当前位置: 仪器信息网 > 行业主题 > >

慢应变拉伸速率腐蚀测试系统

仪器信息网慢应变拉伸速率腐蚀测试系统专题为您提供2024年最新慢应变拉伸速率腐蚀测试系统价格报价、厂家品牌的相关信息, 包括慢应变拉伸速率腐蚀测试系统参数、型号等,不管是国产,还是进口品牌的慢应变拉伸速率腐蚀测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合慢应变拉伸速率腐蚀测试系统相关的耗材配件、试剂标物,还有慢应变拉伸速率腐蚀测试系统相关的最新资讯、资料,以及慢应变拉伸速率腐蚀测试系统相关的解决方案。

慢应变拉伸速率腐蚀测试系统相关的资讯

  • 百若仪器:慢应变速率应力腐蚀试验机的研发成绩斐然
    2014年,上海百若持续创新,研发再上新台阶。YYF-50系列慢应变速率应力腐蚀试验机产品的研发,填补了国内在材料应力腐蚀敏感性研究领域的空白,产品处于国内领先,可完全替代同类的进口产品。该产品已在高温高压的超临界水介质环境、高温铅铋液态介质环境、高温盐溶液介质环境、高温高压H2S介质环境、海水环境等腐蚀介质应用领域成功使用,可进行慢应变速率腐蚀拉伸、应力腐蚀、腐蚀疲劳、腐蚀裂纹扩展测量、精确裂纹预置、低周疲劳等试验。在腐蚀介质环境下进行材料的腐蚀裂纹扩展测量存在较大技术困难,传统的COD法已不能实现测量应用,DCPD方法是腐蚀介质环境下测量裂纹扩展普遍推崇的方案,上海百若耗时多年进行研发和测试,完成了腐蚀介质环境下通过DCPD法精确测量材料裂纹扩展及扩展速率计算。该技术已成功在设备上安装使用,获得了用户的高度评价和认可。不断地研发投入和全面的科学测试,上海百若在应力腐蚀试验设备的销售推广取得了骄人的成绩,在诸多领域提供了试验设备:1. 高温高压超临界水,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。2. 高温铅铋溶液,慢应变速率拉伸,腐蚀疲劳。3. 高温盐溶液,慢应变速率拉伸,腐蚀疲劳。4. 高温高压H2S,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。5. 常温常压海水,慢应变速率拉伸。6. 微高温海水,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。7. 硫氰酸溶液,慢应变速率拉伸,氢脆敏感试验。2014年,加氧测量与控制水化学系统完成了设计和组建,并成功运行,系统得到了用户肯定和赞许。用于测试金属在高温高压水环境下腐蚀速率的静态高压釜,在运行期间水化学一直变化,水中的溶解氧逐渐降低,溶解氢浓度逐渐升高,溶解进入的金属离子使水的电导率逐渐升高。这样,静态高压釜一次实验的时间越长,测得的实验结果偏差越大。给高压釜系统添加一套水化学回路对于保证高压釜内的水质稳定非常重要。该系统能够在线监测溶解氧、电导率、pH值,并实现控制调节。上海百若是慢应变速率应力腐蚀试验机的国内唯一专业性研发公司,在诸多技术难点方面取得了成功突破,并在设备安全和长期稳定性方面做了大量的研究和测试,此类设备运行时间从1周到1、2年不等,运行时间长,设备的安全、可靠是首要考虑因素,我们在设备的各个方面设计了安全监测与保护,保障操作者、设备和试验的安全。在设备的研发过程中,我们与高校和研究院合作,得到了上海交通大学、中国科学院、中国原子能科学研究院、上海应用物理研究所、厦门大学等单位的大力支持和帮助,使得设备的研发取得突破性进展。慢应变速率应力腐蚀试验机应用范围广泛,主要研究材料在腐蚀介质环境下的腐蚀敏感特性,这些应用领域有:核电的一回路、二回路材料,热电材料,石化行业,海洋行业,汽轮机,及其它腐蚀性介质应用领域。
  • 【定制产品】上海百若——超纯水介质慢应变速率应力腐蚀试验机YYF
    p style=" text-align: center " /p p style=" text-align: center" img style=" width: 345px height: 500px " src=" http://img1.17img.cn/17img/images/201710/insimg/fed9f818-9b0d-4cf1-87d7-33b2037e3c09.jpg" title=" 1.jpg" height=" 500" hspace=" 0" border=" 0" vspace=" 0" width=" 345" / /p p style=" text-align: center " strong 超纯水介质慢应变速率应力腐蚀试验机YYF /strong br/ /p p   strong  1.生产厂商 /strong /p p   上海百若试验仪器有限公司 /p p   strong  2.采购单位 /strong /p p   原子能科学研究院 /p p   strong  3.主要功能 /strong /p p   阻尼器、助力器耐久性能测试 /p p   加载波形正弦运动规律,编程循环嵌套不低于3层 /p p   对阻尼器、助力器进行力——位移功量图绘制,力——位移——时间曲线图绘制 /p p   产品具有轴向疲劳加载、侧向同时加载的功能 /p p   strong  4.产品技术特点 /strong /p p   1) 采用高集成度、强大的控制、数据处理能力、高可靠性控制测量系统。 /p p   2) 采用基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统,实现力、变形、位移全数字三闭环控制,各控制环间可自动切换,并在各方式间切换时实现无冲击平滑过渡。 /p p   3) 可进行定位移、定速度、定应变、定应变速率、定负荷、定负荷速率等多闭环控制模式。 /p p   4) 高精准24Bit数据采集系统,高分辨率,可扩展至8路AD采集。 /p p   5) 试验过程中实时显示滞回环曲线。 /p p   6) 试验过程中显示负荷、位移峰值谷值变化情况。 /p p   7) 试验过程中显示动态波形加载曲线。 /p p   8) 采用DCPD(直流电位法)在腐蚀介质系统中测量裂纹长度,进一步提供金属材料在腐蚀介质中的裂纹扩展速率指标。 /p p   strong  5.产品技术参数 /strong /p p   最大试验力:50kN /p p   试验力测量范围:1%~100% /p p   加载头移动速度:10mm/s~1x10-6/s /p p   疲劳加载波形:正弦波,三角波 /p p   工作最大压力:20MPa /p p   试验釜内温度:350℃ /p p   加载头位移分辨率:0.05μm /p p   strong  6.产品应用介绍 /strong /p p   采用YYF-50客户进行金属材料在环境诱导下的腐蚀、应力腐蚀、腐蚀疲劳失效的检测及评价。在整个核电材料领域,材料服役性能的评价、表征等贯穿于核电站设计、建设和运行的整个阶段。基于材料服役性能评价,明确材料应力腐蚀、环境疲劳等失效规律,预测材料的服役性能,评价关键部件的服役安全性,制订关键材料的服役、失效的预防与缓解提供了重要的技术测试平台。采用YYF-50慢应变速率应力腐蚀试验机,客户根据服役的条件,在水化学回路系统上调节PH值,溶解氧DO,电导率等参数,并设置应变或应力控制模式,加载波形及加载频率等参数,试验机即可按规定参数进行试验加载,水化学回路循环,高压釜加热等工作,最终检测出材料在腐蚀环境下的裂纹扩展速率等参数。客户在使用这台设备期间,完成了相关材料的应力腐蚀及腐蚀疲劳的评价。 /p
  • 标准解读 |《汽车用金属材料圆棒室温高应变速率拉伸试验方法》
    10月26日,中国汽车工程学会正式发布由泛亚汽车技术中心有限公司联合中国汽车技术研究中心有限公司、清华大学苏州汽车研究院、中国飞机强度研究所、ITW集团英斯特朗公司、道姆光学科技(上海)有限公司、东风汽车集团有限公司等单位联合起草的CSAE标准《汽车用金属材料圆棒室温高应变速率拉伸试验方法》(T/CSAE 233-2021)。本标准提出的金属材料圆棒高应变速率拉伸试验方法适用于汽车底盘用的铸造、锻件类零件材料的高应变速率拉伸测试。本标准在GB/T 228.1-2010及GB/T 30069.2-2016基础上,对金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的规定,以确保棒材高应变速率拉伸测试的准确性。当前,汽车底盘用的铸造类零件如Knuckle和Mount等零件的材料高速拉伸曲线是CAE碰撞分析中重点关注技术参数,为了建立CAE分析用高速拉伸所需数据库,提高碰撞安全分析的准确性,需要借助高速拉伸机、三维光学测试(Digital Image Correlation, DIC)技术获取金属棒材的应力、应变场数据。目前对于铸铁、铸铝的圆棒试样的高速拉伸测试还没有相应的国际、国内标准,各整车企业及总成制造商对铸件材料的高应变率拉伸试验方法未见详细说明,测试结果也存在在较大差异,由此带来该对底盘类铸件材料性能和可靠性的评价存在诸多差异。起草工作组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了GB/T 30069 《金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。编制组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了《GB/T 30069 金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。图1 钛合金和45#钢夹具及分别在100-1s时的拉伸曲线在应变片的粘贴和标定方面做了详细的试验,在本标准中给出了具体阐述,尤其指明标定的系数R2≥0.999。设备状态的确认中,如果测试力的同时还需要测试应变,设备需要连接额外的数据线,试验前需检查所有的连线是否牢固连接,尤其是信号触发线。每次测试前先在静态试验机上低应变速率拉伸,然后在高速试验机上以同样的速率拉伸同一批次的试样检验设备。静态试验根据 GB/T 228.1-2010规定进行。为了验证验证圆棒试样的应变是否需要三维测试,分别用单台和两台相机试验,发现当使用单台相机时,大截面尺寸(5毫米直径棒材)会出现由于散斑扭曲导致跟踪不了散斑变化产生测量误差或试验失效,因此当出现散斑测试的应变变化跟不上力值变化时,应使用两台相机测试。如图2、3所示。铸铝(左) 铸铁(右)图2 一台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线铸铝(左) 铸铁(右)图3 两台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线标准起草组对于数据采集频率也做了研究,图像拍照及采集系统的采样频率应考虑试样断裂时间。当应变速率≤100s-1时,所取得的应变有效数据大于力值的采样数据,而且一般会大于400。当应变速率100s-1时,应变的有效数据会急剧下降,应调整应变的采集频率和拍摄参数,最终应变的有效采集不低于100个点。否则不能有效测出弹性模量及剪切模量。对于拉伸速度偏差认可的确认,各测试单位做了详细讨论,考虑到高应变率速度的影响因素复杂,因此给出按照最大力对应的应变划分不同平均速度的限制要求。即当最大力对应的应变率大于5%时,实际应变速率的平均值推荐在目标应变速率的±5%以内,当最大力对应的应变率小于5%时,记录实际应变速率到报告中。试样尺寸也是本标准重点考虑的内容,较短的测试长度有助于获得高的应变速率,但测量长度不能过小,否则不能保证反映材料的性能。因此参考静态的标准及高应变速率拉伸的现有标准,制作了4种不同的试样并测试。试样的装夹方式,尺寸及夹具材料在标准中得到具体描述。优化后的的试样如图4,并给出推荐尺寸。 图4 典型的试样尺寸说明:(1)尺寸公差为0.05mm,平行段工作部分粗糙度0.32,同轴度为0.01毫米。(2)推荐区域直径为5mm,=10mm,=15mm,R=16mm,=5mm,=35mm,D=12mm,或者区域直径为3mm,=10mm,=15mm,R=12mm,=5mm,=35mm,D=6mm。综上所述,该标准围绕车用金属材料的使用工况,对3毫米直径以上的哑铃型拉伸试样进行充分的试验,给出了从夹具,散斑制作,相机标定,系统试验前验证,试样尺寸与装夹,力的测试,数据采集及处理等方面系统的说明,试验准确性高,试验失效率低,同时避免不同试验员试验结果差异等问题。本标准充分考虑了汽车行业用到的铸件和锻件零件,具有普遍适用性,可以为CAE仿真高效地提供更加准确可靠的材料数据。与目前使用的GB/T 30069 《金属材料 高应变速率拉伸试验》和ISO 26203 《金属材料高应变率拉伸试验》中的方法协调统一,互不交叉,提供了标准外的常用形状试样的高应变速率下的详细试验方法,对现有标准起到补充作用。
  • 深海海水应力腐蚀试验机成功交付客户
    百若仪器,不断创新,正在引领着中国应力腐蚀试验(SCC)新的高度,为中国材料应力腐蚀敏感特性研究测试做出新的贡献。 我国幅员辽阔,海岸线长达几万公里,开发海洋资源,发展海洋经济对我国国民经济具有十分重要的战略意义。海水是腐蚀性极强的电解质,为了高效的利用海洋材料,必须研究海洋材料的耐腐蚀性,开发具有耐海水腐蚀的材料。 由于传统的海洋腐蚀试验环境已无法满足试验需求,试验不可能在深海环境中进行,只能模拟深海环境,由于本项目研究的是在深海环境中服役的材料,其目的是研究这些材料在深海环境中的耐腐蚀行为。 上海百若试验仪器有限公司开发的模拟深海环境的慢应变速率应力腐蚀试验机,根据深海环境的特点,模拟深海环境,恒低温2℃,高压,可达25MPa,专门用于检测工作在深海环境的金属材料的耐腐蚀性能。该设备腐蚀介质循环系统,模拟海水环境中,可进行控氧、PH值调节、电导率调节。这台设备是国内首台低温高压深海应力腐蚀(SCC)试验机,此产品的研制成功填补了国内空白,在国际上也是首屈一指的新产品,为我国研究深海材料应力腐蚀敏感特性提供很大的帮助,产品交付中科院金属研究所。该产品符合以下标准: ASTM G111 Guide for Corrosion Tests in High Temperature or High Pressure Environment, or Both ASTM G129 - 00(2006) Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking ISO 7539-7-2005 Corrosion of metals and alloys – Stress corrosion testing Part7: Method for slow strain rate testing HB 7235-1995 慢应变速率应力腐蚀试验方法 HB 5260-1983 马氏体不锈钢拉伸应力腐蚀试验方法 GB/T15970.7-2000 《金属和合金的腐蚀 应力腐蚀试验 第7部分:慢应变速率试验》
  • 祝贺长春机械院慢拉伸预裂纹(恒载荷)应力腐蚀试验机组在中船重工725所得到成功应用
    截止2013年12月17日,长春机械院慢拉伸应力腐蚀试验机组在中船重工725所得到了成功应用,725所成功获得第一批舰船材料应力腐蚀试验对比数据,该数据复合科研预期。慢拉伸预裂纹(恒载荷)应力腐蚀试验机主要用在检测、研究金属材料在极慢的拉应力和腐蚀介质环境双重作用下的力学性能。还可以用于模拟受恒拉伸力零件在腐蚀环境中的抗腐蚀情况,进行恒载荷预裂纹应力腐蚀试验,检测、研究金属材料在恒拉伸应力和腐蚀介质环境双重作用下的破坏性能。该试验机主机加载机架采用TPHS式双立柱框架组合结构,传动平稳、反应灵敏,速度范围极宽,既能实现以极慢的拉伸速度对试样加载,又具有较快的速度,便于调整试验空间装夹试样。整机采用高精度电子测量,机电伺服加载、数字控制器及计算机控制,具有技术先进、精度高、性能可靠,长时稳定等特点。该试验机配用我院独有的筒形腐蚀容器设计,容器可加热水浴,容器内腐蚀介质温度可控,试验时试样贯穿筒形腐蚀容器,试验操作方便、数据精确。中船重工725所是我国专业从事舰船材料研制和工程应用研究的军工研究所,拥有船体结构材料、有色金属材料、非金属材料、腐蚀与防护技术、特种材料、焊接工艺、自然环境试验等多个重点研究领域,是我国舰船装备发展的中坚力量。目前长春机械院与中船重工725所开展的战略合作,已经结出硕果,这必将推动我国船舶事业的发展;希望长春机械院还要加强院所合作,为维护我国海洋权益,把我国建设成一个新型的海洋大国而贡献自己的力量。关注:【长春机械院】微信号:cimachtest
  • 海洋材料防腐检测利器弯曲预裂纹应力腐蚀试验机研发成功
    一种能够适应大尺寸试样、甚至是原型试样的高温弯曲应力腐蚀试验机成功交付用户,这台弯曲应力腐蚀试验机可以进行大尺寸试样甚至原型试样的弯曲试验,同时,设备配套悬臂梁弯曲夏比试样的弯曲应力试验,悬臂梁弯曲夏比试样的弯曲加载采用砝码加载形式。大尺寸弯曲应力腐蚀试验机采用电子加载形式。配置合适的溶液池即可进行弯曲应力腐蚀试验。受客户要求,百若仪器开发出大尺寸弯曲应力腐蚀试验机,不仅可以进行轴向慢应变应力腐蚀试验,也可进行弯曲腐蚀试验,同时,可以进行悬臂梁夏比试样悬挂弯曲试验。弯曲应力腐蚀试验机也可根据客户的要求进行弯曲应力腐蚀疲劳的试验。YYF-100弯曲加载预裂纹应力腐蚀试验机主要研究在海洋腐蚀环境下的应力敏感性材料特性。专用慢应变速率应力腐蚀试验机,适用环境为微高温常压盐溶液。该设备特点在于除轴向拉伸功能外,增设一套机构用于实现对悬臂试样的弯曲加载,以及一套专用单元用于对夏比试样进行悬挂弯曲试验。该产品完全满足客户要求,得到客户的好评。背景资料:金属材料在拉应力及特定的腐蚀介质的作用下,经过一定的时期,将会产生裂纹及断裂的现象称为应力腐蚀开裂,并且,这种开裂经常以不可预测的低应力脆断出现在材料服役现场,造成事故的发生及材料的损耗,因此,一些科研机构及材料专家一直在致力于研究应力腐蚀开裂的课题,目前,主要以GB/T 15970.7-1995 金属和合金的腐蚀 应力腐蚀试验,GB/T 17898-1999不锈钢在沸腾氯化镁溶液中应力腐蚀试验方法,YB/T 5362-2006 不锈钢在沸腾氯化镁溶液中应力腐蚀试验方法等试验方法进行试验,这些试验方法中的试样以小试样作为研究对象,而大尺寸的往往以有限元分析进行模拟。在实际工作中,材料往往以大尺寸的面貌出现在服役现场,这样,试验所得的数据可能会出现一定的偏差,这些偏差可能会受到腐蚀温度、介质浓度等因素的影响,也可能受到晶粒组织的影响,这样,采用大尺寸试样弯曲应力腐蚀试验的必要性就显得尤为重要。
  • 新品上市|低密度聚乙烯拉伸流变性能新技术--VADER 1000
    摘要在单轴拉伸流动中测量了三种选定的商用低密度聚乙烯(LDPE)的非线性流变性能。使用三种不同的设备进行测量,包括拉伸粘度装置(EVF),自制长丝拉伸流变仪(DTU-FSR)和商用长丝拉伸流变仪(VADER-1000)。通过测试显示,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪能够在达到稳态的更大Hencky应变值下探测非线性行为。利用长丝拉伸流变仪的能力,我们表明具有明显差异的线性粘弹性的低密度聚乙烯可以具有非常相似的稳定拉伸粘度。这表明有可能在一定的速率范围内独立控制剪切和拉伸流变。关键词拉伸流变;聚乙烯;聚合物熔体;非线性粘弹性正文多年来,控制聚合物流体的流变行为作为分子化学的一个性能,引起了学术界和工业界的极大兴趣。最成功和最多产的理论预测的流变行为的纠缠聚合物系统是De Gennes(1971)和Doi和Edwards(1986)提出的 "管模型"。然而,尽管三十年来人们一直在努力改进管模型,但即使对于最简单的情况,即单分散线性聚合物体系,缠结聚合物在拉伸流动中的非线性流变行为仍然没有得到充分理解(Huang等人,2013a;Huang等人,2013b)。低密度聚乙烯等工业聚合物是最复杂的缠结聚合物系统,它们不仅具有高度的多分散性,而且还含有不同的支化分子结构。预测低密度聚乙烯的流变行为,特别是拉伸流动中的非线性行为,是非常具有挑战性的。在明确定义的模型系统上,已经进行了探索延伸流中支化聚合物动力学的实验工作(Nielsen等人,2006;Van Ruymbeke等人,2010;Lentzakis等人,2013)以及商业聚合物系统,如低密度聚乙烯LDPEs。有几个小组观察到低密度聚乙烯LDPE的瞬时拉伸应力的最大值(Raible等人,1979;Meissner等人,1981;M¨unstedt和Laun,1981)。Rasmussen等人(2005年)首次报告了应力过冲后的稳定应力,并通过比较长丝拉伸流变仪和十字槽拉伸流变仪的测量结果(Hoyle等人,2013年)以及比较恒定拉伸速率和恒定应力(蠕变)实验(Alvarez等人,2013年)进行了实验验证。已经开发了几个模型(Hoyle等人,2013;Wagner等人,1979;Hawke等人,2015),试图了解应力过冲背后的物理学。然而,这些模型都不能实际用于预测工业中低密度聚乙烯LDPE的流变行为,因为这些模型包含许多与分子结构没有直接关系的拟合参数。最近,Read等人(2011)提出了一个预测方案,能够计算随机长链支化聚合物熔体的线性和非线性粘弹性,作为其形成的化学动力学的函数。这些预测似乎与剪切流和拉伸流中三个低密度聚乙烯的测量结果非常一致。然而,测得的拉伸数据受到最大Hencky应变约为3.5的限制,并且没有显示出稳定状态的迹象,而模拟结果则达到了更大的 Hencky应变值,并预测了每个应变速率的稳定应力。在更大的Hencky应变值下预测非线性行为的质量仍然是未知的。此外,在Read等人(2011)的模拟中,没有预测到应力过冲。在这项工作中,我们介绍了三种不同的商用低密度聚乙烯的拉伸测量。这三种低密度聚乙烯是根据Read等人(2011)的模型预测而专门设计的。预计它们具有不同的零剪切速率粘度,但在非线性拉伸流动的大变形中具有相似的应力-应变反应。测量是在三个不同的设备上进行的,包括两个长丝拉伸流变仪和一个拉伸粘度夹具。我们表明,长丝拉伸流变仪的测量结果可以达到5以上的大Hencky应变值,在那里达到非线性稳定状态。我们还表明,低密度聚乙烯LDPE样品在拉伸流动中的大Hencky应变值具有相似的非线性行为,包括相同的应力过冲幅度和过冲后的相同稳定应力,尽管Read模型预测没有应力过冲现象。这些结果表明,低密度聚乙烯LDPE熔体的非线性粘弹性可以通过选择性聚合方案来控制。实验材料陶氏化学公司提供了三种类型的商用低密度聚乙烯树脂,分别为PE-A、PE-B和PE-C。所有样品都是颗粒状的。表1总结了样品的特性,包括密度、熔体流动指数(I2)、重量-平均摩尔质量(Mw)、数量-平均摩尔质量(Mn)和熔体强度。重量-平均摩尔质量是由多角度激光散射法确定的,而数量-平均摩尔质量是由微分折射率确定的。摩尔质量值是若干次重复的平均数。熔体强度是用通用流变仪结合通用ALR-MBR 71.92挤出机测量的。测量是在150℃下进行的,产量为600g/h。模具的长度为30毫米,直径为2.5毫米。表1实验是在24mm/s2的加速度下进行的。纺丝线的长度被设定为100毫米。流变仪测试在膜生物反应器挤出机系统清扫30分钟后进行,并一直运行到纺丝线失效。通过力-拉速数据拟合出一个四参数交叉函数,根据拟合的破坏速度曲线确定破坏时的力。表中的数据是五次连续测量的平均数。力学谱三种低密度聚乙烯样品的线性粘弹性(LVE)特性是通过小振幅振荡剪切(SAOS)测量得到的。TA仪器公司的ARES-G2流变仪采用25毫米的板-板几何形状。图1所有样品的时间-温度偏移因子αT作为温度的函数,参考温度为Tr= 150℃测量是在氮气中,在130℃和190℃之间的不同温度下进行的。对于每个样品,使用时间-温度叠加(TTS)程序,在参考温度Tr= 150℃时,数据被移动到单个主曲线。所有样品的时间-温度偏移系数(αT)与单一的阿伦尼乌斯公式一致,其形式为其中活化能∆H = 65 kJ/mol。R是气体常数,T是以开尔文表示的温度。在图1中,偏移因子αT被绘制为温度的函数。拉伸应力测量拉伸应力测量使用三种不同的设备:TA仪器的延伸粘度夹具(EVF)、自制的长丝拉伸流变仪(DTU-FSR)(Bach等人,2003a)和Rheo Filament的商用长丝拉伸流变仪(VADER-1000)。将不同设备的结果进行相互比较。用于EVF测量的样品在150℃下压缩成型,在低压10bar下3分钟,在高压150bar下1分钟,然后用淬火冷却盒在150bar下淬火冷却到室温。在短时间内,当冷却盒插入时,样品会出现压力损失。在相对较低的温度下进行短时间的压缩成型是为了防止样品的任何潜在氧化或降解。样品模具为特氟隆涂层,尺寸为100×100 0.5mm。从约20mm长的铭牌上冲压出12.7mm-12.8mm宽的样品。最终样品的厚度约为0.6mm。在EVF测量中,样品被插入设备中,在150℃下180s的平衡时间后,样品以0.005s-1的应变速率被预拉伸15.44s,然后松弛80s,然后样品被拉伸。报告的Hencky应变是由圆柱体的旋转计算出来的。通常情况下,使用EVF的拉伸测量仅限于样品保持均匀的情况。EVF一次旋转所能达到的Hencky应变值通常低于4,与EVF相比,长丝拉伸仪器并不依赖于沿拉伸方向的均匀变形的假设。事实上,由于板材上的无滑移条件,变形在轴向上是不均匀的。这些设备只是探测了通常在中间细丝平面发现的最小直径平面内的变形和应力之间的关系。在这个平面外的剩余材料只需要固定在研究的薄片上,就像在固体力学测试中用狗骨形状来固定材料一样。长丝拉伸装置确实依赖于最小直径平面内的径向均匀变形的假设。Kolte等人(1997年)的模拟表明,在长丝中间平面几乎没有任何径向应力变化。用激光测微计来测量中丝薄片的直径。为了探索更高的应变,在DTU-FSR和VADER 1000流变仪都采用了在线控制方案,该方案首先由Bach等人(2003b)使用,后来由Mar´ın等人(2013)发表,用于在拉伸过程中控制长丝中平面的直径,以便在样品断裂前确保恒定的应变速率。根据样品的类型,DTU-FSR和VADER-1000都可以达到最大Hencky应变值7。在长丝拉伸流变仪上进行测量之前,样品被热压成半径为R0、长度为L0的圆柱形试样。长宽比定义为∆0= L0/R0。样品在150℃下压制,并在相同温度下退火10分钟,然后冷却至室温。在测量中,所有样品被加热到150℃,在180s的平衡时间后,样品在拉伸实验之前被预拉伸到Rp的半径。对于DTU-FSR,R0= 4.5mm,L0= 2.5mm,Rp在3到4.5mm之间,而对于VADER-1000,R0 = 3.0mm,L0= 1.5mm,Rp = 2.5mm。在拉伸测量过程中,力F(t)由称重传感器测量,中间灯丝平面的直径2R(t)由激光测微计测量。在拉伸流动开始的小变形时,由于变形场中的剪切分量,部分应力差来自于压力的径向变化。这种影响可以通过Rasmussen等人(2010)描述的校正因子来补偿。 对于大应变,校正消失,对称平面中应力的径向变化变得可以忽略不计(Kolte等人,1997)。对于本工作中的所有样本,当Hencky应变值大于2时,校正值小于4 %,Hencky应变和中丝平面上应力差的平均值计算如下其中mf是灯丝的重量,g是重力加速度。应变率定义为ϵ• =dϵ/dt,拉伸应力增长系数定义为η-+=〈σzz-σrr 〉/ϵ• 结果和讨论线性粘弹性图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。(b)表示在150°C相应的复数粘度η*。图中的两个星号来自稳定剪切测量,在 150°C下剪切速率为0.005 s-1图2(a)显示了所有样品在参考温度150℃下的储能模量G’和损耗模量G”与角频率ω的函数关系。相应的复数粘度η*绘制在图2(b)中。图中实线是多模麦克斯韦(multimode Maxwell fitting)拟合的结果。Maxwell relaxation modulus多模麦克斯韦弛豫模量G(t)由下式给出 其中gi和τi列于表2。表中的零剪切速率粘度η0通过下式计算 在图2(b)中,很明显三个样品具有不同的零剪切速率粘度。然而,在图2(a)、(b)中,似乎PE-C的线性行为在较低频率下接近PE-A,在较高频率下与PE-B重叠。而且在ω 1 rad/s时,PE-C的G′和G″曲线几乎与PE-A平行,垂直位移因子约为0.6。表2 LDPE 在 150°C 熔体的线性粘弹性启动和稳定状态下的拉伸流变图3(a)显示了PE-A在150℃时的拉伸应力增长系数与时间的关系。图中比较了EVF、DTU-FSR和VADER-1000的测量值。图中的虚线是根据表2中列出的麦克斯韦弛豫谱计算的LVE包络线。EVF的测量值受到最大Hencky应变4的限制,在图3(b)中可以清楚地看到。其中测量的应力是作为Hencky应变的函数绘制的。两个长丝拉伸流变仪的测量值能够达到大于5的较大Hencky应变值,在该值下观察到稳定的应力。图3我们注意到EVF和长丝拉伸测量之间存在明显的偏差。我们认为EVF测量的应力太低,特别是在低应变率下,Hoyle等人(2013)也观察到这一点,他们将长丝拉伸测量值与Sentmanat拉伸流变仪测量值进行了比较。因此,对于图3(b)中的ϵ• =0.01 s-1,已经与ϵ• =0.5有偏差,而对于ϵ• =2.5 s-1,EVF测量与DTU-FSR测量一致,最高ϵ• 为3.5。请记住,在EVF中,只有横截面的初始面积是已知的;在拉伸过程中横截面面积的变化不是测量的,而是由一个假设均匀单轴拉伸速率不变的方程计算出来的。此外,在EVF测量中,样品宽度为12.8mm略微超过了Yu等人(2010)建议的12.7mm的上限,这导致在更大的Hencky应变值下的平面延伸而不是单轴延伸。相比之下在DTU-FSR和VADER-1000中,中间直径一直被测量,因此在拉伸过程中横截面的实际面积是已知的,由此计算出中间细丝平面中的真实Hencky应变。借助于在线控制方案,在整个测量过程中保证了单轴拉伸过程中恒定的Hencky应变率。来自DTU-FSR和VADER-1000的大Hencky应变值的数据由于力小而有些分散。此外,在拉伸速率超过0.4s-1时,使用DTU-FSR和VADER-1000进行的测量观察到了应力过冲的现象。由于仪器中采用的控制方案的限制,使用两个长丝拉伸流变仪进行测量的拉伸速率不超过2.5s-1。在长丝拉伸中,表面张力可能对测量的应力有影响,尤其是在长丝中间平面的半径非常小,大的亨基应变值的时候。在所有的测量中,最小的半径是R = 0.12mm。如果我们把低密度聚乙烯LDPE的表面张力γ = 0.03 J/m2,表面张力效应产生的最大应力是σsur =γ/R = 250Pa。在图3(b)中,很明显,对于所有达到Hencky应变大于4的测量,测量的应力高于104Pa。因此可以忽略表面张力效应。图4图4显示了PE-C在150℃时拉伸应力增长系数与时间的函数关系。DTU-FSR和VADER-1000的测量结果非常一致。在0.15和2.5s-1之间的中间拉伸速率下,EVF的测量值与DTUFSR一致。拉伸速率低于0.1s-1时,偏差越来越大。根据DTU-FSR和VADER-1000的测量,在拉伸速率快于0.4s-1时,再次观察到应力过冲。图5图5比较了DTU-FSR测量的拉伸流动中PE-A和PE-C的非线性行为。如图2所示,PE-A和PE-C具有不同的线性粘弹性,这也由图5(a)中不同的LVE包络表示。在拉伸流的启动过程中,PE-A和PE-C也有不同的非线性反应。从图5a中可以清楚地看出,在所有拉伸速率下,PE-C 比 PE-A 有更明显的应变硬化。然而,在图5(a)、(b)中,有趣的是,尽管PE-A和PE-C最初有不同的非线性行为,但是它们在更大的Hencky应变值下具有相同的反应,并且在每个应变速率达到相同的拉伸稳态粘度,如图6所示。图6还显示在快速应变率下,拉伸稳态粘度表现出幂律行为,粘度比例约为ε• -0.6,这与Rasmussen等人(2005)和Alvarez等人(2013)的观察结果一致。应该注意的是,如图5(b)所示,相同的非线性行为仅在Hencky应变值大于4时观察到,这一点无法通过EVF测量。图6图7(a)比较了PE-B与PE-C在150℃时的拉伸应力增长系数。在所提出的速率下,PE-B没有显示任何应力过冲。尽管PE-B和PE-C在线性和非线性流变学方面的表现不同,但在每种拉伸速率下,它们的相对应变硬化量似乎是相似的。在图7(b)中可以更清楚地看到这一点。图7(b)中比较了Trouton比率。Trouton 比值定义为Tr = η-+ /η0,其中η0是零剪切率粘度,其数值列于表2。可以看出,在每个拉伸速率下,PE-B达到与PE-C相同的最大Trouton比率,证实它们具有相同的相对应变硬化量。图7结论我们使用三种不同的设备测量了三种商用低密度聚乙烯样品的拉伸流变性能。这三种设备在拉伸流变的启动方面给出了一致的结果。然而,EVF的测量结果受到最大Hencky应变4的限制,而两个长丝拉伸流变仪达到了更大的Hencky应变值,在这里可以观察到应力过冲和稳态粘度。此外,EVF的测量仅在取决于应变速率的应变范围内跟随长丝拉伸测量。尽管三种低密度聚乙烯样品具有不同的线性粘弹性能,但已经表明,PE-A和PE-C在Hencky应变值大于4时具有非常相似的非线性rhelogical行为,而PE-B和PE-C具有相同的相对应变硬化量。上述结果表明,工业低密度聚乙烯的非线性流变性可以通过聚合来调整。特别是,有可能合成一种聚合物(PE-C),其具有比参考聚合物(PE-A)低得多的粘弹性模量,但仍具有与参考聚合物相同的拉伸粘度。
  • 钢铁研究总院分析测试培训中心将举办XRF、火花光谱、拉伸技术培训班
    钢铁研究总院分析测试培训中心 冶培 字[2011] 11号 X射线荧光光谱分析技术培训通知 JS20110202 ATC 003 X射线荧光光谱分析技术 各相关单位:   为提高我国冶金分析检测人员的技术能力,以确保冶金及材料检测实验室向社会提供分析检测结果的准确性和可靠性,应冶金及材料理化实验室检测工作的需求,钢铁研究总院分析测试培训中心协同中国金属学会分析测试分会将于2011年5月23~26日在北京• 钢铁研究总院举办第二期共三个班次的培训,其中“X射线荧光光谱分析技术培训班”的具体安排如下:   一、培训班次及安排   班次第二期检测技术培训(北京)主讲老师   JS20110202ATC 003 X射线荧光光谱分析技术邓赛文教授   详情可在网站实时查询:http://www.yejinfenxi.cn 或 http://www.nacis-cn.com   二、培训时间、地点   报到时间:2011年5月23日 报到地点:北京上园饭店一楼大厅   培训时间:2011年5月24~26日 培训地点:北京上园饭店/国家钢铁材料测试中心   三、主办单位   钢铁研究总院分析测试培训中心   四、培训内容   检测技术培训班的内容涵盖包含全国分析检测人员培训委员会(NTC)指定的四个技术模块: 1)分析技术基础与通则 2)仪器设备与实际操作 3)标准方法与应用技术 4)分析结果的数据处理。主要内容如下:   Ø XRF分析技术基本概念、原理、主要设备和定性与定量分析方法   Ø WD-XRF光谱仪、ED-XRF光谱仪的基本构成、各个部件的主要用途及特点。仪器校准与检定规程、期间核查等,介绍日常分析时仪器的校准,如仪器综合稳定性检定、仪器漂移校正等 所用仪器各个系统和部件的日常维护,软件的维护,常见故障的解决,仪器安装和工作的环境条件要求   Ø XRF主要的样品制备技术。XRF分析方法在相关测试领域中的分析方法标准、适用范围、使用要求、具体分析步骤、结果计算、操作中应注意的问题   Ø 检出限计算方法,分析方法的精密度评定方法和分析结果的准确度评估方法,不确定度定义、分类及表示方法,了解XRF分析方法不确定度的评定。 火花源原子发射光谱分析技术培训通知 JS20110203 ATC 002 火花源原子发射光谱分析技术 各相关单位:   为提高我国冶金分析检测人员的技术能力,以确保冶金及材料检测实验室向社会提供分析检测结果的准确性和可靠性,应冶金及材料理化实验室检测工作的需求,钢铁研究总院分析测试培训中心协同中国金属学会分析测试分会将于2011年5月23~26日在北京• 钢铁研究总院举办第二期共三个班次培训,其中“火花源原子发射光谱分析技术培训班”的具体安排如下:   一、培训班次及安排   班次第二期检测技术培训(北京)主讲老师   JS20110203ATC 002火花源原子发射光谱分析技术(直读光谱)高宏斌博士   详情可在网站实时查询:http://www.yejinfenxi.cn 或 http://www.nacis-cn.com   二、培训时间、地点   报到时间:2011年5月23日 报到地点:北京上园饭店一楼大厅   培训时间:2011年5月24~26日 培训地点:北京上园饭店/国家钢铁材料测试中心   三、主办单位   钢铁研究总院分析测试培训中心   四、培训内容   检测技术培训班的内容涵盖包含全国分析检测人员培训委员会(NTC)指定的四个技术模块: 1)分析技术基础与通则 2)仪器设备与实际操作 3)标准方法与应用技术 4)分析结果的数据处理。主要内容如下:   Ø SPARK/ARC-OES分析技术基本概念、光谱仪基本构成、主要部件的用途及特点   Ø 仪器操作技术:各个工作参数的设定及检查 分析程序的选择 校准曲线的标准化 控制样品的选择 仪器的校准 仪器各系统和部件的日常维护,常见故障的解决   Ø SPARK/ARC-OES分析方法标准、适用范围、使用要求、具体分析步骤、结果计算、操作中应注意的问题 重复性(短期精密度)、稳定性(长期精密度)、极差、检出限、背景等效浓度、测定下限、重复性限、再现性限、临界差等相关参数的定义和计算   Ø SPARK/ARC-OES分析方法的评价和分析结果准确度的判定。 金属材料拉伸试验技术培训通知 JS20110201 ATM 001 拉伸试验技术(GB/T 228.1-2010) 各相关单位:   为提高我国冶金分析检测人员的技术能力,以确保冶金及材料检测实验室向社会提供分析检测结果的准确性和可靠性,应冶金及材料理化实验室检测工作的需求,钢铁研究总院分析测试培训中心协同中国金属学会分析测试分会将于2011年5月23~26日在北京• 钢铁研究总院举办第二期共三个班次的培训,其中“金属材料拉伸试验技术培训班”的具体安排如下:   一、培训班次及安排   班次第二期检测技术培训(北京)主讲老师   JS20110201ATM 001 拉伸试验技术(GB/T 228.1-2010)高怡斐教授   朱林茂高工   邓星临教授   详情可在网站实时查询:http://www.yejinfenxi.cn 或 http://www.nacis-cn.com   二、培训时间、地点   报到时间:2011年5月23日 报到地点:北京上园饭店一楼大厅   培训时间:2011年5月24~26日 培训地点:北京上园饭店/国家钢铁材料测试中心   三、主办单位   钢铁研究总院分析测试培训中心   四、培训内容   检测技术培训班的内容涵盖包含全国分析检测人员培训委员会(NTC)指定的四个技术模块: 1)分析技术基础与通则 2)仪器设备与实际操作 3)标准方法与应用技术 4)分析结果的数据处理。主要内容如下:   Ø 金属材料拉伸试验的特点、分类以及拉伸试验技术的相关术语   Ø 讲解金属材料拉伸试验相关试验机的基本结构、检测/校准项目及相关要求,金属材料电子万能试验机、液压万能试验机、电液伺服试验机及引伸计、高温炉和环境箱的操作技术和维护保养、日常检查方法   Ø 讲解金属材料室温拉伸、高温拉伸、低温拉伸、液氦拉伸、弹性模量和泊松比(静态法)与薄板和薄带塑性应变比、拉伸应变硬化指数标准试验方法 了解各类拉伸试验结果主要影响因素   Ø 介绍金属材料高温拉伸、低温拉伸、液氦拉伸等相关标准,重点讲解最新发布的国家标准GB/T 228.1-2010《金属材料 拉伸试验 第1部分:室温试验方法》。作为金属材料领域应用最广泛的基础试验方法标准,新版标准GB/T 228.1-2010较2002版有较大变化,增加了方法A应变速率控制方法 修改了试验结果的数值修约方法 增加了拉伸试验测量不确定度的评定方法,并增加了计算机控制拉伸试验机使用时的建议,以及考虑试验机刚度(或柔度)后估算的横梁位移速率方法。培训班将详解新版国家标准的最新变化和试验方法,以及拉伸试验结果不确定度评定和数据处理方法。   附:2011年冶金及材料分析检测人员培训报名表.doc   相关信息:   培训证书   由全国分析检测人员能力培训委员会(NTC)组织考核,考核合格者将由NTC发放相应技术或标准的《分析检测人员技术能力证书》。该证书可作为实验室资质认定、实验室认可中检测人员的技术能力证明。   培训及考核费用   本次XRF、火花光谱、拉伸技术的培训费用各为1200元/人,含资料费、培训费   考核费用为500元/人,含NTC考核费、注册费及证书费。   如需提前支付培训费的请按下列帐号或地址汇款(报到时请携带相关凭据):   银行汇款:   收款单位:钢铁研究总院   地 址:北京市海淀区学院南路76号   开户银行:工商银行北京新街口支行   帐 号:0200002909003210486-16   邮局汇款:   地 址:北京市海淀区学院南路76号   邮 编:100081   收款单位:钢铁研究总院分析测试培训中心   联 系 人:齐 欣   食宿安排   培训考核期间食宿统一安排,费用自理。   报到联络电话:010-62183362 62182652   培训签约 “北京上园饭店” 住宿特惠价:   ¥ 240元/天(普通标准间,含双早)   地址:北京海淀区高粱桥斜街40号   酒店前台电话:010-51555599    钢铁研究总院分析测试培训中心   2011年5月9日   地址:北京市海淀区学院南路76号14信箱,100081   E-mail: training@analysis.org.cn   电话:010-62183362 62182652 62183851   传真:010-62182584 62182652
  • 锐欧森发布多功能拉伸流变仪 VADER 1000新品
    多功能拉伸流变仪 VADER 1000单剪切和单轴延伸之间存在根本区别。 然而,在剪切中,材料的横截面积在流动的存在下是固定的,典型的是拉伸流动引起材料的横截面积随时间的变化。 因此,应变和应力的定义需要精确测量力和横截面积。 对于VADER 1000的工作原理,称为长丝拉伸流变学,应变和应力由下式给出:产品规格:仪器功能最小应力(取决于称重传感器范围)15Pa最大应力(取决于称重传感器范围)1×1010Pa最大Hencky应变力(计算)9最小应变率(假设理想的轴向变形计算。根据样品属性可能降低速率。)0.0001s-1最大应变率(考虑闭环控制。想获得更高的速率,请咨询。)5s-1建议最小的样品粘度(这是为了尽量减少表面张力的影响。根据施加的速率,可能的粘度较小。)1000Pa.s最小直径0.1mm最大直径10.0mm最小温度周围环境温度最大温度250℃气流(可选燃气加热器)5L/min最小轴向速度0.001mm/s最大轴向速度600mm/s温度控制温度传导箱可选温度传导箱 VADER 1000配有三区导气箱,可确保温度均匀性,稳定性和响应时间。 传导箱采用陶瓷绝缘,可以以避免过多的热量损失。专利待定烤箱安装在特殊的滑动系统上,可以在不降低温度的情况下快速更换样品。传导箱可以达到-250°C的环境温度。 VADER 1000具有可选的温度对流箱附件,可减少加热时间,确保整个烤箱腔内的温度均匀,并使用惰性气体防止样品在测试过程中降解。对流式温度箱配有安全开关,当导热炉处于向上位置时,它会自动关闭气流。 所有连接均为不锈钢,可使用各种气体。底部对流板允许插入气体进入样品室,防止氧化并确保温度均匀。创新点:ADER 1000配有三区导气箱,可确保温度均匀性,稳定性和响应时间。 传导箱采用陶瓷绝缘,可以以避免过多的热量损失。 专利待定烤箱安装在特殊的滑动系统上,可以在不降低温度的情况下快速更换样品。 传导箱可以达到-250° C的环境温度。 多功能拉伸流变仪 VADER 1000
  • 薄膜拉伸强度测试仪如何区分弹性变形和塑性变形
    在薄膜拉伸强度测试中,准确区分弹性变形和塑性变形对于材料工程师、物理学家以及产品开发者而言,是至关重要的一环。这两种变形类型不仅决定了材料的基本性能,还直接关系到产品的使用寿命和安全性。本文旨在深入探讨薄膜拉伸强度测试中弹性变形与塑性变形的区分方法,以及它们在材料科学领域的应用。一、弹性变形与塑性变形的基本概念弹性变形,指的是材料在外力作用下产生变形,当外力消失时能够恢复到原始形状和尺寸的现象。这种变形是可逆的,不涉及材料的内部结构变化。而塑性变形则是指材料在外力作用下产生变形后,即使外力消失也不能完全恢复到原始形状和尺寸的现象。塑性变形是不可逆的,通常伴随着材料内部结构的改变。二、薄膜拉伸强度测试中的变形观察在薄膜拉伸强度测试中,我们可以通过观察材料的应力-应变曲线来区分弹性变形和塑性变形。在弹性变形阶段,应力与应变之间呈线性关系,即应力增加时,应变也按一定比例增加。当应力达到弹性极限时,材料开始进入塑性变形阶段,此时应力-应变曲线呈非线性关系,应变继续增加但应力增长缓慢或不再增长。三、区分弹性变形与塑性变形的具体方法应力-应变曲线分析:如前所述,通过分析应力-应变曲线的形状和变化,可以判断材料是否进入塑性变形阶段。在弹性变形阶段,曲线呈直线状;而在塑性变形阶段,曲线则呈现弯曲或平坦的趋势。卸载试验:在拉伸测试过程中,当材料达到一定的应力水平时,可以突然卸载并观察材料的恢复情况。如果材料能够迅速恢复到原始长度,则说明之前的变形主要是弹性变形;如果材料不能完全恢复,则说明存在塑性变形。残余应变测量:在拉伸测试结束后,通过测量材料的残余应变可以判断塑性变形的程度。残余应变越大,说明塑性变形越显著。四、弹性变形与塑性变形在材料科学中的应用材料选择:了解材料的弹性变形和塑性变形特性有助于选择合适的材料以满足特定需求。例如,在需要高弹性的场合(如橡胶制品),应选择弹性变形能力强的材料;而在需要承受大变形而不破裂的场合(如金属薄板),则应选择塑性变形能力强的材料。产品设计:在产品设计过程中,考虑到材料的弹性变形和塑性变形特性,可以优化产品结构以提高其性能和安全性。例如,在设计弹性元件时,需要充分利用材料的弹性变形能力;而在设计承力结构时,则需要考虑材料的塑性变形特性以确保结构的稳定性和安全性。质量控制:通过测量材料的弹性模量、屈服强度等力学性能指标,可以评估材料的性能是否满足要求。同时,通过观察材料的变形行为(如弹性变形和塑性变形)可以判断材料是否存在缺陷或质量问题。五、结论在薄膜拉伸强度测试中准确区分弹性变形和塑性变形对于材料科学领域具有重要意义。通过分析应力-应变曲线、进行卸载试验和测量残余应变等方法可以判断材料的变形类型。了解材料的弹性变形和塑性变形特性有助于选择合适的材料、优化产品设计和提高产品质量。未来随着材料科学的发展和技术的进步相信我们将能够更加深入地理解材料的变形行为并开发出更多高性能的材料。
  • 塑料拉伸强度及伸长率试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、大变形引伸计,根据《GB/T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》,进行了塑料拉伸强度及伸长率试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应塑料拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 塑料 高分子 聚合物 拉伸试验 拉伸强度 伸长率 标称应变塑胶原料定义为是一种以合成的或天然的高分子聚合物,可任意捏成各种形状最后能保持形状不变的材料或可塑材料产品。塑料是重要的有机合成高分子材料,由于其良好的物理化学性能,以及加工特性,被广泛应用于日常工作与生活中。根据各种塑料不同的使用特性,通常将塑料分为通用塑料、工程塑料和特种塑料三种类型。本次应用选用日常生活中最常见的5种塑料进行试验,可以很直观的对比出各种塑料的力学性能差异。电子万能材料试验机在塑料的力学性能分析中是属于最重要的物理性能测试设备之一。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的大变形引伸计具有响应快、精度高的特点,配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10KN手动楔形拉伸夹具大变形引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级) 加载试验速率:5mm/min、50mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取5款注塑成型的塑料试样,包括原材料或增强塑料,材质分别为PP、PP+EPDM+TD20、ABS、PC、PA6+30GF,尺寸均为GB/T 1040.2标准1A型哑铃状试样,中间平行部分宽度约10mm,厚度约4mm,数量各5个。2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启载荷零点保持功能消除样品夹持后的预应力,将大变形引伸计夹持在试样的中间部位后将引伸计清零,对应不同伸长率的样品分别以5mm/min、50mm/min的速度进行试验,直至样品断裂,设备监测到试样断裂后自动停止,设备将测量过程中的力以及变形数据完整记录,并生成拉伸试验曲线。图7 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果 图13-试验曲线PP图14-试验曲线PP+EPDM+TD20图15-试验曲线ABS图16-试验曲线PC图17-试验曲线PA6+30GF从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、变形等各项数据用于分析。可以看出各种样品之间因材质不同的曲线差异,其中PP/PP+EPDM+TD20/PC/ABC试样有屈服现象,PA6+30GF无屈服现象,每组各5个试样重现性良好,满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、大变形引伸计,可以完全满足《GB/T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得塑料材料的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 燃料电池关键部件丨碳纸的拉伸、压缩、三点弯曲和剥离强度的全面测试
    质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,简称PEMFC)作为一种新兴的低温燃料电池,具有效率高、工作温度低、零排放等优点,是新型绿色能源的主要发展方向之一。燃料电池是将化学能转化为电能的在线发电装置,由于突破了传统内燃机的效率限制,成为未来汽车动力装置发展的重要方向。燃料电池单体内部最重要的部件就是膜电极(Membrane Electrode Assembly,简称MEA),是燃料电池乃至新能源汽车动力部分的关键组成部分。 碳纸 —气体扩散层(GDL)基材最理想材料PEMFC的核心部件是膜电极组件,由两个催化层(CL)、两个气体扩散层(GDL)和一个质子交换膜(PEM)组成。气体扩散层是膜电极中的关键部分,起到支撑催化层、收集电流、传导气体和排出反应产物水的作用。常用的气体扩散层(GDL)基材主要有:碳纸、碳布、炭黑纸、金属材料等,其中碳纸因具有高导电性、耐腐蚀性以及出色的尺寸稳定性,是GDL基材的最理想材料。 质子交换膜燃料电池工作原理图 碳纸,又称为碳纤维纸,是质子交换膜燃料电池(PEMFC)的专用材料,即气体扩散层,主要作用是传导电流,引导反应气体从石墨板导流到触媒层,并把反应水排除在触媒层之外,是燃料电池膜电机组(MEA)中不可或缺的材料。 强度性能是碳纸的重要指标之一,具有较好强度的碳纸可为质子交换膜燃料电池的安装和使用带来保障,同时稳定整个电极的结构,提高电池的寿命。 因此,对碳纸材料进行拉伸、压缩、三点弯曲和剥离强度测试,可以有效检验碳纸强度,在碳纸材料的开发与规模化生产中发挥极为重要的作用。 岛津方案目前,碳纸作为新能源领域的新材料,仍然处于大规模生产的初级阶段,不同国家不同的碳纸制造商,因为技术与工艺的差异,对碳纸产品的技术参数尚未达成统一。国内多数企业参考《GB/T 20042.7-2014 质子交换膜燃料电池 第7部分碳纸特性测试方法》的要求,结合各自工艺水平,对碳纸材料从拉伸、压缩、弯曲、剥离多个方面进行测试评估。 岛津电子万能试验机,选择合适的夹具,按标准要求设定好试验方法,能够很方便地获取测试数据与曲线,大大提高碳纸力学测试的效率。 1拉伸测试将碳纸裁切为120×10mm的长条形试样,此次试验用碳纸厚度为0.19mm。裁切边缘尽量保持光滑平整。将裁切好的碳纸拉伸试样夹在1KN气动双推夹具上完成测试。碳纸拉伸测试与夹具碳纸拉伸测试应力-应变曲线 表1. 测试结果 从上图可知,试验机获取了客户所需的应力曲线,通过观察,6个试样的应力-应变曲线形态相似,从而判断碳纸拉伸性能比较均一。结合表中数据可知,最大应力分布在36~40MPa的区间内,拉伸强度的离散型也保持较好。 2压缩测试将碳纸裁成50×50mm的正方形,推荐选择带有调平功能的压盘夹具来完成超薄材料的压缩测试。碳纸压缩测试与可调平压盘 碳纸压缩测试载荷-行程曲线 表2. 测试结果如上图可知,根据岛津AGS-X电子万能试验机获取的压缩测试载荷-行程曲线,观察3个试样的测试曲线形态相似,从表中数据可知,最大应力分布在0.008-0.009MPa的区间内,数值稳定,说明三个碳纸试样的抗压性相似。 3三点弯曲测试将碳纸裁切成120×20mm长方形试样,保证切口光滑平整。碳纸三点弯曲试验选择岛津1KN塑料三点弯曲夹具。视频点击查看:https://mp.weixin.qq.com/s/9Aut652JEjR6-n6ay7Wo-Q 碳纸三点弯曲测试载荷-时间曲线 表3. 测试结果 从图表和三点弯曲载荷-时间曲线,以及抗弯强度差异不大,可判断3个试样的抗弯强度和断裂点载荷保持稳定,进而可判断本批次样品的抗压水平保持在一个水平。 4剥离测试将碳纸粘贴在不锈钢基板上,碳纸表面再贴上胶带。选用1KN气动拉伸夹具来完成拉伸测试。 使用岛津试验机与夹具进行碳纸180°剥离试验 结语使用岛津的AGS-X或AGX-V电子万能试验机,配合拉伸、压缩、三点弯曲、剥离各种不同的夹具与附件,符合现行标准或行业客户的自身测试要求,可以满足您对碳纸的各种力学测试与质量控制的需要,为碳纸规模化制造保驾护航。 撰稿人:王正宇 *本文内容非商业广告,仅供专业人士参考。
  • 燃料电池关键部件丨碳纸的拉伸、压缩、三点弯曲和剥离强度的全面测试
    质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,简称PEMFC)作为一种新兴的低温燃料电池,具有效率高、工作温度低、零排放等优点,是新型绿色能源的主要发展方向之一。燃料电池是将化学能转化为电能的在线发电装置,由于突破了传统内燃机的效率限制,成为未来汽车动力装置发展的重要方向。燃料电池单体内部最重要的部件就是膜电极(Membrane Electrode Assembly,简称MEA),是燃料电池乃至新能源汽车动力部分的关键组成部分。 碳纸 —气体扩散层(GDL)基材最理想材料PEMFC的核心部件是膜电极组件,由两个催化层(CL)、两个气体扩散层(GDL)和一个质子交换膜(PEM)组成。气体扩散层是膜电极中的关键部分,起到支撑催化层、收集电流、传导气体和排出反应产物水的作用。常用的气体扩散层(GDL)基材主要有:碳纸、碳布、炭黑纸、金属材料等,其中碳纸因具有高导电性、耐腐蚀性以及出色的尺寸稳定性,是GDL基材的最理想材料。质子交换膜燃料电池工作原理图 碳纸,又称为碳纤维纸,是质子交换膜燃料电池(PEMFC)的专用材料,即气体扩散层,主要作用是传导电流,引导反应气体从石墨板导流到触媒层,并把反应水排除在触媒层之外,是燃料电池膜电机组(MEA)中不可或缺的材料。 强度性能是碳纸的重要指标之一,具有较好强度的碳纸可为质子交换膜燃料电池的安装和使用带来保障,同时稳定整个电极的结构,提高电池的寿命。 因此,对碳纸材料进行拉伸、压缩、三点弯曲和剥离强度测试,可以有效检验碳纸强度,在碳纸材料的开发与规模化生产中发挥极为重要的作用。 岛津方案目前,碳纸作为新能源领域的新材料,仍然处于大规模生产的初级阶段,不同国家不同的碳纸制造商,因为技术与工艺的差异,对碳纸产品的技术参数尚未达成统一。国内多数企业参考《GB/T 20042.7-2014 质子交换膜燃料电池 第7部分碳纸特性测试方法》的要求,结合各自工艺水平,对碳纸材料从拉伸、压缩、弯曲、剥离多个方面进行测试评估。 岛津电子万能试验机,选择合适的夹具,按标准要求设定好试验方法,能够很方便地获取测试数据与曲线,大大提高碳纸力学测试的效率。 1拉伸测试将碳纸裁切为120×10mm的长条形试样,此次试验用碳纸厚度为0.19mm。裁切边缘尽量保持光滑平整。将裁切好的碳纸拉伸试样夹在1KN气动双推夹具上完成测试。碳纸拉伸测试与夹具碳纸拉伸测试应力-应变曲线 表1. 测试结果从上图可知,试验机获取了客户所需的应力曲线,通过观察,6个试样的应力-应变曲线形态相似,从而判断碳纸拉伸性能比较均一。结合表中数据可知,最大应力分布在36~40MPa的区间内,拉伸强度的离散型也保持较好。 2压缩测试将碳纸裁成50×50mm的正方形,推荐选择带有调平功能的压盘夹具来完成超薄材料的压缩测试。碳纸压缩测试与可调平压盘碳纸压缩测试载荷-行程曲线 表2. 测试结果如上图可知,根据岛津AGS-X电子万能试验机获取的压缩测试载荷-行程曲线,观察3个试样的测试曲线形态相似,从表中数据可知,最大应力分布在0.008-0.009MPa的区间内,数值稳定,说明三个碳纸试样的抗压性相似。 3三点弯曲测试将碳纸裁切成120×20mm长方形试样,保证切口光滑平整。碳纸三点弯曲试验选择岛津1KN塑料三点弯曲夹具。视频观看请点击:https://mp.weixin.qq.com/s/TzDqFlZRp7Gjnsyxl7sZ9Q碳纸三点弯曲测试载荷-时间曲线 表3. 测试结果 从图表和三点弯曲载荷-时间曲线,以及抗弯强度差异不大,可判断3个试样的抗弯强度和断裂点载荷保持稳定,进而可判断本批次样品的抗压水平保持在一个水平。 4剥离测试将碳纸粘贴在不锈钢基板上,碳纸表面再贴上胶带。选用1KN气动拉伸夹具来完成拉伸测试。使用岛津试验机与夹具进行碳纸180°剥离试验 结语 使用岛津的AGS-X或AGX-V电子万能试验机,配合拉伸、压缩、三点弯曲、剥离各种不同的夹具与附件,符合现行标准或行业客户的自身测试要求,可以满足您对碳纸的各种力学测试与质量控制的需要,为碳纸规模化制造保驾护航。 撰稿人:王正宇 *本文内容非商业广告,仅供专业人士参考。
  • 赛默飞世尔科技发布流变计平台的新型拉伸流变系统
    赛默飞世尔科技大力拓展面向高端流变计平台的聚合物系列产品——新型拉伸流变系统现已面世   德国卡尔斯鲁厄(2008年7月22日)--服务科学,世界领先的赛默飞世尔科技公司发布了一款面向Thermo Scientific HAAKE MARS流变仪平台的新型附件-SER(Sentmanat 拉伸流变仪)系统。该系统可使普通的固态旋转流变仪扩展为具备拉伸熔融和半固态材料功能的强大拉伸流变仪。      SER系统适用于HAAKE MARS流变仪,由Martin Sentmanat博士开发,Xpansion Instruments公司独家生产。测量方法是把样品夹在两个对旋的卷筒之间。SER系统支持两种测量模式:可控拉伸速率模式和可控拉伸应力模式。除了单轴拉伸外,该系统还支持固态拉伸测试、剥离撕裂测试及摩擦测试。新型SER系统的操作温度范围在0°C到250°C。与HAAKE MARS控制测试炉(CTC)组合使用,可保证样品温度快速变化、均匀分布。SER平台能完全集成到Thermo Scientific粘度仪和流变仪的Thermo Scientific HAAKE RheoWin测试和评估软件中。   新近发布的RheoScope HT(高温型)模块能同时记录高温时被测样品微观结构中的各流变特性和变化。流变测量与光学分析相结合可直观地对微观结构进行更详尽地分析,因而能获得更多的样品机械特性相关信息,如聚合物熔融或结晶情况。   Thermo Scientific HAAKE RheoScope HT高温型模块的主要特点:    可完全集成到HAAKE MARS流变仪平台中    温度范围在-5 °C到300 °C    物镜、偏振镜和摄像头通过HAAKE RheoWin软件进行控制    在线显示数据、视频序列,及存储数据供日后分析    图像分析软件,可用于确定颗粒大小、分布情况并对其进行结构分析。   热固化在行业中的应用非常广泛,范围包括粉末涂料、胶粘剂、密封剂、焊接材料、油墨等等。近来,呈现出用支持UV的热固化来取代热固化的发展趋势,其目的是通过减少启动固化反应所需的能耗等方法来同步实现产品特性改善、生产力提高、生产成本降低的目标。为了开发及测量上述样品,已专为HAAKE MARS流变仪开发了一款全新的高温UV固化测量元件。此外,标准版UV元件和可定制的圆筒形测量单元(可自由配置光导、聚光镜、玻璃片等光学部件的距离)均已有售。   支持UV的热固化测量元件的主要特点:    全面集成的UV元件,适用于控制测试炉(CTC)    通过软件触发UV光源   赛默飞世尔科技通过全面的材料表征解决方案,可成功地向多个行业提供支持。上述解决方案可对塑料、食品、化妆品、药品及包覆以及各种流体、固体的粘度、弹性、加工性能及温度相关的机械变化等进行分析和测量。欲了解更多详情,请登录www.thermo.com/mc.   Thermo Scientific作为赛默飞世尔科技旗下子公司,是服务科学领域的世界领导者。   关于赛默飞世尔科技   赛默飞世尔科技(Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100亿美元,拥有员工33,000多人,服务客户超过350,000家。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific像客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。欲获取更多信息,请访问公司网站:www.thermo.com.cn
  • 层压板拉伸模量及泊松比试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、Reliant精密轴向引伸计以及横向引伸计,参考《ASTM D638-22塑料拉伸性能的标准试验方法》,进行了层压板的拉伸模量及泊松比试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应层压板的拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 层压板 PCB基板 拉伸试验 拉伸模量 泊松比层压板是层压制品中的一种。层压制品是由两层或多层浸有树脂的纤维或织物经叠合、热压结合成的整体。层压制品可加工成各种绝缘和结构零部件,广泛应用在电机、变压器、高低压电器、电工仪表和电子设备中。随着电气工业的发展,高绝缘性。高强度、耐高温和适应各种使用环境的层压塑料制品相继出现。印制电路用的覆铜箔层压板也由于电子工业的需要迅速发展。层压制品的性能取决于基材和粘合剂以及成型工艺。按其组成、特性和耐热性,层压制品可分为有机基材层压板和无机基材层压板,本次应用选用电路板行业常用的PCB基板-环氧玻纤层压板作为样品进行试验,通过万能材料试验机可以进行层压板的各项力学试验,表征层压板的各项力学性能,从而做好层压板的质量控制。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的Reliant精密轴向引伸计以及横向引伸计配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠 的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10KN手动楔形拉伸夹具Reliant轴向引伸计Reliant横向引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级)加载试验速率:5mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取层压板长度为165mm,中间平行段宽度约10mm,数量3个。图1 标准试样2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启载荷零点保持功能后将自动消除因夹持产生的夹持力,然后分别将横向引伸计及轴向引伸计夹持在试样的中间部位,再将两个引伸计清零,以5mm/min的速度进行试验,直至拉伸应变超过拉伸模量及泊松比取值范围后卸除引伸计并直至拉伸到样品断裂。测量过程中的力以及变形数据,并生成拉伸试验曲线。图2 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果图3-试验曲线从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、轴向变形、横向变形等各项数据用于分析,数据重现性良好,可满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、Reliant轴向引伸计以及横向引伸计,可以完全满足《ASTM D638-22塑料拉伸性能的标准试验方法》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得层压板的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 金属所张哲峰团队:金属材料拉伸与疲劳性能预测研究取得新进展
    拉伸性能与疲劳性能是金属材料工程应用的关键指标,建立二者之间定量关系,实现金属材料不同力学性能之间关系的定量预测是金属结构材料领域重要研究目标之一。由于目前相关理论不够完善,基于微观变形与损伤机制的拉伸性能与疲劳性能定量预测模型并未建立起来。因此,虽有大量实验数据表明金属材料拉伸强度与塑性之间存在明确的倒置关系,拉伸强度与疲劳强度之间存在特定的关系,但至今仍缺乏定量模型来描述上述定量关系。因此,建立金属材料拉伸性能与疲劳性能定量预测具有重要科学意义。金属研究所张哲峰团队长期坚持材料疲劳与断裂基础理论研究,团队成员张振军项目研究员前期在缺陷与金属材料加工硬化关系方面进行了系统性研究,包括四类典型缺陷:1)零维缺陷:发现过饱和空位可提升合金的加工硬化能力;2)一维缺陷:在位错主导塑性形变的合金中实现了加工硬化能力回升;3)二维缺陷:在FeMnCAl系TWIP钢中实现随孪晶密度增加应变速率敏感性由负到正的转变;4)三维缺陷:在TWIP钢等强加工硬化材料中建立了微孔致颈缩判据。近来,在加工硬化微观机制研究基础上,张振军项目研究员提出了新的位错湮灭模型,并通过考虑初始组织状态与合金成分对加工硬化的影响,建立了单相金属材料普适性硬化模型-指数硬化(ESH:Exponential Strain-Hardening)模型,并据此首次推导出单相金属材料拉伸应力(σ)-应变(ε)定量关系:其中硬化指数n为位错湮灭距离(ye)的表达式反映合金成分的影响。η为初始缺陷对屈服强度(σy)非位错性贡献的比例,反映微观组织的影响;ΘⅡ为第二阶段硬化率,对同一金属合金体系为常数。该ESH模型得到了6种合金成分、100余种不同微观组织状态单相铜铝合金的实验验证,如图1所示。该ESH模型阐明了单相金属材料形变过程中一些重要规律:1)用一个参数(n)统一了五阶段加工硬化规律;2)揭示了极限强度、临界强度、真抗拉强度与成分及变形机制之间关系;3)首次推导出"屈服强度-抗拉强度-均匀延伸率"之间定量关系(公式(2-4),图2a-2c);4)定量揭示了拉伸强度-塑性同步提升的两个基本原则,即成分优化(提升位错滑移平面性)与组织优化(降低初始高能缺陷),在铜合金、镍基合金、TWIP钢、高氮钢、316L不锈钢等单相合金中均得到了系统性实验验证;5)实现了单相铜铝合金拉伸强度、塑性及拉伸应力-应变曲线的定量预测,如图2d-2f所示: 上述研究成果最近以2篇论文连载方式发表在Acta Mater 231 (2022) 117866和231 (2022) 117877上。基于该ESH模型,博士生曲展在张振军项目研究员的指导下,进一步揭示了三类变形铝合金(2xxx、6xxx、7xxx)拉伸强度和塑性随时效时间变化的共性转变规律与机制,建立了三类铝合金加工硬化指数与时效过程中析出相性质及几何特征之间的定量关系,提出了变形铝合金时效过程对加工硬化能力提升的析出相控制原理(J Mater Sci Technol 122 (2022) 54-67)。为了建立金属结构材料拉伸性能与疲劳性能之间定量关系,该团队成员刘睿博士在对铜铝单相合金拉伸性能与高周疲劳强度系统性研究的基础上,从疲劳损伤过程弹性变形与应变局部化两方面入手,通过引入合金成分、微观组织与宏观缺陷参数,建立了金属结构材料高周疲劳强度预测模型:其中参数C代表合金成分(或弹性模量)对疲劳强度的影响,强度σy和σb为微观组织对疲劳强度的影响,参数ω反映了宏观缺陷对疲劳强度的影响,如图3(a)所示;该高周疲劳强度预测模型得到了钢铁材料、铝合金、铜合金、钛合金、镁合金等20余种典型工程结构材料系统性疲劳实验验证,如图3(b)所示。该研究成果也以2篇论文连载方式发表在J Mater Sci Technol 70 (2021) 233-249和70 (2021) 250-267上。在疲劳裂纹扩展预测模型方面,最近李鹤飞博士在团队成员张鹏研究员的指导下,针对高强钢强度-韧性匹配关系,通过断裂力学理论分析,建立了以静态力学性能预测其疲劳裂纹扩展速率模型:其中σb为拉伸强度,KIC为断裂韧性,E为弹性模量,R为应力比,α为扩展速率常数。同时,为了指导关键构件材料强度-韧性优化提高疲劳裂纹扩展阻力,建立了高强度金属材料等效疲劳裂纹扩展速率模型(如图4(a)所示)。通过选择高强度金属材料强度-韧性之间匹配关系,可快速预测和降低其疲劳裂纹扩展寿命(如图4(b)所示),进而可以指导关键构件材料抗疲劳损伤容限设计。上述关于疲劳裂纹扩展速率预测模型在多种高强铝合金、钛合金及高强钢材料中得到了验证。该研究成果发表在J Mater Sci Technol 100 (2022) 46-50上。将上述金属材料拉伸性能和疲劳性能定量预测模型联合起来,可以实现通过测试金属结构材料少数组织状态的拉伸性能快速预测和优化其疲劳性能的功能,为金属结构材料疲劳性能预测与优化软件研发奠定理论基础,也为金属结构材料及工程构件抗疲劳设计与制造提供理论支撑。上述研究工作得到了国家自然科学基金重大项目(51790482)、重点项目(51331007、52130002)、面上项目(51771208、51871223)项目、中国科学院王宽诚率先人才计划"卢嘉锡国际合作团队"(GJTD-2020-09)、"青年促进会"项目(2018182、2021192)及辽宁省"兴辽计划"创新团队项目(XLYC1808027)的资助。相关成果列表及链接:1. Zhang ZJ*, Qu Z, Xu L, Liu R, Zhang P, Zhang ZF*, Langdon TG. A general physics-based hardening law for single phase metals. Acta Mater 231 (2022) 117877https://www.sciencedirect.com/science/article/pii/S1359645422002531#sec00202. Zhang ZJ*, Qu Z, Xu L, Liu R, Zhang P, Zhang ZF*, Langdon TG. Relationship between strength and uniform elongation of metals based on an exponential hardening law. Acta Mater 231 (2022) 117866.https://www.sciencedirect.com/science/article/pii/S135964542200252X3. Qu Z, Zhang ZJ*, Yan JX, Gong BS, Lu SL, Zhang ZF*, Langdon TG. Examining the effect of the aging state on strength and plasticity of wrought aluminum alloys. J Mater Sci Technol 122 (2022) 54-67.https://www.sciencedirect.com/science/article/pii/S1005030222001967?via%3Dihub4. Liu R, Zhang P*, Zhang ZJ, Wang B, Zhang ZF*. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction. J Mater Sci Technol 70 (2021) 233-249.https://www.sciencedirect.com/science/article/pii/S1005030220307441?via%3Dihub5. Liu R, Zhang P*, Zhang ZJ, Wang B, Zhang ZF*. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement. J Mater Sci Technol 70 (2021) 250-267.https://www.sciencedirect.com/science/article/pii/S100503022030743X?via%3Dihub6. Li HF, Zhang P*, Wang B, Zhang ZF*. Predictive fatigue crack growth law of high-strength steels. J Mater Sci Technol 100 (2022) 46-50.https://www.sciencedirect.com/science/article/abs/pii/S1005030221005053?via%3Dihub7. 张振军、张哲峰、张鹏、王强;一种金属材料拉伸性能的预测方法, 2021-7-6, ZL201711234799.0,发明。已授权8. 张哲峰、刘睿、张鹏、张振军、田艳中、王斌、庞建超;一种金属材料疲劳强度的预测方法,2021-8-10,ZL201711235841.0,发明。已授权9. 张鹏、李鹤飞、段启强、张哲峰;一种预测高强钢疲劳裂纹扩展性能的方法,2021-3-26,ZL201910030260.6,发明。已授权图1 ESH模型的建立与实验验证:(a-b) 模型推导过程;(c-d) 强度与塑性验证图2 ESH模型的应用:(a)建立"屈服强度-抗拉强度-均匀延伸率"之间定量关系;(b)实现拉伸性能及拉伸应力-应变曲线定量预测图3 高周疲劳强度预测模型的建立与验证:(a) 模型建立过程;(b,c) 系统性实验验证图4 (a)等疲劳裂纹扩展速率模型图 (b)工程材料强度-韧性与疲劳裂纹扩展速率关系
  • 塑料拉伸模量及泊松比试验
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合手动楔形拉伸夹具、Reliant精密轴向引伸计以及横向引伸计,根据《GB /T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》,进行了塑料拉伸模量及泊松比试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应塑料拉伸试验。关键词:鲲鹏BOYI 2025电子万能材料试验机 塑料 高分子 聚合物 拉伸试验 拉伸模量 泊松比塑胶原料定义为是一种以合成的或天然的高分子聚合物,可任意捏成各种形状最后能保持形状不变的材料或可塑材料产品。塑料是重要的有机合成高分子材料,由于其良好的物理化学性能,以及加工特性,被广泛应用于日常工作与生活中。根据各种塑料不同的使用特性,通常将塑料分为通用塑料、工程塑料和特种塑料三种类型。本次应用选用日常生活中最常见的5种塑料进行试验,可以很直观的对比出各种塑料的力学性能差异。电子万能材料试验机在塑料的力学性能分析中是属于最重要的物理性能测试设备之一。鲲鹏试验机配备的手动楔形拉伸夹具,可以在不借助工具的情况下,实现试样的快速夹紧,同时配备样品夹持对中装置确保每次试样放置位置统一,可以大大测试提高效率以及测试的重现性;夹具采用的楔形夹紧方式,可以比传统的平面夹持夹具夹紧后更小的预应力,并且在拉伸过程中持续稳定的提供夹持力。除夹具外,本次试验采用的Reliant精密轴向引伸计以及横向引伸计配合试验机主机的高精度和超过1000Hz的采集频率,可以完整的记录拉伸过程中的所有特征数据,给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。1.试验部分1.1仪器与夹具BOYI 2025-010 电子万能试验机10kN手动楔形拉伸夹具Reliant轴向引伸计Reliant横向引伸计Smartest软件1.2分析条件试验温度:室温22℃左右载荷传感器:10kN(0.5级)加载试验速率:5mm/min夹具间距:115mm标距:50mm1.3样品及处理本次试验,选取5款注塑成型的塑料试样,包括原材料或增强塑料,材质分别为PP、PP+EPDM+TD20、ABS、PC、PA6+30GF,尺寸均为GB/T 1040.2的1A型试样,数量各5个。2.试验介绍使用BOYI 2025-010电子万能试验机进行试验,将样品夹持在上下夹具中,开启试样保护,将夹持后的预应力消除,然后分别将横向引伸计及轴向引伸计夹持在试样的中间部位,然后将引伸计清零,再以5mm/min的速度进行试验,直至拉伸应变超过拉伸模量及泊松比取值范围后,停止测试,将引伸计卸除。测量过程中的力以及变形数据,并生成拉伸试验曲线。图7 测试系统图(主机、夹具、引伸计)3.结果与结论3.1试验结果具体试验结果如下表1所示。表1.试验结果图8-试验曲线PP图9-试验曲线PP+EPDM+TD20图10-试验曲线ABS图11-试验曲线PC图12-试验曲线PA6+30GF从上(表1)数据以及试验曲线可以看出,拉伸曲线平滑连续,无松动打滑等异常现象,软件可以记录整个过程中完整的试验曲线,可以获取载荷、位移、轴向变形、横向变形等各项数据用于分析。可以看出各种样品之间因材质不同的曲线差异,模量大刚性高的样品,曲线斜率更大,每组各5个试样重现性良好,满足标准要求。从本次试验结果可以体现出鲲鹏BOYI 2025-010 电子万能试验机的高精度及高稳定性。4.结论上述试验结果表明,鲲鹏BOYI 2025-010 电子万能试验机配合手动楔形拉伸夹具、Reliant轴向引伸计以及横向引伸计,可以完全满足《GB /T 1040.1-2018 塑料 拉伸性能的测定 》和《GB/T 1040.2-2022塑料 拉伸性能的测定 第2部分:模塑和挤塑塑料的试验条件》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得塑料材料的各项力学数据,且稳定可靠,这对于塑料材料的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 126万!上海交通大学拉伸流变仪采购项目
    项目编号:0773-2241SHHW0182/02/校内编号:招设2022A00256项目名称:上海交通大学拉伸流变仪预算金额:126.0000000 万元(人民币)最高限价(如有):126.0000000 万元(人民币)采购需求:设备名称: 拉伸流变仪数量:1套简要技术参数:1.最小应力(取决于力传感器范围)≤ 15 Pa ;其余详见“第八章货物需求一览表及技术规格”。设备用途: 拉伸流变仪通过有效测定材料流变性能和数据,获取材料的流变参量,进行流变分析。通过一定的温度加热塑胶粒等材料,在一定的拉伸作用下,得出材料粘度与速率,应变与应力关系,分析材料应变硬化行为,得出特定分子的拉伸粘度依应变速率而变化的规律。指导材料的配方和应用开发。交货期:收到信用证后6个月内;交付地点:上海交通大学用户指定地点;合同履行期限:收到信用证后6个月内本项目( 不接受 )联合体投标。
  • 玻璃纤维机织物拉伸断裂强力和断裂伸长的测定
    摘 要:本文介绍使用鲲鹏BOYI 2025电子万能材料试验机,配合1kN气动拉伸夹具,根据《GB/T 7689.5-2013增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》,进行了玻璃纤维机织物拉伸试验的实例,试验结果表明,使用鲲鹏BOYI 2025电子万能材料试验机能够完全对应玻璃纤维机织物拉伸断裂强力和断裂伸长的试验。 关键词:鲲鹏BOYI 2025电子万能材料试验机 玻璃纤维 拉伸试验玻璃纤维布(Glass Fiber) 是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,绝缘层压板以及印刷电路等各个领域。玻璃纤维布的特性由纤维性能、经纬密度、纱线结构和织纹所决定。经纬密度又由纱结构和织纹决定。经纬密度加上纱结构,就决定了玻璃纤维布的物理性质。本应用介绍了使用电子万能材料试验机进行玻璃纤维机织物拉伸断裂强力和断裂伸长试验。鲲鹏电子万能材料试验机配备的气动拉伸夹具,有以下几个特点:首先,夹面采用专用高分子夹面,平整度好,可以避免夹伤试样,避免拉伸过程中出现夹持部位断裂的情况;其次,气动控制可以提供适当且恒定的夹持力,避免拉伸过程中出现滑移的情况;另外,夹具设有对中标识,可以辅助夹持试样,保证夹持后试样的垂直度,避免拉伸过程中出现左右两边受力不均匀的情况。 除夹具外,试验机主机的高精度以及超过1000HZ的采集频率,可以完整的拉伸过程中的所有特征数据,准确识别试样拉伸断裂点,确保给用户提供准确可靠的试验数据,配合智能化的测试软件可以同时提供单试样、多试样、双坐标等各种测试曲线,让不同的用户均可以拥有良好的交互体验,为企业的研发、质量以及产品控制保驾护航。本篇报告参照《GB/T 7689.5-2013增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》进行试验,标准要求如下: 1.样品要求:Ⅱ型试样、试样宽度25mm、有效长度100mm 2.夹持距离:100mm±1mm 3.拉伸速度:50mm/min±3mm/min 1. 实验部分 1.1仪器与夹具 BOYI 2025-001 电子万能试验机 1kN气动拉伸夹具 90°剥离夹具 Smartest软件 1.2分析条件 试验温度:室温23℃左右 载荷传感器:1kN(0.5级) 加载试验速率:50mm/min 图1 BOYI 2025-001 电子万能试验机 1.3样品及处理本次试验,选取6组国内主流的不同种类的玻璃纤维布,统一切割成GB Ⅱ型试样,宽度约为25mm的长条试样,每组样品分经向和纬向。 2.试验介绍使用BOYI 2025-001电子万能试验机进行试验,设定夹具间距为100mm,将样品分别夹持在上下夹具中,以50mm/min的速率进行试验。测量拉伸过程中的力值以及位移数据,拉伸试样至断裂,记录最终断裂强力及断裂伸长(GB要求精确至1mm),取拉伸过程中第一组纱断裂时的最大强力作为拉伸断裂强力,根据数据计算得出结果,并生成拉伸曲线。图2 测试系统图(主机、夹具) 3.结果与结论 3.1第一组玻璃纤维布试验结果 3.2第二组玻璃纤维布试验结果 3.3第三组玻璃纤维布试验结果 3.4第四组玻璃纤维布试验结果 3.5第五组玻璃纤维布试验结果 3.6第六组玻璃纤维布试验结果 从上上述数据以及断裂后试样状态可以看出,整个测试过程中,拉伸试样夹持良好,断裂部位均在试样中部,满足GB要求(断裂点距离夹口10mm以上),两个方向各5个试样结果平均值非常接近,曲线重合度再现性良好,无较低异常测试值,满足GB要求。从本次试验结果可以体现出鲲鹏BOYI 2025-001 电子万能试验机的高精度及高稳定性。4.结论 综上所述,鲲鹏BOYI 2025-001 电子万能试验机、1kN气动拉伸夹具,可以完全满足GB/T 7689.5-2013 增强材料 机织物试验方法 第5部分:玻璃纤维拉伸断裂强力和断裂伸长的测定》标准要求,高效高质完成试验。通过高精度高采样率的测试系统,可以获得玻璃纤维布各项力学数据,且稳定可靠,这对于玻璃纤维布以及绝缘电路板材、印刷电路板的技术发展非常重要,能够为企业的产品研发、品质管理,以及该行业的标准化、规范化提供数据支持与技术保障。
  • 乐金涛:我国全自动拉伸试验机技术的发展、挑战与前景
    乐金涛老师乐金涛,1983年开始在宝钢集团从事金属材料力学性能检测工作,目前还兼任中国仪器仪表学会试验机分会副秘书长、广东省金属学会理化检验专业委员会副主任委员、全国冶金物理测试网力学与试样加工技术委员会副主任委员、全国钢标准化技术委员会力学及工艺性能试验分技术委员会顾问、《理化检验-物理分册》副主编、中国国际招标网机电产品评标专家等。近日,仪器信息网有幸采访了乐金涛老师,请他谈一谈国内全自动拉伸试验机技术的发展、挑战与前景。 仪器信息网:请问,为什么要研发全自动拉伸试验机技术?乐金涛老师:三年疫情给智慧制造的发展带来非常有利的机遇,如何让试验室利用先进技术提高自动化检测和抗风险的能力,在特殊情况下也可以稳定、高质量、无人值守的开展检测工作,是业内同行普遍关心问题。为了保证测试结果精准、可重复、可追溯,提高劳动生产率,利用信息化、自动化、智能化等技术建设一个可以实现整个试验过程无人值守、无人干预的钢铁材料力学性能检测全自动试验室,已经成为这个领域的发展方向。 随着工业发展至4.0时代,制造业逐渐步入智能化、数字化时代,对于钢铁材料生产企业,质量检测环节中的材料拉伸试验也向半自动化、全自动化快速发展。全自动电子拉伸试验机(薄板材料)近年来,国内钢铁企业检测系统已经在许多领域实现了全流程的自动化检测。国内一些大型钢铁企业的力学试验室,依靠多套全自动拉伸试验机一天可以轻松地完成1000多件拉伸试样的自动检测。 材料试验机如实现了自动化智能化后,可以实现试验室装备水平的大幅度提升;减少人为因素影响,提高检测精度,确保试验数据准确性;缩短检验周期;提高劳动生产率等。仪器信息网:要建设好一个自动化检测试验室,需具备哪些条件和掌握哪些关键技术?乐金涛老师:要建设好一个自动化力学性能检测试验室,必须要了解试验室的工艺流程、特点,掌握当前拉伸试验机和自动化、智能化等最新技术的发展状况。1. 钢铁企业成品力学性能检验特点和对设备配置的要求1) 检验量大,设备要耐用;2) 产品规格相对集中、检验项目相对简单,设备要专业化配置;3) 检验周期紧,试样来样量不均匀,设备配置要有一定的富余量;4) 对检验的精度要求相对较低,主要判断产品是否合格。2. 建设自动化力学检测试验室的关键技术自动化、智能化建设适合于流水线、重复性等作业,根据钢铁企业试验室的流程和特点,其比较适合开展自动化项目的建设工作。要建设一个成功的自动化力学性能检测试验室,必须包含以下基本的关键技术:1) 通过机械手实现试样自动上、下料功能;2) 样号的自动识别;3) 试样传送系统;4) 全自动试验设备;5) 样品自动收集保存等。仪器信息网:当前,我国全自动拉伸试验机已经发展到了什么程度?乐金涛老师:我国试验机制造业通过近二十年的努力,在钢铁材料力学性能检测中最主要、使用最多的拉伸试验机产量、品种和得到了快速发展,技术水平有了很大的提升。通过验证或比对试验可以证明,我们国内试验机制造行业的一线品牌的试验机制造厂家制造的静态电子试验机、微机控制电液伺服试验机的技术指标已接近或已达到国际同类产品的水平,完全能够满足如ISO6892-1和GB/T 228.1等试验方法标准的要求,虽然还存在不少的问题,但并不是想像中的那么差。国内最早使用全自动拉伸试验机大概是在2005年左右,是国内几个特大型的钢铁企业试验室开始引进的。它们主要是做薄板拉伸试验的采用往复式机械手的小吨位全自动拉伸试验机、做厚板拉伸试验的采用龙门桁架式机械手的大吨位全自动拉伸试验机。记得在那个时候,国内有试验机厂家想仿制,但由于种种原因没有成功。全自动电液伺服拉伸试验机(中、厚板和螺纹钢)2015年以来,根据钢铁企业试验室检验量大、产品规格相对集中、检验项目相对简单、检验周期紧、流水线重复性检验等作业特点,国内部分一线品牌的试验机制造厂家,运用自动化、智能化、信息化等先进技术,开发研制了各种全自动试验机,国内全自动试验机的技术才真正开始发展,大大地推进了钢铁企业智慧试验室的建设工作。其中早期的小吨位往复式机械手全自动拉伸试验机、大吨位龙门桁架式机械手全自动拉伸试验机,到目前采用比较多的多工位六轴机械手全自动拉伸试验机的开发运用,实现了对各种类型全自动试验机的全覆盖。仪器信息网:全自动拉伸试验机主要的工作流程是什么?乐金涛老师:全自动拉伸试验机试验时,试验人员根据自动接收到的试验顺序、试验项目要求等,将经过打标的试样用机械手放入试样架内或通过AGV小车送达指定的位置→机械手根据预先在试验程序上设置好的试样位置抓取试样→进行试样长度测量→进行试样平行部分位置对中测量→试样横截面尺寸测量(可取n次测量数据的最小值或者平均值等)→机械手将试样放置到试验机测试位置,在确保按平行段对中的情况下自动调用预定的试验方法进行试验→试验结束后机械手自动取下断样→自动分拣合格与不合格试样→试验数据自动保存并发送给上位机。全自动拉伸试验机的工作效率一般不低于每小时15件。仪器信息网:全自动拉伸试验机除了主机以外,其配套的主要零部件技术对于整个系统也是非常关键,请举例介绍一下其优点?乐金涛老师:简单介绍一下全自动拉伸试验机中主要的配套零部件视频引伸计在整个系统中的应用。在全自动化拉伸试验系统中常用的变形测量手段是自动化接触式引伸计,但接触式引伸计大多只能测量一组标距变形,使用中常常遇到试样断裂在标距外或是贴近标距的位置,导致测试数据的不准确甚至不可用。1) 视频引伸计采用标准化DIC技术,可非接触实现三维变形测量,在拉伸试验过程中能同时测量多组纵向和横向标距变形。配合全自动拉伸试验系统使用时,可实现同步触发、自动测量、实时以数字信号或模拟信号向试验机传输数据。2) 视频引伸计可自动识别多种标距标识,同时也可对试样进行无标识点自动识别测量,监控试样直至其断裂,可自动测量试样断裂伸长率,大大提高检测效率。3) 自动识别应变分布状态,可以在整个试验过程中自动追踪最大应变产生的实际位置,从而将原始标距L0重新定位在最高应变区域的中心。4) 与接触式引伸计相比,使用视频引伸计避免了试样断在标距外或标距附近时的无效测试,有效提高试样利用率,节省试样成本。5) 带全自动引伸计的电子拉伸试验机的普及,特别是视频引伸计开发运用,加速了应变硬化指数n值和塑性应变比r值等全自动测量技术的发展,根据宝钢湛江钢铁有限公司验证试验的文献介绍:——采用人工、半自动、全自动方法测量的r值不存在显著性差异,其中全自动测量方法测量r值的精度最高;——视频引伸计与机械接触式引伸计测量r值的结果接近,但前者的精度更高。配置视频引伸计的全自动拉伸试验机仪器信息网:据了解,为了满足用户个性化要求,国内也研发了一些有特殊功能的全自动拉伸试验机,请您介绍一下?乐金涛老师:常规的全自动拉伸试验机在一根试验结束后,机械手自动取下断样→自动分拣合格与不合格试样→机械手将断样扔到对应的料框里。但经常会碰到有些重要的、异常的断样需要试验室保留以备查验等情况,传统的模式是试验室人员要等这一批次试验全部完毕后再按编号在留样框里翻找拼接,方式原始繁琐、效率低。现在全自动拉伸试验机断样收集专用料斗的配套设计,机械手可以按需按组收集需要保留的断样,大大方便了样品留存工作。带断料回收装置全自动拉伸试验机另外,如许多钢铁企业生产的螺纹钢或圆钢,由于轧钢工艺的需要,生产出来的产品是呈盘状的,俗称盘圆或盘螺。为了保证试样可以正常的在全自动拉伸试验机上装夹或保证试验时的同轴度,此类产品在做拉伸试验前,需要对带有一定弧度的样品进行矫直处理,目前国内绝大部分试验室都是采用人工矫直的方法。目前在常规全自动试验机里配套开发的全自动盘条多轮交叉弯曲矫直系统,比较完美的避免了用其他如敲击方式在矫直过程中应力集中等缺陷的产生,提高了盘圆盘螺类产品检测精度。带自动校直全自动拉伸试验机仪器信息网:您长期在中国宝武集团检化验系统工作,能否就宝钢范围的全自动试验技术方面提供一个案例分享给读者?乐金涛老师:针对繁琐的热轧带肋钢筋外部和内在质量的检测项目和不同的试验工位,运用自动化、智能化、信息化和机器人技术,宝钢武钢有限公司成功应用了钢筋全自动测试系统。该系统由电子拉伸主机,配上全自动视频引伸计、扫码系统、称重测长装置、ABB机器人、试样架、控制系统、软件等组成,集钢筋称重、测长、拉伸试验、弯曲和反复弯曲试验等功能,在一套全自动系统里实现全部检测功能。该系统还可以通过配置钢筋全自动弯曲校直、筋肋测量装置、温度养护箱等装置,完成试样矫直、钢筋外形检测、钢筋人工时效等工序。系统自动化模式运行时,可以同时在系统的不同组件上测试不同的样品,极大的提高测试效率。宝钢武钢有限公司1000kN钢筋试验系统仪器信息网:当前国内全自动拉伸试验机急需解决的关键技术是什么?乐金涛老师:当前,国内全自动拉伸试验机急需解决的关键技术主要归纳起来分如下几个方面:1) 激光引伸计、视频引伸计、全自动引伸计、高低温引伸计等技术;2) 高精度、高分辨率、宽量程的力传感器等技术;3) 高精度、高分辨率、宽量程的试样横截面尺寸测量传感器等技术。仪器信息网:能否针对目前我国全自动拉伸试验机的现状,谈谈您的感受或想法?乐金涛老师:在国外1000KN以上的电子拉伸试验机技术已经非常成熟,在国内常规的电子拉伸试验机绝大部分企业只能做到600KN。近三年,国内几家一线品牌的试验机制造厂家已经有在开发制造1000KN的电子拉伸试验机,但据了解总数也就在十台左右。国内已经有自主研发制造的2000kN电子拉力试验机,开创了中国试验机行业在大吨位电子拉力试验机的先河,为大吨位全自动拉伸试验机的开发运用打下了良好的基础。目前国内制造的全自动拉伸试验机如主要的配套零部件力传感器、位移传感器、引伸计等品牌选型更好,在其功能、试验精度等方面,完全可以胜任日常检验任务。随着钢铁企业智慧制造风潮的兴起,由拉伸试验机和机器人组合的全自动试验机需求大增,现在许多试验机厂家都去做全自动拉伸试验机或系统。目前我们国家研发制造的全自动试验机或系统的主要特点是集成其他自动化配套装置,但平心而论对试验机本身技术没有大的提高。我们现在国内生产的全自动拉伸试验机的长期稳定性和故障率等指标,和国外同类设备比还存在一定的差距。仪器信息网:最后,请您对国内的试验机制造厂家提一点要求或希望?乐金涛老师:希望国内的试验机制造厂家要重视市场需求和技术研发,以自动化、智能化为发展目标和发展方向,来满足用户个性化需求。要多与相关试验室合作开发关键技术,在高档或专用试验设备的研发制造等方面争取再获突破,包括对原来进口全自动拉伸试验机的技术消化和升级工作,以促进我国试验设备在自动化技术方面水平的提升,切实减少全自动试验设备的进口数量。
  • 关于举办“金属材料拉伸试验方法培训班”的通知
    GB/T 228.1-2010《金属材料 拉伸试验 第1部分:室温试验方法》国家标准已由国家标准化管理委员会正式发布,并于2011.12.1实施。新标准对于试验速率的控制、试验结果的数值修约等要求作了较大修改,增加了拉伸试验测量不确定度的评定、计算机控制拉伸试验机使用建议、考虑试验机刚度后估算的横梁位移速率等内容。 为确保各材料实验室有效实施新的拉伸试验方法标准、出具准确可靠的检测结果,长春中机检测培训中心将于2013年6月举办&ldquo 金属材料拉伸试验方法培训班&rdquo 。具体安排如下: 1、培训时间、地点 培训时间:2013年6月19日-22日,培训地点:长春市 2、主办单位 主办单位长春中机检测培训中心,协办单位国家试验机质量监督检验中心。长春中机检测培训中心是通过全国分析检测人员能力培训委员会(NTC)资质认定的培训机构,培训师资由全国分析检测人员培训委员会(NTC)培训大纲编写组专家、多项试验机国家标准主要起草人等教授、高级工程师组成。 3、培训内容 1)试验机结构原理及维护校准 金属材料拉伸试验相关试验设备及装置(电子万能试验机、液压万能试验机、电液伺服万能试验机等)的基本结构、维护保养、日常检查方法、检测/校准项目及相关要求。 2) 试验机操作技术 电子万能试验机、液压万能试验机、电液伺服试验机及引伸计、高温炉和环境箱的操作技术和使用注意事项。 3)金属材料拉伸试验技术基础 金属材料拉伸试验的分类、特点,拉伸试验技术的相关术语。 4)标准方法与应用 金属材料室温拉伸(GB/T228.1-2010)标准最新变化、试验参数设置、试验方法、试验机和引伸计的使用,结果不确定度评定和数据处理方法。高温拉伸(GB/T4338-2006)、弹性模量和泊松比(GB/T22315-2008)、薄板塑性应变比(GB/T5027-1999)、拉伸应变硬化指数 (GB/T5027-1999) 标准试验方法,试验要求及试验技术。 5)实操指导 在长春中机检测培训中心力学实验室按照GB/T228.1-2010新标准的要求进行现场演示试验和实操指导。 4、培训证书 本培训班考核合格者将由全国分析检测人员能力培训委员会(NTC)发放相应技术的《分析检测人员技术能力证书》。全国分析检测人员能力培训委员会是由科技部、国家认监委等部门共同推动下于2008年成立的,负责对全国分析检测人员技术能力的培训管理与考核工作。该能力证书可作为实验室认可、实验室资质认定以及其他各种认证认可中检测人员的技术能力证明。 5、培训班联系方式 联系电话:0431-87963561、85154488 传真:0431-87963560 邮箱:sactc122@163.com 联系人:李金明 朱庆坤
  • 写在拉伸试验技术专题前面的话
    话说GB/T 228.1-2010《金属材料 拉伸试验 第1部分:室温试验方法》已实施四年,但国内诸多钢铁企业试验室、第三方试验机构以及国产试验机制造商,对该标准的执行仍存在着争论,争议点主要围绕在方法A指定的4个应变速率范围方面。   此外,本网编辑今年在参加一场研讨会时了解到,ISO组委会曾考虑在2020年取消方法B,后该提议因故被延迟,然而,许多进口试验机制造商已从中嗅到了商机。因为目前许多实验室的传统材料拉伸试验机多基于方法B,能够实现方法A的比较少,一旦上述提议被采纳,这就意味着许多实验室将重新采购能实现方法A的产品。   曾经有业内人士透露,进口拉伸试验机本身就是基于方法A研发出来的,某些进口试验机公司高层还是ISO组委会成员,自然对方法A的推广乐此不疲。与此相反,国产拉伸试验机则被认为在方法A的掌握方面不尽如人意。当本网编辑就此问题专门向多家国产试验机制造商进行求证时,得到的答复多是:&ldquo 我们的产品可以实现方法A。&rdquo   如今,随着国内拉伸试验技术与制造水平的进步,越来越多的国产试验机步入了研究级用户和国字号质检单位的实验室。而另一方面,进口试验机制造商不再满足于国内高端市场,英斯特朗、MTS等跨国公司已针对中国中端市场推出了相应产品。撇开技术不谈,国产试验机在价格方面的优势已不再如过去那么明显。   国产、进口&ldquo 同台竞技&rdquo ,比拼的是技术与价格。国产厂商如何在产品升级上做文章?如何摆脱&ldquo 低价竞争&rdquo 的怪圈?7月初,仪器信息网就上述问题专门策划了《跨国公司布局中国市场 国产厂家面临双重挑战&mdash &mdash 聚焦拉伸试验技术与市场新动向》技术专题,并得到了业内资深专家的指导与肯定。   同时,作为试验机产品的重要用户单位之一,中国建材检验认证集团股份有限公司(CTC)的首席科学家包亦望老师也应邀以书面的形式阐述了对上述问题的见解。   此外,本网编辑还向多家国产试验机制造商高层发出了约稿邀请,到约稿截止时,只有长春机械院作出了积极回应。
  • 英斯特朗牵手富士康共同举办测试技术交流及应用研讨会!
    富士康华南检测中心成立于1996年,随着电子行业的持续增长,配合高科技电子产品设计、验证、生产过程中的检测需求,华南检测中心迄今已发展成拥有七大功能22个专业实验室和1500人的管理、技术人员团队,并提供快速、精密、准确检测能力、服务网络遍及全国的大型顶尖测试实验室。现在,越来越多的电子行业厂商开始组建可靠性测试实验室,进行如弯曲测试,压力测试,冲击测试,疲劳测试等的材料可靠性评估。随着消费类电子产品近几年的蓬勃发展,消费者对其产品的材料性能日益关注。如何严格把控电子产品的质量要求,提高客户的使用体验并引领市场变得至关重要。金秋十月,全球材料力学性能测试领导品牌英斯特朗(INSTRON)在深圳富士康华南检测中心成功举办“2017材料测技术交流及应用研讨会”,来自英斯特朗中国总部的材料测试领域资深技术专家,为大家带来了全球材料测试领域技术及发展现状、金属及非金属测试优化解决方案、金属材料及塑料材料标准更新解读等方面的最新资讯,富士康各厂区的相关技术人员、产业人士等在现场或通过视频会议连线的方式踊跃参加。 会议开始,首先由富士康华南检测中心代表致欢迎词,对英斯特朗专家团队的莅临表示衷心感谢。英斯特朗自1943年研发出第1台位移闭环控制电子万能材料试验机以来,专注并引领材料测试超过70年,业务覆盖全球,对于各种材料及应用有着广泛的解决方案。会上,英斯特朗经验丰富的静态测试应用工程师乐玮对金属材料和塑料材料的试验标准进行了更新及解读(包括ISO 6892、ISO527、ASTM D638和ISO 178等),并详细介绍了英斯特朗的相关解决方案。行业测试标准的更新与实验室用户的操作息息相关,但是往往用户并不会那么全面和详细地去理解标准的修改及细节,也不会关注标准是因何原因产生更新,通过此次会议,用户表示对标准有了更深入的理解并懂得如何应对标准的改变。使用全自动引伸计进行ASTM D638 塑材拉伸性能测试非接触式引伸计,例如高级视频引伸计 (AVE2) 具有测量多数塑材的模量和失效形变的解析度和灵活性ASTM E8 使用视频引伸计(AVE2)的铝箔试样拉伸测试接下来,英斯特朗高级应用工程师汤颖华为客户介绍了材料测试的关键7个要素以及实验室的健康安全检查。您在日常实验过程中应当注意什么?我们的工程师从多年的工作经验中总结出了7个关键要素,其中包括:夹具、力传感器和引伸计的选择,优化试样对中,分辨率和重复性,采样速率和带宽,软件功能和性能。此外,我们还普及了实验室健康安全检查的概念,如同人类一样,实验室设备也有着各自不同的健康状态和寿命,就像人需要及时的自检和体检,实验室设备也需要安全健康的评估和检查,只有健康状态良好,才能为我们的用户提供精确的测试结果。最后,英斯特朗的动态测试应用工程师王健霞为在座嘉宾介绍了材料及零件动态失效分析及解决方案,相较于静态测试,动态测试能模拟仿真材料和产品的真实应用,为用户以最快的效率和最精准的方法检测出试样的抗疲劳性能。产品抗疲劳性能最直接关乎消费者的切身利益,动态性能测试也因此成为材料测试部分中不可或缺的一个环节。英斯特朗专家团队的到访一度燃起了大家的热情, 一场会议并不能解决客户所有的疑惑,很多客户在会后仍觉意犹未尽,纷纷与英斯特朗工程师们探讨问题。用户们对材料测试如此的热情,正是我们这些材料人的动力所在!英斯特朗凭借其高精度的检测性能和完善的技术支持,服务于全球及中国知名电子生产商并赢得不少电子行业顶尖品牌公司的信赖。在电子行业发展迅猛的今天,英斯特朗始终站在行业前端并不断致力于研发和创新,面对客户所提出的各种应用需求和挑战,我们都会为您定制最适合的专业解决方案,我们不只是测试设备生产商,更是能为您的产品质量保驾护航的专业合作伙伴!英斯特朗电子行业的测试解决方案包括:触感测试键盘耐久性测试开关,滑块测试胶黏剂剥离测试显示器冲击测试半导体及电路板测试部件弯曲测试紧固件扭转测试电子产品可靠性测试等
  • 材料测试技术与设备创新发展高峰论坛召开
    仪器信息网讯 2013年8月27日,第24届中国国际测量控制与仪器仪表展览会的同期活动&mdash &mdash &ldquo 材料测试技术与设备创新发展&rdquo 高峰论坛在京召开。本次论坛由由中国仪器仪表学会科学仪器学术工作委员会和中国仪器仪表学会试验机分会主办、钢铁研究总院科技信息与战略研究所承办,100余位来自冶金、钢铁等行业的材料测试专家、企业分析人员参加了会议。 会议现场   随着科学技术的发展,人们对材料性能的要求日益广泛和苛刻,对材料性能及其组分和微观结构的关系越来越感兴趣,因而材料测试技术在材料研究和生产中发挥着越来越重要的作用,同时各种材料性能测试技术的发展也将推动和加快新材料的研发和产业化。 钢铁研究总院副院长董翰教授   董翰教授谈到,目前普通钢材的价格仅仅相当于一般矿泉水的价格,因此高性能化成为了钢铁行业的长期发展趋势,&ldquo 十二五&rdquo 期间我国也将重点发展高性能钢铁材料。生产高性能钢铁必须关注的参数包括洁净度、均匀度、产品质量的稳定性和一致性、产品的尺寸精度等,只有实现对这些参数的精确控制,高性能钢铁的质量才能有所保证。这些都对相关材料测试技术提出了高要求与高需求,因此董翰教授认为与高性能钢铁相关的材料测试技术未来发展空间非常大。 钢研纳克检测技术有限公司副总经理陈吉文博士   材料测试技术未来发展空间非常大,意味着相关材料检测仪器市场容量客观。对此,陈吉文博士说到,中国检测仪器行业市场规模约为1200亿元,并保持20%的高速增长。国内金属材料相关行业检测仪器市场规模约为200亿元,年增长率略大于20%。尽管金属分析测试仪器有着很大的市场空间,但也存在一些问题。如仪器生产商与应用领域结合不紧密,很难及时满足用户的最新需求;多数厂家仿制与跟踪进口仪器,自主创新能力弱;产品单一,公司规模小,难以形成合力并树立品牌等。   面对上述问题,陈吉文博士提出了一条新型材料分析仪器产业化路径,以钢研纳克的金属原位分析仪为例,面对冶金材料分析难题,钢研纳克公司结合实际需求,研发出了火花单次放电信号分辨提取技术与无预燃连续激发同步扫描定位技术,并以此为基础成功推出世界首台金属原位分析仪,经过开发应用方法、制定国家标准、打造销售与客服团队等环节,该台仪器成功实现了产业化,现已研制出激光原位分析仪,实现了仪器的升级换代。 钢铁研究总院分析测试研究所检测事业部副总经理高怡斐教授   检测仪器的应用开发与市场推广离不开相关国家标准的制定与完善,对此高怡斐教授表示,尽管金属材料力学性能性能检测是一个传统行业,但近几年新方法以及与其配套的新试验仪器设备层出不穷,这推动了新试验方法标准的建立与完善。目前金属材料-高温拉伸试验方法修订工作已启动,新标准的变化也集中在高温应变速率控制方面,这意味着国内相关测试单位的试验设备上将必须配备高温引伸计,这对于引伸计生产商将是一个很好的商机。   对于在材料性能测试中应用广泛的力学试验机的技术发展趋势,高怡斐教授说到,这类仪器将朝着工程服役性能评价的超大型化和微观尺度纳米级两个方向发展。如传统的冲击试验机为300J级别,面对X80、X100、X120级管线钢研发的需要,冲击试验机最高能量已扩大至1500J;针对纳米、薄膜等材料的纳米压痕试验机创新地将传统的宏观力学性能引入了微观纳米尺度,目前国内的纳米压痕试验机配备台数已有近百套。 天津钢管集团有限公司技术中心教授级高工苏英群   金属材料拉伸试验最新国家标准GB/T228.1-2010《金属材料 拉伸试验第1部分:室温试验方法》已于2011年12月1日实施。GB/T228.1-2010拟推荐使用方法A应变速率控制方法进行拉伸试验,这符合国际市场的发展方向,但对国内很多的实验室提出了高要求。对此,苏英群高工通过研究不连续屈服材料的拉伸速率与试验系统柔度的关系,探索出一种最佳试验方案&mdash &mdash 准应变全程位移控制法,即用准应变位移自动控制间接实现对试样的应变速率控制,适用于各种尺寸试样的测试,在一定程度上解决了实验室工作人员的测试难题。 宝钢研究院分析测试研究中心高工方健   地球能源日益减少,这就不得不选择开发极低未探明的储量地区、高成本油气田等能源,开发这些&ldquo 边角料&rdquo 能源需要用到大量的长输管线、耐腐蚀油井管等管材,因此方健认为,用于评价这些管材的大摆锤试验机将成为未来3-5年内的研发热点。齐齐哈尔华工机床有限公司董事长周立富   周立富说到,视觉检测技术能够用于产品检测、生物医学图像分析、指纹虹膜鉴别等领域,该技术与数控机床、低倍试样检测系统、在线检测等技术的成功结合,使钢铁材料物理性能测试专业领域一改传统的检验方式,达到了更简化、更方便、更准确的现代化水平。 Dynamic Systems, Inc 副总裁陈伟昌   陈伟昌在报告中介绍了目前物理模拟系统的技术现状与发展趋势,并举例展示了相关技术在材料测试中大形变、快速冷却模拟、在线监测等领域的新式应用。(编辑:刘玉兰)
  • 高性能可拉伸电子阵列, 解决穿戴设备挑战!
    【研究背景】有机电化学晶体管(OECTs)是一种新型电子器件,因其在传感、计算以及可穿戴健康监测等领域的潜在应用而受到广泛关注。与传统的半导体材料相比,OECTs具备较低的工作电压、优良的生物相容性和长时间的水稳定性等优点,使其在可穿戴设备和植入式传感器中具有重要应用价值。然而,OECTs的实际应用面临着机械不匹配的问题,即设备的刚性与人体的柔性之间的矛盾,导致数据的可靠性和质量受到影响。此外,OECTs在高密度集成电路的制造上也存在技术挑战,因此迫切需要解决这些问题,以推动其在实际应用中的落地。近日,来自香港大学Dingyao Liu, Xinyu Tian, Jing Bai, Shaocong Wang,王中锐(现为南方科技大学) & 张世明等课题组在可穿戴传感器计算平台的研究中取得了新进展。该团队设计并制备了基于可拉伸有机电化学晶体管阵列的穿戴式传感器计算平台(WISE平台)。通过在制造过程中引入粘合超分子缓冲层,该团队实现了超过50%的可拉伸性,显著提高了器件在应变下的强度和稳定性。此外,研究人员采用高分辨率的六通道喷墨打印系统,成功制造了特征尺寸达到100μm的可拉伸晶体管阵列,展示了良好的制造良率(超过95%)。该研究还开发了一种硬币大小的数据读出单元,能够在源头采集和处理生物信号。通过将传感与计算集成在一个硬件系统中,该平台展现了其在远程医疗监测和环境传感中的潜力,尤其是在提高电子系统的能效方面。研究结果表明,该WISE平台在多个应用场景中表现出色,具有良好的竞争力。这一进展为有机电子设备在实际应用中的推广提供了新的技术路径,也为未来的健康监测与环境监测技术奠定了基础。【表征解读】本文通过Agilent B2900A仪器和定制的可穿戴特征表征设备PERfECT,测量了PEDOT:PSS薄膜的电气性能及其在应变下的特性,揭示了该材料在柔性电子设备中的应用潜力。具体来说,作者使用拉伸机(Feinixs, FMSXX 80-50-50)对PEDOT:PSS薄膜进行拉伸测试,发现其在50%以上的应变下仍能保持良好的电气性能,这一发现为柔性传感器和电子设备的设计提供了重要数据支持。针对PEDOT:PSS薄膜在拉伸过程中出现的开裂现象,作者使用了尼康光学显微镜进行微观机理的表征。通过观察薄膜的开裂模式,作者得到了材料在高应变条件下的失效机制,从而为进一步改善材料的机械性能提供了理论依据。这些微观机理的表征使作者能够识别出影响PEDOT:PSS薄膜性能的关键因素,进而挖掘出增强其柔韧性和稳定性的可能解决方案。在此基础上,采用高分辨率的六通道喷墨打印系统,作者成功地制备了具有100μm特征尺寸的可拉伸有机电化学晶体管(ISOECT)阵列。通过这一系列的电气特性测量和微观表征,作者得以深入理解材料与结构设计之间的关系,优化了制造工艺。这些表征手段和研究成果不仅验证了作者设计的有效性,也为实际应用中集成传感器和计算单元的可行性奠定了基础。总之,经过对PEDOT:PSS薄膜和ISOECT阵列的全面表征,作者深入分析了材料的电气性能和机械特性,进而制备出具有优异性能的新型柔性电子材料。这一研究不仅推动了可穿戴健康监测和环境传感器的进步,也为未来的可穿戴电子设备的开发提供了新的思路和技术路径。通过对材料特性的深入理解,作者期待在实现更复杂的电子功能和更高性能的传感器方面取得进一步的突破,最终促进柔性电子技术在实际应用中的广泛普及。基于本征可拉伸有机电化学晶体管(ISOECTs)阵列,硬币大小的可穿戴感内计算单元(可穿戴集成和柔性电子WISE平台)的设计策略参考文献:Liu, D., Tian, X., Bai, J. et al. A wearable in-sensor computing platform based on stretchable organic electrochemical transistors. Nat Electron (2024). https://doi.org/10.1038/s41928-024-01250-9
  • 基于Pμ SL技术的微米级可拉伸电子一体化制造
    柔性可拉伸电子器件具有可弯曲、可拉伸和可扭曲的优异力学特性,其在生物医学工程、机器人技术、人机界面等各个领域的应用重要性日益凸显。常见制备方法一方面是开发本征可拉伸的导电材料,例如掺杂导电纳米材料的软弹性体、导电聚合物和水凝胶等。但是,这些新型材料通常电导率较低、机电稳定性能较差和易对实际应用中的电信号造成干扰。另一方面则是通过构建如平面蛇形等几何结构来提升传统导电材料(包括金属等)在力学服役下的最大可拉伸应变。虽然以上两种(结合)方法都已有大量报道,然而大部分的可拉伸电子受限于加工方式的难度,制备的结构大多集中在二维平面尺度,限制了可拉伸电子在三维方向的应用扩展。近日,香港城市大学机械工程学系陆洋,南方科技大学葛锜与西安电子科技大学高立波等合作报道了一种相对便捷、灵活和可批量制造的可拉伸微电子的高精度制作方法。通过利用摩方精密开发的基于面投影微立体光刻(PμSL)的3D打印技术(nanoArch P130, S140, BMF Precision, Shenzhen, China),实现了一种通用的微加工工艺,可以以2μm的高分辨率获得以前无法实现的复杂3D几何形状。后续结合磁控溅射工艺,可制备3D导电结构,该结构具有出色的可拉伸性(~130%)、贴合性、稳定的导电性(在100%拉伸应变下电阻变化小于5%),以及循环载荷下的稳定性。与2D结构相比,3D微结构具有紧凑的几何形状,并且其可以在平面外自由变形的特点使适应更大的拉伸应变成为可能。图1. 基于面投影微立体光刻(PμSL)3D打印的可拉伸微电子的制作过程:3D几何设计、PμSL 3D打印、磁控溅射导电金属薄膜、组装和应用此外,利用基于PμSL的3D打印技术可以制作高度复杂几何结构的优势,该方法可实现集成电路的一体化制造。例如,研究者们制造了由三维可拉伸微结构连接的复杂三维电容式压力传感器阵列。凭借其结构设计高通量性、加工方式便利性和器件制造一体化性,该研究成果在集成3D可拉伸电子系统上显示出巨大的应用潜力。图2. 三维可拉伸导电微结构的力学和电学鲁棒性测试:拉伸、弯曲、循环和面外压缩加载下的电阻变化图3. 3D打印三维可拉伸电子网络结构表征和变形能力测试图4. 三维可拉伸电容式压力传感器阵列示意图、细观实物图和性能测试结果该项研究成果获得深圳市科创委基础研究项目支持,以“Three-Dimensional Stretchable Microelectronics by Projection Micro Stereolithography (PμSL)”为题发表于新一期国际知名期刊《ACSApplied Materials & Interfaces》(香港城市大学王月皎博士生为第一作者)。文章链接:https://dx.doi.org/10.1021/acsami.0c20162
  • 基于Pμ SL技术的微米级可拉伸电子一体化制造
    柔性可拉伸电子器件具有可弯曲、可拉伸和可扭曲的优异力学特性,其在生物医学工程、机器人技术、人机界面等各个领域的应用重要性日益凸显。常见制备方法一方面是开发本征可拉伸的导电材料,例如掺杂导电纳米材料的软弹性体、导电聚合物和水凝胶等。但是,这些新型材料通常电导率较低、机电稳定性能较差和易对实际应用中的电信号造成干扰。另一方面则是通过构建如平面蛇形等几何结构来提升传统导电材料(包括金属等)在力学服役下的最大可拉伸应变。虽然以上两种(结合)方法都已有大量报道,然而大部分的可拉伸电子受限于加工方式的难度,制备的结构大多集中在二维平面尺度,限制了可拉伸电子在三维方向的应用扩展。近日,香港城市大学机械工程学系陆洋,南方科技大学葛锜与西安电子科技大学高立波等合作报道了一种相对便捷、灵活和可批量制造的可拉伸微电子的高精度制作方法。通过利用摩方精密开发的基于面投影微立体光刻(PμSL)的3D打印技术(nanoArch P130, S140, BMF Precision, Shenzhen, China),实现了一种通用的微加工工艺,可以以2μm的高分辨率获得以前无法实现的复杂3D几何形状。后续结合磁控溅射工艺,可制备3D导电结构,该结构具有出色的可拉伸性(~130%)、贴合性、稳定的导电性(在100%拉伸应变下电阻变化小于5%),以及循环载荷下的稳定性。与2D结构相比,3D微结构具有紧凑的几何形状,并且其可以在平面外自由变形的特点使适应更大的拉伸应变成为可能。图1. 基于面投影微立体光刻(PμSL)3D打印的可拉伸微电子的制作过程:3D几何设计、PμSL 3D打印、磁控溅射导电金属薄膜、组装和应用此外,利用基于PμSL的3D打印技术可以制作高度复杂几何结构的优势,该方法可实现集成电路的一体化制造。例如,研究者们制造了由三维可拉伸微结构连接的复杂三维电容式压力传感器阵列。凭借其结构设计高通量性、加工方式便利性和器件制造一体化性,该研究成果在集成3D可拉伸电子系统上显示出巨大的应用潜力。图2. 三维可拉伸导电微结构的力学和电学鲁棒性测试:拉伸、弯曲、循环和面外压缩加载下的电阻变化图3. 3D打印三维可拉伸电子网络结构表征和变形能力测试图4. 三维可拉伸电容式压力传感器阵列示意图、细观实物图和性能测试结果该项研究成果获得深圳市科创委基础研究项目支持,以“Three-Dimensional Stretchable Microelectronics by Projection Micro Stereolithography (PμSL)”为题发表于新一期国际知名期刊《ACSApplied Materials & Interfaces》(香港城市大学王月皎博士生为第一作者)。文章链接:https://dx.doi.org/10.1021/acsami.0c20162官网:https://www.bmftec.cn/links/10
  • 文天精策原位拉伸试验机冷热台助力超低温金属材料研究
    文天精策原位拉伸试验机冷热台助力超低温金属材料研究随着现代各行业的飞速发展,越来越多的金属材料需要在低温环境中使用,如低温压力容器、桥梁、建筑材料等,因此对于这些材料的各项力学性能的准确测量也就显得至关重要,尤其是试样的屈服强度、抗拉强度、延伸率和面缩率等拉伸性能指标。如:液体火箭发动机的结构材料除了承受高温冲击外,由于液氢(沸点-253℃)、液氧(沸点-183℃)等低温贮存推进剂的存在,还有超低温(-100℃以下)环境要求,故液体火箭发动机理想的结构材料需要具备优良的低温力学性能;用于低温手术的医疗器械,使用液氮对患者的局部肉体进行低温瞬时低温冷冻,使得肉体固化后进行快速和无痛手术。文天精策仪器科技原位拉伸试验机冷热台,作为可适配多数拉伸试验机的低温试验平台,通过准确控温,实现不同环境温度下材料的力学性能测试,从而准确的考察不同变形温度下材料的力学性能,为其在复杂环境温度下的服役,提供数据支撑。原位拉伸试验机冷热台降温过程超低温单向拉伸试验对金属材料而言,其服役温度显著影响其力学性能。部分金属在超低温(77 K)条件下时,其断裂强度、延伸率等会显著提升。并且相比高温成形工艺会造成材料的氧化的缺点,低温下的成形工艺则不存在这样的问题,这为金属材料成形工艺的成形能力提升,提供了新的途径。Ÿ 材料的硬化、脆化Ÿ 材料的塑性变形能力改变Ÿ 材料的应变分布演化更加均匀Ÿ 材料的塑性变形机制发生变化超低温单向拉伸试验检测试样在单向应力状态下,温度对其力学性能与变形机制的影响。降温程序控制过程295 K与77 K下纯铜的单向拉伸应力-应变曲线研究内容及关键点:Ÿ 原位拉伸试验机冷热台的温控算法可准确控制变形所需温度;Ÿ 原位拉伸试验机冷热台可适配大多数万*能试验机实现低温拉伸试验,准确测试材料的低温力学性能;Ÿ 原位拉伸试验机冷热台的氮气回流除雾技术与可视窗口,可结合DIC测试技术实现超低温变形过程中应变的实时监测;Ÿ 通过设置拉伸试验机参数,可实现变温单向拉伸试验,测试复杂温度环境下材料的力学性能。试验表明:文天精策仪器科技研发的原位拉伸试验机冷热台,可与各种万*能试验机适配,在试验过程中通过文天精策原位拉伸试验机冷热台中的温控程序,实现实时控温,进行不同变形温度下的单向拉伸试验力学性能测试。并且,通过设置拉伸过程中的实验参数,完成试样在复杂变温环境下的力学性能测试,指导在复杂温况下材料的服役。
  • 总预算5900万!3月份发布试验机相关采购意向汇总
    根据财政部要求,各大高校、科研院所等中央预算单位需公开采购意向,内容应包括项目名称、需求概况、预算金额、采购时间等。为方便仪器信息网用户快速掌握试验机采购动态,本文特对近期信息进行整理,盘点了2024年3月份所发布的15项试验机相关采购意向,总预算金额达5900万元,预计采购时间为2024年4月至11月。序号采购单位采购项目需求概况预计采购时间预算金额(万元)项目详情1南京航空航天大学谱载荷多轴非比例加载试验器包括 25kN超高频疲劳试验机、250kN高温拉扭疲劳试验机等,能够用于开展钛合金/高温合金的高周疲劳等试验。2024年4月1344.29详情链接2高温原位疲劳试验器包括原位疲劳加载测试子系统、高温原位扫描电子显微镜疲劳测试子系统、高温材料三维应变场分析软件等,能够实现高温下发动机材料的原位疲劳测试。2024年4月855.14详情链接3高温复合材料本征性能测试系统包括复合材料热膨胀系数测量仪、复合材料导热系数测试仪、多功能硬度计、高温摩擦磨损性能测试模块等,能够针对航空发动机典型高温环境下复合材料的高温本征性能,开展复合材料表面几何形貌演变研究。2024年4月162.81详情链接4复合材料复杂环境模拟器包括纤维单丝高通量拉伸加载器、高温氧环境拉伸试验器阵列等,能够开展不同尺度的复合材料试件在高温(真空/空气环境)持久载荷下的力学性能试验。2024年4月250详情链接5变温度梯度热冲击试验台用于开展航空发动机涡轮叶片、火焰筒等结构及材料在随机交变热冲击载荷以及机械载荷共同作用下的随机热机械失效行为,为研究上述结构及材料在服役条件下的寿命及失效机理提供硬件保障。2024年4月500详情链接6中国科学院赣江创新研究院磁致伸缩材料动态性能分析仪频率范围:DC~6 kHz,最大交流磁场:2 kOe,预压力0~10 MPa2024年4月180详情链接7上海交通大学深海柔性结构复杂载荷加载系统用于深海柔性结构实尺度全性能试验中载荷的加载,还原实际海况下柔性结构的真实受力。主要包含疲劳试验、三点弯曲试验等。在疲劳试验中,需要在柔性结构一端施加轴向张力,另一端通过驱动摆头装置摆动以施加弯矩,通常通过一个拉伸作动器和两个弯曲作动器实现。在三点弯曲试验中,通过一个拉伸作动器在中间段施加弯矩,以实现柔性结构往复弯曲,实现连续曲率变化下的弯曲刚度测量。2024年4月980详情链接8武汉理工大学理工科基础及专业实验室设备购置理工科公共教学实验室主要包括物理实验教学示范中心、力学实验教学示范中心等,项目主要用于公共基础课实验、专业综合实验教学任务的仪器和设备进行更新、增补,以改善培养学生的基本科学素养和实验技能和创新能力的基础而重要的教学条件。2024年5月500详情链接9重庆大学储氢材料力学性能分析测试系统采购数量:1台,设备组成部分需求功能如下: (1)万能材料实验机 1.试验力:轴向载荷不小于50kN载荷,扭矩不小于20Nm台式主机:预应力的双立柱无间隙滚珠丝杠加两侧横梁贯穿式的导向杆高刚性机架结构。 2.扭转转速范围:0.002 到 80 RPM。 3.载荷传感器(50kN):从满程至1/1000量程,精度为±0.5%。 4.试验速度范围:0.001-750mm/min范围内≤设定速度的±0.1%。 5.位置测量精度:示值的+/-0.05%以内,或≤+/-0.01mm,取大值,位置控制分辨率精度≤2nm。 6.数据采集系统:控制软件能以≥5000 Hz 的采集率获取力值、位移和应变通道的数据。 采集速率不受通道数量的影响,在任何测试期间内,可以维持最高数据速率。 4.非接触式应变测量装置:不接触样品的情况下,可以精确测量样品变形。轴向视场范围不小于200mm,横向视场范围不小于30mm,变形测量误差小于示值的±0.5%或者读数的±0.01mm。在视场范围内可以任意设定标距。最大跟随速度达到2500mm/min,满足各种试验需要。 5.具有循环编程试验功能:具有循环、拉伸、压缩、弯曲、多试验组合编程控制等试验功能 (2)材料表征场数据测量系统 系统应变测量精度: 2D≤10με;应变测量范围: 0.005%~≥2000%;系统可用测量尺度范围: 常规10×10mm至≥10×10m 扫描电镜尺度适用 1、试验设置状态精度实时评估:须在图像采集驱动与控制界面内置实时的数字散斑成像质量量化评估功能,以色彩对应不同位移精度表征的彩色云图方式显示全场位移误差值的量化分布信息,实时显示测试图像中任意像素点的位移误差范围预评定、图像反光点指示信息及曝光不足或过度的判定指示信息。 2、系统图像数据采集硬件驱动能力:准静态图像采集硬件驱动:包括但不限于PointGrey, Prosilica,DALSA, Basler品牌静态/准静态图像采集器的直接驱动和参数控制;以上驱动须内置于数据图像处理系统以实现直接驱动和实时精度量化评估。 3、数据处理功能:具有对电子束漂移进行校正的扫描电镜图像位移场/应变场数据处理功能;具备支持外部图像输入、后处理、离线获取应变场/位移场的功能;具备扫描电镜电子束漂移或光学显微镜光学畸变的数据校正功能 具备以数据精度导向的参数优化功能,可根据图像的清晰度、曝光度、散斑质量及用户以像素为单位的位移精度值为驱动目标值而自动生成位移场计算网格尺寸。 4. 配有无线采集控制端及无线端采集控制APP软件。 (3)样品表面抛光处理机 快速去除样品表面机械化制样后残留的细微变形层。2024年5月200详情链接10中国科学院上海应用物理研究所研制真空小冲杆试验机工作温度:200℃~1000℃,真空度:常温条件下,8.0×10-3Pa;充气:充入保护气体压力0.01MPa~0.02Mpa。拉伸行程:不小50mm。150℃,量程不小于±6mm,线性度0.5%FS,精度0.5级,精度范围4%~100%,分辨率0.1微米2024年6月120详情链接11焊接接头介观尺度力学评价系统项目用途为测试焊接接头不同区域变形过程中应变分布情况,用以优化焊接接头焊接组织与对应的焊材改性、焊接工艺优化。主要要求为:(1)力学加载系统:力学加载的大小(最大加载力:≥10KN)、力分辨率(<±0.5N)、最大拉伸行程(≥60mm)、定位精度:≤25nm以及加载速率; (2)数字图像获取系统:图像系统的图像分辨率最大像素空间分辨率不低于580像素/毫米、图像获取速率≥250,000数据点/秒/CPU(Intel Core i7基准); 温度环境系统:加热设备的环境氛围稳定性(±5℃以内)2024年6月190详情链接12熔盐环境蠕变及应力腐蚀测试装置功能:合金在500-800℃自然循环流动的含Be、U、Th熔盐中,不同应力加载情况下的蠕变及应力腐蚀开裂测试;目标:获取高温熔盐环境合金的蠕变及应力腐蚀开裂性能数据,为示范堆力学设计用的安全校核提供依据。2024年6月190详情链接13中国信息通信研究院工业及信息化设备设施抗震及环境试验平台建设项目1.标的物名称:便携式多通道无线杆塔力学性能检测仪 2.标的物数量:1套 3.时限要求:签订合同后50日历日交付 4.主要功能或目标:满足通信杆塔设施力学测试要求2024年6月11详情链接14建筑材料工业技术情报研究所建筑材料工业技术监督研究中心低碳胶凝材料制备与应用技术研究实验平台建设项目购置低碳胶凝材料制备与应用技术相关研究用科研仪器设备,主要包括原料分析设备、低碳胶凝材料硬化体组成与结构分析仪器及产品性能检测设备等相关仪器设备共计14台。2024年7月200详情链接15中国科学院合肥物质科学研究院力学耦合加载测试系统1.蠕变载荷≥50kN,冲击载荷≥700J 拉伸试验机的载荷≥200KN; 2、采购数量两套,招标后12个月内交付验收,质量满足甲方设计要求2024年11月255详情链接
  • 宁波材料所李润伟团队在超稳定可拉伸电极方面取得重要进展
    在智能可穿戴电子领域,稳定耐用的柔性可拉伸导体仍然是一个巨大的挑战。尤其是在人体表皮生理信号的收集过程中,稳定的可拉伸电极可以实现长时间精准的信号收集。目前无论是表面结构设计型、导电材料复合型还是本真可拉伸型电极,均难以实现在动态变形下稳定的电性能。所以,制备具有高稳定电性能的电极仍然是一个极大的挑战。近日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在李润伟研究员的带领下,受到人工渔网启发,模仿“水膜-鱼网”结构设计了具有柔性自适应导电界面的超稳定可拉伸电极,提出利用静电纺丝法构建液态金属聚氨酯(TPU)二维“仿水膜-鱼网”结构薄膜,实现了极低初始方阻(52mΩ sq-1),解决了弹性电极中导电率和拉伸率不可兼容、循环变形下电性能不稳定的问题,应变下通过网孔束缚液态金属对外扩展和液态金属在网孔内自适应流动,实现低电阻高稳定可拉伸电极,该电极的动态自适应导电网络使其具备极强的动态循环稳定性,经过33万次100%拉伸应变循环,电阻仅变化5%,同时电极面对冷热、酸碱、浸水等服役环境变化,依旧表现出稳定的电性能。该电极可应用于全天候人体表皮生理信号监测、智能人机交互界面及人体热疗等方面,有望助力基于万物互联的可穿戴健康监护系统及电子皮肤人机交互界面的持续发展。该工作以题为“Ultra-robust stretchable electrode for e-skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction”的论文发表在InfoMat上(DOI:10.1002/inf2.12302),并被选为封面文章(如图1)。图1 液态金属基超稳定可拉伸电极及应用InfoMat封面该团队通过TPU静电纺丝与液态金属微纳颗粒静电喷涂的原位复合,以及随后进行的机械激活,制备出了仿“水膜-渔网”的可拉伸电极。该电极的超稳定电性能,主要得益于其仿“水膜-渔网”结构,也可称之为液态金属动态自适应网络,由于液态金属薄膜与聚氨酯纺丝网的交互作用,在小应变下(<100%的应变),SEM原位观察到液态金属可以实现自适应流动,卸去局部应力,保持导电薄膜连续;在大应变下(300%-500%的应变),尽管液态金属薄膜会破裂,但聚氨酯纺丝网会阻碍其断裂,并使其包裹在纤维丝上,保持整体导电网络的稳定性(图2a)。作者还透彻分析了液态金属微米纳米球如何通过尺寸效应和微观捆绑结构实现与纳米纤维丝网络的复合。图2 超稳定电极机理及应用同时,通过局部激活和激光切割,可以将聚氨酯液态金属复合材料制备成多层多功能人机交互系统。上层电容传感阵列连接在集成电路和蓝牙模块上,能够实现无线信号传输,在拉伸和弯曲状态下均可以对计算机输入无线指令,可应用在智能可穿戴游戏控制等方面。下层蛇形加热器展现出良好的电热稳定性,可以实现45℃-90℃稳定加热,并展现出优异的加热循环性能,可用于人体加热治疗。局部激活的电路对机械破坏展现出很好的抵抗性,该电极可以实现即时导电通路重建,使电极在破坏、拉伸状态下依然能够正常工作(图2b)。该电极展在100%应变拉伸循环试验中,在第一次拉伸电阻发生了轻微升高,后续的33万次循环中,其电阻仅上升了5%,该特性要远远优于其他已报道的可拉伸电极(图2c)。该电极可以实现人体表皮全天候心电信号检测。首先,通过体外细胞实验证明该电极具有良好的生物相容性和极低毒性,可以用在人体表皮进行心电监测,其展现出与商用凝胶电极类似的阻抗性能。其次,该工作根据人的活动场景,为电极设计了静态、运动、水冲三个工作场景,超稳定电极展现出优异的心电信号收集能力,信噪比达到0.43,尤其是在水冲环境中,该电极依然能够收集到稳定、清晰的心电信号,可用于全天候心电诊断(图3)。图3 超稳定电极的生物相容性探究及其在全天候心电监测方面的应用综上所述,该工作设计并实现了超耐用可拉伸电极,基于液态金属和聚氨酯纺丝网络构成的自适应导电网络,实现了在机械变形、长时间氧化、循环浸没、加热、酸碱浸泡等各种环境刺激下的稳定电性能,尤其实现了33万次拉伸循环下极小的电阻变化。该电极可以应用在全天候心电监测、智能人机交互系统等方面,在长时间体表电子皮肤、体内生物相容性器件等方面展现出很大的潜力。该工作由曹晋玮、梁飞、李华阳等在李润伟研究员与宁波诺丁汉大学朱光教授的共同指导下完成,并得到国家自然科学基金(51525103、51701231、51931011),宁波市3315人才计划,宁波科技创新2025项目(2018B10057),浙江省自然基金(LR19F010001),浙江省杰出青年科学基金(2016YFA0202703)中国科学院王宽诚教育基金(GJTD-2020-11)的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制