Cree推出了使用SiC MOSFET和SiC二极管的全SiC模块。此后,其他器件供应商,包括三菱、赛米控、富士和英飞凌,自己也发布了全SiC模块。在大多数情况下,SiC器件最初是作为分立元件推出的,而将这些器件实现为模块封装是在最初发布的几年后开发的。这是因为到目前为止分立封装的制造过程比功率模块封装要简单得多。另一个原因也有可能是因为发布的模块已经通过了广泛的标准JEDEC可靠性测试资格认证,这代表器件可以通过2000万次循环而不发生故障,因此具有严格的功率循环功能。而且分离元件在设计系统时具有灵活性,成本较低,而模块的优势在于性能较高,一旦有了产品就容易集成。虽然SiC半导体技术一直在快速向前发展,但功率模块的封装技术似乎是在依赖过去的惯例,这是一个成熟的标准。然而,它并没有达到充分挖掘新器件的潜力的速度。SiC器件的封装大多是基于陶瓷基底上的线接合方法,这是形成多芯片模块(MCM)互连的标准方法,因为它易于使用且成本相对较低。然而,这种标准的封装方法由于其封装本身的局限性,已经被指出是向更高性能系统发展的技术障碍。首先,封装的电寄生效应太高,以至于在SiC器件的快速开关过程中会产生不必要的损失和噪音。第二,封装的热阻太高,而热容量太低,这限制了封装在稳态和瞬态的散热性能。第三,构成封装的材料和元件通常与高温操作(200℃)不兼容,在升高的操作温度下,热机械可靠性恶化。最后,对于即将到来的高压SiC器件,承受高电场的能力是不够的。这些挑战的细节将在第二节进一步阐述。总之,不是器件本身,而是功率模块的封装是主要的限制因素之一,它阻碍了封装充分发挥SiC元件的优势。因此,应尽最大努力了解未来SiC封装所需的特征,并相应地开发新型封装技术去解决其局限性。随着社会的发展,环保问题与能源问题愈发严重,为了提高电能的转化效率,人们对于用于电力变换和电力控制的功率器件需求强烈[1, 2]。碳化硅(SiC)材料作为第三代半导体材料,具有禁带宽度大,击穿场强高、电子饱和速度大、热导率高等优点[3]。与传统的Si器件相比,SiC器件的开关能耗要低十多倍[4],开关频率最高提高20倍[5, 6]。SiC功率器件可以有效实现电力电子系统的高效率、小型化和轻量化。但是由于SiC器件工作频率高,而且结电容较小,栅极电荷低,这就导致器件开关时,电压和电流变化很大,寄生电感就极易产生电压过冲和振荡现象,造成器件电压应力、损耗的增加和电磁干扰问题[7, 8]。还要考虑极端条件下的可靠性问题。为了解决这些问题,除了器件本身加以改进,在封装工艺上也需要满足不同工况的特性要求。起先,电力电子中的SiC器件是作为分立器件生产的,这意味着封装也是分立的。然而SiC器件中电压或电流的限制,通常工作在低功耗水平。当需求功率达到100 kW或更高时,设备往往无法满足功率容量要求[9]。因此,需要在设备中连接和封装多个SiC芯片以解决这些问题,并称为功率模块封装[10, 11]。到目前为止,功率半导体的封装工艺中,铝(Al)引线键合封装方案一直是最优的封装结构[12]。传统封装方案的功率模块采用陶瓷覆铜板,陶瓷覆铜板(Direct Bonding Copper,DBC)是一种具有两层铜的陶瓷基板,其中一层图案化以形成电路[13]。功率半导体器件底部一般直接使用焊料连接到DBC上,顶部则使用铝引线键合。底板(Baseplate)的主要功能是为DBC提供支撑以及提供传导散热的功能,并与外部散热器连接。传统封装提供电气互连(通过Al引线与DBC上部的Cu电路键合)、电绝缘(使用DBC陶瓷基板)、器件保护(通过封装材料)和热管理(通过底部)。这种典型的封装结构用于目前制造的绝大多数电源模块[14]。传统的封装方法已经通过了严格的功率循环测试(2000万次无故障循环),并通过了JEDEC标准认证[15]。传统的封装工艺可以使用现有的设备进行,不需要额外开发投资设备。传统的功率模块封装由七个基本元素组成,即功率半导体芯片、绝缘基板、底板、粘合材料、功率互连、封装剂和塑料外壳,如图1.2所示。模块中的这些元素由不同的材料组成,从绝缘体、导体、半导体到有机物和无机物。由于这些不同的材料牢固地结合在一起,为每个元素选择适当的材料以形成一个坚固的封装是至关重要的。在本节中,将讨论七个基本元素中每个元素的作用和流行的选择以及它们的组装过程。图1.2标准功率模块结构的横截面功率半导体是功率模块中的重要元素,通过执行电气开/关开关将功率从源头转换到负载。标准功率模块中最常用的器件类型是MOSFETs、IGBTs、二极管和晶闸管。绝缘衬底在半导体元件和终端之间提供电气传导,与其他金属部件(如底板和散热器)进行电气隔离,并对元件产生的热量进行散热。直接键合铜(DBC)基材在传统的电源模块中被用作绝缘基材,因为它们具有优良的性能,不仅能满足电气和热的要求,而且还具有机械可靠性。在各种候选材料中,夹在两层铜之间的陶瓷层的流行材料是Al2O3,AlN,Si2N4和BeO。接合材料的主要功能是通过连接每个部件,在半导体、导体导线、端子、基材和电源模块的底板之间提供机械、热和电的联系。由于其与电子组装环境的兼容性,SnPb和SnAgCu作为焊料合金是最常用的芯片和基片连接材料。在选择用于功率模块的焊料合金时,需要注意的重要特征是:与使用温度有关的熔化温度,与功率芯片的金属化、绝缘衬底和底板的兼容性,高机械强度,低弹性模量,高抗蠕变性和高抗疲劳性,高导热性,匹配的热膨胀系数(CTE),成本和环境影响。底板的主要作用是为绝缘基板提供机械支持。它还从绝缘基板上吸收热量并将其传递给冷却系统。高导热性和低CTE(与绝缘基板相匹配)是对底板的重要特性要求。广泛使用的底板材料是Cu,AlSiC,CuMoCu和CuW。导线键合的主要作用是在模块的功率半导体、导体线路和输入/输出终端之间进行电气连接。器件的顶面连接最常用的材料是铝线。对于额定功率较高的功率模块,重铝线键合或带状键合用于连接功率器件的顶面和陶瓷基板的金属化,这样可以降低电阻和增强热能力。封装剂的主要目的是保护半导体设备和电线组装的组件免受恶劣环境条件的影响,如潮湿、化学品和气体。此外,封装剂不仅在电线和元件之间提供电绝缘,以抵御电压水平的提高,而且还可以作为一种热传播媒介。在电源模块中作为封装剂使用的材料有硅凝胶、硅胶、聚腊烯、丙烯酸、聚氨酯和环氧树脂。塑料外壳(包括盖子)可以保护模块免受机械冲击和环境影响。因为即使电源芯片和电线被嵌入到封装材料中,它们仍然可能因处理不当而被打破或损坏。同时外壳还能机械地支撑端子,并在端子之间提供隔离距离。热固性烯烃(DAP)、热固性环氧树脂和含有玻璃填料的热塑性聚酯(PBT)是塑料外壳的最佳选择。传统电源模块的制造过程开始于使用回流炉在准备好的DBC基片上焊接电源芯片。然后,许多这些附有模具的DBC基板也使用回流焊工艺焊接到一个底板上。在同一块底板上,用胶水或螺丝钉把装有端子的塑料外壳连接起来。然后,正如前面所讨论的那样,通过使用铝线进行电线连接,实现电源芯片的顶部、DBC的金属化和端子之间的连接。最后,用分配器将封装材料沉积在元件的顶部,并在高温下固化。前面所描述的结构、材料和一系列工艺被认为是功率模块封装技术的标准,在目前的实践中仍被广泛使用。尽管对新型封装方法的需求一直在持续,但技术变革或采用是渐进的。这种对新技术的缓慢接受可以用以下原因来解释。首先,人们对与新技术的制造有关的可靠性和可重复性与新制造工艺的结合表示担忧,这需要时间来解决。因此,考虑到及时的市场供应,模块制造商选择继续使用成熟的、广为人知的传统功率模块封装技术。第二个原因是传统电源模块的成本效益。由于传统电源模块的制造基础设施与其他电子器件封装环境兼容,因此不需要与开发新材料和设备有关的额外成本,这就大大降低了工艺成本。尽管有这些理由坚持使用标准的封装方法,但随着半导体趋势从硅基器件向碳化硅基器件的转变,它正显示出局限性并面临着根本性的挑战。使用SiC器件的最重要的优势之一是能够在高开关频率下工作。在功率转换器中推动更高的频率背后的主要机制是最大限度地减少整个系统的尺寸,并通过更高的开关频率带来的显著的无源尺寸减少来提高功率密度。然而,由于与高开关频率相关的损耗,大功率电子设备中基于硅的器件的开关频率通常被限制在几千赫兹。图1.3中给出的一个例子显示,随着频率的增加,使用Si-IGBT的功率转换器的效率下降,在20kHz时已经下降到73%。另一方面,在相同的频率下,SiC MOSFET的效率保持高达92%。从这个例子中可以看出,硅基器件在高频运行中显示出局限性,而SiC元件能够在更高频率下运行时处理高能量水平。尽管SiC器件在开关性能上优于Si器件对应产品,但如果要充分利用其快速开关的优势,还需要考虑到一些特殊的因素。快速开关的瞬态效应会导致器件和封装内部的电磁寄生效应,这正成为SiC功率模块作为高性能开关应用的最大障碍。图1.3 Si和SiC转换器在全额定功率和不同开关频率下的效率图1.4给出了一个半桥功率模块的电路原理图,该模块由高低两侧的开关和二极管对组成,如图1.4所示,其中有一组最关键的寄生电感,即主开关回路杂散电感(Lswitch)、栅极回路电感(Lgate)和公共源电感(Lsource)。主开关回路杂散电感同时存在于外部电源电路和内部封装互连中,而外部杂散电感对开关性能的影响可以通过去耦电容来消除。主开关回路杂散电感(Lswitch)是由直流+总线、续流二极管、MOSFET(或IGBT)和直流总线终端之间的等效串联电感构成的。它负责电压过冲,在关断期间由于电流下降而对器件造成严重的压力,负反馈干扰充电和向栅极源放电的电流而造成较慢的di/dt的开关损失,杂散电感和半导体器件的输出电容的共振而造成开关波形的振荡增加,从而导致EMI发射增加。栅极环路电感(Lgate)由栅极电流路径形成,即从驱动板到器件的栅极接触垫,以及器件的源极到驱动板的连接。它通过造成栅极-源极电压积累的延迟而降低了可实现的最大开关频率。它还与器件的栅极-源极电容发生共振,导致栅极信号的震荡。结果就是当我们并联多个功率芯片模块时,如果每个栅极环路的寄生电感不相同或者对称,那么在开关瞬间将产生电流失衡。共源电感(Lsource)来自主开关回路和栅极回路电感之间的耦合。当打开和关闭功率器件时,di/dt和这个电感上的电压在栅极电路中作为额外的(通常是相反的)电压源,导致di/dt的斜率下降,扭曲了栅极信号,并限制了开关速度。此外,共源电感可能会导致错误的触发事件,这可能会通过在错误的时间打开器件而损坏器件。这些寄生电感的影响在快速开关SiC器件中变得更加严重。在SiC器件的开关瞬态过程中会产生非常高的漏极电流斜率di/dt,而前面讨论的寄生电感的电压尖峰和下降也明显大于Si器件的。寄生电感的这些不良影响导致了开关能量损失的增加和可达到的最大开关频率的降低。开关瞬态的问题不仅来自于电流斜率di/dt,也来自于电压斜率dv/dt。这个dv/dt导致位移电流通过封装的寄生电容,也就是芯片和冷却系统之间的电容。图1.5显示了半桥模块和散热器之间存在的寄生电容的简化图。这种不需要的电流会导致对变频器供电的电机的可靠性产生不利影响。例如,汽车应用中由放电加工(EDM)引起的电机轴承缺陷会产生很大的噪声电流。在传统的硅基器件中,由于dv/dt较低,约为3 kV/µs,因此流经寄生电容的电流通常忽略不记。然而,SiC器件的dv/dt比Si器件的dv/dt高一个数量级,最高可达50 kV/µs,使通过封装电容的电流不再可以忽略。对Si和SiC器件产生的电磁干扰(EMI)的比较研究表明,由于SiC器件的快速开关速度,传导和辐射的EMI随着SiC器件的使用而增加。除了通过封装进入冷却系统的电流外,电容寄也会减缓电压瞬变,在开关期间产生过电流尖峰,并通过与寄生电感形成谐振电路而增加EMI发射,这是我们不希望看到的。未来的功率模块封装应考虑到SiC封装中的寄生和高频瞬变所带来的所有复杂问题和挑战。解决这些问题的主要封装级需要做到以下几点。第一,主开关回路的电感需要通过新的互连技术来最小化,以取代冗长的线束,并通过优化布局设计,使功率器件接近。第二,由于制造上的不兼容性和安全问题,栅极驱动电路通常被组装在与功率模块分开的基板上。应通过将栅极驱动电路与功率模块尽可能地接近使栅极环路电感最小化。另外,在平行芯片的情况下,布局应该是对称的,以避免电流不平衡。第三,需要通过将栅极环路电流与主开关环路电流分开来避免共源电感带来的问题。这可以通过提供一个额外的引脚来实现,例如开尔文源连接。第四,应通过减少输出端和接地散热器的电容耦合来减轻寄生电容中流动的电流,比如避免交流电位的金属痕迹的几何重叠。图1.4半桥模块的电路原理图。三个主要的寄生电感表示为Lswitch、Lgate和Lsource。图1.5半桥模块的电路原理图。封装和散热器之间有寄生电容。尽管目前的功率器件具有优良的功率转换效率,但在运行的功率模块中,这些器件产生的热量是不可避免的。功率器件的开关和传导损失在器件周围以及从芯片到冷却剂的整个热路径上产生高度集中的热通量密度。这种热通量导致功率器件的性能下降,以及器件和封装的热诱导可靠性问题。在这个从Si基器件向SiC基器件过渡的时期,功率模块封装面临着前所未有的散热挑战。图1.6根据额定电压和热阻计算出所需的总芯片面积在相同的电压和电流等级下,SiC器件的尺寸可以比Si器件小得多,这为更紧凑的功率模块设计提供了机会。根据芯片的热阻表达式,芯片尺寸的缩小,例如芯片边缘的长度,会导致热阻的二次方增加。这意味着SiC功率器件的模块化封装需要特别注意散热和冷却。图1.6展示了计算出所需的总芯片面积减少,这与芯片到冷却剂的热阻减少有关。换句话说,随着芯片面积的减少,SiC器件所需的热阻需要提高。然而,即使结合最先进的冷却策略,如直接冷却的冷板与针状翅片结构,假设应用一个70kVA的逆变器,基于DBC和线束的标准功率模块封装的单位面积热阻值通常在0.3至0.4 Kcm2/W之间。为了满足研究中预测的未来功率模块的性能和成本目标,该值需要低于0.2 Kcm2/W,这只能通过创新方法实现,比如双面冷却法。同时,小的芯片面积也使其难以放置足够数量的线束,这不仅限制了电流处理能力,也限制了热电容。以前对标准功率模块封装的热改进大多集中在稳态热阻上,这可能不能很好地代表开关功率模块的瞬态热行为。由于预计SiC器件具有快速功率脉冲的极其集中的热通量密度,因此不仅需要降低热阻,还需要改善热容量,以尽量减少这些快速脉冲导致的峰值温度上升。在未来的功率模块封装中,应解决因采用SiC器件而产生的热挑战。以下是未来SiC封装在散热方面应考虑的一些要求。第一,为了降低热阻,需要减少或消除热路中的一些封装层;第二,散热也需要从芯片的顶部完成以使模块的热阻达到极低水平,这可能需要改变互连方法,比如采用更大面积的接头;第三,封装层接口处的先进材料将有助于降低封装的热阻。例如,用于芯片连接和热扩散器的材料可以分别用更高的导热性接头和碳基复合材料代替。第四,喷射撞击、喷雾和微通道等先进的冷却方法可以用来提高散热能力。SiC器件有可能被用于预期温度范围极广的航空航天应用中。例如用于月球或火星任务的电子器件需要分别在-180℃至125℃和-120℃至85℃的广泛环境温度循环中生存。由于这些空间探索中的大多数电子器件都是基于类似地球的环境进行封装的,因此它们被保存在暖箱中,以保持它们在极低温度下的运行。由于SiC器件正在评估这些条件,因此需要开发与这些恶劣环境兼容的封装技术,而无需使用暖箱。与低温有关的最大挑战之一是热循环引起的大的CTE失配对芯片连接界面造成的巨大压力。另外,在室温下具有柔性和顺应性的材料,如硅凝胶,在-180℃时可能变得僵硬,在封装内产生巨大的应力水平。因此,SiC封装在航空应用中的未来方向首先是开发和评估与芯片的CTE密切匹配的基材,以尽量减少应力。其次,另一个方向应该是开发在极低温度下保持可塑性的芯片连接材料。在最近的研究活动中,在-180℃-125℃的极端温度范围内,对分别作为基材和芯片附件的SiN和Indium焊料的性能进行了评估和表征。为进一步推动我国能源战略的实施,提高我国在新能源领域技术、装备的国际竞争力,实现高可靠性碳化硅 MOSFET 器件中试生产技术研究,研制出满足移动储能变流器应用的多芯片并联大功率MOSFET 器件。本研究将通过寄生参数提取、建模、仿真及测试方式研究 DBC 布局、多栅极电阻等方式对芯片寄生电感与均流特性的影响,进一步提高我国碳化硅器件封装及测试能力。2. SiC MOSFET功率模块设计技术2.1 模块设计技术介绍在MOSFET模块设计中引入软件仿真环节,利用三维电磁仿真软件、三维温度场仿真软件、三维应力场仿真软件、寄生参数提取软件和变流系统仿真软件,对MOSFET模块设计中关注的电磁场分布、热分布、应力分布、均流特性、开关特性、引线寄生参数对模块电特性影响等问题进行仿真,减小研发周期、降低设计研发成本,保证设计的产品具备优良性能。在仿真基础上,结合项目团队多年从事电力电子器件设计所积累的经验,解决高压大功率MOSFET模块设计中存在的多片MOSFET芯片和FRD芯片的匹配与均流、DBC版图的设计与芯片排布设计、电极结构设计、MOSFET模块结构设计等一系列难题,最终完成模块产品的设计。高压大功率MOSFET模块设计流程如下:图2.1高压大功率MOSFET模块设计流程在MOSFET模块设计中,需要综合考虑很多问题,例如:散热问题、均流问题、场耦合问题、MOSFET模块结构优化设计问题等等。MOSFET芯片体积小,热流密度可以达到100W/cm2~250W/cm2。同时,基于硅基的MOSFET芯片最高工作温度为175℃左右。据统计,由于高温导致的失效占电力电子芯片所有失效类型的50%以上。随电力电子器件设备集成度和环境集成度的逐渐增加,MOSFET模块的最高温升限值急剧下降。因此,MOSFET模块的三维温度场仿真技术是高效率高功率密度MOSFET模块设计开发的首要问题。模块散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。另外,芯片的排布对热分布影响也很大。下图4.2是采用有限元软件对模块内部的温度场进行分析的结果:图2.2 MOSFET模块散热分布分析在完成结构设计和材料选取后,采用ANSYS软件的热分析模块ICEPAK,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布,根据温度场分布再对MOSFET内部结构和材料进行调整,直至达到设计要求范围内的最优。2.2 材料数据库对一个完整的焊接式MOSFET模块而言,从上往下为一个 8层结构:绝缘盖板、密封胶、键合、半导体芯片层、焊接层 1、DBC、焊接层 2、金属底板。MOSFET模块所涉及的主要材料可分为以下几种类型:导体、绝缘体、半导体、有机物和无机物。MOSFET模块的电、热、机械等性能与材料本身的电导率、热导率、热膨胀系数、介电常数、机械强度等密切相关。材料的选型非常重要,为此有必要建立起常用的材料库。2.3 芯片的仿真模型库所涉及的MOSFET芯片有多种规格,包括:1700V 75A/100A/125A;2500V/50A;3300V/50A/62.5A;600V/100A;1200V/100A;4500V/42A;6500V/32A。为便于合理地进行芯片选型(确定芯片规格及其数量),精确分析多芯片并联时的均流性能,首先为上述芯片建立等效电路模型。在此基础上,针对实际电力电子系统中的滤波器、电缆和电机负载模型,搭建一个系统及的仿真平台,从而对整个系统的电气性能进行分析预估。2.4 MOSFET模块的热管理MOSFET模块是一个含不同材料的密集封装的多层结构,其热流密度达到100W/cm2--250W/cm2,模块能长期安全可靠运行的首要因素是良好的散热能力。散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。芯片可靠散热的另一重要因素是键合的长度和位置。假设散热底板的温度分布均匀,而每个MOSFET芯片对底板的热阻有差异,导致在相同工况时,每个MOSFET芯片的结温不同。下图是采用有限元软件对模块内部的温度场进行分析的结果。图2.3MOSFET模块热分布在模块完成封装后,采用FLOTHERM软件的热分析模块,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布的数值解,为MOSFET温度场分布的测试提供一定的依据。2.5. 芯片布局与杂散参数提取根据MOSFET模块不同的电压和电流等级,MOSFET模块所使用芯片的规格不同,芯片之间的连接方式也不同。因此,详细的布局设计放在项目实施阶段去完成。对中低压MOSFET模块和高压MOSFET模块,布局阶段考虑的因素会有所不同,具体体现在DBC与散热底板之间的绝缘、DBC上铜线迹之间的绝缘以及键合之间的绝缘等。2.6 芯片互联的杂散参数提取MOSFET芯片并联应用时的电流分配不均衡主要有两种:静态电流不均衡和动态电流不均衡。静态电流不均衡主要由器件的饱和压降VCE(sat)不一致所引起;而动态电流不均衡则是由于器件的开关时间不同步引起的。此外,栅极驱动、电路的布局以及并联模块的温度等因素也会影响开关时刻的动态均流。回路寄生电感特别是射极引线电感的不同将会使器件开关时刻不同步;驱动电路输出阻抗的不一致将引起充放电时间不同;驱动电路的回路引线电感可能引起寄生振荡;以及温度不平衡会影响到并联器件动态均流。2.7 模块设计专家知识库通过不同规格MOSFET模块的设计-生产-测试-改进设计等一系列过程,可以获得丰富的设计经验,并对其进行归纳总结,提出任意一种电压电流等级的MOSFET模块的设计思路,形成具有自主知识产权的高压大功率MOSFET模块的系统化设计知识库。3. SiCMOSFET封装工艺3.1 封装常见工艺MOSFET模块封装工艺主要包括焊接工艺、键合工艺、外壳安装工艺、灌封工艺及测试等。3.1.1 焊接工艺焊接工艺在特定的环境下,使用焊料,通过加热和加压,使芯片与DBC基板、DBC基板与底板、DBC基板与电极达到结合的方法。目前国际上采用的是真空焊接技术,保证了芯片焊接的低空洞率。焊接要求焊接面沾润好,空洞率小,焊层均匀,焊接牢固。通常情况下.影响焊接质量的最主要因素是焊接“空洞”,产生焊接空洞的原因,一是焊接过程中,铅锡焊膏中助焊剂因升温蒸发或铅锡焊片熔化过程中包裹的气泡所造成的焊接空洞,真空环境可使空洞内部和焊接面外部形成高压差,压差能够克服焊料粘度,释放空洞。二是焊接面的不良加湿所造成的焊接空洞,一般情况下是由于被焊接面有轻微的氧化造成的,这包括了由于材料保管的不当造成的部件氧化和焊接过程中高温造成的氧化,即使真空技术也不能完全消除其影响。在焊接过程中适量的加人氨气或富含氢气的助焊气体可有效地去除氧化层,使被焊接面有良好的浸润性.加湿良好。“真空+气体保护”焊接工艺就是基于上述原理研究出来的,经过多年的研究改进,已成为高功率,大电流,多芯片的功率模块封装的最佳焊接工艺。虽然干式焊接工艺的焊接质量较高,但其对工艺条件的要求也较高,例如工艺设备条件,工艺环境的洁净程度,工艺气体的纯度.芯片,DBC基片等焊接表面的应无沾污和氧化情况.焊接过程中的压力大小及均匀性等。要根据实际需要和现场条件来选择合适的焊接工艺。3.1.2 键合工艺引线键合是当前最重要的微电子封装技术之一,目前90%以上的芯片均采用这种技术进行封装。超声键合原理是在超声能控制下,将芯片金属镀层和焊线表面的原子激活,同时产生塑性变形,芯片的金属镀层与焊线表面达到原子间的引力范围而形成焊接点,使得焊线与芯片金属镀层表面紧密接触。按照原理的不同,引线键合可以分为热压键合、超声键合和热压超声键合3种方式。根据键合点形状,又可分为球形键合和楔形键合。在功率器件及模块中,最常见的功率互连方法是引线键合法,大功率MOSFET模块采用了超声引线键合法对MOSFET芯片及FRD芯片进行互连。由于需要承载大电流,故采用楔形劈刀将粗铝线键合到芯片表面或DBC铜层表面,这种方法也称超声楔键合。外壳安装工艺:功率模块的封装外壳是根据其所用的不同材料和品种结构形式来研发的,常用散热性好的金属封装外壳、塑料封装外壳,按最终产品的电性能、热性能、应用场合、成本,设计选定其总体布局、封装形式、结构尺寸、材料及生产工艺。功率模块内部结构设计、布局与布线、热设计、分布电感量的控制、装配模具、可靠性试验工程、质量保证体系等的彼此和谐发展,促进封装技术更好地满足功率半导体器件的模块化和系统集成化的需求。外壳安装是通过特定的工艺过程完成外壳、顶盖与底板结构的固定连接,形成密闭空间。作用是提供模块机械支撑,保护模块内部组件,防止灌封材料外溢,保证绝缘能力。外壳、顶盖要求机械强度和绝缘强度高,耐高温,不易变形,防潮湿、防腐蚀等。3.1.3 灌封工艺灌封工艺用特定的灌封材料填充模块,将模块内组件与外部环境进行隔离保护。其作用是避免模块内部组件直接暴露于环境中,提高组件间的绝缘,提升抗冲击、振动能力。灌封材料要求化学特性稳定,无腐蚀,具有绝缘和散热能力,膨胀系数和收缩率小,粘度低,流动性好,灌封时容易达到模块内的各个缝隙,可将模块内部元件严密地封装起来,固化后能吸收震动和抗冲击。3.1.4 模块测试MOSFET模块测试包括过程测试及产品测试。其中过程测试通过平面度测试仪、推拉力测试仪、硬度测试仪、X射线测试仪、超声波扫描测试仪等,对产品的入厂和过程质量进行控制。产品测试通过平面度测试仪、动静态测试仪、绝缘/局部放电测试仪、高温阻断试验、栅极偏置试验、高低温循环试验、湿热试验,栅极电荷试验等进行例行和型式试验,确保模块的高可靠性。3.2 封装要求本项目的SiC MOSFET功率模块封装材料要求如下:(1)焊料选用需要可靠性要求和热阻要求。(2)外壳采用PBT材料,端子裸露部分表面镀镍或镀金。(3)内引线采用超声压接或铝丝键合(具体视装配图设计而定),功率芯片采用铝线键合。(4)灌封料满足可靠性要求,Tg150℃,能满足高低温存贮和温度循环等试验要求。(5)底板采用铜材料。(6)陶瓷覆铜板采用Si3N4材质。(7)镀层要求:需保证温度循环、盐雾、高压蒸煮等试验后满足外观要求。3.3 封装流程本模块采用既有模块进行封装,不对DBC结构进行调整。模块封装工艺流程如下图3.1所示。图3.1模块封装工艺流程(1)芯片CP测试:对芯片进行ICES、BVCES、IGES、VGETH等静态参数进行测试,将失效的芯片筛选出来,避免因芯片原因造成的封装浪费。(2)划片&划片清洗:将整片晶圆按芯片大小分割成单一的芯片,划片后可从晶圆上将芯片取下进行封装;划片后对金属颗粒进行清洗,保证芯片表面无污染,便于后续工艺操作。(3)丝网印刷:将焊接用的焊锡膏按照设计的图形涂敷在DBC基板上,使用丝网印刷机完成,通过工装钢网控制锡膏涂敷的图形。锡膏图形设计要充分考虑焊层厚度、焊接面积、焊接效果,经过验证后最终确定合适的图形。(4)芯片焊接:该步骤主要是完成芯片与 DBC 基板的焊接,采用相应的焊接工装,实现芯片、焊料和 DBC 基板的装配。使用真空焊接炉,采用真空焊接工艺,严格控制焊接炉的炉温、焊接气体环境、焊接时间、升降温速度等工艺技术参数,专用焊接工装完成焊接工艺,实现芯片、DBC 基板的无空洞焊接,要求芯片的焊接空洞率和焊接倾角在工艺标准内,芯片周围无焊球或堆焊,焊接质量稳定,一致性好。(5)助焊剂清洗:通过超声波清洗去除掉助焊剂。焊锡膏中一般加入助焊剂成分,在焊接过程中挥发并残留在焊层周围,因助焊剂表现为酸性,长期使用对焊层具有腐蚀性,影响焊接可靠性,因此需要将其清洗干净,保证产品焊接汉城自动气相清洗机采用全自动浸入式喷淋和汽相清洗相结合的方式进行子单元键合前清洗,去除芯片、DBC 表面的尘埃粒子、金属粒子、油渍、氧化物等有害杂质和污染物,保证子单元表面清洁。(6) X-RAY检测:芯片的焊接质量作为产品工艺控制的主要环节,直接影响着芯片的散热能力、功率损耗的大小以及键合的合格率。因此,使用 X-RAY 检测机对芯片焊接质量进行检查,通过调整产生 X 射线的电压值和电流值,对不同的焊接产品进行检查。要求 X 光检查后的芯片焊接空洞率工艺要求范围内。(7)芯片键合:通过键合铝线工艺,完成 DBC 和芯片的电气连接。使用铝线键合机完成芯片与 DBC 基板对应敷铜层之间的连接,从而实现芯片之间的并联和反并联。要求该工序结合芯片的厚度参数和表面金属层参数,通过调整键合压力,键合功率,键合时间等参数,并根据产品的绝缘要求和通流大小,设置合适的键合线弧高和间距,打线数量满足通流要求,保证子单元的键合质量。要求键合工艺参数设定合理、铝线键合质量牢固,键合弧度满足绝缘要求、键合点无脱落,满足键合铝线推拉力测试标准。(8)模块焊接:该工序实现子单元与电极、底板的二次焊接。首先进行子单元与电极、底板的焊接装配,使用真空焊接炉实现焊接,焊接过程中要求要求精确控制焊接设备的温度、真空度、气体浓度。焊接完成后要求子单元 DBC 基板和芯片无损伤、无焊料堆焊、电极焊脚之间无连焊虚焊、键合线无脱落或断裂等现象。(9)超声波检测:该工序通过超声波设备对模块 DBC 基板与底板之间的焊接质量进行检查,模块扫描后要求芯片、DBC 无损伤,焊接空洞率低于 5%。(10)外壳安装:使用涂胶设备进行模块外壳的涂胶,保证模块安装后的密封性,完成模块外壳的安装和紧固。安装后要求外壳安装方向正确,外壳与底板粘连处在灌封时不会出现硅凝胶渗漏现象。(11)端子键合&端子超声焊接:该工序通过键合铝线工艺,实现子单元与电极端子的电气连接,形成模块整体的电气拓扑结构;可以通过超声波焊接实现子单元与电极端子的连接,超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。超声波焊接具有高机械强度,较低的热应力、焊接质量高等优点,使得焊接具有更好的可靠性,在功率模块产品中应用越来越广泛。(12)硅凝胶灌封&固化:使用自动注胶机进行硅凝胶的灌封,实现模块的绝缘耐压能力。胶体填充到指定位置,完成硅凝胶的固化。要求胶体固化充分,胶体配比准确,胶体内不含气泡、无分层或断裂纹。4. 极端条件下的可靠性测试4.1 单脉冲雪崩能量试验目的:考察的是器件在使用过程中被关断时承受负载电感能量的能力。试验原理:器件在使用时经常连接的负载是感性的,或者电路中不可避免的也会存在寄生电感。当器件关断时,电路中电流会突然下降,变化的电流会在感性负载上产生一个应变电压,这部分电压会叠加电源电压一起加载在器件上,使器件在瞬间承受一个陡增的电压,这个过程伴随着电流的下降。图4.1 a)的雪崩能量测试电路就是测试这种工况的,被测器件上的电流电压变化情况如图4.1 b)。图4.1 a)雪崩能量测试电路图;b)雪崩能量被测器件的电流电压特性示意图这个过程中,电感上储存的能量瞬时全部转移到器件上,可知电流刚开始下降时,电感储存的能量为1/2*ID2*L,所以器件承受的雪崩能量也就是电感包含的所有能量,为1/2*ID2*L。试验目标:在正向电流ID = 20A下,器件单脉冲雪崩能量EAS1J试验步骤:将器件放入测试台,给器件施加导通电流为20A。设置测试台电感参数使其不断增加,直至器件的单脉冲雪崩能量超过1J。通过/失效标准:可靠性试验完成后,按照下表所列的顺序测试(有些测试会对后续测试有影响),符合下表要求的可认为通过。测试项目通过条件IGSS USLIDSS or IDSX USLVGS(off) or VGS(th)LSL USLVDS(on) USLrDS(on) USL (仅针对MOSFET)USL: upper specification limit, 最高上限值LSL: lower specification limit, 最低下限值4.2 抗短路能力试验目的:把样品暴露在空气干燥的恒温环境中,突然使器件通过大电流,观测元器件在大电流大电压下于给定时间长度内承受大电流的能力。试验原理:当器件工作于实际高压电路中时,电路会出现误导通现象,导致在短时间内有高于额定电流数倍的电流通过器件,器件承受这种大电流的能力称为器件的抗短路能力。为了保护整个系统不受误导通情况的损坏,系统中会设置保护电路,在出现短路情况时迅速切断电路。但是保护电路的反应需要一定的时长,需要器件能够在该段时间内不发生损坏,因此器件的抗短路能力对整个系统的可靠性尤为重要。器件的抗短路能力测试有三种方式,分别对应的是器件在不同的初始条件下因为电路突发短路(比如负载失效)而接受大电流大电压时的反应。抗短路测试方式一,也称为“硬短路”,是指IGBT从关断状态(栅压为负)直接开启进入到抗短路测试中;抗短路测试方式二,是指器件在已经导通有正常电流通过的状态下(此时栅压为正,漏源电压为正但较低),进入到抗短路测试中;抗短路测试方式三是指器件处于栅电压已经开启但漏源电压为负(与器件反并联的二极管处于续流状态,所以此时器件的漏源电压由于续流二极管的钳位在-0.7eV左右,,栅压为正),进入到抗短路测试中。可知,器件的抗短路测试都是对应于器件因为电路的突发短路而要承受电路中的大电流和大电压,只是因为器件的初始状态不同而会有不同的反应。抗短路测试方法一电路如图4.2,将器件直接加载在电源两端,器件初始状态为关断,此时器件承受耐压。当给器件栅电极施加一个脉冲,器件开启,从耐压状态直接开始承受一个大电流及大电压,考量器件的“硬”耐短路能力。图4.2 抗短路测试方法一的测试电路图抗短路测试方法二及三的测试电路图如图4.2,图中L_load为实际电路中的负载电感,L_par为电路寄生电感,L_sc为开关S1配套的寄生电感。当进行第二种抗短路方法测试时,将L_load下端连接到上母线(Vdc正极),这样就使L_sc支路与L_load支路并联。初态时,S1断开,DUT开通,电流从L_load和DUT器件上通过,开始测试时,S1闭合,L_load瞬时被短路,电流沿着L_sc和DUT路线中流动,此时电流通路中仅包含L_sc和L_par杂散电感,因此会有大电流会通过DUT,考察DUT在导通状态时承受大电流的能力。当进行第三种抗短路方法测试时,维持图4.2结构不变,先开通IGBT2并保持DUT关断,此时电流从Vdc+沿着IGBT2、L_load、Vdc-回路流通,接着关断IGBT2,那么D1会自动给L_load续流,在此状态下开启DUT栅压,DUT器件处于栅压开启,但漏源电压被截止状态,然后再闭合S1,大电流会通过L_sc支路涌向DUT。在此电路中IGBT2支路的存在主要是给D1提供续流的电流。图4.3 抗短路测试方法二和方法三的测试电路图1) 抗短路测试方法一:图4.2中Vdc及C1大电容提供持续稳定的大电压,给测试器件DUT栅极施加一定时间长度的脉冲,在被试器件被开启的时间内,器件开通期间处于短路状态,且承受了较高的耐压。器件在不损坏的情况下能够承受的最长开启时间定义为器件的短路时长(Tsc),Tsc越大,抗短路能力越强。在整个短路时长器件,器件所承受的能量,为器件的短路能量(Esc)。器件的抗短路测试考察了器件瞬时同时承受高压、高电流的能力,也是一种器件的复合应力测试方式。图4.2测试电路中的Vdc=600V,C1、C2、C3根据器件的抗短路性能能力决定,C1的要求是维持Vdc的稳定,C1的要求是测试过程中释放给被测器件的电能不能使C1两端的电压下降过大(5%之内可接受)。C2,C3主要用于给器件提供高频、中频电流,不要求储存能量过大。对C2、C3的要求是能够降低被测器件开通关断时造成的漏源电压振幅即可。图4.4 抗短路能力测试方法一的测试结果波形图4.4给出了某款SiC平面MOSFET在290K下,逐渐增大栅极脉冲宽度(PW)的抗短路能力测试结果。首先需要注意的是在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。从图中可以看出,Id峰值出现在1 μs和2 μs之间,随着开通时间的增加,Id呈现出先增加后减小的时间变化趋势。Id的上升阶段,是因为器件开启时有大电流经过器件,在高压的共同作用下,器件温度迅速上升,因为此时MOSFET的沟道电阻是一个负温度系数,所以MOSFET沟道电阻减小,Id则上升,在该过程中电流上升的速度由漏极电压、寄生电感以及栅漏电容的充电速度所决定;随着大电流的持续作用,器件整体温度进一步上升,器件此时的导通电阻变成正温度系数,器件的整体电阻将随温度增加逐渐增大,这时器件Id将逐渐减小。所以,整个抗短路能力测试期间,Id先增加后下降。此外,测试发现,当脉冲宽度增加到一定程度,Id在关断下降沿出现拖尾,即器件关断后漏极电流仍需要一定的时间才能恢复到0A。在研究中发现当Id拖尾到达约12A左右之后,进一步增大脉冲宽度,器件将损坏,并伴随器件封装爆裂。所以针对这款器件的抗短路测试,定义Tsc为器件关断时漏极电流下降沿拖尾到达10A时的脉冲时间长度。Tsc越长,代表器件的抗短路能力越强。测试发现,低温有助于器件抗短路能力的提升,原因是因为,低的初始温度意味着需要更多的时间才能使器件达到Id峰值。仿真发现,器件抗短路测试失效模式主要有两种:1、器件承受高压大电流的过程中,局部高温引起漏电流增加,触发了器件内部寄生BJT闩锁效应,栅极失去对沟道电流的控制能力,器件内部电流局部集中发生热失效,此时的表现主要是器件的Id电流突然上升,器件失效;2、器件温度缓慢上升时,导致器件内部材料性能恶化,比如栅极电极或者SiO2/Si界面处性能失效,主要表现为器件测试过程中Vgs陡降,此时,器件的Vds若未发生进一步损坏仍能承受耐压,只是器件Vgs耐压能力丧失。上述两种失效模式都是由于温度上升引起,所以要提升器件的抗短路能力就是要控制器件内部温度上升。仿真发现导通时最高温区域主要集中于高电流密度区域(沟道部分)及高电场区域(栅氧底部漂移区)。因此,要提升器件的抗短路能力,要着重从器件的沟道及栅氧下方漂移区的优化入手,降低电场峰值及电流密度,此外改善栅氧的质量将起到决定性的作用。2) 抗短路测试方法二:图4.5 抗短路能力测试方法二的测试结果波形如图4.5,抗短路测试方法二的测试过程中DUT器件会经历三个阶段:(1)漏源电压Vds低,Id电流上升:当负载被短路时,大电流涌向DUT器件,此时电路中仅包含L_sc和L_par杂散电感,DUT漏源电压较低,Vdc电压主要分布在杂散电感上,所以Id电流以di/dt=Vdc/(L_sc+L_par)的斜率开始上升。随着Id增加,因为DUT器件的漏源之间的寄生电容Cgd,会带动栅压上升,此时更加促进Id电流的增加,形成一个正循环,Id急剧上升。(2)Id上升变缓然后开始降低,漏源电压Vds上升:Id上升过程中,Vds漏源电压开始增加,导致Vdc分压到杂散电感上的电压降低,导致电流上升率di/dt减小,Id上升变缓,当越过Id峰值后,Id开始下降,-di/dt使杂散电感产生一个感应电压叠加在Vds上导致Vds出现一个峰值。Vds峰值在Id峰值之后。(3)Id、Vds下降并恢复:Id,Vds均下降恢复到抗短路测试一的高压高电流应力状态。综上所述,抗短路测试方法一的条件比方法一的更为严厉和苛刻。3) 抗短路测试方法三:图4.6 抗短路能力测试方法二的测试结果波形如图4.6,抗短路测试方法三的波形与方法二的波形几乎一致,仅仅是在Vds电压上升初期有一个小的电压峰(如图4.6中红圈),这是与器件发生抗短路时的初始状态相关的。因为方法三中器件初始状态出于栅压开启,Vds为反偏的状态,所以器件内部载流子是耗尽的。此时若器件Vds转为正向开通则必然发生一个载流子充入的过程,引发一个小小的电压峰,这个电压峰值是远小于后面的短路电压峰值的。除此以外,器件的后续状态与抗短路测试方法二的一致。一般来说,在电机驱动应用中,开关管的占空比一般比续流二极管高,所以是二极管续流结束后才会开启开关管的栅压,这种情况下,只需要考虑仅开关管开通时的抗短路模式,则第二种抗短路模式的可能性更大。然而,当一辆机车从山上开车下来,电动机被用作发电机,能量从车送到电网。续流二极管的占空比比开关管会更高一点,这种操作模式下,如果负载在二极管续流且开关管栅压开启时发生短路,则会进行抗短路测试模式三的情况。改进抗短路失效模式二及三的方法,是通过给开关器件增加一个栅极前钳位电路,在Id上升通过Cgd带动栅极电位上升时,钳位电路钳住栅极电压,就不会使器件的Id上升陷入正反馈而避免电流的进一步上升。试验目标:常温下,令Vdc=600V,通过控制Vgs控制SiC MOSFET的开通时间,从2μs开通时间开始以1μs为间隔不断增加器件的开通时间,直至器件损坏,测试过程中保留测试曲线。需要注意的是,在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。试验步骤:搭建抗短路能力测试电路。将器件安装与测试电路中,保持栅压为0。通过驱动电路设置器件的开通时间,给器件一个t0=2μs时间的栅源脉冲电压,使器件开通t0时间,观察器件上的电流电压曲线,判断器件是否能够承受2μs的短路开通并不损坏;如未损坏,等待足够长时间以确保器件降温至常温状态,设置驱动电路使器件栅源电压单脉冲时间增加1us,再次开通,观察器件是否能够承受3μs的短路开通并不损坏。循环反复直至器件发生损坏。试验标准:器件被打坏前最后一次脉冲时间长度即为器件的短路时长Tsc。整个短路时长期间,器件所承受的能量为器件的短路能量Esc。4.3 浪涌试验目的:把样品暴露在空气干燥的恒温环境中,对器件施加半正弦正向高电流脉冲,使器件在瞬间发生损坏,观测元器件在高电流密度下的耐受能力。试验原理:下面以SiC二极管为例,给出了器件承受浪涌电流测试时的器件内部机理。器件在浪涌应力下的瞬态功率由流过器件的电流和器件两端的电压降的乘积所决定,电流和压降越高,器件功率耗散就越高。已知浪涌应力对器件施加的电流信号是固定的,因此导通压降越小的器件瞬态功率越低,器件承受浪涌的能力越强。当器件处于浪涌电流应力下,电压降主要由器件内部寄生的串联电阻承担,因此我们可以通过降低器件在施加浪涌电流瞬间的导通电阻,减小器件功率、提升抗浪涌能力。a)给出了4H-SiC二极管实际浪涌电流测试的曲线,图4.7 a)曲线中显示器件的导通电压随着浪涌电流的上升和下降呈现出“回滞”的现象。图4.7 a)二极管浪涌电流的实测曲线; b)浪涌时温度仿真曲线浪涌过程中,器件的瞬态 I-V 曲线在回扫过程中出现了电压回滞,且浪涌电流越高,器件在电流下降和上升过程中的压降差越大,该电压回滞越明显。当浪涌电流增加到某一临界值时,I-V 曲线在最高压降处出现了一个尖峰,曲线斜率突变,器件发生了失效和损坏。器件失效后,瞬态 I-V 曲线在最高电流处出现突然增加的毛刺现象,电压回滞也减小。引起SiC JBS二极管瞬态 I-V 曲线回滞的原因是,在施加浪涌电流的过程中,SiC JBS 二极管的瞬态功率增加,但散热能力有限,所以浪涌过程中器件结温增加,SiC JBS 二极管压降也发生了变化,产生了回滞现象。在每次对器件施加浪涌电流过程中,随着电流的增加,器件的肖特基界面的结温会增加,当电流降低接近于0时结温才逐渐回落。在浪涌电流导通的过程中,结温是在积累的。由于电流上升和下降过程中的结温的差异,导致了器件在电流下降过程的导通电阻高于电流在上升过程中导通电阻。这使得电流下降过程 I-V 曲线压降更大,从而产生了在瞬态 I-V 特性曲线电压回滞现象。浪涌电流越高,器件的肖特基界面处的结温越高,因此导通电阻就越大,而回滞现象也就越明显。为了分析器件在 40 A 以上浪涌电流下的瞬态 I-V 特性变化剧烈的原因,使用仿真软件模拟了肖特基界面处温度随电流大小的变化曲线,如图4.7 b)所示,在 40 A 以上浪涌电流下,结温随浪涌电流变化非常剧烈。器件在 40 A 浪涌电流下,最高结温只有 358 K。但是当浪涌电流增加到60 A 时,最高结温已达1119 K,这个温度足以对器件破坏表面的肖特基金属,引起器件失效。图4.7 b)中还可以得出,浪涌电流越高,结温升高的变化程度就越大,56 A 和 60 A 浪涌电流仅相差 4 A,最高结温就相差 543 K,最高结温的升高速度远比浪涌电流的增加速度快。结温的快速升高导致了器件的导通电阻迅速增大,正向压降快速增加。因此,电流上升和下降过程中,器件的导通压降会更快速地升高和下降,使曲线斜率发生了突变。器件结温随着浪涌电流的增大而急剧增大,是因为它们之间围绕着器件导通电阻形成了正反馈。在浪涌过程中,随着浪涌电流的升高,二极管的功率增加,产生的焦耳热增加,导致了结温上升;另一方面,结温上升,导致器件的导通电阻增大,压降进一步升高。导通电压升高,导致功率进一步增加,使得结温进一步升高。因此器件的结温和电压形成了正反馈,致使结温和压降的增加速度远比浪涌电流的增加速度快。当浪涌电流增加到某一临界值时,触发这个正反馈,器件就会发生失效和损坏。长时间的重复浪涌电流会在外延层中引起堆垛层错生长,浪涌电流导致的自热效应会引起顶层金属熔融,使得电极和芯片之间短路,还会导致导通压降退化和峰值电流退化,并破坏器件的反向阻断能力。金属Al失效是大多数情况下浪涌失效的主要原因,应该使用鲁棒性更高的材料替代金属Al,以改善SiC器件的高温特性。目前MOS器件中,都没有给出浪涌电流的指标。而二极管、晶闸管器件中有这项指标。如果需要了解本项目研发的MOSFET器件的浪涌能力,也可以搭建电路实现。但是存在的问题是,MOS器件的导通压降跟它被施加的栅压是相关的,栅压越大,导通电阻越低,耐浪涌能力越强。如何确定浪涌测试时应该给MOSFET施加的栅压,是一个需要仔细探讨的问题。试验目标:我们已知浪涌耐受能力与器件的导通压降有关,但目前无法得到明确的定量关系。考虑到目标器件也没有这类指标的参考,建议测试时,在给定栅压下(必须确保器件能导通),对器件从低到高依次施加脉冲宽度为10ms或8.3ms半正弦电流波,直到器件发生损坏。试验步骤:器件安装在测试台上后,器件栅极在给定栅压下保持开启状态。通过测试台将导通电流设置成10ms或8.3ms半正弦电流波,施加在器件漏源极间。逐次增加正弦波的上限值,直至器件被打坏。试验标准:器件被打坏前的最后一次通过的浪涌值即为本器件在特定栅压下的浪涌指标值。以上内容给出了本项目研发器件在复合应力及极端条件下的可靠性测试方法,通过这些方法都是来自于以往国际工程经验和鉴定意见,可以对被测器件的可靠性有一个恰当的评估。但是,上述方法都是对测试条件和测试原理的阐述,如何通过测试结果来评估器件的使用寿命,并搭建可靠性测试条件与可靠性寿命之间的桥梁,就得通过可靠性寿命评估模型来实现。
  • 质检总局公布50种不合格卫生纸 并不是越白越好
    卫生纸的品质,你留意过吗?在所有日用品中,卫生纸几乎每天都要和身体亲密接触,质量差的卫生纸不但细菌超标,长期使用含有过量荧光漂白剂的卫生纸还可能致癌。最近,国家质检总局公布了50种不合格的卫生纸产品,其中包括4个批次的浙江企业生产的卫生纸。      2010年卫生纸产品质量国家监督专项抽查不合格产品及其企业名单   浙产卫生纸,也有不合格   最近,国家质检总局抽查了北京等28个省、自治区、直辖市428家企业生产的588种卫生纸产品。结果有47家企业的50种产品不符合标准要求。其中大部分是细菌菌落总数超标或者是柔软度不够。   这次被公布的4个批次浙江产不合格卫生纸是:   德清县红丰纸业有限公司的皱纹卫生纸,规格500g/包。生产日期2010年6月1日。不合格项目细菌菌落总数超标。   德清县武康镇昌达卫生用品厂的蝶缘卫生纸,规格200张/包。生产日期2010年4月10日。不合格项目横向吸液高度和柔软度。   富阳长虹造纸厂的虹珠卫生纸,规格480g/包,生产日期是2010年6月2日。不合格项目是细菌菌落总数和柔软度。   萧山城厢湘湖纸制品厂的好德卫生纸,规格350g/包,生产日期是2010年5月13日,不合格项目是细菌菌落总数和柔软度。   挑卫生纸,专家说有8项指标   那么作为消费者该怎么挑选卫生纸呢?我们请教了浙江省质量技术监督检测研究院的专家。作为专业机构,他们检测卫生纸质量的时候,一般会检测下面几个指标:外观、定量、白度、横向吸液高度、横向抗张指数、纵横平均柔软度、洞眼、尘埃度、微生物等指标。我们也可以跟他们学几招——   外观:一看外包装,挑选卫生纸时应首先检查外包装。产品的包装封口应整齐牢固,无破损现象 包装上应印有生产厂名、生产日期、产品等级(优等品、一等品、合格品)、采用标准号、执行的卫生标准号(GB20810—2006)等信息。二看纸的外观,纸面应洁净,不应有明显的死褶、残缺、破损、硬质块、生草筋、浆团等纸病和杂质,纸张使用时不应有严重掉毛、掉粉现象,纸张中不应有残留的印刷油墨。   定量:就是指分量或者张数够不够,根据相关规定,一般是净含量50克至100克的商品,其负偏差不得超过4.5克 200克至300克的商品,不得超过9克。   白度:卫生纸并不是越白越好,有可能是添加了过量的荧光漂白剂。荧光剂是造成妇女皮炎的主要原因,长期使用还可能致癌。怎么辨别是否荧光漂白剂过量呢?首先用肉眼看应该是自然的象牙白,或者把卫生纸置于紫外光(如验钞机)的照射下,如果出现蓝色荧光,就证明含有荧光剂。而亮白度过低虽不会影响卫生纸的使用,但说明使用的原材料较差,同样尽量不要选用这类产品。   吸水性:可以将水滴在上面看吸收速度如何,速度越快吸水性越好。   横向抗张指数:就是纸的韧性如何,使用时是否容易碎裂。纯木浆纸由于纤维长,故拉力大,韧性好,不易断。   柔软度:这是卫生纸产品的一个重要指标,好的卫生纸应给人柔软舒适的感觉。影响卫生纸柔软度的主要原因卫生纸的纤维原料、起皱工艺。一般来说棉浆优于木浆,木浆优于麦草浆,柔软度超标的卫生纸使用起来手感粗糙。   洞眼:洞眼指标是对皱纹卫生纸上洞眼数量的限定要求,洞眼会对纸张使用带来影响,过多洞眼的皱纹卫生纸不仅外观较差,在使用中还容易破损,影响擦拭效果。   尘埃度:通俗点说就是纸上粉尘多不多。如果原料是原木纸浆,尘埃度是没有问题的。但若用回收来的纸张作为原料,且工艺处理不恰当,尘埃度就很难达标。   总而言之,好的卫生纸一般是自然的乳白色或象牙色,纹理均匀细腻、纸面干净、没有洞眼,无明显的死褶、尘埃、生草筋等,而低档卫生纸看起来是暗灰色和有杂质的。用手一摸,卫生纸是会掉粉、掉色甚至掉毛。
  • 广东家具不合格率11.6% 玉庭等众多品牌上黑榜
    甲醛释放量超标一直是家具行业的顽疾。近日,广东省质监局发布《2013年广东省木家具等7种产品省级定期监督检验质量状况公告》,公告显示,502家企业生产的747批次木家具产品中,有87批次不合格。   其中玉庭、美保美罗、慕尔庄园、基昌、金品居、丽星、品标、理邦、忆东方、恒泽、家家乐、里昂风情、逸彩佳居、森拉堡等众多家具品牌,均因甲醛释放量不合格集体登上质检黑榜,诺华、城市风景等家具品牌则因重金属含量不合格登上质检黑榜。而这些家具的生产厂家基本集中在广东广州、东莞、佛山、深圳、中山等地。   诺华、玉庭等家具品牌登质检黑榜   据中国质量万里行了解,广东省质监局对木家具、内外墙涂料、金属材料等7种产品进行了省级定期监督检验。在2013年广东省木家具产品质量省级定期监督检验不合格产品及其生产企业名单中,标称生产企业名称为“东莞诺华家具有限公司”、商标为“nova諾華”、规格型号为“W—749A_3645×495×505(mm)合格品”、生产日期或批号为“2013年02月”的床头柜因重金属含量和木工要求两项指标不合格而登上质检黑榜。同时,标称生产企业名称为“东莞市永信家具制造有限公司”、商标为“玉庭”、规格型号为“5Y60B#合格品”、生产日期或批号为“2013年05月04日”的餐椅,因甲醛释放量不符合标准规定也登上质检黑榜。   广东是中国家具产业最重要的生产、流通、出口基地。长期以来,广东家具产业形成了无可比拟的产业优势,一直牢牢占据国内家具产业的龙头地位,素有“中国家具看广东”、“世界家具广东造”的美誉。而此次被检出重金属含量超标、甲醛释放量超标等问题的诺华家具、永信家具也算业界小有名气的企业。   东莞诺华家具有限公司2003年成立,自称从一个小微型的家具制造工厂蜕变成为一家拥有数百家营运门店的跨国家具企业。并称目前,诺华在广东东莞拥有占地超过10万平方米的全球家具生产基地与全球家具研发中心。此次,因重金属含量和木工要求两项指标不合格而登上质检黑榜。   东莞市永信家具制造有限公司成立于1994年,号称是中国家具行业成立最早、规模最大、成就最高的综合性家具设计、制造及品牌营销企业,“玉庭”是其主打的家具品牌。此次,因甲醛释放量不符合标准规定登上了质检黑榜。   企业称“重金属含量及甲醛释放量超标问题出在油漆和板材上”   中国质量万里行工作人员分别致电诺华家具及永信家具,希望了解“不合格产品是否还在售及企业是否采取了召回等追溯措施?”“什么原因导致重金属含量及木工要求不合格、甲醛释放量不符合标准的规定?”   诺华家具总经理王亚云回应称,“目前,不合格产品已经停止销售,并按流程进行了召回。”他说,“床头柜重金属含量及木工要求不合格,问题出在油漆和板材上,原因在于供应商供货材料的技术含量出现了问题。供应商在油漆加工过程中可能混入了物料,导致整体指标重金属含量超标。”同时表示“消费者买到不合格产品,责任在于企业。今后,会严格审查供应商的情况,对供货产品由三月一次抽检缩短到一月一次”。   永信家具品质管理部经理户月祥回应称“不合格批次产品已经停止生产,产品并未向外发售”。   对于“什么原因导致该批次产品甲醛释放量超标”,称“该批次餐椅问题出在座板上,座板系复合板,原因在于企业对供应商的管理出现了漏洞。该批次产品是外发工厂加工,在该批次产品的质量流程上,品管员到对方工厂生产现场检查,也只能对外观、结构、承重力的物理性能做品质检查,对于甲醛释放量只能依靠国家鉴定机构才能完成。”   世界工厂的质量隐忧   据了解,广东质监本次监督检验涉及广州、深圳、珠海、佛山、惠州、汕尾、东莞、中山、江门、肇庆、顺德等11个地市(区)502家企业生产的747批次木家具产品,发现87批次不合格,不合格产品发现率为11.6%。   在不合格项目中,木家具涉及甲醛释放量、重金属含量、力学性能、漆膜理化性能、软硬质覆面理化性能、木工要求、人造板件外观等 儿童家具涉及结构安全(边缘及尖端)、有害物质限量(甲醛释放量、表面涂层可迁移元素含量)、警示标识、外观要求(木制件外观)等。   公告一出,家具业为之震动,曾经带动中国家具行业发展的广东家具,如今却成为劣质家具的重灾区。这让人们不禁要问,广东家具到底怎么了?   广东有着“世界工厂“的美誉,更是引领着中国家具行业的发展潮流。在定期抽检中,如此之多的品牌家具存在着诸多质量问题,已形成一种行业现象。尤其有害物质限量、甲醛释放量、重金属含量等指标不达标,直接关系到千家万户消费者的身体健康和使用安全。   业内人士称,产品不合格主要问题还是出在人造板等基础材料上,一旦基础材料不合格,生产出来的产品肯定不合格。某些人造板材企业为什么总是生产不合格的产品,厂家为什么又总是愿意使用这些产品呢?   知情人称,这与价格竞争有一定关系,有的企业为了谋求低价,就选择低品质的人造板,价格压得越低,产品质量就保证不了。另外该知情人还透露,11.6%的不合格率一点儿也不惊人,还有更多不合格的产品没有被抽查到,而这些产品照常在市场上销售。   广东家具的品质是否还配得上“世界工厂”的美誉,不能不给人们带来更多的疑问与思考。   消费者购买家具慎选杂牌   在鱼龙混杂的家具市场,专家建议消费者在选购家具时,要慎选杂牌产品。   通常杂牌家具厂家将经济利益放在第一位,在材料、做工等要求上都不是那么严格,即使出现质量问题他们也很难重视,“他们本来就没什么品牌,更不用担心品牌荣誉受损带来经济损失,而知名品牌为了维护信誉,从选材到做工都会更加注意。”   北京家具行业协会副会长兼秘书长于秀苏建议,消费者到知名卖场去购买品牌家具,“品牌企业实力强,对环保、做工等指标也更加重视,他们按照国家标准生产,对各个方面要求都比较严格,从品质到环保、性能等都相对更好。” 文章转载自:新浪网
  • 盘点:PEM制氢电解槽测试系统厂商及产品概览
    2024 年 7 月,国家标准《PEM 电解槽性能测试方法》征求意见稿发布。电解槽测试系统是氢能领域重要的检测设备之一。本标准为首次修订。国内外产品纷纷从示范向市场化产品发展,用户迅速增长。随着PEM制氢电解槽的大规模商业化进程不断推进,无论是批量生产还是研发和技术储备,电解槽的开发和生产过程中都需要进行严格的测试。为此,专业的PEM电解槽测试平台应运而生,这些平台能够监控电解槽的各项参数和运行状态,实现包括伏安特性曲线在内的性能测试、敏感性测试以及寿命评估等多项功能。以下是部分PEM制氢电解槽测试系统厂商及产品的介绍,排名不分先后。一、KEWELL科威尔科威尔技术股份有限公司是一家以测试电源为基础产品,为多行业提供测试系统及智能制造设备的综合性测试装备公司。公司目前主要产品线有测试电源、氢能测试及智能制造装备、功率半导体测试及智能制造装备等。产品主要应用于新能源发电、电动车辆、氢能、功率半导体等工业领域。由于测试电源产品运用的广泛性特点,公司产品还应用于轨道交通、汽车电子、智能制造、机电设备、航空航天、实验室认证等众多行业领域。产品:E500系列、E500-H单池高压版、单池多通道版、HETS-PEM-S系列电解槽测试等。例:E500-L单池常压版该系统运行压力最高2bar,由去离子水循环系统、氮气吹扫单元、压力调节单元、气水分离单元、气体分析预处理单元、PLC采集与控制单元、人机操作单元和安全监控单元等组成,采用公司自主开发的系统测试软件,可满足PEM电解槽的极化曲线、电化学测试、氧中氢浓度在线测试、敏感性测试、耐久性测试、产氢能耗效率、产氢质量测试和产品寿命等测试。产品功能:极化曲线测试功能、手动和自动运行模式、电池电压监测功能、氢/氧压力、温度测试功能、氧中氢浓度在线检测功能、氢/氧自动背压功能、高效汽水分离功能、水路温度、流量及压力控制功能、全自动补水功能、水路电导率监控功能等。二、北京格睿能源科技有限公司北京格睿能源科技有限公司成立于2021年,公司围绕氢能和燃料电池相关领域,以测试设备为基础产品,提供领先的高性能高可靠测试技术解决方案,为氢能行业提供“制-储-运-加-用”测试设备与数字服务。公司依托北京科技大学和清华大学氢能与燃料电池团队,经过多年技术积累,研发产品涵盖了燃料电池堆测试设备、燃料电池系统测试设备、电解槽测试设备以及关键零部件和材料测试设备等,可提供百瓦级至百千瓦级全功率范围的电解水制氢和燃料电池测试设备,并为客户提供智能化测试数据处理分析软件和测试服务。目前,产品已在国内多家高校、相关企业中得到应用,并成功开拓了海外市场。产品:100W 桌面式PEM电解槽测试台、全独立八通道 100W PEM电解槽测试台、整体式八通道 100W PEM电解槽测试台、5KW PEM电解槽测试台、500KW PEM电解槽测试台、GR-WETS-PEM-S500K 系列电解水制氢槽测试系统等。例:GR-WETS-PEM-SC100 系列电解水制氢槽测试设备在行业现有产品性能的基础上,进行了多项升级改进和优化设计。本测试设备由去离子水循环系统、氮气吹扫单元、气水分离单元、气体分析预处理单元、PLC 采集与控制单元、人机操作单元和安全监控单元等组成,采用公司自主开发的系统测试软件,可满足电解槽的极化曲线、产氢能耗效率、产氢质量测试和产品寿命等测试。产品功能:阳极进水温度控制、阳极水流量控制、夹具辅热温度控制、阳极进水温度控制、阳极水流量控制、夹具辅热温度控制、阳极出口温度测量、阴极(氢侧)自动背压、阴极产氢测量、氧中氢浓度在线切换检测、氢气流量在线切换检测等。三、大连锐格新能源大连锐格新能源科技有限公司成立于2009年,是国内最早专门从事氢能检测装备研发、设计与生产的高科技企业之一,拥有目前氢能行业最齐全的检测装备产品系列,目前产品覆盖PEMFC、PEM电解水和SOFC三大品类,主要包括燃料电池测试平台、燃料电池发动机测试系统、燃料电池系统部件测试平台、电解水设备测试平台、燃料电池及系统产线测试产品、燃料电池发动机测试实验室搭建等全系列氢能检测装备。产品:PEM(AEM)电解水制氢测试平台系列等。PEM(AEM)电解水制氢测试平台系列是针对PEM(AEM)制氢电解槽设计的一款测试平台,适用额定功率范围100W~1MW之间的PEM(AEM)制氢电解槽的性能评价。PEM(AEM)电解池测试系统可按照用户操作条件实现PEM(AEM)电解池的性能测试、敏感性测试、部件选型、寿命评估和理论基础研究等功能。通过操作软件实时控制、监测并显示PEM(AEM)电解池运行过程中的各种参数和工作状态,包括水的温度、压力、流量,电压、电流,冷却水温度、产生氢气的温度、压力、露点、纯度等参数,来实现PEM(AEM)电解池在各种不同的工况下的工作。产品功能:数据采集、存储功能:能够实时采集并存储电解槽的水流量、气体流量、温度、压力、电流、电压等信号;背压功能:氢气/氧气自动(手动)背压控制,满足常压到高压范围阴阳极均压、差压的控制功能;气体干燥功能:具备气液分离、气体冷却/干燥/过滤、气体流量精确测量;氮气自动吹扫功能:出现故障或停机时,自动氮气(高压/低压)吹扫,置换氢气管路中氢气;去离子水路控制功能:温度/流量精确调节、电解液回收、电导率在线监测、自动补水等功能;安全连锁及保护功能:软硬件多级安全保护策略和功能;电解池的性能测试(伏安特性曲线)、敏感性测试、部件选型、寿命评估功能;设备稳定性及可靠性:满足7×24小时无人值守全自动运行。四、NBT拜特NBT拜特创立于2005年,是国内新能源测试领域的开拓者,也是国内领先的新能源行业测试设备和技术服务提供商。公司主要业务涵盖锂电和氢电测试设备两大板块,凭借敏锐的市场触觉,优秀的产品品质,持续创新和迭代开发能力,为新能源行业用户提供丰富的产品组合和测试技术解决方案。产品:PE-1K/50K/500K/1MW电解制氢测试系统等。PE-1K/50K/500K/1MW电解制氢测试系统旨在为PEM电解槽制氢提供稳定测试系统,本系统由循环水系统模块、背压模块、降温除湿模块、氮气吹扫模块、PLC采集与控制模块、人机操作和安全监控模块等组成。用于检验电解槽的极化曲线、单池一致性、产氢能耗效率,产氢质量测试和产品寿命测试。产品特点:高效的水汽分离器设计,确保气体流量的精确测量具备安全自动防护操作,可选择执行降载、卸载、断路、降压、中断反应水供应等防护措施具备CV、CC、CP等多种运行模式,单池电压检测及防护,电源输出电压、电流、功率检测及防护功能全自动化无人值守操作完整的软硬件安全运行保护机制及定制化服务生成气精确流量测量,氢中氧,氧中氢在线质量分析,高压低压控制模式五、律致新能源律致是一家致力于为氢能装备、燃料电池系统及核心零部件提供开发测试和智能制造解决方案的创新型技术企业。公司目前为国家级高新技术企业、上海市“专精特新”企业、嘉定区“小巨人”企业,并荣获2021年度中国机械工业科技进步一等奖。公司在汽车、新能源及自动化领域拥有专业的能力和丰富的经验,依托上海交通大学坚实的“产学研”平台,律己达人、锐意创新、笃行致远、共赢未来,力争成为中国氢能和燃料电池领域的技术领跑者。产品:EC系列PEM电解水测试台。EC系列PEM电解水测试台是用于对PEM电解槽进行详细评估和表征的全功能设备。包括集成电源,电化学工作站,EIS阳抗测试仪,以及用于温度,压力,流速监视的实时传感器,是对电解槽进行测试,诊断和分析的理想实验室选择。产品特点高达10Mpa的背压控制解决方案可选的手动/自动背压模块电解电源最大高达1000V的电压,10000A的电解电流可靠的安全互锁装置,强制通风监测模块,使测试更安全有效选配气相色谱仪模块气体纯化模块,纯度99.999%标配阻抗测试模块,10mHz-10kHz的频率范围单节电解槽可选电化学工作站标配阴极水回收单元定制化防爆仓,使用氢更合规高效的远程监控软件,使测试效率更高六、宇科创新大连宇科创新科技有限公司(简称“宇科创新”)成立于2018年,是国家级高新技术企业、省级“专精特新”企业。目前,宇科创新已在电解水制氢测试设备方向展现出了明显优势,在主流的PEM、ALK、AEM等几种类型电解水制氢测试产品均有案例。产品功能氢气流量:PEM电解槽测试设备为500~1000Nm3/h。系统额定压力最大可达6MPa,防爆设计。电解电压及电流可个性化调整,可模拟风电或光伏发电场景。根据型号的不同,巡检节数最大支持1080节。具备氢、氧纯度检测能力。系统工作温度范围RT~90℃。内循环温度通过加热电解液升温,系统和外循环冷却系统可随时调整。对系统压力、温度、工作电流、循环水量电解液流量、气体浓度等参数进行实时监控,有异常立即报警或者停机。全流程压差自动控制。安全保护参数设置可防止用户错误输入造成该保护未保护。安全故障分级报警处理机制,每级报警值列表。具有实际产氢量质量流量在线测能力,测量精度≤1%F.S。除了上述公司外,还有一些其他企业和研究机构也在积极研发相关的测试技术和设备,为PEM制氢电解槽的性能优化和质量控制提供支持。随着氢能行业的迅速发展,专用检测设备的应用领域也在不断扩大。仪器信息网特别设立了氢能行业专用仪器的专题展示区,旨在为这些专业仪器提供一个展示平台,并希望通过此举为提升氢能使用的安全性贡献力量。
  • 如何有效测试各类油品的氧化稳定性和抗氧化效果
    各种类型的食用油可用于烹饪和在厨房使用。油的范围包括植物油,如葵花籽油、大豆、花生、棕榈、椰子、橄榄油、混合油到动物脂肪,如鲑鱼油。抗氧化剂通常用于提高保质期和保存食用油和脂肪的质量。它们通过各种机制参与或干扰脂质自氧化反应级联来抑制氧化反应。不同的油有不同的氧化率,抗氧化剂在提高其保质期和保持其质量方面有不同的效果。利用VELPOXITEST油脂氧化分析仪进行了分析,检测每一种测试油的不同特点。油的氧化稳定性和抗氧化剂的添加食品最重要的质量改变之一是由于游离或酯化的不饱和脂肪酸对氧的吸收。脂肪的自动氧化是一种由光、高温、金属痕迹和有时影响产品保质期的酶促进的化学反应。防腐剂和其他物质被添加,以抵消和减缓这一食用产品的质量改变过程。抗氧化剂通常用于提高保质期和保护食用油和脂肪的质量。它们通过参与或干扰脂质自氧化反应级联来抑制氧化反应。意大利VELP油脂氧化分析仪OXITEST方法和对各种类型的油品进行的分析OXITEST氧化稳定性反应器被用来测定各种样品的氧化稳定性,不需要进行初步的脂肪分离。OXITEST方法是一项公认的分析技术,用于测定食品、脂肪和油的氧化稳定性。对各种类型的油进行了测试,以分析氧化稳定率,并比较所有含有和不含有抗氧化剂的油的配方。
  • 冻干测试汇总:冻干前产品关键温度及冻干后产品机械强度测试
    1.塌陷温度Tc定义:塌陷温度 (Tc)是产品粘度降低到无法支撑自身的三维结构的临界温度。检测设备:冻干显微镜方法简介:冻干显微镜是一台“微型冷冻干燥机”,测量过程模拟冷冻干燥过程,在一个特殊的冷冻干燥阶段利用受控的低压条件,允许水蒸气从样品中升华。冻干显微镜是在光学显微镜下观察特定样品或制剂的结构。除了能够确定塌陷温度 (Tc),Biopharma Lyostat5 冻干显微镜还能够测定共晶熔化温度 (Tm),识别结晶现象、表皮/结皮形成以及退火对冰晶生长的影响和溶质结构。 2.玻璃态转变温度(Tg’)定义:玻璃态转变温度(glasstransition temperature,Tg)是无定形的冻结混合物从脆性状态变为柔性状态的临界温度。检测设备:Lyotherm3冷冻状态分析仪(灵敏度更高)/DSC方法简介:Lyotherm是最新的分析技术、阻抗分析(Impedance analysis)与传统差热分析(Differential thermal analysis, DTA)的独特组合。该仪器可以识别样品中的电和热变化,通过结合差热分析 (DTA) 和阻抗分析来得到Tg' ,这使得研究者可以更完整地了解样品的热和电特性。这些技术使用两种不同的视角来增强分析数据,为分析提供额外的维度,从而允许使用者进行更详细和更准确的分析。● 电阻抗:阻抗(Zsinφ)是一个将电容、电感和电阻信息相结合,组成的与样品内分子迁移率相关的指标。阻抗的变化可以识别样品软化、稳定化、结晶、玻璃化转变、熔化和其他相变。● DTA:通过将比较样品温度与参考物温度来识别关键事件的热分析方法。对放热/吸热、玻璃化转变和熔化事件的识别收集了有关阻抗事件的更多信息。方法比较:聚合物在发生玻璃化转变时,力学性能、比热、比热容等发生变化, 因此玻璃转化温度可以通过差示扫描量热法(DSC)、调制差示扫描量热法(MDSC)、热机械分析法(TMA)、动态热机械分析(DMA)来检测 目前药物的Tg’常用DSC来进行检测,它测量的是伴随玻璃化转变的热容变化。但软化和等温相变,或非常小的热足迹的相变,就其性质而言用热分析技术很难看到。然而,大多数相变都伴随着分子迁移率的变化,这是由于物理或化学重新定向导致溶液中的电感、电容和电阻中的一种或多种产生大的波动。由于电阻和热技术的协作,Lyotherm可在复杂的解决方案中发现更多的事件,并且经常比DSC识别更多信息。3.固体玻璃态转变温度Tg定义:材料从硬脆的玻璃态转变为柔软的,类似橡胶的高弹态时的温度。检测设备:DSC方法简介:通过程序控制温度的变化,在温度变化的同时,测量试样和参比物的功率差(热流率)与温度的关系,进而得到测试材料的玻璃化转变温度。4.共晶温度Teu/共熔温度Tm定义:制品预冻过程中,对于结晶体系,随着温度降低,当制品达到冰点以下时,体系中形成冰核,冰核逐渐增长,其余溶液中溶质的浓度逐渐提高,并在达到过饱和时析出结晶,温度持续降低直至剩余溶液完全固化为冰和溶质的结晶混合体,此时的温度即为共晶点。制品干燥过程中,随温度逐渐升高,完全凝固的溶质和溶剂开始融化,此时温度即为共熔点。检测设备:1. DSC(常用)2.冷冻状态分析仪Lyotherm方法简介:1. 差示扫描量热法,通过程序控制温度的变化,在温度变化的同时,测量试样和参比物的功率差(热流率)与温度的关系,进而得到测试材料的共晶共熔温度。 冷冻状态分析仪Lyotherm采用差热分析法(DTA)法是利用制品在冻结(或融化)时,因放热(或吸热)而使其自身温度发生变化。根据物料的这种物理现象,测得制品的共晶点(共熔点)5.冻干饼/冻干珠机械强度检测检测设备:Micropress机械强度测试仪方法简介:MicroPress是一种可以原位定量测定冻干饼强度和物理特性的仪器。通过设置参数和分析方法,MicroPress将能够分析您的冻干饼和冻干珠机械强度。通过机械挤压样品,测得应力和应变数据,从而获得杨氏模量和破坏时的*应力。研究杨氏模量和破坏时的*应力的意义:● 冻干珠/冻干蛋糕在运输过程中保持完好。● 筛选合适的工艺条件(例如在冷冻过程中使用的冷却速度)。● 筛选合适的辅料成分,使蛋糕更坚固耐用。● 蛋糕属性的定量测量可以用于比较,批内/批间一致性。● 对技术转移和放大至关重要。● 为遵循QbD方法的法规文件提供丰富数据支持。 6.莱奥德创冻干课程关注“莱奥德创冻干工场”官方公众号,获取冻干讲堂线上培训课程。莱奥德创冻干工场上海莱奥德创生物科技有限公司由德祥科技有限公司创办,专注于提供先进的冻干设备应用和制剂开发相关服务。莱奥德创冻干工场专注于提供先进的冻干设备应用和制剂开发相关服务,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干培训平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题培训课程。课程结合了来自Biopharma的冻干理论培训课程体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题培训内容。课程获取方式Step 1:关注公众号搜索关注“莱奥德创冻干工厂”公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的课程Banner Step 4:开始学习7、寻求冻干服务解决方案?莱奥德创还专注于提供先进的冻干设备应用和制剂开发相关服务。提供冻干前后产品性能测试,配方和工艺开发,冻干工艺优化,冻干工艺转移/放大,小批量冻干生产,金字塔冻干系统培训等全方位冻干相关服务。
  • 万测机器人全自动混凝土压力试验机鉴定会顺利召开
    万测机器人全自动混凝土压力试验机鉴定会顺利召开 6月29日,万测机器人全自动混凝土压力试验机鉴定会在深圳万测公司召开。会议由全自动事业部总经理宋友明主持。宋总对该产品和技术进行了详细的介绍与汇报。鉴定专家们仔细审阅了产品资料,认真听取了宋总对该设备的核心技术及创新性的报告,并经过实地考察,现场演示和试验操作,对产品功能进行了全面的验证。会上,专家们展开了热烈的讨论,并提出了宝贵的建议。最后专家们一致认为,万测的机器人全自动混凝土压力试验机结构设计合理,性能稳定可靠。该设备达到国内先进水平,其中设备采用的压力机主机上置油缸、全封闭球头、静音油源、机器人送样定位等技术达到国内杰出水平。同时专家们还表示,万测作为试验机行业的标杆企业,要以更高标准、更高要求,积极研发,助推行业发展。 专家们正在热烈讨论 专家们现场考察设备 万测机器人全自动混凝土压力试验机可连续完成混凝土的抗压强度试验。该试验机主要由微控制油电混合压力试验机、六自由度机械手、气抓、托盘、扫码装置、废料回收装置、控制系统等组成。整个试验过程无需人员参与,可自动完成抓样、试样信息自动扫码识别、试样自动找正、自动上下料以及试验结束后对合格与不合格试块通过输送带分拣至相应的样品回收框或机器人直接抓取到样品回收筐等过程,实现了试验机自动化与智能化,极大的提高了工作效率。 本次鉴定会的成功召开是对万测产品及试验技术自动化、智能化发展成果的巨大肯定,充分体现了万测的自主研发实力及精良工艺。未来,万测将继续加大科技创新投入,充分发挥人才优势和技术优势,以新技术、新产品为公司发展提供新动能。 鉴定会专家合影
  • 对,就是这么任性!10英寸!全球最大的全彩触摸屏饱和蒸汽压测试仪!
    2016年3月初,万众期待的Grabner 最新款饱和蒸汽压仪,终于揭开了神秘的面纱,露出了庐山真面目! 现在让我们一起来看看这款Grabner 最新的饱和蒸汽压仪,带给了我们哪些惊喜吧!原来的4.3英寸变成了现在的10英寸工业级全彩触摸屏:更清晰、更流畅、更时尚APP操作界面,将给您带来不一样的操作体验!测量范围从原来范围: 0-1000 kpa扩大至0-2000kpa !气液比由原来的0.02-4/1升级到了现在的0.02-100/1!独特的2-D CorrectionTM专利算法,在满量程内具有最高的精确度!新增PDF结果导出格式,同时可以附带温度和压力变化图!新增的CockpitTM软件功能,可以轻松实现远程操作和局域数据分享与整合!让您无需在仪器边等待也能即刻获取检测结果,提高您的工作效率!为此我们还新增了测试完成提示和结果查询系统!坚固外壳,该款饱和蒸汽压测试仪还通过了EN60068-2-6,EN60068-2-27的防震防撞标准,确保了其工作时的稳定性!更宽广的检测环境:该仪器还通过了EN60068-2-1,EN600068-2-78,EN60068-2-14温度和湿度的耐受性认证,确保其在恶劣的环境下也能给出准确的检测结果!Sampling ProTM阀专利,更有效的防止样品交叉污染。具有中英文等多种操作语言,用户也可以自己定义!并可储存大于100,000个数据!……还有更多新奇的功能的出现,期待您的咨询、订购与支持 更多详情欢迎来电咨询:400 820 0117 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息 扫描以下二维码或是添加微信号“renhesci”,加入人和科仪的微信平台,即刻成为人和大家庭中的一员。 现在推荐朋友关注更有好礼相送! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号华鑫科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司数十年来一直致力于提升中国实验室水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:TRILOS、DRAGONLAB、FUNGILAB、BRUINS、GRABNER、EXAKT、ATAGO、ART、ILMVAC、IKA、MIELE、MEMMERT、KOEHLER、YAMATO、海洋光学、全谱科技等。】
  • 助力“315”---DMA 80测定化妆品中汞含量
    助力“315”--DMA 80测定化妆品中汞含量又是一年“3.15”,这一天我们会从各大媒体看到曝光的各种假货或不符合相关安全标准的产品及欺诈行为。每年到这个时间对于我们普通人来讲是一个是矛盾的,一方面然我们了解到了真相,另一方面这一个个个真相又是那么残酷让我们无法接受。作为一个检测行业的工作者我们深深感觉到责任的重大,作为一个仪器厂商我们必须提供更好的技术服务,让检测工作更加简单**。让制假造假变得不可能。这次“3.15”期间曝光了很多产品,其中《消费者报道》于2017年3月14日发布今年政府抽检不合格品的数据曝光。尤其在本次化妆品抽检结果中,共有761批次产品不合格,很多国内**化妆品品牌尽皆上榜。这些不合格的产品中有近3成都是汞含量超标。化妆品中汞含量超标主要是由于汞的某些化合物具有增白效果,汞可以在短时间内增白,是由于汞离子置换酪氨酸酶的阴离子使该酶失去活性,黑色素暂时不能生成,所以达到了快速美白祛斑的效果,不法商贩就在化妆品中人为添加汞的化合物。但久用则效果相反,因为汞离子与硫基结合后,可以解除酪氨酸酶的抑制,引起黑色素快速增多。因此长期用含有铅、汞化妆品而中毒的人,会皮肤灰暗、角质增多,长灰黑色斑点、深层暗疮;当有害物质累积到一定程度就会给全身带来损害,特别是肝、肾以及血管、神经系统。汞中毒者性格会改变,还会出现高血压、贫血、烦躁、牙龈发炎,神经衰弱等症状。长期大量使用,会引发色素沉着,甚至造成多器官中毒,严重的还会导致急性死亡。因此我们要严格禁止汞的人为添加,对于生产过程及原料引入的共要严格限制。 我国化妆品检测标准,由卫生部印刷,国家食品药品监督管理总局修订的《化妆品安全技术规范》(2015年版)。已经从2016年12月1日起施行。标准中规定汞及汞化合物不可作为化妆品的原料成分。由化妆品原料杂质及其他原因引入的微量汞不得超过1ppm;作为防腐剂的硫柳汞和苯基汞盐(**在眼部化妆品中使用),其含量按汞计不得超过0.007%。 对于化妆品中的重金属检测前处理过程相当麻烦,还需要消耗大量的时间,因此本次修订的新方法中引入了全新的化妆品中汞含量的检测方法,即无需前处理直接测汞的“汞分析仪法”,该方法采用意大利Milestone公司DMA-80直接测汞仪制定,经广大专家和用户认证和认可,是化妆品中汞分析检测的可靠方法。 意大利Milestone公司的DMA-80是美国环保署EPA7473方法的制定仪器,同时也是国内二十多种标准方法的制定仪器,是目前世界上**进、准确的汞分析仪器,是全球汞分析实验室的**仪器,占汞直接检测仪器市场份额的80%以上。DMA-80直接测汞仪的特点:待分析的样品不管是固体、液体、气体,都不需要任何前处理即可直接进样测定,从而彻底避免了汞样品在传统分析方法前处理中的挥发损失,交叉污染,及环境污染等问题,确保分析数据的正确。整个过程3-5min就可得到检测结果,并配有40位无限循环式自动进样器,大大提高了分析效率。原理:样品被自动导入仪器,经程序升温干燥分解,分解产物经催化管催化得汞蒸气,汞蒸气完全富集在金汞齐上,其他杂质被载气吹走,然后高温解析,在254nm下进行冷原子光谱法进行分析。检出限低至0.001ng相当于ppt级别,而且不受样品基质影响。适合于所有样品的检测要求。RSD1.0% ,测量范围:0.001ng-1500ng并有30000ng可选。若干分析技术被设计用来测量样品中的汞。如果没有这些技术,化妆品通常需要样品制备,而样品的制备是最容易给测定带来误差的,也是劳动强度**的工作,使用DMA-80分析汞完全不需要这些步骤。这正是直接汞分析技术赋予DMA-80完全超越传统汞分析的优势所在。 对于我们普通消费者, DMA-80为您的美丽安全护航。对于我们分析工作者,DMA-80让您的工作变得轻松。 附:化妆品安全技术规范下载地址http://www.instrument.com.cn/netshow/sh100523/down_822313.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制